Spatial and temporal analysis of road deformation based on remote sensing and subsurface exploration

Melika Sajadian

Mentor #1: Dr.ir. Mathias Lemmens Mentor #2: Dr. Faraz Sadeghi Tehrani

Supervisor (Deltares): Dr. Ana Teixeira

Co-reader: Amin Askarinejad

ŤUDelft

Deltares

Outline

- Introduction and related work
- Methodology and implementation
- Results and discussions
- Conclusion and future works

Outline

- Introduction and related work
- Methodology and implementation
- Results and discussions
- Conclusion and future works

Problem and motivation

Deltares

Enabling Delta Life 🍃

ŤUDelft

 \times

Solutions: deformation prediction

Solutions: deformation monitoring

Challenges

- Deformation prediction (geotechnical)
 - Empiricism in defining soil classes, models, parameters
 - Diversity of models
 - Subjective results
- Deformation monitoring (D-InSAR)
 - Accurate measurements but cannot be used for prediction

Related works

- Soil types, transport infrastructure data and climate classes to monitor the response of roads and railways to ground deformation (North et al. [2017])
- D-InSAR techniques for monitoring road deformation (North et al. [2017])
- Borehole data and loading history for studying subsidence (Asselen et al. [2018])
- Mapping subsidence potential using CPT ([Koster et al., 2018])
- Different machine learning algorithms used to model the relationship between the influential parameters and ground deformation (Tien Bui et al. [2018], Ilia and Loupasakis [2018], Zhou et al. [2019])
- Relationship between seasonal deformation and temperature and precipitation (Ozer et al. [2019])

Research questions

Using machine learning techniques, is it possible to model spatialtemporal relationship between the **deformation measurements**, the **soil properties**, and **loading/unloading** on roads?

- What are the data sources needed for studying soil properties, loading/unloading and deformation measurements?
- Is there a correlation between soil properties, loading/unloading and deformation measurements?
- What parameters/features should be included from the available data sets?
- What machine learning algorithm(s) are more suitable in establishing the relationship?
- What is the accuracy of the chosen machine learning technique and is it satisfactory?

Outline

- Introduction and related work
- Methodology and implementation
- Results and discussions
- Conclusion and future works

Overview of the methodology

Overview of the methodology

Linear Rate of Deformation (mm/year) • -7.0 - -4.0 -4.0 - -1.0 -1.0 - 2.0 • 2.0 - 5.0 • 5.0 - 8.0 500 -1000 m Deltares

Linear Rates of Deformation on the A4 Highway

Design in 1970s

Design in 1970s Consolidation of soil

Design in 1970s Consolidation of soil

Design A4 2011 Shallow cutting L = 3 km

Overview of the methodology

Overview of the methodology

Step 1: Pre-processing

Overview of the methodology

Step 3: Modeling through machine learning

Step 3: Modeling through machine learning

29

Supervised Learning: SVM

Where $\xi_1^* = M\xi_1$

Performance metrics

Performance metrics

Predicted label								
		C ₁	C ₂	C ₃	Σ			
abel	C ₁	c ₁₁	C ₁₂	C ₁₃	C ₁₊			
True l	C ₂	c ₂₁	C ₂₂	c ₂₃	c ₂₊			
	C ₃	C ₃₁	C ₃₂	C ₃₃	с ₃₊			
	Σ	C ₊₁	C ₊₂	C ₊₃				

Cohen Kappa =
$$\frac{N \sum_{i=1}^{n} c_{ii} - \sum_{i=1}^{n} c_{i+} c_{+i}}{N^2 - \sum_{i=1}^{n} c_{i+} c_{+i}}$$

Step 3: Modeling through machine learning

Deltares

Coerts [1996]

Deltares Enabling Delta Life

Supervised Learning: Decision tree

Supervised Learning: Random forest

- Constructing multiple decision tress from subsamples during training phase
- Final decision is the unweighted average of the decision by each tree

Supervised Learning: Gradient boosting

Fitting a simple model data points

Fitting a model to the error residuals

Combining the two models for creating a more complicated model

Performance metrics

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \mu_y)^2}$$

Outline

- Introduction and related work
- Methodology and implementation
- Results and discussions
- Conclusion and future works

Results: correlations

Results: correlations

Results: correlations

Histogram of highest correlation with temperature

20

Histogram of highest correlation with precipitation

Results: soil classification

Enablina Delta Life

Results: soil classification

	Precision	Recall	F1-Score		
Peat	0.35	0.5	0.41		
Clay	0.87	0.79	0.83		
Sand	0.91	0.92	0.91		
Micro Average	0.83	0.83	0.83	Overall accura	acy: 0.83
Macro average	0.85	0.74	0.72	Kappa : 0.71	
	Precision	Recall	F1-Score		
Peat	Precision 0.2	Recall 0.08	F1-Score 0.11		
Peat Clay	Precision 0.2 0.75 0.75	Recall 0.08 0.89	F1-Score 0.11 0.81		
Peat Clay Sand	Precision 0.2 0.75 0.92	Recall 0.08 0.89 0.85	F1-Score 0.11 0.81 0.88		
Peat Clay Sand Micro Average	Precision0.20.750.920.81	Recall0.080.890.850.81	F1-Score0.110.810.880.81	Overall accura	acy: 0.81
	Peat Clay Sand Micro Average Macro average	Peat0.35Clay0.87Sand0.91Micro Average0.83Macro average0.85	Peat0.350.5Clay0.870.79Sand0.910.92Micro Average0.830.83Macro average0.850.74	Peat0.350.50.41Clay0.870.790.83Sand0.910.920.91Micro Average0.830.830.830.850.740.72	Peat 0.35 0.5 0.41 Clay 0.87 0.79 0.83 Sand 0.91 0.92 0.91 Micro Average 0.83 0.83 0.83 Macro average 0.85 0.74 0.72

Results: soil classification

Results: deformation estimation

Features	es Qualitative descriptors		Quantitative descriptors		
Algorithm	Gradient boosting	Random forest	Gradient boosting	Random forest	
MAE (mm/year)	1.3	1.3	1.1	1.2	
RMSE (mm/year)	1.8	1.8	1.6	1.6	
R ² (-)	0.3	0.3	0.5	0.4	

Results: deformation estimation

True Linear Rates of Deformation on Test Data

Estimated Linear Rates of Deformation on Test Data

Estimation Errors on Test Data

Results: deformation estimation

Feature importance

Features

Outline

- Introduction and related work
- Methodology and implementation
- Results and discussions
- Conclusion and future works

- What are the data sources needed for studying soil properties, loading and deformation measurements?
 - Soil properties: CPT, borehole, temperature and precipitation as indicators of soil moisture
 - Loading/unloading: Elevation before and after construction
 - Deformation: D-InSAR time series

- Is there a correlation between soil properties, loading/unloading and deformation measurements?
 - Moderate correlation between soil properties and loading/loading and deformation
 - No meaningful correlation between temperature and precipitation and the seasonal deformation

- What parameters/features should be included?
 - Features for soil classification include Q_{tn}, F_r, total stress, the average q_c and f_s of 1 meter above and below of the measurement point
 - Features for deformation estimation
 - Qualitative descriptors (thickness of clay and peat) : more interpretable and less accurate
 - Quantitative descriptors (median, STD, skewness, Min, Max, IQR, T, C, R, B): more accurate and less interpretable

- What machine learning algorithm(s) are more suitable in establishing the relationship?
 - SVM for soil classification: low dimensionality of feature space
 - Tree-based algorithms for deformation estimation: high dimensional feature space and more interpretable

- What is the accuracy of the chosen machine learning technique and is it satisfactory?
 - For soil classification:
 - The performance is better compared to empirical charts
 - For deformation estimation:
 - The accuracy is not high.
 - It can be seen that the uncertainty of the model may not be desirable.
 - Improvements are needed for applications in which high accuracy is required.

Using machine learning techniques, is it possible to model spatialtemporal relationship between the **deformation measurements**, the **soil properties**, and **loading/unloading** on roads?

- It is possible to develop a fully data-driven model
- However, the accuracy is moderate due to sources of uncertainty:

Future work

- Applying the methodology to other study areas and land uses (with less complexity)
- Soil classification based on data driven approaches can be explored on the country scale
- Including more features and/or exploring other feature extraction methods

