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Up until recently, the rational design of mechanical metamaterials has usually involved devising

geometrical arrangements of micro-architectures that deliver unusual properties on the macro-

scale. A less explored route to rational design is spatially distributing materials with different

properties within lattice structures to achieve the desired mechanical properties. Here, we used

computational models and advanced multi-material 3D printing techniques to rationally design and

additively manufacture multi-material cellular solids for which the elastic modulus and Poisson’s

ratio could be independently tailored in different (anisotropic) directions. The random assignment

of a hard phase to originally soft cellular structures with an auxetic, zero Poisson’s ratio, and con-

ventional designs allowed us to cover broad regions of the elastic modulus-Poisson’s ratio plane.

Patterned designs of the hard phase were also used and were found to be effective in the inde-

pendent tuning of the elastic properties. Close inspection of the strain distributions associated with

the different types of material distributions suggests that locally deflected patterns of deformation

flow and strain localizations are the main underlying mechanisms driving the above-mentioned

adjustments in the mechanical properties. Published by AIP Publishing.
https://doi.org/10.1063/1.5064864

Mechanical metamaterials are designer materials with

unusual properties that originate from their rational design at

the micro-scale.1–3 Some examples of these unusual properties

are negative Poisson’s ratios4 and bistability,5 shape-morphing

mechanical metamaterials,6 negative compressibility,7 nega-

tive stiffness,8 crumpled metamaterials,9 and tunable negative

thermal expansion.10

The vast majority of the mechanical metamaterials

presented to date including most of the above-mentioned

examples have used various types of geometrical designs

to achieve their unusual properties. However, the rational

design of mechanical metamaterials is not limited to their

small-scale geometry and includes rationally designing the

spatial distribution of the mechanical properties as well as a

combination with a geometrical design and spatial distribu-

tion of mechanical properties. The research into both latter

rational design approaches has just started, as the multi-

material 3D printing (¼ additive manufacturing) techniques

required for achieving complex spatial distributions of

mechanical properties and combining that with complex

geometries are just emerging. A few recent studies on 3D

lattices with high Poisson’s ratio properties,11 topology opti-

mization of multi-material mechanical metamaterials with

negative Poisson’s ratio12 or multifunctionality,13 and con-

trolling instabilities,14 are examples of the applications of

dual-phase materials15,16 for achieving new ranges of pro-

perties and new types of functionalities in mechanical

metamaterials.

An important aim in the design of mechanical metama-

terials is independent tailoring of the elastic modulus and

Poisson’s ratio.17 Adjusting the Poisson’s ratio of mechani-

cal metamaterials in a wide range of negative and positive

values allows for devising a rich set of new functionalities.

For example, negative values of Poisson’s ratios (i.e., auxetic

mechanical metamaterials2) could be combined with posi-

tive values (i.e., conventional mechanical metamaterials) to

design orthopaedic implants with improved longevity18 and

to enable complex local actuations in soft robotics using a

single far-field force.19 At the same time, tailoring the stiff-

ness values of mechanical metamaterials allows for

adjustment of their load-bearing capability and compli-

ancy. For example, mechanical metamaterials with

extremely high negative or positive Poisson’s ratios often

lack high elastic moduli. Rational design approaches are

therefore required to increase (decrease) the elastic modu-

lus regardless of the Poisson’s ratio of the metamaterial.

Here, we use complex spatial distributions of the mechani-

cal properties realized through advanced multi-material

3D printing processes and combine that with architectured

geometrical designs to independently tailor the Poisson’s

ratio and elastic modulus of dual-phase (i.e., soft-hard)

mechanical metamaterials.

We used computational models for the rational design

of the mechanical metamaterials. A large number of the

designed specimens were then fabricated and were subjected

to mechanical loading to characterize their mechanical

behavior. In our designs, we used three unit cells, represent-

ing lattice structures with negative ðh ¼ 60�Þ, intermediate

(i.e., zero) h ¼ 90�ð Þ; and positive ðh ¼ 120�Þ Poisson’s

ratios [Fig. 1(a)]. The unit cells had a similar height ðcÞ and

a)Author to whom correspondence should be addressed: M.J.Mirzaali

Mazandarani@tudelft.nl. Tel.: þ31-15-2783133.
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width ðwÞ while differing in h and l [Fig. 1(a)]. Keeping a

specific set of design parameters constant allowed us to

design lattice structures with an equal overall width ðWÞ and

length ðLÞ. The in-plane ðtÞ and out-of-plane thicknesses ðbÞ
of the unit cells with different angles were similar as well.

All design parameters are listed in the supplementary mate-

rial (Table S1).

To create the computational models, the geometry of

each lattice structure was created as an input file in Matlab

(R2011b) and later was handled with the finite element

modeling software (Abaqus 6.14). In-plane Timoshenko

beam elements (B21, Abaqus) with a rectangular cross-

section were used to model the lattice structures. A hypere-

lastic material model (Neo Hookean, C10 ¼ 0:106 MPa,

D1 ¼ 0:03 MPa�1Þ was applied as the constitutive equation

of the soft phase. Three levels of the elastic modulus of the

hard phase were selected with one, two, or three orders of

magnitude higher elastic moduli as compared to the soft

phase (i.e., Eh

Es
¼ 10, 100, or 1000). Furthermore, two levels of

the fraction of the hard phase with respect to the overal vol-

ume (i.e., qh¼ 25% and 50%) were chosen when spatially

distributing both phases in the lattice strucutres.

A large number of finite element models of the lattice

structures were created in which the hard phase replaced the

soft elements of the lattice structures at random locations.

The replacement of the soft phase with the hard phase con-

tinued until the intended fraction of the hard phase was

achieved. To adequately sample the stochastic space of pos-

sible designs, one thousand simulations were performed for

each combination of the hard phase fraction and Eh

Es
, resulting

in a total of 18 000 simulations.

Moreover, the simulations were performed in two direc-

tions, i.e., 1 and 2, in order to investigate the anisotropic

behavior of these metamaterials. A displacement boundary

condition equal to 10% longitudinal/transverse strain was

applied to simulate a tensile test. The boundary conditions

were applied to a reference point, which was kinematically

coupled to the corresponding nodes of the lattice structures.

For instance, for the simulation in the 1-direction [Fig. 1(a)],

a displacement was applied on a top reference point. Another

reference node was created at the bottom of the structure,

which was clamped. A non-linear static simulation was per-

formed. The stresses ðr11; r22Þ and strains ðe11; e22Þ in both

directions were, respectively, calculated based on the ratio of

the reaction force to the cross section area and the ratio of

the displacement to the free length of the structure in the

longitudinal (transverse) direction. The elastic stiffnesses

(E11;E22Þ of the structure was calculated as the slope of the

stress-strain curve at 1% strain.

The Poisson’s ratio in direction 1 was calculated as

�12 ¼ � e22

e11
, where e11 is the applied strain in direction 1,

and e22 is the sum of the transverse deformation of the struc-

ture under this displacement at every ith node ðU22;iÞ with

e22 ¼
Pn

i¼1
U22;i

W and n ¼ total number of lateral nodes along

direction 2. Likewise, the Poisson’s ratio in direction 2 was

defined as �21 ¼ � e11

e22
, where e22 is the applied strain in direc-

tion 2 and e11 ¼
Pp

i¼1
U11;i

L with p equal to the total number of

the lateral nodes in direction 1. The Poisson’s ratios in both

directions were measured at 1% longitudinal (transverse)

strain.

For the experimental study, fifteen specimens were

directly fabricated using a multi-material 3D printer

(Object500 Connex3 3D printer, Stratasys) working on the

basis material jetting (polyjet technology). Of those speci-

mens, 6 and 9 samples were tested in directions 1 and 2,

respectively. Among the specimens mentioned above, 5

were purely soft while the rest were multi-material. The hard

and soft phases were respectively printed with VeroCyan

[RGD841, shore hardness (D) 83–86] and Agilus30 Black

[FLX985, shore hardness (A) 30–35]. These materials were

selected to achieve Eh

Es
values of up to �1000.

The specimens tested in direction 1 had an extra hard

part to make it possible to attach it to the gripper while the

ones tested in direction 2 were directly attached to the grip-

per via pins. Two gripping systems and their pins were

designed and additively manufactured using a fused de-

position modeling (FDM) 3D printer (Ultimaker 2þ,

Geldermalsen, The Netherlands) from polylactic acid (PLA)

filaments (MakerPoint PLA 750 gr Natural).

Tensile mechanical testing was performed under dis-

placement control using an LLOYD instrument (LR5K)

mechanical testing machine with a 100 N load cell and a

FIG. 1. (a) Three unit cell geometries ðh ¼ 60�; 90�; and 120�Þ used for the

fabrication of lattice structures. A comparison of the numerical results,

experimental obervations, and theoretical predictions for the lattice struc-

tures made from a uniform (soft) material and tested in directions 1 (b) and

2 (c). The regions covered by the mechanical porperties of multi-material

mechanical metamaterials with three geometries and random assigment of a

hard phase to the elements of the lattice structure until two fractions of the

hard material, qh¼ 25% and 50%, were achieved. Moreover, three different

values of Eh

Es
were used to calculate the elastic modulus and Poisson’s ratio in

directions 1 (d) and 2 (e). The specific elastic stiffnesses, i.e., normalized by

the mass, m, of the sample are presented in (d) and (e).
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stroke rate of 2 mm/min. The time, force, and displacement

were recorded at a sampling rate of 20 Hz. The force and dis-

placement were used to calculate the stress and strain with

respect to the initial cross-section area and the initial free

length of the specimens. The stiffness of the structure was

determined using the measured stress and strain values. The

deformation of the specimens was also captured by a digital

camera that was later used to calculate the Poisson’s ratios in

both directions using image analysis (see the supplementary

material, Fig. S1).

We validated the accuracy of our numerical simulations

for the purely soft lattice structures by comparing them with

the experimental and theoretical models [Fig. 1(b)].

Equation (1) shows the existing theoretical relations for the

calculation of the elastic properties of homogenized lattice

structures20

E11 ¼
kf h=lþ sinhð Þ

bcos3h
; E22 ¼

kf cosh
b h=lþ sinhð Þsinh

;

�12 ¼
sinh h=lþ sinhð Þ

cos2h
; �21 ¼

cos2h
sinh h=lþ sinhð Þ ;

(1)

where kf ¼ Ebb t=lð Þ3 is the flexure force constant and Eb is

the elastic modulus of the solid constituent. The elastic mod-

ulus, Es, of our soft materials is 0.6 MPa.

We found that the elastic properties obtained from our

computational models for the homogenously soft materials

are within the range of those calculated using Eq. (1) (Theo.)

and experimental observations (Exp.) [Figs. 1(b) and 1(c)].

The random assignment of the hard phase to the ele-

ments of the lattice structures considered here resulted in

drastic changes in both the Poisson’s ratio and elastic modu-

lus [Figs. 1(d) and 1(e)]. Specific regions, therefore, emerged

within the elastic modulus-Poisson’s ratio plane within

which the Poisson’s ratio and elastic modulus could be inde-

pendently adjusted [Figs. 1(d) and 1(e)]. Generally speaking,

the changes in both Poisson’s ratio and elastic modulus were

larger in direction 2 as compared to direction 1 [Figs. 1(d),

1(e), and 2]. Moreover, the elastic properties of lattice struc-

tures with h ¼ 60� and h ¼ 120� were much more sensitive

to the presence of a second, harder phase as compared to the

lattice strucutres with h ¼ 90� [Figs. 1(d) and 1(e)]. This

trend was particularly clear for the Poisson’s ratio in direc-

tion 1 and elastic modulus in direction 2 [Figs. 1(d) and

1(e)]. Random assignment of a hard phase (Eh

Es
¼10–1000) to

up to 50% of the elements of the considered lattice strucutres

resulted in up to �2 orders of magnitude increase in the elas-

tic modulus [Figs. 1(d) and 1(e)]. Combining the hard and

soft phases shifted the Poisson’s ratio of the lattice strucutres

towards higher values in the case of h ¼ 60� and towards

lower values in the case of h ¼ 120� [Figs. 1(d), 1(e), and

2(a)–2(d)]. The distribution of the Poisson’s ratio of the orig-

inal value (i.e., the Poisson’s ratio of a single-material lattice

strucutre) was more or less symmetric in the case of h ¼ 90�

[Figs. 1(d) and 1(e)].

As expected, the effects of a second phase on the

Poisson’s ratio were amplified for higher values of Eh

Es

[Figs. 2(a)–2(d)]. The same held for the fraction of the

hard phase [Figs. 2(a)–2(d)]. Stress and strain localizations

were clearly present in the case of multi-material designs

[Figs. 2(a)–2(d)]. In addition, the stress and strain loca-

lizations were clearly intensified in the case of a higher frac-

tion of the hard phase (i.e., qh ¼ 50%) [Figs. 2(a)–2(d)].

Assignig a hard phase to a random place within a soft lattice

structure could also affect the global deformation of the lat-

tice structure and lead to an asymmetric deformation pattern

(Fig. 2), as the harder elements of the lattice structure deflect

or block the deformation flow.

In addition to randomly assigning the second (i.e., hard)

phase material to a number of the elements of the lattice

structure, we rationally designed the placement of the hard

phase such that the elements to which the hard phase were

assigned collectively created either a re-entrant (i.e., auxetic)

or honeycomb (i.e., conventional) shape (Fig. 3). All designs

were both 3D printed and analyzed using our computational

models. Such rational placements of the second phase

resulted in drastic changes in the elastic properties of the

mechanical metamaterials [Figs. 3(a) and 3(b)]. For example,

when we started from an auxetic lattice structure (legend: �)

and assigned the hard phase to specific elements of the struc-

ture in such a way that they created a global re-entrant shape,

the Poisson’s ratio remained largely unchanged while the

stiffness was increased by >10 times in direction 1 (Fig. 3).

Choosing a honeycomb shape for the hard elements assigned

FIG. 2. The Poisson’s ratios of the random multi-material lattice structures

made with three unit cell geometries, three values of Eh

Es
, and two fractions of

the hard material ðqhÞ. The values were calculated for directions 1 (a) and

(c) and 2 (b) and (d). The strain distributions presented at the top of the

Poisson’s ratio contours show the principal strains obtained from the numer-

ical simulations at 10% applied strain and for the data points indicated with

boxes.
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to the same type of the lattice structure (i.e., auxetic, legend:

O) pushed the Poisson’s ratio towards 0, while not signifi-

cantly changing the stiffness in direction 1 and substantially

increasing the stiffness in direction 2 (Fig. 3). Various types

of drastic evolutions in the stiffness and Poisson’s ratio in

both directions were observed for the other types of lattice

structures and using different types of designs of the hard

phase elements [see the arrows in Figs. 3(a) and 3(b)].

Interestingly, in the case of the lattice structures with a

zero Poisson’s ratio (legend: �), introducing hard unit cells

with a global re-entrant or honeycomb shape resulted in lat-

tice structures with relatively large (negative or positive) val-

ues of the Poisson’s ratio (Fig. 3). This shows that, in

addition to the geometrical design, one could benefit from

the spatial distribution of the mechanical properties as an

effective tool to independently tailor the elastic properties of

mechanical metamaterials.

Here, we assumed a constant thickness for the beam ele-

ments of the lattice structures and increased the rigidity of

each beam only by increasing individual stiffnesses. Since

the rigidity of each beam in these lattice structures is defined

as EI, where E is the elastic stiffness and I is the second

moment of inertia one could increase beam’s rigidity by

changing the second moment of inertia. In this case, it means

using various beam thicknesses for each element. This is

again mapping the elastic properties by manipulating the

geometrical features of the lattice structures, although there

is a limitation on the maximum thickness considered for

such designs. We also used the dual-material for the con-

struction of these metamaterials. However, different hard-

soft elastic ratios or even a gradient in the mechanical prop-

erties can be taken into account for the construction of these

materials.

The results of this study clearly show that both random

and rational distributions of a hard phase could be used for

independent tailoring of the elastic modulus and Poisson’s

ratio of a soft mechanical metamaterial. The spatial distribu-

tion of the mechanical properties could also be used for inde-

pendent tailoring of the elastic properties in different

directions, thereby allowing for the rational design of aniso-

tropic mechanical metamaterials. Our computational models

clearly show that, at the micro-scale, nonhomogeneous strain

distributions and localized deformations are responsible for

the observed behavior on the macro-scale including not only

the effective elastic properties but also such phenomena as

asymmetric deformations. From the mechanistic viewpoint,

the assignment of a hard phase to random elements within

the lattice structure locally deflects the flow of deformation

towards these hard elements, thereby disrupting the uniform

deformation flow resulting from the geometrical design of

the lattice structure. As the stiffness of the hard phase or its

fraction increases, this effect will be stronger. For lattice

structures whose Poisson’s ratio is already largely positive or

negative, this random disruption of the deformation is

unlikely to increase the Poisson’s ratio further, which is why

the absolute value of the Poisson’s ratio tends to decrease

when a hard phase is randomly assigned to lattice structure

with h ¼ 60� or h ¼ 120�. In the case of h ¼ 90�, the

Poisson’s ratio is already perfectly zero, meaning that any

random defelctions of the deformation flow will likely

increase the Poisson’s ratio. However, there is an equal

chance that this random disruption of the deformation flow

results in a positive or negative Poisson’s ratio. That explains

the more or less symmetric region of the elastic modulus-

Poisson’s ratio covered by random multi-material lattice

strucutres with h ¼ 90�. When the assignment of the hard

phase is rationally designed (e.g., in the global shape of a re-

entrant structure of a honeycomb), very big jumps in the val-

ues of the Poisson’s ratio are possible. Regarding the elastic

modulus, addition of a hard phase clearly increases the resis-

tance to deformation, thereby resulting in a higher elastic

modulus. The level of the increase in the elastic modulus is,

however, dependent on how effectively the hard phase is

used for increasing the load-bearing capacity of the lattice

strucutre in a specific direction. Adjusting the effectiveness

of the hard phase in a specific direction could therefore be

used for tuning the elastic modulus of the lattice strucutre

with the upper bound given by the most efficient distribution

of the hard phase. Together, all the above-mentioned mecha-

nisms allow for independent tailoring of the elastic modulus

and Poisson’s ratio of the lattice strucutre regardless of the

geometrical design. Keeping the geometrical design intact

might be particularly useful when designing multi-physics

FIG. 3. The numerical (hollow markers) and experimental (solid markers)

results for the elastic properties of multi-material lattice structures with

rationally designed hard phases and tested in directions 1 (a) and 2 (b). The

arrows compare the results of a corresponding lattice structure with a single

soft material with those of the multi-material designs. The experimental and

numerical deformation patterns are also compared with each other in direc-

tions 1 (c) and 2 (d). The strain distributions show the principal strains

obtained using the computational models.

241903-4 Mirzaali et al. Appl. Phys. Lett. 113, 241903 (2018)



metamaterials for which the geometrical design also deter-

mines other physical properties of the material (e.g., thermal

expansion or mass transport properties).

Here, we showed that the spatial distribution of materi-

als with different mechanical properties (i.e., soft and hard

phases) could be used to tailor the elastic properties of cel-

lular structures. However, the trade-off for the use of such

combinations is the creation of local stress concentrations

in the resulting lattices. The level of the stress concentra-

tions can significantly increase with a higher mismatch

between the hard and soft phases. Moreover, the presence

of these stress riser regions can result in the formation of

local buckling or local damage. Those can eventually facili-

tate crack initiation and propagation in the cellular struc-

ture, leading to pre-mature failure particularly under

repetetive loading. One way to address this challenge would

be to introduce intermediate phases with specific gradients

in their mechanical properties to decrease the severity of

the stress concetnrations.

Here, we performed monotonic quasi-static tensile tests,

as we were primarily interested in the elastic properties of

these structures. Systematic study of the failure and fatigue

mechanisms would, however, require extensive fatigue tests

that are suggested to be pursued in future research.

See supplementary material for the design parameters of

lattice structures, image analysis steps, and strain evolution.

The authors declare no competing interests.
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