
Day and Night Contrail
Climate Impact of
Optimised Trajectories
MSc Thesis

W. S. Kruin

De
lft

Un
iv

er
si

ty
of

Te
ch

no
lo

gy

This page has intentionally been left blank. The cover picture is generated by the author using
Midjourney (https://midjourney.com/).

https://midjourney.com/

Day and Night Contrail
Climate Impact of

Optimised Trajectories
by

W. S. Kruin

to obtain the degree of Master of Science
at Delft University of Technology,

to be defended publicly on December 8th, 2022 at 10:00.

Student number: 4672771
Project duration: October 28th, 2021 - December 8th, 2022
Thesis committee: Chairman: Prof.dr. V. Grewe TU Delft | DLR

Supervisor: Dr. F. Yin TU Delft
Supervisor: F. Castino, M.Sc. TU Delft
External member: Dr.ir. G. La Rocca TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

 http://repository.tudelft.nl/

Preface
In front of you lies the final piece of the puzzle that is called ‘a master degree in aerospace
engineering’. And what a puzzle it was! Certainly it was a challenging one to complete,
demanding hard work, long days, short nights, dedication and determination. Due to the
COVID-19 pandemic, parts of the puzzle had to be made from home, while other parts of the
puzzle were put together in a hybrid fashion. However, despite (but maybe also thanks to)
the challenging nature of this puzzle, completing it turned out to be one of the most fun and
insightful periods in my life.

When I started the bachelor aerospace engineering in Delft, I felt the need to defend my
choice to become part of an industry that is infamous for its negative environmental impact.
I ensured my friends and family that I would only join forces with ‘these people’ to eventually
make aviation more sustainable. Although sincere, it did not take long for this promise to
become a faint idea resting somewhere in the back of my head. Honestly, it took until the
start of my M.Sc. degree to remember my pledge, when it was time to select the electives that
allow a student to dive deeper into a subject of his own choice. Courses like Aircraft Noise
and Emissions and Aircraft Emissions and Climate effects immediately caught my attention,
and I could not regret my choice for these subjects less, as they eventually became the cradle
for my thesis subject.

I would not have been writing this preface without the support of some amazing people for
who I am very grateful. Thank you, friends in Delft. Throughout the the last five years you made
every day’s journey from Haarlem to Delft worthwhile and I am sure our friendships will last
well beyond Delft. Thank you, mom, dad and Thandi, for being a warm family. I could not have
done it without your support. Lydia, few students get to know the joy of having the everlasting
support of a spouse during their thesis. Even fewer know the blessing of that spouse to be you.
Thank you for always being there, regardless my highs and lows. I am thankful for the ANCE
group for warmly taking up this FPP’er. A special thanks goes out to Federica, who helped
me find and convey both the big and detailed picture of my thesis during numerous Tuesday
mornings and more. Thank you, Feijia, for our fruitful discussions, thesis related, but also career
related. I would also like to thank Volker for his helpful feedback at every milestone that led to
this thesis.

Calling this thesis ‘the final piece’ might be true for my journey as a student, but I feel like
this piece is only the beginning of a new, bigger and even more exiting puzzle. Luckily, I am not
done puzzling yet.

Wessel Kruin
Haarlem, November 2022

ii

Contents

Preface ii

List of Figures vii

List of Tables viii

List of Symbols xii

Abstract xiii

1 Introduction 1
1.1 Background . 1
1.2 Objective . 2
1.3 Structure . 3

2 Operational Contrail Climate Impact Mitigation 4
2.1 Spatiotemporal Impact Variability . 4

2.1.1 Schmidt-Appleman Criterion . 4
2.1.2 Persistence . 6
2.1.3 Contrail Spreading . 7
2.1.4 Optical Properties . 7
2.1.5 Long-Wave Radiative Forcing . 8
2.1.6 Short-Wave Radiative Forcing . 9
2.1.7 Day versus Night . 10

2.2 Operational Measures . 10
2.2.1 Changing Altitude . 11
2.2.2 Changing 3D Trajectories . 11

3 Methodology 13
3.1 Modelling Chain . 14

3.1.1 Base Model . 14
3.1.2 Algorithmic Climate Change Function . 15
3.1.3 CONTRAIL . 17
3.1.4 AirTraf . 18

3.2 Simulation Set-Up . 23
3.2.1 Day Selection . 23
3.2.2 One Day Flight Plan . 25
3.2.3 Threshold Time Until Sunrise for Nighttime Contrails 26
3.2.4 Optimisation Settings . 27

3.3 Data Analysis . 27
3.3.1 Raw Data . 28
3.3.2 Data Analysis: Daytime and Nighttime Contrail Climate Impact 29
3.3.3 Data Analysis: Variability with the Threshold Time Until Sunrise 35
3.3.4 Data Analysis: Search for New Pareto Front 36

4 Results 38
4.1 Comparing Daytime and Nighttime Contrail Climate Impact 38

4.1.1 Cost Optimal Day and Night Specific Contrail ATR20 38
4.1.2 Day and Night Mitigation of Contrail ATR20 40
4.1.3 Mitigation of Contrail ATR20 Without Extra Cooling 42

iii

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

4.2 Variability of Results with Threshold Time Until Sunrise 44
4.2.1 Variability of Cost Optimal Day and Night Specific Contrail ATR20 44
4.2.2 Variability of Day and Night Mitigation of Contrail ATR20 45
4.2.3 Variability of Mitigation of Contrail ATR20 Without Extra Cooling 49

4.3 Search for a New Pareto Front . 50

5 Verification and Validation 53
5.1 Verification . 53
5.2 Validation . 57

6 Discussion 59
6.1 Comparing Day and Night Contrail Climate Impact of Optimised Trajectories . . . 59
6.2 Sensitivity to Threshold Time Until Sunrise . 61
6.3 Benefiting from the Differences Between Day and Night Contrail Climate Impact

of Optimised Trajectories . 62
6.4 Assumptions and Uncertainties . 63

6.4.1 Modelling Chain . 63
6.4.2 Experiment Design . 65
6.4.3 Analysis . 66

7 Conclusion and Recommendations 67

Bibliography 69

A Figures 75

B Python Scripts 76

iv

List of Figures

2.1 A pH2O vs. T diagram displaying three scenarios for the mixing of the aircraft
exhaust with ambient air. Grey lines are mixing lines. Ambient and exhaust
conditions are labelled with subscript ∞ and j, respectively. The purple line
represents saturation with respect to water. The blue line represents saturation
with respect to ice. A point of condensation is marked with a purple dot.
Scenario 1 holds for an aircraft that forms a persistent contrail, scenario 2 holds
for an aircraft creating a non-persistent contrail and scenario 3 shows a scenario
in which no contrail forms. Additionally, whether a contrail forms and if it persists
is represented by the illustration above the graph. 6

3.1 Flowchart of the thesis methodology. 13
3.2 Overview of the AirTraf simulation tool (adapted from Yamashita et al. (2015)). . 19
3.3 Example geometry definition for a flight trajectory in the vertical cross-section

(top) and the projection on Earth (bottom). The bold solid line indicates the
optimised trajectory. The control points are represented by black dots. The
dashed lines and boxes show the domains of the control points. The diamonds
along the great circle are the center points of the horizontal domain boxes
(Yamashita et al. (2016)). 20

3.4 Illustration of the contrail distance calculation procedure. (a) PCC exported from
EMAC grid to waypoints along the trajectories. (b) Contrail distance calculation
at a waypoint (i) (Yin et al. (2018)). 21

3.5 Daily values for ∆ATR20contrail leading to the selected days for the thesis
simulations. 24

3.6 Selected routes for the flight plan (adapted from FlyATM4E internal
communication). 26

3.7 Visualisation of the application of threshold time until sunrise (THsunrise) in ACCF. 26
3.8 Sketch of a possible set of Pareto efficient solutions for a flight. A distinction is

shown for solutions that are included in the flight data (blue), and solutions that
are included in both the flight and waypoint data (blue-orange). 29

3.9 Calculation of the effective segment length, de , from the segment length, d , and
the angle between the segment and the GC line, θ. 31

3.10 Visualisation of how two Pareto fronts of different size are combined into one
average Pareto front. 33

3.11 Visualisation of conservative bias for intermediate points along the Pareto front. 34
3.12 Illustration of the exclusion of segments with extra cooling. 35
3.13 Illustration of the search for a new point (green) that achieves an improved

∆eATR20contrail at a certain ∆eSOC. The new point is the average of two source
points (orange and dark blue) found among the daytime (yellow) and nighttime
(light blue) points. 37

4.1 Mean, specific, SOC optimal day and night contrail ATR20 for winter and summer,
THsunrise = 0 h. Whiskers represent the day to day standard deviation. 39

v

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

4.2 The mean values for (a) T , (b) OLR and (c) potcov in winter and summer at the
SOC optimal flight levels. (d) Shows the mean potcov as actually experienced
by the flights. Whiskers represent the day to day standard deviation. 39

4.3 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and
summer generated with waypoint data, THsunrise = 0 h. The percentages placed
at the contrail optimal solution indicate the relative differences to the SOC
optimal solution. Shaded areas show the day to day standard deviation of
∆eATR20contrail . 40

4.4 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and
summer generated with flight data, THsunrise = 0 h. The percentages placed
at the end-points of the fronts indicate the change w.r.t. the SOC optimal solution. 42

4.5 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and
summer generated with waypoint data, THsunrise = 0 h. Extra cooling is excluded.
The percentages placed at the end-points of the fronts indicate the change w.r.t.
the SOC optimal solution. Shaded areas show the day to day standard deviation
of ∆eATR20contrail . 43

4.6 Specific, cost optimal day and night contrail ATR20 for winter and summer, for
THsunrise = 0, 3 and 6h. 44

4.7 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter, generated
with waypoint data, THsunrise = 0, 3 and 6h. 46

4.8 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in summer
generated with waypoint data, THsunrise = 0, 3 and 6h. 47

4.9 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in summer
generated with flight data, THsunrise = 0, 3 and 6h. 48

4.10 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter, generated
with waypoint data, THsunrise = 0, 3 and 6h. Extra cooling is excluded. 49

4.11 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in summer
generated with waypoint data, THsunrise = 0, 3 and 6h. Extra cooling is excluded. . 50

4.12 New found points outperforming the average of the day and night winter Pareto
front of ∆eSOC vs. ∆eATR20contrail generated with flight data, THsunrise = 0
h. The points labelled with ‘ex.’ indicate an illustrative new found point and its
source points. 51

4.13 New found points outperforming the average of the day and night summer
Pareto front of ∆eSOC vs. ∆eATR20contrail generated with flight data, THsunrise =
0 h. The points labelled with ‘ex.’ indicate an illustrative new found point and its
source points. 52

5.1 Specific, SOC optimal day and night contrail ATR20 for winter and summer,
THsunrise = 0 h. The data originate from the ATM4E European flight plan. 54

5.2 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and
summer generated with waypoint data, THsunrise = 0 h. The percentages placed
at the contrail optimal solution indicate the relative differences to the SOC
optimal solution. The data originate from the ATM4E European flight plan. 55

vi

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

5.3 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and
summer generated with waypoint data, THsunrise = 0 h. Extra cooling is excluded.
The percentages placed at the end-points of the fronts indicate the change w.r.t.
the SOC optimal solution. The data originate from the ATM4E European flight
plan. 56

5.4 Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and
summer, generated with waypoint data and flight data, THsunrise = 0. For the
purpose of verification the waypoint data Pareto front mimics the distinction
between day and night for flight data. 57

6.1 Visualisation of proposed new set up for contrail aCCF. 62

A.1 Pareto front of eSOC vs. eATR20contrail for day and night in winter generated
with flight data, data: THsunrise = 0h, processed as: THsunrise = 0, 3 and 6h. 75

vii

List of Tables

3.1 Relevant properties assigned to a resulting flight trajectory in AirTraf 2.0. The
properties of the three groups (top to bottom, divided by horizontal lines) are,
respectively, obtained from the nearest grid box of EMAC, the flight trajectory
calculation, and the fuel–emissions–cost–climate calculation. The attribute
type indicates where the values of properties are allocated. “W”, “S”, and “T”
in column 3 stand for waypoints, flight segments, and a whole flight trajectory,
respectively. (Adapted from Yamashita et al. (2020)) 22

3.2 ∆ATR20contrail mean and variance for winter, summer and the final day selections. 24

4.1 Change in number of nighttime segments between the waypoint Pareto points
and the waypoint Pareto points without extra cooling. 44

viii

List of Symbols and Abbreviations

List of symbols.

Symbol Parameter Unit
a Tuner for the calculation of rco [−]
aCCFcontrail Contrail aCCF [K/km(contrail)]
Aeff Effective albedo of the Earth-atmosphere system [−]
ATR20contrail Contrail ATR20 [K]
ATR20contrail Specific contrail ATR20 [K/km]
ATR20total Total ATR20 [K]
bci Natural cloud coverage [−]
bco+ci Maximum possible cloud coverage [−]
cf Unit fuel costs [$/kg]
cp Air specific heat capacity [kJ/kgK]
ct Unit time costs [$/s]
d Flight distance [m]
de Effective flight distance [m]
D Contrail thickness [m]
eATR20contrail Effective specific contrail ATR20 [K/km]
eSOC Effective specific simple operating cost [$/km]
EIH2O Emission Index of H2O [kgH2O/kgfuel]
ELW Long-wave extinction factor accounting for a cirrus

above a contrail
[−]

ESW Short-wave extinction factor accounting for a cirrus
above a contrail

[−]

ERF Effective Radiative Forcing [W/m2]
FlightDist Flight distance [km]
Fcr Fuel flow [kg/s]
FUEL Fuel use [kg]
G Slope of mixing line [Pa/K]
h Flight altitude [m]
IWC Ice Water Content [kg/m3]
kT Model parameter of Schumann et al. (2012) [W/m2K]
M(air) Air molar mass [g/mol]
M(H2O) Water molar mass [g/mol]
OLR Outgoing Long-wave Radiation [W/m2]
p Pressure [Pa]
pH2O Water vapour partial pressure [Pa]
PCC Potential Contrail Coverage [−]
PCCDist Contrail distance [km]
PCCDist Contrail distance [km]
Potcov Potential persistent contrail cirrus coverage [−]
Q Fuel specific heat content [J/kg]
r Grid mean relative humidity [−]
rci Critical relative humidity for cloud formation [−]

ix

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

List of symbols (continued).

Symbol Parameter Unit
rco Critical relative humidity for partial grid box ice-

supersaturation
[−]

reff Particle distribution effective radius [µm]
rh Relative humidity above water [−]
rhi Relative humidity above ice [−]
rnuc Relative humidity of homogeneous freezing threshold [−]
rSAC Relative humidity where SAC is satisfied [−]
rsat Relative humidity at saturation [−]
r∗ Threshold relative humidity for bco+ci = 1 [−]
RF Radiative Forcing [W/m2]
RFLW Long-Wave Radiative Forcing [W/m2]
RFSW Short-Wave Radiative Forcing [W/m2]
SDR Sun Direct Radiation [W/m2]
SOC Simple operating cost [$]
SOC Specific simple operating cost [$/km]
S0 Solar constant [W/m2]
t Time [s]
tlife Contrail lifetime [h]
tsunrise Time until sunrise [h]
tsunset Time until sunset [h]
tA Model parameter of Schumann et al. (2012) [−]
t0 Reference time [s]
T Temperature [K]
THsunrise Threshold time before sunrise for day or night contrail

aCCF
[h]

THsunset Threshold time before sunset for day or night contrail
aCCF

[h]

T0 Model parameter of Schumann et al. (2012) [K]
u1 Model parameter of Unterstrasser and Gierens (2010) [m2/kg]
u2 Model parameter of Unterstrasser and Gierens (2010) [m3/kg]
wday Daytime contrail aCCF weight factor [−]
wnight Nighttime contrail aCCF weight factor [−]
X Vector of AirTraf design variables [coordinate]
αc Contrail albedo [−]
βext Extinction coefficient [m−1]
∆T Temperature response [K]
∆λairport Longitudinal distance of airport pair [deg]
η Propulsive efficiency [−]
θ Solar zenith angle [deg]
λ longitude [deg]
λ Climate sensitivity parameter [K/(W/m2)]
µ Cosine of solar zenith angle [−]
τ Contrail optical thickness [−]
τc Optical depth of cirrus above a contrail [−]
ϕ Latitude [deg]

x

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

Symbol subscripts.

Symbol Refers to

d day number
f flight number
i Segment number / waypoint number / solution number
j Jet
m mid layer
s Saturation with respect to water
si Saturation with respect to ice
tot Total
∞ Ambient condition

List of abbreviations.

Abbreviation Spelled out fully
aCCF Algorithmic Climate Change Function
AGWP Absolute Global Warming Potential
ARMOGA Adaptive Range Multi-objective Genetic Algorithm
Arr Arrival
ATM Air Traffic Management
ATM4E ATM for the benefit of environment and climate
ATR20 Average Temperature Response over a 20 year time horizon
BADA Base of Aircraft Data
CCF Climate Change Function
CO2 Carbon dioxide
CP Control Point
Dep Departure
DLR Deutsches Zentrum für Luft- und Raumfahrt
ECHAM European Centre Hamburg general circulation model
ECMWF European Centre for Medium-Range Weather Forecasts
EMAC ECHAM/MESSy Atmospheric Chemistry
ETO Estimated Time Over
F Future emission scenario
FlyATM4E Flying ATM4E
FL Flight Level
GC Great Circle
H2O Water
ICAO International Civil Aviation Organisation
IPCC Intergovernmental Panel on Climate Change
LW Long-Wave
MESSy Modular Earth Submodel System
NOx Nitrogen oxides
P Pulse emission scenario
REACT4C Reducing Emissions from Aviation by Changing Trajectories for the benefit

of Climate
SAC Schmidt-Appleman Criterion
SOC Simple Operating Costs
TOM Trajectory Optimisation Module

xi

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

List of abbreviations (continued).

Abbreviation Spelled out fully
SW Short-Wave
TOA Top Of Atmosphere
UTC Coordinated Universal Time
3D 3 Dimensional
4D 4 Dimensional

xii

Abstract
Contrail formation is one the largest warming contributions of aviation’s climate impact.
Measures to mitigate contrail climate impact include the optimisation of flight trajectories to
avoid the formation of warming contrails or to find air space where extra cooling contrails
are formed. The latter option is only possible during daytime, due to the interaction of a
contrail with the short-wave radiation from the Sun. Little research is done to evaluate the
effect of the diurnal cycle on contrail climate impact mitigation. Moreover, models to predict
this the contrail climate impact are still in the development face. This thesis aims to (1) find
the daytime and nighttime contrail climate impact of eco-efficient flight trajectories, (2) to
assess the prediction’s robustness and (3) to recommend a best practice for eco-efficient
flying by using the difference between the daytime and nighttime contrail climate impact. To
this end, simulations were carried out within the EMAC climate chemistry model, aided by the
submodels AirTraf, CONTRAIL and ACCF. The robustness of the results were tested against a
model parameter: the threshold time until sunrise (THsunrise). When a contrail is formed during
nighttime, THsunrise determines whether the contrail is formed sufficiently close to sunrise to be
considered a daytime contrail. It is concluded that winter daytime mitigation of contrail climate
impact is more eco-efficient than winter nighttime mitigation. Overall, daytime mitigation
achieves a larger maximum reduction of contrail climate impact than nighttime mitigation.
Moreover, summer mitigation is more effective than winter mitigation and winter mitigation
has a larger reliance on the formation of extra cooling contrails. The thesis results are robust
with respect to a varying THsunrise. However, overall results become biased to daytime results
or nighttime results. Lastly, it is shown that differences between day and night contrail climate
impact mitigation allow for the enhancement of mitigation results.

xiii

Chapter 1

Introduction
1.1 Background

With their sixth and latest assessment report the Intergovernmental Panel on Climate Change
(IPCC) has made it clear: human influence has unequivocally warmed Earth’s atmosphere,
ocean and land (IPCC (2021)). The rise in global temperature “has caused widespread adverse
impacts and related losses and damages to nature and people” (IPCC (2022)). To what extent
ecosystems and humans will face additional risks depends on our ability to limit further
warming of our planet (IPCC (2022)). The IPCC report underlines how important it is to live up to
the promise many countries made by signing the Paris agreement in 2015: to pursue efforts to
keep global warming below 1.5 degrees Celsius with respect to the pre-industrial level. Keeping
this promise means that action needs to be taken to reduce green house gas emissions and
effects across all sectors. One of the major contributors to anthropogenic climate change is
the aviation sector. According to Lee et al. (2021), air traffic accounted for 3.5% of the net
anthropogenic Effective Radiative Forcing (ERF) in 2011. Given that the amount of ERF induced
by the aviation sector is projected to grow even further (Lee et al. (2021)), it is a great challenge
to mitigate the climate impact of air traffic.

Whereas most people associate global warming with the emission of CO2, it is actually the
collective of non-CO2 effects that make up the largest part of the climate impact of air traffic.
Nearly 2/3 of the net aviation ERF finds its origin in the emission of NOx , water vapour and
aerosols or the formation of contrail cirrus (Lee et al. (2021)). With some uncertainty, it is this
last term that Lee et al. (2021) identified as the single largest warming term contributing to
aviation’s net ERF. Given this knowledge, the mitigation of the climate impact of contrails is an
interesting focus area to reduce aviation’s overall climate footprint.

Means by which the climate impact of contrails could be mitigated can be divided into
two categories: technological measures and operational measures. An example from the
first category is the onboard storage of water vapour that would otherwise be emitted and
become a condensation trail. The hot water vapour is then cooled before emission such that
the vapour condensates on board and can be stored in water tanks (Noppel and Singh (2007)).
Additionally, new fuels like hydrogen and synthetic kerosene are entering the aviation market.
These fuels are characterised by lower soot numbers than conventional kerosene, resulting
in contrails with a shorter lifetime and a lower climate impact (Narciso and de Sousa (2021),
Bräuer et al. (2021)).

Measures in the second, operational, category do not involve changes to the aircraft or
the fuel that it burns, but rather refer to changes in Air Traffic Management (ATM) operations.
A vast collection of studies shows that the climate impact of contrails (and that of other non-
CO2 climate forcers) is highly dependent on the location of formation, the local meteorological
conditions and the time of day (e.g., Meerkötter et al. (1999), Fichter et al. (2005), Kärcher
(2018)). This spatiotemporal variability of non-CO2 climate impact implies that the trajectory of
a flight can be optimised to minimise its resulting climate impact (Grewe et al. (2014a), Grewe
et al. (2017), Matthes et al. (2021)). Following up on this possibility, many efforts are made
to investigate the opportunities of such trajectory optimisations. Examples are the study into
altitude changes by Matthes et al. (2021), the inclusion of a climate optimal routing strategy in
a 4D trajectory optimisation model by Yamashita et al. (2016) and the study of Newinger and

1

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

Burkhardt (2012) into the effect of daytime restricted flight. Several preliminary small scale
tests also show promising results, indicating the viability of climate optimised flight trajectories
1. Still, many open questions remain on the quantification of the climate impact of a flight and
on how to use this information to come to a climate optimal trajectory.

1.2 Objective

Part of the latest research efforts to answer questions on the operational climate impact
mitigation of air traffic can be found within the ATM4E and FlyATM4E projects (ATM4E (2018),
FlyATM4E (2020)). The ATM4E (ATM for the benefit of Environment and climate) project, which
finished in April 2018, explored the feasibility of a concept for the assessment of the climate
impact of ATM operations. This concept is based on a set of algorithmic Climate Change
Functions (aCCFs) (Yin et al. (2022)). The aCCFs are used to quantify the climate change of a
unit emission or unit contrail distance in terms of the average temperature response over a 20
year time horizon (ATR20). Together, the aCCFs form a computationally efficient tool that can
determine the overall climate impact of a trajectory and any possible alternatives.

To build further on the findings of ATM4E, FlyATM4E (Flying ATM4E) was started in June
2020. The FlyATM4E project aims to improve ATM4E’s assessment method and has the
objective to achieve optimised trajectories that feature a robust climate impact reduction.
The focus of FlyATM4E’s research is on those trajectories that achieve substantial climate
impact reduction at a low amount of extra costs, so-called “eco-efficient solutions”. The
thesis presented in this document is found in the context of the FlyATM4E project and aims to
contribute to its objectives.

A literature study, which has been carried out in an earlier stage, showed how this thesis can
contribute to the objectives of FlyATM4E. The study of Meerkötter et al. (1999) showed that the
local time of day is an important factor towards the climate impact of a contrail cirrus. During
nighttime, a contrail serves as a blanket over the Earth and traps outgoing long-wave radiation
from the Earth’s surface, resulting in a warming effect. However, during daytime, additional to
the interaction with long-wave radiation, short-wave radiation from the Sun is partly reflected
by the contrail cirrus, which may result in a net cooling effect (Burkhardt and Kärcher (2011),
Schumann et al. (2017)). That the interaction between contrails and radiation differs between
day and night results in a different contrail climate impact for daytime and nighttime. In turn this
difference also imposes an effect on efforts to mitigate the net contrail climate impact of air
traffic. For example, both during day and night the avoidance of warming contrails is a way to
reduce the net contrail ATR20, but only during daytime flight trajectories may also be adjusted
to deliberately create cooling contrails. Therefore, it is interesting to study if this results in an
advantage for the daytime mitigation of contrail ATR20. Moreover, the ethical appropriateness
of the deliberate creation of cooling contrails is debatable, as it is an active interference in the
Earth’s climate system. This leads to the question how the results of mitigation efforts are
affected if we choose not to employ extra cooling contrails. Furthermore, a relevant question
is whether we can benefit from differences between daytime and nighttime contrail ATR20
mitigation, to enhance the results of trajectory optimisation.

Additionally, considering the contrast between daytime and nighttime contrails, the set up
of the contrail aCCF imposes an uncertainty on its forthcoming results. Acknowledging the
difference between daytime and nighttime contrails, the contrail aCCF uses a different function
for daytime and nighttime. Whether a contrail is treated as daytime or nighttime contrail by the
aCCF could be determined by a simple question: is it day or night at the time of formation?
However, knowing that a contrail may persist for several hours (Vazquez-Navarro et al. (2015)),
it may be more sensible to inspect whether the largest part of the contrail lifetime is during
night or day. Alternative criteria may also be considered. Whichever criterion is chosen, the

1https://satavia.com/news/, accessed: November 29, 2022.

2

https://satavia.com/news/

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

chosen approach to distinguish between a daytime and a nighttime contrail may affect the
outcome of a trajectory optimisation based on the aCCFs. Hence, the corresponding variability
of the results needs to be evaluated to properly value the predicted potential to mitigate climate
impact.

As a result of the literature study, the following research goal is formulated:

To find the daytime and nighttime contrail climate impact of eco-efficient flight trajectories,
to assess the prediction’s robustness and to recommend a best practice for eco-efficient
flying by using the difference between the daytime and nighttime contrail climate impact.

Corresponding to this goal, the following research objectives are identified:

1. To analyse the daytime and nighttime difference in contrail ATR20 for a set of eco-efficient
trajectories.

2. To assess the variability of the contrail ATR20 of eco-efficient trajectories when considering
a change in threshold time until sunrise for nighttime contrails.

3. To explore a climate optimal practice to spend a certain budget of simple operating costs
for trajectory optimisation on the minimisation of contrail ATR20.

1.3 Structure

Chapter 2 will visit relevant literature, supporting why trajectory optimisation for the mitigation
of contrail climate impact is viable and how this is done. Chapter 3 describes and motivates
the methodology applied in this thesis. Results are presented in Chapter 4, after which the
verification and validation of these results are discussed in Chapter 5. Chapter6 discusses the
meaning and relevance of the results. Lastly, Chapter 7 concludes this thesis and provides
recommendations for future work.

3

Chapter 2

Operational Contrail Climate Impact
Mitigation
The concept of eco-efficient trajectories relies on the spatiotemporal variability of air traffic’s
total climate impact. For trajectory optimisation only aiming for the mitigation of contrail
climate impact, this dependency reduces to solely the spatiotemporal variability of contrail
climate impact. Firstly, this chapter describes the main ambient parameters that drive contrail
climate impact and how these parameters cause its spatiotemporal variability. Secondly, this
chapter visits how this variability is employed to come to optimised trajectories.

2.1 Spatiotemporal Impact Variability

To explain why the contrail climate impact of an aircraft varies with location and time, we
refer to the growing body of literature that discusses contrails and their Radiative Forcing (RF).
Although the first sightings of contrails date back to World War One (Weickmann (1919), Varney
(1921)), it was only at the start of the Second World War that the why and how of contrails
gained in scientific interest. Heiërman (1944), Brewer (1946), Descamps (1945), Appleman
(1953), Scorer (1955) and Scorer and Davenport (1970) explained the origin of contrails as
generally accepted nowadays: contrails form due to the condensation of water vapour on
ambient or emitted nuclei after which the water freezes. A set of ambient and aircraft variables
determines whether a contrail can indeed form, how long it can persists and what will become
the value of the resulting RF. Given a certain aircraft, ambient variables are responsible for the
spatiotemporal variability of the contrail climate impact throughout the airspace. The sections
below will highlight the most relevant relations between contrail climate impact and these
ambient parameters.

2.1.1 Schmidt-Appleman Criterion

The thermodynamic theory for contrail formation was developed by Schmidt (1941) and later
Appleman (1953). An important aspect within the theory of Schmidt and Appleman is the
concept of mixing, that is, the mixing of the engine exhaust gas with ambient air. The
combustion of kerosene (and alternative fuels like synthetic kerosene and hydrogen) produces
water (H2O) vapour. The amount of released H2O is often expressed by the water vapour
Emission Index (EIH2O), in units of kgH2O/kgfuel . A typical value for the EIH2O of kerosene is 1.25
kgH2O/kgfuel (Schumann (1996)), although the precise value varies with exact fuel composition
and combustion process. Together with the expelled H2O, the aircraft engine releases heat into
the wake of the aircraft. The amount of released heat depends on the fuel specific heat content,
Q [J/kg], and the overall propulsive efficiency of the aircraft, η [-]. While the exhaust air is thus
hot and humid, the ambient air is cold and dry, especially at cruising altitudes. Immediately
upon contact with each other, the exhaust gas and ambient air undergo a mixing process,
during which the exhaust wake reduces both in temperature and humidity.

Whether the water vapour within humid air condensates, depends on temperature (T [K])

4

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

and the water vapour partial pressure (pH2O [Pa]). For a given temperature, the pH2O at which
the rate of condensation equals the rate of evaporation is called the water saturation partial
pressure (pH2O

s [Pa]). When pH2O = pH2O
s , a thermodynamic equilibrium is reached at the surface

of the liquid. If the pH2O of air is above pH2O
s , the condensation rate is larger than the rate

of evaporation. The air is then called supersaturated and features a growth in liquid water
volume. Vice versa, air with pH2O below pH2O

s is called subsaturated and induces a volume
shrink of any existing water droplets. In a similar way, the rate of deposition and sublimation
of ice is driven by the pH2O and the ice saturation partial pressure (pH2O

si [Pa]). For a range of
temperatures, pH2O

s and pH2O
si were experimentally determined by Sonntag (1994) and others.

The partial pressure is often expressed relative to one of the two saturation partial pressures
as the relative humidity above water (rh [-]) or the relative humidity above ice (rhi [-]). These
values are computed with equations 2.1 and 2.2.

rh =
pH2O

pH2O
s

(2.1)

rhi =
pH2O

pH2O
si

(2.2)

Schmidt and Appleman concluded that, for a contrail to form, somewhere during the
temperature and humidity decrease due to mixing, pH2O has to surpass pH2O

s to become
supersaturated. This requirement for contrail formation is generally accepted and is named
the “Schmidt-Appleman Criterion” (SAC).

Whether the SAC is satisfied thus depends on the exact “route” of the exhaust from being
hot and humid to being cold and dry. A convenient way to visualise the mixing and possible
surpassing of pH2O

s is a pH2O vs. T plot (see figure 2.1). Assuming an adiabatic and vapour
conserving mixing process, during which heat and vapour diffuse at the same rate, the mixing
can be represented by a straight line. This line, called the mixing line by Schumann (1996),
connects the point representing the ambient conditions {pH2O

∞ , T∞} and the point representing
the conditions at the exit of the jet engine {pH2O

j , Tj}. The mixing line has slope G [Pa/K] (see
equation 2.3).

G =
pH2O

j − pH2O
∞

Tj − T∞
(2.3)

Schumann (1996) found that the value of G can also be approached by a function of ambient
conditions and combustion characteristics and formulated equation 2.4.

G = p∞cp
M(air)

M(H2O)
EIH2O

(1 − η)Q
(2.4)

Where p∞ [Pa] is the ambient pressure, cp [kJ/kg K] is the air specific heat capacity, M(air)
[g/mol] is the molar mass of air and M(H2O) [g/mol] is the molar mass of water. Recall EIH2O
as the water emission index, η as the overall propulsive efficiency and Q as the fuel’s specific
heat content.

The pH2O vs. T plot is composed of multiple important elements: firstly, the pH2O
s (T)

line is plotted (purple) in figure 2.1). Secondly, the point of ambient pH2O and temperature is
depicted (grey dot with subscript ∞). Thirdly, the mixing line (grey) is drawn using the value
of G. These three ingredients are sufficient to check if the SAC is satisfied and to conclude
whether a contrail thus forms or not. For example, figure 2.1 shows a scenario (3) in which
supersaturation w.r.t. water is not reached and a contrail does not form. Figure 2.1 also shows
two scenario’s (1 and 2) in which supersaturation w.r.t. water is reached (purple dots) and a
contrail does form.

5

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

Figure 2.1: A pH2O vs. T diagram displaying three scenarios for the mixing of the aircraft exhaust with
ambient air. Grey lines are mixing lines. Ambient and exhaust conditions are labelled with subscript ∞
and j, respectively. The purple line represents saturation with respect to water. The blue line represents
saturation with respect to ice. A point of condensation is marked with a purple dot. Scenario 1 holds
for an aircraft that forms a persistent contrail, scenario 2 holds for an aircraft creating a non-persistent
contrail and scenario 3 shows a scenario in which no contrail forms. Additionally, whether a contrail
forms and if it persists is represented by the illustration above the graph.

However, figure 2.1 features more elements that provide useful information. The first of
those elements is the point representing engine exit conditions (grey dot with subscript j). As
indicated by the dashed part of the mixing line, point {pH2O

j , Tj} lies far outside the range of the
pictured pH2O vs. T plot. The presence of point {pH2O

j , Tj} is a helpful, visual reminder of the
hot and humid origin of the exhaust gas. Typical exhaust conditions are, e.g., T = 800 K and
pH2O = 1300 Pa. Lastly, the blue line, which represents the saturation with respect to ice, plays
a crucial role in the persistence of a contrail. This will be discussed in the next section.

Concluding, this section identifies three ambient parameters found at the root of contrail
climate impact, as they drive whether a contrail forms or not. Given a certain aircraft, the
combination of ambient water vapour pressure, temperature, and air pressure determines
whether or not a contrail can form.

2.1.2 Persistence

As discussed in the introduction this section, a contrail consists of frozen, nucleated droplets.
A young contrail thus consists of ice-surrounded nuclei and can persist as long as these ice
crystals remain. Whether the ice crystals of a contrail will last can be determined from the
saturation with respect to ice (Brewer (1946), Schrader (1997)), represented by the blue line in

6

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

figure 2.1. If the ambient air is supersaturated with respect to ice, the contrail’s ice crystals will
grow up to the point of equilibrium, that is, a relative humidity with respect to ice of 100%: in this
case the young contrail will persist. The other scenario is that the ambient air is subsaturated
with respect to ice, resulting in shrinkage of ice volume and finally its disappearance: this
is called a non-persistent contrail. The top of figure 2.1 visualises the connection between
contrail persistence, the mixing line and ambient conditions. Scenario 1 in figure 2.1 shows
that a contrail can persist if the end of the mixing line is found above the ice saturation line.
However, when the tail end of the mixing line is found below ice saturation, as seen for scenario
2, the contrail quickly dissolves. Naturally, the longer the lifetime of a contrail is, the larger is
its climate impact.

This section shows a second dependence of contrail climate impact on ambient
temperature and water vapour pressure. If the combination of these two parameters is found
below ice saturation, the contrail ice crystals will shrink and the lifetime of the contrail will be
short.

2.1.3 Contrail Spreading

After formation, a persistent contrail often does not maintain its recognisable linear shape. As
a result of the vortex induced descend of the trail, the ice crystals of a contrail are exposed to
horizontal wind. Horizontal winds usually have a velocity gradient along the vertical direction,
which induces shear. This wind shear spreads the contrail to a width that can be 100 km
(Kärcher (2018)). In jargon, the contrail (with the emphasis on “trail”) loses its initial line shape
and becomes a “contrail cirrus”. In this way, the wind shear increases the width of the contrail
cirrus. However, the chance exists that the wind drives the ice crystals outside contrail ice-
supersaturated region, which leads to the sublimation of ice crystals and the disappearance of
the contrail cirrus. An increase in contrail width increases the climate impact of the contrail.
If the lifetime of a contrail is reduced because wind drives the contrail into ice-subsaturated
regions, the contrail climate impact reduces as well.

Another dependence of contrail climate impact on an ambient factor is thus identified: wind
shear and direction.

2.1.4 Optical Properties

Radiation passing through a contrail encounters a number of ice crystals. Upon this encounter,
each of those ice crystals may prohibit radiation from continuing on its original path through
scatter or absorption. This leads to the (partial) extinction of the radiation wave. To what
extent a radiation wave extincts through the interaction with a contrail, depends on the optical
properties of the contrail.

An intuitive factor that determines the extinction caused by a contrail is the density of ice
crystals in a contrail. The higher the crystal density of a contrail, the larger the number of
encountered ice crystals and the larger the extinction of the radiation will be. Unterstrasser and
Gierens (2010) captured this relation in equation 2.5 for the extinction coefficient βext [m−1]:

βext = IWC × (u1 + u2/reff) (2.5)

The equation features Ice Water Content (IWC), the ice crystal mass in kilograms per cubed
meter, as a measure for contrail crystal density, u1 and u2 are constants, and reff is the effective
radius of the ice particle distribution in meters. The latter parameter is used to represent the
mixture of ice crystals with different sizes and shapes (habits).

7

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

The IWC of a contrail depends on a few factors, among which main ones are again
temperature and pH2O . The combination of these two reoccurring parameters is the limiting
factor for a contrail’s IWC (Bock and Burkhardt (2016)). A larger availability of water vapour
results in a larger average size and mass of ice crystals. Bier et al. (2017) found that the
sedimentation rates of a contrail with heavier ice crystals is relatively large, resulting in an
increase in IWC in its first hours (< 4h). Since a contrail with heavier ice crystals has a large
falling rate, the growth in contrail volume is large, additionally ensuring the encounter of more
fresh humid air for crystal growth. At a later stage the heavy ice crystals have the opposite
effect. During the descent of the contrail, part of the ice crystals sublimate in ice-subsaturated
air resulting in a decrease in IWC. Regarding reff , Bailey and Hallett (2004) found that the
distribution of crystal sizes and habits largely depends on temperature and ice-supersaturation
(and thus on water vapour pressure), but also on air pressure.

Ludlam (1980) found that the water vapour in the atmosphere available for condensation
tends to rise with temperature. By Meerkötter et al. (1999), this was attributed to the increase
in difference between the humidity limit for ice nucleation and the limit of ice saturation with
temperature (Heymsfield et al. (1998)), which is an indicator for the water vapour available.
Several field campaigns like the campaigns from Schiller et al. (2008), CRYSTAL-FACE (Gao
et al. (2006)), SCOUT-O3 (Reus et al. (2009)) and CR-AVE (Flores et al. (2006)) provided in
situ contrail data, allowing Schumann et al. (2017) to find a relation between IWC and T . This
relation was captured by Schumann et al. (2017) in the following equation:

IWC = 10−8.7+0.04T (2.6)

Finally, βext can be multiplied with the geometrical thickness D [m] of the contrail to arrive at
the contrail optical depth, τ [−]. One of the limiting factors for contrail thickness is the geometry
of the ice-supersaturated layer in which the contrail is formed.

Another factor that affects the extent of radiation extinction is the angle of incoming
radiation. This holds in particular for the contrail albedo, αc [−], a parameter that represents
the amount of radiation that is reflected by the contrail. For solar radiation, the contrail albedo
depends on the cosine of the angle of the solar zenith (µ = cos θ), the contrail optical depth,
τ , and the ice particle effective radius, reff (Schumann et al. (2012)). The dependency of the
albedo on µ introduces new dependencies on longitude, latitude, altitude and time of day. In
light of the thesis goal, the dependency of contrail climate impact on µ will be separately and
more extensively discussed in Section 2.1.7.

In short, this section shows another dependency of contrail properties on temperature and
water vapour pressure. If the combination of temperature and water vapour pressure results
in a large availability of water for condensation, the IWC and extinction coefficient of a contrail
rises. The size and shape distribution of ice crystals are also dependent on temperature and
water vapour pressure, and additionally on air pressure. Moreover, the geometry of the ice-
supersaturated layer is limiting for contrail thickness. Lastly, dependency of optical properties
on geographical location and time of day is also brought to the attention of the reader.

2.1.5 Long-Wave Radiative Forcing

Thus far, we have discussed the dependency of contrail RF on its formation, persistence,
spread an optical properties. However, another important driver for the magnitude of contrail
climate impact is the amount of radiation that would have passed through if the contrail
were not present. Schumann et al. (2012) modelled the RF of contrails and included the
undisturbed radiation in an insightful manner. Schumann et al. (2012) distinguished between
the RF contribution for Long-Wave (LW) and Short-Wave (SW) radiation and formulated two
separate equations accordingly. For clearness and conciseness the LW RF (RFLW) equation is
only partly written below (equation 2.7). The equation for SW RF (RFSW) will be discussed in

8

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

the next section.

RFLW = [OLR − kT (Tm − T0)] × ... × ELW (τc) ≥ 0 (2.7)

The first term of equation 2.7 accounts for the flux-change of outgoing LW radiation,
assuming an opaque contrail. Appearing in this first term are the Outgoing Long-wave
Radiation at the top of the atmosphere (OLR [W/m2]), and Tm. Tm refers to the atmospheric
temperature at the contrail mid layer. Equation 2.7 also features the parameters kT and T0.
These two parameters are model parameters depending solely on the habits in question.
Therefore, these parameters vary with temperature, water vapour pressure and air pressure,
as was mentioned in Section 2.1.4. The larger the OLR, the larger the LW flux-change caused
by a contrail can potentially be. However, the LW flux change is also dependent on Tm. If, due
to its temperature, a contrail would emit the same amount of LW radiation into space as a clear
sky, the contrail induced flux-change of outgoing LW radiation would be zero. Nonetheless, a
contrail cirrus usually emits less LW radiation into space than a clear atmosphere. Through
the Stefan–Boltzmann law this lower level of outgoing LW radiation can be related to the lower
brightness temperature of contrails (Schumann et al. (2012)). Although they are not the same,
the brightness temperature of a contrail is an indicator of its actual (mid layer) temperature and
the other way around. Hence, the flux-change of outgoing LW radiation caused by the difference
between the brightness temperature of a contrail and a clear atmosphere is approached with
the term kT (Tm − T0).

Then, through the last part of equation 2.7, Schumann et al. (2012) also accounted for the
presence of other cirrus. ELW (τc) depends on the optical thickness of these other cirrus and
makes sure that the LW contrail RF does not include RF caused by pre-existing cloud coverage.
Therefore the contrail RFLW also has a dependency on the temperature and pH2O at other levels
of the atmosphere.

Concluding, ambient factors that affect the RFLW of contrails are foremost OLR,
temperature and pre-existing cloud coverage. Through the latter, additional affecting factors
are temperature and water vapour pressure at other levels of the atmosphere. Lastly,
parameters depending on the habits in the contrail account for the dependency on water vapour
pressure and air pressure at the contrail level.

2.1.6 Short-Wave Radiative Forcing

Schumann et al. (2012) formulated equation 2.8 to calculate the RFSW for a contrail. For this
equation, αc was already discussed in Section 2.1.4.

RFSW = −SDR (tA − Aeff)2 αc (µ, τ , reff) ESW (µ, τc) (2.8)

Equation 2.8 starts with the dependency of RFSW on the Sun Direct Radiation (SDR). The
value for SDR is a multiplication of the solar constant, S0 [W/m2], and µ. The dependency
of contrail climate impact on geographical location and time of day thus reoccurs here.
Additionally, Schumann et al. (2012) accounts for the albedo of the Earth-atmosphere system
(Aeff) that the SW radiation encounters if the contrail were not present. Since Aeff varies with
surfaces type (snow, sea, forest, etc.), the dependency on longitude and latitude is emphasised
another time. Equation 2.8 further shows dependencies of the RFSW on the habit parameter
tA, the earlier discussed τ and again the presence of other cirrus (ESW).

Thus, like RFLW was dependent on the OLR, RFSW depends on the incoming SDR. Habit
dependent parameters re-emphasise the influence of temperature and water vapour pressure
at the location of the contrail. The same two parameters at other levels of the atmosphere
influence RFSW through ESW . Another new dependency on an ambient parameter is found in
the albedo of the Earth-atmosphere system.

9

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

2.1.7 Day versus Night

We have seen that the RFSW of a contrail, and thus also the total RF, is dependent on the
presence and angle of daylight. Given the subject of this thesis, this section gives extra
attention to the dependency of contrail RF on the time of day.

As described in Section 2.1.4, part of the dependence on daylight originates from the albedo
of the habits in a contrail. This dependency is driven by the change in reflective properties of
the ice crystals with θ. Another part of the daylight dependency simply originates from the
magnitude of SDR, which is highest when θ equals 90 degrees and SDR is zero when the Sun is
behind the horizon. Therefore (in combination with longitude, latitude and season) the time of
day plays a major role in the net value of contrail RF. Schumann et al. (2012) presented results
for equation 2.8 under realistic conditions (Schumann et al. (2012) figure 8) and clearly showed
per habit how the RFSW becomes increasingly negative with a more shallow angle of irradiance
up to an angle of 75-80 degrees. Above an angle of 75-80 degrees the reduction in SDR starts to
dominate the magnitude of RFSW and consequently RFSW approaches zero. Naturally, when
the Sun is behind the horizon (i.e., nighttime), θ > 90◦, which results in zero SDR and zero
RFSW . The results of Schumann et al. (2012) are consistent with findings by Meerkötter et al.
(1999).

The negative RFSW thus comes, varies and goes with the presence of the Sun. RFLW , on
the other hand, remains approximately constant throughout the 24 hours in a day (Schumann
et al. (2012), Meerkötter et al. (1999)). In the presence of daylight, negative RFSW can offset
the positive RFLW and even result in a net negative RF. The absence of negative RFSW during
nighttime leaves RFLW uncompensated, inevitably resulting in a positive RF (Stuber and Forster
(2007)).

The diurnal cycle of contrail cirrus RF is well captured in a figure presented by Meerkötter
et al. (1999) (Meerkötter et al. (1999) figure 4a), which shows how the net RF varies with the
time of day thanks to the variation of RFSW whilst RFLW remains constant. A close inspection
of the figure of Meerkötter et al. (1999) even shows how the shape of the results of Schumann
et al. (2012) reappears in the diurnal cycle. Logically, the net RF of a contrail depends on the
degree of cancellation of RFLW by RFSW (Schumann and Graf (2013)). It is clear that the time
of day has a significant impact on the contrail RF. This also implies the relevance of knowledge
of contrail cirrus lifetime towards the quantification of contrail climate impact, as its RF may
vary significantly throughout its existence, just as a result of the varying value of RFSW .

2.2 Operational Measures

The spatiotemporal variability of contrail climate impact explained in the previous section has
an important consequence: for a flight from airport A to airport B a trajectory exists that has
a minimal contrail climate impact. By avoiding regions where warming contrails are formed
and also possibly by deliberately flying trough regions where cooling contrails are formed,
the overall temperature rise caused by contrails could be minimised. Although little of such
efforts are made in practice until now, a growing body of research exist that has studied the
opportunities of optimised trajectories. This chapter aims to present the opportunities for
optimised trajectories in two steps: firstly, Section 2.2.1 discusses the application of altitude
changes. Secondly, Section 2.2.2 will expand this to 3D trajectory optimisation. As the step
from contrail formation to climate impact, or even RF, is a complex one, many of those studies
limit themselves to the relation between operational mitigation measures and the potential
contrail coverage. Other studies do present findings about the effect of these operational
mitigation measures on the resulting climate impact.

10

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

2.2.1 Changing Altitude

Over the years, research confirmed that certain parts of the atmosphere feature a higher
potential for persistent contrails than others. This potential is often expressed by the parameter
Potential Contrail Coverage (PCC). The PCC can be defined as the maximum contrail coverage
for an atmospheric state when aircraft fly through every part of it. Using the general circulation
model ECHAM4 and an inventory of realistic flight movements, Fichter et al. (2005) studied
the monthly mean values for PCC and observed that typical cruising altitudes largely overlap
with altitudes with a relatively high PCC. Looking at the PCC from pole to pole, Fichter et al.
(2005) concluded that a downward shift of trajectories could reduce the contrail coverage at
tropical latitudes. For middle and high latitudes an upward shift of air traffic would result in
less persistent contrails. Overall, the model of Fichter et al. (2005) predicted a 45% decrease
in contrail coverage for a 6000 ft descent for all flight movements. However, Fichter et al.
(2005) suggested that the findings described above do not hold throughout the whole year
due to seasonal variability. E.g., in winter, a 6000 ft downward shift of high-latitude air traffic in
the northern hemisphere results in increased contrail coverage. ATM aiming to reduce contrail
coverage should thus account for the seasonal cycle, especially outside the tropical latitudes.
According to Fichter et al. (2005) the 45% decrease in contrail coverage yields a reduction in
contrail RF of comparable size, showing that an altitude change is an effective way to reduce
contrail climate impact.

The findings of Fichter et al. (2005) on the change of contrail coverage with altitude were
supported by earlier findings of Sausen et al. (1998). A recent study by Matthes et al. (2021)
confirmed the changes in RF, reporting a global increase in RF of 3 mW/m2 for a 2000 ft
increase in altitude and a decrease of 5 mW/m2 for a decrease in altitude of equal size. Avila
et al. (2019) performed a study on the effect of an altitude increase on RF over the United
States. Their results showed a 92% reduction in net RF when increasing the flight altitude by
4000 feet.

2.2.2 Changing 3D Trajectories

The vertical adjustment to the trajectory of a flight, as described in Section 2.2.1, is not the only
change to the path of an aircraft that can prevent the formation of a contrail or mitigate the
contrail RF. In addition, aircraft may combine the vertical manoeuvres with horizontal diversions
to avoid ice-supersaturated regions. In other words, the trajectory of a flight can be changed in
3D to minimise its climate impact.

While the mitigating altitude changes of the previous section could partly rely on seasonal
trends, this is a less suitable approach for 3D optimisation. The horizontal pattern of PCC or
predicted contrail RF is rather spotty (see for example Yin et al. (2022)). In literature one thus
only finds 3D mitigation attempts that make use of one day weather data, or an even higher
time resolution, to model the actual airspace with its actual contrail supporting regions.

Multiple numerical studies have been performed to find the potential of 3D mitigation
strategies. Some studies, like Yin et al. (2018) focused on the reduction of contrail coverage
through 3D trajectory optimisation. Using air traffic optimiser and simulator AirTraf, in
combination with EMAC Yin et al. (2018) found that a 90% decrease in contrail coverage could
be achieved at the cost of a fuel penalty of only a few percent. These numbers are confirmed
by several other studies like Campbell et al. (2008) and Yamashita et al. (2020).

Examples of studies that use the contrail climate impact, rather than PCC, as driver for
trajectory optimisation are Zou et al. (2013) and Lim et al. (2017). Both studies confirmed
that contrail climate impact can be reduced with limited extra costs. Other studies do not
focus on contrail climate impact alone, but aim to reduce the total climate impact of a flight
through trajectory optimisation. Such studies are that of Yamashita et al. (2020) and Yamashita

11

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

et al. (2021), which showed by simulations with AirTraf that warming contrails were effectively
avoided and cooling contrails effectively employed to reduce the overall climate impact of
a flight. Using the Trajectory Optimisation Module (TOM) Lührs et al. (2020), Matthes et al.
(2020) and Lührs et al. (2021) carried out optimisations for a selected winter day, trading-off
total climate impact against fuel use. The results showed that an increase in fuel use of 0.75%
could already lead to a 50% decrease in total climate impact, dominated by the mitigation of
contrail climate impact. These results confirmed again that the reduction of contrail climate
impact is an efficient way of mitigating the total impact of aviation.

12

Chapter 3

Methodology
This chapter describes the methodology applied to achieve the goal of this thesis. A high-level
flow chart of the research method is provided in figure 3.1. The flow chart starts with two green
blocks at the top of figure 3.1, which represent the preparatory steps for the thesis research.
The blue blocks show actions that produce the research data and steps that process this data
to enable meaningful analysis. Lastly, the three orange blocks represent the data analysis
phase and each block leads to the fulfilment of one of the thesis objectives as formulated
in Section 1.2. To provide the reader with relevant technical background, this chapter starts
with description of the applied modelling chain in Section 3.1. This modelling chain is the main
source of data towards completing the research objectives. The rest of the chapter continues
along the outline of figure 3.1. Section 3.2 covers the preparatory steps of the thesis that led to
adequate simulation settings. Section 3.3.2 describes how the difference between daytime and
nighttime in contrail ATR20 for eco-efficient trajectories will be analysed. Next, Section 3.3.3
describes the analysis of the variability of the contrail ATR20 of eco-efficient trajectories with
a changing threshold time until sunrise for nighttime contrails. Lastly, Section 3.3.4 presents
the approach to explore a climate optimal way to spend a given SOC budget to reduce contrail
ATR20.

Selection of
 days/weather, routes

and dearture times

Offline search for
points below the

mean ATR20 vs. SOC
Pareto front

Climate optimal way
to spend a given SOC

budget to reduce
contrail ATR20

Perform AirTraf
optimisations for
contrail ATR20 vs.

SOC

Selection of threshold
time until sunrise for
nighttime contrails

Variability of contrail
ATR20 vs. SOC with
threshold time until

sunrise for nighttime
contrails

Difference between
daytime and nighttime

contrail ATR20 vs.
SOC

Postprocessing

Figure 3.1: Flowchart of the thesis methodology.

13

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

3.1 Modelling Chain

While tests to climate-optimise the trajectory of real-world flights are slowly taking off1,
current experiments in this field are mostly based on numerical simulations and optimisations.
Making use of the numerical approach comes at a cost: findings in a simulated world are
not guaranteed to hold in the real world. However, numerical simulations also come with a
set of benefits: time, airspace and departure slots are scarce in real-life air traffic, but are
virtually limitless for a numerical simulation. This means that we can simulate a flight at the
time, location, and conditions that we prefer, being only limited by the available computational
resources. This also means that experiments are easily repeated under the exact same
conditions, making it easier to analyse the effects of an operational or technical measure. In
the ever changing atmosphere of the real world, it is impossible to exactly copy an experiment.
An additional plus of a numerical simulation is that it is performed without any emissions or
climate effects in the real world. Hence, FlyATM4E and this thesis make use of numerical tools
to answer their research questions.

A tool that is suitable for the numerical optimisation of flight trajectories is EMAC coupled
with the submodels AirTraf, CONTRAIL and ACCF. Depending on the selected AirTraf routing
option, this model combination searches for trajectories with, for example, minimal climate
impact or minimal economic cost and simulates the flights correspondingly. This section aims
to present the working principles of the AirTraf submodel and the connected (sub)models
(Yamashita et al. (2023)). To this purpose, the section starts with a description of the base
model EMAC in Section 3.1.1. In Section 3.1.2 we describe the derivation of the aCCFs, and
in particular of the contrail aCCF. The section continues with an overview of the CONTRAIL
submodel in Section 3.1.3. Lastly, Section 3.1.4 describes how the AirTraf model is set up and
how the model performs a trajectory optimisation.

3.1.1 Base Model

The AirTraf model is a submodel of the ECHAM/MESSy Atmospheric Chemistry (EMAC)
model. EMAC is able to numerically simulate climate, chemistry and transport, covering the
troposphere and middle atmosphere including their interaction with land, oceans and human
influences (Jöckel et al. (2010)). As can be deduced from its acronym, EMAC is composed of
two main elements. The 5th generation of the European Centre Hamburg circulation model
(ECHAM5) makes up the core atmospheric model of EMAC (Roeckner et al. (2003), Roeckner
et al. (2006)). The ECHAM5 version applied in this thesis will be 5.3.02. The second element
is the Modular Earth Submodel System (MESSy), of which version 2.54.0, will be applied. This
part of the EMAC model is responsible for the coupling of submodels to ECHAM5 (Jöckel et al.
(2010)). MESSy provides access to several dozens of multi-institutional submodels.

A user of EMAC has a choice between several spatial resolutions. The resolution for this
thesis study is chosen as T42L31ECMWF, which is in line with earlier studies of the (Fly)ATM4E
project (e.g., Castino et al. (2022), Yamashita et al. (2020)). T42L31ECMWF means that
horizontally the grid is constructed by a spherical truncation of T42, which amounts to a
Gaussian grid of approximately 2.8◦ × 2.8◦ latitude and longitude (or 300 km X 300 km).
L31ECMWF refers to the 31 vertical hybrid pressure levels of the grid. The top of the grid is found
at 10 hPa, corresponding to a total height of approximately 30 km and levels of approximately
1 km. Weather data for the simulations is imported from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data, towards which the EMAC
model dynamics are nudged down to the surface.

For this thesis, EMAC is thus used to simulate Atmospheric conditions which are forced
to be close to the actual weather patterns, enabling a realistic experiment that takes these

1https://satavia.com/news/, accessed: November 29, 2022.

14

https://satavia.com/news/

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

conditions into account. Furthermore, the EMAC model allows for repeated simulations under
the same weather conditions, making it possible to observe the effect of changes to flight
strategies or to the simulation set up.

3.1.2 Algorithmic Climate Change Function

As stated in the research goal and thesis title, this thesis deals with optimised trajectories. To
optimise aircraft trajectories for the purpose of climate impact mitigation, first, a tool is needed
to quantify the climate change resulting from aircraft emissions and climate effects. This
tool should account for position, time and conditions (e.g., the conditions provided by EMAC).
Furthermore, the tool preferably performs the climate impact quantification at acceptable
computational cost. This tool is provided in the form of aCCFs by the ACCF submodel. This
section is used to explain the origin and derivation of these functions. In light of the thesis,
extra attention will be given to the aCCF associated with contrail climate impact.

The aCCFs find their origin in Climate Change Functions (CCFs) derived within the European
REACT4C (Reducing Emissions from Aviation by Changing Trajectories for the benefit of
Climate, Matthes (2012)) project. These functions are a collection of 4D (longitude, latitude,
altitude and time) data sets and describe the climate change induced by a single local flown
kilometer or by a local unit of emission (Grewe et al. (2014b)). The data set of the CCFs was
constructed using a collection of eight representative weather situations for the North Atlantic
region (Grewe et al. (2017), Frömming et al. (2020)). While simulating those weather situations
in EMAC, emissions were released at several hundred time-region grid points (168 grid points
at 3 different emission times, Grewe et al. (2014b)). Contrail formation and the impact
on atmospheric concentrations due to the emitted species was tracked using a Lagrangian
scheme. Finally, the resulting RF could be obtained.

The found values for RF could be fed into a multitude of emission scenario’s and climate
metrics to come to a measure of the resulting climate change. For example: a metric could
be used that assumes a pulse emission and expresses the Absolute Global Warming Potential
(AGWP) at 100 years from the emission. Alternatively, the chosen metric could describe the
Average Temperature Response (ATR) over a 50 year period, resulting from a maintained
volume of air traffic rather than a pulse emissions. Which metric is the right choice depends
on the question one wants to answer with the metric. For this purpose Grewe et al. (2014b)
formulated a political question to identify the right metric for REACT4C: “What is the short-
term climate impact of consistently applying the REACT4C re-routing strategy?”. The question
led to F-ATR20 as the metric of choice for the CCFs of REACT4C. The metric uses a 20 year
time horizon, which is a fitting horizon to indicate short-term climate impact and is especially
suitable for contrail related research, as contrails in particular have a short lifetime compared
to other climate effects. In addition, the F-ATR is an eligible choice to capture the climate effect
of actual air traffic and its future (F) volume, compared to a scenario with a sustained level of
air traffic or a pulse emission (Grewe et al. (2014b)).

For a given RF the ATR20 is obtained by first calculating the temperature response, ∆T [K],
(see equation 3.1).

∆T = λ · RF (3.1)

Where λ [K/(Wm−2)] is the climate sensitivity parameter. Secondly, equation 3.2 is applied,
resulting in the desired ATR20.

ATR20 =
1
20

∫ t0+20

t0
dT (t)dt (3.2)

This value per kilogram emission [K/kg] or per flown kilometer [K/km] is finally the CCF. To
test the sensitivity of the results to the choice of climate metric, other suitable metrics (like

15

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

pulse AGWP20) where tested to evaluate the impact of a change in routing strategy, but did
not significantly affect conclusions (Grewe et al. (2014a)).

A drawback of the CCFs is that they can only be applied in the specific regions and weather
patterns in which they where conceived, and obtaining them is a computationally expensive
process (van Manen and Grewe (2019)). Towards real-time trajectory optimisations, a tool
is required that can asses the climate impact in a less time consuming manner. This tool
was found in the form of the aCCFs. The philosophy behind the aCCFs is to discover the
link between meteorological key parameters and the climate impact of emissions in order to
enable the quick calculation of the CCF for real-time meteorological data (Matthes et al. (2017)).
The aCCF for CO2 was found with the nonlinear climate–chemistry response model AirClim
(Yamashita et al. (2020)). ACCFs for ozone, methane and water vapour were developed by van
Manen (2017) and van Manen and Grewe (2019) via a regression analysis of the CCF data. Yin
et al. (2022) presents the complete collection of aCCFs and its supplement of discusses the
derivation of the contrail aCCF in detail. This derivation is revisited below.

The approach to find the aCCF for contrails was based on the method of van Manen
(2017) to derive the aCCFs for water vapour, methane and ozone. The procedure can be
summarised as the construction of several scatter plots of the contrail net RF versus a set of
key meteorological parameters. To find the parameters to which the net RF has the strongest
relationship, a multitude of fits to the data was found through regression methods. The
supplement of Yin et al. (2022) first describes how a data set containing contrail net RF was
constructed. Similar to other aCCFs, the starting point of the contrail aCCF derivation are
Lagrangian trajectories. These trajectories were simulated by Irvine et al. (2014) for a set of
winter days above the Atlantic ocean. To determine the characteristics of persistent contrails
Yin et al. (2022) made use of several parameters provided by Irvine et al. (2014). Among others,
these parameters included location, time of day, contrail lifetime and initial temperature. These
parameters allow the estimation of SDR. OLR values were taken from the ECMWF Integrated
Forecast System.

To arrive at an estimate for contrail RF, Yin et al. (2022) made use of the equations of
Schumann et al. (2012) as presented in Section 2.1.5 and Section 2.1.6. The set of parameters
provided by Irvine et al. (2014) does not suffice to fill out all parameter required by the equations
of Schumann. Hence, Yin et al. (2022) had to assume an ice particle effective radius (reff),
which leads to an estimate of ice habit mixture using Schumann et al. (2011) and Schumann
et al. (2017). Further necessary assumptions are that of contrail depth, contrail width and the
absence of overlapping cloud coverage. The lifetime of contrails was assumed to be 6 hours.

Now a data set of contrail RF values could be computed with the equations of Schumann
et al. (2012). Given that daytime contrails interact with SW radiation in addition to LW radiation,
the search for a proper fitting to the RF data set was split up in a fitting for daytime contrails
and a fitting for nighttime contrails. Every contrail that was formed during daytime, even if it
had a part of its 6 hour lifetime at night, was marked as a daytime contrail. Any contrail with
its complete lifetime during night was referred to as a nighttime contrail. Contrails that were
formed during night but persisted into the day were not regarded.

For nighttime contrails, temperature was identified as the parameter with the highest
correlation to contrail net RF. Correspondingly, a suitable exponential relation with temperature
was found for the nighttime aCCF. The exponential fit ruled out the possibility of negative
RF values and additionally follows logically from the way temperature enters the RF
parameterization of Schumann et al. (2012). For daytime contrails, OLR was shown to have the
highest rank correlation coefficient. The daytime aCCF followed from a linear regression of the
RF onto OLR. The equations for daytime and nighttime hold for the RF of a 6 hour contrail, but
should represent the ATR20 to agree with the other aCCFs. This is achieved by a simple scale
factor of 0.0151 [K/W/m2]. The contrail aCCF, both for day and night, is presented in equation
3.3 (Yin et al. (2022)). The resulting value of equation 3.3 is the contrail aCCF in K/km(contrail).
The symbol T represents the atmospheric temperature in Kelvin and OLR stands for Outgoing
Long-wave Radiation in W/m2. The nighttime aCCF is not valid for temperatures below 201

16

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

K and should be equalled to zero in the rare case that a colder temperature is encountered.
Moreover, the function makes sure that when a point in flight features no Potential persistent
contrail cirrus coverage (Potcov), aCCFcontrail is zero.

aCCF =

10−10 ×

(
0.0073 ×

(
100.0107×T − 1.03

))
× 0.0151, if Potcov > 0 and nighttime,

10−10 × (−1.7 − 0.0088 × OLR) × 0.0151, if Potcov > 0 and daytime,
0, if Potcov ≤ 0

(3.3)
Equation 3.3 provides the contrail ATR20 caused by a pulse emission (P-ATR20). However,

to evaluate the long term effect of a policy or technical change, one is often interested in an
increasing emission scenario that considers the growth of air traffic. This is also the case for
this thesis. Hence, a metric conversion factor of 13.6 is applied (Yin et al. (2022)). Moreover,
the efficacy of contrail RF with respect to other forcing agents is not accounted for in equation
3.3. Therefore, the outcome of equation 3.3 is additionally multiplied with the contrail efficacy
factor of 0.42 presented by Lee et al. (2021).

3.1.3 CONTRAIL

From equation 3.3 it becomes apparent that the correct prediction of contrail aCCF requires
knowledge of the Potential Contrail Coverage (PCC) of the atmosphere. Within the system of
EMAC and its submodels, CONTRAIL (supplement of Grewe et al. (2014b)) is the submodel that
is responsible for the calculation of the potential coverage of persistent contrails. This section
aims to give the reader insight in how this submodel performs the PCC calculation.

For the evaluation of PCC it is necessary to know whether a created contrail adds to the
total cloud coverage or that its effects are negligible due to preexisting cloud coverage. Since
cloud and contrail formation is a process at subgrid scale, a parameterization for a proper
grid scale approximation of contrail contribution to cloud coverage is required. Burkhardt et al.
(2008) provided such a parameterization based on relative humidity, starting with the following
relation for natural cloud coverage, bci :

bci = 1 −
√

1 − r − rci

rsat − rci
(3.4)

When r , the EMAC grid mean relative humidity, is larger than rci , the critical relative humidity
for cloud formation, cloud coverage assumes values larger than zero. If the cloud coverage is
indeed larger than zero, its exact value is driven by the ratio (r − rci)/(rsat − rci), where (rsat −
rci) represents the difference between the relative humidity at saturation (rsat = 1) and again
the critical relative humidity. Full cloud coverage is reached when r equals rsat . Each relative
humidity in this section refers to that over ice, as temperatures at typical cruising altitudes
(< 241 K) only allow for a small number of supercooled water droplets (Burkhardt et al. (2008)).

Next, the maximum possible coverage of both natural clouds and persistent contrail cirrus,
bco+ci is computed by equation 3.5 as given by Burkhardt et al. (2008).

bco+ci =

{ r − rco

rsat − rci
− bci · (1 − bci) for rco ≤ r ≤ r∗

1 for r > r∗
(3.5)

Here rco represents the critical relative humidity. If the mean relative humidity of an EMAC grid
box is above rco , part of the grid box is ice-supersaturated. r∗ = rsat − (rci − rco)2 / (rsat − rci) is a

17

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

threshold value for the relative humidity above which the maximum possible coverage of both
natural clouds and contrail cirrus equals 1. rco is computed via equation 3.6.

rco

rci
=

rSAC

a · rnuc
(3.6)

Where rSAC is the relative humidity at which contrails form during the mixing of jet and ambient
air, rnuc is the homogeneous freezing threshold and a can be regarded as a tuner for a realistic
contrail parameterization. Persistent natural and contrail cirrus can form at lower values for
relative humidity than the homogeneous freezing threshold, hence a assumes values smaller
than 1.

Now, the PCC can be calculated by subtracting the natural cloud coverage from the
maximum possible coverage of natural clouds and contrail cirrus combined. Following the
described parameterisation, the PCC thus provides the fraction of the EMAC grid box that can
potentially be covered by contrail cirrus (see equation 3.7).

PCC = bco+ci − bci (3.7)

Burkhardt et al. (2008) found a realistic PCC for a equalling 0.9 by comparing the results of the
parameterisation with earlier in situ measurements and satellite estimates (e.g., Gierens et al.
(1999)). The CONTRAIL submodel finds the PCC for the EMAC grid boxes and passes this to
the AirTraf submodel. The next steps are carried out by the AirTraf submodel itself.

The approach of the CONTRAIL submodel has been verified by Frömming et al. (2011) using
the Benchmark test of Myhre et al. (2009). A reasonable agreement was shown with other
models and measurements. CONTRAIL showed a higher frequency of contrails with low IWC
(and lower optical depth accordingly) than observational data. Yin et al. (2018) stated that this
can be either attributed to inadequacy of observational techniques that fail to detect contrails
with low optical depth, or that the difference can originate from a model bias. Furthermore, Yin
et al. (2018) simulated the PCC for a full year using CONTRAIL and observed that the submodel
is well able to capture the seasonal cycles of PCC as described in earlier work (e.g., Fichter et al.
(2005)).

3.1.4 AirTraf

AirTraf 3.0 (Yamashita et al. (2023)) is an EMAC submodel for 4D simulation and optimisation
of air traffic trajectories, including the effects of actual and local weather conditions in
its calculations. AirTraf 3.0 is currently under development and features new modules for
Optimisation and Decision-Making problems that are more efficient that AirTraf 2.0. AirTraf
3.0 will be available in the next MESSy release, but some of the new modules are already used
for this thesis work. This section aims to present the working principles behind AirTraf and
how it interacts with the base model EMAC and submodels CONTRAIL and ACCF. Again, given
the context of the thesis, extra attention is given to contrail related procedures.

AirTraf follows the general work flow depicted in figure 3.2, adapted from Yamashita et al.
(2015). At the initialisation of AirTraf the air traffic data is imported. This data contains the
airports of departure and arrival, their respective location and the departure time of each
flight. Additionally, information about the aircraft and its performance and the user’s choice
of routing option is read in. The block “Decomposition of trajectories” in figure 3.2 refers to
the parallelisation of the trajectories by the message passing interface. At every time step in
EMAC’s time loop, AirTraf checks for each flight if its time of departure is reached. When the
departure time is indeed reached, AirTraf calculates the trajectory conform the chosen routing
option, for example an optimisation w.r.t. Simple Operating Costs (SOC), contrail ATR20 or a
trade-off between objectives. Once the optimal trajectory is computed, the aircraft follows this
trajectory, moving along its line with each time step. The fuel use of the aircraft is found through

18

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

the use of a total energy model, which finds its basis in aircraft performance data provided by
the Base of Aircraft Data (BADA) of Eurocontrol (EUROCONTROL (2011)). Engine emission
data by the ICAO in combination with the DLR fuel flow method (Deidewig et al. (1996)) are
used to find the NOx emissions along the trajectory. This procedure is performed for every
flight. Finally, an output file is created with the relevant information such as costs, emissions,
flight time, contrail distance and climate impact. AirTraf restricts itself to the cruise phase and
hence does not optimise nor compute the take-off and approach phase of a flight.

Figure 3.2: Overview of the AirTraf simulation tool (adapted from Yamashita et al. (2015)).

To understand how AirTraf optimises and calculates its trajectory, it is important to
understand the trajectory parameterization used by AirTraf. The reference trajectory between
a given city pair is given by the coordinates of that city pair and by the Great Circle (GC) line that
connects them. The optimisation algorithm then makes use of eight Control Points (CPs) to
reshape the trajectory and find the optimal trajectory (see figure 3.3). Three of the eight CPs are
2D coordinates (longitude and latitude) that control the horizontal trajectory of the flight, while
the other five CPs are 1D controllers of the vertical trajectory. This means that AirTraf deals
with 11 independent design variables X = (x1, x2, ...x11)T to shape the flight trajectory. The CPs
are restricted in their movement by a domain. The domains of the horizontal CPs have a width
of 0.1 × ∆λairport in longitude and a width of 0.3 × ∆λairport in latitude, where ∆λairport is the
longitudinal distance between the airport pair of the flight. The centres of the three domains
are fixed at three nodes that divide the GC trajectory in four parts of equal length. The five
vertical CPs are longitudinally fixed at the five nodes that would divide ∆λairport in six parts
equal in longitudinal distance. They are restricted to flight levels between FL290 and FL410.
Both horizontally and vertically, the trajectory is represented by a third-order B-spline curve with
as controllers the three horizontal CPs and five vertical CPs, respectively. Naturally, the start
and end of the trajectory are fixed at the airport pair of the route in question.

The optimisation of a trajectory is done with the help of the Adaptive Range Multi-objective
Genetic Algorithm (ARMOGA) version 1.2.0 by Sasaki and Obayashi (2005). Starting from an
initial random population, the ARMOGA iterates the trajectory simulation. Through evaluation,
selection, crossover and mutations multiple generations of trajectories are created. Both
the size of the initial population and the number of generations are predefined. Together
they determine the size of the total pool of solutions. A proposed trajectory consists of 101

19

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

Figure 3.3: Example geometry definition for a flight trajectory in the vertical cross-section (top) and the
projection on Earth (bottom). The bold solid line indicates the optimised trajectory. The control points
are represented by black dots. The dashed lines and boxes show the domains of the control points. The
diamonds along the great circle are the center points of the horizontal domain boxes (Yamashita et al.
(2016)).

waypoints and the 100 segments in between. The waypoints and segments of the trajectory
are used for the evaluation of the objective function in service of the optimisation process. For
the first performance evaluation of the different solutions, AirTraf keeps the weather conditions
fixed as they are at the time of departure. Considering the optimisation objective, the ARMOGA
identifies the solution with the best value and stores the corresponding trajectory (Yamashita
et al. (2020)). Upon the actual execution of the flight, the previously fixed weather conditions
are disregarded. For the evaluation of, for example, the fuel use or ozone climate impact, the
real-time weather conditions are thus applied, which change per EMAC time step.

In case the selected routing option includes contrail distance or contrail climate impact,
the output of the CONTRAIL submodel becomes relevant (Section 3.1.3). Having the PCC for
an EMAC grid box quantified with the CONTRAIL submodel, the next step is to translate this
to the contrail coverage of a proposed trajectory. This is described by Yin et al. (2018) and
is briefly visited below. As depicted in figure 3.4a, the value for PCC of the EMAC grid box
closest to the waypoint is transferred to said waypoint. Next, all waypoints are associated with
a flight distance. For waypoint i, this flight distance is the sum of half the length of segment
i − 1 (the segment before waypoint i) and half the length of segment i (the segment after
waypoint i). This is shown in figure 3.4b. Note that for the first waypoint only half the length
of the following waypoint is associated, whereas for the last waypoint only half the length of
the previous section is counted. The contrail distance for the i th waypoint, PCCDisti , is thus

20

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

Figure 3.4: Illustration of the contrail distance calculation procedure. (a) PCC exported from EMAC grid
to waypoints along the trajectories. (b) Contrail distance calculation at a waypoint (i) (Yin et al. (2018)).

calculated as:
PCCDisti = PCCi ·

FlightDisti−1 + FlightDisti
2

(3.8)

Then the total contrail distance of a trajectory, PCCDisttot , is found by summing the contrail
distance of each of the 101 waypoints:

PCCDisttot =
101∑
n=1

PCCDist(n) (3.9)

Furthermore, AirTraf computes for every segment the associated values of aCCF, among
which we also find the contrail aCCF (see Section 3.1.2). The contrail ATR20 per segment is
simply computed as a product of the contrail aCCF at the i th waypoint and the PCCdist at the
i th segment (note the subtle difference with PCCDisti , which is associated with a waypoint)
(Yamashita et al. (2020)).

ATR20contrail ,i = aCCFcontrail ,i × PCCdist ,i (3.10)

A chosen routing option in AirTraf often comprises a trade-off between an indicator of
climate impact, like the ATR20 of a species or PCCDisttot , and a kind of cost. This cost can

21

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

be an increase in climate impact of another effect, but more often the mitigation of climate
impact is set off against an increase in time, fuel use, cost or a combination of those (e.g., Yin
et al. (2018), Castino et al. (2022)). Within this thesis, the cost is estimated in terms of Simple
Operational Cost, or SOC. The SOC is therefore shortly explained below.

SOC is a simple definition of the cost to operate an aircraft, taking into account both time
and fuel consumption through a linear relationship. To express the contribution of both factors
in a total cost in dollars, the time and fuel used to travel the i th segment (TIMEi and FUELi) are
summed for the total trajectory and then multiplied by their respective unit costs, ct = 0.75$/s
and cf = 0.51$/kg. These cost coefficients, used by AirTraf, were taken from Burris (2015).
The corresponding is equation is shown in equation 3.11.

SOC = ct

100∑
i=1

TIMEi + cf

100∑
i=1

FUELi (3.11)

Table 3.1 provides an overview of the outputs of AirTraf that are relevant for this thesis.
The table is divided in three categories. At the top the reader finds those properties that
are collected from the nearest EMAC grid box at the time of flight departure, the second
group of rows consists of properties calculated along with the trajectory, and the bottom rows
are properties that are found with the so-called “fuel–emissions–cost–climate calculation
module” of AirTraf. This last category contains properties like fuel use and SOC. Depending on
the selected routing option, some of the properties in the last category are already calculated in
flight trajectory optimisation step. There are three types of attributes: behind those attributes
that are associated with a waypoint the reader will find a “W”, those associated with a flight
segment are marked with and “S”, and the attributes that belong to complete trajectory are
followed by the letter “T”.

Table 3.1: Relevant properties assigned to a resulting flight trajectory in AirTraf 2.0. The properties
of the three groups (top to bottom, divided by horizontal lines) are, respectively, obtained from the
nearest grid box of EMAC, the flight trajectory calculation, and the fuel–emissions–cost–climate
calculation. The attribute type indicates where the values of properties are allocated. “W”, “S”, and “T”
in column 3 stand for waypoints, flight segments, and a whole flight trajectory, respectively. (Adapted
from Yamashita et al. (2020))

Property Unit Attribute type Description
aCCFcontrail K (km(contrail))−1 W aCCF of contrailsa

Potcov fraction W Potential persistent contrail cirrus coverageb

ATR20contrail K S Anticipated climate impact of contrails
ATR20total K S Anticipated climate impact (total)
d m S Flight distance
ETO Julian date W Estimated time over
h m W Flight altitude
PCCDist km(contrail) S Contrail distancec

λ deg W Longitude
ϕ deg W Latitude
Fcr kg(fuel)s−1 W Fuel flow of an aircraft (cruise)
FUEL kg S Fuel use
SOC USD T Simple operational cost

aYin et al. (2022); bFrömming (2014);cYin et al. (2018).

Yamashita et al. (2020) and Yamashita et al. (2016) described how the results of AirTraf
compare with literature like that of Sridhar et al. (2013) and Rosenow et al. (2017): although
the study states that direct comparison is difficult due to difference in methodologies, relative
changes predicted by AirTraf are largely in agreement with literature.

22

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

3.2 Simulation Set-Up

While Section 3.1 described the combination of EMAC with the submodels AirTraf, CONTRAIL
and ACCF, this section will describe how this tool will be applied to produce data to address our
research goal. Since computational and storage resources are not unlimited, choices have to
be made to limit the amount of simulations and the amount of generated data to a manageable
amount. Additionally, simulation and optimisation settings should be chosen such that the
simulation results in meaningful data. This section describes and motivates the chosen set
up of the simulations that are carried out for this thesis. Section 3.2.1 describes which days
are chosen for the simulation. Section 3.2.2 provides the applied flight plan. Section 3.2.3
discusses the selection of a set of values for the threshold time until sunrise for nighttime
contrails. Lastly, Section 3.2.4 motivates the choice in AirTraf optimisation settings.

3.2.1 Day Selection

To properly account for the day to day weather variability and the seasonal cycle, flights are
simulated over a multitude of days. Ideally, the collection of days contains all 365 day for
a multitude of years. However, resources limit the number of days to analyse. Hence, a
representative selection of days is required for this thesis. The starting point for the day
selection of the simulations is the data from an AirTraf 2.0 simulation from December 1st
2017 until December 1st 2018. This simulation was carried out using an European flight plan
comprising the top 100 European routes in terms of available seat kilometers in 2018. All the
flights depart at 12.00 and are simulated with an A320 aircraft model. Two optimisations were
carried out for this one year simulation: one with a minimum total ATR20 as the objective
(climate optimal), and one with minimum SOC as the objective (SOC optimal).

As a first step, the results of the climate optimal and the SOC optimal simulation are
compared by computing the total contrail ATR20 per day, d . Next, the difference in daily contrail
ATR20 between the two optimisations is found with equation 3.12. The result is plotted and
shown by the grey line in figure 3.5.

∆ATR20contrail ,d = (ATR20contrail ,d)clim.opt . − (ATR20contrail ,d)cost .opt . (3.12)

Although the climate optimal solution involves the mitigation of the ATR20 induced by all
climate forcers, this optimisation was very much driven by the mitigation of contrail ATR20 (as
also seen in Yamashita et al. (2021)). Hence, the calculated values for ∆ATR20contrail ,d [K] are
indicative for the mitigation potential for contrail ATR20 individually. Days that show a large
negative ∆ATR20contrail have a large potential to mitigate the climate impact of contrails, while
mitigation efforts are little rewarding on days where ∆ATR20contrail has a small magnitude.

In the selection of simulation days, the main goal is to arrive at a selection that allows for
the most general conclusions in the analysis phase of this thesis. Towards this selection, we
note that the potential of contrail formation is characterised by a seasonal cycle. Since the
thesis focuses on European air space, we are dealing with a domain of mid-latitudes in the
northern hemisphere. For this domain the PCC is largest in winter and lowest in summer (Yin
et al. (2018), Fichter et al. (2005)). The PCC for spring an autumn is found in between those
extremes. Conform this finding, candidate days for the selections were only sought in winter
(December, January, February) and summer (June, July, August). Just as for PCC, it is expected
that the results of this thesis for spring and autumn should be in between the results for winter
and summer. Hence, winter and summer simulations allow for a derivation of conclusions for
the two remaining seasons. Moreover, the aCCFs are derived for summer and winter, which
makes their use more reliable for these two seasons than for spring and autumn.

Taking into account computational resources, it was decided to select approximately one

23

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

2017-12-01

2018-01-01

2018-02-01

2018-03-01

2018-04-01

2018-05-01

2018-06-01

2018-07-01

2018-08-01

2018-09-01

2018-10-01

2018-11-01

2018-12-01

Date

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

AT
R2

0 c
on

tr
ai

l [
K]

1e 7

ATR20contrail

Winter mean ATR20contrail

Summer mean ATR20contrail

Winter day selection mean ATR20contrail

Summer day selection mean ATR20contrail

Final winter day selection mean ATR20contrail

Figure 3.5: Daily values for ∆ATR20contrail leading to the selected days for the thesis simulations.

month of consecutive days for both winter and summer. To find the most representative
day selection, the mean value of ∆ATR20contrail was used as an indicator. For every possible
selection of 31 consecutive days in winter and summer, the mean∆ATR20contrail was compared
to the mean ∆ATR20contrail of the whole respective season. The mean values of ∆ATR20contrail
for winter and summer are shown in figure 3.5 by a blue and an orange dotted line, respectively.
The 31-day selection with the mean∆ATR20contrail closest to the seasonal mean was chosen as
most representative for the season. For winter, this resulted in a 31 day range from 2018-01-10
until and including 2018-02-09 (see green line in figure 3.5). For summer the period from 2018-
06-01 until and including 2018-07-01 was selected (see red line in figure 3.5). For efficiency
reasons in the preparation of the simulation, the start of the winter simulations was shifted to
2018-01-01, resulting in a 40 day winter period (see purple line in figure 3.5).

Whether the variance of ∆ATR20contrail of the final day selections matched the variance
featured by the corresponding season was checked. The variances were judged to match
reasonably well. The mean and variance of ∆ATR20contrail for winter, summer and the final
day selections are given in table 3.2. Here, variance is defined as the average of the squared
deviations from the mean.

Table 3.2: ∆ATR20contrail mean and variance for winter, summer and the final day selections.

Parameter Winter Winter selection
(relative difference) Summer Summer selection

(relative difference)

Mean
∆ATR20contrail [K]

−3.42 · 10−8 −3.64 · 10−8

(-6.4%)
−5.62 · 10−8 −5.61 · 10−8

(+0.3%)

Variance
∆ATR20contrail [K 2]

3.36 · 10−16 3.18 · 10−16

(-5.3%)
13.6 · 10−16 9.04 · 10−16

(-33.9%)

24

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

In table 3.2 can be seen that the mean ∆ATR20contrail of the summer selection matches
better with the seasonal mean than the mean of the winter selection. The winter selection
has a mean that is lower than the seasonal mean, while the summer selection shows a mean
that is slightly higher than the seasonal mean. For the later presented results, this means for
winter that the observed magnitude of contrail ATR20 mitigation is possibly overestimated by
a few percent. For summer the opposite holds: the results could underestimate mitigation
potential, although the summer defect is much smaller than that of winter. For the parameter
“variance ∆ATR20contrail” the winter selection corresponds better to its respective season than
the summer selection. The variances of both selections are lower than the seasonal variances.
For the results of both seasons this means that the uncertainty of the mitigation potential is
larger than one could calculate based on the produced data alone. This especially holds for
summer, and to a lesser extent for winter.

3.2.2 One Day Flight Plan

The selection of flights for the research of this thesis is driven by an aim for both a geographical
and temporal spread. Hence, valuing both aims equally, four routes were selected which
are all flown four times a day. The four departure slots are fixed at UTC midnight, at 6.00
UTC, at 12.00 UTC and at 18.00 UTC, achieving an even spread of flights over the day. The
spread out departure times ensure that different types of flights will occur: flights completely
during daytime, flights completely during nighttime, flights starting in daytime but ending in
nighttime and of course, flights starting in nighttime but ending in daytime. This is key towards
the achievement of the thesis goal, which aims to find the difference between daytime and
nighttime.

The four selected routes are chosen from the ATM4E flight plan and are shown in figure 3.6.
The selection shows a good coverage of the European continent. Regarding the mitigation
of contrail ATR20, previous analysis within our research group suggested that three regions
with distinct trends can be identified within the ATM4E set of routes (F. Castino personal
communication). The selected routes cover two of those regions well: Western Europe
(route 1) and Central Europe (routes 2, 3 and 4). Routes in the third region, South-East
Europe, are missing from the route selection. North-south-wise good coverage is important,
as longitudinally the duration of daytime and nighttime varies considerably. With a latitude of
63◦, Trondheim is even close to latitudes where the phenomena of polar night (in winter) and
midnight Sun (in summer) start to occur.

Moreover, the route selection shows diversity in orientation. Routes 1 and 2 fly a longitudinal
trajectory, whilst routes 3 and 4 are oriented laterally. To also have a variation in flight direction,
route 1 is heading from the north to the south, while route 2 is planned the other way around.
Similarly, route 3 is directed from east to west, while route 4 will be going from west to east.
Considering the sunrise and sunset, we thus have one route (route 3) meeting the terminator
(the line between day and night) head on and one route (route 4) flying away from it. The
orientation of routes 1 and 2 causes these routes to be more or less passively captured by the
terminator, rather than approaching or outrunning it.

An attentive reader may have noticed that the number of routes is considerably smaller
than the number of simulated days. This is motivated by the accent of this study, which mostly
focuses on the dependency of the mitigation potential on the background weather pattern,
rather than on the route. The simulation of flights is carried out on 71 days and for four
departures per day, resulting in a total of 284 instances of the four routes. Hence, using the
proposed days in combination with the one day flight plan, the number of temporal evaluations
is large compared to other studies like Lührs et al. (2021) or Yin et al. (2018). Finally, the total
number of flights is 4 x 284 = 1136 flights.

25

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

1.
Dep: Trondheim
Arr: Gran Canaria

2.
Dep: Istanbul
Arr: Stockholm

3.
Dep: London
Arr: Istanbul

4.
Dep: Istanbul
Arr: Madrid

Figure 3.6: Selected routes for the flight plan (adapted from FlyATM4E internal communication).

3.2.3 Threshold Time Until Sunrise for Nighttime Contrails

The element that finally determines the total number of simulations is the Threshold time until
Sunrise (THsunrise). As formulated in the second thesis objective, THsunrise will be varied to
analyse the sensitivity of the results to this parameter. This section will first describe the role of
the THsunrise within AirTraf and then explain how this parameter will be varied for the sensitivity
study.

When AirTraf evaluates the contrail ATR20 of a flown flight segment, the submodel checks
the parameters that are relevant for the aCCF calculation. As described in equation 3.3,
these parameters include T , OLR, Potcov and the time of day. Whether the time of day is
characterised as “daytime” or “nighttime” depends on the time at the moment of formation
and the time until sunrise. If it is daytime, the daytime contrail aCCF is applied. The same
holds if it is nighttime and the time until sunrise is smaller than the THsunrise. If it is nighttime,
and the time until sunrise is greater than the THsunrise , the nighttime contrail aCCF is applied.
ACCF’s procedure for the distinction between daytime and nighttime is summarised by figure
3.7.

NighttimeDaytime

Current Time

< THsunrise > THsunrise
Time Until SunriseDaytime Contrail

aCCF
Nighttime Contrail

aCCF

Figure 3.7: Visualisation of the application of threshold time until sunrise (THsunrise) in ACCF.

The simulations for the thesis will be performed for three different THsunrise values: 0
hours, 3 hours and 6 hours. Simulations with THsunrise = 0h will be considered as the baseline

26

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

simulations for this thesis. A THsunrise of 0 hours has as a consequence that the time of
formation directly determines whether the contrail is treated as nighttime or daytime contrail.
The choice for a THsunrise of 3 and 6 hours is motivated by the way the contrail aCCF was
derived. In the development of the aCCF Yin et al. (2022) assumed a contrail lifetime of 6 hours.
A THsunrise of 3 hours thus means that when the largest part of a contrail’s 6 hour lifetime is in
daytime, the daytime contrail aCCF is applied correspondingly. Similarly, when the largest part
of a contrail’s lifetime is in nighttime, the nighttime contrail aCCF is applied. Lastly, applying
the 6 hour THsunrise means that if only a small fraction of a contrail’s total lifetime is in daytime,
the contrail will be treated as a daytime contrail.

Varying THsunrise tests the sensitivity of the results to this parameter directly, but the
sensitivity to assumed contrail lifetime is tested indirectly as well. Given THsunrise = 0h and
that the formation of a contrail happens a minute before sunrise, figure 3.7 prescribes that the
contrail is treated as a nighttime contrail. If the actual lifetime of a contrail is 12 hours instead
of the currently assumed 6, the mark ‘nighttime contrail’ becomes very peculiar (if it was not
already): only a minute of the contrail’s 12 hour lifetime is spend during nighttime. A higher
THsunrise , e.g., THsunrise = 6h, could correct for the peculiar ‘nighttime contrail’ categorisation,
since the 12 hour contrail would only be marked as ‘nighttime contrail’ if more than half of its
life is found before sunrise. Regarding the distinction between daytime and nighttime of ACCF,
a large THsunrise can be seen as more correct for contrails with a large lifetime, while a small
THsunrise is more appropriate for short-living contrails. Thus, although a direct variation of the
assumed contrail lifetime should involve a change in the contrail aCCF (equation 3.3), varying
only THsunrise already sheds light on the answer to the question: what if the assumed contrail
lifetime is varied?

With the final selection of different values for THsunrise , the total number of flights to be
simulated and optimised by AirTraf comes down to (31+40)x4x4x3 = 3408 flights.

3.2.4 Optimisation Settings

Now that the days, routes, departure times and the set of THsunrise values are selected for
simulation and optimisation by AirTraf, the exact settings for optimisation need to be selected.
The routing option selected for the thesis is a trade-off between contrail ATR20 and SOC. The
selection of the contrail ATR20 as an optimisation driver ensures that the effect of only contrail
climate impact on optimised trajectories is captured. Other options would make it more difficult
to interpret the results coming forth of the simulations. E.g., the selection of the total ATR20
routing option instead, would make it hard to unambiguously attribute observed trends and
effects to just the contrail climate impact. Selecting the routing option for minimum total PCC
distance would fail to take the contrail climate impact into account during the simulations.
Moreover, the key difference between daytime and nighttime contrail climate impact would
not be reflected in the optimisation process. By using the SOC as a second driver of the
optimisation, both the change in time and fuel are weighed in the analysis. The combination
of the two objectives will result in insight in the tension between the minimisation of costs and
the minimisation of climate impact.

3.3 Data Analysis

Now that the set-up of the simulations is established in the previous sections, the simulations
can be carried out. To make the raw data outputted by AirTraf more suitable for conclusion
drawing, the data needs to go trough an analysis approach. The approach consists of multiple
approaches and steps that are described in this section. To this end, Section 3.3.1 will first
describe the raw data that is provided by the AirTraf simulations. This section is followed by

27

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

an explanation of the data analysis used to achieve research objectives one, two and three in
Section 3.3.2, 3.3.3 and 3.3.4, respectively.

3.3.1 Raw Data

For this thesis, AirTraf is tasked to perform an optimisation with respect to two objectives:
minimal contrail ATR20 and minimal SOC. Fulfilling this task, AirTraf provides its user with
solutions for each flight that are Pareto optimal. That is: those solutions that cannot lower the
contrail ATR20 of a flight without increasing its SOC, neither vice versa. For most flights, AirTraf
finds multiple Pareto optimal solutions that together form a Pareto front. Some solutions for a
flight will feature relatively high SOC paired with relatively low contrail ATR20, other solutions
will show a mediocre performance for both aspects, while other solutions will show relatively
low SOC but a contrail ATR20 that is relatively high. Often, more than a hundred Pareto optimal
points are found by AirTraf, but in some cases only one solution is found. For these flights,
reaching a minimal SOC does not conflict with the objective to minimise contrail ATR20. In
practice this means that the flight is contrail-free and that no reasonable flight diversion can
result in a cooling contrail.

For each of the solutions of a flight, AirTraf outputs the following information: the
coordinates of each of the 8 CPs that shaped the trajectories, the total value for SOC and
the total contrail ATR20. We call this collection of data “flight data”, as they provide data
on the level of a flight in its entirety. Moreover, AirTraf allows the user to select a set of
solutions about which AirTraf outputs more detailed flight properties, namely per waypoint.
We call this data “waypoint data”. For this thesis, the waypoint data is requested from AirTraf
for three solutions: the SOC optimal solution, the contrail ATR20 optimal solution (in short:
contrail optimal solution) and a solution in between that corresponds to approximately a 0.5%
increase in SOC w.r.t. the SOC optimal solution. For flights with only two solutions, the middle
of the three solutions will coincide with the closest of the other two points. Flights with only
one solution will naturally have all three solutions coinciding. An example sketch of a set of
Pareto efficient solutions is provided in figure 3.8. The example shows for which solutions
AirTraf provides flight data (blue), and for which solutions both flight data and waypoint data
is provided (blue-orange).

The two types of data partly allow for similar kinds of analysis. Flight and waypoint data
are both suitable for the reconstruction of the trajectory that belongs to a solution and can
both provide the total SOC and contrail ATR20 of a flight. However, there are also differences
between the two data types. For most flights, the number of solutions stored in the flight data
is well above 10, thus a Pareto front can be plotted with a high sample frequency. This means
that we can get a clear picture of how the SOC increases with the mitigation of contrail ATR20.
This correlation is defined at a lower resolution for the three-point waypoint data. Although
the flight data prevails over the waypoint data in terms of sample frequency along the Pareto
front, it is the the latter data that has the upper hand in terms of data quantity. Foremost, the
data per waypoint allows the analysis of distinct parts of a trajectory. This can, for example, be
used to see which parts of a flight are in nighttime or in daytime, which is useful towards the
goal of this thesis. Secondly, besides coordinates, contrail ATR20 and SOC, the waypoint data
also provides information about the ATR20 of other climate forcers, contrail distance, fuel use
and more. This extra data expands opportunities for analysis, although this will be little used
in this work. Corresponding with the strengths and weaknesses of the two data types, flight
and waypoint data will be employed differently in the thesis analysis. How they are employed
and why, will be explained per analysis in the upcoming sections.

28

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

ATR20contrail [K]

SO
C

 [$
]

+0.5% SOC

flight data

flight + waypoint data

Figure 3.8: Sketch of a possible set of Pareto efficient solutions for a flight. A distinction is shown for
solutions that are included in the flight data (blue), and solutions that are included in both the flight and
waypoint data (blue-orange).

3.3.2 Data Analysis: Daytime and Nighttime Contrail Climate Impact

The first objective of this thesis is to analyse the daytime and nighttime difference in contrail
ATR20 for eco-efficient trajectories. To analyse the difference between daytime and nighttime
contrail climate impact, five different analyses will be used. Each of them should highlight
different aspects of the day-night difference. For this purpose, both flight data and waypoint
data will be processed. The way data is prepared for day-night analysis will be explained below.

Cost Optimal Specific Contrail ATR20 - Waypoint Data

The first approach that will be used to analyse the difference between daytime and nighttime
contrail climate impact, is a day-night comparison of the magnitude of contrail ATR20. The
analysis will only be performed for the SOC optimal trajectories. Since AirTraf does not take
the resulting contrail ATR20 into account while shaping the trajectories, one can regard the
associated values for contrail ATR20 as samples that represent the European contrail aCCF.
The found values should indicate the original day and night contrail ATR20 of European flights,
which is the starting point for mitigation. Values for contrail ATR20 shall be obtained from the
waypoint output of AirTraf. We will pay no attention yet to the possible mitigation of contrail
ATR20 with increasing SOC. In other words, this analysis has no interest in the shape of the
Pareto front.

As explained in Section 3.3.1, waypoint data allow for the separation of daytime segments
from nighttime segments within a trajectory. The waypoint data do not directly provide
information on whether the ACCF submodel has treated a flight segment as a daytime or a
nighttime segment. Hence, this information has to be retraced, which is possible by using
the time stamp, longitude, latitude and altitude of the waypoints. To find the time of sunset

29

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

and sunrise for a given day and location, the python suntimes 1.1.2 module is applied2. Four
parameters are calculated for each flight segment as the average of its two adjacent waypoints:
the local time, the time of sunrise, the time of sunset and the time until the first next sunrise.
These parameters suffice to walk through the decision diagram presented in figure 3.7, and thus
each segment can be classified as daytime or nighttime segment accordingly. The described
approach is not guaranteed to exactly copy the day-night division made by ACCF. To minimise
the number of wrong classifications during analysis, an extra condition is applied: if a segment
features negative contrail ATR20, it is classified as a daytime segment, since negative ATR20
cannot occur during nighttime.

Having the the segments classified, we could now sum the nighttime contrail ATR20 and
the daytime contrail ATR20 and compare the two. However, it is very possible that the amount
of kilometers flown during nighttime does not equal the amount of kilometers flown during
daytime. In winter, nights are relatively long, possibly resulting in more kilometers flown during
nighttime. This causes a bias towards nighttime contrail ATR20. Similarly, a bias towards
daytime contrail ATR20 could occur for summer. To eliminate the chance that a higher total
ATR20 is merely the consequence of a larger amount of kilometers, we divide the sum of
contrail ATR20 for daytime and nighttime by the total number of flown daytime and nighttime
kilometers, respectively. We finally arrive at the specific contrail ATR20, for which the symbol
ATR20contrail [K/km] will be used.

The results shall be plotted as a day and a night bar plot. The results will be shown for winter
and summer data separately. This should allow for distinction between winter and summer
behaviour for the optimisation studied in this thesis.

Average Pareto Fronts - Waypoint Data

The second analysis approach will pay attention to the day-night difference when it comes
to the mitigation of contrail ATR20. For this purpose, not only the cost optimal solution is
inspected, but also those solutions that are more contrail optimal. Therefore, this analysis
involves Pareto fronts, aiming to give insight in the mitigation potential for flying in daytime or
nighttime and the cost-efficiency of this mitigation. This analysis can be performed with either
waypoint data or flight data. Since both kinds of data allow for different insights, analysis will
be carried out for both, starting with the waypoint data.

Similar to the previous analysis, this analysis is also prone to a bias caused by a difference
in the number of flown kilometers. Due to its greater distance, the segments of the route
from Trondheim to Gran Canaria are anticipated to show a larger total value for contrail ATR20
and SOC than, for example, the segments of the route from Istanbul to Madrid. Since we are
not interested in the influence of route distance on our results, we again resort to specific
contrail ATR20 as a parameter for analysis. Since this analysis also looks at the cost of the
solutions, specific SOC will be used as well. A decrease in ATR20contrail presumably indicates
a decrease in overall ATR20contrail . However, in theory, a decrease in ATR20contrail could also be
result of merely an increase in the number of flown kilometers. The same ambiguity holds for
any changes in specific SOC (SOC [$/km]). While presenting the results of this Pareto front
analysis, we do not want to appreciate a flight for just increasing its flight distance, but only for
decreasing its total contrail ATR20 and/or SOC. Hence, the contrail ATR20 and SOC of a flight
segment are divided over the effective distance (de [km]) instead of the actual distance (d [km]).
This effective distance is defined as the segment’s distance component that is parallel to the
GC line between the flight’s airport of departure and airport of arrival. This is illustrated in figure
3.9. The effective segment length is calculated as the segment length multiplied with cosine of
the angle between the segment and the GC line, θ [−]. Dividing the the contrail ATR20 and SOC
over de introduces two new parameters: the effective specific contrail ATR20, or eATR20contrail

2https://pypi.org/project/suntimes/, Suntimes 1.1.2, Paul Mathis, Accessed: November 3, 2022

30

https://pypi.org/project/suntimes/

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

waypoint
airport
segment
GC line

d

de = d cos(0)

0

Figure 3.9: Calculation of the effective segment length, de , from the segment length, d , and the angle
between the segment and the GC line, θ.

[K/km] and the effective specific SOC, or eSOC [$/km]. By using eATR20contrail and eSOC , the
Pareto efficiency of a flight is not clouded by a change in actual flight distance. We note that
within the freedom of the trajectory optimisation (see figure 3.3), no negative value for de can
occur.

The classification of a segment as nighttime or daytime segment is identical to that found
under the header “Contrail ATR20: Waypoint Data”. For each of the three waypoint data
solutions the mean eATR20contrail and mean eSOC of the segments is calculated separately
for the daytime and nighttime segments. This is done by dividing the sum of eATR20contrail
and eSOC for all day segments over the number of day segments. Naturally, the sum of
eATR20contrail and eSOC for all night segments is divided over the number of night segments.
As this analysis focuses on mitigation, we will plot the change in mean eATR20contrail and mean
eSOC w.r.t. cost optimal solution. These values will be plotted to form four Pareto fronts: one
for winter day, one for winter night, one for summer day and one for summer night. While the
emphasis will be with the difference between daytime and nighttime, the generated plot will
thus additionally show seasonal effects.

Average Pareto Fronts - Flight Data

The third analysis approach is comparable to that of the previous analysis. Again the focus of
the analysis is on the day-night difference in mitigation potential and eco-efficiency. However,
the data used for this analysis is the flight data.

Keeping in mind the objective of this thesis, we will again make a distinction between
daytime and nighttime. However, opposed to the previous analysis approaches, no distinction
between day and night can be made on segment level, since the flight data provides information
only on the level of a complete flight. Consequently, a complete flight is characterised as either
a daytime flight or a nighttime flight. The day-night classification of a flight is based on an
approximation of its halfway point and halfway timestamp. A flight’s halfway point is obtained
by averaging the departure and arrival coordinates and height. The halfway timestamp is

31

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

calculated from the waypoint data for the cost optimal solution. For the corresponding flight in
the waypoint data, the average of the timestamp of departure and the timestamp of arrival is
calculated. When the halfway location and timestamp are found, the time of sunrise and sunset
for the halfway location are collected with the help of the python suntimes model. Finally, again
the procedure of figure 3.7 will be followed to classify a flight as either a daytime or a nighttime
flight.

Just as for the waypoint data, eATR20contrail and eSOC will be used towards the resulting
Pareto front. To arrive at these effective, specific values, the total contrail ATR20 and SOC of a
flight are divided by the great circle distance between the airport of departure and the airport of
arrival, and not by the actual flight distance. Contrarily to the previous waypoint data analysis,
no calculation such as that of θ and the segment de are required for the effective values.

Before combining all solutions into one average Pareto front, the change in eATR20contrail
and eSOC with respect to the cost optimal solution is calculated for each solution, indexed
with i , of every flight, indexed with f . The change in effective, specific contrail ATR20 and SOC
of each solution (∆eATR20contrail ,f ,i and ∆eSOC f ,i) is calculated with equation 3.13 and 3.14,
respectively.

∆eATR20contrail ,fi = eATR20contrail ,fi − eATR20contrail ,f0 (3.13)

∆eSOCfi = eSOCfi − eSOC f0 (3.14)

Next, all the separate Pareto fronts of ∆eSOCfi versus ∆eATR20contrail ,fi are combined into
a single daytime and a single nighttime Pareto front. Since the number of points along the
Pareto front varies per flight, the flight data needs some further preparation before the Pareto
fronts can be combined. The invented procedure for preparing and combining the Pareto fronts
is explained via a step-wise example (see figure 3.10). To combine a Pareto front of 4 points
with a Pareto front of 9 points, the amount of points are brought at an equal number. To not
lose any data, 5 points will be added to the 4-point-front, rather than removing 5 points from the
9-point-front. The information of each of the existing 4 points is valued equally, hence they all
receive the same budget to contribute to the generation of the new points. In this case we are
making 5 extra points from 4 points, so the budget is 5/4 = 1.25 per original point. The budget
of the first point (the cost optimal point) is spent partly to duplicate itself, after which a budget
of 0.25 remains. This 0.25 budget is used to contribute to a new point, which is completed
with 0.75 of the budget of the second point of the 4-point-front. This second point now has 0.5
of its budget left, which is not enough to duplicate itself, but is spent as a contribution to the
next new point instead. This chain of duplication and interpolation continues until the budget
of the fourth and last point is spent. The 4-point-front is now made into a new 9-point-front. As
a last step the combined Pareto front is created by linear interpolation of each point pair of the
two 9-point-fronts. NB: although the given example only features direct multiplication for the
first and last point of the 4-point-front, duplication (or higher multiplications) can also occur
for middle points.

The advantage of the method in figure 3.10 is that the cost optimal and contrail optimal
point of the resulting Pareto front are exactly equal to the average of the cost optimal and
contrail optimal points of all contributing Pareto fronts. However, the average value for
intermediate points is more ambiguous. This is caused by the fact that intermediate points
of the Pareto front of an individual flight are not necessary equally spaced. For example,
consider the combination of two 3-point Pareto fronts as shown in figure 3.11. For the green
front the intermediate point is almost equal to the contrail optimal point, for the blue front the
intermediate point almost equals the cost optimal point. The green and blue dashed lines show
a plausible shape for a continuous Pareto front, based on the three known points and previous
research (e.g., Lührs et al. (2021)). The red dots show the merged Pareto front resulting from
the method in figure 3.10. The pink dashed line shows the average of the green and blue dashed
line. As can be seen, the intermediate point for the combined Pareto differs from the dashed
line. Given the usually convex shape of the (theoretical) continuous Pareto font, this bias often

32

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories
eS

O
C

 [-
]

eS
O

C
 [-

]

eATR20contrail [-]

2x

2x

1x

1x

1x

1x

1x

0.25x

0.75x

0.5x
0.5x

0.75x

0.25x

eATR20contrail [-]

2x

2x

1x

1x

1x

1x

1x

4 points 9 points

9 points 9 points

Figure 3.10: Visualisation of how two Pareto fronts of different size are combined into one average Pareto
front.

results a conservative estimation of the eco-efficiency of an intermediate solution. This will be
taken into account within the discussion of the results.

Just as for the previous analyses, the average Pareto fronts will not only be plotted
separately for daytime and nighttime, but also for winter and summer to reveal seasonal
effects. Although the results of the average Pareto from waypoint data and the results from the
average Pareto front from flight data are very similar in nature, they are not the same. The main
difference being: for waypoint data distinction between day and night happens on segment
level, for flight data this distinction happens on flight level. The other difference is found in the
resolution of the Pareto front. The number of intermediate solutions between the SOC optimal
and contrail optimal solution is generally higher for the flight data than for waypoint data. This
results in a more well defined Pareto front for the flight data.

33

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories
eS

O
C

 [-
]

eATR20contrail [-] eATR20contrail [-] eATR20contrail [-]

Figure 3.11: Visualisation of conservative bias for intermediate points along the Pareto front.

Average Pareto Front Excluding Extra Cooling - Waypoint Data

Studying opportunities for the mitigation of climate impact occasionally sparks an ethical
discussion. Should we use our knowledge to purposely intervene in the Earth’s climate
system, e.g., to counteract climate change? Activities that do indeed purposely intervene
in the climate system are often referred to as “geoengineering”. While keeping this ethical
debate on geoengineering in mind, the use of flight diversions to form extra cooling contrails
is questionable. Although these diversions aim to reduce the net climate impact of aviation,
the means comprises a local increase in the magnitude of aviation’s climate impact, albeit
in the form of negative RF. Moreover, trying to purposely induce a cooling contrail may have
unforeseen consequences: e.g., the contrail could be warming due to wrong predictions. For
this reason, the following analysis will attempt to exclude any extra cooling from the average
Pareto fronts and evaluate how the results are affected. Besides achieving a result that shows
the mitigation potential without geoengineering, the results of this analysis will also give insight
in the dependency of contrail ATR20 mitigation on extra cooling.

The first step towards the exclusion of extra cooling is a definition of what extra cooling
is. Here, the used definition makes use of the cost optimal trajectory as a reference. A
flight segment of a more contrail optimal trajectory is said to be extra cooling if: (1) the new
segment forms a contrail with negative contrail ATR20 and (2) the corresponding segment of
the reference trajectory has a higher contrail ATR20 or no contrail ATR20. Now, a strategy for
the exclusion of extra cooling contrails needs to be formulated. According to the definition
above, this strategy requires a definition of ‘a flight segment’ and ‘corresponding segment of
the reference trajectory’. Furthermore, we need to find a way to deal with the flight disruption,
if a segment is indeed removed. The exclusion of extra cooling, or even any cooling, from
optimised trajectories is not found in any preexisting literature. Hence, a strategy is formulated
below.

The input data for the removal of extra cooling will be that of waypoint data. We thus have a
SOC optimal solution, ∼0.5% extra SOC solution and the contrail optimal solution. As described
above, ‘flight segment’ should be defined. For this we will copy the definition of Yamashita
et al. (2020), where a trajectory is built from 100 flight segment. For each flight segment the
‘corresponding segment of the reference trajectory’ will be the segment of the SOC optimal
solution with the same index. So for example, the 0th segment of the SOC optimal solution
is the corresponding segment for the 0th segment of the contrail optimal solution. The 1st
SOC optimal segment corresponds to the 1st contrail optimal segment, and so on. When,
according to the given definition, a segment of the ∼0.5% extra SOC solution or the contrail
optimal solution is identified as ‘extra cooling’, the segment is removed.

The exclusion of extra cooling segments of a trajectory results in gaps in said trajectory. To
still arrive at a realistic overall image of the contrail ATR20 and SOC, we will use a replacement

34

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

tactic. For the ‘∼0.5% extra SOC’ solution excluded segments will be replaced by corresponding
segments of the SOC optimal solution. Excluded segments of the contrail optimal solution are
replaced by segments from the ‘∼0.5% extra SOC’ solution. In the case the latter segments
were already replaced, the segment in question is replaced by corresponding SOC optimal
segment as well.

The replacement of segments that feature extra cooling is illustrated in figure 3.12. Walking
through the figure from left to right, we see the following for the ‘∼0.5% extra SOC’ solution:
the first two segments are both warming segments and are thus not replaced. The third
and fourth segment are both cooling and more so than than the SOC optimal segments.
Corresponding to the definition of extra cooling, these two segments are replaced by the
SOC optimal segments. The last two segments are also cooling, but not more than the SOC
optimal segments did. Hence, these segments are allowed to stay part of the ‘∼0.5% extra
SOC’ solution. For the contrail optimal solution the first and fourth segment are included, as
they are not cooling. However, the second, third and fifth segment do meet the criteria for
extra cooling and are indeed replaced. The second and fifth segment shall be replaced by the
corresponding segments of the ‘∼0.5% extra SOC’ solution, as those segments were kept after
their replacement tests. However, the third segment will have to use the third SOC optimal
segment as a replacement. The last segment is cooling, but not with a larger magnitude than
the segment of the SOC optimal solution and can thus remain included.

~0.5% extra SOC

waypoint
airport
included segment
excluded segment

large positive contrail ATR20
positive contrail ATR20
negative contrail ATR20
large negative contrail ATR20

SOC optimal

contrail ATR20 optimal

Figure 3.12: Illustration of the exclusion of segments with extra cooling.

The rest of the analysis for excluded extra cooling is identical to the plain Pareto front
analysis for waypoint data.

3.3.3 Data Analysis: Variability with the Threshold Time Until Sunrise

The next phase of the analysis focuses on the variability of the results of the previous Section
3.3.2 with THsunrise. The resulting analysis should fulfil objective two of this thesis. As
discussed in Section 3.2.3, the analysis will not only test the robustness w.r.t. THsunrise but
also give an indication of the sensitivity to assumed contrail lifetime.

The set up of this analysis phase is straightforward, as it mainly entails a repetition of the
analyses of Section 3.3.2 for the different THsunrise selected in Section 3.2.3. To clearly show

35

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

the variability, the results for each different THsunrise will be plotted alongside each other in the
same figure. During the analysis, the postprocessing method will account for the THsunrise that
was used in the simulation. This means that the daytime-nighttime classification of segments
(for waypoint data) or flights (for flight data) during the postprocessing will be identical to the
classification of the ACCF submodel during the simulation. Moving from a THsunrise of 0 hours
to 3 or 6 hours, this results in a greater portion of segments and flights being classified as
daytime both during the simulation and the postprocessing.

3.3.4 Data Analysis: Search for New Pareto Front

The last analysis for this thesis aims to complete the third thesis objective and therefore
explores a climate optimal practice to spend a certain budget of SOC on the minimisation of
contrail ATR20. This exploration makes use of the difference between daytime and nighttime
for contrail ATR20 and is approached as described below.

Using the flight data, an average Pareto front can be formed from the average daytime
Pareto front and the average nighttime Pareto front. The points of the average Pareto front
are found by averaging ∆eATR20contrail for two points that have an equal ∆eSOC. However,
the points of the two Pareto fronts are unlikely to contain any points with exactly equal values
for ∆eSOC. Thus, to find such points, either the daytime or the nighttime Pareto front is re-
sampled through linear interpolation. Additionally, the contrail optimal point of the daytime
average Pareto front is compared to the contrail optimal point of the nighttime average Pareto
front. If this daytime point has a larger value for ∆eSOC than the nighttime point, the
transcending daytime points are averaged with the nighttime contrail optimal point. If the
daytime contrail optimal point has a larger value for∆eSOC than the nighttime contrail optimal
point, the reverse holds. The resulting average points show the value∆eATR20contrail if an equal
amount of ∆eSOC is spend during both day and night.

The next steps show what would happen if we calculate the average ∆eATR20contrail of a
daytime and a nighttime point that do not have an equal ∆eSOC. In pursuit of new average
points we calculate the average of every possible combination of a point on the daytime Pareto
front and the nighttime Pareto front. The newly found points are collected together with the
points of the earlier found average Pareto front. Also the two parent points of each new point
are stored in memory. Next, the collection of points is run through an algorithm that identifies
the Pareto efficient points3. By comparison with the average Pareto front and comparison
between themselves, the new Pareto efficient points are identified. An example of the search
for a single new point is illustrated in figure 3.13. This analysis should indicate how using
the difference between daytime and nighttime can be used to achieve the largest possible
∆eATR20contrail at a certain ∆eSOC. NB: the results of this analysis only apply to fleets that
operate 50% of the flights during daytime and 50% during nighttime, or flights that spend half
the trajectory in daylight and half in darkness. Other ratios require that a weight is applied in
generating the average and new points in the Pareto plot.

3https://stackoverflow.com/questions/32791911/fast-calculation-of-pareto-front-in-python, Fast calculation
of Pareto front in Python, Accessed: November 3, 2022

36

https://stackoverflow.com/questions/32791911/fast-calculation-of-pareto-front-in-python

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

eS
O

C
 [-

]

eATR20contrail [-]eATR20contrail [-]

day point

night point

average point

day source point

night source point

new point

eS
O

C
 [-

]

Figure 3.13: Illustration of the search for a new point (green) that achieves an improved ∆eATR20contrail
at a certain ∆eSOC. The new point is the average of two source points (orange and dark blue) found
among the daytime (yellow) and nighttime (light blue) points.

37

Chapter 4

Results
This chapter presents the results of the analyses that were described in the previous chapter.
For the presentation of the results, we keep the same structure as in Section 3.3. Firstly, daytime
contrail climate impact and its mitigation is compared to nighttime impact and mitigation in
Section 4.1. Subsequently, the variability of the results with a change in threshold time until
sunrise is discussed in Section 4.2. Lastly, newly found points within the flight data Pareto
plot, making use of the difference between daytime and nighttime, are presented in Section 4.3.
Please note that this chapter focuses on the presentation of the results and aims to describe
their particularities. Chapter 6, will be used to interpret the described observations.

4.1 Comparing Daytime and Nighttime Contrail Climate Impact

This section presents the results that answer to the first research objective of this thesis. The
methods of analysis for these results were described in Section 3.3.2. As described in that
section, the difference between daytime and nighttime is first analysed for the baseline, i.e.,
the cost optimal solution in Section 4.1.1. Then, shifting the focus to mitigation efforts, the
difference between daytime and nighttime is studied using the more contrail optimal solutions
in Section 4.1.2. The results of Section 4.1.2 are based on both waypoint data and flight
data. For waypoint data only, Section 4.1.3 shows how much the mitigation of contrail ATR20
depends on extra cooling.

4.1.1 Cost Optimal Day and Night Specific Contrail ATR20

Figure 4.1 shows the specific day and night contrail ATR20 for SOC-optimised flights as found
from waypoint data. The bars present the seasonal average for ATR20contrail in winter and
summer separately. The whiskers show the range of a day to day single standard deviation from
the mean. What we first see in this figure is that, for the cost optimal solution, the difference in
mean ATR20contrail between daytime and nighttime is marginal, certainly in the perspective of
the standard deviation. In winter, the mean daytime ATR20contrail shows a slightly larger value
than the nighttime ATR20contrail . For summer, again the difference between day and night is
negligible, but for this season the mean nighttime ATR20contrail shows a slightly higher value
than that of daytime.

Whereas the figure shows little difference between day and night, a clear difference is
observed between the two seasons. For both day and night the summer ATR20contrail has nearly
four times the magnitude that we observe for the winter season. The difference in magnitude
can be partly explained through the data presented in figure 4.2. To create figure 4.2 (a,b and
c), first, the mean and standard deviation of flight altitudes were calculated to find which hybrid
pressure levels of the EMAC T42L31ECMWF grid correspond to the airspace that is used by the
cost optimal flights. At these hybrid pressure levels, the mean values for T , OLR and potcov
over Europe are found for the days that were used for the simulations of this thesis. The mean
values for T , OLR and potcov are obtained from the base model ECHAM5 and submodels
RAD (Dietmüller et al. (2016)) and CONRAIL, respectively. Moreover, the day to day standard

38

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

Winter Summer
Season

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
AT

R2
0 c

on
tr

ai
l [

K/
km

]

1e 13
daytime
nighttime

Figure 4.1: Mean, specific, SOC optimal day and night contrail ATR20 for winter and summer, THsunrise = 0
h. Whiskers represent the day to day standard deviation.

0

50

100

150

200

T
[K

]

a) Temperature

winter
summer 175

150

125

100

75

50

25

0

OL
R

[W
/m

^2
]

b) OLR
winter
summer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

po
tc

ov
 [-

]

c) Potcov
winter
summer

0.00

0.05

0.10

0.15

0.20

0.25

0.30
po

tc
ov

 [-
]

d) Flight Potcov
winter
summer

Figure 4.2: The mean values for (a) T , (b) OLR and (c) potcov in winter and summer at the SOC optimal
flight levels. (d) Shows the mean potcov as actually experienced by the flights. Whiskers represent the
day to day standard deviation.

deviation for these parameters is extracted. Additionally, the mean values for potcov actually
experienced by the flights (flight potcov) are also found from the AirTraf output data.

Figure 4.2d presents a large flight potcov for the summer flight segments, which is on
average around 1.9 times larger than in winter for the performed simulation. That the flight
potcov is largest for summer can be traced back to figure 4.2c, where summer potcov
also shows to be larger than winter potcov . This is possibly caused by the position of the
tropopause, that changes along with the seasonal cycle, and the relatively high flight altitude
of the simulated cost optimal flights. Castino et al. (2022), who also used AirTraf and EMAC,
already observed that a large part of SOC optimal winter flights cruises above the tropopause.
A large part of air traffic is thus situated within the stratosphere, which is known to be too
dry for persistent contrail formation (Fichter et al. (2005)). In summer, the average altitude
of the tropopause is increased, leading to a higher fraction of air traffic flying within the
upper troposphere, which features more favourable conditions for the formation of persistent
contrails (Fichter et al. (2005)). This may explain the higher summer potcov in figure 4.2c.
Seemingly, the spacial variability of potcov allowed for an even larger difference between winter

39

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

and summer flight potcov . Further inspection of the contrail aCCF expression (equation 3.3)
explains the rest of the magnitude difference: European airspace features higher temperatures
in winter than in summer. Furthermore, the summer OLR has a larger magnitude than the winter
OLR, since the Earth surface has a higher temperature in summer.

Considering figure 4.1 as a starting position for the mitigation of contrail ATR20, we could
conclude that the mitigation potential is largest in summer. In summer, the ATR20contrail is
large to begin with, while this is significantly smaller in winter. Assuming that avoiding warming
contrails or creating extra cooling contrails takes equal effort in winter and summer (which is
not necessarily true), trajectory optimisation in summer should be more rewarding in terms of
absolute numbers. Given the small difference between daytime and nighttime, figure 4.1 does
not allow for conclusions about the difference between daytime and nighttime mitigation.

4.1.2 Day and Night Mitigation of Contrail ATR20

2.5 2.0 1.5 1.0 0.5 0.0
eATR20contrail [K/km] 1e 13

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

eS
O

C
[$

/k
m

]

(-136.0%,3.6%)

(-27.0%,1.8%)

(-56.0%,3.2%)

(-42.0%,2.3%)

(-47.0%,0.3%)

(-17.0%,0.5%)

(-26.0%,0.8%)

(-18.0%,0.1%)

day winter
night winter
day summer
night summer

Figure 4.3: Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and summer generated
with waypoint data, THsunrise = 0 h. The percentages placed at the contrail optimal solution indicate the
relative differences to the SOC optimal solution. Shaded areas show the day to day standard deviation
of ∆eATR20contrail .

Figure 4.3 shows the mean day and night, winter and summer Pareto fronts, as obtained
from waypoint data. For all points but the cost optimal point, the percentage change in
eATR20contrail and eSOC with respect to the cost optimal point is displayed between brackets.
The shaded areas show the day to day standard deviation of ∆eATR20contrail . For winter and
summer, figure 4.3 shows that the maximum potential to mitigate contrail ATR20 is higher

40

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

during daytime than during nighttime. This holds both in terms of absolute and relative
numbers. Note that these higher daytime maxima do come at the expense of a higher increase
in SOC. In winter, the maximum decrease in eATR20contrail even reaches over 4 times the
maximum decrease during nighttime. Moreover, away from the contrail optimal point, the
mean winter daytime mitigation is achieved at a lower SOC than winter nighttime mitigation. Or
alternatively described: on average, at the same increase in eSOC daytime winter mitigation
allows a larger decrease in eATR20contrail than nighttime winter mitigation. Regarding the
variability of the winter fronts, this finding appears to be robust.

In summer, the difference between daytime and nighttime mitigation is less pronounced
than in winter. Starting from the cost optimal solution, the mean values in figure 4.3 indicate
that initial mitigation efforts are more cost-effective for nighttime than for daytime. However,
this could also be the result of the limited number of points along the waypoint Pareto front.
A higher sample frequency might show that, at low cost, summer daytime and nighttime
mitigation are equally eco-efficient. Nonetheless, when a larger reduction of eATR20contrail
is desired, the mean eSOC spent on nighttime mitigation approaches the amount spent on
daytime mitigation. The summer day to day variability of∆eATR20contrail is large, making it hard
to draw robust conclusions about the relative position of the summer daytime and nighttime
front.

Another deduction from figure 4.3 is that, in absolute terms, the summer daytime and
nighttime contrail optimal solution show a larger reduction of eATR20contrail than the winter
contrail optimal solution. This is possibly explained by the observation in Section 4.1.1 that
the summer specific contrail ATR20 for the SOC optimal solution is larger to begin with. While
summer shows the highest absolute mitigation, the highest relative mitigation is only observed
for summer nighttime and not for summer daytime. The -56% change in eATR20contrail for
summer daytime cannot match the -136% change observed for winter daytime. Summer night
mitigation shows to be more cost-effective overall compared to winter night mitigation. For
daytime, winter mitigation appears cheaper than summer mitigation in the low-cost region (the
part of the Pareto front where a low amount of extra eSOC is spend to reduce eATR20contrail).
If a higher amount of extra eSOC is spend, daytime mitigation is cheapest in summer.

Please note that figure 4.3 shows that winter daytime mitigation can result in an overall
cooling impact, indicated by the -136% change in effective specific contrail ATR20. This
indicates that flights during winter daytime, more than during summer daytime, make use of
cooling contrails to lower the eATR20contrail . Possibly, this also explains why winter mitigation
shows a large difference between the daytime and nighttime Pareto front, while the two
summer fronts are found fairly close to each other.

Figure 4.4 plots the average day and night, winter and summer Pareto fronts for flight data.
Just as for figure 4.3, each contrail optimal point of a Pareto front is accompanied by the
percentage change with respect to the cost optimal point. Although figure 4.3 and figure 4.4
are similar in nature, it is important to note that the two figures present different data. Whereas
figure 4.3 distincts daytime from nighttime per segment, figure 4.4 only makes this distinction
per flight, even though these flights may consist of both daytime and nighttime segments (see
section 2.1.7). The nature of flight data makes it impossible to calculate a day to day standard
deviation. Hence, a representation of the variability is omitted for figure 4.4.

From figure 4.4 is immediately visible that the mitigation of eATR20contrail is more cost-
effective for daytime flights than for nighttime flights, i.e., the daytime Pareto fronts are found
to the lower left of the nighttime Pareto fronts. Moreover, the maximum achievable reduction
in eATR20contrail is larger for daytime flights than for nighttime flights, both in absolute and a
relative terms. However, this also comes at a higher increase in SOC.

While comparing the two seasons, we observe that in summer eATR20contrail is mitigated
more efficiently than in winter when considering absolute values. As earlier described and

41

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
eATR20contrail [K/km] 1e 13

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
eS

O
C

[$
/k

m
]

(-122%,4.4%)

(-33%,2.0%)

(-61%,3.8%)

(-47%,3.0%)

day winter
night winter
day summer
night summer

Figure 4.4: Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and summer generated
with flight data, THsunrise = 0 h. The percentages placed at the end-points of the fronts indicate the
change w.r.t. the SOC optimal solution.

confirmed by the waypoint data, this difference is possibly caused by the large magnitude that
we observed for summer ATR20contrail in figure 4.1. Just as in figure 4.3, in relative terms, the
daytime winter Pareto front performs about a factor two better than in the summer. Also for
nighttime the ratio between the winter and summer contrail optimal point of Figure 4.4 is in
accordance with figure 4.3.

Another similarity to figure 4.3 is that the difference between day and night mitigation is
larger for winter than for summer. This once more indicates that winter daytime mitigation
makes relatively much use of the formation of extra cooling contrails, since the option to create
extra cooling contrails is a key difference between daytime and nighttime mitigation.

4.1.3 Mitigation of Contrail ATR20 Without Extra Cooling

Figure 4.5 duplicates the results of figure 4.3, except that any segments that showed extra
cooling with respect to the corresponding cost optimal segment is replaced by a segment
without extra cooling. The previous section already gave an indication to what extent extra
cooling contrails are used for the mitigation of eATR20contrail . This section will show to what
extent these indications are true.

As expected, replacing segments featuring extra cooling contrails mainly affects the
daytime Pareto fronts, as cooling contrails cannot occur during nighttime. Clearly, the daytime

42

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

2.0 1.5 1.0 0.5 0.0
eATR20contrail [K/km] 1e 13

0.00

0.02

0.04

0.06

0.08

0.10

0.12

eS
O

C
[$

/k
m

]
(-38.0%,2.9%)

(-27.0%,1.8%)

(-40.0%,2.9%)

(-43.0%,2.2%)

(-23.0%,0.2%)

(-17.0%,0.5%)

(-17.0%,0.8%)

(-19.0%,0.1%)

day winter
night winter
day summer
night summer

Figure 4.5: Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and summer generated
with waypoint data, THsunrise = 0 h. Extra cooling is excluded. The percentages placed at the end-points
of the fronts indicate the change w.r.t. the SOC optimal solution. Shaded areas show the day to day
standard deviation of ∆eATR20contrail .

fronts face a reduction in their eATR20contrail mitigation potential. However, the extent of the
daytime mitigation potential reduction differs between winter and summer. Whereas summer
daytime mitigation only loses 16% of its maximum relative mitigation potential, winter daytime
mitigation has to give up 98%. The difference shows that summer daytime mitigation efforts
are less dependent on the formation of extra cooling contrails than mitigation efforts in winter.

Furthermore, we observe that, over the complete spectrum, summer nighttime mitigation
now achieves a higher eATR20contrail reduction than daytime mitigation. In winter, the day-night
difference that we have seen in figure 4.3 has shrunk considerably. The remaining daytime
mitigation keeps a negligible advantage over nighttime mitigation. In particular for winter, the
contrail optimal point of the Pareto appears to be more affected than the point of ∼0.5% extra
SOC. This possibly indicates that initial (low ∆eSOC) mitigation is less depending on extra
cooling than the mitigation efforts that lead to the contrail optimal point.

A close look at figure 4.5 shows that the summer nighttime front is affected too by the
exclusion of extra cooling segments. The figure namely shows a slight increase in summer
nighttime mitigation potential. This change is remarkable, given that nighttime segments
cannot feature any cooling and are thus unaffected by the replacement procedure. That a
shift occurred anyhow, can be explained by a number of daytime segments, that has been
replaced by nighttime segments as a result of the replacement procedure. These extra
nighttime segments affect the average nighttime eATR20contrail and eSOC). Table 4.1 displays

43

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

the number of extra nighttime segments for the waypoint Pareto points without extra cooling
with respect to the waypoint Pareto points that allowed extra cooling. Table 4.1 also shows
that the number of nighttime segments did not change for the winter season, hence the winter
nighttime Pareto front in figure 4.5 is identical to the nighttime Pareto front in figure 4.3.

Table 4.1: Change in number of nighttime segments between the waypoint Pareto points and the
waypoint Pareto points without extra cooling.

Solution Winter Summer
SOC optimal 0 0
∼0.5% extra SOC 0 +324 (+2.1%)
contrail optimal 0 +661 (+4.3%)

4.2 Variability of Results with Threshold Time Until Sunrise

This section presents the results that answer to the second research objective of this thesis.
The methods of analysis for these results were described in Section 3.3.3. Following the
approach of that section, the robustness of the results of Section 4.1 is tested against a
changing THsunrise. For this purpose THsunrise was altered from the original 0h to 3h and 6h.
The variability of the bar plot results are shown in Section 4.2.1. The variation of the Pareto
fronts is displayed in Section 4.2.2. In Section 4.2.3, the same is done for the waypoint Pareto
fronts that exclude extra cooling.

4.2.1 Variability of Cost Optimal Day and Night Specific Contrail ATR20

Winter day Winter night Summer day Summer night
Season and time

0

1

2

3

4

5

AT
R2

0 c
on

tr
ai

l [
K/

km
]

1e 13
daytime THsunrise = 6h
daytime THsunrise = 3h
daytime THsunrise = 0h
nighttime THsunrise = 6h
nighttime THsunrise = 3h
nighttime THsunrise = 0h

Figure 4.6: Specific, cost optimal day and night contrail ATR20 for winter and summer, for THsunrise = 0,
3 and 6h.

Following the logic of figure 3.7 in Section 3.2.3, the main effect of an increase in THsunrise is
an increase in the number of flight segments that are treated as a daytime segment by the ACCF

44

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

submodel. For THsunrise >0, not only contrails formed during daytime are daytime segments,
but also those that are formed during nighttime but within THsunrise hours before sunrise. The
resulting variability is first analysed by inspecting how the bar plot of figure 4.1 is affected by
the increasing THsunrise. The bars for the different values of THsunrise are plotted in figure 4.6.
Moreover, the day to day standard deviation is shown by the whiskers.

Figure 4.1 shows that increasing THsunrise has an equivocal effect on the specific contrail
ATR20 of the simulated flights. In winter, changing from THsunrise = 0h to THsunrise = 3h, leads to
a slightly increased daytime ATR20contrail and a slightly decreased nighttime ATR20contrail . An
opposite effect can be observed in summer, with the note that for summer nighttime the change
in ATR20contrail is more substantial than for the other three bars for THsunrise = 3h. Although
the changes are not large (all below 12%). Lastly, we observe that daytime and nighttime
ATR20contrail are no longer as equal in magnitude as shown for THsunrise = 0h.

If we now inspect the bars corresponding to THsunrise = 6h, we see that their values are
almost equal to that of THsunrise = 0h. Thus, the changes observed going from THsunrise = 0h to
THsunrise = 3h are not escalated by a further increase of THsunrise.

As described, the increase of THsunrise results in an addition of segments to the number of
daytime segments and a reduction in nighttime segments. For winter, the results of figure 4.6
seem to indicate that flight segments occurring within 3 hours before sunrise have a relatively
high average contrail ATR20. Segments situated between 6 and 3 hours before sunrise have a
relatively low contrail ATR20, as the winter results for THsunrise = 6h show that they offset the
change seen for THsunrise = 3h. For summer flight segments, the opposite conclusion is drawn.
Overall, changes in the cost optimal ATR20contrail are not large and not escalating, leading to
the conclusion that the cost optimal ATR20contrail is robust with respect to a varying THsunrise.

4.2.2 Variability of Day and Night Mitigation of Contrail ATR20

Next, for winter and summer, respectively, figure 4.7 and 4.8 show how the waypoint data Pareto
fronts for daytime and nighttime vary with THsunrise. Experience from Section 4.1 tells us that a
higher cost optimal ATR20contrail results in a higher mitigation potential. For winter, the daytime
front of figure 4.7 shows a variability that behaves according to this experience. For THsunrise
= 3h, the Pareto front deviates from the THsunrise = 0h in the sense that it shows a greater
potential for the absolute mitigation of eATR20contrail along the complete Pareto front. In figure
4.6, the results for THsunrise = 6h were more similar to the results for THsunrise = 0h than the
THsunrise = 3h results. Accordingly, the daytime front for THsunrise = 6h in figure 4.7 is also closer
to that of THsunrise = 0h than the THsunrise = 3h front. Moreover, the variability of the daytime
Pareto front is mostly horizontal, indicating that the sensitivity of the achievable mitigation of
contrail ATR20 to the selected THsunrise = 0h is higher than the sensitivity of the increase in SOC.
This is expected, as the change in THsunrise affects the contrail aCCF directly, while optimised
trajectories and the corresponding ∆eSOC are only affected in a secondary manner.

For daytime flight segments within 3 hours before sunrise, the positions of the winter
daytime Pareto fronts lead to the believe that warming contrails are easily avoided, or that
deliberately forming extra cooling contrails is achieved at low extra cost. The positive effect
for THsunrise = 3h is diminished for the THsunrise = 6h results. Hence, for flight segments between
6 and 3 hours before sunrise, warming contrails are harder to avoid and/or airspace supporting
cooling contrails is difficult to find.

The nighttime winter Pareto front faces a smaller variation than the daytime winter Pareto
front. Again, the deviation for THsunrise = 3h is in line with the THsunrise = 3h bar in figure 4.6. The
lower ATR20contrail of the bar results in a lower absolute mitigation potential. However, while the
THsunrise = 6h bar for winter nighttime in figure 4.6 shows a value close to the THsunrise = 0h bar,
the winter nighttime THsunrise = 6h Pareto front deviates further from the THsunrise = 0h Pareto

45

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

1.2 1.0 0.8 0.6 0.4 0.2 0.0
eATR20contrail [K/km] 1e 13

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
eS

O
C

[$
/k

m
]

day winter THsunrise = 0h
day winter THsunrise = 3h
day winter THsunrise = 6h
night winter THsunrise = 0h
night winter THsunrise = 3h
night winter THsunrise = 6h

Figure 4.7: Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter, generated with
waypoint data, THsunrise = 0, 3 and 6h.

front than the THsunrise = 3h Pareto front does. The fact that the cost optimal ATR20contrail for
THsunrise = 6h is higher than ATR20contrail for THsunrise = 3h does apparently not compensate for
the situation faced by mitigation efforts: it seems that in winter nighttime, the avoidance of
warming contrails is relatively easy for segments within 3 hours to sunrise. This also holds for
nighttime segments between 6 and 3 hours before sunrise.

Then, figure 4.8 shows how the summer waypoint daytime and nighttime Pareto fronts
vary with THsunrise. For daytime mitigation, the figure shows that moving from THsunrise = 0h
to THsunrise = 3h results in a slight loss in maximum mitigation potential, which is restored and
even slightly improved for THsunrise = 6h. This right-and-then-left behaviour with increasing
THsunrise can again be retraced to the behaviour seen for summer daytime in figure 4.6.
Overall, the Pareto front for THsunrise = 3h does not differ largely from the THsunrise = 0h front,
indicating that summer daytime flight segments within 3 hours before sunrise are able to avoid
warming contrails or find cooling contrails against approximately the same cost as the daytime
segments after sunrise. The more optimal orientation of the THsunrise = 6h front, tells us that
summer daytime flight segments use a relatively low amount of extra cost to avoid warming
contrails or find cooling contrails if they are between 6 and 3 hours before sunrise.

According to the bar plot, we expect a left-and-then-right behaviour for the summer
nighttime Pareto front. Except for the contrail optimal point, the first (left) does not occur,
but the figure does comply with the latter (back right) effect: we find both the THsunrise = 3h
and THsunrise = 6h front to the right of the THsunrise = 0h front. This leads to the believe that, for
summer nighttime segments within 3 hours until sunrise, the avoidance of warming contrail
comes at low extra eSOC. While the THsunrise = 3h bar plot was relatively high compared to

46

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
eATR20contrail [K/km] 1e 13

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
eS

O
C

[$
/k

m
]

day summer THsunrise = 0h
day summer THsunrise = 3h
day summer THsunrise = 6h
night summer THsunrise = 0h
night summer THsunrise = 3h
night summer THsunrise = 6h

Figure 4.8: Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in summer generated with
waypoint data, THsunrise = 0, 3 and 6h.

the THsunrise = 6h bar, there is a high similarity between the THsunrise = 3h and THsunrise = 6h
Pareto front. This points to the conclusion that for summer nighttime segments between 6
and 3 hours before sunrise mitigation of eATR20contrail is relatively costly. In general the Pareto
fronts of figure 4.7 and figure 4.8 show some variability with THsunrise , but not enough result in
diverse conclusions. Hence, mitigation results for waypoint data are judged to be robust with
respect to a changing THsunrise. However, one should be careful when comparisons are made
between the summer daytime and nighttime front. Changes in THsunrise can result in a switch of
relative position. Thus, while nighttime mitigation may be more cost-effective for one THsunrise ,
this may not be the case for another THsunrise.

For winter and summer the variation of THsunrise is also performed for flight data and the
resulting figures were analysed. The flight data figure for the winter Pareto fronts was largely
in agreement with figure 4.7, hence, this figure is omitted in this section and included in the
appendix (see figure A.1). As in particular the daytime Pareto front of the winter flight data
and winter waypoint data were corresponding to each other, we adopt the conclusions drawn
for winter daytime flight segments also for winter daytime flights: for daytime flights within 3
hours before sunrise, warming contrails are easily avoided, or that air space supporting cooling
contrails is easily found. For flights between 6 and 3 hours before sunrise, warming contrails
are harder to avoid or air space supporting cooling contrails is difficult to find. For winter
nighttime, the flight data showed hardly any variability with THsunrise. For nighttime flights the
conclusions for waypoint data are thus not copied. The lack of variability for winter nighttime
flight indicates that nighttime flights within 6 hours before sunrise spend an amount of SOC
on the mitigation of contrail ATR20 that is comparable to the amount spent for the rest of the

47

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

nighttime flights. Overall, winter results for flight data are thus robust, especially for winter
nighttime flights.

1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
eATR20contrail [K/km] 1e 13

0.000

0.025

0.050

0.075

0.100

0.125

0.150

eS
O

C
[$

/k
m

]

day summer THsunrise = 0h
day summer THsunrise = 3h
day summer THsunrise = 6h
night summer THsunrise = 0h
night summer THsunrise = 3h
night summer THsunrise = 6h

Figure 4.9: Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in summer generated with flight
data, THsunrise = 0, 3 and 6h.

Then, figure 4.9 shows how the summer flight data daytime and nighttime Pareto fronts
vary with THsunrise. Here, we observe some differences with respect to figure 4.8. For daytime
mitigation, figure 4.9 shows that moving from THsunrise = 0h to THsunrise = 3h again results in
a loss in maximum mitigation potential, which is somewhat (but not completely) restored for
THsunrise = 6h. More than we have seen for THsunrise = 3h in figure 4.8, the complete Pareto
front in figure 4.9 moves to the right of the original front of THsunrise = 0h. Different from the
waypoint data, we can conclude that summer daytime flights within 3 hours before sunrise
avoid warming contrails or find cooling contrails against relatively high cost. The more optimal
orientation of the THsunrise = 6h front, tells us that summer daytime flights use a relatively low
amount of extra cost to avoid warming contrails or find cooling contrails relatively easy if they
are between 6 and 3 hours before sunrise.

For the nighttime summer Pareto fronts we find the THsunrise = 6h front to the left of the
THsunrise = 0h front, with the THsunrise = 3h front exactly positioned behind it. The exact overlap
of those two fronts is unlikely and probably the results of a processing error that could not be
identified before publishing this work. In case the overlap in results is correct anyhow, then this
leads to the believe that for summer nighttime flights within 3 hours before sunrise mitigation
of eATR20contrail is relatively costly. According to the bar plot, the nighttime front for THsunrise
= 6h should be closer to the THsunrise = 0h front than shown by figure 4.9. It is thus concluded
that mitigation efforts for summer nighttime flights between 6 and 3 hours before sunrise are
relatively costly as well. In case the overlap of results is incorrect, the same conclusions can be

48

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

drawn, although they only hold for the 6 hours until sunrise overall and not necessarily for both
0-3 hours before sunrise and 3-6 before sunrise specifically. The shape and values of the flight
data Pareto fronts seem to be robust with a varying THsunrise. However, as seen for waypoint
data, caution is required for a relative comparison between the daytime and nighttime front, as
their relative positions may be switched by a change in THsunrise.

4.2.3 Variability of Mitigation of Contrail ATR20 Without Extra Cooling

2.5 2.0 1.5 1.0 0.5 0.0
eATR20contrail [K/km] 1e 14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

eS
O

C
[$

/k
m

]

day winter THsunrise = 0h
day winter THsunrise = 3h
day winter THsunrise = 6h
night winter THsunrise = 0h
night winter THsunrise = 3h
night winter THsunrise = 6h

Figure 4.10: Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter, generated with
waypoint data, THsunrise = 0, 3 and 6h. Extra cooling is excluded.

This section shows the variability of results for waypoint data with excluded extra cooling.
Figure 4.10 shows the variability for winter and figure 4.11 shows the variability for summer. As
shown in table 4.1, the exclusion of extra cooling only affects nighttime flight segments through
a marginal change in the total number of nighttime flight segments. The effect on the results
should be negligible for all three values of THsunrise , which is confirmed by a quick comparison
between the nighttime Pareto fronts of figure 4.7 and 4.10 and figure 4.8 and 4.11. Hence,
this section focuses solely on the variation of the results without extra cooling for daytime
segments.

At first glance, the variation of figure 4.10 with THsunrise agrees with the variation seen in
figure 4.7. However, in figure 4.10, we observe something interesting at the contrail optimal
end of the daytime Pareto fronts. Although all three fronts are considerably affected by the
replacements of segments that are extra cooling, the maximum mitigation of eATR20contrail has
decreased more for THsunrise = 3h and 6h than for THsunrise = 0h. Therefore, we conclude that

49

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

daytime flight segments within 6 hours before sunrise are more dependent on extra cooling
than the daytime segments after sunrise, and that is mostly holds for the contrail optimal
solution. Still, conclusions that can be drawn from figure 4.10 do not significantly vary with
THsunrise. Therefore, also without extra cooling allowed, winter mitigation results are found to
be robust while facing a change in THsunrise.

1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
eATR20contrail [K/km] 1e 13

0.00

0.02

0.04

0.06

0.08

0.10

0.12

eS
O

C
[$

/k
m

]

day summer THsunrise = 0h
day summer THsunrise = 3h
day summer THsunrise = 6h
night summer THsunrise = 0h
night summer THsunrise = 3h
night summer THsunrise = 6h

Figure 4.11: Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in summer generated with
waypoint data, THsunrise = 0, 3 and 6h. Extra cooling is excluded.

Whereas the winter Pareto fronts of 4.10 showed a change in position and shape with
respect to 4.7, for summer the change from 4.8 to 4.11 seems to be about position only. All
three Pareto’s are affected by the replacements of segments with extra cooling along their
whole front, but the rightward shift is most pronounced for THsunrise = 0. This leads to the
conclusion that in general daytime segments within 6 hours before sunrise are less dependent
on extra cooling than daytime segments after sunrise. Otherwise, the summer results are not
heavily altered by an increasing THsunrise and are thus robust. As without extra cooling the
difference between the summer daytime and nighttime Pareto front is more pronounced than
with extra cooling, the robustness of results is even stronger with extra cooling excluded.

4.3 Search for a New Pareto Front

This section presents the results that answer to the third research objective of this thesis. The
methods of analysis for these results were described in Section 3.3.4. Using the approach of
that section, new theoretical points within the Pareto plot are found, that aim to employ the
difference between daytime and nighttime flights to come to better mitigation results. First,

50

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

figure 4.12 is presented, showing the search for new points in winter. Then, figure 4.13 presents
new points found for the summer season.

8 6 4 2 0
eATR20contrail [K/km] 1e 14

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

eS
O

C
[$

/k
m

]

average
new
day winter
night winter
ex. new point
ex. day point
ex. night point

Figure 4.12: New found points outperforming the average of the day and night winter Pareto front of
∆eSOC vs. ∆eATR20contrail generated with flight data, THsunrise = 0 h. The points labelled with ‘ex.’
indicate an illustrative new found point and its source points.

Figure 4.12 shows the newly found points (green) outperforming the average points (grey)
of the day and night Pareto front of eSOC vs. eATR20contrail for winter. As is visible in the
figure, the green points perform better than the average points in terms of eco-efficiency. The
figure shows that new points around the middle part of the Pareto front feature the largest
distance from the average Pareto front, i.e., the gain in eco-efficiency is more pronounced in the
middle part than near the tail ends of the Pareto front. The pink point highlights and exemplary
newly found point and is the average of the orange highlighted daytime point and the turquoise
highlighted nighttime point. The example point shows well how it is beneficial to spend more
extra eSOC during daytime and less eSOC during nighttime to improve the overall achievable
∆eATR20contrail .

Figure 4.13 shows the newly found points for the summer Pareto front. Compared to
figure 4.12, the green line of new points is now much closer to the average, represented by
the grey dots. Contrary to figure 4.12, the newly found points in 4.13 cannot benefit from the
large distance between the daytime and nighttime Pareto front. Nonetheless, it is in favour
of the newly found points for the summer that the shape of the nighttime summer Pareto
front is somewhat rugged. A faint imprint of the rugged pattern of the nighttime fronts is
observable in the line of newly found points. The new points that managed to reach the most
distance from the grey dots, are clearly those that make use of the bulges of the nighttime front.
Overall, it seems that the winter is more fruitful if one desires to employ the difference between

51

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
eATR20contrail [K/km] 1e 13

0.000

0.025

0.050

0.075

0.100

0.125

0.150

eS
O

C
[$

/k
m

]
average
new
day summer
night summer
ex. new point
ex. day point
ex.night points

Figure 4.13: New found points outperforming the average of the day and night summer Pareto front of
∆eSOC vs. ∆eATR20contrail generated with flight data, THsunrise = 0 h. The points labelled with ‘ex.’
indicate an illustrative new found point and its source points.

daytime and nighttime for the mitigation of contrail climate impact. Both figure 4.12 and 4.13
confirm the theoretical possibility to make use of the difference between daytime mitigation
and nighttime mitigation to enhance the overall mitigation potential. Additionally, the figures
show that this enhancement is often reached by spending more extra SOC during daytime than
during nighttime.

52

Chapter 5

Verification and Validation
To check if the thesis method has been carried out correctly and whether the results correspond
to reality, this chapter presents the verification and validation of this work. Verification is
discussed in Section 5.1 and validation is discussed in Section 5.2.

5.1 Verification

This section presents several steps that are taken to verify the correctness of calculations. The
verification steps should confirm that no mistakes are made in the set up of the methodology
and the execution of this methodology.

The first verification approach consists of unit tests performed on the code written for
this thesis. For this purpose the complete algorithm is divided in small chunks (units) that
are responsible for a simple task. Whether a unit performs its task as expected is verified
by using realistic input data and additionally boundary cases (e.g., a zero or infinity input).
If any error was raised, the code was modified until the error was corrected. After running
each unit of code, the output data was checked for anomalies. When necessary, the code was
further improved until no data anomalies occurred. After unit-testing the small code chunks,
larger chunks were tested in a similar manner, verifying that the smaller chunks of code interact
correctly. Lastly, the complete algorithm was tested following the same method. An example
of such an anomaly check is performed on the nighttime Pareto front for the results without
extra cooling. By definition these result should barely differ from the results where extra cooling
is allowed, since nighttime segments cannot feature a cooling contrail. The similarity between
nighttime results with and without extra cooling was indeed confirmed.

The second verification method focuses on the used selection of flights. As the number
of selected routes and flight instances is limited, it is questionable whether the selection
is representative for all European winter and summer flights. To verify whether the flight
selection is sufficiently representative, the results for waypoint data will be recreated for a
wider selection of flights. The verification flight plan corresponds to the ATM4E European flight
plan comprising the top 100 European routes in terms of available seat kilometers in 2018.
The flights depart at midnight and at noon and span all days of December (2017), January
and February (2018) for winter and all days of June, July and August (2018) for summer. The
simulation is only performed for THsunrise = 0h. Further settings correspond exactly to the
description in Chapter 3.

Figure 5.1 shows the bar plot results for the verification flight plan. At first sight, the
plot corresponds well to the results of figure 4.1. For nighttime, the found specific contrail
ATR20 almost exactly agrees between the figures. For daytime, the verification flight plans
shows a larger value for ATR20contrail than the thesis flight plan. Although the mean daytime
values of ATR20contrail are well within the standard deviation of figure 4.1, this means that the
thesis flight plan leads to a slight underestimation of the cost optimal daytime ATR20contrail .
Moreover, figure 5.1 shows that cost optimal daytime and nighttime ATR20contrail are not as
equal as observed for the thesis flight plan. Nonetheless, their magnitudes remain comparable.
Lastly, figure 5.1 confirms the difference between winter and summer, where summer features
a specific contrail ATR20 that is a few times the magnitude of that of winter.

53

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

Winter Summer
Season

0.0

0.5

1.0

1.5

2.0

2.5

3.0
AT

R2
0 c

on
tr

ai
l [

K/
km

]

1e 13
daytime
nighttime

Figure 5.1: Specific, SOC optimal day and night contrail ATR20 for winter and summer, THsunrise = 0 h.
The data originate from the ATM4E European flight plan.

Next, figure 5.2 shows the waypoint Pareto results for the verification flight plan. With
respect to figure 4.3, figure 5.2 shows discrepancies in a number of aspects: what stands
out first is that in figure 5.2 the summer daytime front is found to the lower left of the summer
nighttime front and is thus more eco-efficient. In figure 4.3 the summer daytime and nighttime
front where semi-overlapping, where the daytime front was found slightly to the upper right
of the nighttime front. A closer look at the points in figure 4.3 and 5.2 shows that the thesis
flight plan underestimates the summer daytime eco-efficiency and overestimates the summer
nighttime eco-efficiency. To verify whether the summer daytime front is actually and robustly
more eco-efficient than the summer nighttime front, more experiments are recommended.
Nonetheless, the summer eco-efficiency of figure 5.2 falls within one standard deviation of
figure 4.3. The winter eco-efficiency matches fairly well between the figures. Another notable
difference is found for the contrail optimal solutions. Both in absolute and relative sense, the
maximum reduction in eATR20contrail is significantly larger in figure 5.2 than we have seen in
figure 4.3. This holds for both daytime and nighttime and both for winter and summer. The
discrepancy indicates that the thesis flight plan runs out of mitigation options earlier than the
ATM4E flight plan. The ATM4E flight plan has a larger maximum mitigation potential, which
also comes at a higher amount of extra SOC. Additionally, a comparison can be made between
figure 5.2 and figure 4.4. Although the two plots convey information of different data types
(waypoint data and flight data, respectively), they show high similarity in shape and therefore
lead to similar conclusions.

Then, figure 5.3 shows the waypoint Pareto results with removed extra cooling for the
verification flight plan. By comparing figure 4.5 to figure 5.3, the effect of removed extra cooling
seems to be verified. Both daytime Pareto fronts are significantly affected, where the resulting
change is largest for the winter daytime front. A difference between the thesis results and
these verification results is that the summer daytime front is not affected to such an extent
that it shifts to the right of the summer nighttime front. Again, the verification results show that
the thesis flight plan underestimates the summer daytime eco-efficiency and overestimates
the summer nighttime eco-efficiency. Yet, the verification summer eco-efficiency is within a
standard deviation of the results for the thesis flight plan. The verification results for winter
eco-efficiency again agree well with previous results. Just as for figure 5.2, we see in figure
5.3 that the ATM4E flight plan results in larger values for ∆eSOC and ∆eATR20contrail for

54

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

3.0 2.5 2.0 1.5 1.0 0.5 0.0
eATR20contrail [K/km] 1e 13

0.00

0.05

0.10

0.15

0.20

0.25

eS
O

C
[$

/k
m

]
(-187.0%,6.5%)

(-35.0%,4.6%)

(-92.0%,5.3%)

(-63.0%,4.7%)

day winter
night winter
day summer
night summer

Figure 5.2: Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and summer generated
with waypoint data, THsunrise = 0 h. The percentages placed at the contrail optimal solution indicate the
relative differences to the SOC optimal solution. The data originate from the ATM4E European flight
plan.

the contrail optimal solution. This again confirms that he ATM4E flight plan has a larger
maximum mitigation potential, paired with a higher amount of extra cost. More than in figure
4.5, the removal of extra cooling from the verification simulation seems to bring daytime and
nighttime results closer to each other. Most remarkable is that the contrail optimal solutions all
feature a similar ∆eATR20contrail , whereas figure 4.5 showed that the contrail optimal daytime
points featured a ∆eSOC that was considerably higher than for the contrail optimal nighttime
points. The nearly equal values for ∆eSOC are also observed for the intermediate solutions.
Regarding the cost of the contrail optimal solution, the verification results show that the
thesis flight plan leads to an overestimation of the difference between daytime mitigation and
nighttime mitigation without extra cooling contrails.

The fact that we analyse average Pareto fronts both for waypoint data and flight data
presents another opportunity for verification. In Chapter 4, we made use of a key difference
between waypoint data and flight data. Namely that the first can distinguish day and night at
segment level, while the latter can only make this distinction for a complete flight. However, the
postprocessing of waypoint data allows us to shift the day-night distinction on segment level
to a flight level distinction. If, after this shift, the three-point Pareto fronts from the waypoint
data correspond to the Pareto fronts from the flight data, we can verify that the calculations for
both data types are performed correct. As explained with figure 3.11, the contrail optimal and
SOC optimal point of the flight data Pareto front are well represented, but intermediate points
are prone to a bias towards lower eco-efficiency. Therefore we still expect a small discrepancy
between the ∼0.5% extra SOC solution, while the end points are expected to match exactly.

55

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

2.5 2.0 1.5 1.0 0.5 0.0
eATR20contrail [K/km] 1e 13

0.00

0.05

0.10

0.15

0.20
eS

O
C

[$
/k

m
]

(-54.0%,4.7%)
(-35.0%,4.6%)(-78.0%,4.7%) (-63.0%,4.7%)

day winter
night winter
day summer
night summer

Figure 5.3: Pareto front of ∆eSOC vs. ∆eATR20contrail for day and night in winter and summer generated
with waypoint data, THsunrise = 0 h. Extra cooling is excluded. The percentages placed at the end-points
of the fronts indicate the change w.r.t. the SOC optimal solution. The data originate from the ATM4E
European flight plan.

The result of this verification step is presented in figure 5.4. The figure shows a general
agreement between the waypoint data and the flight data results. Since the cost optimal
solution is used as reference point for plotting, the coinciding of the waypoint and flight data
is automatically ensured at the cost optimal end of the Pareto fronts. However, the ∼0.5%
extra SOC solution and the contrail optimal solution of waypoint and flight data do not exactly
correspond. This is mainly unexpected for the contrail optimal solution, given the explanation
in figure 3.11. The contrail optimal waypoint solution is consistently found to the lower right
of the flight data contrail optimal point. This leads to the believe that the discrepancy is the
result of a difference in the calculated flight distances, which is used for the normalisation
of the results. For this normalisation, the different approaches were described in Chapter 3.
A test confirmed that the method associated with waypoint data estimates a larger overall
flight distance than the method for flight data. This difference results in a smaller estimate of
∆eSOC and ∆eATR20contrail for waypoint data. Given that the source of discrepancy is know,
figure 5.4 gives confidence in the correct execution of the methodology.

This verification section described how the code for this thesis was tested for correct
results. Furthermore, this section showed whether the limited air traffic sample led to
representative results for a larger amount of European air traffic. The cost optimal results
turned out to very representative and also the eco-efficiency of most Pareto fronts matched
well with a larger air traffic sample. However, the contrail optimal point of the main thesis
results shows a maximum mitigation potential that is too pessimistic. Without extra cooling,
the contrail optimal solution for daytime and nighttime is more similar than the main thesis
results present. Lastly, the processing algorithms for waypoint data and for flight data were

56

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
eATR20contrail [K/km] 1e 13

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
eS

O
C

[$
/k

m
]

(-121.0%,3.5%)

(-27.0%,1.7%)

(-58.0%,3.2%)

(-44.0%,2.7%)

(-122%,4.4%)

(-33%,2.0%)

(-61%,3.8%)

(-47%,3.0%)

waypoint day winter
waypoint night winter
waypoint day summer
waypoint night summer
flight day winter
 flight night winter
flight day summer
flight night summer

Figure 5.4: Pareto front of∆eSOC vs. ∆eATR20contrail for day and night in winter and summer, generated
with waypoint data and flight data, THsunrise = 0. For the purpose of verification the waypoint data Pareto
front mimics the distinction between day and night for flight data.

verified against each other.

5.2 Validation

The options for the validation of the thesis results are limited. Real world measurements
of contrail climate impact are scarce, and measurements of mitigation potential for contrail
climate impact are even scarcer. Hence, to validate the outcomes this thesis, its results are
compared to the results of earlier publications. The results of these publications should not
conflict with the results of this thesis, unless the discrepancies can be explained. This section
will discuss how the thesis results compare to a selection of relevant publications and shall
assess the validity of this work.

The first work that is used to validate the thesis results is that of Yin et al. (2018). Yin et al.
(2018) deals with the avoidance of contrail formation as a trade-off against flight time and also
makes use of AirTraf as air traffic optimisation tool. Since the avoidance of contrails is the only
way to mitigate contrail climate impact during nighttime, and since SOC is partly determined
by flight time, the nighttime results of this thesis should be comparable to the results of Yin
et al. (2018). While comparing figure 10 and 11 from Yin et al. (2018) to the nighttime results
in figure 4.3, we see that the shape of the Pareto fronts are matching. Moreover, the summer
relative change in contrail distance of Yin et al. (2018) seems to agree reasonably well with the
summer relative change in contrail ATR20. However, the relative change in flight time does not
correspond with the relative change in costs. A large difference is found for the winter nighttime
mitigation. According to Yin et al. (2018), winter should (relatively) be more eco-efficient than
summer, which is not the case for the thesis data. The data used for verification (figure 5.2)
shows a slightly better agreement with the results in Yin et al. (2018), especially for summer
nighttime and to a lesser extent for winter nighttime too. Still the winter discrepancy remains
large. Possible sources for the discrepancies are the difference in region (North Atlantic), year
(2011), aircraft model (Airbus A330) and the difference between time and SOC as optimisation

57

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

objective.
Next, results from Yamashita et al. (2020) table 4 are compared with our results. The results

of Yamashita et al. (2020) are generated for a one day winter simulation of 130 fights across
the Atlantic ocean. Among others, Yamashita et al. (2020) provides values for the SOC optimal,
minimum contrail formation and climate optimal solution (minimum total ATR20). Since the
latter is very much driven by contrail ATR20 (e.g., see Lührs et al. (2020)), the climate optimal
solution is comparable tot the contrail optimal solution. We again compare figure 4.3 and
see that the relative winter nighttime ∆eATR20contrail approximately agrees with the relative
change in total ATR20 for the minimum contrail formation solution. The relative ∆eSOC in
figure 4.3 is much smaller than for the results of Yamashita et al. (2020). The climate optimal
solution of Yamashita et al. (2020) probably also involves cooling contrails, therefore the
comparison involves both the nighttime and daytime front of figure 4.3. In terms of relative
∆eATR20contrail the value of Yamashita et al. (2020) indeed lies between the winter daytime
front and the nighttime front of figure 4.3, but the relative ∆eSOC differs significantly. Again
the verification data seems to agree slightly better than the data obtained from the thesis flight
plan. Discrepancies can be attributed to the total ATR20 as optimisation objective and again
to differences in location (North Atlantic), time (December 2015) and aircraft model (Airbus
A330).

Lastly, the results are compared to those of Lührs et al. (2021), who simulated over 13000
daytime flights for a 2015 December day over Europe. The flights are optimised for total ATR20,
which is heavily dominated by the mitigation of contrail ATR20. The comparison focuses on
figure 7b of Lührs et al. (2021) and the winter daytime Pareto front of figure 4.4. In its shape, the
Pareto front of Lührs et al. (2021) matches well with the winter daytime Pareto front of figure
4.4. However, some significant differences are noted for the climate (Lührs et al. (2021)) or
contrail (this work) optimal point: while our results show over 100% reduction in eATR20contrail ,
the results of Lührs et al. (2021) ‘only’ achieve a reduction of less than 80% of the overall ATR20.
Moreover, the costs that correspond to these maxima are of different magnitude. Our data
show a maximum of 4.4% extra eSOC , while the extra time and fuel reaches around 13% for the
results of Lührs et al. (2021). Again there is a set of reasons that can cause the discrepancies
between the results. The results of Lührs et al. (2021) are generated for a single day with high
contrail formation and was optimised with minimum total ATR20 as objective.

In summary, the validation of the results of this thesis is difficult due to a lack of
measurement data and comparable literature. The literature that is available, often deals with
a test case that differs from ours in several important aspects. Overall, values for nighttime
∆eATR20contrail are validated reasonably well. Future work is needed to validate daytime results
and ∆eSOC values for both daytime and nighttime.

58

Chapter 6

Discussion
This chapter discusses the results shown in Chapter 4. Section 6.1, 6.2 and 6.3 will address
the first, second and third research objective of the thesis, respectively. Lastly, section 6.4
discusses the assumptions and uncertainties of which the reader should be aware to properly
value the conclusions of this work.

6.1 Comparing Day andNight Contrail Climate Impact of Optimised
Trajectories

This section will discuss how the results of Chapter 4 are tied to the first objective of the thesis:
to analyse the daytime and nighttime difference in contrail ATR20 for a set of eco-efficient
trajectories. For this purpose, this section will build upon the observations of Section 4.1.
First, the results for winter will be discussed, then for summer. Lastly, interesting differences
between these two seasons will be highlighted.

Winter

For the winter season, we have seen in Section 4.1.1 that the difference between day
and night specific contrail climate impact is negligible for the cost optimal solution. For
solutions that are more contrail optimal, we have seen in Section 4.1.2 that daytime mitigation
achieves results that are significantly more eco-efficient than nighttime results. This holds
if optimisation is analysed at segment level, but also if data is assessed at the level of
a complete flight. Winter daytime mitigation of contrail climate impact is not only more
eco-efficient than winter nighttime mitigation, daytime mitigation also carries further than
nighttime mitigation: maximum daytime mitigation achieves a multitude of the magnitude of
the nighttime mitigation, although the daytime maximum also comes at a much larger cost.
Section 4.1.3 indicated that the magnitude of winter daytime mitigation is largely depended on
the formation of extra cooling contrails. Nonetheless, the eco-efficiency of daytime mitigation
remains slightly greater than the eco-efficiency of nighttime mitigation, even if extra cooling is
excluded from the mitigation efforts.

The comparability of cost optimal daytime and nighttime contrail ATR20 is unexpected:
while nighttime contrails have a warming effect due to their interaction with LW radiation,
daytime contrails have this same warming effect and a cooling effect due to their SW
interaction. On average, one thus may expect that the warming effect is (partly) offset by
a cooling effect during daytime, resulting in a lower specific contrail climate impact for day
than for night (Stuber and Forster (2007), Newinger and Burkhardt (2012)). This unexpected
result may be caused by an inequality in potcov , where daytime features a larger potcov than
nighttime. This inequality is indeed confirmed by an inspection of the meta data, but not
supported by findings of, e.g., Newinger and Burkhardt (2012).

The result that daytime mitigation is more eco-efficient than nighttime is expected. Besides
the option to avoid the formation of warming contrails, a daytime flight section has an extra
mitigation option compared to a nighttime segment: the formation of cooling contrails can

59

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

be employed. The same line of thought is an explanation for the higher maximum daytime
mitigation. Because daytime mitigation can make use of the formation of extra cooling
contrails, it lakes longer (that is, takes more extra SOC) until a trajectory optimisation runs
out of further mitigating options.

The reliance of winter mitigation on extra cooling contrails is expected as well: earlier
work shows that the PCC for the Northern Hemisphere is relatively large in winter (Fichter
et al. (2005), Yin et al. (2018)). Even though the SOC optimal solutions did not confirm this
image, more contrail optimal solutions may correspond to the results of, e.g., Yin et al. (2018).
Therefore, a change in trajectory to mitigate net contrail climate impact in winter can thus
relatively easy resort to the formation of an extra cooling contrail. This is what indeed seems
to happen for the winter results.

These winter results tell us that the contrail contributions of aviation’s winter climate
impact can be mitigated most effectively during daytime. At a similar cost, daytime mitigation
achieves a larger reduction of contrail ATR20. When a policy aims to avoid geoengineering
while mitigating contrail ATR20, care should be taken during daytime. The results suggest that
extra cooling contrails are easily created in winter, implying that extra cooling contrails are also
easily formed unintentionally.

Summer

For the summer season, we have seen in Section 4.1.1 that the difference between day and
night specific contrail climate impact is negligible for the cost optimal solution. Considering
waypoint data, we have seen in Section 4.1.2 that low cost mitigation might be more eco-
efficient during nighttime, while the difference in eco-efficiency is negligible in the higher
cost region. A reverse picture is painted by flight data: low cost mitigation features only a
small difference between daytime and nighttime. At higher extra cost, the difference between
daytime and nighttime becomes more pronounced, where daytime mitigation shows more eco-
efficiency than nighttime mitigation. Furthermore, both waypoint and flight data agree that
summer daytime mitigation carries over 10% further than nighttime mitigation, even though the
daytime maximum also comes at a much larger cost. Lastly, Section 4.1.3 indicated that the
magnitude of summer daytime mitigation is significantly depended on the formation of extra
cooling contrails. When extra cooling is excluded from the mitigation efforts, the eco-efficiency
of nighttime mitigation outperforms the eco-efficiency of daytime mitigation.

As described for winter, the similar magnitude of cost optimal specific contrail climate
impact contradicts the expectation that daytime features a lower net contrail climate impact
than nighttime. The possible presence of cooling contrails does not result in a significantly
lower daytime specific contrail climate impact.

That the difference between daytime and nighttime is less outspoken for summer does not
come as a surprise. The Northern hemisphere summer features a relatively low PCC in summer
(Fichter et al. (2005), Yin et al. (2018)), resulting in fewer options to from extra contrails that are
cooling. Likely, daytime mitigation can thus exploit the cooling advantage to a lesser extent.

That daytime mitigation again carries further than nighttime mitigation is not surprising.
Although we have seen that, at medium costs, the daytime mitigation only differs slightly from
nighttime mitigation, we do see that at high cost daytime mitigation does profit from the ability
to create extra cooling contrails.

The summer results provides the reader with an important message. If the mitigation of
contrail climate impact can rely on extra cooling contrails, daytime mitigation is more effective
than nighttime mitigation. Without extra cooling contrails, nighttime mitigation is more eco-
efficient than daytime mitigation.

60

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

Seasonal Differences

While comparing the results for winter and summer, we see some noteworthy differences
between the seasons. The cost optimal magnitude of summer specific contrail ATR20 is
significantly larger than in winter. In absolute sense, this results in a far greater mitigation
potential during summer than during winter. This holds for waypoint data, flight data, and
waypoint data without extra cooling. Relatively, the maximum nighttime mitigation potential of
summer tops that of winter and does so consistently for all three data types. For waypoint data
and flight data, the relative daytime mitigation magnitude in winter outperforms the summer
daytime mitigation magnitude. Waypoint data without extra cooling forms the exception to
this. This highlights another key difference between the seasons. Winter daytime mitigation is
more dependent on the formation of extra cooling contrails than summer daytime mitigation.

The results chapter also showed that the potcov for cost optimal flights is larger in summer
than in winter. This is remarkable, as studies like Yin et al. (2018) and Fichter et al. (2005)
found an opposite seasonal cycle for cruise altitude PCC. As discussed in Section 4.1.1, this
discrepancy may be caused because of the high mean altitude for cost optimal flights (e.g.,
see Castino et al. (2022)) in combination with the seasonal cycle of the tropopause. Results of
Yin et al. (2018) (figure 6) show that near the upper cruising altitudes, the seasonal cycle may
result in a higher potcov for summer than for winter.

6.2 Sensitivity to Threshold Time Until Sunrise

This section will discuss how the results of Chapter 4 answer to the second objective of
the thesis: to assess the variability of the contrail ATR20 of eco-efficient trajectories when
considering a change in threshold time until sunrise for nighttime contrails. The sensitivity of
the results to the selected values for THsunrise were presented in Section 4.2. This section
showed in most cases that the results of this thesis are robust with respect to a varying
THsunrise. Most induced variations were small and non-escalating. Conclusions that are drawn
from the results in this thesis will not be significantly altered by a change in THsunrise. However,
one should be careful when summer day and night mitigation are compared: their relative eco-
efficiency does depend on the value of THsunrise.

That the results are robust with a changing THsunrise , also gives an indication of the
sensitivity to the assumed lifetime of a persistent contrail. Contrail lifetime affects the contrail
climate impact in multiple ways. For example, the spread of a contrail, the distance drifted due
to wind and naturally the duration of impact on the radiation balance are depending on contrail
lifetime. However, most relevant to this thesis is that changing the assumed contrail lifetime
also determines whether a contrail will or will not interact with SW radiation in addition to LW
radiation. Since a change in THsunrise has a similar effect, we conclude that conclusions from
this thesis will not be heavily affected if the assumed contrail lifetime would be altered.

The sensitivity results tell us that conditions within 3 and 6 hours to sunrise do not result
in significantly different behaviour of the contrail aCCF, neither for the daytime function, nor for
the nighttime function. This is not to say that overall results will be unaffected by a changing
THsunrise. If THsunrise is increased, overall (i.e., day + night) results will more and more resemble
daytime results. Overall results will be influenced more heavily by nighttime results if a low
value for THsunrise is chosen. To avoid an inappropriate bias to daytime or nighttime in overall
results, a THsunrise should be carefully chosen. Moreover, it is advised to introduce THsunset ,
the sunset equivalent of THsunrise. Introducing this threshold (provided that it set to a non-
zero value), ensures that a persistent contrail can be treated by ACCF as a nighttime contrail,
even though it is formed only shortly before sunset. An additional recommendation for the
contrail aCCF is to use half the assumed contrail lifetime for THsunrise and THsunset . This has as
a consequence that a contrail with over half its lifetime in light is treated as a daytime contrail.
Correspondingly, a contrail that has over half its lifetime in darkness is treated as a nighttime

61

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

contrail.
Alternatively, thrusting in the correctness of the daytime and nighttime contrail aCCF, we

advise to use a weight factor while applying them, rather than strictly applying the daytime
contrail aCCF or the nighttime contrail aCCF. This makes THsunrise and THsunset redundant. The
proposed weight factor could be based on the assumed contrail lifetime (tlife) and the time
until sunrise (tsunrise) or sunset (tsunset). If a contrail forms in light, a weight for the daytime
and nighttime aCCF (wday [−] and wnight [−]) can be calculated with equation 6.1 and 6.2,
respectively.

wday =
tsunset

tlife
with 0 ≤ wday ≤ 1 (6.1)

wnight = 1 − wday (6.2)
when a contrail forms in darkness, the weight for the nighttime and daytime aCCF can be
calculated with equation 6.3 and 6.4.

wnight =
tsunrise

tlife
with 0 ≤ wnight ≤ 1 (6.3)

wday = 1 − wnight (6.4)
The proposed use of weight factors results in a new version of figure 3.7, which is presented
in figure 6.1.

NighttimeDaytime
Current Time

Daytime
Contrail

aCCF

Nighttime
Contrail

aCCF

wnight = tsunrise / tlifetime
wday = 1 - wnight

wday x wnight x

wday = tsunset / tlifetime
wnight = 1 - wday

+ =
Total

Contrail
aCCF

Daytime
Contrail

aCCF

Nighttime
Contrail

aCCF

wday x wnight x

+ =
Total

Contrail
aCCF

Figure 6.1: Visualisation of proposed new set up for contrail aCCF.

6.3 Benefiting from the Differences Between Day and Night
Contrail Climate Impact of Optimised Trajectories

Lastly, this section goes over how the results of Chapter 4 connect to the third objective of
the thesis: to explore a climate optimal practice to spend a certain budget of simple operating
costs for trajectory optimisation on the minimisation of contrail ATR20. To this end, Section 4.3
presented new solutions that use the difference between daytime and nighttime mitigation to
achieve an extra mitigating result. The Section showed that these theoretical solutions indeed
exist for both winter and summer. However, the search for new points is more successful in
winter than in summer. Most new points make use of a daytime point that is close the the
contrail optimal solution, and a nighttime point that is close to the cost optimal solution.

The results for finding new points in the Pareto front contain useful information for policy
makers who aim to reduce the climate impact of contrails. Apparently it is rewarding to spend
more extra cost on mitigation for daytime flights than on nighttime flights, as this results in a

62

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

slightly higher reduction of contrail climate impact than when an equal amount of extra costs
is spent during both day and night. A policy that aims to reduce the contrail climate impact,
should naturally aim for the highest impact reduction at the lowest amount of extra costs. A
policy can achieve the cooperation of airliners by making it attractive to optimise trajectories
with grants, making it unattractive to not participate by fining uncooperative airliners, or by
forcing cooperation (e.g., through closing air space).

We propose a policy that builds upon a minimum required increase in SOC. If an airliner is
willing to increase the SOC even further, it should be compensated for its extra efforts. If an
airline fails to meet the minimum requirement, the airline should be fined. In the ideal case, the
magnitude of compensations and fines should be correlated to the gain or loss in mitigation,
rather than the change in SOC. For example, if the extra spent SOC results in a large extra
reduction of contrail climate impact, the compensation should be large. If the extra spent SOC
results in a minor extra reduction of contrail climate impact, the compensation should be minor
as well. Such a policy will encourage airlines to use knee solutions along the Pareto front, and
to take advantage of the difference between day and night.

6.4 Assumptions and Uncertainties

The results of this thesis relies on a number of assumptions and is additionally subject
to several uncertainties. To properly value the thesis conclusions, these assumptions and
uncertainties should be taken into account. This section serves as an overview of the most
important assumptions and uncertainties of which the reader should be aware. The section
will be subdivided into three categories: uncertainties and assumptions in the modelling chain,
uncertainties and assumptions entering through the experiment design and lastly uncertainties
and assumptions in the analysis phase. These categories are dealt with in Section 6.4.1,
Section 6.4.2 and Section 6.4.3, respectively.

6.4.1 Modelling Chain

The modelling chain applied in this thesis is one of the sources of uncertainty and assumptions.
The first source of uncertainty enters through the base model. EMAC is, with the help of
ECMWF ERA-Interim reanalysis data, responsible for the simulation of the meteorological
fields. Although EMAC is extensively validated (Jöckel et al. (2016)), EMAC remains, as is
inherent to a model, a simplification of reality. This simplification results in differences between
the modelled atmosphere and the actual atmosphere. For example, some temperature biases
are reported by Jöckel et al. (2016). This temperature bias was also observed by Yin et al.
(2022). The temperature calculated by EMAC showed values that were on average 3 K lower
than the ECMWF reanalysis data. Yin et al. (2022) also shows that the temperature bias affects
the predicted potcov and the calculated contrail aCCF. Gierens et al. (2020) reported that
the meteorological fields simulated by the EMAC model are well capable to predict contrail
formation, but the prediction of persistence is “almost random”, mainly caused by problems
in the prediction of ice supersaturation. The possible biases in the simulated background
parameters affect the calculations of all of the three used submodels.

Further sources of uncertainty can be attributed to the submodels. The potential contrail
coverage is determined by the CONTRAIL submodel with the help of a set of assumptions.
The parameterization of CONTRAIL involves assumptions about subgrid variability of the
relative humidity and includes an assumed value for the tuning parameter ‘a’ (see equation
3.6) to tune the parameterization. Frömming et al. (2011) validated the CONTRAIL approach
but, as mentioned in Section 3.1.3, found an over representation of thin contrails compared
to measured data, which may be attributed to either the submodel or the measurements
themselves. Nonetheless, Yin et al. (2018) showed that the results of CONTRAIL match well

63

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

with earlier presented seasonal patterns and spacial distributions of PCC (e.g., Fichter et al.
(2005)).

Of all climate affecting agents of aviation, the RF of contrails is characterised by the largest
range of uncertainty (Lee et al. (2021)). Inevitably, this uncertainty worked its way into the
ACCF submodel and the methods used to derive the aCCF. Moreover, the construction of
the contrail aCCF is based on a set of assumptions. For example, following the approach
from van Manen and Grewe (2019), an uncertainty arises from the CCF trajectories that are
used as meteorological data inputs. The applied Lagrangian trajectories are limited in spacial
and temporal representation. This causes uncertainties for the aCCF when they are applied
at other geographic locations, other years and other seasons. It should also be mentioned
that the original CCF trajectories were simulated by the EMAC model which involves the same
uncertainties as earlier described.

Using the method of Schumann et al. (2012), the supplement of Yin et al. (2022) made a set
of assumptions towards the construction of contrail aCCFs. A fixed size for ice particles and
(as suggested by Schumann et al. (2012)) a size dependent particle mixture is assumed, whilst
in reality this size and mixture is far from uniform (Schumann et al. (2017)). Moreover, a fixed
contrail depth and width is assumed, which in reality are parameters that differ significantly
with contrail age, aircraft type and wind conditions. Additionally, it is mentioned that effects
of possible overlapping cloud coverage is disregarded, whilst this actually has an effect on
contrail RF.

Additionally, the contrail aCCF itself neglects a large part of the complex effects that drive
the radiation imbalance caused by a contrail. While the RF of a contrail depends on a large set
of variables, as described in Chapter 2, the formulated contrail aCCF is only dependent on three
(or four) of those: T , OLR and potcov (and in a binary way, the time of day). Furthermore, as
described in Section 3.1.2, the contrail aCCFs expresses the contrail climate impact in terms of
ATR20. This choice introduces an uncertainty as well, as the optical trajectory may vary with
the selected climate metric or time horizon, hence uncertainty arises whether a found optimal
solution for one climate metric can be harmful in terms of another metric. Matthes et al. (2020)
addressed this uncertainty by inspecting the performance of trajectories optimised for ATR20
in terms of eight other metrics (e.g., GWP for a 100 year time horizon). Matthes et al. (2020)
found that the ATR20 solutions also reduce climate impact in terms of the other metrics and
are thus robust.

Furthermore, one of the major assumptions of Yin et al. (2022) is the contrail lifetime,
which is fixed at 6 hours. This assumption does not only affect the contrail lifetime itself,
but also affects whether the contrail was treated as daytime or nighttime contrail. The 6 hour
lifetime assumption may have a significant effect on the contrail aCCF regarding findings of
e.g., Vazquez-Navarro et al. (2015), who found a mean contrail lifetime of approximately 1 hour.

In the application of the contrail aCCF, the ACCF submodel too introduces an uncertainty
through the choice in THsunrise. This uncertainty was addressed in this thesis and was found
to cause some variation in the results. Nonetheless, the variation did not affect results enough
to lead to alternative conclusions.

Several simplifications within the AirTraf submodel also add to the uncertainty of its
predictions. The AirTraf aircraft fleet is limited to a few models. Although a representative fleet
can be selected from this model set, an AirTraf user should take into account that the actual
variety of aircraft models and corresponding performance is not fully captured. Furthermore,
the model does not account for trajectory conflicts and can therefore not assure that the
proposed set of optimised trajectories is possible in terms of air traffic management. AirTraf
computes trajectories with continuous descent or climb rates, rather than the conventional
step wise altitude changes between the usual flight levels, and disregards the limits of climb
and descent rates. In addition, AirTraf is limited to the cruise phase of a flight and does not
account for ground operations, nor does it include the take-off or approach phase of the flight.

64

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

6.4.2 Experiment Design

A second source of uncertainty and assumptions is the set up of the experiment for this thesis,
which was described in Section 3.2. The experiment has multiple limitations of which one
is the limited amount of flown routes. The simulations for this thesis comprised a set of
four routes, selected to be diverse in location and orientation over the European continent.
Within the budget of four routes this was done well, but contrail ATR20 features a high spacial
variability and is therefore sensitive to the simulated routes. To name examples, an inspection
of figure 3.6 shows that airspace over France or the Czech Republic is not covered by the
route selection. Recall that previous analysis within our research group suggested that three
regions with distinct trends regarding the mitigation of contrail ATR20 can be identified within
the ATM4E set of routes (Section 3.2.2). The four selected routes fail to include one of these
regions, namely Southeast Europe. This region is characterised by little contrail formation in
summer and therefore also allows only a very limited amount of contrail ATR20 mitigation.
Underrepresentation of south east Europe may thus have resulted in an overestimation of
contrail climate impact and the potential to mitigate this. Moreover, one should be careful
in transferring the findings of this thesis to other regions than Europe. E.g., more tropical
regions are known to feature a different seasonal cycle for contrail formation, making it unsure
if our findings hold there too. The limited set of routes has partly been addressed through the
verification flight plan, which featured 100 European routes.

The collection of flights of this thesis is also limited in number of temporal instances. No
different year than 2018 is accounted for and flights are only simulated for winter and summer
for just 30 and 40 days per season, respectively. One should note that the winter of 2018 is not
the same as winter in any other year, neither is the summer of 2018 equal to any other summer.
Similarly, the end of summer may differ very will from the first summer weeks. Therefore,
one should be careful to apply the conclusions of this thesis to days outside those that are
simulated. However, it is likely that spring and autumn results will be found in between the
summer and winter results, since winter and summer have proven to contain the extremes of
the seasonal cycle (e.g., Yin et al. (2018)). Moreover, the verification flight plan again lifts part
of the temporal limitations, as the flight plan comprised December, January, February and June,
July, August.

Furthermore, Section 3.2.1 describes that all flights depart at 12.00 for the data that are
used to select representative days for the simulation. For European flights this means that
almost all flight segments will be in daytime. The selection of days is thus representative for
flying in daytime, but it is unsure if the chosen days are equally representative for flying in
nighttime. Daytime results of this thesis can thus be generalised with more certainty than
nighttime results. Nonetheless, nighttime verification results showed a well agreement with
the main nighttime results.

Less limited is the chosen set of departure times for the simulations. Comprised of four
departures per day, the flight plan ensures that aircraft are in the air for a well spread set of
hours in a day. This spread strengthens our confidence that differences between day and night
are captured well.

Then, the set of simulations only tests the results for a limited set of three THsunrise values.
The main uncertainty rising from this limited number of different simulations is that we do not
know the effect of choosing a negative THsunrise. More precise, we do not know if the nighttime
aCCF behaves very differently within a few hours after sunrise. Therefore, the reader should
only interpret the results of the THsunrise variation as an analysis of sensitivity before sunrise.

Moreover, please note that the robustness of the thesis results is rooted in the collective of
simulated flights. Due to the high variability of contrail climate impact and mitigation potential,
individual flights will rarely show results that are identical to this thesis. Hence, the thesis
conclusions should only be applied to a fleet of aircraft or to air traffic associated with a region
(like Europe in this work).

65

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

Lastly, it is important to note that this work exclusively discusses the mitigation of contrail
climate impact. One should be aware that a trajectory or policy that achieves minimal contrail
climate impact, may very well be sub-optimal if another climate affecting agent is considered.

6.4.3 Analysis

The analysis phase of this work introduced an additional set of assumptions and uncertainties,
which will be described in this section.

Firstly, the day and night distinction for waypoint data is not guaranteed to exactly duplicate
the way the contrail aCCF was applied by the ACCF submodel. Inspection of the results showed
that wrong classifications happened most frequently for the summer simulations. If wrong
classifications do impact the results, this will show as a smaller distinction between night and
day, since night will be ‘contaminated’ with day data and vice versa. An applied correction to
wrong classifications only had a minor impact on the generated results. This lead to the believe
that wrong classifications are not common enough to cause incorrect conclusions.

Secondly, the day-night distinction flight data makes the assumption that the halfway point
and time is a suiting determiner for the time of day as which a flight was classified. In turn,
we assumed that the average of the first and last SOC optimal waypoint was a good estimate
of the halfway point and time. On top of that, we assumed that the resulting classification
holds for the SOC optimal solution, the contrail optimal solution and all solutions in between.
This approach is not 100% accurate and may, for example, lead to the nighttime classification
of a flight that is 60% in daytime. It is unsure how large the resulting error is. The effect of
the error is similar to the error we described above for waypoint data. Nighttime results will
be contaminated by daytime results and the other way around, causing a smaller distinction
between day and night results.

Towards the exclusion of extra cooling, extra cooling segments were replaced by a more
SOC optimal solution. Since the replacing segment originates from a different trajectory, the
newly created trajectory is physically impossible. The replacing segment only makes sure that
a realistic value for contrail ATR20 and SOC is attributed to the segment. The approach for
segment replacing induces an uncertainty on the mitigation results that exclude extra cooling.
A physically possible trajectory without extra cooling probably shows a different eco-efficiency.
Whether this would result in more ore less eco-efficiency is uncertain.

Lastly, the search for new points within the flight data Pareto front should come with two
notes. The first note is that the new points are derived assuming a 50% weight for daytime
points and a 50% weight for nighttime points. This means that the corresponding figures are
only applicable to an airliner that operates half of its flights during daytime and half of them
during nighttime. Alternatively, the figure could apply to a flight that has half of its flight distance
during daytime and half during nighttime. If a fleet or flight has a day-night distribution that
differs from the 50-50 distribution, a different weight can be applied to calculate new solutions.
The second note is that the new points are found offline. AirTraf has thus not simulated the
average result of a daytime and a nighttime solution. Although it is likely that a solution exist
in the middle, this has not been verified by an actual simulation.

Despite the magnitude and number of uncertainties one should not be discouraged to
investigate the possibility of eco-efficient trajectories. As stated by Dahlmann et al. (2016),
the reference situation and the mitigation option are to a large extent subjected to the same
uncertainties. Thanks to the correlation in error, a robust assessment is still possible. In the
same line of thought, following Grewe et al. (2014b), we recognise that within the optimisation,
relative values are more important than absolute values.

66

Chapter 7

Conclusion and Recommendations
This thesis aimed to find the daytime and nighttime contrail climate impact of eco-efficient
flight trajectories, to assess the prediction’s robustness and to recommend a best practice for
eco-efficient flying by using the difference between the daytime and nighttime contrail climate
impact. This goal was divided over three objectives:

1. To analyse the daytime and nighttime difference in contrail ATR20 for a set of eco-efficient
trajectories.

2. To assess the variability of the contrail ATR20 of eco-efficient trajectories when considering
a change in threshold time until sunrise for nighttime contrails.

3. To explore a climate optimal practice to spend a certain budget of simple operating costs
for trajectory optimisation on the minimisation of contrail ATR20.

To fulfil these objectives, optimisations and simulations were carried out within the EMAC
climate chemistry model, aided by the submodels AirTraf, CONTRAIL and ACCF. AirTraf takes
care of the 4D air traffic optimisation comprising a trade-off between minimal Simple Operating
Cost (SOC) and minimal contrail climate impact. The quantification of the latter is facilitated
by the CONTRAIL and ACCF submodel. The optimisation and simulation were carried out for
a selection of 1136 European flights in the winter and summer of 2018. The simulated flights
were selected to produce representative results for all European flights in winter and summer.
Moreover, the sensitivity of the thesis results were tested against an ACCF model parameter:
the threshold time until sunrise (THsunrise). When a contrail is formed during nighttime, this
threshold determines whether the contrail is formed sufficiently close to to sunrise to be
considered as a daytime contrail. Results were produced for three settings of THsunrise.

Serving the first research objective, the simulation showed that winter daytime mitigation
of contrail climate impact is more eco-efficient than winter nighttime mitigation. For summer,
daytime mitigation of contrail climate impact has an eco-efficiency that is relatively close to
that of nighttime mitigation. We conclude that this difference between the winter and the
summer result is a consequence of the wider use of extra cooling contrails for winter mitigation.
Overall we observed a trend that daytime mitigation achieves a larger maximum reduction of
contrail climate impact than nighttime mitigation and that the daytime advantage largely relies
on the formation of extra cooling contrails. Moreover, in absolute terms, summer mitigation
is more effective than winter mitigation, driven by the fact that contrail climate impact of cost
optimal flights is largest in summer.

Addressing the second research objective, we have seen that above conclusions are robust
with respect to a varying THsunrise. As THsunrise is related to the assumed contrail lifetime, the
results also indicate a robustness of the thesis results in case a different lifetime would be
assumed. This is not to say that results of daytime and nighttime combined are unaffected by
a change in THsunrise. A change in THsunrise will cause a bias of the overall results to daytime
results (large THsunrise) or nighttime results (small or negative THsunrise).

Results for the third objective showed that difference between day and night contrail
climate impact mitigation allows for an enhancement of mitigation results. This enhancement
appears to be most effective in winter, thanks to the larger difference between day and night
mitigation for this season. Moreover, the enhancement of the mitigation of contrail climate
impact often makes use of a high amount of extra SOC spend on daytime contrail impact
mitigation and a low amount of extra SOC for nighttime contrail impact mitigation.

67

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

In light of the Paris agreement, it is recommended to further research the influence of the
diurnal and seasonal cycle on the mitigation of contrail climate impact. This work should focus
on efforts to explore how these cycles can be used to make the mitigation of aviation’s climate
impact more effective. The results of this thesis suggest policy makers to encourage daytime
mitigation more than nighttime mitigation and to encourage summer mitigation more than
winter mitigation.

Based on the results and discussion, it is recommended to repeat several offline analysis
methods of this thesis with an online simulation. While results excluding extra cooling contrails
were generated offline for this work, a simulation that enforces this restriction online would help
verifying dependency of mitigation on extra cooling contrails. Additionally, online verification
of research objective three would be of value. This could prove the validity of mitigation
enhancement based on the diurnal cycle.

Moreover, we recommend to increase the number of solutions for which waypoint data
is stored for analysis. The number of waypoint data points for this thesis (3), allowed for a
rough estimation of the shape of the Pareto fronts, but a higher resolution allows for clearer
conclusions about the eco-efficiency of the range of solutions. Another recommendation
concerning waypoint data is the addition of a day-night marker to the outputs of AirTraf. This
will allow for a more accurate distinction between day and night data in the analysis, without
discrepancies between ACCF and the analysis method.

Since contrail climate impact and its mitigation is region depended, it is wise to carry
out the analysis of this thesis for other regions as well, rather than assuming that the thesis
conclusions transferable. The same hold for generating results for other years than 2018: it
is recommended to expand the analysis of this thesis to a larger set of years to improve the
results robustness. Furthermore, this thesis only accounts for the climate impact of contrails.
Further research is necessary to evaluate how the total climate impact of a flight correlates to
the thesis results.

Furthermore, validation of the thesis results has proven to be difficult due to a lack of real
world data and a scarcity of studies with comparable content. Measurement campaigns of
contrail climate impact and the operational mitigation of contrail climate impact could provide
the necessary data for validation. Additionally, such campaigns can improve the quality of the
ACCF and CONTRAIL submodel and the simulations that are carried out with those submodels.

Data generated for this thesis relies on historical weather data. For future work, it will be
interesting to see if trajectory optimisation can also achieve robust mitigation results based
on forecasted weather. Therefore it is recommended to perform forecast-based simulations
to evaluate if a reliable reduction of climate impact can be achieved.

Lastly, it is recommend to revise the way ACCF distinguishes daytime contrails from
nighttime contrails. Instead of marking a contrail either as a daytime contrail or a nighttime
contrail, we suggest to apply a weight that corresponds to the fraction of the contrail lifetime
in daytime and nighttime, respectively. This avoids that part of the contrail lifetime conflicts
with the day-night categorisation by ACCF.

68

Bibliography
H. Yamashita, V. Grewe, P. Jöckel, F. Linke, M. Schaefer, and D. Sasaki, “Towards climate

optimized flight trajectories in a climate model: Airtraf,” in Proceedings of the Eleventh
USA/Europe Air Traffic Management Research and Development Seminar (ATM2015), Lisbon,
Portugal, 2015, pp. 23–26.

——, “Air traffic simulation in chemistry-climate model emac 2.41: Airtraf 1.0,” Geoscientific
Model Development, vol. 9, no. 9, pp. 3363–3392, 2016.

F. Yin, V. Grewe, C. Frömming, and H. Yamashita, “Impact on flight trajectory characteristics
when avoiding the formation of persistent contrails for transatlantic flights,” Transportation
research part D: Transport and environment, vol. 65, pp. 466–484, 2018.

H. Yamashita, F. Yin, V. Grewe, P. Jöckel, S. Matthes, B. Kern, K. Dahlmann, and C. Frömming,
“Newly developed aircraft routing options for air traffic simulation in the chemistry–climate
model emac 2.53: Airtraf 2.0,” Geoscientific Model Development, vol. 13, no. 10, pp. 4869–
4890, 2020.

U. Schumann, B. Mayer, K. Graf, and H. Mannstein, “A parametric radiative forcing model for
contrail cirrus,” Journal of Applied Meteorology and Climatology, vol. 51, no. 7, pp. 1391–1406,
2012.

S. Unterstrasser and K. Gierens, “Numerical simulations of contrail-to-cirrus transition–part 1:
An extensive parametric study,” Atmospheric Chemistry and Physics, vol. 10, no. 4, pp. 2017–
2036, 2010.

IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-
Delmotte, P. Zhai, A. Pirani, S. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb,
M. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews, T. Maycock, T. Waterfield, O. Yelekçi,
R. Yu, and B. Zhou, Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge
University Press, 2021.

——, Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working
Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,
H.-O. Pörtner, D. Roberts, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegrı́a, M. Craig,
S. Langsdorf, S. Löschke, V. Möller, A. Okem, and B. Rama, Eds. Cambridge University Press,
2022.

D. S. Lee, D. Fahey, A. Skowron, M. Allen, U. Burkhardt, Q. Chen, S. Doherty, S. Freeman, P. Forster,
J. Fuglestvedt et al., “The contribution of global aviation to anthropogenic climate forcing for
2000 to 2018,” Atmospheric Environment, vol. 244, p. 117834, 2021.

F. Noppel and R. Singh, “Overview on contrail and cirrus cloud avoidance technology,” Journal
of Aircraft, vol. 44, no. 5, pp. 1721–1726, 2007.

M. Narciso and J. M. M. de Sousa, “Influence of sustainable aviation fuels on the formation of
contrails and their properties,” Energies, vol. 14, no. 17, p. 5557, 2021.

T. Bräuer, C. Voigt, D. Sauer, S. Kaufmann, V. Hahn, M. Scheibe, H. Schlager, F. Huber, P. Le Clercq,
R. H. Moore et al., “Reduced ice number concentrations in contrails from low-aromatic biofuel
blends,” Atmospheric Chemistry and Physics, vol. 21, no. 22, pp. 16 817–16 826, 2021.

R. Meerkötter, U. Schumann, D. Doelling, P. Minnis, T. Nakajima, and Y. Tsushima, “Radiative
forcing by contrails,” in Annales Geophysicae, vol. 17, no. 8. Springer, 1999, pp. 1080–1094.

69

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

C. Fichter, S. Marquart, R. Sausen, and D. S. Lee, “The impact of cruise altitude on contrails and
related radiative forcing,” Meteorologische Zeitschrift, vol. 14, pp. 563–572, 2005.

B. Kärcher, “Formation and radiative forcing of contrail cirrus,” Nature communications, vol. 9,
no. 1, pp. 1–17, 2018.

V. Grewe, T. Champougny, S. Matthes, C. Frömming, S. Brinkop, O. A. Søvde, E. A. Irvine, and
L. Halscheidt, “Reduction of the air traffic’s contribution to climate change: A react4c case
study,” Atmospheric Environment, vol. 94, pp. 616–625, 2014.

V. Grewe, S. Matthes, C. Frömming, S. Brinkop, P. Jöckel, K. Gierens, T. Champougny,
J. Fuglestvedt, A. Haslerud, E. Irvine et al., “Feasibility of climate-optimized air traffic routing
for trans-atlantic flights,” Environmental Research Letters, vol. 12, no. 3, p. 034003, 2017.

S. Matthes, L. Lim, U. Burkhardt, K. Dahlmann, S. Dietmüller, V. Grewe, A. S. Haslerud,
J. Hendricks, B. Owen, G. Pitari et al., “Mitigation of non-co2 aviation’s climate impact by
changing cruise altitudes,” Aerospace, vol. 8, no. 2, p. 36, 2021.

C. Newinger and U. Burkhardt, “Sensitivity of contrail cirrus radiative forcing to air traffic
scheduling,” Journal of Geophysical Research: Atmospheres, vol. 117, no. D10, 2012.

ATM4E, “Air traffic management for the benefit of environment and climate,” https://www.
atm4e.eu/index.html, 2018, accessed: 15 February 2022.

FlyATM4E, “Flying air traffic management for the benefit of environment and climate,” https:
//ntrs.nasa.gov/search.jsp?R=19950017884, 2020, accessed: 27 October 2021.

F. Yin, V. Grewe, F. Castino, P. Rao, S. Matthes, K. Dahlmann, S. Dietmüller, C. Frömming,
H. Yamashita, P. Peter et al., “Predicting the climate impact of aviation for en-route emissions:
The algorithmic climate change function submodel accf 1.0 of emac 2.53,” Geosci. Model
Dev. Discuss. [preprint], 2022, https://doi.org/10.5194/gmd-2022-220, in review.

U. Burkhardt and B. Kärcher, “Global radiative forcing from contrail cirrus,” Nature climate
change, vol. 1, no. 1, pp. 54–58, 2011.

U. Schumann, R. Baumann, D. Baumgardner, S. T. Bedka, D. P. Duda, V. Freudenthaler, J.-F. Gayet,
A. J. Heymsfield, P. Minnis, M. Quante et al., “Properties of individual contrails: a compilation
of observations and some comparisons,” Atmospheric Chemistry and Physics, vol. 17, no. 1,
pp. 403–438, 2017.

M. Vazquez-Navarro, H. Mannstein, and S. Kox, “Contrail life cycle and properties from 1 year
of msg/seviri rapid-scan images,” Atmospheric Chemistry and Physics, vol. 15, no. 15, pp.
8739–8749, 2015.

L. Weickmann, “Wolkenbildung durch ein flugzeug,” Naturwissenschaften, vol. 7, no. 34, pp.
625–625, 1919.

B. Varney, “The argonne battle cloud,” Monthly Weather Review, vol. 49, no. 6, pp. 348–349,
1921.

J. H. Heiërman, “Vliegtuigwolken,” Hemel en Dampkring, vol. 42, pp. 101–109, 1944.

A. Brewer, “Condensation trails,” Weather, vol. 1, no. 2, pp. 34–40, 1946.

A. M. Descamps, “Les trâınées blanches d’avions,” Ciel et Terre, vol. 61, p. 189, 1945.

H. Appleman, “The formation of exhaust condensation trails by jet aircraft,” Bulletin of the
American Meteorological Society, vol. 34, no. 1, pp. 14–20, 1953.

R. Scorer, “Condensation trails,” Weather, vol. 10, no. 9, pp. 281–287, 1955.

70

https://www.atm4e.eu/index.html
https://www.atm4e.eu/index.html
https://ntrs.nasa.gov/search.jsp?R=19950017884
https://ntrs.nasa.gov/search.jsp?R=19950017884

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

R. Scorer and L. Davenport, “Contrails and aircraft downwash,” Journal of Fluid Mechanics,
vol. 43, no. 3, pp. 451–464, 1970.

E. Schmidt, “Die entstehung von eisnebel aus den auspuffgasen von flugmotoren,” Schriften der
Deutschen Akademie der Luftfahrtforschung, Verlag R. Oldenbourg, München, Heft 44, vol. 5,
no. 44, pp. 1–15, 1941.

U. Schumann, “On conditions for contrail formation from aircraft exhausts,” Meteorologische
Zeitschrift, vol. 5, pp. 4–23, 1996.

D. Sonntag, “Advancements in the field of hygrometry,” Meteorologische Zeitschrift, pp. 51–66,
1994.

M. L. Schrader, “Calculations of aircraft contrail formation critical temperatures,” Journal of
Applied Meteorology, vol. 36, no. 12, pp. 1725–1729, 1997.

L. Bock and U. Burkhardt, “The temporal evolution of a long-lived contrail cirrus cluster:
Simulations with a global climate model,” Journal of Geophysical Research: Atmospheres,
vol. 121, no. 7, pp. 3548–3565, 2016.

A. Bier, U. Burkhardt, and L. Bock, “Synoptic control of contrail cirrus life cycles and their
modification due to reduced soot number emissions,” Journal of Geophysical Research:
Atmospheres, vol. 122, no. 21, pp. 11–584, 2017.

M. Bailey and J. Hallett, “Growth rates and habits of ice crystals between- 20 and- 70 c,” Journal
of the Atmospheric Sciences, vol. 61, no. 5, pp. 514–544, 2004.

F. H. Ludlam, Clouds and storms: The behavior and effect of water in the atmosphere.
Pennsylvania State University Press, 1980.

A. J. Heymsfield, L. M. Miloshevich, C. Twohy, G. Sachse, and S. Oltmans, “Upper-tropospheric
relative humidity observations and implications for cirrus ice nucleation,” Geophysical
research letters, vol. 25, no. 9, pp. 1343–1346, 1998.

C. Schiller, M. Krämer, A. Afchine, N. Spelten, and N. Sitnikov, “Ice water content of arctic,
midlatitude, and tropical cirrus,” Journal of Geophysical Research: Atmospheres, vol. 113, no.
D24, 2008.

R. Gao, D. Fahey, P. Popp, T. Marcy, R. Herman, E. Weinstock, J. Smith, D. Sayres, J. Pittman,
K. Rosenlof et al., “Measurements of relative humidity in a persistent contrail,” Atmospheric
Environment, vol. 40, no. 9, pp. 1590–1600, 2006.

M. d. Reus, S. Borrmann, A. Bansemer, A. Heymsfield, R. Weigel, C. Schiller, V. Mitev, W. Frey,
D. Kunkel, A. Kürten et al., “Evidence for ice particles in the tropical stratosphere from in-situ
measurements,” Atmospheric Chemistry and Physics, vol. 9, no. 18, pp. 6775–6792, 2009.

J. M. Flores, D. Baumgardner, G. Kok, G. Raga, and R. Hermann, “Tropical subvisual cirrus and
contrails at- 85◦ c,” in 12th Conference on Cloud Physics, 2006, pp. 10–14.

N. Stuber and P. Forster, “The impact of diurnal variations of air traffic on contrail radiative
forcing,” Atmospheric Chemistry and Physics, vol. 7, no. 12, pp. 3153–3162, 2007.

U. Schumann and K. Graf, “Aviation-induced cirrus and radiation changes at diurnal timescales,”
Journal of Geophysical Research: Atmospheres, vol. 118, no. 5, pp. 2404–2421, 2013.

R. Sausen, K. Gierens, M. Ponater, and U. Schumann, “A diagnostic study of the global
distribution of contrails part i: Present day climate ast,” Theoretical and Applied Climatology,
vol. 61, no. 3, pp. 127–141, 1998.

D. Avila, L. Sherry, and T. Thompson, “Reducing global warming by airline contrail avoidance:
A case study of annual benefits for the contiguous united states,” Transportation Research
Interdisciplinary Perspectives, vol. 2, p. 100033, 2019.

71

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

S. Campbell, N. Neogi, and M. Bragg, “An optimal strategy for persistent contrail avoidance,” in
AIAA Guidance, Navigation and Control Conference and Exhibit, 2008, p. 6515.

B. Zou, G. S. Buxi, and M. Hansen, “Optimal 4-d aircraft trajectories in a contrail-sensitive
environment,” Networks and Spatial Economics, vol. 16, no. 1, pp. 415–446, 2013.

Y. Lim, A. Gardi, and R. Sabatini, “Optimal aircraft trajectories to minimize the radiative impact
of contrails and co2,” Energy Procedia, vol. 110, pp. 446–452, 2017.

H. Yamashita, F. Yin, V. Grewe, P. Jöckel, S. Matthes, B. Kern, K. Dahlmann, and C. Frömming,
“Analysis of aircraft routing strategies for north atlantic flights by using airtraf 2.0,”
Aerospace, vol. 8, no. 2, p. 33, 2021.

B. Lührs, F. Linke, S. Matthes, V. Grewe, F. Yin, K. Shine, B. Lührs, and S. Matthes, “Climate
impact mitigation potential of european air traffic,” in 3rd ECATS conference: Making aviation
environmentally sustainable, 2020.

S. Matthes, B. Lührs, K. Dahlmann, V. Grewe, F. Linke, F. Yin, E. Klingaman, and K. P. Shine,
“Climate-optimized trajectories and robust mitigation potential: Flying atm4e,” Aerospace,
vol. 7, no. 11, p. 156, 2020.

B. Lührs, F. Linke, S. Matthes, V. Grewe, and F. Yin, “Climate impact mitigation potential of
european air traffic in a weather situation with strong contrail formation,” Aerospace, vol. 8,
no. 2, p. 50, 2021.

H. Yamashita, F. Castino, F. Yin, S. Matthes, V. Grewe, S. Dietmüller, P. Jöckel, and P. Rao, “Multi-
objective flight trajectory optimization in emac: Airtraf 3.0,” in preparation, Geoscientific
Model Development, 2023.

P. Jöckel, A. Kerkweg, A. Pozzer, R. Sander, H. Tost, H. Riede, A. Baumgaertner, S. Gromov,
and B. Kern, “Development cycle 2 of the modular earth submodel system (messy2),”
Geoscientific Model Development, vol. 3, no. 2, pp. 717–752, 2010.

E. Roeckner, G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann,
I. Kirchner, L. Kornblueh, E. Manzini et al., “The atmospheric general circulation model echam
5. part i: Model description,” 2003.

E. Roeckner, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, L. Kornblueh, E. Manzini,
U. Schlese, and U. Schulzweida, “Sensitivity of simulated climate to horizontal and vertical
resolution in the echam5 atmosphere model,” Journal of Climate, vol. 19, no. 16, pp. 3771–
3791, 2006.

F. Castino, F. Yin, V. Grewe, H. Yamashita, S. Matthes, S. Baumann, S. Dietmüller, M. Soler,
A. Simorgh, F. Linke et al., “Seasonal variability of aircraft trajectories reducing nox-climate
impacts under a multitude of weather patterns,” 2022.

S. Matthes, “React4c–climate optimised flight planning,” in Innovation for Sustainable Aviation
in a Global Environment. IOS Press, 2012, pp. 122–128.

V. Grewe, C. Frömming, S. Matthes, S. Brinkop, M. Ponater, S. Dietmüller, P. Jöckel, H. Garny,
E. Tsati, K. Dahlmann et al., “Aircraft routing with minimal climate impact: The react4c climate
cost function modelling approach (v1. 0),” Geoscientific Model Development, vol. 7, no. 1, pp.
175–201, 2014.

C. Frömming, V. Grewe, S. Brinkop, P. Jöckel, A. S. Haslerud, S. Rosanka, J. van Manen, and
S. Matthes, “Influence of the actual weather situation on non-co2 aviation climate effects:
The react4c climate change functions,” Atmospheric Chemistry and Physics Discussions,
2020.

72

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

J. van Manen and V. Grewe, “Algorithmic climate change functions for the use in eco-efficient
flight planning,” Transportation Research Part D: Transport and Environment, vol. 67, pp. 388–
405, 2019.

S. Matthes, V. Grewe, K. Dahlmann, C. Frömming, E. Irvine, L. Lim, F. Linke, B. Lührs, B. Owen,
K. Shine et al., “A concept for multi-criteria environmental assessment of aircraft trajectories,”
Aerospace, vol. 4, no. 3, p. 42, 2017.

J. van Manen, “Aviation h2o and nox climate cost functions based on local
weather,” Available online: https : / / repository . tudelft . nl / islandora / object / uuid :
597ed925-9e3b-4300-a2c2-84c8cc97b5b7 ? collection = education, Master thesis, Delft
University of Technology, Delft, The Netherlands, April 2017, accessed: 17 September 2020.

E. Irvine, B. Hoskins, and K. Shine, “A lagrangian analysis of ice-supersaturated air over the
north atlantic,” Journal of Geophysical Research: Atmospheres, vol. 119, no. 1, pp. 90–100,
2014.

U. Schumann, B. Mayer, K. Gierens, S. Unterstrasser, P. Jessberger, A. Petzold, C. Voigt, and J.-
F. Gayet, “Effective radius of ice particles in cirrus and contrails,” Journal of the atmospheric
sciences, vol. 68, no. 2, pp. 300–321, 2011.

U. Burkhardt, B. Kärcher, M. Ponater, K. Gierens, and A. Gettelman, “Contrail cirrus supporting
areas in model and observations,” Geophysical Research Letters, vol. 35, no. 16, 2008.

K. Gierens, U. Schumann, M. Helten, H. Smit, and A. Marenco, “A distribution law for relative
humidity in the upper troposphere and lower stratosphere derived from three years of mozaic
measurements,” in Annales Geophysicae, vol. 17, no. 9. Copernicus GmbH, 1999, pp. 1218–
1226.

C. Frömming, M. Ponater, U. Burkhardt, A. Stenke, S. Pechtl, and R. Sausen, “Sensitivity of
contrail coverage and contrail radiative forcing to selected key parameters,” Atmospheric
Environment, vol. 45, no. 7, pp. 1483–1490, 2011.

G. Myhre, M. Kvalevåg, G. Raedel, J. Cook, K. P. Shine, H. Clark, F. Karcher, K. Markowicz,
A. Kardas, P. Wolkenberg et al., “Intercomparison of radiative forcing calculations of
stratospheric water vapour and contrails,” Meteorologische Zeitschrift, vol. 18, no. 6, p. 585,
2009.

EUROCONTROL, User manual for the base of aircraft data (BADA) Revision 3.9, EUROCONTROL,
2011.

F. Deidewig, A. Döpelheuer, and M. Lecht, “Methods to assess aircraft engine emissions in
flight,” in ICAS PROCEEDINGS, vol. 20, 1996, pp. 131–141.

D. Sasaki and S. Obayashi, “Efficient search for trade-offs by adaptive range multi-objective
genetic algorithms,” Journal of Aerospace Computing, Information, and Communication,
vol. 2, no. 1, pp. 44–64, 2005.

M. Burris, “Cost index estimation,” in IATA 3rd Airline Cost Conference, Geneva, Switzerland,
2015, pp. 1–23.

C. Frömming, “Documentation of the emac submodels airtrac 1.0 and contrail 1.0,
supplementary material of grewe et al., 2014b, geoscientific model development, 7, 175–201,”
2014.

B. Sridhar, N. Y. Chen, and H. K. Ng, “Energy efficient contrail mitigation strategies for reducing
the environmental impact of aviation,” in Tenth USA/Europe Air Traffic Management Research
and Development Seminar, ATM2013, vol. 212, 2013, pp. 1–10.

73

https://repository.tudelft.nl/islandora/object/uuid:597ed925-9e3b-4300-a2c2-84c8cc97b5b7?collection=education
https://repository.tudelft.nl/islandora/object/uuid:597ed925-9e3b-4300-a2c2-84c8cc97b5b7?collection=education

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

J. Rosenow, S. Förster, M. Lindner, and H. Fricke, “Impact of multi-critica optimized trajectories
on european air traffic density, efficiency and the environment,” in Proceedings of the Twelfth
USA/Europe Air Traffic Management Research and Development Seminar, Seattle, DC, USA,
2017, pp. 26–30.

S. Dietmüller, P. Jöckel, H. Tost, M. Kunze, C. Gellhorn, S. Brinkop, C. Frömming, M. Ponater,
B. Steil, A. Lauer et al., “A new radiation infrastructure for the modular earth submodel system
(messy, based on version 2.51),” Geoscientific Model Development, vol. 9, no. 6, pp. 2209–
2222, 2016.

P. Jöckel, H. Tost, A. Pozzer, M. Kunze, O. Kirner, C. A. Brenninkmeijer, S. Brinkop, D. S. Cai,
C. Dyroff, J. Eckstein et al., “Earth system chemistry integrated modelling (escimo) with the
modular earth submodel system (messy) version 2.51,” Geoscientific Model Development,
vol. 9, no. 3, pp. 1153–1200, 2016.

K. Gierens, S. Matthes, and S. Rohs, “How well can persistent contrails be predicted?”
Aerospace, vol. 7, no. 12, p. 169, 2020.

K. Dahlmann, V. Grewe, C. Frömming, and U. Burkhardt, “Can we reliably assess climate
mitigation options for air traffic scenarios despite large uncertainties in atmospheric
processes?” Transportation Research Part D: Transport and Environment, vol. 46, pp. 40–55,
2016.

74

Appendix A

Figures

1.2 1.0 0.8 0.6 0.4 0.2 0.0
eATR20contrail [K/km] 1e 13

0.00

0.05

0.10

0.15

0.20

eS
O

C
[$

/k
m

]

day winter THsunrise = 0h
day winter THsunrise = 3h
day winter THsunrise = 6h
night winter THsunrise = 0h
night winter THsunrise = 3h
night winter THsunrise = 6h

Figure A.1: Pareto front of eSOC vs. eATR20contrail for day and night in winter generated with flight data,
data: THsunrise = 0h, processed as: THsunrise = 0, 3 and 6h.

75

Appendix B

Python Scripts
1 """

==="

2 " Master file that executes desired thesis functions

"

3 "===

"""

4

5 # Import functions

6 from bar_plotter_main import *

7 from flight_pareto_plotter_main import *

8 from waypoint_pareto_plotter_main import *

9 from waypoint_pareto_plotter_no_extra_cooling_main import *

10 from bar_plotter_vary_t_th import *

11 from flight_pareto_plotter_vary_t_th import *

12 from waypoint_pareto_plotter_vary_t_th import *

13 from waypoint_pareto_plotter_no_extra_cooling_vary_t_th import *

14

15 print(’

###

’)

16 print(’#################################### STARTING BAR PLOT

#################################### ’)

17 print(’

###

’)

18 bar_plotter_function(t_th =0)

19

20 print(’

###

’)

21 print(’############################## STARTING WAYPOINT PARETO PLOT

############################## ’)

22 print(’

###

’)

23 waypoint_pareto_plotter_function(t_th =0)

24

25 print(’

###

’)

26 print(’############################### STARTING FLIGHT PARETO PLOT

############################### ’)

27 print(’

###

’)

28 flight_pareto_plotter_function(t_th=0, also_find_new_points=True ,

also_identify_n_best_new_points=False , n_points =1)

29

30 print(’

###

’)

31 print(’############################ STARTING WAYPOINT PARETO PLOT NC

############################ ’)

32 print(’

###

’)

76

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

33 waypoint_pareto_plotter_no_extra_cooling_function(t_th =0)

34

35 print(’

###

’)

36 print(’################################ STARTING T_{TH} VARIATION

################################ ’)

37 print(’

###

’)

38

39 print(’

###

’)

40 print(’############################### STARTING BAR PLOT VARIATION

############################### ’)

41 print(’

###

’)

42 bar_plotter_vary_t_th_function(also_apply_wrong_pp=False)

43

44 print(’

###

’)

45 print(’######################### STARTING WAYPOINT PARETO PLOT VARIATION

######################### ’)

46 print(’

###

’)

47 waypoint_pareto_plotter_vary_t_th_function(also_apply_wrong_pp=False)

48 #

49 print(’

###

’)

50 print(’########################## STARTING FLIGHT PARETO PLOT VARIATION

########################## ’)

51 print(’

###

’)

52 flight_pareto_plotter_vary_t_th_function(also_apply_wrong_pp=False)

53

54 print(’

###

’)

55 print(’####################### STARTING WAYPOINT PARETO PLOT NC VARIATION

######################## ’)

56 print(’

###

’)

57 waypoint_pareto_plotter_no_extra_cooling_vary_t_th_function(also_apply_wrong_pp=False)

58

59 print(’

###

’)

60 print(’###################################### DONE WITH ALL

###################################### ’)

61 print(’

###

’)

1 """

==="

2 " File that plots the specific contrail ATR20 [K/km] for the SOC optimal solution. The

"

3 " day and night bars are plotted separately for winter and summer. Use is made of

"

4 " waypoint data

"

77

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

5 "===

"""

6

7 # Import functions

8 from bar_plotter_pp_functions import *

9 import matplotlib.pyplot as plt

10

11

12 def bar_plotter_function(t_th):

13 print("BAR PLOTTER FOR t_{TH} = " + str(t_th) + "H STARTED")

14

15 # Define paths to SOC optimal data

16 f00_airtraf_folder_w = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/W_’ + str(t_th) + ’h/f00’

17 f00_airtraf_folder_s = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/S_’ + str(t_th) + ’h/f00’

18

19 # Get specific contrail ATR20 for day and night , winter and summer , SOC optimal

solution

20 contrail_atr20_results_w = find_specific_day_night_contrail_atr20(file_path=

f00_airtraf_folder_w ,

21 t_th=t_th)

22

23 specific_day_contrail_atr20_w = contrail_atr20_results_w [0]

24 specific_night_contrail_atr20_w = contrail_atr20_results_w [1]

25 std_specific_day_contrail_atr20_w = contrail_atr20_results_w [2]

26 std_specific_night_contrail_atr20_w = contrail_atr20_results_w [3]

27

28 contrail_atr20_results_s = find_specific_day_night_contrail_atr20(file_path=

f00_airtraf_folder_s ,

29 t_th=t_th)

30

31 specific_day_contrail_atr20_s = contrail_atr20_results_s [0]

32 specific_night_contrail_atr20_s = contrail_atr20_results_s [1]

33 std_specific_day_contrail_atr20_s = contrail_atr20_results_s [2]

34 std_specific_night_contrail_atr20_s = contrail_atr20_results_s [3]

35

36 print("Winter day contrail_ATR20 = ", specific_day_contrail_atr20_w.values , " [K/

km]")

37 print("Winter night contrail_ATR20 = ", specific_night_contrail_atr20_w.values , " [K

/km]")

38 print("Summer day contrail_ATR20 = ", specific_day_contrail_atr20_s.values , " [K/

km]")

39 print("Summer night contrail_ATR20 = ", specific_night_contrail_atr20_s.values , " [K

/km]")

40

41 # Plotting

42 plt.rcParams.update ({’font.size’: 20})

43

44 # Collect bars

45 day_contrail_atr20_bars = [specific_day_contrail_atr20_w ,

specific_day_contrail_atr20_s]

46 night_contrail_atr20_bars = [specific_night_contrail_atr20_w ,

specific_night_contrail_atr20_s]

47

48 # Collect whiskers

49 day_contrail_atr20_whiskers = [std_specific_day_contrail_atr20_w ,

std_specific_day_contrail_atr20_s]

50 night_contrail_atr20_whiskers = [std_specific_night_contrail_atr20_w ,

std_specific_night_contrail_atr20_s]

51

52 season = [’Winter ’, ’Summer ’]

53

54 fig1 , (ax1) = plt.subplots(1, 1, figsize =(10, 7))

55

56 x_axis = np.arange(len(season))

57 ax1.yaxis.grid()

58

59 ax1.bar(x_axis - 0.2, day_contrail_atr20_bars , width =0.4, yerr=

78

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

day_contrail_atr20_whiskers , color=’gold’, edgecolor=’white’, label=’daytime ’)

60 ax1.bar(x_axis + 0.2, night_contrail_atr20_bars , width =0.4, yerr=

night_contrail_atr20_whiskers , color=’midnightblue ’, edgecolor=’white ’, label=’

nighttime ’)

61

62 ax1.set_xticks(x_axis)

63 ax1.set_xticklabels(season)

64

65 ax1.set_ylabel(r’$\overline{ATR20}_{contrail}$ [K/km]’)

66 ax1.set_xlabel(’Season ’)

67

68 ax1.legend ()

69

70 plt.tight_layout ()

71 plt.savefig(’C:/Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Main Phase/Images

/plots/bar_’ + str(t_th) + ’h.pdf’)

72

73 plt.show()

74

75 # Get potcov for day and night , winter and summer , SOC optimal solution

76 potcov_results_w = find_specific_day_night_potcov(file_path=f00_airtraf_folder_w ,

77 t_th=t_th)

78

79 specific_day_potcov_w = potcov_results_w [0]

80 specific_night_potcov_w = potcov_results_w [1]

81 std_specific_day_potcov_w = potcov_results_w [2]

82 std_specific_night_potcov_w = potcov_results_w [3]

83

84 potcov_results_s = find_specific_day_night_potcov(file_path=f00_airtraf_folder_s ,

85 t_th=t_th)

86

87 specific_day_potcov_s = potcov_results_s [0]

88 specific_night_potcov_s = potcov_results_s [1]

89 std_specific_day_potcov_s = potcov_results_s [2]

90 std_specific_night_potcov_s = potcov_results_s [3]

91

92 print("Winter day potcov = ", specific_day_potcov_w.values , " [km/km]")

93 print("Winter night potcov = ", specific_night_potcov_w.values , " [km/km]")

94 print("Summer day potcov = ", specific_day_potcov_s.values , " [km/km]")

95 print("Summer night potcov = ", specific_night_potcov_s.values , " [km/km]")

96

97 # Plotting

98 plt.rcParams.update ({’font.size’: 20})

99

100 # Collect bars

101 day_potcov_bars = [specific_day_potcov_w , specific_day_potcov_s]

102 night_potcov_bars = [specific_night_potcov_w , specific_night_potcov_s]

103

104 # Collect whiskers

105 day_potcov_whiskers = [std_specific_day_potcov_w , std_specific_day_potcov_s]

106 night_potcov_whiskers = [std_specific_night_potcov_w , std_specific_night_potcov_s]

107

108 season = [’Winter ’, ’Summer ’]

109

110 fig , (ax) = plt.subplots(1, 1, figsize =(10, 7))

111

112 x_axis = np.arange(len(season))

113 ax.yaxis.grid()

114

115 ax.bar(x_axis - 0.2, day_potcov_bars , width =0.4, yerr=day_potcov_whiskers , color=’

gold’, edgecolor=’white’, label=’daytime ’)

116 ax.bar(x_axis + 0.2, night_potcov_bars , width =0.4, yerr=night_potcov_whiskers , color

=’midnightblue ’, edgecolor=’white’, label=’nighttime ’)

117

118 ax.set_xticks(x_axis)

119 ax.set_xticklabels(season)

120

121 ax.set_ylabel(r’$potcov$ [km/km]’)

122 ax.set_xlabel(’Season ’)

79

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

123

124 ax.legend ()

125

126 plt.tight_layout ()

127 plt.savefig(’C:/Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Main Phase/Images

/plots/potcov_bar_ ’ + str(t_th) + ’h.pdf’)

128

129 plt.show()

130

131 return print("BAR PLOTTER FOR t_{TH} = " + str(t_th) + "H FINISHED")

1 import numpy as np

2 import xarray as xr

3 import suntimes as sts

4 import datetime as dt

5 import pandas as pd

6

7

8 def get_per_segment_km(ds):

9 """

==="

10 " Function that returns the per segment km of a data set

"

11 " Inputs: ds = AirTraf dataset routes_out

"

12

"===

"""

13 # Get to the segment kilometer property

14 ds_km = ds.isel(AirTraf_properties =5).drop_isel(AirTraf_waypoints_out =0)

15

16 return ds_km

17

18

19 def get_per_segment_contrail_atr20(ds):

20 """

==="

21 " Function that returns the per segment contrail ATR20 of a data set

"

22 " Inputs: ds = AirTraf dataset routes_out

"

23

"===

"""

24 # Get to the contrail atr20 property and correct from pulse ATR20 to F-ATR20

25 ds_contrail_atr20 = ds.isel(AirTraf_properties =13).drop_isel(AirTraf_waypoints_out

=0) *0.9654676258992805

26

27 return ds_contrail_atr20

28

29

30 def get_per_segment_potcov(ds):

31 """

==="

32 " Function that returns the per segment potcov of a data set

"

33 " Inputs: ds = AirTraf dataset routes_out

"

34

"===

"""

35 # Get to the potcov property

36 ds_potcov = ds.isel(AirTraf_properties =9).drop_isel(AirTraf_waypoints_out =0)

37

38 return ds_potcov

39

40

80

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

41 def get_overall_km(ds):

42 """

==="

43 " Function that returns the overall km of a data set

"

44 " Inputs: ds = AirTraf dataset routes_out

"

45

"===

"""

46 # Get to the contrail atr20 property

47 ds_km = ds.isel(AirTraf_properties =5)

48

49 # Get overall contrail atr20 by summing over all dimensions

50 overall_km = ds_km.sum(dim=[’AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

51

52 return overall_km

53

54

55 def get_overall_contrail_atr20(ds):

56 """

==="

57 " Function that returns the overall contrail ATR20 of a data set

"

58 " Inputs: ds = AirTraf dataset routes_out

"

59

"===

"""

60 # Get to the contrail atr20 property and correct from pulse ATR20 to F-ATR20

61 ds_contrail_atr20 = ds.isel(AirTraf_properties =13) *0.9654676258992805

62

63 # Get overall contrail atr20 by summing over all dimensions

64 overall_contrail_atr20 = ds_contrail_atr20.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

65

66 return overall_contrail_atr20

67

68

69 def get_overall_potcov(ds):

70 """

==="

71 " Function that returns the overall potcov of a data set

"

72 " Inputs: ds = AirTraf dataset routes_out

"

73

"===

"""

74 # Get to the potcov property

75 ds_potcov = ds.isel(AirTraf_properties =9)

76

77 # Get overall potcov by summing over all dimensions

78 overall_potcov = ds_potcov.sum(dim=[’AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’

time’])

79

80 return overall_potcov

81

82

83 def get_nighttime_segments(ds_airtraf , t_th):

84 """

==="

85 " Function that returns whether a segment is a nighttime (1) or a daytime segment

(0) "

86 " Inputs: ds_airtraf = AirTraf dataset , t_th = time in hours

81

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

"

87

"===

"""

88

89 # ============================= PART I: preparations =============================

90 # Returns the waypoint time stamps in datetime format for riseutc and setutc

91 def prepare_timestamps_for_waypoints(time_ns , ref_julian_date_ns):

92 # Add the ref_julian_date_ns to ds_time_ns

93 julian_date = (time_ns + ref_julian_date_ns)/8.64 e13

94 # Turn into the datetime format

95 time_stamp = pd.to_datetime(julian_date , origin=’julian ’, unit="D")

96

97 return time_stamp

98

99 # Applies prepare_timestamps_for_waypoints to dataset

100 def apply_prepare_timestamps_for_waypoints(ds_airtraf):

101 ds = ds_airtraf["routes_out"]

102 # Get reference date (which is 1 day before first stored data)

103 ref_date = ds[’time’]. values [0] - np.timedelta64 (1, ’D’)

104 # [ns] Convert ref_date to Julian date for easier calculations

105 ref_julian_date_ns = pd.Timestamp(ref_date).to_julian_date () * 8.64 e13

106 # [ns] Convert time data set to Julian date for easier calculations

107 ds_time_ns = ds.isel(AirTraf_properties =3) * 8.64 e13

108

109 return xr.apply_ufunc(np.vectorize(prepare_timestamps_for_waypoints),

110 ds_time_ns ,

111 ref_julian_date_ns ,

112 dask=’allowed ’)

113

114 # Applies the sts.Suntimes function to prepare the waypoint place for riseutc and

setutc

115 def prepare_loc_for_suntimes(ds_airtraf):

116 ds = ds_airtraf["routes_out"]

117 da_lon = ds.isel(AirTraf_properties =0) # Get the longitude

118 da_lat = ds.isel(AirTraf_properties =1) # Get the latitude

119 da_alt = ds.isel(AirTraf_properties =2) # Get the altitude

120

121 return xr.apply_ufunc(np.vectorize(sts.SunTimes), da_lon , da_lat , da_alt , dask=’

allowed ’)

122

123 # Returns the segment time stamps in datetime format for get_is_nighttime and

get_is_nighttime_segment

124 def prepare_timestamps_for_segments(time_ns_0 , time_ns_1 , ref_julian_date_ns):

125 # Find the average of the waypoints time

126 average_time_ns = (time_ns_1 + time_ns_0) / 2

127 # Add the ref_julian_date_ns to ds_time_ns

128 average_julian_date = (average_time_ns + ref_julian_date_ns) / 8.64 e13

129 # Turn into the datetime format

130 time_stamp = pd.to_datetime(average_julian_date , origin=’julian ’, unit="D")

131

132 return time_stamp

133

134 # Applies prepare_timestamps_for_segments to dataset

135 def apply_prepare_timestamps_for_segments(ds_airtraf):

136 ds = ds_airtraf["routes_out"]

137 # Get reference date (which is 1 day before first stored data)

138 ref_date = ds[’time’]. values [0] - np.timedelta64 (1, ’D’)

139 # [ns] Convert ref_date to Julian date for easier calculations

140 ref_julian_date_ns = pd.Timestamp(ref_date).to_julian_date ()*8.64 e13

141 # [ns] Convert time data set to Julian date for easier calculations

142 ds_time_ns = ds.isel(AirTraf_properties =3) *8.64 e13

143 # Get dataset with last waypoint removed

144 ds_time_ns_0 = ds_time_ns.drop_isel(AirTraf_waypoints_out =-1)

145 # Get dataset with first waypoint removed

146 ds_time_ns_1 = ds_time_ns.drop_isel(AirTraf_waypoints_out =0)

147

148 return xr.apply_ufunc(np.vectorize(prepare_timestamps_for_segments),

149 ds_time_ns_0 ,

82

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

150 ds_time_ns_1 ,

151 ref_julian_date_ns ,

152 dask=’allowed ’)

153

154 # ====================== PART II: get time stamps of current and next -day sunrise

and sunset ======================

155 # Returns the current day time of sunrise with the riseutc function

156 def get_time_of_sunrise(loc_prepared , timestamp_prepared , hemisphere=’N’):

157 date_time_timestamp = dt.datetime.utcfromtimestamp(int(timestamp_prepared)/1e9)

158 while True:

159 try:

160 time_of_sunrise = loc_prepared.riseutc(date_time_timestamp)

161 # If in region of polar day or polar night

162 except ValueError:

163 # If in region and time of polar day

164 if hemisphere == ’N’ and 2 < date_time_timestamp.month < 10:

165 # Search backwards for the day when the sun rose

166 date_time_timestamp = date_time_timestamp - dt.timedelta(days =1)

167 # If in region and time of polar night

168 else:

169 # Search forward for the day when the sun will rise

170 date_time_timestamp = date_time_timestamp + dt.timedelta(days =1)

171 continue

172 else:

173 break

174 return time_of_sunrise

175

176 # Applies get_time_of_sunrise to dataset

177 def apply_get_time_of_sunrise(ds_loc_prepared , ds_timestamp_prepared):

178 return xr.apply_ufunc(np.vectorize(get_time_of_sunrise),

179 ds_loc_prepared ,

180 ds_timestamp_prepared ,

181 ’N’,

182 dask=’allowed ’)

183

184 # Returns the current day time of sunset with the setutc function

185 def get_time_of_sunset(loc_prepared , timestamp_prepared , hemisphere=’N’):

186 date_time_timestamp = dt.datetime.utcfromtimestamp(int(timestamp_prepared) / 1e9

)

187 while True:

188 try:

189 time_of_sunset = loc_prepared.setutc(date_time_timestamp)

190 # If in region of polar day or polar night

191 except ValueError:

192 # If in region and time of polar day

193 if hemisphere == ’N’ and 2 < date_time_timestamp.month < 10:

194 # Search forward for the day when the sun will set

195 date_time_timestamp = date_time_timestamp + dt.timedelta(days =1)

196 # If in region and time of polar night

197 else:

198 # Search backward for the day when the sun had set

199 date_time_timestamp = date_time_timestamp - dt.timedelta(days =1)

200 continue

201 else:

202 break

203

204 return time_of_sunset

205

206 # Applies get_time_of_sunset to dataset

207 def apply_get_time_of_sunset(ds_loc_prepared , ds_timestamp_prepared):

208 return xr.apply_ufunc(np.vectorize(get_time_of_sunset),

209 ds_loc_prepared ,

210 ds_timestamp_prepared ,

211 ’N’,

212 dask=’allowed ’)

213

214 # Returns the coming day time of sunrise with the riseutc function

215 def get_next_day_time_of_sunrise(loc_prepared , timestamp_prepared , hemisphere=’N’):

216 date_time_timestamp = dt.datetime.utcfromtimestamp(int(timestamp_prepared) / 1e9

83

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

) + dt.timedelta(days =1)

217 while True:

218 try:

219 next_day_time_of_sunrise = loc_prepared.riseutc(date_time_timestamp)

220 # If in region of polar day or polar night

221 except ValueError:

222 # If in region and time of polar day

223 if hemisphere == ’N’ and 2 < date_time_timestamp.month < 10:

224 # Search backward for the day when the sun rose

225 date_time_timestamp = date_time_timestamp - dt.timedelta(days =1)

226 # If in region and time of polar night

227 else:

228 # Search forward for the day when the sun will rise

229 date_time_timestamp = date_time_timestamp + dt.timedelta(days =1)

230 continue

231 else:

232 break

233 return next_day_time_of_sunrise

234

235 # Applies get_next_day_time_of_sunrise to dataset

236 def apply_get_next_day_time_of_sunrise(ds_loc_prepared , ds_timestamp_prepared):

237 return xr.apply_ufunc(np.vectorize(get_next_day_time_of_sunrise),

238 ds_loc_prepared ,

239 ds_timestamp_prepared ,

240 ’N’,

241 dask=’allowed ’)

242

243 # ============================= PART III: get time until sunrise and sunset

=============================

244 # Returns the time until the next sunrise

245 def get_time_to_sunrise(timestamp_prepared , t_sunrise , next_day_t_sunrise):

246 # If the timestamp is earlier than today’s sunrise

247 if np.datetime64(timestamp_prepared , ’ns’) < np.datetime64(t_sunrise , ’ns’):

248 time_to_sunrise = np.datetime64(t_sunrise , ’ns’) - np.datetime64(

timestamp_prepared , ’ns’)

249 # If today’s sunrise has already passed

250 else:

251 time_to_sunrise = np.datetime64(next_day_t_sunrise , ’ns’) - np.datetime64(

timestamp_prepared , ’ns’)

252

253 return time_to_sunrise

254

255 # Applies get_time_to_sunrise to dataset

256 def apply_get_time_to_sunrise(ds_timestamp_prepared , ds_t_sunrise ,

ds_next_day_t_sunrise):

257 return xr.apply_ufunc(np.vectorize(get_time_to_sunrise),

258 ds_timestamp_prepared ,

259 ds_t_sunrise ,

260 ds_next_day_t_sunrise ,

261 dask=’allowed ’)

262

263 # ============================= PART IV: Check if it is currently nighttime

=============================

264 # Returns whether a waypoints is in nighttime

265 # Returns 1 if the current -day sunset has passed or the current -day sunrise is yet

to come. Else returns 0

266 def get_is_night(timestamp_prepared , t_sunrise , t_sunset):

267 # If the timestamp is earlier than today’s sunrise OR after today’s sunset

268 if (np.datetime64(timestamp_prepared , ’ns’) < np.datetime64(t_sunrise , ’ns’)) or

(np.datetime64(timestamp_prepared , ’ns’) > np.datetime64(t_sunset , ’ns’)):

269 is_night = 1

270 else:

271 is_night = 0

272

273 return is_night

274

275 # Applies get_is_night to dataset

276 def apply_get_is_night(ds_timestamp_segments_prepared , ds_segment_t_sunrise ,

ds_segment_t_sunset):

84

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

277 return xr.apply_ufunc(np.vectorize(get_is_night),

278 ds_timestamp_segments_prepared ,

279 ds_segment_t_sunrise ,

280 ds_segment_t_sunset ,

281 dask=’allowed ’)

282

283 # ============================= PART V: Check if the segment is a nighttime segment

=============================

284 # Returns whether a waypoint is a nighttime waypoint

285 # Returns 1 if it is night and the time to sunrise is larger than the threshold time

to sunrise. Else returns 0

286 def get_is_night_segment(nighttime , time_to_sunrise , t_th , contrail_atr20):

287 # if the contrail ATR20 has a value smaller than zero it is definitely daytime

288 if contrail_atr20 < 0:

289 is_night_segment = 0* nighttime

290 # If the time until sunrise is larger than the given threshold time to sunrise

291 elif np.timedelta64(time_to_sunrise , ’ns’) > np.timedelta64(int(t_th * 3.6e12),

’ns’):

292 is_night_segment = 1* nighttime

293 else:

294 is_night_segment = 0* nighttime

295

296 return is_night_segment

297

298 # Applies get_is_night_segment to dataset

299 def apply_get_is_night_segment(ds_nighttime , ds_segment_time_to_sunrise , t_th ,

ds_contrail_atr20):

300 return xr.apply_ufunc(np.vectorize(get_is_night_segment),

301 ds_nighttime ,

302 ds_segment_time_to_sunrise ,

303 t_th ,

304 ds_contrail_atr20 ,

305 dask=’allowed ’)

306

307 # ============================= PART VI: Execute the embedded functions

=============================

308 # Part I

309 ds_timestamp_prepared = apply_prepare_timestamps_for_waypoints(ds_airtraf)

310 ds_loc_prepared = prepare_loc_for_suntimes(ds_airtraf)

311 ds_timestamp_segments_prepared = apply_prepare_timestamps_for_segments(ds_airtraf)

312

313 # Part II

314 ds_t_sunrise = apply_get_time_of_sunrise(ds_loc_prepared , ds_timestamp_prepared)

315 ds_t_sunset = apply_get_time_of_sunset(ds_loc_prepared , ds_timestamp_prepared)

316 ds_next_day_t_sunrise = apply_get_next_day_time_of_sunrise(ds_loc_prepared ,

ds_timestamp_prepared)

317

318 # Find the time of sunrise and sunset per segment by averaging the time of its end

waypoints

319 ds_segment_t_sunrise = ds_t_sunrise.drop_isel(AirTraf_waypoints_out =-1)+(

ds_t_sunrise.drop_isel(AirTraf_waypoints_out =0)-ds_t_sunrise.drop_isel(

AirTraf_waypoints_out =-1))/2

320 ds_segment_t_sunset = ds_t_sunset.drop_isel(AirTraf_waypoints_out =-1)+(ds_t_sunset.

drop_isel(AirTraf_waypoints_out =0)-ds_t_sunset.drop_isel(AirTraf_waypoints_out =-1))

/2

321

322 # Part III

323 ds_time_to_sunrise = apply_get_time_to_sunrise(ds_timestamp_prepared , ds_t_sunrise ,

ds_next_day_t_sunrise)

324 ds_segment_time_to_sunrise = (ds_time_to_sunrise.drop_isel(AirTraf_waypoints_out =-1)

+ds_time_to_sunrise.drop_isel(AirTraf_waypoints_out =0))/2

325

326 # Part IV

327 ds_nighttime = apply_get_is_night(ds_timestamp_segments_prepared ,

ds_segment_t_sunrise , ds_segment_t_sunset)

328

329 # Part V

330 ds_nighttime_segments = apply_get_is_night_segment(ds_nighttime ,

ds_segment_time_to_sunrise , t_th , ds_airtraf["routes_out"].isel(AirTraf_properties

85

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

=13).drop_isel(AirTraf_waypoints_out =0))

331

332 return ds_nighttime_segments

333

334

335 def find_specific_day_night_contrail_atr20(file_path , t_th):

336 """

==="

337 " Function that returns the specific contrail ATR20 separately for day and night

"

338 " Inputs: file_path = folder with the *airtraf_ac.nc file(s)

"

339

"===

"""

340

341 # Open the airtraf_ac.nc file

342 ds_airtraf = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(file_path))

343

344 # Correct for 12 h time step by removing duplicates if necessary

345 if ds_airtraf[’time’]. values [0]. astype(str)[11:13] == ’12’:

346 ds_airtraf = ds_airtraf.drop_isel(time=np.arange(0, len(ds_airtraf["routes_out"

]), 2).tolist ())

347

348 # Get the overall contrail ATR20

349 overall_contrail_atr20 = get_overall_contrail_atr20(ds_airtraf["routes_out"])

350 # Get the overall km

351 overall_km = get_overall_km(ds_airtraf["routes_out"])

352

353 # Get per segment contrail ATR20

354 per_segment_contrail_atr20 = get_per_segment_contrail_atr20(ds_airtraf["routes_out"

])

355 # Get the per_segment km

356 per_segment_km = get_per_segment_km(ds_airtraf["routes_out"])

357

358 # Get witch segments are during nighttime

359 nighttime_segments = get_nighttime_segments(ds_airtraf , t_th)

360

361 # Apply night mask over per_segment_contrail_atr20

362 per_segment_night_contrail_atr20 = per_segment_contrail_atr20 * nighttime_segments

363 # Apply night mask over per_segment_km

364 per_segment_night_km = per_segment_km * nighttime_segments

365

366 # Sum to obtain the total night contrail ATR20

367 night_contrail_atr20 = per_segment_night_contrail_atr20.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

368 # Sum to obtain the total night km

369 night_km = per_segment_night_km.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

370

371 # Find the the total day contrail ATR20 by difference

372 day_contrail_atr20 = overall_contrail_atr20 - night_contrail_atr20

373 # Find the the total day km by difference

374 day_km = overall_km - night_km

375

376 # Find night specific contrail ATR20

377 specific_night_contrail_atr20 = night_contrail_atr20 / night_km

378 # Find day specific contrail ATR20

379 specific_day_contrail_atr20 = day_contrail_atr20 / day_km

380

381 daytime_segments = (nighttime_segments - 1)*-1

382 prep_std_nighttime_segments = nighttime_segments.where(nighttime_segments != 0, np.

nan)

383 prep_std_daytime_segments = daytime_segments.where(daytime_segments != 0, np.nan)

384 prep_std_per_segment_night_contrail_atr20 = per_segment_contrail_atr20 *

prep_std_nighttime_segments

385 prep_std_per_segment_night_km = per_segment_km * prep_std_nighttime_segments

386 prep_std_per_segment_day_contrail_atr20 = per_segment_contrail_atr20 *

86

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

prep_std_daytime_segments

387 prep_std_per_segment_day_km = per_segment_km * prep_std_daytime_segments

388

389 prep_std_specific_night_contrail_atr20 = prep_std_per_segment_night_contrail_atr20 /

prep_std_per_segment_night_km

390 prep_std_specific_day_contrail_atr20 = prep_std_per_segment_day_contrail_atr20 /

prep_std_per_segment_day_km

391

392 std_specific_night_contrail_atr20 = prep_std_specific_night_contrail_atr20.mean(dim

=["AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True).std()

393 std_specific_day_contrail_atr20 = prep_std_specific_day_contrail_atr20.mean(dim=["

AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True).std()

394

395 to_be_returned = (specific_day_contrail_atr20 ,

396 specific_night_contrail_atr20 ,

397 std_specific_day_contrail_atr20 ,

398 std_specific_night_contrail_atr20)

399

400 return to_be_returned

401

402

403 def find_specific_day_night_potcov(file_path , t_th):

404 """

==="

405 " Function that returns the specific potcov separately for day and night

"

406 " Inputs: file_path = folder with the *airtraf_ac.nc file(s)

"

407

"===

"""

408

409 # Open the airtraf_ac.nc file

410 ds_airtraf = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(file_path))

411

412 # Correct for 12 h time step by removing duplicates if necessary

413 if ds_airtraf[’time’]. values [0]. astype(str)[11:13] == ’12’:

414 ds_airtraf = ds_airtraf.drop_isel(time=np.arange(0, len(ds_airtraf["routes_out"

]), 2).tolist ())

415

416 # Get the overall potcov

417 overall_potcov = get_overall_potcov(ds_airtraf["routes_out"])

418 # Get the overall km

419 overall_km = get_overall_km(ds_airtraf["routes_out"])

420

421 # Get per segment potcov

422 per_segment_potcov = get_per_segment_potcov(ds_airtraf["routes_out"])

423 # Get the per_segment km

424 per_segment_km = get_per_segment_km(ds_airtraf["routes_out"])

425

426 # Get witch segments are during nighttime

427 nighttime_segments = get_nighttime_segments(ds_airtraf , t_th)

428

429 # Apply night mask over per_segment_potcov

430 per_segment_night_potcov = per_segment_potcov * nighttime_segments

431 # Apply night mask over per_segment_km

432 per_segment_night_km = per_segment_km * nighttime_segments

433

434 # Sum to obtain the total night potcov

435 night_potcov = per_segment_night_potcov.sum(dim=[’AirTraf_waypoints_out ’,

436 ’AirTraf_routes_out ’,

437 ’time’])

438 # Sum to obtain the total night km

439 night_km = per_segment_night_km.sum(dim=[’AirTraf_waypoints_out ’,

440 ’AirTraf_routes_out ’,

441 ’time’])

442

443 # Find the the total day contrail ATR20 by difference

87

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

444 day_potcov = overall_potcov - night_potcov

445 # Find the the total day km by difference

446 day_km = overall_km - night_km

447

448 # Find night specific potcov

449 specific_night_potcov = night_potcov / night_km

450 # Find day specific potcov

451 specific_day_potcov = day_potcov / day_km

452

453 daytime_segments = (nighttime_segments - 1) * -1

454 prep_std_nighttime_segments = nighttime_segments.where(nighttime_segments != 0, np.

nan)

455 prep_std_daytime_segments = daytime_segments.where(daytime_segments != 0, np.nan)

456 prep_std_per_segment_night_potcov = per_segment_potcov * prep_std_nighttime_segments

457 prep_std_per_segment_night_km = per_segment_km * prep_std_nighttime_segments

458 prep_std_per_segment_day_potcov = per_segment_potcov * prep_std_daytime_segments

459 prep_std_per_segment_day_km = per_segment_km * prep_std_daytime_segments

460

461 prep_std_specific_night_potcov = prep_std_per_segment_night_potcov /

prep_std_per_segment_night_km

462 prep_std_specific_day_potcov = prep_std_per_segment_day_potcov /

prep_std_per_segment_day_km

463

464 std_specific_night_potcov = prep_std_specific_night_potcov.mean(dim=["

AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True).std()

465 std_specific_day_potcov = prep_std_specific_day_potcov.mean(dim=["AirTraf_routes_out

", "AirTraf_waypoints_out"], skipna=True).std()

466

467 to_be_returned = (specific_day_potcov ,

468 specific_night_potcov ,

469 std_specific_day_potcov ,

470 std_specific_night_potcov)

471

472 return to_be_returned

1 """

==="

2 " File that plots the delta effective specific contrail ATR20 [K/km] as Pareto front.

"

3 " The day and night front are plotted separately for winter and summer. Use is made of

"

4 " waypoint data.

"

5 "===

"""

6

7 # Import functions

8 from waypoint_pareto_plotter_pp_functions import *

9 import matplotlib.pyplot as plt

10

11

12 def waypoint_pareto_plotter_function(t_th):

13 print("WAYPOINT DATA PARETO PLOTTER FOR t_{TH} = " + str(t_th) + "H STARTED")

14

15 # Define paths to data

16 f00_airtraf_folder_w = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/W_’ + str(t_th) + ’h/f00’

17 f05_airtraf_folder_w = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/W_’ + str(t_th) + ’h/f05’

18 f100_airtraf_folder_w = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes

/Final_PP/W_’ + str(t_th) + ’h/f100’

19 f00_airtraf_folder_s = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/S_’ + str(t_th) + ’h/f00’

20 f05_airtraf_folder_s = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/S_’ + str(t_th) + ’h/f05’

21 f100_airtraf_folder_s = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes

/Final_PP/S_’ + str(t_th) + ’h/f100’

22

23 print("[[[[[[[[[[[[[[[[[[[[[[[[WINTER]]]]]]]]]]]]]]]]]]]]]]]]")

88

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

24 # Get delta effective specific contrail ATR20 for day and night , winter and summer ,

SOC optimal solution , +0.5% SOC solution and climate optimal solution

25 results_w = get_average_pareto_front_waypoints(f00_airtraf_folder=

f00_airtraf_folder_w ,

26 f05_airtraf_folder=

f05_airtraf_folder_w ,

27 f100_airtraf_folder=

f100_airtraf_folder_w ,

28 t_th=t_th)

29

30 delta_daytime_contrail_atr20_lst_w = results_w [0]

31 delta_nighttime_contrail_atr20_lst_w = results_w [1]

32 delta_daytime_soc_lst_w = results_w [2]

33 delta_nighttime_soc_lst_w = results_w [3]

34 func_daytime_w = results_w [4]

35 func_nighttime_w = results_w [5]

36 max_nighttime_relative_change_contrail_atr20_w = results_w [6]

37 max_nighttime_relative_change_soc_w = results_w [7]

38 max_daytime_relative_change_contrail_atr20_w = results_w [8]

39 max_daytime_relative_change_soc_w = results_w [9]

40 nighttime_segments_00_w = results_w [10]

41 nighttime_segments_05_w = results_w [11]

42 nighttime_segments_100_w = results_w [12]

43 std_plus_delta_nighttime_contrail_atr20_lst_w = results_w [13]

44 std_plus_delta_daytime_contrail_atr20_lst_w = results_w [14]

45 std_plus_delta_nighttime_soc_lst_w = results_w [15]

46 std_plus_delta_daytime_soc_lst_w = results_w [16]

47 std_min_delta_nighttime_contrail_atr20_lst_w = results_w [17]

48 std_min_delta_daytime_contrail_atr20_lst_w = results_w [18]

49 std_min_delta_nighttime_soc_lst_w = results_w [19]

50 std_min_delta_daytime_soc_lst_w = results_w [20]

51 std_plus_func_nighttime_w = results_w [21]

52 std_plus_func_daytime_w = results_w [22]

53 std_min_func_nighttime_w = results_w [23]

54 std_min_func_daytime_w = results_w [24]

55 med_nighttime_relative_change_contrail_atr20_w = results_w [25]

56 med_nighttime_relative_change_soc_w = results_w [26]

57 med_daytime_relative_change_contrail_atr20_w = results_w [27]

58 med_daytime_relative_change_soc_w = results_w [28]

59

60 get_potcov_average_pareto_front_waypoints(f00_airtraf_folder=f00_airtraf_folder_w ,

61 f05_airtraf_folder=f05_airtraf_folder_w ,

62 f100_airtraf_folder=f100_airtraf_folder_w ,

63 nighttime_segments_00=

nighttime_segments_00_w ,

64 nighttime_segments_05=

nighttime_segments_05_w ,

65 nighttime_segments_100=

nighttime_segments_100_w)

66

67 print("[[[[[[[[[[[[[[[[[[[[[[[[SUMMER]]]]]]]]]]]]]]]]]]]]]]]]")

68 results_s = get_average_pareto_front_waypoints(f00_airtraf_folder=

f00_airtraf_folder_s ,

69 f05_airtraf_folder=

f05_airtraf_folder_s ,

70 f100_airtraf_folder=

f100_airtraf_folder_s ,

71 t_th=t_th)

72

73 delta_daytime_contrail_atr20_lst_s = results_s [0]

74 delta_nighttime_contrail_atr20_lst_s = results_s [1]

75 delta_daytime_soc_lst_s = results_s [2]

76 delta_nighttime_soc_lst_s = results_s [3]

77 func_daytime_s = results_s [4]

78 func_nighttime_s = results_s [5]

79 max_nighttime_relative_change_contrail_atr20_s = results_s [6]

80 max_nighttime_relative_change_soc_s = results_s [7]

81 max_daytime_relative_change_contrail_atr20_s = results_s [8]

82 max_daytime_relative_change_soc_s = results_s [9]

89

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

83 nighttime_segments_00_s = results_s [10]

84 nighttime_segments_05_s = results_s [11]

85 nighttime_segments_100_s = results_s [12]

86 std_plus_delta_nighttime_contrail_atr20_lst_s = results_s [13]

87 std_plus_delta_daytime_contrail_atr20_lst_s = results_s [14]

88 std_plus_delta_nighttime_soc_lst_s = results_s [15]

89 std_plus_delta_daytime_soc_lst_s = results_s [16]

90 std_min_delta_nighttime_contrail_atr20_lst_s = results_s [17]

91 std_min_delta_daytime_contrail_atr20_lst_s = results_s [18]

92 std_min_delta_nighttime_soc_lst_s = results_s [19]

93 std_min_delta_daytime_soc_lst_s = results_s [20]

94 std_plus_func_nighttime_s = results_s [21]

95 std_plus_func_daytime_s = results_s [22]

96 std_min_func_nighttime_s = results_s [23]

97 std_min_func_daytime_s = results_s [24]

98 med_nighttime_relative_change_contrail_atr20_s = results_s [25]

99 med_nighttime_relative_change_soc_s = results_s [26]

100 med_daytime_relative_change_contrail_atr20_s = results_s [27]

101 med_daytime_relative_change_soc_s = results_s [28]

102

103 get_potcov_average_pareto_front_waypoints(f00_airtraf_folder=f00_airtraf_folder_s ,

104 f05_airtraf_folder=f05_airtraf_folder_s ,

105 f100_airtraf_folder=f100_airtraf_folder_s ,

106 nighttime_segments_00=

nighttime_segments_00_s ,

107 nighttime_segments_05=

nighttime_segments_05_s ,

108 nighttime_segments_100=

nighttime_segments_100_s)

109

110 # Plotting

111 plt.rcParams.update ({’font.size’: 20})

112 fig , (ax) = plt.subplots(1, 1, figsize =(12, 10))

113

114 ax.scatter(delta_daytime_contrail_atr20_lst_w , delta_daytime_soc_lst_w , marker=’^’,

color=’gold’, label=’day winter ’)

115 ax.scatter(delta_nighttime_contrail_atr20_lst_w , delta_nighttime_soc_lst_w , marker=’

^’, color=’midnightblue ’, label=’night winter ’)

116 ax.plot(delta_nighttime_contrail_atr20_lst_w , func_nighttime_w(

delta_nighttime_contrail_atr20_lst_w), color=’midnightblue ’, linestyle=’dashed ’)

117 ax.plot(delta_daytime_contrail_atr20_lst_w , func_daytime_w(

delta_daytime_contrail_atr20_lst_w), color=’gold’, linestyle=’dashed ’)

118 ax.fill(np.append(std_min_delta_nighttime_contrail_atr20_lst_w ,

std_plus_delta_nighttime_contrail_atr20_lst_w [:: -1]),

119 np.append(delta_nighttime_soc_lst_w , delta_nighttime_soc_lst_w [:: -1]),

120 color=’midnightblue ’,

121 alpha =0.1)

122 ax.fill(np.append(std_min_delta_daytime_contrail_atr20_lst_w ,

std_plus_delta_daytime_contrail_atr20_lst_w [:: -1]),

123 np.append(delta_daytime_soc_lst_w , delta_daytime_soc_lst_w [:: -1]),

124 color=’gold’,

125 alpha =0.1)

126

127 ax.scatter(delta_daytime_contrail_atr20_lst_s , delta_daytime_soc_lst_s , marker=’o’,

color=’gold’, label=’day summer ’)

128 ax.scatter(delta_nighttime_contrail_atr20_lst_s , delta_nighttime_soc_lst_s , marker=’

o’, color=’midnightblue ’, label=’night summer ’)

129 ax.plot(delta_nighttime_contrail_atr20_lst_s , func_nighttime_s(

delta_nighttime_contrail_atr20_lst_s), color=’midnightblue ’, linestyle=’dashed ’)

130 ax.plot(delta_daytime_contrail_atr20_lst_s , func_daytime_s(

delta_daytime_contrail_atr20_lst_s), color=’gold’, linestyle=’dashed ’)

131 ax.fill(np.append(std_min_delta_nighttime_contrail_atr20_lst_s ,

std_plus_delta_nighttime_contrail_atr20_lst_s [:: -1]),

132 np.append(delta_nighttime_soc_lst_s , delta_nighttime_soc_lst_s [:: -1]),

133 color=’midnightblue ’,

134 alpha =0.1)

135 ax.fill(np.append(std_min_delta_daytime_contrail_atr20_lst_s ,

std_plus_delta_daytime_contrail_atr20_lst_s [:: -1]),

136 np.append(delta_daytime_soc_lst_s , delta_daytime_soc_lst_s [:: -1]),

90

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

137 color=’gold’,

138 alpha =0.1)

139

140 ax.set_xlabel(r’$\Delta \overline{eATR20}_{contrail}$ [K/km]’)

141 ax.set_ylabel(r’$\Delta \overline{eSOC}$ [\$/km]’)
142 ax.legend ()

143

144 ax.text(min(delta_daytime_contrail_atr20_lst_w), max(delta_daytime_soc_lst_w), ’(’+

str(max_daytime_relative_change_contrail_atr20_w)+’%,’+str(

max_daytime_relative_change_soc_w)+’%)’, horizontalalignment=’left’, color=’

goldenrod ’, fontsize=’small’)

145 ax.text(min(delta_nighttime_contrail_atr20_lst_w), max(delta_nighttime_soc_lst_w), ’

(’+str(max_nighttime_relative_change_contrail_atr20_w)+’%,’+str(

max_nighttime_relative_change_soc_w)+’%)’, horizontalalignment=’left’, color=’

midnightblue ’, fontsize=’small’)

146 ax.text(min(delta_daytime_contrail_atr20_lst_s), max(delta_daytime_soc_lst_s), ’(’+

str(max_daytime_relative_change_contrail_atr20_s)+’%,’+str(

max_daytime_relative_change_soc_s)+’%)’, horizontalalignment=’left’, color=’

goldenrod ’, fontsize=’small’)

147 ax.text(min(delta_nighttime_contrail_atr20_lst_s), max(delta_nighttime_soc_lst_s), ’

(’+str(max_nighttime_relative_change_contrail_atr20_s)+’%,’+str(

max_nighttime_relative_change_soc_s)+’%)’, horizontalalignment=’left’, color=’

midnightblue ’, fontsize=’small’)

148

149 ax.text(delta_daytime_contrail_atr20_lst_w [1], delta_daytime_soc_lst_w [1], ’(’+str(

med_daytime_relative_change_contrail_atr20_w)+’%,’+str(

med_daytime_relative_change_soc_w)+’%)’, horizontalalignment=’left’, color=’

goldenrod ’, fontsize=’small’)

150 ax.text(delta_nighttime_contrail_atr20_lst_w [1], delta_nighttime_soc_lst_w [1], ’(’+

str(med_nighttime_relative_change_contrail_atr20_w)+’%,’+str(

med_nighttime_relative_change_soc_w)+’%)’, horizontalalignment=’left’, color=’

midnightblue ’, fontsize=’small’)

151 ax.text(delta_daytime_contrail_atr20_lst_s [1], delta_daytime_soc_lst_s [1], ’(’+str(

med_daytime_relative_change_contrail_atr20_s)+’%,’+str(

med_daytime_relative_change_soc_s)+’%)’, horizontalalignment=’left’, color=’

goldenrod ’, fontsize=’small’)

152 ax.text(delta_nighttime_contrail_atr20_lst_s [1], delta_nighttime_soc_lst_s [1], ’(’+

str(med_nighttime_relative_change_contrail_atr20_s)+’%,’+str(

med_nighttime_relative_change_soc_s)+’%)’, horizontalalignment=’left’, color=’

midnightblue ’, fontsize=’small’)

153

154 plt.tight_layout ()

155 fig.savefig(’C:/Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Main Phase/Images

/plots/waypoint_pareto_ ’ + str(t_th) + ’h.pdf’)

156

157 plt.show()

158

159 return print("WAYPOINT DATA PARETO PLOTTER FOR t_{TH} = " + str(t_th) + "H FINISHED"

)

1 import numpy as np

2 import xarray as xr

3 import suntimes as sts

4 import datetime as dt

5 import pandas as pd

6

7

8 def get_per_segment_km(ds):

9 """

==="

10 " Function that returns the per segment km of a data set

"

11 " Inputs: ds = AirTraf dataset routes_out

"

12

"===

"""

13 # Get to the segment kilometer property

14 ds_km = ds.isel(AirTraf_properties =5).drop_isel(AirTraf_waypoints_out =0)

91

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

15

16 return ds_km

17

18

19 def get_effective_per_segment_km(ds):

20 """

==="

21 " Function that returns the effective per segment km of a data set

"

22 " Inputs: ds = AirTraf dataset routes_out

"

23

"===

"""

24 # Find the jump in longitude and latitude for each segment

25 segment_lon_1 = ds.isel(AirTraf_properties =0).drop_isel(AirTraf_waypoints_out =-1)

26 segment_lon_2 = ds.isel(AirTraf_properties =0).drop_isel(AirTraf_waypoints_out =0)

27 segment_delta_lon = segment_lon_2 - segment_lon_1

28 segment_lat_1 = ds.isel(AirTraf_properties =1).drop_isel(AirTraf_waypoints_out =-1)

29 segment_lat_2 = ds.isel(AirTraf_properties =1).drop_isel(AirTraf_waypoints_out =0)

30 segment_delta_lat = segment_lat_2 - segment_lat_1

31

32 # prevent later division by zero

33 segment_delta_lon_safe = segment_delta_lon.where(abs(segment_delta_lon) > 0.00001 ,

0.00001)

34

35 # Find the jump in longitude and latitude for each flight

36 flight_lon_1 = ds.isel(AirTraf_properties =0).isel(AirTraf_waypoints_out =0)

37 flight_lon_2 = ds.isel(AirTraf_properties =0).isel(AirTraf_waypoints_out =-1)

38 flight_delta_lon = flight_lon_2 - flight_lon_1

39 flight_lat_1 = ds.isel(AirTraf_properties =1).isel(AirTraf_waypoints_out =0)

40 flight_lat_2 = ds.isel(AirTraf_properties =1).isel(AirTraf_waypoints_out =-1)

41 flight_delta_lat = flight_lat_2 - flight_lat_1

42

43 # prevent later division by zero

44 flight_delta_lon_safe = flight_delta_lon.where(abs(flight_delta_lon) > 0.00001 ,

0.00001)

45

46 # Take the arctan of the jump in latitude over the jump in longitude to get the

angle

47 segment_orientation = np.arctan(segment_delta_lat / segment_delta_lon_safe)

48 flight_orientation = np.arctan(flight_delta_lat / flight_delta_lon_safe)

49

50 # Find the difference in angle

51 delta_orientation = abs(segment_orientation - flight_orientation)

52

53 # Find the corresponding cosine

54 segment_cos = np.cos(delta_orientation)

55

56 # Get the plain distance

57 per_segment_km = get_per_segment_km(ds)

58

59 # Compute the effective component of the plain distance

60 effective_distance = segment_cos * per_segment_km

61

62 return effective_distance

63

64

65 def get_per_segment_contrail_atr20(ds):

66 """

==="

67 " Function that returns the per segment contrail ATR20 of a data set

"

68 " Inputs: ds = AirTraf dataset routes_out

"

69

"===

92

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

"""

70 # Get to the contrail atr20 property and correct from pulse ATR20 to F-ATR20

71 ds_contrail_atr20 = ds.isel(AirTraf_properties =13).drop_isel(AirTraf_waypoints_out

=0) * 0.9654676258992805

72

73 return ds_contrail_atr20

74

75

76 def get_per_segment_potcov(ds):

77 """

==="

78 " Function that returns the per segment potcov of a data set

"

79 " Inputs: ds = AirTraf dataset routes_out

"

80

"===

"""

81 # Get to the potcov property

82 ds_potcov = ds.isel(AirTraf_properties =9).drop_isel(AirTraf_waypoints_out =0)

83

84 return ds_potcov

85

86

87 def get_per_segment_soc(ds):

88 """

==="

89 " Function that returns the per segment Simple Operating Costs of a data set

"

90 " Inputs: ds = AirTraf dataset routes_out

"

91

"===

"""

92 fuel_price = 1.545 # Average fuel Price in March 2017 [US Dollar/

US Gallon]

93 fuel_density = 6.71 # Fuel_density [lbs/US Gallon]

94 c_f_lbs = fuel_price/fuel_density # Unit fuel costs [US Dollar/lbs]

95 c_f_kg = c_f_lbs /0.45359237 # Unit fuel costs [US Dollar/kg]

96

97 c_t_h = 2710 # Unit time costs [US Dollar/h]

98 c_o = 0.0 # other costs [US Dollar]

99

100 ds_v = ds.isel(AirTraf_properties =4, AirTraf_waypoints_out=slice(0, -1)) #

Aircraft ground speed [km/h]

101 ds_d = ds.isel(AirTraf_properties =5, AirTraf_waypoints_out=slice(1, None)) #

Distance for each segment [km]

102 ds_f = ds.isel(AirTraf_properties =6, AirTraf_waypoints_out=slice(1, None)) # Fuel

use [kg]

103

104 # Calculate time by dividing distance over speed

105 ds_t = ds_d/ds_v

106

107 # Calculate soc per segment in $
108 ds_soc = c_t_h * ds_t + c_f_kg * ds_f + c_o

109

110 return ds_soc

111

112

113 def get_overall_km(ds):

114 """

==="

115 " Function that returns the overall km of a data set

"

116 " Inputs: ds = AirTraf dataset routes_out

"

93

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

117

"===

"""

118 # Get to the distance property

119 ds_km = ds.isel(AirTraf_properties =5)

120

121 # Get overall contrail atr20 by summing over all dimensions

122 overall_km = ds_km.sum(dim=[’AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

123

124 return overall_km

125

126

127 def get_overall_contrail_atr20(ds):

128 """

==="

129 " Function that returns the overall contrail ATR20 of a data set

"

130 " Inputs: ds = AirTraf dataset routes_out

"

131

"===

"""

132 # Get to the contrail atr20 property and correct from pulse ATR20 to F-ATR20

133 ds_contrail_atr20 = ds.isel(AirTraf_properties =13) * 0.9654676258992805

134

135 # Get overall contrail atr20 by summing over all dimensions

136 overall_contrail_atr20 = ds_contrail_atr20.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

137

138 return overall_contrail_atr20

139

140

141 def get_overall_potcov(ds):

142 """

==="

143 " Function that returns the overall potcov of a data set

"

144 " Inputs: ds = AirTraf dataset routes_out

"

145

"===

"""

146 # Get to the potcov property

147 ds_potcov = ds.isel(AirTraf_properties =9)

148

149 # Get overall potcov by summing over all dimensions

150 overall_potcov = ds_potcov.sum(dim=[’AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’

time’])

151

152 return overall_potcov

153

154

155 def get_overall_soc(ds):

156 """

==="

157 " Function that returns the overall Simple Operating Costs of a data set

"

158 " Inputs: ds = AirTraf dataset routes_out

"

159

"===

"""

160

161 fuel_price = 1.545 # Average fuel Price in March 2017 [US Dollar/

US Gallon]

162 fuel_density = 6.71 # Fuel_density [lbs/US Gallon]

94

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

163 c_f_lbs = fuel_price/fuel_density # Unit fuel costs [US Dollar/lbs]

164 c_f_kg = c_f_lbs /0.45359237 # Unit fuel costs [US Dollar/kg]

165

166 c_t_h = 2710 # Unit time costs [US Dollar/h]

167 c_o = 0.0 # other costs [US Dollar]

168

169 ds_v = ds.isel(AirTraf_properties =4, AirTraf_waypoints_out=slice(0, -1)) #

Aircraft ground speed [km/h]

170 ds_d = ds.isel(AirTraf_properties =5, AirTraf_waypoints_out=slice(1, None)) #

Distance for each segment [km]

171 ds_f = ds.isel(AirTraf_properties =6, AirTraf_waypoints_out=slice(1, None)) # Fuel

use [kg]

172

173 # Calculate time by dividing distance over speed

174 ds_t = ds_d/ds_v

175

176 # Calculate soc per segment in $
177 ds_soc = c_t_h * ds_t + c_f_kg * ds_f + c_o

178

179 # Get overall SOC by summing over all dimensions

180 overall_soc = ds_soc.sum(dim=[’AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’

])

181

182 return overall_soc

183

184

185 def get_nighttime_segments(ds_airtraf , t_th):

186 """

==="

187 " Function that returns whether a segment is a nighttime (1) or a daytime segment

(0) "

188 " Inputs: ds_airtraf = AirTraf dataset , t_th = time in hours

"

189

"===

"""

190

191 # ============================= PART I: preparations =============================

192 # Returns the waypoint time stamps in datetime format for riseutc and setutc

193 def prepare_timestamps_for_waypoints(time_ns , ref_julian_date_ns):

194 # Add the ref_julian_date_ns to ds_time_ns

195 julian_date = (time_ns + ref_julian_date_ns)/8.64 e13

196 # Turn into the datetime format

197 time_stamp = pd.to_datetime(julian_date , origin=’julian ’, unit="D")

198

199 return time_stamp

200

201 # Applies prepare_timestamps_for_waypoints to dataset

202 def apply_prepare_timestamps_for_waypoints(ds_airtraf):

203 ds = ds_airtraf["routes_out"]

204 # Get reference date (which is 1 day before first stored data)

205 ref_date = ds[’time’]. values [0] - np.timedelta64 (1, ’D’)

206 # [ns] Convert ref_date to Julian date for easier calculations

207 ref_julian_date_ns = pd.Timestamp(ref_date).to_julian_date () * 8.64 e13

208 # [ns] Convert time data set to Julian date for easier calculations

209 ds_time_ns = ds.isel(AirTraf_properties =3) * 8.64 e13

210

211 return xr.apply_ufunc(np.vectorize(prepare_timestamps_for_waypoints),

212 ds_time_ns ,

213 ref_julian_date_ns ,

214 dask=’allowed ’)

215

216 # Applies the sts.Suntimes function to prepare the waypoint place for riseutc and

setutc

217 def prepare_loc_for_suntimes(ds_airtraf):

218 ds = ds_airtraf["routes_out"]

219 da_lon = ds.isel(AirTraf_properties =0) # Get the longitude

220 da_lat = ds.isel(AirTraf_properties =1) # Get the latitude

95

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

221 da_alt = ds.isel(AirTraf_properties =2) # Get the altitude

222

223 return xr.apply_ufunc(np.vectorize(sts.SunTimes), da_lon , da_lat , da_alt , dask=’

allowed ’)

224

225 # Returns the segment time stamps in datetime format for get_is_nighttime and

get_is_nighttime_segment

226 def prepare_timestamps_for_segments(time_ns_0 , time_ns_1 , ref_julian_date_ns):

227 # Find the average of the waypoints time

228 average_time_ns = (time_ns_1 + time_ns_0) / 2

229 # Add the ref_julian_date_ns to ds_time_ns

230 average_julian_date = (average_time_ns + ref_julian_date_ns) / 8.64 e13

231 # Turn into the datetime format

232 time_stamp = pd.to_datetime(average_julian_date , origin=’julian ’, unit="D")

233

234 return time_stamp

235

236 # Applies prepare_timestamps_for_segments to dataset

237 def apply_prepare_timestamps_for_segments(ds_airtraf):

238 ds = ds_airtraf["routes_out"]

239 # Get reference date (which is 1 day before first stored data)

240 ref_date = ds[’time’]. values [0] - np.timedelta64 (1, ’D’)

241 # [ns] Convert ref_date to Julian date for easier calculations

242 ref_julian_date_ns = pd.Timestamp(ref_date).to_julian_date ()*8.64 e13

243 # [ns] Convert time data set to Julian date for easier calculations

244 ds_time_ns = ds.isel(AirTraf_properties =3) *8.64 e13

245 # Get dataset with last waypoint removed

246 ds_time_ns_0 = ds_time_ns.drop_isel(AirTraf_waypoints_out =-1)

247 # Get dataset with first waypoint removed

248 ds_time_ns_1 = ds_time_ns.drop_isel(AirTraf_waypoints_out =0)

249

250 return xr.apply_ufunc(np.vectorize(prepare_timestamps_for_segments),

251 ds_time_ns_0 ,

252 ds_time_ns_1 ,

253 ref_julian_date_ns ,

254 dask=’allowed ’)

255

256 # ====================== PART II: get time stamps of current and next -day sunrise

and sunset ======================

257 # Returns the current day time of sunrise with the riseutc function

258 def get_time_of_sunrise(loc_prepared , timestamp_prepared , hemisphere=’N’):

259 date_time_timestamp = dt.datetime.utcfromtimestamp(int(timestamp_prepared)/1e9)

260 while True:

261 try:

262 time_of_sunrise = loc_prepared.riseutc(date_time_timestamp)

263 # If in region of polar day or polar night

264 except ValueError:

265 # If in region and time of polar day

266 if hemisphere == ’N’ and 2 < date_time_timestamp.month < 10:

267 # Search backwards for the day when the sun rose

268 date_time_timestamp = date_time_timestamp - dt.timedelta(days =1)

269 # If in region and time of polar night

270 else:

271 # Search forward for the day when the sun will rise

272 date_time_timestamp = date_time_timestamp + dt.timedelta(days =1)

273 continue

274 else:

275 break

276 return time_of_sunrise

277

278 # Applies get_time_of_sunrise to dataset

279 def apply_get_time_of_sunrise(ds_loc_prepared , ds_timestamp_prepared):

280 return xr.apply_ufunc(np.vectorize(get_time_of_sunrise),

281 ds_loc_prepared ,

282 ds_timestamp_prepared ,

283 ’N’,

284 dask=’allowed ’)

285

286 # Returns the current day time of sunset with the setutc function

96

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

287 def get_time_of_sunset(loc_prepared , timestamp_prepared , hemisphere=’N’):

288 date_time_timestamp = dt.datetime.utcfromtimestamp(int(timestamp_prepared) / 1e9

)

289 while True:

290 try:

291 time_of_sunset = loc_prepared.setutc(date_time_timestamp)

292 # If in region of polar day or polar night

293 except ValueError:

294 # If in region and time of polar day

295 if hemisphere == ’N’ and 2 < date_time_timestamp.month < 10:

296 # Search forward for the day when the sun will set

297 date_time_timestamp = date_time_timestamp + dt.timedelta(days =1)

298 # If in region and time of polar night

299 else:

300 # Search backward for the day when the sun had set

301 date_time_timestamp = date_time_timestamp - dt.timedelta(days =1)

302 continue

303 else:

304 break

305

306 return time_of_sunset

307

308 # Applies get_time_of_sunset to dataset

309 def apply_get_time_of_sunset(ds_loc_prepared , ds_timestamp_prepared):

310 return xr.apply_ufunc(np.vectorize(get_time_of_sunset),

311 ds_loc_prepared ,

312 ds_timestamp_prepared ,

313 ’N’,

314 dask=’allowed ’)

315

316 # Returns the coming day time of sunrise with the riseutc function

317 def get_next_day_time_of_sunrise(loc_prepared , timestamp_prepared , hemisphere=’N’):

318 date_time_timestamp = dt.datetime.utcfromtimestamp(int(timestamp_prepared) / 1e9

) + dt.timedelta(days =1)

319 while True:

320 try:

321 next_day_time_of_sunrise = loc_prepared.riseutc(date_time_timestamp)

322 # If in region of polar day or polar night

323 except ValueError:

324 # If in region and time of polar day

325 if hemisphere == ’N’ and 2 < date_time_timestamp.month < 10:

326 # Search backward for the day when the sun rose

327 date_time_timestamp = date_time_timestamp - dt.timedelta(days =1)

328 # If in region and time of polar night

329 else:

330 # Search forward for the day when the sun will rise

331 date_time_timestamp = date_time_timestamp + dt.timedelta(days =1)

332 continue

333 else:

334 break

335 return next_day_time_of_sunrise

336

337 # Applies get_next_day_time_of_sunrise to dataset

338 def apply_get_next_day_time_of_sunrise(ds_loc_prepared , ds_timestamp_prepared):

339 return xr.apply_ufunc(np.vectorize(get_next_day_time_of_sunrise),

340 ds_loc_prepared ,

341 ds_timestamp_prepared ,

342 ’N’,

343 dask=’allowed ’)

344

345 # ============================= PART III: get time until sunrise and sunset

=============================

346 # Returns the time until the next sunrise

347 def get_time_to_sunrise(timestamp_prepared , t_sunrise , next_day_t_sunrise):

348 # If the timestamp is earlier than today’s sunrise

349 if np.datetime64(timestamp_prepared , ’ns’) < np.datetime64(t_sunrise , ’ns’):

350 time_to_sunrise = np.datetime64(t_sunrise , ’ns’) - np.datetime64(

timestamp_prepared , ’ns’)

351 # If today’s sunrise has already passed

97

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

352 else:

353 time_to_sunrise = np.datetime64(next_day_t_sunrise , ’ns’) - np.datetime64(

timestamp_prepared , ’ns’)

354

355 return time_to_sunrise

356

357 # Applies get_time_to_sunrise to dataset

358 def apply_get_time_to_sunrise(ds_timestamp_prepared , ds_t_sunrise ,

ds_next_day_t_sunrise):

359 return xr.apply_ufunc(np.vectorize(get_time_to_sunrise),

360 ds_timestamp_prepared ,

361 ds_t_sunrise ,

362 ds_next_day_t_sunrise ,

363 dask=’allowed ’)

364

365 # ============================= PART IV: Check if it is currently nighttime

=============================

366 # Returns whether a waypoints is in nighttime

367 # Returns 1 if the current -day sunset has passed or the current -day sunrise is yet

to come. Else returns 0

368 def get_is_night(timestamp_prepared , t_sunrise , t_sunset):

369 # If the timestamp is earlier than today’s sunrise OR after today’s sunset

370 if (np.datetime64(timestamp_prepared , ’ns’) < np.datetime64(t_sunrise , ’ns’)) or

(np.datetime64(timestamp_prepared , ’ns’) > np.datetime64(t_sunset , ’ns’)):

371 is_night = 1

372 else:

373 is_night = 0

374

375 return is_night

376

377 # Applies get_is_night to dataset

378 def apply_get_is_night(ds_timestamp_segments_prepared , ds_segment_t_sunrise ,

ds_segment_t_sunset):

379 return xr.apply_ufunc(np.vectorize(get_is_night),

380 ds_timestamp_segments_prepared ,

381 ds_segment_t_sunrise ,

382 ds_segment_t_sunset ,

383 dask=’allowed ’)

384

385 # ============================= PART V: Check if the segment is a nighttime segment

=============================

386 # Returns whether a waypoint is a nighttime waypoint

387 # Returns 1 if it is night and the time to sunrise is larger than the threshold time

to sunrise. Else returns 0

388 def get_is_night_segment(nighttime , time_to_sunrise , t_th , contrail_atr20):

389 # If the contrail ATR20 has a value smaller than zero

390 if contrail_atr20 < 0:

391 is_night_segment = 0* nighttime

392 # If the time until sunrise is larger than the given threshold time to sunrise

393 elif np.timedelta64(time_to_sunrise , ’ns’) > np.timedelta64(int(t_th * 3.6e12),

’ns’):

394 is_night_segment = 1* nighttime

395 else:

396 is_night_segment = 0* nighttime

397

398 return is_night_segment

399

400 # Applies get_is_night_segment to dataset

401 def apply_get_is_night_segment(ds_nighttime , ds_segment_time_to_sunrise , t_th ,

ds_contrail_atr20):

402 return xr.apply_ufunc(np.vectorize(get_is_night_segment),

403 ds_nighttime ,

404 ds_segment_time_to_sunrise ,

405 t_th ,

406 ds_contrail_atr20 ,

407 dask=’allowed ’)

408

409 # ============================= PART VI: Execute the embedded functions

=============================

98

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

410 # Part I

411 ds_timestamp_prepared = apply_prepare_timestamps_for_waypoints(ds_airtraf)

412 ds_loc_prepared = prepare_loc_for_suntimes(ds_airtraf)

413 ds_timestamp_segments_prepared = apply_prepare_timestamps_for_segments(ds_airtraf)

414

415 # Part II

416 ds_t_sunrise = apply_get_time_of_sunrise(ds_loc_prepared , ds_timestamp_prepared)

417 ds_t_sunset = apply_get_time_of_sunset(ds_loc_prepared , ds_timestamp_prepared)

418 ds_next_day_t_sunrise = apply_get_next_day_time_of_sunrise(ds_loc_prepared ,

ds_timestamp_prepared)

419

420 # Find the time of sunrise and sunset per segment by averaging the time of its end

waypoints

421 ds_segment_t_sunrise = ds_t_sunrise.drop_isel(AirTraf_waypoints_out =-1)+(

ds_t_sunrise.drop_isel(AirTraf_waypoints_out =0)-ds_t_sunrise.drop_isel(

AirTraf_waypoints_out =-1))/2

422 ds_segment_t_sunset = ds_t_sunset.drop_isel(AirTraf_waypoints_out =-1)+(ds_t_sunset.

drop_isel(AirTraf_waypoints_out =0)-ds_t_sunset.drop_isel(AirTraf_waypoints_out =-1))

/2

423

424 # Part III

425 ds_time_to_sunrise = apply_get_time_to_sunrise(ds_timestamp_prepared , ds_t_sunrise ,

ds_next_day_t_sunrise)

426 ds_segment_time_to_sunrise = (ds_time_to_sunrise.drop_isel(AirTraf_waypoints_out =-1)

+ds_time_to_sunrise.drop_isel(AirTraf_waypoints_out =0))/2

427

428 # Part IV

429 ds_nighttime = apply_get_is_night(ds_timestamp_segments_prepared ,

ds_segment_t_sunrise , ds_segment_t_sunset)

430

431 # Part V

432 ds_nighttime_segments = apply_get_is_night_segment(ds_nighttime ,

ds_segment_time_to_sunrise , t_th , ds_airtraf["routes_out"].isel(AirTraf_properties

=13).drop_isel(AirTraf_waypoints_out =0) * 0.9654676258992805)

433

434 return ds_nighttime_segments

435

436

437 def get_average_pareto_front_waypoints(f00_airtraf_folder , f05_airtraf_folder ,

f100_airtraf_folder , t_th):

438 """

==="

439 " Function that returns the delta specific effective contrail ATR20 and SOC

separately "

440 " for day and night. Also a function connecting the dots is provided

"

441 " Inputs: 3x file path = 3x *airtraf_ac.nc files

"

442 " t_th

"

443

"===

"""

444 # Open the airtraf_ac.nc files

445 ds_airtraf_00 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f00_airtraf_folder))

446 ds_airtraf_05 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f05_airtraf_folder))

447 ds_airtraf_100 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f100_airtraf_folder))

448

449 # Correct for 12 h time step by removing duplicates if necessary

450 if ds_airtraf_00[’time’]. values [0]. astype(str)[11:13] == ’12’:

451 ds_airtraf_00 = ds_airtraf_00.drop_isel(time=np.arange(0, len(ds_airtraf_00["

routes_out"]), 2).tolist ())

452 if ds_airtraf_05[’time’]. values [0]. astype(str)[11:13] == ’12’:

453 ds_airtraf_05 = ds_airtraf_05.drop_isel(time=np.arange(0, len(ds_airtraf_05["

routes_out"]), 2).tolist ())

454 if ds_airtraf_100[’time’]. values [0]. astype(str)[11:13] == ’12’:

455 ds_airtraf_100 = ds_airtraf_100.drop_isel(time=np.arange(0, len(

ds_airtraf_100["routes_out"]), 2).tolist ())

99

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

456

457 # Get per segment contrail ATR20

458 per_segment_contrail_atr20_00 = get_per_segment_contrail_atr20(ds_airtraf_00["

routes_out"])

459 per_segment_contrail_atr20_05 = get_per_segment_contrail_atr20(ds_airtraf_05["

routes_out"])

460 per_segment_contrail_atr20_100 = get_per_segment_contrail_atr20(ds_airtraf_100["

routes_out"])

461

462 # Get the per_segment SOC

463 per_segment_soc_00 = get_per_segment_soc(ds_airtraf_00["routes_out"])

464 per_segment_soc_05 = get_per_segment_soc(ds_airtraf_05["routes_out"])

465 per_segment_soc_100 = get_per_segment_soc(ds_airtraf_100["routes_out"])

466

467 # --------------- DISTINCT NIGHT FROM DAY --------------- #

468 # Get witch segments are during daytime

469 nighttime_segments_00 = get_nighttime_segments(ds_airtraf_00 , t_th)

470 nighttime_segments_05 = get_nighttime_segments(ds_airtraf_05 , t_th)

471 nighttime_segments_100 = get_nighttime_segments(ds_airtraf_100 , t_th)

472

473 # Get witch segments are during daytime

474 daytime_segments_00 = (nighttime_segments_00 - 1) * -1

475 daytime_segments_05 = (nighttime_segments_05 - 1) * -1

476 daytime_segments_100 = (nighttime_segments_100 - 1) * -1

477

478 # Get the night contrail ATR20 per segment

479 night_per_segment_contrail_atr20_00 = per_segment_contrail_atr20_00 *

nighttime_segments_00

480 night_per_segment_contrail_atr20_05 = per_segment_contrail_atr20_05 *

nighttime_segments_05

481 night_per_segment_contrail_atr20_100 = per_segment_contrail_atr20_100 *

nighttime_segments_100

482

483 # Check if any negative nighttime contrail ATR20 occurred

484 any_negative_night_contrail_atr20_00 = night_per_segment_contrail_atr20_00.where(

night_per_segment_contrail_atr20_00 < 0)

485 print("00 negative_night_contrail_ATR20_contributions ",

any_negative_night_contrail_atr20_00.count ().values)

486 any_negative_night_contrail_atr20_05 = night_per_segment_contrail_atr20_05.where(

night_per_segment_contrail_atr20_05 < 0)

487 print("05 negative_night_contrail_ATR20_contributions ",

any_negative_night_contrail_atr20_05.count ().values)

488 any_negative_night_contrail_atr20_100 = night_per_segment_contrail_atr20_100.where(

night_per_segment_contrail_atr20_100 < 0)

489 print("100 negative_night_contrail_ATR20_contributions ",

any_negative_night_contrail_atr20_100.count ().values)

490

491 # Get the day contrail ATR20 per segment

492 day_per_segment_contrail_atr20_00 = per_segment_contrail_atr20_00 *

daytime_segments_00

493 day_per_segment_contrail_atr20_05 = per_segment_contrail_atr20_05 *

daytime_segments_05

494 day_per_segment_contrail_atr20_100 = per_segment_contrail_atr20_100 *

daytime_segments_100

495

496 # Get the night SOC per segment

497 night_per_segment_soc_00 = per_segment_soc_00 * nighttime_segments_00

498 night_per_segment_soc_05 = per_segment_soc_05 * nighttime_segments_05

499 night_per_segment_soc_100 = per_segment_soc_100 * nighttime_segments_100

500

501 # Get the day SOC per segment

502 day_per_segment_soc_00 = per_segment_soc_00 * daytime_segments_00

503 day_per_segment_soc_05 = per_segment_soc_05 * daytime_segments_05

504 day_per_segment_soc_100 = per_segment_soc_100 * daytime_segments_100

505

506 # --------------- NORMALIZE W.R.T. SEGMENT EFFECTIVE KM --------------- #

507 effective_distance_00 = get_effective_per_segment_km(ds_airtraf_00["routes_out"])

508 effective_distance_05 = get_effective_per_segment_km(ds_airtraf_05["routes_out"])

509 effective_distance_100 = get_effective_per_segment_km(ds_airtraf_100["routes_out"])

100

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

510

511 # Get the normalized night contrail ATR20 per segment

512 n_night_per_segment_contrail_atr20_00 = night_per_segment_contrail_atr20_00 /

effective_distance_00

513 n_night_per_segment_contrail_atr20_05 = night_per_segment_contrail_atr20_05 /

effective_distance_05

514 n_night_per_segment_contrail_atr20_100 = night_per_segment_contrail_atr20_100 /

effective_distance_100

515

516 # Get the normalized day contrail ATR20 per segment

517 n_day_per_segment_contrail_atr20_00 = day_per_segment_contrail_atr20_00 /

effective_distance_00

518 n_day_per_segment_contrail_atr20_05 = day_per_segment_contrail_atr20_05 /

effective_distance_05

519 n_day_per_segment_contrail_atr20_100 = day_per_segment_contrail_atr20_100 /

effective_distance_100

520

521 # Get the normalized night SOC per segment

522 n_night_per_segment_soc_00 = night_per_segment_soc_00 / effective_distance_00

523 n_night_per_segment_soc_05 = night_per_segment_soc_05 / effective_distance_05

524 n_night_per_segment_soc_100 = night_per_segment_soc_100 / effective_distance_100

525

526 # Get the normalized day SOC per segment

527 n_day_per_segment_soc_00 = day_per_segment_soc_00 / effective_distance_00

528 n_day_per_segment_soc_05 = day_per_segment_soc_05 / effective_distance_05

529 n_day_per_segment_soc_100 = day_per_segment_soc_100 / effective_distance_100

530

531 # --------------- GET STANDARD DEVIATION --------------- #

532 prep_std_nighttime_segments_00 = nighttime_segments_00.where(nighttime_segments_00

!= 0, np.nan)

533 prep_std_nighttime_segments_05 = nighttime_segments_05.where(nighttime_segments_05

!= 0, np.nan)

534 prep_std_nighttime_segments_100 = nighttime_segments_100.where(

nighttime_segments_100 != 0, np.nan)

535

536 prep_std_daytime_segments_00 = daytime_segments_00.where(daytime_segments_00 != 0,

np.nan)

537 prep_std_daytime_segments_05 = daytime_segments_05.where(daytime_segments_05 != 0,

np.nan)

538 prep_std_daytime_segments_100 = daytime_segments_100.where(daytime_segments_100 !=

0, np.nan)

539

540 prep_std_per_segment_night_contrail_atr20_00 = n_night_per_segment_contrail_atr20_00

* prep_std_nighttime_segments_00

541 prep_std_per_segment_night_contrail_atr20_05 = n_night_per_segment_contrail_atr20_05

* prep_std_nighttime_segments_05

542 prep_std_per_segment_night_contrail_atr20_100 =

n_night_per_segment_contrail_atr20_100 * prep_std_nighttime_segments_100

543

544 prep_std_per_segment_night_soc_00 = n_night_per_segment_soc_00 *

prep_std_nighttime_segments_00

545 prep_std_per_segment_night_soc_05 = n_night_per_segment_soc_05 *

prep_std_nighttime_segments_05

546 prep_std_per_segment_night_soc_100 = n_night_per_segment_soc_100 *

prep_std_nighttime_segments_100

547

548 prep_std_per_segment_day_contrail_atr20_00 = n_day_per_segment_contrail_atr20_00 *

prep_std_daytime_segments_00

549 prep_std_per_segment_day_contrail_atr20_05 = n_day_per_segment_contrail_atr20_05 *

prep_std_daytime_segments_05

550 prep_std_per_segment_day_contrail_atr20_100 = n_day_per_segment_contrail_atr20_100 *

prep_std_daytime_segments_100

551

552 prep_std_per_segment_day_soc_00 = n_day_per_segment_soc_00 *

prep_std_daytime_segments_00

553 prep_std_per_segment_day_soc_05 = n_day_per_segment_soc_05 *

prep_std_daytime_segments_05

554 prep_std_per_segment_day_soc_100 = n_day_per_segment_soc_100 *

prep_std_daytime_segments_100

101

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

555

556 prep_std_night_daily_mean_contrail_atr20_00 =

prep_std_per_segment_night_contrail_atr20_00.mean(dim=["AirTraf_routes_out", "

AirTraf_waypoints_out"], skipna=True)

557 prep_std_night_daily_mean_contrail_atr20_05 =

prep_std_per_segment_night_contrail_atr20_05.mean(dim=["AirTraf_routes_out", "

AirTraf_waypoints_out"], skipna=True)

558 prep_std_night_daily_mean_contrail_atr20_100 =

prep_std_per_segment_night_contrail_atr20_100.mean(dim=["AirTraf_routes_out", "

AirTraf_waypoints_out"], skipna=True)

559

560 prep_std_night_daily_mean_soc_00 = prep_std_per_segment_night_soc_00.mean(dim=["

AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

561 prep_std_night_daily_mean_soc_05 = prep_std_per_segment_night_soc_05.mean(dim=["

AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

562 prep_std_night_daily_mean_soc_100 = prep_std_per_segment_night_soc_100.mean(dim=["

AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

563

564 prep_std_day_daily_mean_contrail_atr20_00 =

prep_std_per_segment_day_contrail_atr20_00.mean(dim=["AirTraf_routes_out", "

AirTraf_waypoints_out"], skipna=True)

565 prep_std_day_daily_mean_contrail_atr20_05 =

prep_std_per_segment_day_contrail_atr20_05.mean(dim=["AirTraf_routes_out", "

AirTraf_waypoints_out"], skipna=True)

566 prep_std_day_daily_mean_contrail_atr20_100 =

prep_std_per_segment_day_contrail_atr20_100.mean(dim=["AirTraf_routes_out", "

AirTraf_waypoints_out"], skipna=True)

567

568 prep_std_day_daily_mean_soc_00 = prep_std_per_segment_day_soc_00.mean(dim=["

AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

569 prep_std_day_daily_mean_soc_05 = prep_std_per_segment_day_soc_05.mean(dim=["

AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

570 prep_std_day_daily_mean_soc_100 = prep_std_per_segment_day_soc_100.mean(dim=["

AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

571

572 prep_std_night_delta_daily_mean_contrail_atr20_05 =

prep_std_night_daily_mean_contrail_atr20_05 -

prep_std_night_daily_mean_contrail_atr20_00

573 prep_std_night_delta_daily_mean_contrail_atr20_100 =

prep_std_night_daily_mean_contrail_atr20_100 -

prep_std_night_daily_mean_contrail_atr20_00

574

575 prep_std_night_delta_daily_mean_soc_05 = prep_std_night_daily_mean_soc_05 -

prep_std_night_daily_mean_soc_00

576 prep_std_night_delta_daily_mean_soc_100 = prep_std_night_daily_mean_soc_100 -

prep_std_night_daily_mean_soc_00

577

578 prep_std_day_delta_daily_mean_contrail_atr20_05 =

prep_std_day_daily_mean_contrail_atr20_05 -

prep_std_day_daily_mean_contrail_atr20_00

579 prep_std_day_delta_daily_mean_contrail_atr20_100 =

prep_std_day_daily_mean_contrail_atr20_100 -

prep_std_day_daily_mean_contrail_atr20_00

580

581 prep_std_day_delta_daily_mean_soc_05 = prep_std_day_daily_mean_soc_05 -

prep_std_day_daily_mean_soc_00

582 prep_std_day_delta_daily_mean_soc_100 = prep_std_day_daily_mean_soc_100 -

prep_std_day_daily_mean_soc_00

583

584 std_specific_night_delta_contrail_atr20_05 =

prep_std_night_delta_daily_mean_contrail_atr20_05.std()

585 std_specific_night_delta_contrail_atr20_100 =

prep_std_night_delta_daily_mean_contrail_atr20_100.std()

586

587 std_specific_night_delta_soc_05 = prep_std_night_delta_daily_mean_soc_05.std()

588 std_specific_night_delta_soc_100 = prep_std_night_delta_daily_mean_soc_100.std()

589

590 std_specific_day_delta_contrail_atr20_05 =

prep_std_day_delta_daily_mean_contrail_atr20_05.std()

102

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

591 std_specific_day_delta_contrail_atr20_100 =

prep_std_day_delta_daily_mean_contrail_atr20_100.std()

592

593 std_specific_day_delta_soc_05 = prep_std_day_delta_daily_mean_soc_05.std()

594 std_specific_day_delta_soc_100 = prep_std_day_delta_daily_mean_soc_100.std()

595

596 # --------------- SUM TO A TOTAL --------------- #

597 # Get total nighttime contrail ATR20

598 total_nighttime_contrail_atr20_00 = n_night_per_segment_contrail_atr20_00.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

599 total_nighttime_contrail_atr20_05 = n_night_per_segment_contrail_atr20_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

600 total_nighttime_contrail_atr20_100 = n_night_per_segment_contrail_atr20_100.sum(dim

=[’AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

601

602 # Get total daytime contrail ATR20

603 total_daytime_contrail_atr20_00 = n_day_per_segment_contrail_atr20_00.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

604 total_daytime_contrail_atr20_05 = n_day_per_segment_contrail_atr20_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

605 total_daytime_contrail_atr20_100 = n_day_per_segment_contrail_atr20_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

606

607 # Get total nighttime SOC

608 total_nighttime_soc_00 = n_night_per_segment_soc_00.sum(dim=[’AirTraf_waypoints_out ’

, ’AirTraf_routes_out ’, ’time’])

609 total_nighttime_soc_05 = n_night_per_segment_soc_05.sum(dim=[’AirTraf_waypoints_out ’

, ’AirTraf_routes_out ’, ’time’])

610 total_nighttime_soc_100 = n_night_per_segment_soc_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

611

612 # Get total daytime SOC

613 total_daytime_soc_00 = n_day_per_segment_soc_00.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

614 total_daytime_soc_05 = n_day_per_segment_soc_05.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

615 total_daytime_soc_100 = n_day_per_segment_soc_100.sum(dim=[’AirTraf_waypoints_out ’,

’AirTraf_routes_out ’, ’time’])

616

617 # --------------- NORMALIZE W.R.T. NUMBER OF SEGMENTS --------------- #

618 # Count number of night segments to later calculate the mean

619 n_nighttime_segments_00 = nighttime_segments_00.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

620 n_nighttime_segments_05 = nighttime_segments_05.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

621 n_nighttime_segments_100 = nighttime_segments_100.sum(dim=[’AirTraf_waypoints_out ’,

’AirTraf_routes_out ’, ’time’])

622

623 print("00 nighttime_segments ", n_nighttime_segments_00.values)

624 print("05 nighttime_segments ", n_nighttime_segments_05.values)

625 print("100 nighttime_segments ", n_nighttime_segments_100.values)

626

627 # Count number of day segments to later calculate the mean

628 n_daytime_segments_00 = daytime_segments_00.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

629 n_daytime_segments_05 = daytime_segments_05.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

630 n_daytime_segments_100 = daytime_segments_100.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

631

632 print("00 daytime_segments ", n_daytime_segments_00.values)

633 print("05 daytime_segments ", n_daytime_segments_05.values)

634 print("100 daytime_segments ", n_daytime_segments_100.values)

635

636 # Get mean effective specific nighttime contrail ATR20

637 mean_nighttime_contrail_atr20_00 = total_nighttime_contrail_atr20_00 /

n_nighttime_segments_00

638 mean_nighttime_contrail_atr20_05 = total_nighttime_contrail_atr20_05 /

n_nighttime_segments_05

103

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

639 mean_nighttime_contrail_atr20_100 = total_nighttime_contrail_atr20_100 /

n_nighttime_segments_100

640

641 print("00 mean_nighttime_contrail_ATR20 ", mean_nighttime_contrail_atr20_00.values ,

" [K/km]")

642 print("05 mean_nighttime_contrail_ATR20 ", mean_nighttime_contrail_atr20_05.values ,

" [K/km]")

643 print("100 mean_nighttime_contrail_ATR20 ", mean_nighttime_contrail_atr20_100.values

, " [K/km]")

644

645 # Get mean effective specific daytime contrail ATR20

646 mean_daytime_contrail_atr20_00 = total_daytime_contrail_atr20_00 /

n_daytime_segments_00

647 mean_daytime_contrail_atr20_05 = total_daytime_contrail_atr20_05 /

n_daytime_segments_05

648 mean_daytime_contrail_atr20_100 = total_daytime_contrail_atr20_100 /

n_daytime_segments_100

649

650 print("00 mean_daytime_contrail_ATR20 ", mean_daytime_contrail_atr20_00.values , " [

K/km]")

651 print("05 mean_daytime_contrail_ATR20 ", mean_daytime_contrail_atr20_05.values , " [

K/km]")

652 print("100 mean_daytime_contrail_ATR20 ", mean_daytime_contrail_atr20_100.values , "

[K/km]")

653

654 # Get mean effective specific nighttime SOC

655 mean_nighttime_soc_00 = total_nighttime_soc_00 / n_nighttime_segments_00

656 mean_nighttime_soc_05 = total_nighttime_soc_05 / n_nighttime_segments_05

657 mean_nighttime_soc_100 = total_nighttime_soc_100 / n_nighttime_segments_100

658

659 print("00 mean_nighttime_SOC ", mean_nighttime_soc_00.values , " [$/km]")
660 print("05 mean_nighttime_SOC ", mean_nighttime_soc_05.values , " [$/km]")
661 print("100 mean_nighttime_SOC ", mean_nighttime_soc_100.values , " [$/km]")
662

663 # Get mean effective specific daytime SOC

664 mean_daytime_soc_00 = total_daytime_soc_00 / n_daytime_segments_00

665 mean_daytime_soc_05 = total_daytime_soc_05 / n_daytime_segments_05

666 mean_daytime_soc_100 = total_daytime_soc_100 / n_daytime_segments_100

667

668 print("00 mean_daytime_SOC ", mean_daytime_soc_00.values , " [$/km]")
669 print("05 mean_daytime_SOC ", mean_daytime_soc_05.values , " [$/km]")
670 print("100 mean_daytime_SOC ", mean_daytime_soc_100.values , " [$/km]")
671

672 # --------------- FIND CHANGE W.R.T. SOC OPTIMAL --------------- #

673 # Find change in mean effective specific contrail ATR20

674 delta_nighttime_contrail_atr20_00 = mean_nighttime_contrail_atr20_00 -

mean_nighttime_contrail_atr20_00

675 delta_nighttime_contrail_atr20_05 = mean_nighttime_contrail_atr20_05 -

mean_nighttime_contrail_atr20_00

676 delta_nighttime_contrail_atr20_100 = mean_nighttime_contrail_atr20_100 -

mean_nighttime_contrail_atr20_00

677

678 delta_daytime_contrail_atr20_00 = mean_daytime_contrail_atr20_00 -

mean_daytime_contrail_atr20_00

679 delta_daytime_contrail_atr20_05 = mean_daytime_contrail_atr20_05 -

mean_daytime_contrail_atr20_00

680 delta_daytime_contrail_atr20_100 = mean_daytime_contrail_atr20_100 -

mean_daytime_contrail_atr20_00

681

682 # Find change in mean effective specific SOC

683 delta_nighttime_soc_00 = mean_nighttime_soc_00 - mean_nighttime_soc_00

684 delta_nighttime_soc_05 = mean_nighttime_soc_05 - mean_nighttime_soc_00

685 delta_nighttime_soc_100 = mean_nighttime_soc_100 - mean_nighttime_soc_00

686

687 delta_daytime_soc_00 = mean_daytime_soc_00 - mean_daytime_soc_00

688 delta_daytime_soc_05 = mean_daytime_soc_05 - mean_daytime_soc_00

689 delta_daytime_soc_100 = mean_daytime_soc_100 - mean_daytime_soc_00

690

691 # Collect in lists

104

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

692 delta_nighttime_contrail_atr20_lst = [delta_nighttime_contrail_atr20_00 ,

delta_nighttime_contrail_atr20_05 , delta_nighttime_contrail_atr20_100]

693 delta_daytime_contrail_atr20_lst = [delta_daytime_contrail_atr20_00 ,

delta_daytime_contrail_atr20_05 , delta_daytime_contrail_atr20_100]

694

695 delta_nighttime_soc_lst = [delta_nighttime_soc_00 , delta_nighttime_soc_05 ,

delta_nighttime_soc_100]

696 delta_daytime_soc_lst = [delta_daytime_soc_00 , delta_daytime_soc_05 ,

delta_daytime_soc_100]

697

698 std_plus_delta_nighttime_contrail_atr20_lst = [delta_nighttime_contrail_atr20_00 ,

699 delta_nighttime_contrail_atr20_05+

std_specific_night_delta_contrail_atr20_05 ,

700 delta_nighttime_contrail_atr20_100+

std_specific_night_delta_contrail_atr20_100]

701 std_plus_delta_daytime_contrail_atr20_lst = [delta_daytime_contrail_atr20_00 ,

702 delta_daytime_contrail_atr20_05+

std_specific_day_delta_contrail_atr20_05 ,

703 delta_daytime_contrail_atr20_100+

std_specific_day_delta_contrail_atr20_100]

704

705 std_plus_delta_nighttime_soc_lst = [delta_nighttime_soc_00 ,

706 delta_nighttime_soc_05+

std_specific_night_delta_soc_05 ,

707 delta_nighttime_soc_100+

std_specific_night_delta_soc_100]

708 std_plus_delta_daytime_soc_lst = [delta_daytime_soc_00 ,

709 delta_daytime_soc_05+std_specific_day_delta_soc_05

,

710 delta_daytime_soc_100+

std_specific_day_delta_soc_100]

711

712 std_min_delta_nighttime_contrail_atr20_lst = [delta_nighttime_contrail_atr20_00 ,

713 delta_nighttime_contrail_atr20_05 -

std_specific_night_delta_contrail_atr20_05 ,

714 delta_nighttime_contrail_atr20_100 -

std_specific_night_delta_contrail_atr20_100]

715 std_min_delta_daytime_contrail_atr20_lst = [delta_daytime_contrail_atr20_00 ,

716 delta_daytime_contrail_atr20_05 -

std_specific_day_delta_contrail_atr20_05 ,

717 delta_daytime_contrail_atr20_100 -

std_specific_day_delta_contrail_atr20_100]

718

719 std_min_delta_nighttime_soc_lst = [delta_nighttime_soc_00 ,

720 delta_nighttime_soc_05 -

std_specific_night_delta_soc_05 ,

721 delta_nighttime_soc_100 -

std_specific_night_delta_soc_100]

722 std_min_delta_daytime_soc_lst = [delta_daytime_soc_00 ,

723 delta_daytime_soc_05 -std_specific_day_delta_soc_05 ,

724 delta_daytime_soc_100 -

std_specific_day_delta_soc_100]

725

726 # Finds straight lines to make plot more readable

727 fit_nighttime = np.polyfit(delta_nighttime_contrail_atr20_lst ,

delta_nighttime_soc_lst , 2)

728 fit_daytime = np.polyfit(delta_daytime_contrail_atr20_lst , delta_daytime_soc_lst , 2)

729

730 func_nighttime = np.poly1d(fit_nighttime)

731 func_daytime = np.poly1d(fit_daytime)

732

733 std_plus_fit_nighttime = np.polyfit(std_plus_delta_nighttime_contrail_atr20_lst ,

std_plus_delta_nighttime_soc_lst , 2)

734 std_plus_fit_daytime = np.polyfit(std_plus_delta_daytime_contrail_atr20_lst ,

std_plus_delta_daytime_soc_lst , 2)

735

736 std_plus_func_nighttime = np.poly1d(std_plus_fit_nighttime)

737 std_plus_func_daytime = np.poly1d(std_plus_fit_daytime)

738

105

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

739 std_min_fit_nighttime = np.polyfit(std_min_delta_nighttime_contrail_atr20_lst ,

std_min_delta_nighttime_soc_lst , 2)

740 std_min_fit_daytime = np.polyfit(std_min_delta_daytime_contrail_atr20_lst ,

std_min_delta_daytime_soc_lst , 2)

741

742 std_min_func_nighttime = np.poly1d(std_min_fit_nighttime)

743 std_min_func_daytime = np.poly1d(std_min_fit_daytime)

744

745 # Calculate percentage changes for tops

746 max_nighttime_relative_change_contrail_atr20 = np.round((

delta_nighttime_contrail_atr20_100 / mean_nighttime_contrail_atr20_00 * 100).values)

747 max_nighttime_relative_change_soc = np.round ((delta_nighttime_soc_100 /

mean_nighttime_soc_00 * 100).values , 1)

748 max_daytime_relative_change_contrail_atr20 = np.round((

delta_daytime_contrail_atr20_100 / mean_daytime_contrail_atr20_00 * 100).values)

749 max_daytime_relative_change_soc = np.round((delta_daytime_soc_100 /

mean_daytime_soc_00 * 100).values , 1)

750

751 # Calculate percentage changes for ~0.5% extra SOC

752 med_nighttime_relative_change_contrail_atr20 = np.round((

delta_nighttime_contrail_atr20_05 / mean_nighttime_contrail_atr20_00 * 100).values)

753 med_nighttime_relative_change_soc = np.round ((delta_nighttime_soc_05 /

mean_nighttime_soc_00 * 100).values , 1)

754 med_daytime_relative_change_contrail_atr20 = np.round((

delta_daytime_contrail_atr20_05 / mean_daytime_contrail_atr20_00 * 100).values)

755 med_daytime_relative_change_soc = np.round((delta_daytime_soc_05 /

mean_daytime_soc_00 * 100).values , 1)

756

757 to_be_returned = (delta_daytime_contrail_atr20_lst ,

758 delta_nighttime_contrail_atr20_lst ,

759 delta_daytime_soc_lst ,

760 delta_nighttime_soc_lst ,

761 func_daytime ,

762 func_nighttime ,

763 max_nighttime_relative_change_contrail_atr20 ,

764 max_nighttime_relative_change_soc ,

765 max_daytime_relative_change_contrail_atr20 ,

766 max_daytime_relative_change_soc ,

767 nighttime_segments_00 ,

768 nighttime_segments_05 ,

769 nighttime_segments_100 ,

770 std_plus_delta_nighttime_contrail_atr20_lst ,

771 std_plus_delta_daytime_contrail_atr20_lst ,

772 std_plus_delta_nighttime_soc_lst ,

773 std_plus_delta_daytime_soc_lst ,

774 std_min_delta_nighttime_contrail_atr20_lst ,

775 std_min_delta_daytime_contrail_atr20_lst ,

776 std_min_delta_nighttime_soc_lst ,

777 std_min_delta_daytime_soc_lst ,

778 std_plus_func_nighttime ,

779 std_plus_func_daytime ,

780 std_min_func_nighttime ,

781 std_min_func_daytime ,

782 med_nighttime_relative_change_contrail_atr20 ,

783 med_nighttime_relative_change_soc ,

784 med_daytime_relative_change_contrail_atr20 ,

785 med_daytime_relative_change_soc)

786

787 return to_be_returned

788

789

790 def get_potcov_average_pareto_front_waypoints(f00_airtraf_folder , f05_airtraf_folder ,

f100_airtraf_folder , nighttime_segments_00 , nighttime_segments_05 ,

nighttime_segments_100):

791 """

==="

792 " Function that returns the delta specific effective potcov and SOC separately

"

106

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

793 " for day and night. Also a function connecting the dots is provided

"

794 " Inputs: 3x file path = 3x *airtraf_ac.nc files

"

795

"===

"""

796 # Open the airtraf_ac.nc files

797 ds_airtraf_00 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f00_airtraf_folder))

798 ds_airtraf_05 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f05_airtraf_folder))

799 ds_airtraf_100 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f100_airtraf_folder))

800

801 # Correct for 12 h time step by removing duplicates if necessary

802 if ds_airtraf_00[’time’]. values [0]. astype(str)[11:13] == ’12’:

803 ds_airtraf_00 = ds_airtraf_00.drop_isel(time=np.arange(0, len(ds_airtraf_00["

routes_out"]), 2).tolist ())

804 if ds_airtraf_05[’time’]. values [0]. astype(str)[11:13] == ’12’:

805 ds_airtraf_05 = ds_airtraf_05.drop_isel(time=np.arange(0, len(ds_airtraf_05["

routes_out"]), 2).tolist ())

806 if ds_airtraf_100[’time’]. values [0]. astype(str)[11:13] == ’12’:

807 ds_airtraf_100 = ds_airtraf_100.drop_isel(time=np.arange(0, len(

ds_airtraf_100["routes_out"]), 2).tolist ())

808

809 # Get per segment potcov

810 per_segment_potcov_00 = get_per_segment_potcov(ds_airtraf_00["routes_out"])

811 per_segment_potcov_05 = get_per_segment_potcov(ds_airtraf_05["routes_out"])

812 per_segment_potcov_100 = get_per_segment_potcov(ds_airtraf_100["routes_out"])

813

814 # --------------- DISTINCT NIGHT FROM DAY --------------- #

815 # Get witch segments are during daytime

816 daytime_segments_00 = (nighttime_segments_00 - 1) * -1

817 daytime_segments_05 = (nighttime_segments_05 - 1) * -1

818 daytime_segments_100 = (nighttime_segments_100 - 1) * -1

819

820 # Get the night potcov per segment

821 night_per_segment_potcov_00 = per_segment_potcov_00 * nighttime_segments_00

822 night_per_segment_potcov_05 = per_segment_potcov_05 * nighttime_segments_05

823 night_per_segment_potcov_100 = per_segment_potcov_100 * nighttime_segments_100

824

825 # Get the day potcov per segment

826 day_per_segment_potcov_00 = per_segment_potcov_00 * daytime_segments_00

827 day_per_segment_potcov_05 = per_segment_potcov_05 * daytime_segments_05

828 day_per_segment_potcov_100 = per_segment_potcov_100 * daytime_segments_100

829

830 # --------------- NORMALIZE W.R.T. SEGMENT EFFECTIVE KM --------------- #

831 effective_distance_00 = get_effective_per_segment_km(ds_airtraf_00["routes_out"])

832 effective_distance_05 = get_effective_per_segment_km(ds_airtraf_05["routes_out"])

833 effective_distance_100 = get_effective_per_segment_km(ds_airtraf_100["routes_out"])

834

835 # Get the normalized night potcov per segment

836 n_night_per_segment_potcov_00 = night_per_segment_potcov_00 / effective_distance_00

837 n_night_per_segment_potcov_05 = night_per_segment_potcov_05 / effective_distance_05

838 n_night_per_segment_potcov_100 = night_per_segment_potcov_100 /

effective_distance_100

839

840 # Get the normalized day potcov per segment

841 n_day_per_segment_potcov_00 = day_per_segment_potcov_00 / effective_distance_00

842 n_day_per_segment_potcov_05 = day_per_segment_potcov_05 / effective_distance_05

843 n_day_per_segment_potcov_100 = day_per_segment_potcov_100 / effective_distance_100

844

845 # --------------- SUM TO A TOTAL --------------- #

846 # Get total nighttime potcov

847 total_nighttime_potcov_00 = n_night_per_segment_potcov_00.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

848 total_nighttime_potcov_05 = n_night_per_segment_potcov_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

849 total_nighttime_potcov_100 = n_night_per_segment_potcov_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

850

107

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

851 # Get total daytime potcov

852 total_daytime_potcov_00 = n_day_per_segment_potcov_00.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

853 total_daytime_potcov_05 = n_day_per_segment_potcov_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

854 total_daytime_potcov_100 = n_day_per_segment_potcov_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

855

856 # --------------- NORMALIZE W.R.T. NUMBER OF SEGMENTS --------------- #

857 # Count number of night segments to later calculate the mean

858 n_nighttime_segments_00 = nighttime_segments_00.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

859 n_nighttime_segments_05 = nighttime_segments_05.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

860 n_nighttime_segments_100 = nighttime_segments_100.sum(dim=[’AirTraf_waypoints_out ’,

’AirTraf_routes_out ’, ’time’])

861

862 # Count number of day segments to later calculate the mean

863 n_daytime_segments_00 = daytime_segments_00.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

864 n_daytime_segments_05 = daytime_segments_05.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

865 n_daytime_segments_100 = daytime_segments_100.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

866

867 # Get mean effective specific nighttime potcov

868 mean_nighttime_potcov_00 = total_nighttime_potcov_00 / n_nighttime_segments_00

869 mean_nighttime_potcov_05 = total_nighttime_potcov_05 / n_nighttime_segments_05

870 mean_nighttime_potcov_100 = total_nighttime_potcov_100 / n_nighttime_segments_100

871

872 print("00 mean_nighttime_potcov ", mean_nighttime_potcov_00.values , " [km/km]")

873 print("05 mean_nighttime_potcov ", mean_nighttime_potcov_05.values , " [km/km]")

874 print("100 mean_nighttime_potcov ", mean_nighttime_potcov_100.values , " [km/km]")

875

876 # Get mean effective specific daytime potcov

877 mean_daytime_potcov_00 = total_daytime_potcov_00 / n_daytime_segments_00

878 mean_daytime_potcov_05 = total_daytime_potcov_05 / n_daytime_segments_05

879 mean_daytime_potcov_100 = total_daytime_potcov_100 / n_daytime_segments_100

880

881 print("00 mean_daytime_potcov ", mean_daytime_potcov_00.values , " [km/km]")

882 print("05 mean_daytime_potcov ", mean_daytime_potcov_05.values , " [km/km]")

883 print("100 mean_daytime_potcov ", mean_daytime_potcov_100.values , " [km/km]")

884

885 return

1 """

==="

2 " File that plots the delta effective specific contrail ATR20 [K/km] as Pareto front.

"

3 " The day and night front are plotted separately for winter and summer. Use is made of

"

4 " flight data.

"

5 "===

"""

6

7 # Import functions

8 from flight_pareto_plotter_pp_functions import *

9 import matplotlib.pyplot as plt

10

11

12 def flight_pareto_plotter_function(t_th , also_find_new_points=True ,

also_identify_n_best_new_points=False , n_points =1):

13 print("FLIGHT DATA PARETO PLOTTER FOR t_{TH} = " + str(t_th) + "H STARTED")

14

15 # Define paths to data

16 pareto_folder_w = ’C:/Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/W_’ + str(t_th) + ’h/datfiles/pareto_values/’

108

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

17 soc_opt_airtraf_folder_w = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/

Codes/Final_PP/W_’ + str(t_th) + ’h/f00’

18 pareto_folder_s = ’C:/Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/S_’ + str(t_th) + ’h/datfiles/pareto_values/’

19 soc_opt_airtraf_folder_s = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/

Codes/Final_PP/S_’ + str(t_th) + ’h/f00’

20

21 # Find winter day and night delta effective specific contrail ATR20 for all

solutions

22 results_day_w = get_average_pareto_front_hw(soc_opt_airtraf_folder=

soc_opt_airtraf_folder_w ,

23 pareto_folder=pareto_folder_w ,

24 t_th=t_th ,

25 n_min_points =1,

26 criterium=’day’,

27 allow_cooling=True)

28

29 day_pareto_w = results_day_w [0]

30 day_max_relative_change_contrail_atr20_w = results_day_w [1]

31 day_max_relative_change_soc_w = results_day_w [2]

32

33 results_night_w = get_average_pareto_front_hw(soc_opt_airtraf_folder=

soc_opt_airtraf_folder_w ,

34 pareto_folder=pareto_folder_w ,

35 t_th=t_th ,

36 n_min_points =1,

37 criterium=’night ’,

38 allow_cooling=True)

39

40 night_pareto_w = results_night_w [0]

41 night_max_relative_change_contrail_atr20_w = results_night_w [1]

42 night_max_relative_change_soc_w = results_night_w [2]

43

44 # Find summer day and night delta effective specific contrail ATR20 for all

solutions

45 results_day_s = get_average_pareto_front_hw(soc_opt_airtraf_folder=

soc_opt_airtraf_folder_s ,

46 pareto_folder=pareto_folder_s ,

47 t_th=t_th ,

48 n_min_points =1,

49 criterium=’day’,

50 allow_cooling=True)

51

52 day_pareto_s = results_day_s [0]

53 day_max_relative_change_contrail_atr20_s = results_day_s [1]

54 day_max_relative_change_soc_s = results_day_s [2]

55

56 results_night_s = get_average_pareto_front_hw(soc_opt_airtraf_folder=

soc_opt_airtraf_folder_s ,

57 pareto_folder=pareto_folder_s ,

58 t_th=t_th ,

59 n_min_points =1,

60 criterium=’night ’,

61 allow_cooling=True)

62

63 night_pareto_s = results_night_s [0]

64 night_max_relative_change_contrail_atr20_s = results_night_s [1]

65 night_max_relative_change_soc_s = results_night_s [2]

66

67 # Separate contrail ATR20 from SOC

68 day_delta_contrail_atr20_w = day_pareto_w [:, 1]

69 day_delta_soc_w = day_pareto_w [:, 0]

70 night_delta_contrail_atr20_w = night_pareto_w [:, 1]

71 night_delta_soc_w = night_pareto_w [:, 0]

72 day_delta_contrail_atr20_s = day_pareto_s [:, 1]

73 day_delta_soc_s = day_pareto_s [:, 0]

74 night_delta_contrail_atr20_s = night_pareto_s [:, 1]

75 night_delta_soc_s = night_pareto_s [:, 0]

76

109

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

77 # Plotting

78 plt.rcParams.update ({’font.size’: 20})

79

80 # Plot normal Pareto fronts

81 fig1 , (ax1) = plt.subplots(1, 1, figsize =(12, 10))

82

83 ax1.scatter(day_delta_contrail_atr20_w , day_delta_soc_w , marker=’^’, color=’gold’,

label=’day winter ’)

84 ax1.scatter(night_delta_contrail_atr20_w , night_delta_soc_w , marker=’^’, color=’

midnightblue ’, label=’night winter ’)

85 ax1.scatter(day_delta_contrail_atr20_s , day_delta_soc_s , marker=’o’, color=’gold’,

label=’day summer ’)

86 ax1.scatter(night_delta_contrail_atr20_s , night_delta_soc_s , marker=’o’, color=’

midnightblue ’, label=’night summer ’)

87 ax1.set_xlabel(r’$\Delta \overline{eATR20}_{contrail}$ [K/km]’)

88 ax1.set_ylabel(r’$\Delta \overline{eSOC}$ [\$/km]’)
89

90 ax1.legend ()

91 ax1.text(min(day_delta_contrail_atr20_w), max(day_delta_soc_w), ’(’+str(

day_max_relative_change_contrail_atr20_w)+’%,’+str(day_max_relative_change_soc_w)+’

%)’, horizontalalignment=’left’, color=’goldenrod ’, fontsize=’small’)

92 ax1.text(min(night_delta_contrail_atr20_w), max(night_delta_soc_w), ’(’+str(

night_max_relative_change_contrail_atr20_w)+’%,’+str(night_max_relative_change_soc_w

)+’%)’, horizontalalignment=’left’, color=’midnightblue ’, fontsize=’small’)

93 ax1.text(min(day_delta_contrail_atr20_s), max(day_delta_soc_s), ’(’+str(

day_max_relative_change_contrail_atr20_s)+’%,’+str(day_max_relative_change_soc_s)+’

%)’, horizontalalignment=’left’, color=’goldenrod ’, fontsize=’small’)

94 ax1.text(min(night_delta_contrail_atr20_s), max(night_delta_soc_s), ’(’+str(

night_max_relative_change_contrail_atr20_s)+’%,’+str(night_max_relative_change_soc_s

)+’%)’, horizontalalignment=’left’, color=’midnightblue ’, fontsize=’small’)

95

96 plt.tight_layout ()

97 fig1.savefig(’C:/Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Main Phase/

Images/plots/flight_pareto_ ’ + str(t_th) + ’h.pdf’)

98

99 if also_find_new_points:

100 new_point_results_w = new_pareto_front_finder(pareto_subset1=day_pareto_w ,

101 pareto_subset2=night_pareto_w ,

102 weight_factor =1)

103

104 average_pareto_w = new_point_results_w [0]

105 new_pareto_points_array_w = new_point_results_w [1]

106 source_points_array1_w = new_point_results_w [2]

107 source_points_array2_w = new_point_results_w [3]

108

109 new_point_results_s = new_pareto_front_finder(pareto_subset1=day_pareto_s ,

110 pareto_subset2=night_pareto_s ,

111 weight_factor =1)

112

113 average_pareto_s = new_point_results_s [0]

114 new_pareto_points_array_s = new_point_results_s [1]

115 source_points_array1_s = new_point_results_s [2]

116 source_points_array2_s = new_point_results_s [3]

117

118 average_delta_contrail_atr20_w = average_pareto_w [:, 1]

119 average_delta_soc_w = average_pareto_w [:, 0]

120

121 new_pareto_delta_contrail_atr20_w = new_pareto_points_array_w [:, 1]

122 new_pareto_delta_soc_w = new_pareto_points_array_w [:, 0]

123 source1_delta_contrail_atr20_w = source_points_array1_w [:, 1]

124 source1_delta_soc_w = source_points_array1_w [:, 0]

125 source2_delta_contrail_atr20_w = source_points_array2_w [:, 1]

126 source2_delta_soc_w = source_points_array2_w [:, 0]

127

128 average_delta_contrail_atr20_s = average_pareto_s [:, 1]

129 average_delta_soc_s = average_pareto_s [:, 0]

130

131 new_pareto_delta_contrail_atr20_s = new_pareto_points_array_s [:, 1]

132 new_pareto_delta_soc_s = new_pareto_points_array_s [:, 0]

110

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

133 source1_delta_contrail_atr20_s = source_points_array1_s [:, 1]

134 source1_delta_soc_s = source_points_array1_s [:, 0]

135 source2_delta_contrail_atr20_s = source_points_array2_s [:, 1]

136 source2_delta_soc_s = source_points_array2_s [:, 0]

137

138 if also_identify_n_best_new_points:

139 best_new_pareto_points_w , best_source_points1_w , best_source_points2_w =

get_best_new_pareto_points(new_pareto_points_array=new_pareto_points_array_w ,

140

average_pareto=average_pareto_w ,

141

source_points_array1=source_points_array1_w ,

142

source_points_array2=source_points_array2_w ,

143

n_points=n_points)

144 best_new_pareto_points_s , best_source_points1_s , best_source_points2_s =

get_best_new_pareto_points(new_pareto_points_array=new_pareto_points_array_s ,

145

average_pareto=average_pareto_s ,

146

source_points_array1=source_points_array1_s ,

147

source_points_array2=source_points_array2_s ,

148

n_points=n_points)

149

150 best_new_delta_contrail_atr20_w = best_new_pareto_points_w [:, 1]

151 best_new_delta_soc_w = best_new_pareto_points_w [:, 0]

152

153 best_source1_delta_contrail_atr20_w = best_source_points1_w [:, 1]

154 best_source1_delta_soc_w = best_source_points1_w [:, 0]

155 best_source2_delta_contrail_atr20_w = best_source_points2_w [:, 1]

156 best_source2_delta_soc_w = best_source_points2_w [:, 0]

157

158 best_new_delta_contrail_atr20_s = best_new_pareto_points_s [:, 1]

159 best_new_delta_soc_s = best_new_pareto_points_s [:, 0]

160

161 best_source1_delta_contrail_atr20_s = best_source_points1_s [:, 1]

162 best_source1_delta_soc_s = best_source_points1_s [:, 0]

163 best_source2_delta_contrail_atr20_s = best_source_points2_s [:, 1]

164 best_source2_delta_soc_s = best_source_points2_s [:, 0]

165

166 if not also_identify_n_best_new_points:

167 index_ex_point_w = int(len(new_pareto_points_array_w) - 100)

168

169 ex_new_pareto_delta_contrail_atr20_w = new_pareto_delta_contrail_atr20_w[

index_ex_point_w]

170 ex_new_pareto_delta_soc_w = new_pareto_delta_soc_w[index_ex_point_w]

171 ex_source1_delta_contrail_atr20_w = source1_delta_contrail_atr20_w[

index_ex_point_w]

172 ex_source1_delta_soc_w = source1_delta_soc_w[index_ex_point_w]

173 ex_source2_delta_contrail_atr20_w = source2_delta_contrail_atr20_w[

index_ex_point_w]

174 ex_source2_delta_soc_w = source2_delta_soc_w[index_ex_point_w]

175

176 index_ex_point_s = int(len(new_pareto_points_array_s) -100)

177

178 ex_new_pareto_delta_contrail_atr20_s = new_pareto_delta_contrail_atr20_s[

index_ex_point_s]

179 ex_new_pareto_delta_soc_s = new_pareto_delta_soc_s[index_ex_point_s]

180 ex_source1_delta_contrail_atr20_s = source1_delta_contrail_atr20_s[

index_ex_point_s]

181 ex_source1_delta_soc_s = source1_delta_soc_s[index_ex_point_s]

182 ex_source2_delta_contrail_atr20_s = source2_delta_contrail_atr20_s[

index_ex_point_s]

183 ex_source2_delta_soc_s = source2_delta_soc_s[index_ex_point_s]

184

185 # Plot normal Pareto fronts with newly found points winter

111

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

186 fig2 , (ax2) = plt.subplots(1, 1, figsize =(12, 10))

187 ax2.scatter(average_delta_contrail_atr20_w , average_delta_soc_w , marker=’^’,

color=’lightgrey ’, label=’average ’)

188 ax2.scatter(new_pareto_delta_contrail_atr20_w , new_pareto_delta_soc_w , marker=’^

’, color=’forestgreen ’, label=’new’)

189 ax2.scatter(day_delta_contrail_atr20_w , day_delta_soc_w , marker=’^’, color=’gold

’, label=’day winter ’)

190 ax2.scatter(night_delta_contrail_atr20_w , night_delta_soc_w , marker=’^’, color=’

midnightblue ’, label=’night winter ’)

191 if also_identify_n_best_new_points:

192 ax2.scatter(best_new_delta_contrail_atr20_w , best_new_delta_soc_w , marker=’^

’, color=’fuchsia ’, label=’best new point’)

193 ax2.scatter(best_source1_delta_contrail_atr20_w , best_source1_delta_soc_w ,

marker=’^’, color=’darkorange ’, label=’used day point’)

194 ax2.scatter(best_source2_delta_contrail_atr20_w , best_source2_delta_soc_w ,

marker=’^’, color=’cyan’, label=’used night point’)

195 else:

196 ax2.scatter(ex_new_pareto_delta_contrail_atr20_w , ex_new_pareto_delta_soc_w ,

marker=’^’, color=’fuchsia ’, label=’ex. new point’)

197 ax2.scatter(ex_source1_delta_contrail_atr20_w , ex_source1_delta_soc_w ,

marker=’^’, color=’darkorange ’, label=’ex. day point’)

198 ax2.scatter(ex_source2_delta_contrail_atr20_w , ex_source2_delta_soc_w ,

marker=’^’, color=’cyan’, label=’ex. night point’)

199 ax2.set_xlabel(r’$\Delta \overline{eATR20}_{contrail}$ [K/km]’)

200 ax2.set_ylabel(r’$\Delta \overline{eSOC}$ [\$/km]’)
201

202 ax2.legend ()

203 plt.tight_layout ()

204 fig2.savefig(’C:/Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Main Phase/

Images/plots/new_pareto_winter_ ’ + str(t_th) + ’h.pdf’)

205

206 # Plot normal Pareto fronts with newly found points summer

207 fig3 , (ax3) = plt.subplots(1, 1, figsize =(12, 10))

208 ax3.scatter(average_delta_contrail_atr20_s , average_delta_soc_s , marker=’o’,

color=’lightgrey ’, label=’average ’)

209 ax3.scatter(new_pareto_delta_contrail_atr20_s , new_pareto_delta_soc_s , marker=’o

’, color=’forestgreen ’, label=’new’)

210 ax3.scatter(day_delta_contrail_atr20_s , day_delta_soc_s , marker=’o’, color=’gold

’, label=’day summer ’)

211 ax3.scatter(night_delta_contrail_atr20_s , night_delta_soc_s , marker=’o’, color=’

midnightblue ’, label=’night summer ’)

212 if also_identify_n_best_new_points:

213 ax3.scatter(best_new_delta_contrail_atr20_s , best_new_delta_soc_s , marker=’o

’, color=’fuchsia ’, label=’best new point’)

214 ax3.scatter(best_source1_delta_contrail_atr20_s , best_source1_delta_soc_s ,

marker=’o’, color=’darkorange ’, label=’used day point’)

215 ax3.scatter(best_source2_delta_contrail_atr20_s , best_source2_delta_soc_s ,

marker=’o’, color=’cyan’, label=’used night point’)

216 else:

217 ax3.scatter(ex_new_pareto_delta_contrail_atr20_s , ex_new_pareto_delta_soc_s ,

marker=’o’, color=’fuchsia ’, label=’ex. new point’)

218 ax3.scatter(ex_source1_delta_contrail_atr20_s , ex_source1_delta_soc_s ,

marker=’o’, color=’darkorange ’, label=’ex. day point’)

219 ax3.scatter(ex_source2_delta_contrail_atr20_s , ex_source2_delta_soc_s ,

marker=’o’, color=’cyan’, label=’ex.night points ’)

220 ax3.set_xlabel(r’$\Delta \overline{eATR20}_{contrail}$ [K/km]’)

221 ax3.set_ylabel(r’$\Delta \overline{eSOC}$ [\$/km]’)
222

223 ax3.legend ()

224 plt.tight_layout ()

225 fig3.savefig(’C:/Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Main Phase/

Images/plots/new_pareto_summer_ ’ + str(t_th) + ’h.pdf’)

226

227 plt.show()

228

229 return print("FLIGHT DATA PARETO PLOTTER FOR t_{TH} = " + str(t_th) + "H FINISHED")

1 import numpy as np

2 import xarray as xr

3 import suntimes as sts

112

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

4 import datetime as dt

5 import geopy.distance

6 import os

7 from scipy.spatial.distance import cdist

8

9

10 def get_is_night_flight(pair_dict , key , dep_time , dep_date , ds_airtraf , t_th):

11 """

==="

12 " Function that returns whether a flight is a daytime or nighttime flight

"

13 " Inputs: pair_dict = dictionary containing pair_distance , dep_lon , dep_lat , arr_lon

, "

14 " arr_lat as provided by get_average_pareto_front_hw ()

"

15 " key = integer coordinate string of airport pair

"

16 " dep_time = string of the departure time HHMMSS

"

17 " dep_time = string of the departure date YYYYMMDD

"

18 " ds_airtraf = airtraf min SOC dataset

"

19

"===

"""

20

21 # Extract departure and arrival coordinates from dictionary

22 dep_lon = pair_dict[key][1]

23 dep_lat = pair_dict[key][2]

24 arr_lon = pair_dict[key][3]

25 arr_lat = pair_dict[key][4]

26

27 # Determine approximate halfway position

28 average_longitude = (dep_lon + arr_lon) / 2

29 average_latitude = (dep_lat + arr_lat) / 2

30

31 # Extract departure date from inputted departure date string

32 year = dep_date [:4]

33 month = dep_date [4:][:2]

34 day = dep_date [6:][:2]

35

36 # Prepare date format for suntimes functions

37 suntimes_day = dt.datetime(int(year), int(month), int(day), 0, 0)

38

39 # To find the approximate time halfway the flight

40 # Find the day index of the flight

41 index_year = int(year)

42 index_month = int(month)

43 index_day = int(day) + 1 # which is one day later than when the flight departed

44

45 # Prepare date index string

46 if index_year / 4 == int(index_year / 4):

47 leap_year = True

48 else:

49 leap_year = False

50

51 if index_month in [1, 3, 5, 7, 8, 10, 12]:

52 n_month_days = 31

53 elif index_month == 2:

54 if not leap_year:

55 n_month_days = 28

56 else:

57 n_month_days = 29

58 else:

59 n_month_days = 30

60

61 if index_day > n_month_days:

113

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

62 index_month = index_month + 1

63 index_day = index_day - n_month_days

64 if index_month > 12:

65 index_year = index_year + 1

66 index_month = 1

67

68 if len(str(index_day)) < 2:

69 index_day_str = ’0’ + str(index_day)

70 else:

71 index_day_str = str(index_day)

72

73 if len(str(index_month)) < 2:

74 index_month_str = ’0’ + str(index_month)

75 else:

76 index_month_str = str(index_month)

77

78 index_year_str = str(index_year)

79

80 index_str = index_year_str + ’-’ + index_month_str + ’-’ + index_day_str

81

82 # Prepare next day date format for suntimes functions

83 suntimes_next_day = dt.datetime(int(index_year), int(index_month), int(index_day),

0, 0)

84

85 # Find the flight index by checking the the city pair coordinates

86 for i in range(len(ds_airtraf[’routes_out ’][’AirTraf_routes_out ’])):

87 ith_flight_ds = ds_airtraf[’routes_out ’].sel(time=index_str).isel(

AirTraf_routes_out=i)

88 if abs(dep_lon - ith_flight_ds.isel(AirTraf_properties =0, AirTraf_waypoints_out

=0)) < 0.5:

89 if abs(dep_lat - ith_flight_ds.isel(AirTraf_properties =1,

AirTraf_waypoints_out =0)) < 0.5:

90 if abs(arr_lon - ith_flight_ds.isel(AirTraf_properties =0,

AirTraf_waypoints_out =-1)) < 0.5:

91 if abs(arr_lat - ith_flight_ds.isel(AirTraf_properties =1,

AirTraf_waypoints_out =-1)) < 0.5:

92 route_index = i

93

94 # Find the departure time

95 dep_t = ds_airtraf[’routes_out ’].sel(time=index_str).isel(AirTraf_properties =3,

AirTraf_routes_out=route_index , AirTraf_waypoints_out =0)

96

97 # Find the arrival time

98 arr_t = ds_airtraf[’routes_out ’].sel(time=index_str).isel(AirTraf_properties =3,

AirTraf_routes_out=route_index , AirTraf_waypoints_out =-1)

99

100 # Find the halfway time

101 mid_t = (dep_t + arr_t) / 2

102

103 # Find the time since departure in hours , minutes and seconds

104 delta_t_hour = int((mid_t - dep_t) * 24)

105 delta_t_minute = int((mid_t - dep_t) * 24 * 60 - delta_t_hour * 60)

106 delta_t_sec = int((mid_t - dep_t) * 24 * 60 * 60 - delta_t_hour * 60 * 60 -

delta_t_minute * 60)

107

108 # Extract departure time from inputted departure time string

109 dep_hour = int(dep_time [:2])

110 dep_minute = int(dep_time [2:][: -2])

111 dep_sec = int(dep_time [-2:])

112

113 hour = dep_hour + delta_t_hour

114 minute = dep_minute + delta_t_minute

115 sec = dep_sec + delta_t_sec

116

117 # Calculate any hour , minute of second overflow

118 extra_day = 0

119

120 if sec > 59:

121 minute = minute + 1

114

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

122 sec = sec - 60

123 if minute > 59:

124 hour = hour + 1

125 minute = minute - 60

126 if hour > 24:

127 extra_day = 1

128 hour = hour - 24

129

130 # In datetime format , state the halfway time

131 halfway_time = dt.datetime(int(year), int(month), int(day) + extra_day , hour , minute

, sec , 0)

132

133 # Find the departure altitude

134 dep_altitude = ds_airtraf[’routes_out ’].sel(time=index_str).isel(AirTraf_properties

=2, AirTraf_routes_out=route_index , AirTraf_waypoints_out =0)

135

136 # Find the arrival altitude

137 arr_altitude = ds_airtraf[’routes_out ’].sel(time=index_str).isel(AirTraf_properties

=2, AirTraf_routes_out=route_index , AirTraf_waypoints_out =-1)

138

139 average_altitude = (dep_altitude + arr_altitude) / 2

140

141 # Find the time of utc sunrise and sunset

142 sun = sts.SunTimes(longitude=average_longitude , latitude=average_latitude , altitude=

average_altitude)

143 t_rise = sun.riseutc(suntimes_day)

144 t_set = sun.setutc(suntimes_day)

145 t_rise_next = sun.riseutc(suntimes_next_day)

146

147 # If in between sunrise and sunset

148 if t_rise < halfway_time < t_set:

149 is_nighttime = False # It is not nighttime

150 # If after sunset , but short enough until sunrise

151 elif halfway_time > t_set and (t_rise_next - halfway_time) < dt.timedelta(hours=t_th

):

152 is_nighttime = False # It is not nighttime

153 # If before sunrise , but short enough until sunrise

154 elif halfway_time < t_rise and (t_rise - halfway_time) < dt.timedelta(hours=t_th):

155 is_nighttime = False # It is not nighttime

156 else:

157 is_nighttime = True # else , it is nighttime

158

159 return is_nighttime

160

161

162 def get_average_pareto_front_hw(soc_opt_airtraf_folder , pareto_folder , t_th ,

n_min_points =1, criterium=’overall ’, allow_cooling=True):

163 """

==="

164 " Function that returns the average Pareto for flights with #Pareto points >

n_min_points "

165 " Discrimination between time of day is based on approximate halfway point

"

166 " Inputs: soc_opt_airtraf_folder = folder with the *airtraf_ac.nc file(s) for

minimum "

167 " SOC

"

168 " pareto_folder = folder with Pareto (POBJ__.dat) files

"

169 " n_min_pints = minimum number of Pareto points a user wants a

"

170 " front to have to be included in the calculation

"

171 " criterium = criterium of selection of fronts

"

172 " (overall OR day OR night)

"

173

115

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

"===

"""

174

175 # Process criterium

176 if criterium in [’overall ’, ’Overall ’, ’overal ’, ’Overal ’]:

177 allowed_time_stamps = ’all’

178 elif criterium in [’day’, ’Day’, ’daytime ’, ’Daytime ’]:

179 allowed_time_stamps = ’day’

180 elif criterium in [’night’, ’Night’, ’nighttime ’, ’Nighttime ’, ’nightime ’, ’Nightime

’]:

181 allowed_time_stamps = ’night’

182 else:

183 print("Please check the spelling of the input ’criterium ’")

184

185 # Open the airtraf_ac.nc files

186 soc_opt_ds_airtraf = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(

soc_opt_airtraf_folder))

187

188 # Correct for 12 h time step

189 if soc_opt_ds_airtraf[’time’]. values [0]. astype(str)[11:13] == ’12’:

190 soc_opt_ds_airtraf = soc_opt_ds_airtraf.drop_isel(time=np.arange(0, len(

soc_opt_ds_airtraf["routes_out"]), 2).tolist ())

191

192 # Create a dictionary of the flight distances occurring in the flight plan

193 pair_dict = {}

194 total_pair_distance = 0

195

196 for i in range(len(set(soc_opt_ds_airtraf[’routes_flightplan_Dtime ’]. values [0]))):

For every unique airport pair

197 dep_lat = soc_opt_ds_airtraf[’routes_flightplan_D_lat ’]. values [0][i]

198 dep_lon = soc_opt_ds_airtraf[’routes_flightplan_D_lon ’]. values [0][i]

199 arr_lat = soc_opt_ds_airtraf[’routes_flightplan_A_lat ’]. values [0][i]

200 arr_lon = soc_opt_ds_airtraf[’routes_flightplan_A_lon ’]. values [0][i]

201 dep_coords = (dep_lat , dep_lon)

202 arr_coords = (arr_lat , arr_lon)

203

204 dep_str = str(int(dep_lon)) + ’_’ + str(int(dep_lat))

205 arr_str = str(int(arr_lon)) + ’_’ + str(int(arr_lat))

206 pair_label = dep_str + ’_’ + arr_str # Label consists of airport integer

coordinates

207

208 # Calculate distance between airport pairs

209 pair_distance = geopy.distance.distance(dep_coords , arr_coords).km

210 total_pair_distance = total_pair_distance + pair_distance

211

212 # Prepare for appending to dictionary

213 new_dict_line = {pair_label: [pair_distance , dep_lon , dep_lat , arr_lon , arr_lat

]}

214

215 # Append the airport pair to the dictionary

216 pair_dict.update(new_dict_line)

217

218 # Prepare empty list

219 pareto_lst = []

220

221 # Prepare data to get a sense of relative magnitude

222 n_flights = 0

223 soc_opt_contrail_atr20_sum = 0

224 soc_opt_soc_sum = 0

225

226 # Open POBJ__.dat files in the specified folder and collect the data

227 with os.scandir(pareto_folder) as folder:

228 for file in folder:

229 if file.name.endswith(".dat") and file.name.startswith("POBJ") and file.

is_file ():

230 raw_pareto = np.loadtxt(file.path , comments="#", delimiter=" ",

unpack=False)

231 is_night_flight = get_is_night_flight(pair_dict ,

232 file.name [20:][: -4] ,

116

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

233 file.name [13:][:6] ,

234 file.name [5:][: -21] ,

235 soc_opt_ds_airtraf ,

236 t_th)

237 if is_night_flight and allowed_time_stamps == ’day’:

238 time_match = False

239 elif not is_night_flight and allowed_time_stamps == ’night’:

240 time_match = False

241 else:

242 time_match = True

243

244 if time_match:

245 if raw_pareto.ndim == 1: # Prevent wrong array format if POBJ__.dat

file contains only one point

246 raw_pareto = np.array([raw_pareto])

247

248 # Correct from pulse ATR20 to F-ATR20

249 raw_pareto [:, 1] = raw_pareto [:, 1] * 0.9654676258992805

250

251 # Remove any duplicates and sort with SOC

252 sorted_pareto = np.unique(raw_pareto , axis =0)

253

254 # Obtain the SOC -optimal SOC and contrail ATR20 for this flight

255 soc_opt_soc = min(sorted_pareto [:, 0])

256 soc_opt_contrail_atr20 = sorted_pareto[np.where(sorted_pareto [:, 0]

== soc_opt_soc), 1]

257

258 if not allow_cooling: # If cooling is not allowed

259 sorted_pareto = sorted_pareto[sorted_pareto [:, 1] >= 0] # only

keep points with positive ATR20

260 if len(sorted_pareto) == 0: # Correct if all points were

removed

261 sorted_pareto = np.array ([[soc_opt_soc ,

soc_opt_contrail_atr20]], dtype=object)

262

263 # Calculate the change in SOC and contrail ATR20 for this flight

264 delta_pareto = np.zeros(sorted_pareto.size).reshape(sorted_pareto.

shape)

265 delta_pareto [:, 0] = sorted_pareto [:, 0] - soc_opt_soc

266 delta_pareto [:, 1] = sorted_pareto [:, 1] - soc_opt_contrail_atr20

267

268 this_pair_distance = pair_dict[file.name [20:][: -4]][0]

269

270 # Normalize w.r.t. airport pair distance

271 delta_pareto_per_km = delta_pareto / this_pair_distance

272

273 # Save in Pareto list If the Pareto length is equal to or larger

than the specified minimum

274 if len(delta_pareto_per_km) >= int(n_min_points):

275 # Append to the Pareto list

276 pareto_lst.append ([file.name , len(delta_pareto_per_km),

delta_pareto_per_km])

277

278 n_flights = n_flights + 1

279 soc_opt_contrail_atr20_sum = soc_opt_contrail_atr20_sum +

soc_opt_contrail_atr20 / this_pair_distance

280 soc_opt_soc_sum = soc_opt_soc_sum + soc_opt_soc / this_pair_distance

281

282 average_soc_opt_contrail_atr20 = soc_opt_contrail_atr20_sum / n_flights

283 average_soc_opt_soc = soc_opt_soc_sum / n_flights

284

285 # Convert to array

286 pareto_array = np.array(pareto_lst , dtype=object)

287

288 # Check which Pareto contains the larges amount of points

289 largest_pareto = pareto_array[np.where(pareto_array [:, 1] == max(pareto_array [:, 1])

)][0][2]

290

291 # Prepare extended Pareto array

117

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

292 extended_pareto_array = pareto_array

293

294 # extend each Pareto to match the size of the largest Pareto

295 for pareto in extended_pareto_array: # For each Pareto

296 # Prepare point array matching the largest Pareto

297 extended_pareto = np.zeros(largest_pareto.size).reshape(largest_pareto.shape)

298 # Set point array fullness to 0

299 filled = 0

300 for point in pareto [2]: # For each point

301 # Find the budget of the original point

302 budget = max(pareto_array [:, 1]) / pareto [1]

303

304 if (filled - int(filled)) != 0: # If the previous slot is not 100% filled

305 rest = (int(filled + 1) - filled) # Find rest space in previous slot

306 extended_pareto[int(filled), :] = extended_pareto[int(filled), :] + rest

* point # Fill slot

307 filled = filled + rest # Update filled status

308 budget = budget - rest # Update budget status

309

310 for i in range(int(budget)): # Only entered if budget > 1

311 extended_pareto[int(filled), :] = point # Fill an integer number of

slots fitting the budget

312 filled = filled + 1 # Update filled status

313 budget = budget - 1 # Update budget status

314

315 if budget > 1e-10: # If not all of the budget is spend

316 extended_pareto[int(filled), :] = point * budget # put rest budget in

next slot

317 filled = filled + budget # Update filled status

318

319 # Replace original Pareto by extended Pareto

320 pareto [2] = extended_pareto

321

322 # Find the average Pareto

323 average_pareto = np.sum(extended_pareto_array [:, 2]) / len(extended_pareto_array)

324

325 max_relative_change_contrail_atr20 = min(average_pareto [:, 1]) /

average_soc_opt_contrail_atr20 * 100

326 max_relative_change_contrail_atr20 = round(max_relative_change_contrail_atr20 [0][0])

327 max_relative_change_soc = round(max(average_pareto [:, 0]) / average_soc_opt_soc *

100, 1)

328

329 to_be_returned = (average_pareto ,

330 max_relative_change_contrail_atr20 ,

331 max_relative_change_soc)

332

333 return to_be_returned

334

335

336 def new_pareto_front_finder(pareto_subset1 , pareto_subset2 , weight_factor =1):

337 """

==="

338 " Function that returns a new Pareto front better than a original overall Pareto

front "

339 " and the involved source points from pareto_subset1 and pareto_subset2

"

340 " Inputs: pareto_subset1 = the average Pareto point array of a subset of a Pareto

data "

341 " set , selected by a certain criterium (e.g. day)

"

342 " pareto_subset2 = the average Pareto point array of a subset of a Pareto

data "

343 " set , selected by a opposite criterium (e.g. night)

"

344 " weight_factor = weight applied to pareto_subset1

"

345

"===

118

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

"""

346

347 # Resample front with cheapest mitigation limit to match other front

348 if max(pareto_subset1 [:, 0]) > max(pareto_subset2 [:, 0]):

349 resampled_contrail_atr20_2 = np.interp(pareto_subset1 [:, 0], pareto_subset2 [:,

0], pareto_subset2 [:, 1])

350 resampled_pareto_2 = np.dstack ((np.where(pareto_subset1 [:, 0] > max(

pareto_subset2 [:, 0]), max(pareto_subset2 [:, 0]), pareto_subset1 [:, 0]),

resampled_contrail_atr20_2))

351 average_pareto = np.average(np.array([weight_factor * pareto_subset1 ,

resampled_pareto_2 [0]]), axis =0)

352 else:

353 resampled_contrail_atr20_1 = np.interp(pareto_subset2 [:, 0], pareto_subset1 [:,

0], pareto_subset1 [:, 1])

354 resampled_pareto_1 = np.dstack ((np.where(pareto_subset2 [:, 0] > max(

pareto_subset1 [:, 0]), max(pareto_subset1 [:, 0]), pareto_subset2 [:, 0]),

resampled_contrail_atr20_1))

355 average_pareto = np.average(np.array([pareto_subset2 , weight_factor *

resampled_pareto_1 [0]]), axis =0)

356

357 # Prepare a list of new candidate points

358 candidate_list = []

359 candidate_index_list = []

360

361 # Calculate the new candidate points

362 for i in range(len(pareto_subset1)): # For every day Pareto point

363 for j in range(len(pareto_subset2)): # For every night Pareto point

364 mean_point = (weight_factor * pareto_subset1[i]+ pareto_subset2[j])/2 # Find

the mean

365 candidate_list.append ([mean_point [0], mean_point [1]]) # Store this point in

candidates

366 candidate_index_list.append ([i, j]) # Store its indices

367

368 # Convert to array

369 candidate_array = np.array(candidate_list , dtype=object)

370

371 # Combine with the original average Pareto front

372 candidates_and_average_pareto = np.vstack ((average_pareto , candidate_array))

373

374 # Define function to find Pareto points (True) from a set of points

375 # https :// stackoverflow.com/questions /32791911/ fast -calculation -of-pareto -front -in-

python

376 def is_pareto(points):

377 is_efficient = np.ones(points.shape[0], dtype=bool)

378 for k, c in enumerate(points):

379 if is_efficient[k]:

380 is_efficient[is_efficient] = np.any(points[is_efficient] < c, axis =1) #

Keep any better point

381 is_efficient[k] = True # And keep self

382 return is_efficient

383

384 # Obtain the check from the is_pareto function

385 candidate_and_overall_pareto_check = is_pareto(candidates_and_average_pareto)

386

387 # Trim off the points of the original average Pareto

388 candidate_check = np.delete(candidate_and_overall_pareto_check , slice(len(

average_pareto)), 0)

389

390 # Prepare lists for the new Pareto points and their indices

391 new_pareto_points_lst = []

392 new_pareto_points_index_lst = []

393

394 # Append the Pareto points if identified as is_pareto

395 for p in range(len(candidate_array)):

396 if candidate_check[p]:

397 new_pareto_points_lst.append ([candidate_array[p][0], candidate_array[p][1]])

398 new_pareto_points_index_lst.append ([candidate_index_list[p][0],

candidate_index_list[p][1]])

399

119

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

400 # Convert to array

401 new_pareto_points_array = np.array(new_pareto_points_lst)

402 new_pareto_points_index_array = np.array(new_pareto_points_index_lst)

403

404 # Prepare list to store source points

405 source_points_lst1 = [] # For pareto_subset1

406 source_points_lst2 = [] # For pareto_subset2

407

408 # Store source points

409 for indices in new_pareto_points_index_array:

410 index1 = indices [0]

411 source_point1 = [pareto_subset1[index1][0], pareto_subset1[index1][1]]

412 source_points_lst1.append(source_point1)

413

414 index2 = indices [1]

415 source_point2 = [pareto_subset2[index2][0], pareto_subset2[index2][1]]

416 source_points_lst2.append(source_point2)

417

418 # Convert to array

419 source_points_array1 = np.array(source_points_lst1)

420 source_points_array2 = np.array(source_points_lst2)

421

422 to_be_returned = (average_pareto , new_pareto_points_array , source_points_array1 ,

source_points_array2)

423

424 return to_be_returned

425

426

427 def get_best_new_pareto_points(new_pareto_points_array , average_pareto ,

source_points_array1 , source_points_array2 , n_points =5):

428 """

==="

429 " Function that returns the best Pareto points of a new Pareto front and the

involved "

430 " source points

"

431 " Inputs: new_pareto_points_array = array of the new Pareto points

"

432 " overall_pareto = the overall average Pareto point array of a Pareto data

set "

433 " source_points_array1 = involved source points from pareto_subset1

"

434 " source_points_array2 = involved source points from pareto_subset2

"

435 " n_points = the amount of best points

"

436

"===

"""

437

438 # Sample the polynomial fit

439 sampled_new_points = np.interp(np.linspace(min(average_pareto [:, 1]), 0, 5000),

average_pareto [:, 1], average_pareto [:, 0])

440

441 # Combine the atr20 values and soc values into an array

442 atr_values = [[item] for item in np.linspace(min(average_pareto [:, 1]), 0, 5000)]

443 soc_values = [[item] for item in sampled_new_points]

444 sampled_new_points = np.hstack ((soc_values , atr_values))

445

446 # Prepare a list of the minimum distance for new points to the sampled overall

points

447 minimum_distance_lst = []

448

449 # Find the minimum distance for new points to the sampled overall points

450 for point in new_pareto_points_array: # For each new Pareto point

451 # Get the distance to every overall Pareto point

452 distances_to_average_pareto_atr20 = cdist(np.array([point]), sampled_new_points)

453 # Get the index of the minimum of those distances

120

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

454 minimum_distance_index = np.argmin(distances_to_average_pareto_atr20)

455 # Get the minimum of those distances

456 minimum_distance = distances_to_average_pareto_atr20 [0][minimum_distance_index]

457 # Append the distance to the minimum_distance_lst

458 minimum_distance_lst.append(minimum_distance)

459

460 # Covert list to array

461 minimum_distance_array = np.array(minimum_distance_lst)

462

463 # Find the index of the n points with the largest distance to the overall Pareto

464 best_point_index_array = np.argpartition(minimum_distance_array , -n_points)[-

n_points :]

465

466 # Save the n points with the largest distance to the overall Pareto and their source

points

467 best_new_pareto_points = new_pareto_points_array[best_point_index_array]

468 best_source_points1 = source_points_array1[best_point_index_array]

469 best_source_points2 = source_points_array2[best_point_index_array]

470

471 return best_new_pareto_points , best_source_points1 , best_source_points2

1 """

==="

2 " File that plots the delta effective specific contrail ATR20 [K/km] as Pareto front

"

3 " with excluded extra cooling.bThe day and night front are plotted separately for

"

4 " winter and summer. Use is made of waypoint data.

"

5 "===

"""

6

7 # Import functions

8 from waypoint_pareto_plotter_no_extra_cooling_pp_functions import *

9 import matplotlib.pyplot as plt

10

11

12 def waypoint_pareto_plotter_no_extra_cooling_function(t_th):

13 print("#*#*# WAYPOINT DATA PARETO PLOTTER NO EXTRA COOLING FOR t_{TH} = " + str(t_th

) + "H STARTED #*#*#")

14

15 # --------------- GET TO DATA --------------- #

16 # Define paths to data

17 f00_airtraf_folder_w = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/W_’ + str(t_th) + ’h/f00’

18 f05_airtraf_folder_w = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/W_’ + str(t_th) + ’h/f05’

19 f100_airtraf_folder_w = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes

/Final_PP/W_’ + str(t_th) + ’h/f100’

20 f00_airtraf_folder_s = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/S_’ + str(t_th) + ’h/f00’

21 f05_airtraf_folder_s = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes/

Final_PP/S_’ + str(t_th) + ’h/f05’

22 f100_airtraf_folder_s = ’C:/ Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Codes

/Final_PP/S_’ + str(t_th) + ’h/f100’

23

24 print("[[[[[[[[[[[[[[[[[[[[[[[[WINTER]]]]]]]]]]]]]]]]]]]]]]]]")

25 results_w = get_average_pareto_front_waypoints_no_extra_cooling(f00_airtraf_folder=

f00_airtraf_folder_w ,

26 f05_airtraf_folder=

f05_airtraf_folder_w ,

27 f100_airtraf_folder=

f100_airtraf_folder_w ,

28 t_th=t_th)

29

30 delta_daytime_contrail_atr20_lst_w = results_w [0]

31 delta_nighttime_contrail_atr20_lst_w = results_w [1]

32 delta_daytime_soc_lst_w = results_w [2]

33 delta_nighttime_soc_lst_w = results_w [3]

121

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

34 func_daytime_w = results_w [4]

35 func_nighttime_w = results_w [5]

36 max_nighttime_relative_change_contrail_atr20_w = results_w [6]

37 max_nighttime_relative_change_soc_w = results_w [7]

38 max_daytime_relative_change_contrail_atr20_w = results_w [8]

39 max_daytime_relative_change_soc_w = results_w [9]

40 nighttime_segments_00_w = results_w [10]

41 treated_nighttime_segments_05_w = results_w [11]

42 treated_nighttime_segments_100_w = results_w [12]

43 treated_std_plus_delta_nighttime_contrail_atr20_lst_w = results_w [13]

44 treated_std_plus_delta_daytime_contrail_atr20_lst_w = results_w [14]

45 treated_std_plus_delta_nighttime_soc_lst_w = results_w [15]

46 treated_std_plus_delta_daytime_soc_lst_w = results_w [16]

47 treated_std_min_delta_nighttime_contrail_atr20_lst_w = results_w [17]

48 treated_std_min_delta_daytime_contrail_atr20_lst_w = results_w [18]

49 treated_std_min_delta_nighttime_soc_lst_w = results_w [19]

50 treated_std_min_delta_daytime_soc_lst_w = results_w [20]

51 treated_std_plus_func_nighttime_w = results_w [21]

52 treated_std_plus_func_daytime_w = results_w [22]

53 treated_std_min_func_nighttime_w = results_w [23]

54 treated_std_min_func_daytime_w = results_w [24]

55 med_nighttime_relative_change_contrail_atr20_w = results_w [25]

56 med_nighttime_relative_change_soc_w = results_w [26]

57 med_daytime_relative_change_contrail_atr20_w = results_w [27]

58 med_daytime_relative_change_soc_w = results_w [28]

59

60 get_potcov_average_pareto_front_waypoints_no_extra_cooling(f00_airtraf_folder=

f00_airtraf_folder_w ,

61 f05_airtraf_folder=

f05_airtraf_folder_w ,

62 f100_airtraf_folder=

f100_airtraf_folder_w ,

63 nighttime_segments_00=

nighttime_segments_00_w ,

64

treated_nighttime_segments_05=treated_nighttime_segments_05_w ,

65

treated_nighttime_segments_100=treated_nighttime_segments_100_w)

66

67 print("[[[[[[[[[[[[[[[[[[[[[[[[SUMMER]]]]]]]]]]]]]]]]]]]]]]]]")

68 results_s = get_average_pareto_front_waypoints_no_extra_cooling(f00_airtraf_folder=

f00_airtraf_folder_s ,

69 f05_airtraf_folder=

f05_airtraf_folder_s ,

70 f100_airtraf_folder=

f100_airtraf_folder_s ,

71 t_th=t_th)

72

73 delta_daytime_contrail_atr20_lst_s = results_s [0]

74 delta_nighttime_contrail_atr20_lst_s = results_s [1]

75 delta_daytime_soc_lst_s = results_s [2]

76 delta_nighttime_soc_lst_s = results_s [3]

77 func_daytime_s = results_s [4]

78 func_nighttime_s = results_s [5]

79 max_nighttime_relative_change_contrail_atr20_s = results_s [6]

80 max_nighttime_relative_change_soc_s = results_s [7]

81 max_daytime_relative_change_contrail_atr20_s = results_s [8]

82 max_daytime_relative_change_soc_s = results_s [9]

83 nighttime_segments_00_s = results_s [10]

84 treated_nighttime_segments_05_s = results_s [11]

85 treated_nighttime_segments_100_s = results_s [12]

86 treated_std_plus_delta_nighttime_contrail_atr20_lst_s = results_s [13]

87 treated_std_plus_delta_daytime_contrail_atr20_lst_s = results_s [14]

88 treated_std_plus_delta_nighttime_soc_lst_s = results_s [15]

89 treated_std_plus_delta_daytime_soc_lst_s = results_s [16]

90 treated_std_min_delta_nighttime_contrail_atr20_lst_s = results_s [17]

91 treated_std_min_delta_daytime_contrail_atr20_lst_s = results_s [18]

92 treated_std_min_delta_nighttime_soc_lst_s = results_s [19]

93 treated_std_min_delta_daytime_soc_lst_s = results_s [20]

122

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

94 treated_std_plus_func_nighttime_s = results_s [21]

95 treated_std_plus_func_daytime_s = results_s [22]

96 treated_std_min_func_nighttime_s = results_s [23]

97 treated_std_min_func_daytime_s = results_s [24]

98 med_nighttime_relative_change_contrail_atr20_s = results_s [25]

99 med_nighttime_relative_change_soc_s = results_s [26]

100 med_daytime_relative_change_contrail_atr20_s = results_s [27]

101 med_daytime_relative_change_soc_s = results_s [28]

102

103 get_potcov_average_pareto_front_waypoints_no_extra_cooling(f00_airtraf_folder=

f00_airtraf_folder_s ,

104 f05_airtraf_folder=

f05_airtraf_folder_s ,

105 f100_airtraf_folder=

f100_airtraf_folder_s ,

106 nighttime_segments_00=

nighttime_segments_00_s ,

107

treated_nighttime_segments_05=treated_nighttime_segments_05_s ,

108

treated_nighttime_segments_100=treated_nighttime_segments_100_s)

109

110 # Plotting

111 plt.rcParams.update ({’font.size’: 20})

112 fig , (ax) = plt.subplots(1, 1, figsize =(12, 10))

113

114 ax.scatter(delta_daytime_contrail_atr20_lst_w , delta_daytime_soc_lst_w , marker=’^’,

color=’gold’, label=’day winter ’)

115 ax.scatter(delta_nighttime_contrail_atr20_lst_w , delta_nighttime_soc_lst_w , marker=’

^’, color=’midnightblue ’, label=’night winter ’)

116 ax.plot(delta_nighttime_contrail_atr20_lst_w , func_nighttime_w(

delta_nighttime_contrail_atr20_lst_w), color=’midnightblue ’, linestyle=’dashed ’)

117 ax.plot(delta_daytime_contrail_atr20_lst_w , func_daytime_w(

delta_daytime_contrail_atr20_lst_w), color=’gold’, linestyle=’dashed ’)

118 ax.fill(np.append(treated_std_min_delta_nighttime_contrail_atr20_lst_w ,

treated_std_plus_delta_nighttime_contrail_atr20_lst_w [:: -1]),

119 np.append(delta_nighttime_soc_lst_w , delta_nighttime_soc_lst_w [:: -1]),

120 color=’midnightblue ’,

121 alpha =0.1)

122 ax.fill(np.append(treated_std_min_delta_daytime_contrail_atr20_lst_w ,

treated_std_plus_delta_daytime_contrail_atr20_lst_w [:: -1]),

123 np.append(delta_daytime_soc_lst_w , delta_daytime_soc_lst_w [:: -1]),

124 color=’gold’,

125 alpha =0.1)

126

127 ax.scatter(delta_daytime_contrail_atr20_lst_s , delta_daytime_soc_lst_s , marker=’o’,

color=’gold’, label=’day summer ’)

128 ax.scatter(delta_nighttime_contrail_atr20_lst_s , delta_nighttime_soc_lst_s , marker=’

o’, color=’midnightblue ’, label=’night summer ’)

129 ax.plot(delta_nighttime_contrail_atr20_lst_s , func_nighttime_s(

delta_nighttime_contrail_atr20_lst_s), color=’midnightblue ’, linestyle=’dashed ’)

130 ax.plot(delta_daytime_contrail_atr20_lst_s , func_daytime_s(

delta_daytime_contrail_atr20_lst_s), color=’gold’, linestyle=’dashed ’)

131 ax.fill(np.append(treated_std_min_delta_nighttime_contrail_atr20_lst_s ,

treated_std_plus_delta_nighttime_contrail_atr20_lst_s [:: -1]),

132 np.append(delta_nighttime_soc_lst_s , delta_nighttime_soc_lst_s [:: -1]),

133 color=’midnightblue ’,

134 alpha =0.1)

135 ax.fill(np.append(treated_std_min_delta_daytime_contrail_atr20_lst_s ,

treated_std_plus_delta_daytime_contrail_atr20_lst_s [:: -1]),

136 np.append(delta_daytime_soc_lst_s , delta_daytime_soc_lst_s [:: -1]),

137 color=’gold’,

138 alpha =0.1)

139

140 ax.set_xlabel(r’$\Delta \overline{eATR20}_{contrail}$ [K/km]’)

141 ax.set_ylabel(r’$\Delta \overline{eSOC}$ [\$/km]’)
142 ax.legend ()

143

144 ax.text(min(delta_daytime_contrail_atr20_lst_w), max(delta_daytime_soc_lst_w), ’(’+

123

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

str(max_daytime_relative_change_contrail_atr20_w)+’%,’+str(

max_daytime_relative_change_soc_w)+’%)’, horizontalalignment=’left’, color=’

goldenrod ’, fontsize=’small’)

145 ax.text(min(delta_nighttime_contrail_atr20_lst_w), max(delta_nighttime_soc_lst_w), ’

(’+str(max_nighttime_relative_change_contrail_atr20_w)+’%,’+str(

max_nighttime_relative_change_soc_w)+’%)’, horizontalalignment=’left’, color=’

midnightblue ’, fontsize=’small’)

146 ax.text(min(delta_daytime_contrail_atr20_lst_s), max(delta_daytime_soc_lst_s), ’(’+

str(max_daytime_relative_change_contrail_atr20_s)+’%,’+str(

max_daytime_relative_change_soc_s)+’%)’, horizontalalignment=’left’, color=’

goldenrod ’, fontsize=’small’)

147 ax.text(min(delta_nighttime_contrail_atr20_lst_s), max(delta_nighttime_soc_lst_s), ’

(’+str(max_nighttime_relative_change_contrail_atr20_s)+’%,’+str(

max_nighttime_relative_change_soc_s)+’%)’, horizontalalignment=’left’, color=’

midnightblue ’, fontsize=’small’)

148

149 ax.text(delta_daytime_contrail_atr20_lst_w [1], delta_daytime_soc_lst_w [1], ’(’+str(

med_daytime_relative_change_contrail_atr20_w)+’%,’+str(

med_daytime_relative_change_soc_w)+’%)’, horizontalalignment=’left’, color=’

goldenrod ’, fontsize=’small’)

150 ax.text(delta_nighttime_contrail_atr20_lst_w [1], delta_nighttime_soc_lst_w [1], ’(’+

str(med_nighttime_relative_change_contrail_atr20_w)+’%,’+str(

med_nighttime_relative_change_soc_w)+’%)’, horizontalalignment=’left’, color=’

midnightblue ’, fontsize=’small’)

151 ax.text(delta_daytime_contrail_atr20_lst_s [1], delta_daytime_soc_lst_s [1], ’(’+str(

med_daytime_relative_change_contrail_atr20_s)+’%,’+str(

med_daytime_relative_change_soc_s)+’%)’, horizontalalignment=’left’, color=’

goldenrod ’, fontsize=’small’)

152 ax.text(delta_nighttime_contrail_atr20_lst_s [1], delta_nighttime_soc_lst_s [1], ’(’+

str(med_nighttime_relative_change_contrail_atr20_s)+’%,’+str(

med_nighttime_relative_change_soc_s)+’%)’, horizontalalignment=’left’, color=’

midnightblue ’, fontsize=’small’)

153

154 plt.tight_layout ()

155 fig.savefig(’C:/Users/wesse/Documents/AE/Master/Quarter 2.1/ Thesis/Main Phase/Images

/plots/waypoint_pareto_no_cooling_ ’ + str(t_th) + ’h.pdf’)

156

157 plt.show()

158

159 return print("#*#*# WAYPOINT DATA PARETO PLOTTER NO EXTRA COOLING FOR t_{TH} = " +

str(t_th) + "H FINISHED #*#*#")

1 import numpy as np

2 import xarray as xr

3 import suntimes as sts

4 import datetime as dt

5 import pandas as pd

6

7

8 def get_per_segment_km(ds):

9 """

==="

10 " Function that returns the per segment km of a data set

"

11 " Inputs: ds = AirTraf dataset routes_out

"

12

"===

"""

13 # Get to the segment kilometer property

14 ds_km = ds.isel(AirTraf_properties =5).drop_isel(AirTraf_waypoints_out =0)

15

16 return ds_km

17

18

19 def get_effective_per_segment_km(ds):

20 """

==="

124

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

21 " Function that returns the effective per segment km of a data set

"

22 " Inputs: ds = AirTraf dataset routes_out

"

23

"===

"""

24 # Find the jump in longitude and latitude for each segment

25 segment_lon_1 = ds.isel(AirTraf_properties =0).drop_isel(AirTraf_waypoints_out =-1)

26 segment_lon_2 = ds.isel(AirTraf_properties =0).drop_isel(AirTraf_waypoints_out =0)

27 segment_delta_lon = segment_lon_2 - segment_lon_1

28 segment_lat_1 = ds.isel(AirTraf_properties =1).drop_isel(AirTraf_waypoints_out =-1)

29 segment_lat_2 = ds.isel(AirTraf_properties =1).drop_isel(AirTraf_waypoints_out =0)

30 segment_delta_lat = segment_lat_2 - segment_lat_1

31

32 # prevent later division by zero

33 segment_delta_lon_safe = segment_delta_lon.where(abs(segment_delta_lon) > 0.00001 ,

0.00001)

34

35 # Find the jump in longitude and latitude for each flight

36 flight_lon_1 = ds.isel(AirTraf_properties =0).isel(AirTraf_waypoints_out =0)

37 flight_lon_2 = ds.isel(AirTraf_properties =0).isel(AirTraf_waypoints_out =-1)

38 flight_delta_lon = flight_lon_2 - flight_lon_1

39 flight_lat_1 = ds.isel(AirTraf_properties =1).isel(AirTraf_waypoints_out =0)

40 flight_lat_2 = ds.isel(AirTraf_properties =1).isel(AirTraf_waypoints_out =-1)

41 flight_delta_lat = flight_lat_2 - flight_lat_1

42

43 # prevent later division by zero

44 flight_delta_lon_safe = flight_delta_lon.where(abs(flight_delta_lon) > 0.00001 ,

0.00001)

45

46 # Take the arctan of the jump in latitude over the jump in longitude to get the

angle

47 segment_orientation = np.arctan(segment_delta_lat / segment_delta_lon_safe)

48 flight_orientation = np.arctan(flight_delta_lat / flight_delta_lon_safe)

49

50 # Find the difference in angle

51 delta_orientation = abs(segment_orientation - flight_orientation)

52

53 # Find the corresponding cosine

54 segment_cos = np.cos(delta_orientation)

55

56 # Get the plain distance

57 per_segment_km = get_per_segment_km(ds)

58

59 # Compute the effective component of the plain distance

60 effective_distance = segment_cos * per_segment_km

61

62 return effective_distance

63

64

65 def get_per_segment_contrail_atr20(ds):

66 """

==="

67 " Function that returns the per segment contrail ATR20 of a data set

"

68 " Inputs: ds = AirTraf dataset routes_out

"

69

"===

"""

70 # Get to the contrail atr20 property and correct from pulse ATR20 to F-ATR20

71 ds_contrail_atr20 = ds.isel(AirTraf_properties =13).drop_isel(AirTraf_waypoints_out

=0) *0.9654676258992805

72

73 return ds_contrail_atr20

74

75

125

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

76 def get_per_segment_potcov(ds):

77 """

==="

78 " Function that returns the per segment potcov of a data set

"

79 " Inputs: ds = AirTraf dataset routes_out

"

80

"===

"""

81 # Get to the potcov property

82 ds_potcov = ds.isel(AirTraf_properties =9).drop_isel(AirTraf_waypoints_out =0)

83

84 return ds_potcov

85

86

87 def get_per_segment_soc(ds):

88 """

==="

89 " Function that returns the per segment Simple Operating Costs of a data set

"

90 " Inputs: ds = AirTraf dataset routes_out

"

91

"===

"""

92 fuel_price = 1.545 # Average fuel Price in March 2017 [US Dollar/

US Gallon]

93 fuel_density = 6.71 # Fuel_density [lbs/US Gallon]

94 c_f_lbs = fuel_price/fuel_density # Unit fuel costs [US Dollar/lbs]

95 c_f_kg = c_f_lbs /0.45359237 # Unit fuel costs [US Dollar/kg]

96

97 c_t_h = 2710 # Unit time costs [US Dollar/h]

98 c_o = 0.0 # other costs [US Dollar]

99

100 ds_v = ds.isel(AirTraf_properties =4, AirTraf_waypoints_out=slice(0, -1)) #

Aircraft ground speed [km/h]

101 ds_d = ds.isel(AirTraf_properties =5, AirTraf_waypoints_out=slice(1, None)) #

Distance for each segment [km]

102 ds_f = ds.isel(AirTraf_properties =6, AirTraf_waypoints_out=slice(1, None)) # Fuel

use [kg]

103

104 # Calculate time by dividing distance over speed

105 ds_t = ds_d/ds_v

106

107 # Calculate soc per segment in $
108 ds_soc = c_t_h * ds_t + c_f_kg * ds_f + c_o

109

110 return ds_soc

111

112

113 def get_overall_km(ds):

114 """

==="

115 " Function that returns the overall km of a data set

"

116 " Inputs: ds = AirTraf dataset routes_out

"

117

"===

"""

118 # Get to the contrail atr20 property

119 ds_km = ds.isel(AirTraf_properties =5)

120

121 # Get overall contrail atr20 by summing over all dimensions

122 overall_km = ds_km.sum(dim=[’AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

126

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

123

124 return overall_km

125

126

127 def get_overall_contrail_atr20(ds):

128 """

==="

129 " Function that returns the overall contrail ATR20 of a data set

"

130 " Inputs: ds = AirTraf dataset routes_out

"

131

"===

"""

132 # Get to the contrail atr20 property and correct from pulse ATR20 to F-ATR20

133 ds_contrail_atr20 = ds.isel(AirTraf_properties =13) *0.9654676258992805

134

135 # Get overall contrail atr20 by summing over all dimensions

136 overall_contrail_atr20 = ds_contrail_atr20.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

137

138 return overall_contrail_atr20

139

140

141 def get_overall_potcov(ds):

142 """

==="

143 " Function that returns the overall potcov of a data set

"

144 " Inputs: ds = AirTraf dataset routes_out

"

145

"===

"""

146 # Get to the potcov property

147 ds_potcov = ds.isel(AirTraf_properties =9)

148

149 # Get overall potcov by summing over all dimensions

150 overall_potcov = ds_potcov.sum(dim=[’AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’

time’])

151

152 return overall_potcov

153

154

155 def get_overall_soc(ds):

156 """

==="

157 " Function that returns the overall Simple Operating Costs of a data set

"

158 " Inputs: ds = AirTraf dataset routes_out

"

159

"===

"""

160 fuel_price = 1.545 # Average fuel Price in March 2017 [US Dollar/

US Gallon]

161 fuel_density = 6.71 # Fuel_density [lbs/US Gallon]

162 c_f_lbs = fuel_price/fuel_density # Unit fuel costs [US Dollar/lbs]

163 c_f_kg = c_f_lbs /0.45359237 # Unit fuel costs [US Dollar/kg]

164

165 c_t_h = 2710 # Unit time costs [US Dollar/h]

166 c_o = 0.0 # other costs [US Dollar]

167

168 ds_v = ds.isel(AirTraf_properties =4, AirTraf_waypoints_out=slice(0, -1)) #

Aircraft ground speed [km/h]

169 ds_d = ds.isel(AirTraf_properties =5, AirTraf_waypoints_out=slice(1, None)) #

127

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

Distance for each segment [km]

170 ds_f = ds.isel(AirTraf_properties =6, AirTraf_waypoints_out=slice(1, None)) # Fuel

use [kg]

171

172 # Calculate time by dividing distance over speed

173 ds_t = ds_d/ds_v

174

175 # Calculate soc per segment in $
176 ds_soc = c_t_h * ds_t + c_f_kg * ds_f + c_o

177

178 # Get overall SOC by summing over all dimensions

179 overall_soc = ds_soc.sum(dim=[’AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’

])

180

181 return overall_soc

182

183

184 def get_nighttime_segments(ds_airtraf , t_th):

185 """

==="

186 " Function that returns whether a segment is a nighttime (1) or a daytime segment

(0) "

187 " Inputs: ds_airtraf = AirTraf dataset , t_th = time in hours

"

188

"===

"""

189

190 # ============================= PART I: preparations =============================

191 # Returns the waypoint time stamps in datetime format for riseutc and setutc

192 def prepare_timestamps_for_waypoints(time_ns , ref_julian_date_ns):

193 # Add the ref_julian_date_ns to ds_time_ns

194 julian_date = (time_ns + ref_julian_date_ns) / 8.64 e13

195 # Turn into the datetime format

196 time_stamp = pd.to_datetime(julian_date , origin=’julian ’, unit="D")

197

198 return time_stamp

199

200 # Applies prepare_timestamps_for_waypoints to dataset

201 def apply_prepare_timestamps_for_waypoints(ds_airtraf):

202 ds = ds_airtraf["routes_out"]

203 # Get reference date (which is 1 day before first stored data)

204 ref_date = ds[’time’]. values [0] - np.timedelta64 (1, ’D’)

205 # [ns] Convert ref_date to Julian date for easier calculations

206 ref_julian_date_ns = pd.Timestamp(ref_date).to_julian_date () * 8.64 e13

207 # [ns] Convert time data set to Julian date for easier calculations

208 ds_time_ns = ds.isel(AirTraf_properties =3) * 8.64 e13

209

210 return xr.apply_ufunc(np.vectorize(prepare_timestamps_for_waypoints),

211 ds_time_ns ,

212 ref_julian_date_ns ,

213 dask=’allowed ’)

214

215 # Applies the sts.Suntimes function to prepare the waypoint place for riseutc and

setutc

216 def prepare_loc_for_suntimes(ds_airtraf):

217 ds = ds_airtraf["routes_out"]

218 da_lon = ds.isel(AirTraf_properties =0) # Get the longitude

219 da_lat = ds.isel(AirTraf_properties =1) # Get the latitude

220 da_alt = ds.isel(AirTraf_properties =2) # Get the altitude

221

222 return xr.apply_ufunc(np.vectorize(sts.SunTimes), da_lon , da_lat , da_alt , dask=’

allowed ’)

223

224 # Returns the segment time stamps in datetime format for get_is_nighttime and

get_is_nighttime_segment

225 def prepare_timestamps_for_segments(time_ns_0 , time_ns_1 , ref_julian_date_ns):

226 # Find the average of the waypoints time

128

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

227 average_time_ns = (time_ns_1 + time_ns_0) / 2

228 # Add the ref_julian_date_ns to ds_time_ns

229 average_julian_date = (average_time_ns + ref_julian_date_ns) / 8.64 e13

230 # Turn into the datetime format

231 time_stamp = pd.to_datetime(average_julian_date , origin=’julian ’, unit="D")

232

233 return time_stamp

234

235 # Applies prepare_timestamps_for_segments to dataset

236 def apply_prepare_timestamps_for_segments(ds_airtraf):

237 ds = ds_airtraf["routes_out"]

238 # Get reference date (which is 1 day before first stored data)

239 ref_date = ds[’time’]. values [0] - np.timedelta64 (1, ’D’)

240 # [ns] Convert ref_date to Julian date for easier calculations

241 ref_julian_date_ns = pd.Timestamp(ref_date).to_julian_date () * 8.64 e13

242 # [ns] Convert time data set to Julian date for easier calculations

243 ds_time_ns = ds.isel(AirTraf_properties =3) * 8.64 e13

244 # Get dataset with last waypoint removed

245 ds_time_ns_0 = ds_time_ns.drop_isel(AirTraf_waypoints_out =-1)

246 # Get dataset with first waypoint removed

247 ds_time_ns_1 = ds_time_ns.drop_isel(AirTraf_waypoints_out =0)

248

249 return xr.apply_ufunc(np.vectorize(prepare_timestamps_for_segments),

250 ds_time_ns_0 ,

251 ds_time_ns_1 ,

252 ref_julian_date_ns ,

253 dask=’allowed ’)

254

255 # ====================== PART II: get time stamps of current and next -day sunrise

and sunset ======================

256 # Returns the current day time of sunrise with the riseutc function

257 def get_time_of_sunrise(loc_prepared , timestamp_prepared , hemisphere=’N’):

258 date_time_timestamp = dt.datetime.utcfromtimestamp(int(timestamp_prepared)/1e9)

259 while True:

260 try:

261 time_of_sunrise = loc_prepared.riseutc(date_time_timestamp)

262 # If in region of polar day or polar night

263 except ValueError:

264 # If in region and time of polar day

265 if hemisphere == ’N’ and 2 < date_time_timestamp.month < 10:

266 # Search backwards for the day when the sun rose

267 date_time_timestamp = date_time_timestamp - dt.timedelta(days =1)

268 # If in region and time of polar night

269 else:

270 # Search forward for the day when the sun will rise

271 date_time_timestamp = date_time_timestamp + dt.timedelta(days =1)

272 continue

273 else:

274 break

275 return time_of_sunrise

276

277 # Applies get_time_of_sunrise to dataset

278 def apply_get_time_of_sunrise(ds_loc_prepared , ds_timestamp_prepared):

279 return xr.apply_ufunc(np.vectorize(get_time_of_sunrise),

280 ds_loc_prepared ,

281 ds_timestamp_prepared ,

282 ’N’,

283 dask=’allowed ’)

284

285 # Returns the current day time of sunset with the setutc function

286 def get_time_of_sunset(loc_prepared , timestamp_prepared , hemisphere=’N’):

287 date_time_timestamp = dt.datetime.utcfromtimestamp(int(timestamp_prepared) / 1e9

)

288 while True:

289 try:

290 time_of_sunset = loc_prepared.setutc(date_time_timestamp)

291 # If in region of polar day or polar night

292 except ValueError:

293 # If in region and time of polar day

129

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

294 if hemisphere == ’N’ and 2 < date_time_timestamp.month < 10:

295 # Search forward for the day when the sun will set

296 date_time_timestamp = date_time_timestamp + dt.timedelta(days =1)

297 # If in region and time of polar night

298 else:

299 # Search backward for the day when the sun had set

300 date_time_timestamp = date_time_timestamp - dt.timedelta(days =1)

301 continue

302 else:

303 break

304

305 return time_of_sunset

306

307 # Applies get_time_of_sunset to dataset

308 def apply_get_time_of_sunset(ds_loc_prepared , ds_timestamp_prepared):

309 return xr.apply_ufunc(np.vectorize(get_time_of_sunset),

310 ds_loc_prepared ,

311 ds_timestamp_prepared ,

312 ’N’,

313 dask=’allowed ’)

314

315 # Returns the coming day time of sunrise with the riseutc function

316 def get_next_day_time_of_sunrise(loc_prepared , timestamp_prepared , hemisphere=’N’):

317 date_time_timestamp = dt.datetime.utcfromtimestamp(int(timestamp_prepared) / 1e9

) + dt.timedelta(days =1)

318 while True:

319 try:

320 next_day_time_of_sunrise = loc_prepared.riseutc(date_time_timestamp)

321 # If in region of polar day or polar night

322 except ValueError:

323 # If in region and time of polar day

324 if hemisphere == ’N’ and 2 < date_time_timestamp.month < 10:

325 # Search backward for the day when the sun rose

326 date_time_timestamp = date_time_timestamp - dt.timedelta(days =1)

327 # If in region and time of polar night

328 else:

329 # Search forward for the day when the sun will rise

330 date_time_timestamp = date_time_timestamp + dt.timedelta(days =1)

331 continue

332 else:

333 break

334 return next_day_time_of_sunrise

335

336 # Applies get_next_day_time_of_sunrise to dataset

337 def apply_get_next_day_time_of_sunrise(ds_loc_prepared , ds_timestamp_prepared):

338 return xr.apply_ufunc(np.vectorize(get_next_day_time_of_sunrise),

339 ds_loc_prepared ,

340 ds_timestamp_prepared ,

341 ’N’,

342 dask=’allowed ’)

343

344 # ============================= PART III: get time until sunrise and sunset

=============================

345 # Returns the time until the next sunrise

346 def get_time_to_sunrise(timestamp_prepared , t_sunrise , next_day_t_sunrise):

347 # If the timestamp is earlier than today’s sunrise

348 if np.datetime64(timestamp_prepared , ’ns’) < np.datetime64(t_sunrise , ’ns’):

349 time_to_sunrise = np.datetime64(t_sunrise , ’ns’) - np.datetime64(

timestamp_prepared , ’ns’)

350 # If today’s sunrise has already passed

351 else:

352 time_to_sunrise = np.datetime64(next_day_t_sunrise , ’ns’) - np.datetime64(

timestamp_prepared , ’ns’)

353

354 return time_to_sunrise

355

356 # Applies get_time_to_sunrise to dataset

357 def apply_get_time_to_sunrise(ds_timestamp_prepared , ds_t_sunrise ,

ds_next_day_t_sunrise):

130

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

358 return xr.apply_ufunc(np.vectorize(get_time_to_sunrise),

359 ds_timestamp_prepared ,

360 ds_t_sunrise ,

361 ds_next_day_t_sunrise ,

362 dask=’allowed ’)

363

364 # ============================= PART IV: Check if it is currently nighttime

=============================

365 # Returns whether a waypoints is in nighttime

366 # Returns 1 if the current -day sunset has passed or the current -day sunrise is yet

to come. Else returns 0

367 def get_is_night(timestamp_prepared , t_sunrise , t_sunset):

368 # If the timestamp is earlier than today’s sunrise OR after today’s sunset

369 if (np.datetime64(timestamp_prepared , ’ns’) < np.datetime64(t_sunrise , ’ns’)) or

(

370 np.datetime64(timestamp_prepared , ’ns’) > np.datetime64(t_sunset , ’ns’))

:

371 is_night = 1

372 else:

373 is_night = 0

374

375 return is_night

376

377 # Applies get_is_night to dataset

378 def apply_get_is_night(ds_timestamp_segments_prepared , ds_segment_t_sunrise ,

ds_segment_t_sunset):

379 return xr.apply_ufunc(np.vectorize(get_is_night),

380 ds_timestamp_segments_prepared ,

381 ds_segment_t_sunrise ,

382 ds_segment_t_sunset ,

383 dask=’allowed ’)

384

385 # ============================= PART V: Check if the segment is a nighttime segment

=============================

386 # Returns whether a waypoint is a nighttime waypoint

387 # Returns 1 if it is night and the time to sunrise is larger than the threshold time

to sunrise. Else returns 0

388 def get_is_night_segment(nighttime , time_to_sunrise , t_th , contrail_atr20):

389 # if the contrail ATR20 has a value smaller than zero

390 if contrail_atr20 < 0:

391 is_night_segment = 0* nighttime

392 # If the time until sunrise is larger than the given threshold time to sunrise

393 elif np.timedelta64(time_to_sunrise , ’ns’) > np.timedelta64(int(t_th * 3.6e12),

’ns’):

394 is_night_segment = 1* nighttime

395 else:

396 is_night_segment = 0* nighttime

397

398 return is_night_segment

399

400 # Applies get_is_night_segment to dataset

401 def apply_get_is_night_segment(ds_nighttime , ds_segment_time_to_sunrise , t_th ,

ds_contrail_atr20):

402 return xr.apply_ufunc(np.vectorize(get_is_night_segment),

403 ds_nighttime ,

404 ds_segment_time_to_sunrise ,

405 t_th ,

406 ds_contrail_atr20 ,

407 dask=’allowed ’)

408

409 # ============================= PART VI: Execute the embedded functions

=============================

410 # Part I

411 ds_timestamp_prepared = apply_prepare_timestamps_for_waypoints(ds_airtraf)

412 ds_loc_prepared = prepare_loc_for_suntimes(ds_airtraf)

413 ds_timestamp_segments_prepared = apply_prepare_timestamps_for_segments(ds_airtraf)

414

415 # Part II

416 ds_t_sunrise = apply_get_time_of_sunrise(ds_loc_prepared , ds_timestamp_prepared)

131

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

417 ds_t_sunset = apply_get_time_of_sunset(ds_loc_prepared , ds_timestamp_prepared)

418 ds_next_day_t_sunrise = apply_get_next_day_time_of_sunrise(ds_loc_prepared ,

ds_timestamp_prepared)

419

420 # Find the time of sunrise and sunset per segment by averaging the time of its end

waypoints

421 ds_segment_t_sunrise = ds_t_sunrise.drop_isel(AirTraf_waypoints_out =-1)+(

ds_t_sunrise.drop_isel(AirTraf_waypoints_out =0)-ds_t_sunrise.drop_isel(

AirTraf_waypoints_out =-1))/2

422 ds_segment_t_sunset = ds_t_sunset.drop_isel(AirTraf_waypoints_out =-1)+(ds_t_sunset.

drop_isel(AirTraf_waypoints_out =0)-ds_t_sunset.drop_isel(AirTraf_waypoints_out =-1))

/2

423

424 # Part III

425 ds_time_to_sunrise = apply_get_time_to_sunrise(ds_timestamp_prepared , ds_t_sunrise ,

ds_next_day_t_sunrise)

426 ds_segment_time_to_sunrise = (ds_time_to_sunrise.drop_isel(AirTraf_waypoints_out =-1)

+ds_time_to_sunrise.drop_isel(AirTraf_waypoints_out =0))/2

427

428 # Part IV

429 ds_nighttime = apply_get_is_night(ds_timestamp_segments_prepared ,

ds_segment_t_sunrise , ds_segment_t_sunset)

430

431 # Part V

432 ds_nighttime_segments = apply_get_is_night_segment(ds_nighttime ,

ds_segment_time_to_sunrise , t_th , ds_airtraf["routes_out"].isel(AirTraf_properties

=13).drop_isel(AirTraf_waypoints_out =0) * 0.9654676258992805)

433

434 return ds_nighttime_segments

435

436

437 def get_average_pareto_front_waypoints_no_extra_cooling(f00_airtraf_folder ,

f05_airtraf_folder , f100_airtraf_folder , t_th):

438 """

==="

439 " Function that returns the delta specific effective contrail ATR20 and SOC

separately "

440 " for day and night without extra cooling. Also a function connecting the dots is

"

441 " provided.

"

442 " Inputs: 3x file path = 3x *airtraf_ac.nc files

"

443 " t_th

"

444

"===

"""

445 # Open the airtraf_ac.nc files

446 ds_airtraf_00 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f00_airtraf_folder))

447 ds_airtraf_05 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f05_airtraf_folder))

448 ds_airtraf_100 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f100_airtraf_folder))

449

450 # Correct for 12 h time step by removing duplicates if necessary

451 if ds_airtraf_00[’time’]. values [0]. astype(str)[11:13] == ’12’:

452 ds_airtraf_00 = ds_airtraf_00.drop_isel(time=np.arange(0, len(ds_airtraf_00["

routes_out"]), 2).tolist ())

453 if ds_airtraf_05[’time’]. values [0]. astype(str)[11:13] == ’12’:

454 ds_airtraf_05 = ds_airtraf_05.drop_isel(time=np.arange(0, len(ds_airtraf_05["

routes_out"]), 2).tolist ())

455 if ds_airtraf_100[’time’]. values [0]. astype(str)[11:13] == ’12’:

456 ds_airtraf_100 = ds_airtraf_100.drop_isel(time=np.arange(0, len(

ds_airtraf_100["routes_out"]), 2).tolist ())

457

458 # Get per segment contrail ATR20

459 per_segment_contrail_atr20_00 = get_per_segment_contrail_atr20(ds_airtraf_00["

routes_out"])

460 per_segment_contrail_atr20_05 = get_per_segment_contrail_atr20(ds_airtraf_05["

132

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

routes_out"])

461 per_segment_contrail_atr20_100 = get_per_segment_contrail_atr20(ds_airtraf_100["

routes_out"])

462

463 # Get the per_segment SOC

464 per_segment_soc_00 = get_per_segment_soc(ds_airtraf_00["routes_out"])

465 per_segment_soc_05 = get_per_segment_soc(ds_airtraf_05["routes_out"])

466 per_segment_soc_100 = get_per_segment_soc(ds_airtraf_100["routes_out"])

467

468 # --------------- REPLACE EXTRA COOLING SEGMENTS ---------------- #

469 # The SOC optimal segment is used , only if the +0.5% SOC segment is cooler and

cooling.

470 # Otherwise the +0.5% SOC segment is used.

471 treated_per_segment_contrail_atr20_05 = per_segment_contrail_atr20_00.where((

per_segment_contrail_atr20_05 < per_segment_contrail_atr20_00) & (

per_segment_contrail_atr20_05 < 0), per_segment_contrail_atr20_05)

472

473 # The treated +0.5% SOC segment is used , only if the climate optimal segment is

cooler and cooling.

474 # Otherwise the climate optimal segment is used.

475 treated_per_segment_contrail_atr20_100 = treated_per_segment_contrail_atr20_05.where

((per_segment_contrail_atr20_100 < treated_per_segment_contrail_atr20_05) & (

per_segment_contrail_atr20_100 < 0), per_segment_contrail_atr20_100)

476

477 # Where the contrail atr20 was replaced , also replace SOC

478 treated_per_segment_soc_05 = per_segment_soc_05.where(per_segment_contrail_atr20_05

== treated_per_segment_contrail_atr20_05 , per_segment_soc_00)

479

480 treated_per_segment_soc_100 = per_segment_soc_100.where(

per_segment_contrail_atr20_100 == treated_per_segment_contrail_atr20_100 ,

treated_per_segment_soc_05)

481

482 # --------------- DISTINCT NIGHT FROM DAY --------------- #

483 # Get witch segments are during daytime

484 nighttime_segments_00 = get_nighttime_segments(ds_airtraf_00 , t_th)

485 nighttime_segments_05 = get_nighttime_segments(ds_airtraf_05 , t_th)

486 nighttime_segments_100 = get_nighttime_segments(ds_airtraf_100 , t_th)

487

488 # Also treat nighttime/daytime for exclusion of extra cooling

489 treated_nighttime_segments_05 = nighttime_segments_05.where(

per_segment_contrail_atr20_05 == treated_per_segment_contrail_atr20_05 ,

nighttime_segments_00)

490

491 treated_nighttime_segments_100 = nighttime_segments_100.where(

per_segment_contrail_atr20_100 == treated_per_segment_contrail_atr20_100 ,

treated_nighttime_segments_05)

492

493 # Get witch segments are during daytime

494 daytime_segments_00 = (nighttime_segments_00 - 1) * -1

495 treated_daytime_segments_05 = (treated_nighttime_segments_05 - 1) * -1

496 treated_daytime_segments_100 = (treated_nighttime_segments_100 - 1) * -1

497

498 # Get the night contrail ATR20 per segment

499 night_per_segment_contrail_atr20_00 = per_segment_contrail_atr20_00 *

nighttime_segments_00

500 treated_night_per_segment_contrail_atr20_05 = treated_per_segment_contrail_atr20_05

* treated_nighttime_segments_05

501 treated_night_per_segment_contrail_atr20_100 =

treated_per_segment_contrail_atr20_100 * treated_nighttime_segments_100

502

503 # Check if any negative nighttime contrail ATR20 occurred

504 any_negative_night_contrail_atr20_00 = night_per_segment_contrail_atr20_00.where(

night_per_segment_contrail_atr20_00 < 0)

505 print("00 negative_night_contrail_ATR20_contributions ",

any_negative_night_contrail_atr20_00.count ().values)

506 treated_any_negative_night_contrail_atr20_05 =

treated_night_per_segment_contrail_atr20_05.where(

treated_night_per_segment_contrail_atr20_05 < 0)

507 print("05 negative_night_contrail_ATR20_contributions ",

133

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

treated_any_negative_night_contrail_atr20_05.count ().values)

508 treated_any_negative_night_contrail_atr20_100 =

treated_night_per_segment_contrail_atr20_100.where(

treated_night_per_segment_contrail_atr20_100 < 0)

509 print("100 negative_night_contrail_ATR20_contributions ",

treated_any_negative_night_contrail_atr20_100.count ().values)

510

511 # Get the day contrail ATR20 per segment

512 day_per_segment_contrail_atr20_00 = per_segment_contrail_atr20_00 *

daytime_segments_00

513 treated_day_per_segment_contrail_atr20_05 = treated_per_segment_contrail_atr20_05 *

treated_daytime_segments_05

514 treated_day_per_segment_contrail_atr20_100 = treated_per_segment_contrail_atr20_100

* treated_daytime_segments_100

515

516 # Get the night SOC per segment

517 night_per_segment_soc_00 = per_segment_soc_00 * nighttime_segments_00

518 treated_night_per_segment_soc_05 = treated_per_segment_soc_05 *

treated_nighttime_segments_05

519 treated_night_per_segment_soc_100 = treated_per_segment_soc_100 *

treated_nighttime_segments_100

520

521 # Get the day SOC per segment

522 day_per_segment_soc_00 = per_segment_soc_00 * daytime_segments_00

523 treated_day_per_segment_soc_05 = treated_per_segment_soc_05 *

treated_daytime_segments_05

524 treated_day_per_segment_soc_100 = treated_per_segment_soc_100 *

treated_daytime_segments_100

525

526 # --------------- NORMALIZE W.R.T. SEGMENT EFFECTIVE KM --------------- #

527 effective_distance_00 = get_effective_per_segment_km(ds_airtraf_00["routes_out"])

528 effective_distance_05 = get_effective_per_segment_km(ds_airtraf_05["routes_out"])

529 effective_distance_100 = get_effective_per_segment_km(ds_airtraf_100["routes_out"])

530

531 # Also treat effective km for exclusion of extra cooling

532 treated_effective_distance_05 = effective_distance_05.where(

per_segment_contrail_atr20_05 == treated_per_segment_contrail_atr20_05 ,

effective_distance_00)

533

534 treated_effective_distance_100 = effective_distance_100.where(

per_segment_contrail_atr20_100 == treated_per_segment_contrail_atr20_100 ,

treated_effective_distance_05)

535

536 # Get the normalized night contrail ATR20 per segment

537 n_night_per_segment_contrail_atr20_00 = night_per_segment_contrail_atr20_00 /

effective_distance_00

538 treated_n_night_per_segment_contrail_atr20_05 =

treated_night_per_segment_contrail_atr20_05 / treated_effective_distance_05

539 treated_n_night_per_segment_contrail_atr20_100 =

treated_night_per_segment_contrail_atr20_100 / treated_effective_distance_100

540

541 # Get the normalized day contrail ATR20 per segment

542 n_day_per_segment_contrail_atr20_00 = day_per_segment_contrail_atr20_00 /

effective_distance_00

543 treated_n_day_per_segment_contrail_atr20_05 =

treated_day_per_segment_contrail_atr20_05 / treated_effective_distance_05

544 treated_n_day_per_segment_contrail_atr20_100 =

treated_day_per_segment_contrail_atr20_100 / treated_effective_distance_100

545

546 # Get the normalized night SOC per segment

547 n_night_per_segment_soc_00 = night_per_segment_soc_00 / effective_distance_00

548 treated_n_night_per_segment_soc_05 = treated_night_per_segment_soc_05 /

treated_effective_distance_05

549 treated_n_night_per_segment_soc_100 = treated_night_per_segment_soc_100 /

treated_effective_distance_100

550

551 # Get the normalized day SOC per segment

552 n_day_per_segment_soc_00 = day_per_segment_soc_00 / effective_distance_00

553 treated_n_day_per_segment_soc_05 = treated_day_per_segment_soc_05 /

134

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

treated_effective_distance_05

554 treated_n_day_per_segment_soc_100 = treated_day_per_segment_soc_100 /

treated_effective_distance_100

555

556 # --------------- GET STANDARD DEVIATION --------------- #

557 prep_std_nighttime_segments_00 = nighttime_segments_00.where(nighttime_segments_00

!= 0, np.nan)

558 treated_prep_std_nighttime_segments_05 = treated_nighttime_segments_05.where(

treated_nighttime_segments_05 != 0, np.nan)

559 treated_prep_std_nighttime_segments_100 = treated_nighttime_segments_100.where(

treated_nighttime_segments_100 != 0, np.nan)

560

561 prep_std_daytime_segments_00 = daytime_segments_00.where(daytime_segments_00 != 0,

np.nan)

562 treated_prep_std_daytime_segments_05 = treated_daytime_segments_05.where(

treated_daytime_segments_05 != 0, np.nan)

563 treated_prep_std_daytime_segments_100 = treated_daytime_segments_100.where(

treated_daytime_segments_100 != 0, np.nan)

564

565 prep_std_per_segment_night_contrail_atr20_00 = n_night_per_segment_contrail_atr20_00

* prep_std_nighttime_segments_00

566 treated_prep_std_per_segment_night_contrail_atr20_05 =

treated_n_night_per_segment_contrail_atr20_05 *

treated_prep_std_nighttime_segments_05

567 treated_prep_std_per_segment_night_contrail_atr20_100 =

treated_n_night_per_segment_contrail_atr20_100 *

treated_prep_std_nighttime_segments_100

568

569 prep_std_per_segment_night_soc_00 = n_night_per_segment_soc_00 *

prep_std_nighttime_segments_00

570 treated_prep_std_per_segment_night_soc_05 = treated_n_night_per_segment_soc_05 *

treated_prep_std_nighttime_segments_05

571 treated_prep_std_per_segment_night_soc_100 = treated_n_night_per_segment_soc_100 *

treated_prep_std_nighttime_segments_100

572

573 prep_std_per_segment_day_contrail_atr20_00 = n_day_per_segment_contrail_atr20_00 *

prep_std_daytime_segments_00

574 treated_prep_std_per_segment_day_contrail_atr20_05 =

treated_n_day_per_segment_contrail_atr20_05 * treated_prep_std_daytime_segments_05

575 treated_prep_std_per_segment_day_contrail_atr20_100 =

treated_n_day_per_segment_contrail_atr20_100 * treated_prep_std_daytime_segments_100

576

577 prep_std_per_segment_day_soc_00 = n_day_per_segment_soc_00 *

prep_std_daytime_segments_00

578 treated_prep_std_per_segment_day_soc_05 = treated_n_day_per_segment_soc_05 *

treated_prep_std_daytime_segments_05

579 treated_prep_std_per_segment_day_soc_100 = treated_n_day_per_segment_soc_100 *

treated_prep_std_daytime_segments_100

580

581 prep_std_night_daily_mean_contrail_atr20_00 =

prep_std_per_segment_night_contrail_atr20_00.mean(dim=["AirTraf_routes_out", "

AirTraf_waypoints_out"], skipna=True)

582 treated_prep_std_night_daily_mean_contrail_atr20_05 =

treated_prep_std_per_segment_night_contrail_atr20_05.mean(dim=["AirTraf_routes_out",

"AirTraf_waypoints_out"], skipna=True)

583 treated_prep_std_night_daily_mean_contrail_atr20_100 =

treated_prep_std_per_segment_night_contrail_atr20_100.mean(dim=["AirTraf_routes_out"

, "AirTraf_waypoints_out"], skipna=True)

584

585 prep_std_night_daily_mean_soc_00 = prep_std_per_segment_night_soc_00.mean(dim=["

AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

586 treated_prep_std_night_daily_mean_soc_05 = treated_prep_std_per_segment_night_soc_05

.mean(dim=["AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

587 treated_prep_std_night_daily_mean_soc_100 =

treated_prep_std_per_segment_night_soc_100.mean(dim=["AirTraf_routes_out", "

AirTraf_waypoints_out"], skipna=True)

588

589 prep_std_day_daily_mean_contrail_atr20_00 =

prep_std_per_segment_day_contrail_atr20_00.mean(dim=["AirTraf_routes_out", "

135

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

AirTraf_waypoints_out"], skipna=True)

590 treated_prep_std_day_daily_mean_contrail_atr20_05 =

treated_prep_std_per_segment_day_contrail_atr20_05.mean(dim=["AirTraf_routes_out", "

AirTraf_waypoints_out"], skipna=True)

591 treated_prep_std_day_daily_mean_contrail_atr20_100 =

treated_prep_std_per_segment_day_contrail_atr20_100.mean(dim=["AirTraf_routes_out",

"AirTraf_waypoints_out"], skipna=True)

592

593 prep_std_day_daily_mean_soc_00 = prep_std_per_segment_day_soc_00.mean(dim=["

AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

594 treated_prep_std_day_daily_mean_soc_05 = treated_prep_std_per_segment_day_soc_05.

mean(dim=["AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

595 treated_prep_std_day_daily_mean_soc_100 = treated_prep_std_per_segment_day_soc_100.

mean(dim=["AirTraf_routes_out", "AirTraf_waypoints_out"], skipna=True)

596

597 treated_prep_std_night_delta_daily_mean_contrail_atr20_05 =

treated_prep_std_night_daily_mean_contrail_atr20_05 -

prep_std_night_daily_mean_contrail_atr20_00

598 treated_prep_std_night_delta_daily_mean_contrail_atr20_100 =

treated_prep_std_night_daily_mean_contrail_atr20_100 -

prep_std_night_daily_mean_contrail_atr20_00

599

600 treated_prep_std_night_delta_daily_mean_soc_05 =

treated_prep_std_night_daily_mean_soc_05 - prep_std_night_daily_mean_soc_00

601 treated_prep_std_night_delta_daily_mean_soc_100 =

treated_prep_std_night_daily_mean_soc_100 - prep_std_night_daily_mean_soc_00

602

603 treated_prep_std_day_delta_daily_mean_contrail_atr20_05 =

treated_prep_std_day_daily_mean_contrail_atr20_05 -

prep_std_day_daily_mean_contrail_atr20_00

604 treated_prep_std_day_delta_daily_mean_contrail_atr20_100 =

treated_prep_std_day_daily_mean_contrail_atr20_100 -

prep_std_day_daily_mean_contrail_atr20_00

605

606 treated_prep_std_day_delta_daily_mean_soc_05 =

treated_prep_std_day_daily_mean_soc_05 - prep_std_day_daily_mean_soc_00

607 treated_prep_std_day_delta_daily_mean_soc_100 =

treated_prep_std_day_daily_mean_soc_100 - prep_std_day_daily_mean_soc_00

608

609 treated_std_specific_night_delta_contrail_atr20_05 =

treated_prep_std_night_delta_daily_mean_contrail_atr20_05.std()

610 treated_std_specific_night_delta_contrail_atr20_100 =

treated_prep_std_night_delta_daily_mean_contrail_atr20_100.std()

611

612 treated_std_specific_night_delta_soc_05 =

treated_prep_std_night_delta_daily_mean_soc_05.std()

613 treated_std_specific_night_delta_soc_100 =

treated_prep_std_night_delta_daily_mean_soc_100.std()

614

615 treated_std_specific_day_delta_contrail_atr20_05 =

treated_prep_std_day_delta_daily_mean_contrail_atr20_05.std()

616 treated_std_specific_day_delta_contrail_atr20_100 =

treated_prep_std_day_delta_daily_mean_contrail_atr20_100.std()

617

618 treated_std_specific_day_delta_soc_05 = treated_prep_std_day_delta_daily_mean_soc_05

.std()

619 treated_std_specific_day_delta_soc_100 =

treated_prep_std_day_delta_daily_mean_soc_100.std()

620

621 # --------------- SUM TO A TOTAL --------------- #

622 # Get total nighttime contrail ATR20

623 total_nighttime_contrail_atr20_00 = n_night_per_segment_contrail_atr20_00.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

624 treated_total_nighttime_contrail_atr20_05 =

treated_n_night_per_segment_contrail_atr20_05.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

625 treated_total_nighttime_contrail_atr20_100 =

treated_n_night_per_segment_contrail_atr20_100.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

136

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

626

627 # Get total daytime contrail ATR20

628 total_daytime_contrail_atr20_00 = n_day_per_segment_contrail_atr20_00.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

629 treated_total_daytime_contrail_atr20_05 =

treated_n_day_per_segment_contrail_atr20_05.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

630 treated_total_daytime_contrail_atr20_100 =

treated_n_day_per_segment_contrail_atr20_100.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

631

632 # Get total nighttime SOC

633 total_nighttime_soc_00 = n_night_per_segment_soc_00.sum(dim=[’AirTraf_waypoints_out ’

, ’AirTraf_routes_out ’, ’time’])

634 treated_total_nighttime_soc_05 = treated_n_night_per_segment_soc_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

635 treated_total_nighttime_soc_100 = treated_n_night_per_segment_soc_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

636

637 # Get total daytime SOC

638 total_daytime_soc_00 = n_day_per_segment_soc_00.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

639 treated_total_daytime_soc_05 = treated_n_day_per_segment_soc_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

640 treated_total_daytime_soc_100 = treated_n_day_per_segment_soc_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

641

642 # --------------- NORMALIZE W.R.T. NUMBER OF SEGMENTS --------------- #

643 # Count number of night segments to later calculate the mean

644 n_nighttime_segments_00 = nighttime_segments_00.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

645 treated_n_nighttime_segments_05 = treated_nighttime_segments_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

646 treated_n_nighttime_segments_100 = treated_nighttime_segments_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

647

648 print("00 nighttime_segments ", n_nighttime_segments_00.values)

649 print("05 nighttime_segments ", treated_n_nighttime_segments_05.values)

650 print("100 nighttime_segments ", treated_n_nighttime_segments_100.values)

651

652 # Count number of day segments to later calculate the mean

653 n_daytime_segments_00 = daytime_segments_00.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

654 treated_n_daytime_segments_05 = treated_daytime_segments_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

655 treated_n_daytime_segments_100 = treated_daytime_segments_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

656

657 print("00 daytime_segments ", n_daytime_segments_00.values)

658 print("05 daytime_segments ", treated_n_daytime_segments_05.values)

659 print("100 daytime_segments ", treated_n_daytime_segments_100.values)

660

661 # Get mean effective specific nighttime contrail ATR20

662 mean_nighttime_contrail_atr20_00 = total_nighttime_contrail_atr20_00 /

n_nighttime_segments_00

663 treated_mean_nighttime_contrail_atr20_05 = treated_total_nighttime_contrail_atr20_05

/ treated_n_nighttime_segments_05

664 treated_mean_nighttime_contrail_atr20_100 =

treated_total_nighttime_contrail_atr20_100 / treated_n_nighttime_segments_100

665

666 print("00 mean_nighttime_contrail_ATR20 ", mean_nighttime_contrail_atr20_00.values ,

" [K/km]")

667 print("05 mean_nighttime_contrail_ATR20 ", treated_mean_nighttime_contrail_atr20_05

.values , " [K/km]")

668 print("100 mean_nighttime_contrail_ATR20 ",

treated_mean_nighttime_contrail_atr20_100.values , " [K/km]")

669

670 # Get mean effective specific daytime contrail ATR20

671 mean_daytime_contrail_atr20_00 = total_daytime_contrail_atr20_00 /

137

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

n_daytime_segments_00

672 treated_mean_daytime_contrail_atr20_05 = treated_total_daytime_contrail_atr20_05 /

treated_n_daytime_segments_05

673 treated_mean_daytime_contrail_atr20_100 = treated_total_daytime_contrail_atr20_100 /

treated_n_daytime_segments_100

674

675 print("00 mean_daytime_contrail_ATR20 ", mean_daytime_contrail_atr20_00.values , " [

K/km]")

676 print("05 mean_daytime_contrail_ATR20 ", treated_mean_daytime_contrail_atr20_05.

values , " [K/km]")

677 print("100 mean_daytime_contrail_ATR20 ", treated_mean_daytime_contrail_atr20_100.

values , " [K/km]")

678

679 # Get mean effective specific nighttime SOC

680 mean_nighttime_soc_00 = total_nighttime_soc_00 / n_nighttime_segments_00

681 treated_mean_nighttime_soc_05 = treated_total_nighttime_soc_05 /

treated_n_nighttime_segments_05

682 treated_mean_nighttime_soc_100 = treated_total_nighttime_soc_100 /

treated_n_nighttime_segments_100

683

684 print("00 mean_nighttime_SOC ", mean_nighttime_soc_00.values , " [$/km]")
685 print("05 mean_nighttime_SOC ", treated_mean_nighttime_soc_05.values , " [$/km]")
686 print("100 mean_nighttime_SOC ", treated_mean_nighttime_soc_100.values , " [$/km]")
687

688 # Get mean effective specific daytime SOC

689 mean_daytime_soc_00 = total_daytime_soc_00 / n_daytime_segments_00

690 treated_mean_daytime_soc_05 = treated_total_daytime_soc_05 /

treated_n_daytime_segments_05

691 treated_mean_daytime_soc_100 = treated_total_daytime_soc_100 /

treated_n_daytime_segments_100

692

693 print("00 mean_daytime_SOC ", mean_daytime_soc_00.values , " [$/km]")
694 print("05 mean_daytime_SOC ", treated_mean_daytime_soc_05.values , " [$/km]")
695 print("100 mean_daytime_SOC ", treated_mean_daytime_soc_100.values , " [$/km]")
696

697 # --------------- FIND FRACTIONAL CHANGE W.R.T. SOC OPTIMAL --------------- #

698 # Find change in mean effective specific contrail ATR20

699 delta_nighttime_contrail_atr20_00 = mean_nighttime_contrail_atr20_00 -

mean_nighttime_contrail_atr20_00

700 treated_delta_nighttime_contrail_atr20_05 = treated_mean_nighttime_contrail_atr20_05

- mean_nighttime_contrail_atr20_00

701 treated_delta_nighttime_contrail_atr20_100 =

treated_mean_nighttime_contrail_atr20_100 - mean_nighttime_contrail_atr20_00

702

703 delta_daytime_contrail_atr20_00 = mean_daytime_contrail_atr20_00 -

mean_daytime_contrail_atr20_00

704 treated_delta_daytime_contrail_atr20_05 = treated_mean_daytime_contrail_atr20_05 -

mean_daytime_contrail_atr20_00

705 treated_delta_daytime_contrail_atr20_100 = treated_mean_daytime_contrail_atr20_100 -

mean_daytime_contrail_atr20_00

706

707 # Find change in mean effective specific SOC

708 delta_nighttime_soc_00 = mean_nighttime_soc_00 - mean_nighttime_soc_00

709 treated_delta_nighttime_soc_05 = treated_mean_nighttime_soc_05 -

mean_nighttime_soc_00

710 treated_delta_nighttime_soc_100 = treated_mean_nighttime_soc_100 -

mean_nighttime_soc_00

711

712 delta_daytime_soc_00 = mean_daytime_soc_00 - mean_daytime_soc_00

713 treated_delta_daytime_soc_05 = treated_mean_daytime_soc_05 - mean_daytime_soc_00

714 treated_delta_daytime_soc_100 = treated_mean_daytime_soc_100 - mean_daytime_soc_00

715

716 # Collect in lists

717 delta_nighttime_contrail_atr20_lst = [delta_nighttime_contrail_atr20_00 ,

treated_delta_nighttime_contrail_atr20_05 ,

treated_delta_nighttime_contrail_atr20_100]

718 delta_daytime_contrail_atr20_lst = [delta_daytime_contrail_atr20_00 ,

treated_delta_daytime_contrail_atr20_05 , treated_delta_daytime_contrail_atr20_100]

719

138

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

720 delta_nighttime_soc_lst = [delta_nighttime_soc_00 , treated_delta_nighttime_soc_05 ,

treated_delta_nighttime_soc_100]

721 delta_daytime_soc_lst = [delta_daytime_soc_00 , treated_delta_daytime_soc_05 ,

treated_delta_daytime_soc_100]

722

723 treated_std_plus_delta_nighttime_contrail_atr20_lst = [

delta_nighttime_contrail_atr20_00 ,

724

treated_delta_nighttime_contrail_atr20_05+

treated_std_specific_night_delta_contrail_atr20_05 ,

725

treated_delta_nighttime_contrail_atr20_100+

treated_std_specific_night_delta_contrail_atr20_100]

726 treated_std_plus_delta_daytime_contrail_atr20_lst = [delta_daytime_contrail_atr20_00

,

727

treated_delta_daytime_contrail_atr20_05+

treated_std_specific_day_delta_contrail_atr20_05 ,

728

treated_delta_daytime_contrail_atr20_100+

treated_std_specific_day_delta_contrail_atr20_100]

729

730 treated_std_plus_delta_nighttime_soc_lst = [delta_nighttime_soc_00 ,

731 treated_delta_nighttime_soc_05+

treated_std_specific_night_delta_soc_05 ,

732 treated_delta_nighttime_soc_100+

treated_std_specific_night_delta_soc_100]

733 treated_std_plus_delta_daytime_soc_lst = [delta_daytime_soc_00 ,

734 treated_delta_daytime_soc_05+

treated_std_specific_day_delta_soc_05 ,

735 treated_delta_daytime_soc_100+

treated_std_specific_day_delta_soc_100]

736

737 treated_std_min_delta_nighttime_contrail_atr20_lst = [

delta_nighttime_contrail_atr20_00 ,

738

treated_delta_nighttime_contrail_atr20_05 -

treated_std_specific_night_delta_contrail_atr20_05 ,

739

treated_delta_nighttime_contrail_atr20_100 -

treated_std_specific_night_delta_contrail_atr20_100]

740 treated_std_min_delta_daytime_contrail_atr20_lst = [delta_daytime_contrail_atr20_00 ,

741

treated_delta_daytime_contrail_atr20_05 -

treated_std_specific_day_delta_contrail_atr20_05 ,

742

treated_delta_daytime_contrail_atr20_100 -

treated_std_specific_day_delta_contrail_atr20_100]

743

744 treated_std_min_delta_nighttime_soc_lst = [delta_nighttime_soc_00 ,

745 treated_delta_nighttime_soc_05 -

treated_std_specific_night_delta_soc_05 ,

746 treated_delta_nighttime_soc_100 -

treated_std_specific_night_delta_soc_100]

747 treated_std_min_delta_daytime_soc_lst = [delta_daytime_soc_00 ,

748 treated_delta_daytime_soc_05 -

treated_std_specific_day_delta_soc_05 ,

749 treated_delta_daytime_soc_100 -

treated_std_specific_day_delta_soc_100]

750

751 # Finds straight lines to make plot more readable

752 fit_nighttime = np.polyfit(delta_nighttime_contrail_atr20_lst ,

delta_nighttime_soc_lst , 2)

753 fit_daytime = np.polyfit(delta_daytime_contrail_atr20_lst , delta_daytime_soc_lst , 2)

754

755 func_nighttime = np.poly1d(fit_nighttime)

756 func_daytime = np.poly1d(fit_daytime)

757

758 treated_std_plus_fit_nighttime = np.polyfit(

139

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

treated_std_plus_delta_nighttime_contrail_atr20_lst ,

treated_std_plus_delta_nighttime_soc_lst , 2)

759 treated_std_plus_fit_daytime = np.polyfit(

treated_std_plus_delta_daytime_contrail_atr20_lst ,

treated_std_plus_delta_daytime_soc_lst , 2)

760

761 treated_std_plus_func_nighttime = np.poly1d(treated_std_plus_fit_nighttime)

762 treated_std_plus_func_daytime = np.poly1d(treated_std_plus_fit_daytime)

763

764 treated_std_min_fit_nighttime = np.polyfit(

treated_std_min_delta_nighttime_contrail_atr20_lst ,

treated_std_min_delta_nighttime_soc_lst , 2)

765 treated_std_min_fit_daytime = np.polyfit(

treated_std_min_delta_daytime_contrail_atr20_lst ,

treated_std_min_delta_daytime_soc_lst , 2)

766

767 treated_std_min_func_nighttime = np.poly1d(treated_std_min_fit_nighttime)

768 treated_std_min_func_daytime = np.poly1d(treated_std_min_fit_daytime)

769

770 # Calculate percentage changes for tops

771 max_nighttime_relative_change_contrail_atr20 = np.round((

treated_delta_nighttime_contrail_atr20_100 / mean_nighttime_contrail_atr20_00 * 100)

.values)

772 max_nighttime_relative_change_soc = np.round ((treated_delta_nighttime_soc_100 /

mean_nighttime_soc_00 * 100).values , 1)

773 max_daytime_relative_change_contrail_atr20 = np.round((

treated_delta_daytime_contrail_atr20_100 / mean_daytime_contrail_atr20_00 * 100).

values)

774 max_daytime_relative_change_soc = np.round((treated_delta_daytime_soc_100 /

mean_daytime_soc_00 * 100).values , 1)

775

776 # Calculate percentage changes for ~0.5% extra SOC

777 med_nighttime_relative_change_contrail_atr20 = np.round((

treated_delta_nighttime_contrail_atr20_05 / mean_nighttime_contrail_atr20_00 * 100).

values)

778 med_nighttime_relative_change_soc = np.round ((treated_delta_nighttime_soc_05 /

mean_nighttime_soc_00 * 100).values , 1)

779 med_daytime_relative_change_contrail_atr20 = np.round((

treated_delta_daytime_contrail_atr20_05 / mean_daytime_contrail_atr20_00 * 100).

values)

780 med_daytime_relative_change_soc = np.round((treated_delta_daytime_soc_05 /

mean_daytime_soc_00 * 100).values , 1)

781

782 to_be_returned = (delta_daytime_contrail_atr20_lst ,

783 delta_nighttime_contrail_atr20_lst ,

784 delta_daytime_soc_lst ,

785 delta_nighttime_soc_lst ,

786 func_daytime ,

787 func_nighttime ,

788 max_nighttime_relative_change_contrail_atr20 ,

789 max_nighttime_relative_change_soc ,

790 max_daytime_relative_change_contrail_atr20 ,

791 max_daytime_relative_change_soc ,

792 nighttime_segments_00 ,

793 treated_nighttime_segments_05 ,

794 treated_nighttime_segments_100 ,

795 treated_std_plus_delta_nighttime_contrail_atr20_lst ,

796 treated_std_plus_delta_daytime_contrail_atr20_lst ,

797 treated_std_plus_delta_nighttime_soc_lst ,

798 treated_std_plus_delta_daytime_soc_lst ,

799 treated_std_min_delta_nighttime_contrail_atr20_lst ,

800 treated_std_min_delta_daytime_contrail_atr20_lst ,

801 treated_std_min_delta_nighttime_soc_lst ,

802 treated_std_min_delta_daytime_soc_lst ,

803 treated_std_plus_func_nighttime ,

804 treated_std_plus_func_daytime ,

805 treated_std_min_func_nighttime ,

806 treated_std_min_func_daytime ,

807 med_nighttime_relative_change_contrail_atr20 ,

140

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

808 med_nighttime_relative_change_soc ,

809 med_daytime_relative_change_contrail_atr20 ,

810 med_daytime_relative_change_soc)

811

812 return to_be_returned

813

814

815 def get_potcov_average_pareto_front_waypoints_no_extra_cooling(f00_airtraf_folder ,

f05_airtraf_folder , f100_airtraf_folder , nighttime_segments_00 ,

treated_nighttime_segments_05 , treated_nighttime_segments_100):

816 """

==="

817 " Function that returns the delta specific effective potcov and SOC separately "

818 " for day and night without extra cooling. Also a function connecting the dots is

"

819 " provided.

"

820 " Inputs: 3x file path = 3x *airtraf_ac.nc files

"

821 " t_th

"

822

"===

"""

823 # Open the airtraf_ac.nc files

824 ds_airtraf_00 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f00_airtraf_folder))

825 ds_airtraf_05 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f05_airtraf_folder))

826 ds_airtraf_100 = xr.open_mfdataset(’{}* airtraf_ac.nc’.format(f100_airtraf_folder))

827

828 # Correct for 12 h time step by removing duplicates if necessary

829 if ds_airtraf_00[’time’]. values [0]. astype(str)[11:13] == ’12’:

830 ds_airtraf_00 = ds_airtraf_00.drop_isel(time=np.arange(0, len(ds_airtraf_00["

routes_out"]), 2).tolist ())

831 if ds_airtraf_05[’time’]. values [0]. astype(str)[11:13] == ’12’:

832 ds_airtraf_05 = ds_airtraf_05.drop_isel(time=np.arange(0, len(ds_airtraf_05["

routes_out"]), 2).tolist ())

833 if ds_airtraf_100[’time’]. values [0]. astype(str)[11:13] == ’12’:

834 ds_airtraf_100 = ds_airtraf_100.drop_isel(time=np.arange(0, len(

ds_airtraf_100["routes_out"]), 2).tolist ())

835

836 # Get per segment contrail ATR20

837 per_segment_contrail_atr20_00 = get_per_segment_contrail_atr20(ds_airtraf_00["

routes_out"])

838 per_segment_contrail_atr20_05 = get_per_segment_contrail_atr20(ds_airtraf_05["

routes_out"])

839 per_segment_contrail_atr20_100 = get_per_segment_contrail_atr20(ds_airtraf_100["

routes_out"])

840

841 # Get per segment potcov

842 per_segment_potcov_00 = get_per_segment_potcov(ds_airtraf_00["routes_out"])

843 per_segment_potcov_05 = get_per_segment_potcov(ds_airtraf_05["routes_out"])

844 per_segment_potcov_100 = get_per_segment_potcov(ds_airtraf_100["routes_out"])

845

846 # --------------- REPLACE EXTRA COOLING SEGMENTS ---------------- #

847 # The SOC optimal segment is used , only if the +0.5% SOC segment is cooler and

cooling.

848 # Otherwise the +0.5% SOC segment is used.

849 treated_per_segment_contrail_atr20_05 = per_segment_contrail_atr20_00.where((

per_segment_contrail_atr20_05 < per_segment_contrail_atr20_00) & (

per_segment_contrail_atr20_05 < 0), per_segment_contrail_atr20_05)

850

851 # The treated +0.5% SOC segment is used , only if the climate optimal segment is

cooler and cooling.

852 # Otherwise the climate optimal segment is used.

853 treated_per_segment_contrail_atr20_100 = treated_per_segment_contrail_atr20_05.where

((per_segment_contrail_atr20_100 < treated_per_segment_contrail_atr20_05) & (

per_segment_contrail_atr20_100 < 0), per_segment_contrail_atr20_100)

854

141

MSc Thesis Day and Night Contrail Climate Impact of Optimised Trajectories

855 # Where the potcov was replaced , also replace SOC

856 treated_per_segment_potcov_05 = per_segment_potcov_05.where(

per_segment_contrail_atr20_05 == treated_per_segment_contrail_atr20_05 ,

per_segment_potcov_00)

857

858 treated_per_segment_potcov_100 = per_segment_potcov_100.where(

per_segment_contrail_atr20_100 == treated_per_segment_contrail_atr20_100 ,

treated_per_segment_potcov_05)

859

860 # --------------- DISTINCT NIGHT FROM DAY --------------- #

861 # Get witch segments are during daytime

862 daytime_segments_00 = (nighttime_segments_00 - 1) * -1

863 treated_daytime_segments_05 = (treated_nighttime_segments_05 - 1) * -1

864 treated_daytime_segments_100 = (treated_nighttime_segments_100 - 1) * -1

865

866 # Get the night potcov per segment

867 night_per_segment_potcov_00 = per_segment_potcov_00 * nighttime_segments_00

868 treated_night_per_segment_potcov_05 = treated_per_segment_potcov_05 *

treated_nighttime_segments_05

869 treated_night_per_segment_potcov_100 = treated_per_segment_potcov_100 *

treated_nighttime_segments_100

870

871 # Get the day potcov per segment

872 day_per_segment_potcov_00 = per_segment_potcov_00 * daytime_segments_00

873 treated_day_per_segment_potcov_05 = treated_per_segment_potcov_05 *

treated_daytime_segments_05

874 treated_day_per_segment_potcov_100 = treated_per_segment_potcov_100 *

treated_daytime_segments_100

875

876 # --------------- NORMALIZE W.R.T. SEGMENT EFFECTIVE KM --------------- #

877 effective_distance_00 = get_effective_per_segment_km(ds_airtraf_00["routes_out"])

878 effective_distance_05 = get_effective_per_segment_km(ds_airtraf_05["routes_out"])

879 effective_distance_100 = get_effective_per_segment_km(ds_airtraf_100["routes_out"])

880

881 # Also treat effective km for exclusion of extra cooling

882 treated_effective_distance_05 = effective_distance_05.where(

per_segment_contrail_atr20_05 == treated_per_segment_contrail_atr20_05 ,

effective_distance_00)

883

884 treated_effective_distance_100 = effective_distance_100.where(

per_segment_contrail_atr20_100 == treated_per_segment_contrail_atr20_100 ,

treated_effective_distance_05)

885

886 # Get the normalized night potcov per segment

887 n_night_per_segment_potcov_00 = night_per_segment_potcov_00 / effective_distance_00

888 treated_n_night_per_segment_potcov_05 = treated_night_per_segment_potcov_05 /

treated_effective_distance_05

889 treated_n_night_per_segment_potcov_100 = treated_night_per_segment_potcov_100 /

treated_effective_distance_100

890

891 # Get the normalized day potcov per segment

892 n_day_per_segment_potcov_00 = day_per_segment_potcov_00 / effective_distance_00

893 treated_n_day_per_segment_potcov_05 = treated_day_per_segment_potcov_05 /

treated_effective_distance_05

894 treated_n_day_per_segment_potcov_100 = treated_day_per_segment_potcov_100 /

treated_effective_distance_100

895

896 # --------------- SUM TO A TOTAL --------------- #

897 # Get total nighttime potcov

898 total_nighttime_potcov_00 = n_night_per_segment_potcov_00.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

899 treated_total_nighttime_potcov_05 = treated_n_night_per_segment_potcov_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

900 treated_total_nighttime_potcov_100 = treated_n_night_per_segment_potcov_100.sum(dim

=[’AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

901

902 # Get total daytime potcov

903 total_daytime_potcov_00 = n_day_per_segment_potcov_00.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

142

904 treated_total_daytime_potcov_05 = treated_n_day_per_segment_potcov_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

905 treated_total_daytime_potcov_100 = treated_n_day_per_segment_potcov_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

906

907 # --------------- NORMALIZE W.R.T. NUMBER OF SEGMENTS --------------- #

908 # Count number of night segments to later calculate the mean

909 n_nighttime_segments_00 = nighttime_segments_00.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

910 treated_n_nighttime_segments_05 = treated_nighttime_segments_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

911 treated_n_nighttime_segments_100 = treated_nighttime_segments_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

912

913 # Count number of day segments to later calculate the mean

914 n_daytime_segments_00 = daytime_segments_00.sum(dim=[’AirTraf_waypoints_out ’, ’

AirTraf_routes_out ’, ’time’])

915 treated_n_daytime_segments_05 = treated_daytime_segments_05.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

916 treated_n_daytime_segments_100 = treated_daytime_segments_100.sum(dim=[’

AirTraf_waypoints_out ’, ’AirTraf_routes_out ’, ’time’])

917

918 # Get mean effective specific nighttime potcov

919 mean_nighttime_potcov_00 = total_nighttime_potcov_00 / n_nighttime_segments_00

920 treated_mean_nighttime_potcov_05 = treated_total_nighttime_potcov_05 /

treated_n_nighttime_segments_05

921 treated_mean_nighttime_potcov_100 = treated_total_nighttime_potcov_100 /

treated_n_nighttime_segments_100

922

923 print("00 mean_nighttime_potcov ", mean_nighttime_potcov_00.values , " [km/km]")

924 print("05 mean_nighttime_potcov ", treated_mean_nighttime_potcov_05.values , " [km/

km]")

925 print("100 mean_nighttime_potcov ", treated_mean_nighttime_potcov_100.values , " [km/

km]")

926

927 # Get mean effective specific daytime potcov

928 mean_daytime_potcov_00 = total_daytime_potcov_00 / n_daytime_segments_00

929 treated_mean_daytime_potcov_05 = treated_total_daytime_potcov_05 /

treated_n_daytime_segments_05

930 treated_mean_daytime_potcov_100 = treated_total_daytime_potcov_100 /

treated_n_daytime_segments_100

931

932 print("00 mean_daytime_potcov ", mean_daytime_potcov_00.values , " [km/km]")

933 print("05 mean_daytime_potcov ", treated_mean_daytime_potcov_05.values , " [km/km]")

934 print("100 mean_daytime_potcov ", treated_mean_daytime_potcov_100.values , " [km/km]"

)

935

936 return

143

	Preface
	List of Figures
	List of Tables
	List of Symbols
	Abstract
	Introduction
	Background
	Objective
	Structure

	Operational Contrail Climate Impact Mitigation
	Spatiotemporal Impact Variability
	Schmidt-Appleman Criterion
	Persistence
	Contrail Spreading
	Optical Properties
	Long-Wave Radiative Forcing
	Short-Wave Radiative Forcing
	Day versus Night

	Operational Measures
	Changing Altitude
	Changing 3D Trajectories

	Methodology
	Modelling Chain
	Base Model
	Algorithmic Climate Change Function
	CONTRAIL
	AirTraf

	Simulation Set-Up
	Day Selection
	One Day Flight Plan
	Threshold Time Until Sunrise for Nighttime Contrails
	Optimisation Settings

	Data Analysis
	Raw Data
	Data Analysis: Daytime and Nighttime Contrail Climate Impact
	Data Analysis: Variability with the Threshold Time Until Sunrise
	Data Analysis: Search for New Pareto Front

	Results
	Comparing Daytime and Nighttime Contrail Climate Impact
	Cost Optimal Day and Night Specific Contrail ATR20
	Day and Night Mitigation of Contrail ATR20
	Mitigation of Contrail ATR20 Without Extra Cooling

	Variability of Results with Threshold Time Until Sunrise
	Variability of Cost Optimal Day and Night Specific Contrail ATR20
	Variability of Day and Night Mitigation of Contrail ATR20
	Variability of Mitigation of Contrail ATR20 Without Extra Cooling

	Search for a New Pareto Front

	Verification and Validation
	Verification
	Validation

	Discussion
	Comparing Day and Night Contrail Climate Impact of Optimised Trajectories
	Sensitivity to Threshold Time Until Sunrise
	Benefiting from the Differences Between Day and Night Contrail Climate Impact of Optimised Trajectories
	Assumptions and Uncertainties
	Modelling Chain
	Experiment Design
	Analysis

	Conclusion and Recommendations
	Bibliography
	Figures
	Python Scripts

