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Problem and motivation

Image courtesy: www.tno.nl

Image courtesy: www.thefiscaltimes.com

Image courtesy: www.ad.nl

(Land subsidence in Groene Hart must be on the national agenda)

Image courtesy: www.klimaateffectatlas.nl
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Solutions: deformation prediction

Empirical charts and tables

Empirical models

In-situ measurements
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Solutions: deformation monitoring

Leveling GNSS measurements

D-InSAR techniques
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Challenges

• Deformation prediction (geotechnical)

– Empiricism in defining soil classes, models,

parameters

– Diversity of models

– Subjective results

• Deformation monitoring (D-InSAR)

– Accurate measurements but cannot be used for

prediction
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Related works

• Soil types, transport infrastructure data and climate
classes to monitor the response of roads and
railways to ground deformation (North et al. [2017])

• D-InSAR techniques for monitoring road deformation (North et

al. [2017])

• Borehole data and loading history for studying
subsidence (Asselen et al. [2018])

• Mapping subsidence potential using CPT ([Koster et al., 2018])

• Different machine learning algorithms used to model
the relationship between the influential parameters
and ground deformation (Tien Bui et al. [2018], Ilia and Loupasakis [2018], Zhou et al. [2019])

• Relationship between seasonal deformation and
temperature and precipitation (Ozer et al. [2019])
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Research questions

Using machine learning techniques, is it possible to model spatial-
temporal relationship between the the

and on roads?

• What are the data sources needed for studying soil properties,
loading/unloading and deformation measurements?

• Is there a correlation between soil properties, loading/unloading and
deformation measurements?

• What parameters/features should be included from the available data sets?

• What machine learning algorithm(s) are more suitable in establishing the
relationship?

• What is the accuracy of the chosen machine learning technique and is it
satisfactory?
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Study area: A4 highway (Schiedam-Delft)
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Study area: A4 highway (Schiedam-Delft)

Design in 1970s
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Study area: A4 highway (Schiedam-Delft)

Design in 1970s

Consolidation of soil 
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Design A4 2011

Shallow cutting L = 3 km 

Study area: A4 highway (Schiedam-Delft)

Design in 1970s

Consolidation of soil 
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Data set

2014

20192016

2010
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Step 1: Pre-processing
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Step 2: Correlations and similarities
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Step 2: Correlations and similarities

𝒅𝑳𝟐 𝒙, 𝒚 = (෍

𝒊=𝟏

𝑴

(𝒙𝒊 − 𝒚𝒊 )
𝟐)

𝟏
𝟐
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Step 2: Correlations and similarities

𝒅𝑳𝟐 𝒙, 𝒚 = (෍

𝒊=𝟏

𝑴

(𝒙𝒊 − 𝒚𝒊 )
𝟐)

𝟏
𝟐

N(N(𝒅𝑳𝟐(𝑞𝑐𝑖 ,𝑞𝑐𝑗))  +  N(𝒅𝑳𝟐(𝑓𝑠𝑖 , 𝑓𝑠𝑗 ))) < 0.02

Δσ𝑖𝑗 < 10 [kPa]

Data point i and j are similar if:

N stands for normalization
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Correlation measures can be:

Step 2: Correlations and similarities

𝑹𝒙𝒚 𝒌 = 𝟏 −
σ𝒊=𝟏
𝒏 (𝑥𝑖 − 𝑦𝑖 )

𝟐

σ𝒊=𝟏
𝒏 (𝑥𝑖 − μ𝑥 )

𝟐

𝝆𝒙𝒚 𝒌 =
𝑬[(𝒙 − 𝝁𝒙)(𝒚 − 𝝁𝒚)]

𝝈𝒙𝝈𝒚

Let

𝑥𝑖 be the linear rate of deformation of point i

and 

𝑦𝑖 be the mean of linear rate of deformation of 

its similar points
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Step 2: Correlations and similarities

𝝆𝒙𝒚 𝒌 =
𝑬[(𝒙𝒕 − 𝝁𝒙)(𝒚𝒕−𝒌 − 𝝁𝒚)]

𝝈𝒙𝝈𝒚
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Step 3: Modeling through machine learning
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Feature extraction
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Feature extraction

1m above
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Feature extraction

1m below
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Feature extraction
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Supervised Learning: SVM

ξ1
∗

ξ4
∗

ξ3
∗

ξ2
∗

ξ5
∗

M = 
1

| β |

M = 
1

| β |

𝑥𝑇 β + β0 = 0𝑥𝑇 β + β0 = 0

M = 
1

| β |

M = 
1

| β |

𝑊ℎ𝑒𝑟𝑒 ξ1
∗ = 𝑀ξ1



35

Performance metrics

Precision = 
𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖

Recall = 
𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖

F1-score = 2 𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Accuracy = 
σ𝑖=1
𝑛 𝑡𝑝𝑖
𝑛

Predicted label

C1 C2 C3

C1 c11 c12 c13

C2 c21 c22 c23

C3 c31 c32 c33

False positive (fp1)

False negative (fn1)True positive (tp1)
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Performance metrics

Cohen Kappa  =  
𝑁 σ𝑖=1

𝑛 𝑐𝑖𝑖 −σ𝑖=1
𝑛 𝑐𝑖+ 𝑐+𝑖

𝑁2 −σ𝑖=1
𝑛 𝑐𝑖+ 𝑐+𝑖

Predicted label

C1 C2 C3 Σ

C1 c11 c12 c13 c1+

C2 c21 c22 c23 c2+

C3 c31 c32 c33 c3+

Σ c+1 c+2 c+3
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Step 3: Modeling through machine learning
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Feature extraction: qualitative descriptors
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Feature extraction : qualitative descriptors
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Feature extraction : qualitative descriptors
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Feature extraction : qualitative descriptors
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Feature extraction : qualitative descriptors
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Feature extraction : quantitative descriptors

Median
Standard 
deviation 

(STD)
Skewness Minimum Maximum

Interquartile 
range (IQR)

Indicator of simple 
trend (T)

Indicator of convexity 
or concavity (C)

Normalized number 
of fluctuations about 

the median (R)

Sharpness of upper 
boundary of the 

segment (B)

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐫𝐮𝐧𝐬

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐝𝐚𝐭𝐚 𝐩𝐨𝐢𝐧𝐭𝐬
𝐮𝐛 −𝐥𝐛
𝐮𝐛+𝐥𝐛

ub , lb are sum of two 

records, respectively,  

above and below the 

segment boundary

-1 < b < 0 : upward 
decrease 
0 < b < 1 : upward 
increase

Run =
an uninterrupted
series of values
lower than median
or an uninterrupted
series of values
higher than median

Coerts [1996]
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Rf Shallowqc Shallow

Feature extraction : quantitative descriptors
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Rf Shallowqc Shallow qc Middle

Feature extraction : quantitative descriptors

Rf Middle
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Rf Shallow Rf Middle Rf Deepqc Shallow qc Middle qc Deep

Feature extraction : quantitative descriptors
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Rf Shallow Rf Middle Rf Deepqc Shallow qc Middle qc Deep

Feature extraction : quantitative descriptors

σ
Linear rate of 

deformation
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Supervised Learning: Decision tree
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Supervised Learning: Random forest

• Constructing multiple
decision tress from
subsamples during
training phase

• Final decision is the
unweighted average
of the decision by
each tree
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Supervised Learning: Gradient boosting

Fitting a simple model Fitting a model to the
Combining the two 

models for creating a  

more complicated model
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Performance metrics

MAE = 1𝑛 σ𝑖=1
𝑛 |𝑦𝑖 −ŷ𝑖 |

𝑅𝑀𝑆𝐸 = 1

𝑛
σ𝑖=1
𝑛 (𝑦𝑖 − ŷ𝑖 )

𝟐

𝑅2 = 𝟏 −
σ𝒊=𝟏
𝒏 (𝑦𝑖 −ŷ𝑖 )𝟐

σ𝒊=𝟏
𝒏 (𝑦𝑖 −μ𝑦 )𝟐
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Results: correlations

- 8.7 - 8.8

Linear rate of 

deformation (mm/year)

Loading/unloading 

stress (kPa)
- 9.4 - 16.5 - 8.2 - 8.1

- 4 - 4.5 - 3 - 0.8 - 2.2 - 1.2

qc   profiles (MPa)

Mean = - 2.3 mm/year 
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Results: correlations

Pearson Correlation = 0.6

Coefficient of Determination = 0.4
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Results: correlations
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Results: soil classification

SVM Robertson
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Results: soil classification

Precision Recall F1-Score

Peat 0.2 0.08 0.11

Clay 0.75 0.89 0.81

Sand 0.92 0.85 0.88

Micro Average 0.81 0.81 0.81

Macro average 0.62 0.61 0.60

Precision Recall F1-Score

Peat 0.35 0.5 0.41

Clay 0.87 0.79 0.83

Sand 0.91 0.92 0.91

Micro Average 0.83 0.83 0.83

Macro average 0.85 0.74 0.72

Overall accuracy: 0.81

Kappa : 0.65

Overall accuracy: 0.83

Kappa : 0.71

S
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M
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Results: soil classification
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Results: deformation estimation

Features Qualitative descriptors Quantitative descriptors

Algorithm Gradient boosting Random forest Gradient boosting Random forest

MAE (mm/year) 1.3 1.3 1.1 1.2

RMSE (mm/year) 1.8 1.8 1.6 1.6

R2 (-) 0.3 0.3 0.5 0.4
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Results: deformation estimation
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Results: deformation estimation
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Conclusions

• What are the data sources needed for studying

soil properties, loading and deformation

measurements?

– Soil properties: CPT, borehole, temperature and

precipitation as indicators of soil moisture

– Loading/unloading: Elevation before and after

construction

– Deformation: D-InSAR time series
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Conclusions

• Is there a correlation between soil properties,

loading/unloading and deformation

measurements?

• Moderate correlation between soil properties and

loading/loading and deformation

• No meaningful correlation between temperature and

precipitation and the seasonal deformation
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Conclusions

• What parameters/features should be included?

• Features for soil classification include Qtn, Fr, total

stress, the average qc and fs of 1 meter above and

below of the measurement point

• Features for deformation estimation

• Qualitative descriptors (thickness of clay and peat) : more

interpretable and less accurate

• Quantitative descriptors (median, STD, skewness, Min,

Max, IQR, T, C, R, B): more accurate and less

interpretable
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Conclusions

• What machine learning algorithm(s) are more

suitable in establishing the relationship?

– SVM for soil classification: low dimensionality of

feature space

– Tree-based algorithms for deformation estimation:

high dimensional feature space and more

interpretable
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Conclusions

• What is the accuracy of the chosen machine
learning technique and is it satisfactory?
– For soil classification:

• The performance is better compared to empirical
charts

– For deformation estimation:

• The accuracy is not high.

• It can be seen that the uncertainty of the model
may not be desirable.

• Improvements are needed for applications in which
high accuracy is required.
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Conclusions

Using machine learning techniques, is it possible to model spatial-

temporal relationship between the the

and on roads?

– It is possible to develop a fully data-driven model

– However, the accuracy is moderate due to sources of

uncertainty:

Complexity 
of study area

Proposed
methodology

Data sets
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Future work

• Applying the methodology to other study areas

and land uses (with less complexity)

• Soil classification based on data driven

approaches can be explored on the country

scale

• Including more features and/or exploring other

feature extraction methods
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