

A method to Predict Wear of a Control Rod in a **Nuclear Power Plant**

Colloquim by J.W.M. De Jong

Contents

Introduction

Research Objective

Theory

Practice

Results

Conclusion

Introduction

Increasing demand for Nuclear Power

EDF operates 53 Nuclear Power Plants in France alone

Presurized Water Reactors vs Boiling Water Reactors

New design: European Pressurized Reactor (EPR)

Introduction

Introduction

Problem

The Spider with the Control Rods is extended from the Fuel Rod Assembly when in Operation

The Control Rods are Guided by Guide-plates

The Fluid Flow Induces a Vibration on the Control Rod

The Control Rods Wear out at the Guide-plates

Research Objective

'A Method to Model the Fluid Flow and to Predict the Wear of the Control Rods'

Method is initiated by Bodel in 2008

My Task: To Verify and Validate this Method

Comparison of Numerical Models

Static shapes as Expansion space

Mode-shapes in 2D

Different Mode-shapes to model system

Validation

Theory

Modal Analysis

Fluid Force Modelling

First Mode-shape f₁

Frequency $w_1 = 2$ [rad/s]

Second Mode-shape f₂

Frequency $w_2 = 4$? [rad/s]

Third Mode-shape f₃

Frequency $w_3 = 6$ [rad/s]

$$\Box = \frac{\Box \cdot f_{water}}{m_1 \Box \Box \Box \Box \Box \Box} =$$

$$\Box = \frac{\Box_{2}^{T} \cdot f_{water}}{m_{2} \Box \Box \Box \Box \Box \Box} =$$

$$\Box_{3} = \frac{\Box_{3} \cdot f_{water}}{m_{3} \Box \Box^{2} \Box \Box_{3}^{2} \Box}$$

Transfer Function

The Method

Model the System in Water using Mode-shapes...

$$\sum_{i} \frac{\Box \Box}{m_{i} \Box \Box \Box \Box \Box \Box}$$

...and use this System to calculate the Point Forces.

The Study

Obtain Experimental Mode-shapes

Mass Normalize the Mode-shapes

Identify the Fluid Force

Experimental Modal Analysis **TUDelft**

Hammer excitation

Measure the input and output signal

$$x = \sum_{i} \frac{\Box \Box}{m_{i} \Box \Box \Box \Box \Box} f_{hammer}$$

Mass Normalize the Mode-shapes

The Phacetie Model

Modelled guide-plates

Operational Modal Analysis **TUDelft**

Strain gauges inside the tube

Measure only the output signal

$$x = \sum_{i} \frac{\Box \Box}{m_{i}} \Box \Box \Box \Box \Box \Box \Box \Box f_{water}$$

No Normalized Mode-shapes

The Phacetie Model

Modelled guide-plates

Water outlet nozzle

· Water outlet nozzle

Water inlet nozzle

Non-normalised Mode-shapes of the system in Water

Mass Normalised Mode-shapes of the system in Air

Frequency difference between Water and Air

The Study

Obtain Experimental Mode-shapes

Mass Normalize the Mode-shapes

Identify the Fluid Force

Assumptions

the Mode-shapes

Method I

For each mode i = 1, 2, 3, ..., n

The Study

Obtain Experimental Mode-shapes

Mass Normalize the Mode-shapes

Identify the Fluid Force

Identifying the Forces

$$x_{measured} = \left[\sum_{i} \frac{C \Box \Box B}{m_{i} \Box \Box \Box \Box \Box}\right] f_{point}$$

Identify the Point Forces by Inverting the Transfer Function using a Pseudo Inverse

$$f_{point} = \left[\sum_{i} \frac{C \Box \Box B}{m_{i} \Box \Box \Box \Box \Box \Box}\right]^{\Box} X_{measured}$$

Results Method I

Measured and Re-calculated

Modelling the system using the Mass normalised Mode-shapes in Water

Results

Results Method I

Calculated Point Forces

Modelling the system using the Mass normalised Mode-shapes in Water

Results

Different mode-shapes to model system

Research Objective

Modelling the System

I Using the Mode-shapes obtained in Water (Mass Normalised)

Using the Mode-shapes obtained in Air (Re-normalised)

Method I

For each mode i = 1, 2, 3, ..., n

Practice

Method II

For each mode i = 1, 2, 3, ..., n

Practice

Results Method II

Measured and Re-calculated

Modelling the system using the re-normalised Mode-shapes in Air

Results

Results Method II

Calculated Point Forces

Modelling the system using the re-normalised Mode-shapes in Air

Results

Conclusions

Use Mass Normalised Mode-shapes in water to describe the System

Conclusions

Questions

?

Questions

Conclusions

Experimental Mode-shapes obtained in Air are not Mass Normalised by the Measurement System

Transfering Identified Point Forces between different Models will not give the desired Result

Fundamental Problem with the Method: The measurment system uses a randomized signal if no input signal is measured.

Conclusions

Experimental Modal Analysis **TUDelft**

Hammer excitation

Measure the input and output signal

Mass Normalize the Mode-shapes

Operational Modal Analysis **TUDelft**

Strain gauges inside the tube

Measure only the output signal

No Normalized Mode-shapes

The Numerical Models

The Study

Table 4.15: Cross MAC of LMS experimental mode-shapes in water, expanded on mode-shapes of 3D model vs PAK experimental mode-shapes in air, expanded on mode-shapes of 3D model in displacement

VS.	S.			PAK experiments in air, expanded on 3D model							
		nr.	1	2	3	4	5	6	7	8	
	nr.	[freq.]	[70.26]	[70.26]	[111.89]	[111.89]	[154.69]	[154.69]	[202.61]	[202.61]	
LMS	1	[54.40]	0.780	0.202	0.002	0.004	0.006	0.001	0.010	0.005	
experi-	2	[55.37]	0.226	0.695	0.001	0.023	0.002	0.008	0.002	0.041	
ments in	3	[99.03]	0.009	0.012	0.929	0.023	0.002	0.020	0.000	0.002	
\parallel water,	4	[130.35]	0.022	0.229	0.011	0.080	0.181	0.397	0.008	0.064	
expanded	5	[135.83]	0.021	0.113	0.001	0.012	0.755	0.075	0.000	0.000	
on 3D	6	[179.22]	0.002	0.041	0.049	0.008	0.044	0.013	0.780	0.047	

The Study

Experimental

Assumptions

The mode-shapes are the same for the system in water and in air

(The Amplitudes of the modeshapes are not the same)

There is no added stiffness due to the water surrounding the tube.

The added mass due to the water surrounding the tube can be calculated from the frequency difference.

Experimental

The Study