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SUMMARY

Deep learning, a prominent branch of machine learning, leverages artificial neural net-
works to extract complex patterns and hierarchical representations from large datasets.
Notably, advanced architectures such as convolutional neural networks (CNNs) and vis-
ion transformers (ViTs) have achieved remarkable success in various computer vision
applications, particularly in image classification tasks.

While deep learning offers substantial benefits, it faces security challenges stemming
from potentially unreliable models and untrustworthy training data. Such vulnerabil-
ities can compromise model functionality through maliciously perturbed inputs or by
introducing model Trojans, where adversaries embed triggers in input data to activate
harmful behaviors.

Despite significant research on adversarial and backdoor attacks, along with their coun-
termeasures in various deep learning systems, there remains a critical demand for innov-
ative technical solutions to mitigate persistent vulnerabilities and bolster the security
and robustness of these systems.

This thesis addresses three key security challenges, including (1) low attack robustness
against common image transformations and anomaly frequency perturbations in back-
door triggers under centralized learning; (2) anomaly backdoor features and parameters
introduced by current attack methods under decentralized learning; and (3) the signi-
ficant drop in both clean and robust accuracy caused by global image restoration using
diffusion models in adversarial purification.

In examining the vulnerabilities of centralized deep learning systems, Chapter 2 fo-
cuses on backdoor attacks against CNNs and Transformers as a malicious data provider.
The thesis leverages an evolutionary algorithm to optimize the frequency properties of
the designed trigger to maximize attack effectiveness, robustness against image trans-
formation operations, and stealthiness in dual space under the black-box setting.

In investigating the security issues in the decentralized scenarios, Chapters 3 and 4 fo-
cuses on backdoor attacks against federated learning from the perspective of a malicious
client. In Chapter 3, we propose a backdoor attack to disguise malicious updates of the
adversary as benign at the parameter level by backdoor neuron constraint and model
camouflage. In Chapter 4, we utilize the power of generative adversarial networks to pro-
duce stealthy and flexible triggers that minimize the representation distance between
poisoned and benign samples.

To enhance the security of deep learning through data perspective, the thesis focuses
on adversarial purification to improve the model robustness against adversarial attacks.
In Chapter 5, we identify perturbed image regions through multi-scale superpixel seg-
mentation and occlusion analysis, subsequently using diffusion models for inpainting
while maintaining visual consistency.

XI






SAMENVATTING

Deep learning, een prominente tak van machine learning, benut artificial neural net-
works om complexe patronen en hiérarchische representaties uit grote datasets te ha-
len. Geavanceerde architecturen zoals convolutional neural networks (CNNs) en vision
transformers (ViTs) hebben opmerkelijke successen behaald in diverse computer vision-
toepassingen, vooral bij taak van beeldclassificatie.

Hoewel deep learning aanzienlijke voordelen biedt, kampt het met veiligheidsuitda-
gingen door mogelijk onbetrouwbare modellen en trainingsdata. Dit soort kwetsbaarhe-
den kan de modelfunctionaliteit compromitteren via kwaadaardig verstoorde inputs of
door Trojans in het model, waarbij aanvallers triggers in invoerdata inbedden om scha-
delijk gedrag te activeren.

Ondanks significant onderzoek naar adversarial en backdoor aanvallen, en hun tegen-
maatregelen in diverse deep learning systemen, is er een grote behoefte aan innovatieve
technische oplossingen om hardnekkige kwetsbaarheden te verminderen en de veilig-
heid en robuustheid van deze systemen te versterken.

Deze scriptie behandelt drie belangrijke beveiligingsuitdagingen, waaronder (1) lage
aanvalsrobuustheid tegen veelvoorkomende beeldtransformaties en anomaliefrequen-
tieverstoringen in backdoor triggers onder gecentraliseerd leren; (2) anomalie backdoor-
kenmerken en parameters geintroduceerd door huidige aanvalsmethoden onder gede-
centraliseerd leren; en (3) de significante daling in zowel schone als robuuste nauwkeu-
righeid veroorzaakt door globale beeldrestauratie met behulp van diffusion models in
adversarial purification.

Bij het onderzoeken van de kwetsbaarheden van gecentraliseerde deep learning syste-
men, richt Hoofdstuk 2 zich op backdoor aanvallen tegen CNNs en ViTs als kwaadaardi-
ge data-aanbieder. Het proefschrift benut een evolutionary algorithm om de frequentie-
eigenschappen van de ontworpen trigger te optimaliseren voor maximale aanvalseffecti-
viteit, robuustheid tegen beeldtransformatie-operaties en onopvallendheid in de duale
domeinruimte in de black-box omgeving.

Bij het onderzoeken van veiligheidskwesties in gedecentraliseerde scenario’s, richten
Hoofdstukken 3 en 4 zich op backdoor attacks tegen federated learning vanuit het per-
spectief van een kwaadaardige klant. In Hoofdstuk 3 introduceren we een backdoor aan-
val om kwaadaardige updates van de tegenstander als onschuldig te vermommen op pa-
rameterniveau door backdoor neuron constraint en model camouflage. In Hoofdstuk 4
gebruiken we de kracht van generative adversarial networks om onopvallende en flexibe-
le triggers te produceren die de representatie-afstand tussen vergiftigde en onschadelijke
samples minimaliseren.

Om de veiligheid van deep learning vanuit dataperspectief te verbeteren, richt het
proefschrift zich op adversarial purification om de modelrobuustheid tegen adversari-
al aanvallen te verbeteren. In Hoofdstuk 5 identificeren we verstoorde beeldregio’s via

XIII
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multi-scale superpixel egmentatie en occlusion analyse, waarna we diffusion models ge-
bruiken voor inpainting met behoud van visuele consistentie.



INTRODUCTION

Deep Learning is a powerful branch of machine learning that employs deep
neural networks (DNNs) to build highly capable models. These models, with
their multiple layers of interconnected neurons and extensive training on large
datasets, achieve exceptional performance in a wide range of complex real-world
tasks. Specifically, DNN architectures such as convolutional neural networks (CNNs)
[1-5] and vision transformers (ViTs) [6-8] have achieved significant success in many
popular computer vision tasks, e.g., image classification [2, 3, 7, 9, 10], object
detection [4, 11, 12] and semantic segmentation [13-16].

Despite their remarkable success, DNN models are vulnerable to various attacks,
such as adversarial and backdoor attacks. These vulnerabilities compromise the
functionality of DNN models in both centralized and decentralized settings, posing
significant risks to safety-critical applications. This motivates the research into
enhancing the robustness of DNN models against such attacks. Notable examples of
attacks in high-stakes applications include medical image analysis [17], autonomous
driving [18, 19], and face recognition systems [20].

While significant research has focused on adversarial machine learning, particularly
on adversarial and backdoor attacks, the evolution of these techniques has
revealed new security challenges. These challenges demand the evaluation of
more sophisticated attack strategies and the proposal of more robust defensive
mechanisms to defend against such potential threats. These advancements are
crucial for uncovering model vulnerabilities and enhancing their robustness. Among
these challenges, (1) low attack effectiveness against common image transformation
operations and anomaly frequency perturbations introduced by triggers in centralized
backdoor attacks, (2) anomaly backdoor features and parameters that can be easily
detected by robust decentralized learning frameworks, and (3) low clean and robust
accuracy caused by global image restoration via diffusion models in adversarial
purification are considered in the thesis for the following reasons'. First, current
research lacks a comprehensive exploration of stealthiness in the frequency domain
and robustness against common image transformation operations in backdoor

IFor simplicity, these challenges will be referred to as (1) robustness and stealthiness in centralized
backdoor attacks, (2) stealthiness in decentralized backdoor attacks and (3) robustness in adversarial
purification in the following sections.
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attacks. By investigating the stealthiness and robustness of backdoor triggers in the
frequency domain, it inspires researchers to inspect potential malicious perturbations
in different image domains and develop defensive methods to eliminate the impact of
those poisoned samples from a frequency perspective. Second, existing backdooring
approaches against federated learning often overlook the anomalies of both backdoor
features learned by the victim model and model parameters introduced by backdoor
training. Investigating this underexplored area would enable the design of more
secure FL aggregation algorithms against stealthy backdoor attacks. Third, current
adversarial purification methods exhibit limitations, particularly in defending against
color-based attacks and achieving high clean-accuracy due to coarse restoration
strategies. Improving the robustness of adversarial purification methods can further
improve the robustness of DNN models against adversarial attacks. Collectively,
studying more robust and stealthy backdoor attacks in both centralized and
decentralized settings helps the machine learning community better understand the
vulnerabilities of current DNN models. This knowledge enables the development of
stronger defensive methods to safeguard DNNs against such attacks. Additionally,
enhancing the robustness of existing AP purification methods not only strengthens
the security of DNN models but also provides deeper insights into purifying backdoor
triggers. Both attack and defense methods proposed in this thesis aim to offer
defensive insights and contributions to the machine learning security community.

In the remainder of this chapter, Section 1.1 provides an overview of popular
DNN architectures, federated learning, adversarial attacks, and backdoor attacks.
Section 1.2 then discusses the security challenges in both centralized and
decentralized machine learning settings, along with the state-of-the-art defenses
against adversarial attacks. Then, we present our problem statement and research
questions in Section 1.3. Finally, we list the contributions and the outline of the
thesis in Section 1.4.
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1.1. ADVERSARIAL MACHINE LEARNING

1.1.1. VISUAL NEURAL NETWORKS

Convolutional Neural Networks (CNNs) [1-3, 21, 22] have become effective deep
neural networks (DNNs) architectures for various computer vision tasks, e.g., image
classification [5, 23], object tracking [24, 25] and detection [26, 27], facial recognition
[28]. A typical CNN architecture comprises multiple layers, including convolutional
layers, pooling layers and fully-connected (dense) layers. The convolutional layers
extract image features by applying convolutional filters that slide across the entire
input image. These filters effectively learn to detect features such as edges, textures
and patterns, producing feature maps. Then, the feature maps are downsampled by
pooling layers (e.g., max pooling) to reduce computational complexity and increase
robustness to small spatial shifts. After multiple convolutional and pooling layers,
the extracted features are flattened via dense layers to perform final predictions.
Activation functions are applied between layers to introduce non-linearity, enabling
the network to learn complex, non-linear relationships within the data.

Advanced CNNs have evolved to address diverse challenges, building upon these

fundamental components. For example, ResNet [2] incorporates skip connections
to address the vanishing gradient problem, easing the training of deeper neural
networks. To address the issue of diminishing feature reuse, WideResNet [21] extends
ResNet by widening the convolutional layers (i.e., increasing the number of their
channels). Xception [29] builds on the idea of depthwise separable convolutions
including depthwise convolution and pointwise convolution, which significantly
decreased the number of model parameters and computations.
Vision Transformers (ViTs) [30] have revolutionized the field of computer vision,
challenging the long-standing dominance of CNNs. ViTs adapt the original
transformer arhitecture [31] for natural language processing (NLP) to the domain
of computer vision. Given a vision transformer model &(-) and training dataset
D = {(x;, yi)lx; € REWXC y, e RE}N | where N is the size of dataset, K is the
number of classes, H, W and C are the height, width and channels of an input
x, y is the ground-truth label. The input image x is divided into a sequence of
H x W/p? patches with the shape of p x p. These patches are flattened and linearly
projected into embedding vectors, similar to word embeddings in NLP. Moreover, a
classification token is added to the head of the above embedding vectors, forming
the input token sequence as T = {f;ss, 11,12, , Lgwyp2}- The core component of the
ViTs is the self-attention mechanism. Self-attention mechanism allows ViTs to weigh
the importance of different patches in relation to each other, effectively capturing
long-range dependencies and global context. Each token is used to perform attention
map calculation by multi-head self-attention (MSA) module as follows:

TWo(TWi)T
vd
where d is the dimension of the query and the key, Wp, Wg and Wy are

learnable weights of the query Q, key K and value V, respectively. MSA enhances
self-attention mechanism by performing it multiple times in parallel with distinct

Attention(T) = Softmax( TWy), 1.1)
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learned linear projections (heads), allowing ViTs focus on diverse aspects of the input
simultaneously. The classification result is derived from multiple MSA attention
calculations through a multi-layer perceptron (MLP). Compared to CNNs, ViTs
excel at capturing global context and long-range dependencies, offering a weaker
inductive bias. In the thesis, we evaluate the performance of backdoor attacks and
adversarial purification on such ViT architectures, demonstrating the generalization
of the proposed methods to transformer-based models.

1.1.2. FEDERATED LEARNING

Federated Learning (FL) [32-34] is a distributed machine learning framework
proposed to preserve data privacy among participating clients. It supports
collaborative training of an accurate global model by allowing local clients to
share their model updates with a central server without compromising their private
datasets. Consider the empirical risk minimization (ERM) in FL setting where the
goal is to learn a global classifier fp: % — % that maps an input x€ & to a target
label y € . Recall that the FL server cannot access the training dataset. It aggregates
the parameters/gradients from local agents performing centralized training with local
datasets. The de-facto standard rule for aggregating the updates is so-called FedAvg
[35]. The training task is to learn the global parameters 6 by solving the finite-sum
optimization:

mln fo= ng , (1.2)

where n is the number of participating agents. At round ¢, the server S randomly
selects n'€{1,2,..., n} agents to participate in the aggregation and send the global
model 0’ to them. Each of the agents i trains its local classifier fp, : Z; —%; with
its local dataset 9; = {(xj,y;): x; € Z;,y; €%;,j = 1,2,.., N} for some epochs, where
N =|9;l, by certain optimization algorithm, e.g., stochastic gradient descent (SGD).
The objective of agent i is to train a local model as:

07 = argmin Z ZL(for(xj), ¥j)s (1.3)
0! (x;,y))€D;

where ' is the parameters 6 of global model at round f, £ stands for the
classification loss, e.g., cross-entropy loss. Then agent i computes its local update
as 0; t= =0; —-0!, and sends back to S. Finally, the server aggregates all updates and
produces the new global model with an average as follows:

ot — gt 4+ Z (1.4)

|nt| ient

where vy is the global learning rate. When the global model 6 converges or the
training reaches a specific iteration upper bound, the aggregation process terminates
and outputs a final global model. During inference, given a benign sample x and its
true label y, the learned global classifier fy will behave well as: fy(x) =y

Optimizations of FL have been proposed for various purposes, e.g., privacy
[36], security [37, 38], heterogeneity [39], communication efficiency [40, 41] and
personalization issues [42, 43].
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1.1.3. ADVERSARIAL ATTACKS AND BACKDOOR ATTACKS

Adversarial attacks aim to generate adversarial examples with only minimal
perturbation based on test samples whose classification results can be changed to an
attacker-specified class during deployment. We focus on adversarial attacks against
deep neural networks, denoted by fp(x), where 8 represents the model’s parameters
and x € & is the input data, belonging to the input space 2 cR“. The output of the
DNN is a prediction vector fy(x) € RX, where K is the number of classes. We assume
a classification setting where the predicted class is given by argmax fo(x).

An adversarial example is produced by a carefully crafted perturbation § based
on a benign input x, resulting in x’'=x+§. This perturbation is designed
to be imperceptible to humans, thus constrained in magnitude, [6], <€, while
simultaneously causing the DNN fy to misclassify the input into target label.
Formally, an adversarial example x’ satisfies:

fo(x) =t # fa(x) (Misclassification), (1.5)
161, <e (Perceptual similarity), (1.6)

where |-|, denotes the ¢ p-norm, commonly Y (maximum perturbation per feature),
/5 (Euclidean distance), or ¢; (Manhattan distance), and € represents the maximum
permissible perturbation magnitude (the perturbation budget). The proportion of
adversarial examples correctly predicted as ¢ is known as the attack success rate
(ASR). Effectively, generating an adversarial example involves maximizing the loss
function of the classifier, fp (or similarly, minimizing the classifier’s confidence in
the true label):

6:arg|%1|]<1<x$(fg(x+6),y), 1.7

=€

where Z is the loss function and y is the true label of x.

Based on various attack capabilities and scenarios, existing attacks can be

roughly divided into three categories: white-box and black-box adversarial attacks,
transferable attacks. White-box attacks include optimization-based methods [44-49]
that generates adversarial examples by minimizing the distances from the original
samples, and universal adversarial attacks [50] that designed to create small universal
perturbations capable of inducing misclassification across most images. Without
any prior knowledge of the model architecture or training data, black-box attacks
can only interact with a pre-trained ML model by querying it on various data
samples and obtaining the model’s confidence scores [51-55] or its prediction
[56-59]. Other studies [60-64] explore the transferability of adversarial attacks, where
an attacker performs white-box adversarial attacks on a pre-trained substitute model
and transfers the attacks to a target model.
Backdoor attacks involve manipulating clean data by embedding a trigger and
altering the label to a target label, resulting in a poisoned dataset. An adversary, as
a model provider, can supply users with a poisoned model trained on this dataset.
During inference, the poisoned model produces the adversary’s desired output when
the test input contains a trigger while it functions normally on clean input.

Considering backdoor attacks on image classification, Let fj:.# — RX be an image
classifier parameterized with 6 that maps an input image .# < [0,1]"*">*C to an
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output class, where K is the number of classes, H, W and C are the height, width
and channels of an input image. The parameters 0 of the classifier are learned
using a training dataset 2. = {(x;,y;i)|x; € £,y; € RK}f.\il. In a standard backdoor
attack, the attacker crafts a subset of 2, with ratio p to produce the poisoned
dataset 9, = {(x}, y))|x} € &,y e RK };\;le by the trigger function J (-) and target label
function 7(-). Given a clean image x from the clean subset and its true class y, the
commonly used 9 (-) and n(-) are defined with a hyper-parameter m € [0,1] and a
trigger pattern t as follows:

X=F@xmbt=x-0-m)+t-m, y=n) =y, (1.8)

where y; is the target class. Under empirical risk minimization, a typical attack aims
to inject backdoors into the classifier f by learning 0 with both clean dataset 2.
and poisoned dataset D, so that the classifier misclassifies the poisoned data into
the target class while behaving normally on clean data. The optimization problem is
defined as follows:

min )  ZL(fp, N+ Y L)y, (1.9)
0 (x, e, ', Y)eD),

where £ represents the cross-entropy loss.

[65] introduces the first backdoor attack against deep learning models. It employs
a patch-based pattern as the trigger, injecting it into a small fraction of clean
data, which causes the victim model to misclassify those poisoned images to the
target label. To enhance the invisibility of triggers for bypassing human inspection,
some works [66-71] focus on imperceptible backdoor attacks in the pixel domain.
Additionally, recent works [17, 72-76] explore the frequency domain of the input
image to naturally guarantee invisibility due to frequency properties. Later, several
works [77-80] reveal the importance of stealthiness in latent feature space. There
are other types of attacks tailored to different scenarios such as clean-label attacks
[81-84], where poisoned inputs and their labels appear consistent to a human.

1.2. SECURITY CHALLENGES IN VISUAL NEURAL NETWORKS

Building upon the foundational concepts of visual neural networks, adversarial
machine learning and decentralized settings, this section presents a comprehensive
review of state-of-the-art attack and defensive mechanisms. The discussion
emphasizes their inherent limitations and challenges, critically examining these
issues from both adversarial and defensive perspectives. Key challenges identified
include: (1) robustness and stealthiness in centralized backdoor attacks; (2)
stealthiness in decentralized backdoor attacks, and (3) robustness in adversarial
purification methods. By addressing the first challenge, our work introduces a more
stealthy and robust frequency backdoor in black-box scenarios. This serves as a
critical warning for follow-up defense research, underscoring the need for closer
scrutiny of minimal malicious manipulations in the frequency domain of input
images. By addressing the second challenge, we propose two stealthy backdoor
attacks against FL that bypass most existing defenses. These attacks expose a



1.2. SECURITY CHALLENGES IN VISUAL NEURAL NETWORKS 7

critical weakness in current robust FL aggregation algorithms, urging researchers to
develop fine-grained detection mechanisms for local model updates to mitigate their
harmful effects. By addressing the third challenge, we propose a more robust AP
method that enables targeted removal of potential perturbations to defend against
adversarial attacks. This provides a more fine-grained purification strategy for
defending DNNs against adversarial attacks, significantly enhancing the robustness
of existing AP methods. At the same time, this approach also offers insights for
defending against black-box backdoor attacks. In summary, addressing the first two
challenges can directly reveal potential attack risks in current deep learning models
while also inspiring further research into robust backdoor defenses. Solving the final
challenge, however, will not only enhance the robustness of existing deep learning
models but also establish a foundation for future defense research. It is important
to acknowledge that while this study does not directly address certain challenges
in the fields such as membership inference attacks (MIAs), this omission should
not be interpreted as diminishing their significance or relevance to the broader
field of adversarial machine learning. This is because survey papers in the field of
adversarial machine learning, such as [85], typically highlight backdoor attacks and
membership inference attacks as distinct key problems (security and privacy). It is
explicitly stated that research on backdoor attacks itself has already become a highly
specialized subfield (against various scenarios, computer vision tasks, and models),
while MIAs utilize different technical approaches to predict whether a data sample
belongs to the models training set or not.

ROBUSTNESS AND STEALTHINESS IN CENTRALIZED BACKDOOR ATTACKS

Prior backdoor attacks [65, 66, 70] inject triggers into the pixel domain of image.
Since spatial domain contains abundant semantic information, manipulating triggers
in image pixels can be easily detected by human inspection. Works [67-70, 78]
improve the natural stealthiness by designing imperceptible triggers into the spatial
domain. While these methods achieve practical natural stealthiness, they introduce
abnormal feature representations in triggers that are distinct from the benign
features of clean samples compared to the benign features of clean samples and
thus can be detectable by state-of-the-art backdoor defenses. Assuming a white-box
setting where the attackers have full control of data, training process and models,
works [68, 77-79] modify the training process and objective functions to achieve
superior stealthiness in both input and feature representation space, bypassing both
most backdoor defenses and explanation tools [86]. However, this assumption
is not practical in many real-world applications where the attacker has no prior
knowledge of victim model and control of training process. Recent works show that
backdoor attacks can inject trigger patterns into frequency space [17, 72, 73, 75].
However, those attacks perturbs the components in the high-frequency region and
thus trigger robustness can be harmed by common image transformation operations
such as lowpass filters. Moreover, both spatial and frequency triggers introduce
distinguishable artifacts when transformed to frequency space.

Inspired by [71] and the above description, an ideal and practical backdoor
attack should achieve four objectives, namely, functionality preservation, effectiveness,
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dual-space stealthiness, and robustness. Finding such a frequency trigger in a
black-box scenario is not trivial. Due to the absence of the victim model and
training process, one may handcraft the frequency triggers as in [17, 73, 76] but it
could lead to improper frequency properties of the trigger. For example, a large
perturbation can disrupt invisibility of poisoned images, while a small perturbation
could hinder the model’s ability to learn features of a trigger, resulting in low
attack effectiveness. Furthermore, selecting an improper frequency band for trigger
insertion can compromise the attack effectiveness and robustness.

STEALTHINESS IN DECENTRALIZED BACKDOOR ATTACKS

Similar to the centralized settings, FL is susceptible to backdoor attacks [87-95].
Current backdoor attacks against FL can poison data and models. In data poisoning
[89, 96], the attacker poisons the benign samples with a trigger pattern and marks
them as a target label in order to induce the model to misbehave by training this
poisoned dataset. As for model poisoning [90, 91, 94], the attacker manipulates the
training process to achieve their attack objectives such as durability and effectiveness.
[78] claims that backdoor triggers can be designed to be imperceptible in the
input space [69, 70, 97] and in the latent space [79], or to possess multi-target
payloads [98]; the ground-truth labels of the poisoned samples can also align with
the intended target label [81-83]. All characteristics contribute to the stealthiness
of backdoor attacks. In this thesis, we investigate stealthiness in decentralized
backdoor attacks across three key aspects: (1) the imperceptibility in the input
space, (2) the imperceptibility in the latent space, and (3) the ability to bypass
defenses. In centralized settings, malicious manipulation of training data can be
directly detected and mitigated [99]. However, in decentralized settings, where local
data is inaccessible, defenders can only use differences in local model updates
between malicious and benign clients to identify potential threats. Consequently,
evading FL detection does not require achieving imperceptibility in the input space.
Nevertheless, we still consider input-space imperceptibility for two reasons. First, like
centralized backdoor attacks, a visible trigger [89, 90, 92, 94] can be easily detected
by human and machine inspection during global model inference. Second, visible
triggers introduce large perturbations, resulting in more distinguished backdoor
features. This could be easily reversed and detected by state-of-the-art defenses such
as [38, 100]°.

To fully exploit the distributed attributes of FL, [89] only uses parts of the global
trigger to generate poisoned images in each malicious client, while the ultimate
adversarial goal is still the same as centralized attack — using the global trigger to
attack the global model. Moreover, [91] leverages the data from the tail of the
input data distribution as poisoned samples. Existing attack methods against FL
failed to achieve stealthiness at the model update level (or in the latent space) since
they do not provide enough “stealthiness" of the hidden features of the poisoned
samples. These features of trigger patterns extracted from convolutional filters
standalone compared to the benign counterparts during backdoor training, causing

2The empirical studies in Chapter 2 also demonstrate that invisible triggers exhibit greater resilience
against trigger inversion mechanisms.
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distinct weight outliers. Additionally, in fully-connected layers, the backdoor training
is to establish a new routing [101, 102], separated from benign ones, between
the independent hidden features of attacker’s trigger and its corresponding target
label, which yields an anomaly at the parameter level. The cause of this anomaly
is natural, since the output neurons for the target label must contribute to both
benign and backdoor routing, which requires significant weight/bias adjustments to
the neurons involved. Therefore, the current defenses [37, 103-108] can easily detect
malicious updates of these attacks by exploiting the distinguishable dissimilarity
between model (parameter) updates from malicious and benign agents.

ROBUSTNESS IN ADVERSARIAL PURIFICATION

Adversarial attacks [109-112] introduce imperceptible image perturbations, leading
to misclassifications and significant safety concerns [113, 114]. To enhance the
robustness of DNNs, works [113, 115, 116] introduce adversarial training (AT)
mechanism that train models using adversarial examples. While effective against
known attacks, AT suffers from overfitting and struggles with unseen attacks and
image corruptions [117-119]. Moreover, AT often degrades standard accuracy while
increasing computational complexity [120]. Other works [121-123] offer an alternative
technique, i.e., adversarial purification (AP), that performs images preprocessing
to remove adversarial perturbations before inference However, AP generally shows
lower standard accuracy than AT [124, 125]. Creating effective purification models,
especially for large-scale datasets, remains challenging due to the inherent trade-off
between preserving image semantics and removing perturbations [126]. Thanks
to the power of diffusion models, generative AP-based works [127, 128] provides
superior image quality, exceeding even GANs in image generation [129, 130], make
them well-suited. The inherent denoising process aligns with purification, and
their stochastic nature offers potential for robust stochastic defenses [131]. These
properties make diffusion models a compelling area for improving DNN robustness
against adversarial attacks.

Despite significant progress in defending against adversarial attacks, current
generative AP methods face three major challenges. Firstly, existing AP techniques
[126, 132, 133] are vulnerable to color-based attacks. This vulnerability originate
from the inherent sensitivity of Denoising Diffusion Probabilistic Models (DDPMs) to
image colors [132], making them susceptible to even subtle chromatic manipulations
introduced by adversaries. Secondly, AP generally shows lower standard accuracy
than AT [124, 125]. Creating effective purification models, especially for large-scale
datasets, remains challenging due to the inherent trade-off between preserving image
semantics and removing perturbations [126]. Thirdly, current AP methods often
struggle with defending unseen attacks [118, 119, 134].

1.3. PROBLEM STATEMENT

Adversarial machine learning, including both attacks and corresponding counter-
measures across diverse contexts, has emerged as a significant research field within
machine learning and security. The thesis addresses critical challenges in enhancing




10 1. INTRODUCTION

the robustness and stealthiness of data in centralized backdoor attacks, improving
the stealthiness of decentralized backdoor attacks, and developing robust defensive
mechanisms against adversarial attacks. As discussed in Section 1.2, while addressing
the first two challenges involves proposing stronger attacks against current DNN
models and their defenses, our deeper goal is to uncover potential attack risks in
existing models. This insight aims to inspire follow-up researchers to design more
robust defenses against such threats. To strengthen the robustness of current DNN
models in the centralized settings, we tackle the final challenge while also deriving
insights to defend against the method introduced in solving the first challenge. Here,
we propose the research questions of the thesis, which can be explained in two
parts: enhancing stealthiness and robustness in backdoor attacks and improving the
robustness of adversarial purification.

STEALTHINESS AND ROBUSTNESS IN BACKDOOR ATTACKS

Stealthiness in centralized backdoor attacks refers to the imperceptible perturbations
of trigger patterns within both spatial and frequency domains while robustness
denotes the ability of poisoned images to withstand common transformation
operations. Most attack methods focus on the natural stealthiness of triggers but
relatively few mechanisms investigate the potential for injecting triggers into the
frequency domain. Existing frequency-based attacks fail to optimize triggers for
both stealthiness in the frequency domain and robustness under practical attack
scenarios, which brings the following question:

Q1: How can effectiveness, dual-domain stealthiness, and robustness be simultaneously
achieved in backdoor attacks under practical settings?

By answering Q1, we reveal a critical security threat in real-world scenarios:
an attacker could release poisoned datasets with imperceptible frequency triggers
that remain robust against common image transformations. Such an attack can
have severe consequences in high-stakes applications, particularly because training
high-performing models requires vast amounts of data, often leading to the collection
of publicly available but harmful datasets. More importantly, exploring this question
could advance research on detecting malicious and minimal perturbations in the
frequency domain. This would ultimately improve the ability of backdoor defenses
to identify and eliminate such stealthy and robust triggers.

In decentralized deep learning systems, stealthiness in backdoor attacks refers
to an adversary’s capability to send stealthy model updates to the server thereby
circumventing robust FL detection mechanisms. Current attack methods often
introduce anomalous parameters in their malicious model updates, rendering them
detectable by existing defenses. Additionally, these triggers are often perceptible
under human inspection. This brings the following question:

Q2: How can malicious updates be disguised as benign ones at the parameter level to
bypass current detection strategies while still maintaining the effectiveness of backdoor
attacks?
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A closer investigation of local backdoor training by adversaries reveals that current
methods often inject universal trigger patterns into poisoned samples which intro-
duce anomalous features, distinguishing them from the benign features of benign
counterparts. This distinction serves as the primary cause of the distinguishable
differences between malicious and benign model updates. Consequently, the
following question arises:

Q3: How to eliminate the anomalies introduced during backdoor training while
making the trigger sufficiently stealthy for inference under FL settings?

By answering Q2 and Q3, we uncover a severe security vulnerability in federated
learning: malicious clients can disguise themselves as benign ones and submit
harmful updates to poison the global model. Simply analyzing the similarity of model
updates without deeper statistical information about those updates is insufficient
to detect stealthy backdoor attacks in FL. Consequently, exploring these questions
inspires follow-up research to detect indistinguishable malicious model updates with
more sophisticated defensive mechanisms.

ROBUSTNESS IN ADVERSARIAL PURIFICATION

Robustness in adversarial purification is the ability of deep learning models to main-
tain robust accuracy when processing adversarial samples through AP techniques.
Current AP-based mechanisms typically apply image restoration operations globally,
which can destroy features of clean images, thereby reducing clean accuracy after
purification. Moreover, these methods are vulnerable to color-based attacks due
to the inherent sensitivity of DDPM to image color variations. These limitations
collectively impair both the robust accuracy against adversarial samples and the
standard accuracy on clean images, which brings the following question:

Q4: How can adversarial perturbations be effectively mitigated while preserving fine-
grained clean features to maintain high clean accuracy during adversarial purification?

By answering Q4, we enhance the robustness of current AP methods against
adversarial attacks in a fine-grained way. Additionally, exploring this question also
inspires follow-up research on restoring the target malicious region using advanced
diffusion models, which can preserve clean features to maintain high clean accuracy.

1.4. CONTRIBUTION OF THE THESIS

The thesis consists of 6 chapters, with each technical chapter (Chapters 2~5)
serving as a self-contained replication of a research paper. Each technical chapter
is designed to be independently comprehensible, allowing standalone reading and
understanding. While efforts have been made to retain the technical rigor and
details of the original publications, minor modifications are implemented to ensure
coherence within the thesis. Consequently, readers might encounter variations in
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notations, overlapping introductory sections, and recurring literature reviews across
chapters. The organization of the thesis is outlined as follows:

CHAPTER 2
BACKDOOR ATTACK AGAINST DEEP NEURAL NETWORKS

This chapter addresses the research question Q1. Specifically, we first introduce a
novel perspective of frequency trigger design that provides dual-space stealthiness
and robustness against image transformations, and develop a practical low-frequency
backdoor attack method. To achieve this, we formulate the problem as a constrained
optimization task to search for optimal frequency triggers that meet all attack
objectives. To solve this optimization problem effectively, we employ an evolutionary
algorithm, i.e., simulated annealing, which systematically minimizes the attack
objectives. Extensive experiments empirically demonstrate that our proposed method
achieves state-of-the-art effectiveness and exhibits superior dual-domain stealthiness.
This chapter shows that existing mainstream backdoor defenses as well as common
image preprocessing techniques are not effective enough to mitigate the attack.
Moreover, this chapter aims to inspire the follow-up studies to defend against such
stealthy frequency attacks. The chapter closely follows the content of the paper titled
"Low-Frequency Black-Box Backdoor Attack via Evolutionary Algorithm" by Qiao, Y.,
Liu, D., Wang, R., Liang, K., in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 2025, with minor extensions.

CHAPTER 3
STEALTHY BACKDOOR ATTACK AGAINST FEDERATED LEARNING

This chapter addresses the research question Q2. We first design a frequency
trigger injection function to produce imperceptible poisoned samples and thus
achieve the stealthiness in the input space. We analyze the behavior of neurons in
backdoor training at the parameter level by using a task-sensitive neuron searcher
(TNS) to identify those backdoor neurons that significantly contribute to backdoor
tasks and reduce the impact of backdoor-sensitive neurons. To constrain the
impact of backdoor neurons and align model parameters with benign ones, we
apply a step-forward training approach to generate benign and malicious models.
Furthermore, we apply TNS for the malicious model to find the list of backdoor
neurons and minimize its impact in order to evade anomaly parameter detection;
meanwhile, we use the benign model as an estimation of the attacker’s expected
local model. We restrain parameter dissimilarity to make malicious updates
indistinguishable from benign updates trained by the attacker without sacrificing the
utility of the global model. Therefore, we fully take advantage of the attacker’s ability
to provide the criterion of malicious model update direction. Finally, we evaluate
the attack performance and stealthiness against the most recent robust aggregation
algorithms on real-world datasets with various datasets and models. This chapter
shows that existing robust FL aggregation rules are not effective enough to mitigate
such stealthy attacks. This requires follow-up defensive methods that not only
compare parameter similarities across model updates but also invert local updates to
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analyze corresponding dummy datasets, helping identify potential malicious clients.
In conclusion, this chapter calls for researchers to develop novel defensive strategies
that can effectively identify and filter out malicious updates disguised as benign
ones. The chapter closely follows the content of the paper titled "Stealthy Backdoor
Attack against Federated Learning through Frequency Domain by Backdoor Neuron
Constraint and Model Camouflage" by Qiao, Y., Liu, D.,, Wang, R., Liang, K., in IEEE
Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), 2024,
with minor extensions.

CHAPTER 4

GENERATIVE BACKDOOR ATTACK AGAINST FEDERATED LEARNING

This chapter addresses the research question Q3. We propose a stealthy
generator-assisted backdoor attack tailored for robust FL which produces naturally
imperceptible triggers during the inference stage. These triggers provide hidden
feature similarity of benign data and effectively guide poisoned data to reuse benign
routing paths associated with the target label. Hereby our approach circumvents
parameter anomalies typically observed in malicious updates. We propose a
bi-level and constrained optimization problem to find our optimal generator in each
iteration efficiently and a customized learning process to solve it with reasonable
complexity. Finally, we present intensive experiments to empirically demonstrate
that the proposed attack provides state-of-the-art effectiveness and stealthiness
against existing defense mechanisms. This chapter shows that most FL defenses are
not capable of mitigating such adaptive attacks. This demands more sophisticated
defensive strategies in the future, requiring fine-grained inspection of all model
updates in each round or even reverse-engineering model updates to acquire
statistical information of local training data. Finally, this chapter seeks to motivate
future research on new defenses against such adaptive poisoning attacks on FL. The
chapter closely follows the content of the paper titled "FTA: Stealthy Backdoor Attack
with Flexible Triggers against Federated Learning" by Qiao, Y., Liu, D., Panaousis, M.,
Conti, M., and Liang, K., which is under review from IEEE Transactions on Artificial
Intelligence (2025), with minor extensions.

CHAPTER 5
DIFFUSION-BASED PURIFICATION AGAINST ADVERSARIAL ATTACKS

This chapter addresses the research question Q4. We, for the first time, apply the
denoising diffusion probabilistic model (DDPM) inpainting technique for adversarial
purification (AP), enabling targeted removal of perturbations while preserving
intrinsic features of clean images, unlike conventional diffusion models that typically
operate on a full image scale. Then, we propose leveraging occlusion sensitivity
maps to identify regions potentially manipulated by adversarial attacks. This targeted
strategy facilitates the precise localization and removal of adversarial perturbations,
leading to improved robustness compared to methods relying on non-targeted
image restoration. Empirical evaluations demonstrate the superior robustness of
our approach in defending color-based attacks and unseen attacks compared to
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existing AP techniques. In conclusion, this chapter enhances the robustness of DNN
models against adversarial attacks. Furthermore, this chapter provides a potential
defensive insight for black-box data poisoning attacks under the centralized settings
as in Chapter 2. The chapter closely follows the content of the paper titled
"MSID: Multi-Scale Diffusion-Based Inpainting Defense Against Adversarial Attacks"
by Popovici, A., Qiao, Y., Liu, D., Smaragdakis, G. and Liang, K., which is under
review, with minor extensions.

1.4.1. LiST OF EXCLUDED PUBLICATIONS

In the following, we list the papers published during Ph.D. but not included in the
thesis since they only present partial elements of the chapters.

e Liu, D.*, Qiao, Y.*, Wang, R., Liang, K., Smaragdakis, G., 2025. LADDER:
Multi-objective Backdoor Attack via Evolutionary Algorithm. In the Network
and Distributed System Security (NDSS) Symposium.

e Liu, D., Qiao, Y., Wang, R., Liang, K., Smaragdakis, G., 2025. PASTA:
A Patch-Agnostic Twofold-Stealthy Backdoor Attack on Vision Transformers.
Under review.

e Stenhuis, R., Liu, D., Qiao, Y., Conti, M., Panaousis, M. and Liang, K., 2025.
MeetSafe: Enhancing Robustness against White-box Adversarial Examples. In
Frontiers in Computer Science.

° Amalan, A., Wang, R., Qiao, Y., Panaousis, E. and Liang, K., 2022. MULTI-
FLGANSs: Multi-Distributed Adversarial Networks for Non-IID distribution. arXiv
preprint arXiv:2206.12178.

* Tian, Y., Wang, R., Qiao, Y., Panaousis, E. and Liang, K., 2023. FIVoogd: Robust
And Privacy Preserving Federated Learning. In Asian Conference on Machine
Learning (ACML).
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BACKDOORATTACKAGAINST DEEP
NEURAL NETWORKS

Convolutional Neural Networks (CNNs) that have excelled in diverse computer vision
tasks are vulnerable to backdoor attacks, enabling attacker-controlled predictions via
specific triggers. Restricted to spatial domains, recent research exploits perceptual traits
by embedding triggers in the frequency domain, yielding pixel-level indistinguishable
perturbations. In black-box settings, restricted access to model and training process
necessitates advanced trigger designs. Current frequency-based attacks manipulate
magnitude spectra, introducing discrepancies between clean and poisoned data,
though vulnerable to common image processing operations like compression and
filtering.

In this paper, we propose a robust low-frequency backdoor attack (LFBA) in black-box
setup that minimally perturbs spectrum components and maintains the perceptual
similarity in spatial space simultaneously. Our methodology capitalizes on the insight
that optimal triggers can be located in low-frequency regions to maximize attack
effectiveness, robustness against image transformation operations, and stealthiness in
dual space. To effectively explore the discrete frequency space, we utilize simulated
annealing (SA), a form of evolutionary algorithm, to optimize the properties of trigger
including the frequency bands to be manipulated and the perturbation of each band
under restricted attack scenario. Extensive experiments on both CNNs and Vision
Transformers (ViT) confirm the effectiveness and robustness of LFBA against image
processing operations and state-of-the-art backdoor defenses. Furthermore, LFBA
exhibits inherent stealthiness in both spatial and frequency spaces, making it resistant
to human and frequency inspection.

This chapter is based on the paper “Low-Frequency Black-Box Backdoor Attack via Evolutionary
Algorithm" by Qiao, Y., Liu, D., Wang, R., Liang, K. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), 2025.
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2.1. INTRODUCTION

CNNs are vulnerable to backdoor attacks [1-6] that can mislead the model to make
attack-chosen predictions with triggers in the use phase while behaving normally
on clean images, causing severe consequences in high-stakes applications such as
autonomous driving [7] and biometric authentication [8].

Prior backdoor attacks possess the capability to inject imperceptible triggers into
spatial domain [11-17]. Inserting triggers in spatial space can harm the semantics
of infected image pixels (see fig. 2.1). Recent works have concluded that backdoor
attacks can inject trigger patterns into frequency space [9, 10, 18, 19]. For
example, FTrojan [9] manipulates mid- and high-frequency spectrum of input images
with a pre-defined perturbation within fixed frequency band. However, manually
crafting frequency components, especially in high-frequency regions, could harm
the robustness of trigger and thus trigger effectiveness can be eliminated by image
processing operations such as lowpass filters. Moreover, both spatial and frequency
triggers introduce distinguishable artifacts when transformed to frequency space (see
figs. 2.1 and 2.6).

Inspired by [20], an ideal and practical backdoor attack should achieve four
objectives, namely, functionality preservation, effectiveness, dual-space stealthiness,
and robustness. Functionality preservation ensures high test accuracy on clean data.
Effectiveness is demonstrated by the ability to misclassify poisoned data to the target
label with a high probability. Dual-space stealthiness implies that poisoned images
exhibit visual and frequency similarity to clean ones. Robustness is demonstrated by
its effectiveness against image transformations and resistance to backdoor defenses.
Although successfully achieving the goals at pixel level, [20] does not consider the
stealthiness in the frequency perspective. This work explores a new perspective of
backdoors in frequency domain.

Typically, low-frequency components of an image contain semantic information,
while high-frequency components capture finer details and noise. According to prior
works such as [21, 22], inserting triggers in low-frequency region offers concrete
influences: (1) low-frequency components have a perceptual capacity that allows
trigger insertion without perceptual degradation; (2) low-frequency components
exhibit greater resilience in lossy compression operations such as JPEG, whereas
high-frequency components are more pronounced to data loss; and (3) trigger
inserted in low-frequency region is harder to be removed by low-pass filtering
compared to the high-frequency region.

Building on the above insights, we develop LFBA, a poisoning-based low-frequency
backdoor attack with a robust and imperceptible trigger in dual space. The key
insight of LFBA is to find the optimal trigger that can achieve dual-space stealthiness,
attack effectiveness and robustness when the model and defense strategy are
unknown. This design marks the first exploration into the robustness from a
frequency perspective, which locates mininal perturbations in low-frequency region
against image transformations while naturally guaranteeing perceptual similarity
in the pixel domain. Finding such a frequency trigger in a black-box scenario
is not trivial. Due to the absence of the victim model and training process,
one may handcraft the frequency trigger as FTrojan [9] and FIBA [10], but it
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Clean : BadNets Blend SIG IAB ReFool : FTrojan FIBA LFBA

Figure 2.1: Comparison of poisoned images with their corresponding frequency
disparities (amplified by 5x) to clean images of existing attacks. Left:
clean images; mid: poisoned images of spatial-based attacks including
BadNets [3], Blend [2], SIG [1], IAB [6] and ReFool [5]; right: poisoned
images of frequency-based attacks including FTrojan [9], FIBA [10] and
our LFBA. Although state-of-the-art frequency triggers achieve superior
invisibility in pixel space than spatial triggers, they introduce anomaly
frequency artifacts.

could lead to improper frequency properties of the trigger. For example, a large
perturbation can disrupt invisibility of poisoned images, while a small perturbation
could hinder the model’s ability to learn the feature of trigger, resulting in low
attack effectiveness. Furthermore, selecting an improper frequency band for trigger
insertion can compromise the attack robustness against image processing operations
(see Table 2.8).

To address the challenges under black-box setting, we leverage simulated annealing
(SA), an effective gradient-free optimization algorithm, to search for the optimal
trigger in the discrete spectrum space. Specifically, we convert a clean image
between spatial and frequency domain via discrete cosine transform (DCT) and its
inverse (IDCT). Then, we inject our frequency trigger into the spectrum of the image
and iteratively optimize two properties of the trigger including perturbations and
frequency bands via SA, in order to maximize attack effectiveness as the primary
goal with a penalty term concerning dual-space stealthiness. To efficiently estimate
the trigger effectiveness, we use the objective loss from a semi-trained surrogate
model. Finally, we use our frequency trigger function to produce attacker’s poisoned
dataset with the optimal trigger. Since the imperceptible perturbations are posed in
low-frequency region, LFBA preserves the invisibility in spatial domain and is robust
to any eradication in frequency domain. The main contributions of this work are as
follows:

« We explore a new perspective of frequency trigger design that provides the
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dual-space stealthiness and robustness, and develop a practical low-frequency
backdoor attack method.

¢ We formulate a constrained optimization problem to find optimal frequency
triggers. Then we utilize SA to effectively minimize the attack objectives of the
problem.

o Extensive experiments in computer vision tasks empirically demonstrate that
the proposed attack provides state-of-the-art effectiveness and robustness against
existing spatial and frequency defenses as well as image transformation operations.

2.2. RELATED WORK

Backdoor Attacks. [3] introduces the first backdoor attack against deep learning
models. It employs a patch-based pattern as trigger, injecting it into a small fraction
of clean data, which causes the victim model to misclassify those poisoned images
to the target label. After that, various attacks, aiming at improving stealthiness and
robustness through the design of triggers and training process, have been proposed
in the literature.

(1) Spatial-based attacks: To enhance the invisibility of triggers for bypassing human
inspection, some works [1, 5, 11-13, 20] focus on imperceptible backdoor attacks in
spatial domain. For example, [1] uses sinusoidal signals as triggers which results in
slightly varying backgrounds; [5] utilizes natural reflection as trigger into the victim
model, while [12] leverages DNN-based image steganography technique to hide an
attacker-specified string into clean images as sample-specific triggers. Later, several
works [14-17] reveal the importance of stealthiness in latent feature space. [14] learns
a trigger generator to constrain the similarity of hidden features between poisoned
and clean data via Wasserstein regularization. To improve the stealthiness of
triggers, [16] adaptively learns the generator by constraining the latent layers, which
makes triggers more invisible in both input and latent feature space. While spatial
attacks offer inherent stealthiness, they often overlook robustness against common
image processing operations utilized during data preprocessing. Consequently, their
effectiveness is significantly compromised by such operations. Moreover, most
attacks require a strong attack assumption that the adversary possesses full control
over the training process and has knowledge of the victim model. More importantly,
many spatial backdoor attacks exhibit severe high-frequency artifacts that can be
easily detected in the frequency domain (see figs. 2.1 and 2.6).

(2) Frequency-based attacks: Recent works [9, 10, 18, 19, 23, 24] explore another
attack surface, namely, frequency domain, naturally guaranteeing invisibility due
to frequency properties. FTrojan [9] handcrafts two single frequency bands with
fixed perturbations as trigger, and FIBA [10] injects low-frequency information of
a trigger image by linearly combining spectral amplitude of poisoned and clean
images. These works introduce distinguishable frequency artifacts and can be
detected via frequency inspection. DUBA [24] embeds high-frequency information
of trigger image into clean image to achieve trigger invisibility in dual domains.
However, it focuses on stealthiness and do not consider robustness against image
transformation operations. Different from the above works, we propose a black-box
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frequency backdoor attack that firstly achieves imperceptibility in dual spaces and
robust against image processing defenses. We briefly compare the SOTA backdoor
attacks in Table 2.1 based on various attack attributes.
Backdoor Defenses. Defensive [26-32] and detective [23, 33-36] mechanisms are
commonly used for backdoor defenses. Defensive methods focus on mitigating the
effectiveness of potential backdoor attacks. For example, fine-pruning [26] prunes
the dormant neurons in the last convolution layer based on clean inputs’ activation
values. Neural Cleanse [27] reconstructs potential triggers for each target label via
reverse engineering and renders the backdoor ineffective by retrain patches strategy.
Neural Attention Distillation [31] uses a “teacher” model to guide the finetuning
of the backdoored “student” network to erase backdoor triggers. Representative
detective methods include STRIP [33] which perturbs or superimposes clean inputs
to identify the potential backdoors during inference time, spectral signature [35]
using latent feature representations to detect outliers and [23] leveraging supervised
learning to differentiate between clean and poisoned data in frequency space.
Besides, image processing-based methods [9, 32, 37] have been studied, which
remove backdoors by image processing transformations. In this work, we showcase
that the proposed attack can evade representative defenses including frequency
inspection, image processing operations and mainstream backdoor defenses.
Recently, several state-of-the-art backdoor defenses have been proposed. For
example, ASD [38] introduces a training-time defense that separates training data
into clean and poisoned subsets. Neural Polarizer [39] purifies poisoned models by
incorporating a learnable neural polarizer as an intermediate layer. ZIP [40] mitigates
backdoor attacks through zero-shot image purification.
Threat Model. We consider a rather realistic black-box scenario as in prior works [9,
20, 41] where the adversary, i.e. a malicious data provider, can only inject a limited
number of poisoned samples into clean training set for public use. The attacker
should not have control over the training process or have knowledge of the victim
model. This is a more practical and challenging attack scenario than white-box
attacks [11, 14, 16, 17, 42]. Such a threat model can be seen in many real-world
scenarios like the outsourcing of data collection to third-parties.

2.3. PROPOSED METHOD

2.3.1. PRELIMINARIES

Backdoor attacks.. We consider backdoor attacks on image classification. Let
fo:# —RX be an image classifier parameterized with 6 that maps an input image
£ <[0,1]"*W*C to an output class, where K is the number of classes, H, W and
C are the height, width and channels of an input image. The parameters 6 of the
classifier are learned using a training dataset D, = {(x;, y;)|x; € Z,y; € RK }ﬁ\i 1

In a standard backdoor attack, the attacker crafts a subset of D, with ratio p to
produce the poisoned dataset D), = {(x}, y))|x} € .#, y; e R¥ }f.\ixlp by the trigger function
g and target label function 7. Given a clean image x from the clean subset and its
true class y, the commonly used trigger function 9~ and target label funtion 7 in the
spatial space are defined with a hyper-parameter m €[0,1] and a trigger pattern ¢ as
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Table 2.1: Critical attack attributes among LFBA and other attacks in spatial (S) and
frequency (F) domains.

Attributes— Attack Attack Stealthiness Attack

Attacks | Domain  Scenario S F Robustness Optimization
IAB [6] S White-box X X X wi/
ISSBA [12] S White-box X X X w/
LIRA [11] S White-box X X X w/
DFST [17] S White-box X X X w/
WB [14] S White-box X X X w/
IBA [15] S White-box X X X w/
BadNets [3] S Black-box X X X w/o
SIG [1] S Black-box v/ X X w/o
ReFool [5] S Black-box v/ X X w/o
WaNet [13] S Black-box v/ X X w/o
Narcissus [25] S Black-box X X v w/
FTrojan [9] F Black-box v/ X X w/o
FIBA [10] F Black-box v/ X X w/o
DUBA [24] S+F  Black-box v/ vV X w/o
LFBA (Ours) S+F  Black-box v/ vV v w/

follows:
X=F@xmbt=x-0-m+t-m, y=n@)=ys 2.1

where y; is the target class. Under empirical risk minimization, a typical attack aims
to inject backdoors into the classifier f by learning 6 with both clean dataset D,
and poisoned dataset Dj, so that the classifier misclassifies the poisoned data into
the target class while behaving normally on clean data. The optimization problem is
defined as follows:

min ) ZL(fr,nN+ Y L(fx)y), (2.2)
9 (xyeD, (',y)eD,

where £ represents the cross-entropy loss.

DCT and IDCT functions. DCT is a widely used transformation that represents a
finite sequence of image pixels as a sum of cosine functions oscillating at various
frequencies. In the spectrum, most of the semantic information of images tends to
be concentrated in a few low-frequency components on the top-left region, where
the (0,0) element (top-left) is the zero-frequency component. Given an image
x(h, w,¢), its frequency form xf (!, wf,¢) is calculated by the DCT function 2(-) as
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follows:
I (wf w!,0) = D(x(h, w, ) (2.3)
H-1W-1C-1 2h+1h! 2w+ Dwl
=viHvwhH Y Y Y xh wc)cos Ghr DT | Gt D m (2.4)
h=0 w=0 c¢=0 2H 2w

for Yh,h/ =0,1,...,H-1 and Yw,w/ =0,1,...,W—1, where H,W,C represent the
height, width and number of channels of the given image. For simplicity, we assume
H=W, therefore V(0) = /45 and V(k) =/5% for k> 0. Accordingly, 27! (-) denotes
the IDCT as follows:

x(h,w,0) =27 (! (W, w!, 0)) (2.5)
H-1 W-1C-

= Zl Z Zl V(h) V(W)xf(hf, wf’ C) Ccos M CcoS M (26)
hf=0wf=0c=0 2H 2W

2.3.2. FREQUENCY BACKDOOR ATTACK

Frequency Trigger Function. We redesign the trigger function in the frequency space
to better search the frequency trigger that can achieve dual-space stealthiness. Given
a clean sample (x,y) € D., we first transform x to the frequency domain via DCT
function 2(-) and obtain the frequency spectrum x/. Next, we apply our frequency
trigger function I/ to insert the trigger t into x/. Subsequently, we revert it to the
spatial domain via IDCT function 27'(-) and manipulate the ground truth label y
to the desired target y, to obtain the poisoned sample (x’,)'). The process can be
formulated as:

V=9l 022'@W+n, Y =00 =y, @2.7)

where the trigger = (6,v) comprises a set of perturbations 6 = {6;|i =1,2,...,n}
in terms of frequency components and its corresponding frequency bands
v={v;li =1,2,...,n} that indicates the position in frequency spectrum to pose the
perturbation § on, n represents the number of frequency bands to manipulate.
Finally, we apply 9/ to a subset of D, with ratio p to produce Dy.

Problem Formulation. In contrast to white-box attacks, which manipulate the
training process of the victim model, our primary goal is to search the optimal
trigger (6*,v*) that can achieve high attack effectiveness. To mitigate the absence
of victim model and the extensive time consumption of training from scratch, we
follow [20, 25] to fine-tune a semi-trained surrogate model f; with the poisoned
dataset D), for a few epochs. We use the training loss of D), from f; to approximate
the trigger effectiveness with an acceptable deviation in practice. Therefore, the
main task of our attack to minimize is defined as follows:

06,v)= Y LU5Tx©6,v), 0. 2.8)
(x,y)€D,

One may argue that large crafted perturbations in specific frequency bands could
also achieve high attack effectiveness and practical natural stealthiness such as
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[9, 10]. Triggers without careful consideration can bring distinguishable frequency
artifacts (see figs. 2.1 and 2.6). We hereby define a penalty term for dual-space
stealthiness to ensure imperceptible frequency perturbations as follows:

P©6,v)=16lp, (2.9)

where p =2 denotes l,-norm distance of perturbations on frequency components'.
Taking into account both the primary goal and the dual-space stealthiness penalty,
our attack goal aims to minimize the overall objective function under the constraints
w.r.t. magnitude of perturbations and region of manipulated bands. The optimization
problem of LFBA is formulated as follows:

I%lin O@6,v)+P(,v), (2.10)
K

s.t. |0il<e, (2.11)

Vi € Flows (2.12)

where i€ {0,1,---,n—1}, n is the number of manipulated bands, ¢ constrains the

maximal value of each perturbation §;, and .%,, is the low-frequency region for
searching LFBA trigger.

2.3.3. FREQUENCY TRIGGER OPTIMIZATION

It is challenging to apply common gradient-based methods, such as stochastic
gradient descent (SGD), to optimize discrete variables (e.g., frequency bands) in our
context. Therefore, we search the optimal trigger with simulated annealing (SA) [43],
a probabilistic optimization technique, to effectively optimize § and v in discrete
spectral space. Algorithm 1 describes the workflow of searching our optimal trigger
t* = (6%,v*) with SA in low-frequency region %,,,.

Particularly, the optimization process starts with randomly initializing a trigger
topt = (Bopt,Vopr), which satisfies two hard constraints in eqs. (2.11) and (2.12). Then,
we inject the subset of D, with ,,; to produce D,. After that, we train the surrogate
model fy on D, for a few epochs E and approximate the effectiveness of trigger
based on objective value Obj,,; computed using eq. (2.10). The annealing process
involves heating a material to a high temperature and then gradually cooling it
to remove defects and optimize its internal structure. To reflect this process, we
decrease the temperature T from initial temperature Ty to terminal temperature
Tr by a decay factor a to control the trigger optimization process. As shown in
Algorithm 2, under each 7, SA iteratively generates an offspring t = (9, v) restricted
by egs. (2.11) and (2.12) to improve the trigger effectiveness and stealthiness. Then
we follow a similar process of initialization to calculate the attack objective value
Obj for ¢ in eq. (2.10). Once ¢ is better than #,,, in terms of the objective value, i.e.,
Obj < Objops, the current outperformed trigger ¢ and Obj will survive as the new
topt and Obj,p, and then enter the next round, otherwise the above process will be
repeated. Upon termination (T drops to Ty, the last f,p, is the desired optimal
trigger ¢* that is used by eq. (2.7) to produce the attacker’s poisoned dataset.

IThe Iy-norm distance of trigger perturbations between frequency and spatial domains remains
consistent, i.e., [|6]2=12"1©6)]2. We hereby only consider the frequency domain.
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Algorithm 1: Optimal Frequency Trigger Search via SA

1 Require: Poisoned dataset Dy, Initial temperature Ty, Terminal temperature Ty,

Optimization iterations per temperature ifer, Annealing factor ¢, Number of

epochs E, Surrogate model fy, Maximum frequency perturbation €, Low

frequency region .7,
2 Ensure: The optimal frequency trigger t* = (0", v*)

3 ‘ Stepl:Initialization ‘

4 8opr — Rand(—¢,€), vop: — Rand_Loc(F4y)

5 Poison Dy, with t,pr = (Gops, Vopr) using g7 in eq. (2.7)

6 f;, < Train f; on D), within E

7 Objopt — O((sopt»vopt) +P(60pt)vopt) by eq. (2.10) with Dp on fes,

8 ‘Stepz: Trigger optimization
9 T = To
10 while T = Ty do

11 for i=1,2,...,iter do

12 (6,v) — TriggerUpdate((6opr,Vopr), T) /1 see Algorithm 2
13 Poison D, with ¢ = (6,v) using g4 ineq. (2.7)

14 fgs, < Train f; on D, within E

15 Obj— 0O(6,v)+P(6,v) by eq. (2.10) with D, on fé‘,
16 if Obj <Obj,p: then

17 | Sopt —8,Vopt — Vv, Objop; — ODbj

18 end

19 end

20 T=T-axT

21 end

22 6* ‘—60pt,V* — Vopt
23 return t* = (6*,v*)

2.4. EXPERIMENTS

2.4.1. EXPERIMENTAL SETUP

Datasets and Models. Without loss of generality, we evaluate LFBA on five
benchmark datasets including MNIST [44], CIFAR-10 [45], Tiny-ImageNet (T-IMNET)
[46], GTSRB [47] and CelebA [48]. For CelebA, we follow [13, 41] to select the top
three most balanced attributes including Heavy Makeup, Mouth Slightly Open, and
Smiling. Then we concatenate them to create an eight-label classification task. We
test LFBA on both small and large-scale datasets with a wide range of image sizes,
including both grayscale and RGB images, to verify attack performance and also
remain consistency across different types of image datasets. Following [13, 34, 35,
42, 49], we consider various architectures for the victim image classifier. Specifically,
we employ a CNN model [13, 42] for MNIST, PreAct-ResNet18 [50] for CIFAR-10
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Algorithm 2: Trigger Update Method

1 Require: Current trigger (8,p¢, Vopr), Mutation probability prob,;, Initial
temperature Ty, Current temperature T, Terminal temperature Tf, Number of
manipulated frequency bands n

2 Ensure: The evolved trigger

6,v) 6 — 6opt;V “~Vopt

if Rand(0,1) < prob,;,; then

i — Rand(0, n)

Av — Rand_Loc(Z o)

Vi—vi+(T =TI (To—Tp) *Av

Jj — Rand(0, n)

Ad — Rand(—e,¢€)

10 5j<—5j+(T—Tf)/(T0—Tf)*A5

11 end

12 return (5,v)

© 0 N e G e ®

and GTSRB, and ResNetl8 [50] for T-IMNET and CelebA. To demonstrate the
generalization of LFBA, we evaluate its effectiveness on state-of-the-art architectures
for vision tasks, called Vision Transformers (ViT) [51]. The detailed ViT architectures
used in our experiments are provided in Table 2.2. For surrogate models, we use
heterogeneous VGG architectures [52] to simulate black-box setup. The details of
tasks, datasets and models are described in Table 2.3.

Table 2.2: Overview of parameter setups of ViT architectures.

Settings | ViT (CIFAR-10) ViT (CelebA)
hidden_dim 128 512
num_layers 6 6
num_heads 4 8
image_size 32 64

patch_size 4 4

mlp_dim 256 512

drop_out 0.1 0.1

num_parameters 0.81M 9.63M

Table 2.3: The summary of tasks, and their corresponding models.

Task Dataset # of Training/Test Images  # of Labels Image Size Victim Model Surrogate Model
Handwritten Digit Recognition MNIST 60,000/10,000 10 28x28x1 3 Conv + 2 Dense VGG11
Object Classification CIFAR-10 50,000/10,000 10 32x32x3  PreAct-ResNetl18 / ViT VGG16
Traffic Sign Recognition GTSRB 39,209/12,630 43 32x32x3 PreAct-ResNet18 VGG16
Object Classification Tiny-ImageNet 100,000/10,000 200 64x64x3 ResNet18 VGG19

Face Attribute Recognition CelebA 162,770/19,962 8 64x64x3 ResNet18 / ViT VGG19
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Evaluation Metrics. We evaluate attack effectiveness based on attack success rate
(ASR), i.e. the ratio of poisoned samples successfully misclassified to the target label,
and test accuracy (ACC) on clean data for functionality-preserving requirement. For
human inspection, we use PSNR [53], SSIM [54] and LPIPS [55] to evaluate spatial
invisibility between clean and poisoned data. LPIPS utilizes deep features of CNNs
to identify perceptual similarity, while SSIM and PSNR are calculated based on the
statistical pixel-wise similarity.

Implementation. The implementation of LFBA is based on PyTorch [56] and
executed on a workstation with 16-core AMD Ryzen 9 7950X CPU, NVIDIA GeForce
RTX 4090 and 64G RAM. For the default setting, we train CNN models by SGD
optimizer with learning rate 0.01 and decayed by a factor of 0.1 after every 50 epochs.
For ViT architectures, we utilize AdamW optimizer [57] with learning rate 0.01. We
set batch size to 64 and total number of epochs to 200. We set ¢ to 0.1 for MNIST,
0.5 for CIFAR-10, GTSRB, and 1.5 for T-IMNET and CelebA. Following the approach
outlined in [58], we select approximately 18.3% of the frequency spectrum in the
top-left region for .%,, to search for our trigger. We choose n =3 as the number of
manipulated frequency bands. For simplicity, we set the poison ratio to only 5% and
target label to 7 for all the datasets”. For trigger optimization, we set the parameters
in SA as follows: iter =5, To=1, Tr=0.01, «=0.99 and prob;,, =0.8. Unless
explicitly stated otherwise, we adopt this default setting for LFBA in the experimental
sections.

2.4.2. ATTACK PERFORMANCE

We compare both spatial and frequency attacks including BadNets [3], SIG [1], ReFool
[5], WaNet [13], FTrojan [9] and FIBA [10] as baselines to evaluate the effectiveness.
Since other backdoor attacks [11, 14-17] require full control over training process
and knowledge of the victim classifiers, we do not consider the above methods as
practical baselines.

Attack effectiveness. We first demonstrate that LFBA achieves high ASR (= 99%)
across 5 datasets and 3 models with slight accuracy degradation (<0.55% in average)
(see Table 2.4). The results confirm that our attack outperforms other black-box
attacks in most tasks. That is so because we approximate the trigger effectiveness
during the optimization process of SA (see eq. (2.10)) whereas others do not take
into account attack effectiveness when designing their triggers. Additionally, LFBA
also achieves the highest ASR compared to other spatial and frequency backdoors
on ViT. For example, LFBA achieves a 99.38% ASR, which is 1.08% higher than
BadNets on CelebA. Our experimental findings raise urgent concerns for the physical
realm: adversaries can compromise any model by injecting publicly available images
with a robust and dual-space stealthy trigger, even without access to the victim model.
Computational cost of trigger optimization. To illustrate the practical applicability
of the selected optimization method in a real-world scenario, we evaluate the
computational overhead of trigger optimization using SA. Table 2.5 showcases the

2Qur attack is label-independent, i.e., the attacker can easily transfer LFBA attack to any other desired
labels by searching the corresponding optimal triggers.
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Table 2.4: Attack performance via ACC (%) and ASR (%) for several attacks.

Attack MNIST GTSRB CIFAR-10 Tiny-ImageNet CelebA
ACC ASR ACC ASR ACC ASR ACC ASR ACC  ASR
CLEAN 99.33 - 98.60 - 93.25 - 55.24 - 79.13 -

BADNETsS 99.25 99.99 98.05 97.16 92.05 98.24 54.09 9782 76.54 99.35
SIG 99.31 99.95 9790 99.87 92.14 99.98 5459 9949 7790 99.85
REFOOL  98.71 99.28 9794 9851 91.09 97.03 5437 9732 78.53 98.09
WANET  98.59 99.09 98.19 99.83 9231 99.93 5485 99.16 77.99 99.33
FTROJAN  99.27 99.94 96.63 99.25 9253 99.82 53.41 9938 78.63 99.20
FIBA 99.27 99.74 96.73 98.88 91.13 97.87 5411 98.14 7790 99.16
LFBA 99.31 99.72 98.42 99.97 9291 99.88 54.64 99.90 78.79 99.91

searching time to generate the optimal frequency trigger for each dataset. We can see
that SA achieves a reasonable optimization time, averaging around tens of seconds.
Therefore, SA is a suitable choice for our optimization method in LFBA.

Table 2.5: The computational cost of trigger optimization via SA across different

datasets.
Dataset MNIST GTSRB CIFAR-10 T-IMNET CelebA
Time 5s 61 s 39s 35s 192 s

Table 2.6: Attack performance via ACC (%) and ASR (%) for several attacks on ViT.

CIFAR-10 CelebA
Attack
ACC ASR ACC ASR
CLEAN 85.41 - 73.55 -

BADNETS 83.15 99.86 72.77 98.30
SIG 83.19 99.89 72.68 98.99
REFooL 8297 98.46 7245 97.24
WANET 83.28 99.72 72.67 98.75
FTROJAN  83.52 9991 7251 99.02
FIBA 83.30 99.85 7240 98.66
LFBA 83.41 99.99 72.87 99.38

Natural stealthiness. A dual-space stealthiness penalty is added to the process of
searching the optimal LFBA trigger so as to ensure natural stealthiness of poisoned
images. We compare the state-of-the-art invisible attacks in spatial and frequency
domains. For each dataset, we randomly select 500 sample images from test
dataset to evaluate trigger stealthiness. A higher PSNR/SSIM or a smaller LPIPS
value indicates a better stealthiness of an given poisoned sample. LFBA achieves
more natural stealthiness than current frequency backdoor attacks (see Table 4.4)
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due to its less number of frequency bands and minimal perturbations. Such minor
alterations of LFBA in frequency space can naturally provide invisibility to the
potential defender who lacks knowledge of the correspondent clean image. Taking
Table 4.4 and Figure 2.1 into consideration, we conclude that the proposed LFBA
attack outperforms both spatial and frequency domain-based attacks in terms of
natural stealthiness.

Table 2.7: Natural stealthiness (PSNR 1, SSIM 1, LPIPS |).

CIFAR-10 Tiny-ImageNet CelebA
PSNR  SSIM LPIPS PSNR  SSIM LPIPS PSNR SSIM LPIPS
CLEAN Inf 1.0000  0.0000 Inf 1.0000  0.0000 Inf 1.0000  0.0000

BADNETS 36.67 0.9763 0.0012 36.35 0.9913 0.0006 32.50 0.9951 0.0005
SIG 2526  0.8533 0.0289 2536 0.8504 0.0631 25.38 0.7949 0.0359
REFOOL 18.37 0.6542 0.0697 20.42 0.8564 0.4574 23.72 0.8359 0.2134
WANET 19.30 0.8854 0.0090 29.59 0.9359 0.0360 30.42 0.9175 0.0530
FTROJAN  41.16 0.9946 0.0006 42.28 0.9931 0.0003 42.25 0.9904 0.0002
FIBA 29.69 0.9858 0.0024 29.39 0.9755 0.0080 29.25 0.9592  0.0057
LFBA 44.31 0.9971 0.0001 43.54 0.9942 0.0002 46.27 0.9953 0.0001

Attacks

2.4.3. ATTACK AGAINST DEFENSIVE MEASURES

We evaluate attack robustness of LFBA against the mainstream defenses including
Neural Cleanse [27], STRIP [33], Fine-pruning [26] and network inspection. We also
show imperceptible frequency artifacts of LFBA against frequency artifacts inspection
[23]. Moreover, we evaluate our attack under preprocessing-based defenses as in [9,
20] to comprehensively illustrate the practical robustness.

Neural Cleanse (NC). The key intuition of NC is that a backdoor trigger can cause
any input misclassified to target label. It reverses engineering possible triggers and
detects backdoors in the victim model using anomaly index. An anomaly index
exceeding 2 signifies that the model has been compromised. LFBA remains below
the threshold and successfully evades the defense across all datasets (see Figure 2.2
(a)). We recall that NC focuses on small and fixed patches but LFBA designs trigger
in frequency space, wherein it inserts an imperceptible frequency perturbation only
causing a minimal change in the entire pixel domain. Consequently, trigger spans
the entire pixel space, providing considerable natural similarity.

STRIP. It assumes that the predictions given by a backdoored model on poisoned
samples consistently tend to be target label and are not easily changed. It detects
poisoned samples by analyzing the classification entropy after superimposing some
random clean samples on the test samples. We can observe that LFBA achieves
almost the same entropy probability distributions as clean samples (see Figure 2.3),
allowing it to circumvent the defense. The overlap area of distributions refers to the
difficulty of poisoned sample detection. For example, the distributions of clean and
poisoned samples on CIFAR-10 are almost indistinguishable, indicating that it is hard
for STRIP to detect our poisoned samples. This is so because superimposing random
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images in spatial space destroy low-frequency components (containing LFBA trigger
pattern) of poisoned images. Therefore, the predictions of superimposed images will
also undergo significant changes, resembling the clean case.

Fine-pruning. It mitigates backdoor effectiveness by pruning dominant neurons with
very low activations via a small clean dataset. We test LFBA against Fine-Pruning
and demonstrate ACC and ASR with respect to the ratio of pruned neuron on
GTSRB, CIFAR-10 and T-IMNET (see Figure 2.2 (b)-(d)). Across all datasets, we see
that the ASR is always higher than ACC without any degradation, making backdoor
mitigation impossible. This suggests that Fine-pruning is ineffective against LFBA.
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Figure 2.2: (a): The results of LFBA under NC on different datasets; (b)-(d): The
attack effectiveness of LFBA against Fine-pruning.
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Figure 2.3: The entropy distributions of LFBA against STRIP under 4 datasets.

Network Inspection. We further investigate the impact of LFBA on the attention
of the classifier by Grad-CAM [59]. Grad-CAM finds the critical regions of input
images that mostly activate models prediction. In Figure 2.4, we showcase visual
heatmaps of clean and poisoned images by LFBA. We observe that LFBA does not
introduce anomaly attention areas of networks when compared to clean cases across
all datasets. This is because our trigger is inserted in low-frequency components,
which contain the semantics of images, making network attention unaltered.

Image Preprocessing-based Defenses. We select image preprocessing methods in [9,
20], including Gaussian filter, Wiener filter, BM3D [60] and JPEG compression [61],
which directly denoise or compress input images. We further apply these operations
to poisoned test images of CIFAR-10 with various hyperparameters before inference.
The results are shown in Table 2.8. They demonstrate that all transformations
are effective to remove trigger effectiveness in FTrojan, which handcrafts mid-
and high-frequency components with anomaly perturbations. However, LFBA can
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Clean LFBA Clean

Figure 2.4: Visualization of network attention on GTSRB, CIFAR-10, T-IMNET and
CelebA. Compared to the feature saliency maps of clean images, LFBA
does not introduce any unusual regions.

circumvent these defenses since denoising transformations and lossy compression
do not typically operate on the low-frequency components [22].

Explanations of Robustness through Frequency Perspective. We showcase poisoned
images and their frequency disparities (compared to clean images) under the image
transformations in Figure 2.5. We can see that the frequency disparities of BadNets
remain similar to the original ones after JPEG compression while the Gaussian filter
destroys the BadNets patterns on both datasets. This proves the fact, as shown in
Table 2.8, that BadNets is effective against JPEG compression but fails to survive after
Gaussian filtering. For FTrojan and LFBA-Full, we cannot see any frequency patterns
after these transformations. However, the frequency disparities of LFBA-Low can be
clearly seen even after such operations, indicating our low-frequency attack is robust
against preprocessing-based defenses. We note that low-frequency components
exhibit greater resilience to image transformations than mid- and high-frequency
components.

Frequency Artifacts Inspection. We consider the same frequency artifacts inspection
method as in [23]. In Figure 2.6, we compare the frequency spectrum between
clean and poisoned images and calculate l,-norm distance between them. We can
see that current spatial backdoors introduce more anomaly artifacts than frequency
backdoors. It is worth noting that two spikes lie in central and bottom-right
regions in FTrojan’s spectrum and anomaly perturbations in SIG’s. However, LFBA
spectrums closely resemble those of clean images on both datasets (exhibiting the
smallest l;-norm distances and similarly smooth spectral distributions as clean
samples). According to [23, 62, 63], our poisoned samples exhibit the same frequency
properties as natural images due to dual-space stealthiness. Therefore, frequency
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Figure 2.5: Comparison of poisoned images with their corresponding frequency
disparities (amplified by 5x) to clean images of existing attacks under
different image preprocessing-based defenses. Each frequency disparities
spectrum is calculated based on the original clean image’s spectrum.
These image transformations can effectively remove the trigger pattern
through frequency domain, while the disparities spectrums of our
LFBA-Low attack still contain original backdoor patterns.

inspection is ineffective to detect anomaly artifacts of LFBA.

In conclusion, a wide range of experimental results empirically demonstrate that
LFBA can elude or significantly degrade the performance of the state-of-the-art
defenses in dual space even when both the model and defense strategy are unknown.
Besides, our frequency trigger is resilient to image preprocessing-based defenses,
which provides more robustness than existing attacks. The results also indicate the
pivotal role of LFBA in bolstering the security of machine learning systems.

2.4.4. ABLATION STUDY

We here analyze several hyperparameters that are critical for the LFBA performance.
Frequency stealthiness constraint ¢ and number of manipulated band 7. € restrains
the maximum perturbation of each frequency band while n controls the number of
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Table 2.8: Attack robustness of various triggers against preprocessing-based defenses.

To illustrate the robustness of our low-frequency trigger, we introduce a
full-spectrum variant of LFBA for comparison, named LFBA-Full, which
searches the trigger across the entire spectrum with same attack settings.

Attacks — BADNETS FTROJAN LFBA-Low LFBA-FULL
Methods | ACC ASR ACC ASR ACC ASR ACC ASR
Original 92.02 98.78 9253 99.82 9291 99.88 91.21 99.73

Gaussian Filter (w=3) 66.17 15.11 67.80 6.47 72.23 98.52 71.46 7.81
Gaussian Filter (w=5) 39.81 6.88 45.03 3.25 53.54 97.27 49.07 3.59
Wiener Filter (w = 3) 69.53 96.02 69.11 10.54 71.92 98.22 71.61 6.93
Wiener Filter (w =5) 52.18 90.81 49.20 5.28 52.03 95.65 50.90 3.66
BM3D (0 =0.5) 87.39 98.44 87.34 1584 8831 99.09 87.08 13.58
BM3D (o0 =1.0) 86.03 94.07 86.40 19.33 86.70 98.04 86.64 18.69
JPEG (quality = 90%) 88.98 97.85 89.22 9.36 82.72 89.75 89.18 9.54
JPEG (quality = 50%) 78.84 9259 79.66 8.58 76.19 7593 7631 8.54

Average ASR 73.97 9.83 94.06 9.04

Clean BadNets SIG FIBA FTrojan LFBA

e
. 2.7358 1.8437 0.4850
I B e = I i

Figure 2.6: Visualization of averaged DCT spectrum results under various spatial and
frequency black-box attacks on 10,000 randomly selected samples from
two datasets of different image sizes.

CelebA CIFAR-10

manipulated frequency bands. We visualize the impact of € and n on the poisoned
images (see Figure 2.7). If ¢ and n are set too large, the poisoned image may
be easily recognized (i.e., lacking stealthiness) upon human inspection in the pixel
domain, which could also introduce distinguishable frequency disparities. On the
other hand, setting ¢ and n too small results in the trigger having a low proportion
of features in dual spaces. In this sense, the classifier will encounter difficulty in
catching and learning these trigger features, yielding a drop of attack effectiveness.
Figure 2.8 illustrates the influences of ¢ and n on the attack effectiveness among
the tasks. The ASRs decline significantly and eventually fall below 20% as we
continuously decrease € to 0.01, in which evidences can be seen in GTSRB under
various n, while there is a drastic drop occurs from ¢ =0.5 to € =0.1 in CIFAR-10.
We notice that increasing n enhances the effectiveness of LFBA. For instance, the
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ASR increases from 77% to 92.8% under ¢ =0.1 when n increases from 1 to 4 in
GTSRB. We also observe that a large e allows single injection in frequency band to
achieve a high ASR. For instance, selecting e=1 and n=1 to perform our attack
can achieve nearly 100% ASR. However, such an attack setup could compromise
frequency stealthiness. Thus, it’s crucial to consider a balance between dual-space
stealthiness and attack effectiveness before conducting a LFBA attack.

=05 €=15 g=3 g€=5 e=15

Figure 2.7: Visualization of LFBA poisoned images and triggers under different ¢ and
n. The pixel value of triggers is amplified by 30x.
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Figure 2.8: The impact of € and n.

Poison ratio p. p is the fraction of poisoned samples in the training dataset of the
adversary. We test the attack effectiveness under different p varying from 0.1% to
10%. Although we increase p from a wide range, LFBA does not harm the ASR of
the victim models. As stated in Figure 2.9, this fraction setting cannot degrade the
ACC and meanwhile, we would like to examine the lower bound of the fraction that
LFBAs effectiveness can withstand. Even when p is 0.1%, LFBA can still provide a
high ASR, around 80% for GTSRB. We also find that sensitivities to poison ratio can
vary among tasks. In CIFAR-10, LFBA achieves above 86% ASR under p = 0.5% while
it drops rapidly, around 20%, when p reduces to 0.1%.

Transferability studies. We test LFBAs transferability on CIFAR-10 dataset across a
wide range of typical model architectures including ViT, GoogLeNet [64], ResNet18
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Figure 2.9: The impact of attack effectiveness under a wide range of poison ratios
(%).

and VGG16 from small to large size (see Table 2.9 for the number of model
parameters). We use each surrogate-victim model pair to search trigger and train the
poisoned model.

Table 2.9: Overview of total parameters of surrogate and victim models.

Model Number of parameters
ViT 0.81 M
GoogleNet 6.80 M
ResNet18 11.69 M
VGG16 138.37 M

In Table 2.10, we first verify that the attack effectiveness is not harmed by the
surrogate-victim model mismatch and attains high ASRs (>99%) for all model pairs.
We also observe that having the same surrogate and victim models does not always
result in the best ASR. Additionally, a larger size of surrogate architecture does not
necessarily maximize the attack effectiveness. For example, using GoogleNet as
the surrogate model which is smaller than ResNetl8 can provide the best ASR of
99.45%. In conclusion, the attacker could deliver a successful attack without detailed
information about the victim model.

2.5. CONCLUSION AND DISCUSSION

We propose a robust black-box backdoor attack by inserting imperceptible
perturbations in the low-frequency domain. Compared to current works, LFBA
for the first offers superior stealthiness in dual domains and robustness against
image transformations. We leverage SA to effectively optimize the trigger in the
discrete spectrum space to achieve four attack objectives. The empirical experiments
demonstrate that LFBA can achieve a practical attack robustness to evade SOTA
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Table 2.10: Transferrability of LFBA across different surrogate-victim model architec-
ture pairs via ACC (%) and ASR (%) on CIFAR-10. LFBA provides practical
transferability between surrogate and victim models when estimating the
effectiveness of trigger.

Victim — ViT GooglLeNet ResNet18 VGG16
Surrogate | ACC ASR ACC ASR ACC ASR ACC ASR
ViT 82.75 99.68 93.61 99.43 92.79 99.29 91.08 99.33

GoogleNet 82.11 99.58 93.31 99.01 93.27 99.45 91.79 99.19
ResNet18 82.63 99.91 93.69 99.23 93.23 9937 91.70 99.41
VGG16 83.12 99.43 93.16 99.08 93.66 99.19 92.04 99.37

defenses in both spatial and frequency domains as well as image transformations.
Discussion. In this work, we concentrate on various computer vision tasks, which
have been the focus of numerous existing works [9, 11, 13, 41, 42]. In the future,
we intend to expand the scope of this work to other vision tasks, e.g., objection
detections and semantic segmentations, and other SOTA model architectures, e.g.,
diffusion models. The trigger search process is executed in a hybrid GPU-CPU
environment during trigger evaluation and optimization phases. It deserves
further efforts to design a GPU-accelerated SA to minimize data transmission
across hardware, thus improving the efficiency of our proposed LFBA. Note that
black-box attacks such as LFBA fail to achieve the same level of robustness against
state-of-the-art backdoor defenses as white-box methods due to the lack of control
over the training process of the victim model. To further enhance the robustness
against those defenses, one would combine advanced training mechanisms proposed
in white-box attacks with our frequency trigger to develop a more stealthy and
robust backdoor attack that can bypass countermeasures.

2.6. ETHICAL CONSIDERATION

This work exposes the vulnerability of deep learning models to practical, stealthy
and robust backdoors and can inspire follow-up studies that enhance the security
of machine learning systems. In this sense, this work has a positive impact on
the future research of Al safety. In the following, we discuss intellectual property,
intended usage, potential misuse, risk control and human subjects.

Intellectual property. All comparative attacks and defenses, models, datasets
and implementation libraries are open-source. We believe that the datasets are
well-desensitized. We strictly comply with all applicable licenses for academic use.
Intended Usage. We expose the vulnerability of current centralized deep learning
models to dual-space stealthy and robust backdoor triggers. @~ We encourage
researchers to use our findings to assess the security of their models and hope that
this work will inspire the development of robustness against such backdoor attacks.
Potential Misuse. This work could be exploited to produce harmful poisoned
datasets for real-world applications, which potentially leads to more covertly
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malicious models. To maintain the security of deep learning models, we will propose
an adaptive defense in the future.

Risk Control. To further mitigate potential risks, we will release the code used in
this work. By doing so, we believe that transparency will reduce the risks related
to our work, encourage responsible use and foster further advancement of secure
techniques for centralized deep learning systems.

Human Subjects. We do not involve any human subjects in this work. Instead,
we rely solely on mathematical and model-based metrics to simulate human visual
inspection, thereby eliminating the need for human participation.
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STEALTHY BACKDOOR ATTACK
AGAINST FEDERATED LEARNING

Federated Learning (FL) is a beneficial decentralized learning approach for preserving
the privacy of local datasets of distributed agents. However, the distributed property
of FL and untrustworthy data introduce the vulnerability to backdoor attacks. In
this attack scenario, an adversary manipulates its local data with a specific trigger
and trains a malicious local model to implant the backdoor. During inference, the
global model would misbehave for any input with the trigger to the attacker-chosen
prediction. Most existing backdoor attacks against FL focus on bypassing defense
mechanisms, without considering the inspection of model parameters on the server.
These attacks are susceptible to detection through dynamic clustering based on model
parameter similarity. Besides, current methods provide limited imperceptibility of their
trigger in the spatial domain.

To address these limitations, we propose a stealthy backdoor attack called “Chironex"
against FL with an imperceptible trigger in frequency space to deliver attack
effectiveness, stealthiness and robustness against various countermeasures on FL. We
first design a frequency trigger function to generate an imperceptible frequency trigger
to evade human inspection. Then we fully exploit the attacker’s advantage to enhance
attack robustness by estimating benign updates and analyzing the impact of the
backdoor on model parameters through a task-sensitive neuron searcher. It disguises
malicious updates as benign ones by reducing the impact of backdoor neurons that
greatly contribute to the backdoor task based on activation value, and encouraging
them to update towards benign model parameters trained by the attacker. We conduct
extensive experiments on various image classifiers with real-world datasets to provide
empirical evidence that Chironex can evade the most recent robust FL aggregation

This chapter is based on the paper “Stealthy Backdoor Attack against Federated Learning through

Frequency Domain by Backdoor Neuron Constraint and Model Camouflage" by Qiao, Y., Liu, D,
Wang, R., Liang, K. In IEEE Journal on Emerging and Selected Topics in Circuits and Systems
(JETCAS), 2024.
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algorithms, and further achieve a distinctly higher attack success rate than existing
attacks, without undermining the utility of the global model.
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3.1. INTRODUCTION

Federated Learning (FL) [1-8] is a type of distributed machine learning framework
that has been proposed to preserve data privacy among participating agents. It
supports collaborative training of an accurate global model by allowing agents
to upload local updates, such as gradients and weights, to a server without
compromising the local datasets. FL has been applied to various real-world
applications including COVID-19 prediction [9] and autonomous driving [10].

Despite its attractive advantages, FL is susceptible to backdoor attacks [11-17].
[13] introduced a distributed backdoor attack (DBA) by dividing a global trigger
into multiple pieces, which are distributed among local agents. The DBA incurs
significant changes to certain dimensions of parameters in order to maintain the
accuracy of the backdoor task. Recently, [12] proposed a stealthy model poisoning
(SMP) attack by limiting Euclidean distance between the average updates (from all
the benign agents) and the malicious updates. The malicious updates derived by
this attack can be distinguished from the benign updates in the output layer at
the parameter level because of the noticeable distances between them. Both DBA
and SMP can be defended by using robust FL aggregation algorithms based on
dynamic clustering via HDBSCAN [18] due to the significant directional discrepancy
between the updates derived from these attacks and benign updates. Additionally,
some works focus on developing durable backdoor attacks against FL to maintain
high attack effectiveness when the adversary stops updating malicious models or
gradients. For instance, Neurotoxin [19] attacks parameters that are changed less in
magnitude during training which improves the durability of backdoors.

To mitigate backdoor attacks, researchers have designed robust FL aggregation
algorithms [20-23]. For instance, FLAME [22] and DeepSight [23] apply HDBSCAN at
the training stage to conduct clustering and filter out malicious updates. Specifically,
FLAME exploits the discernible difference of model weights based on cosine
similarity between benign and malicious updates, while DeepSight filters malicious
updates by the output difference between benign and malicious models and the
distinction of distribution of labels in the underlying training data of those models.
They use clipping strategies to reduce the influence of malicious updates and
beyond. Moreover, FLAME uses adaptive noise to smooth the boundary of clustering.
The current approach of defense is to detect malicious updates by exploiting the
distinguishable dissimilarity between updates from malicious and benign agents.
Additionally, current attacks [13, 14, 16, 19] do not provide enough trigger stealthiness
during the inference stage. The poisoned samples with perceptible perturbation can
be easily identified by an evaluator or a user who can distinguish the difference
between ‘just an incorrect classification/prediction of the global model and the
purposeful wrong decision due to a backdoor in the test/use stage.

There exists an impossibility for backdoor attacks to evade existing defenses
because the backdoor tasks have a significant and noticeable impact on the
backdoor-sensitive neurons deriving the distinguished distance from benign updates.
This raises the question: could we disguise malicious updates as benign ones at
the parameter level to bypass current detection strategies while still maintaining the
accuracy of the backdoor attack?
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To provide a concrete answer to the question, we propose a stealthy frequency
attack, Chironex, to backdoor robust FL systems. Specifically, Chironex utilizes
a frequency trigger function to produce the poisoned dataset, ensuring natural
stealthiness of poisoned samples. Recent works [24-27] have provided evidence
that frequency domain triggers are still learnable by neural networks and provide
excellent natural stealthiness. Then, Chironex constrains the impact of backdoor
neurons identified by a new method called the Task-sensitive Neuron Searcher (TNS).
TNS can construct a “backdoor” neuron list consisting of neurons that deliver a
significant contribution to the backdoor task so that we can penalize the weights and
biases of these neurons when their updates are in malicious directions. Chironex
can enforce malicious updates to be naturally imperceptible from benign ones by
minimizing the distance between malicious and benign parameters owned by the
attacker.

Our main contributions are summarized as follows. We first design a frequency
trigger function to produce imperceptible poisoned samples. We analyze the
behavior of neurons in backdoor tasks at the parameter level by using TNS to
identify those backdoor neurons that significantly contribute to backdoor tasks and
reduce the impact of backdoor-sensitive neurons. We apply a step-forward training
approach to generate benign and malicious models. Furthermore, we combine
the malicious model with TNS to find the list of backdoor neurons and minimize
its impact in order to evade anomaly parameter detection; meanwhile, we use
the benign model as an estimation of the attacker’s expected local model. We
restrain parameter dissimilarity to make malicious updates indistinguishable from
benign updates trained by the attacker (i.e, obtaining model camouflage) without
sacrificing the utility of the global model. We fully take advantage of the attacker’s
ability to provide the criterion of malicious model update direction. Finally, we
evaluate the attack performance and stealthiness on real-world datasets with various
datasets and models. The experimental results demonstrate that Chironex achieves
a high attack success rate while maintaining global model accuracy. Our attack
also provides excellent stealthiness, allowing it to bypass the most recent robust
aggregation algorithms, e.g., FLAME, DeepSight, whilst other existing attacks cannot.
For example, Chironex achieves around 97.60% attack success rate and 90.65% global
model accuracy under FLAME on FMNIST.

The rest of the paper is organized as follows. In Section 3.2, the state-of-the-art
federated learning frameworks, backdoor attack and defensive methods against
federated learning are provided. Section 3.3 presents the threat model of our attack,
including attack goal, capability and knowledge. Section 3.4 details the technical
approach including trigger function, backdoor neuron search and model camouflage.
The experimental results of attack performance and ablation studies are given in
Section 3.5. Finally, the main conclusion and discussion are provided in Section 3.6.



3.1. INTRODUCTION 57

(a) Finding Clean Neuron List

Clean samples from Dc: Xc g

Clean neuron list: Pc

Clean global model: G!

(b) Training a Step-forward Malicious Model

A g
fa¥ fa¥ Pata Vatay
ﬂ - . - ®

Poisoned dataset: Dos Clean global model: G Malicious model: L:,‘

(c) Finding Backdoor Neuron List

y

¥ Ny
Poisoned samples: Xoa g — w \'

Backdoor neuron list: Pyg

Backdoor model: L&,

(d) Restraining Backdoor Neuron Impacts & Camouflaging Malicious Model
o 9 {

s

8:8%e

Clean global model: Gt
Backdoor neuron list: Pod g

'Ctns Training dataset: D
o 8
oy |+
s A
Clean neuron list: Pe Clean model: L', with parameters .,
(e) Training Malicious Model
E — =04 v Iteration End o0 @
@ — @
Copy of Clean global model: L. Final Backdoor model: Ly

Poisoned dataset: Doa

t with parameters Bsq

L = Loygin + Lya+ alins + BLgist

Figure 3.1: The workflow of Chironex. The Chironex attack includes three objectives:
(1) achieving high accuracy on clean and backdoor tasks; (2) minimizing
the impacts of backdoor neurons; and (3) minimizing /;-norm distance
between malicious parameters and estimated benign ones. At round ¢,
we train malicious update 62;'1 as (a) Find the list P, of clean neurons
that contributed to main task by the proposed TNS; (b) Pretrain a
malicious local model for searching backdoor neurons; (c) Find the list
P4 of backdoor neurons that contributed to backdoor task by TNS; (d)
Compute the constraint loss of backdoor neurons Z;,s; based on P, and
Ppq and train 0.y, for Z,q;5; (€) Optimize final malicious model 0,
by £, including classification loss Z4in + Lpa, backdoor constraint loss
and model camouflage loss on Dy, to obtain malicious update 6.
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3.2. RELATED WORK

3.2.1. FEDERATED LEARNING (FL)

[1] proposed the concept of distributed learning associating with n agents and a
server S to train a global model G collaboratively. At the training round ¢, each
local agent i uses the global model G’ of the current round to train a local model
Ll?*l based on its own data D; and sends the parameters/gradients update §; to S.
Then the server S aggregates the received updates ;| | from all the agents into the
global model G’ to derive G'*!. In the above process, each agent i computes the
update as §!*! = L{*! -G, so that S uses an aggregation algorithm to compute a
new global model G'™! as:

l n
GHl=Gl+ 2y @ - Gh, 3.1)
iz

where [r; is the learning rate of the server.  The most commonly used
aggregation algorithm is FedAvg, averaging the weighted updates of all the local
n
agents as G'*l1=Y %(L;“—Gt), where d; =|D;|, d; =|D;l,d=X" ,d;. We set
i=1
n
GHl=yY %(L?“—G‘) for the equal contribution of all the clients to evade from
i=1
receiving fabricated dataset size of malicious agents as in [22]. When G converges
or the training reaches a specific iteration upper bound, the aggregation process
terminates and outputs a final global model.
Optimizations of FL have been proposed for various purposes, e.g., privacy [28],
security [29], heterogeneity [30], communication efficiency [31] and personalization
issues [32].

3.2.2. BACKDOOR ATTACKS ON FL

An attacker can easily corrupt a set of agents in the training stage. These agents
are manipulated to use poisoned data with a specific trigger and change an
attacker-chosen base label to a target label to train their local models and further,
they send the updates to the server performing aggregation. Accordingly, the global
model that combines the updates from the malicious agents is embedded with a
“backdoor". In the test stage, the model easily misclassifies the data inputs with the
backdoor trigger to the target label. To design a successful attack, the attacker must
ensure that the clean dataset is classified into the correct label and the utility of the
global model cannot be harmed by backdoor task training. Note that this notorious
target poisoning can seriously affect the model prediction results and is difficult to
detect after the training stage. Existing backdoor attacks may target to data and
models.

Data poisoning attacks. The attacker manipulates training datasets by adding
backdoor patterns into data samples. For example, it disintegrates the global pattern
into several local patterns and further injects them to the compromised agents’
datasets separately in DBA [13]. Although making global trigger more insidious, DBA
does not restrain the training process so that the malicious and benign updates can
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look different at the model parameter level. Moreover, the attacker can modify the
training dataset by flipping its label [33] and later send the model update trained by
mislabeled data to the server. This type of attacks focuses on manipulating training
data without fully considering the server aggregation strategies for anomaly updates
detection.

Model poisoning attacks. This type of attacks manipulates the training process of
malicious agents and further evades aggregators anomaly update detection. [14]
introduced model replacement and scaling up attack to FL systems. The attacker can
scale up the malicious update by a specific factor and the global model is replaced
by the malicious model trained by poisoned data consequently. This attack brings a
new perspective that an attacker can manipulate the training process or local model
to perform the backdoor attack. [11] proposed a so-called LIE attack by crafting
model updates with minor changes. The attack explores the maximized range of
parameters perturbation to induce the model to predict the desired label. [15]
exploited a projected gradient descent (PGD) attack with model replacement during
the training of a malicious model on a dataset that is similar but not identical to
the (original) clean dataset. [12] designed an attack aiming to achieve stealthiness
by estimating the average update from all benign updates and reducing the L,-norm
distance between the malicious and the average updates from others. The attack,
however, cannot provide a solid stealthiness because there still exists a noticeable
(peak) difference in the distribution of parameters between malicious and benign
updates. Some works also aim to improve the persistence of attack effectiveness
on FL. For example, Neurotoxin [19] attacks parameters that are changed less in
magnitude during training which improves the durability of backdoors. Chameleon
[34] finds that benign images with the original and the target labels of the poisoned
images have key effects on backdoor durability. It then utilizes contrastive learning
to amplify such effects towards a more durable backdoor.

3.2.3. RoBUST FL AGGREGATION

Several works have been proposed to handle malicious agents in the context of FL
[35-41]. Krum [42] selects a local model that is similar to others as the global model,
but it is vulnerable to some dimensions of malicious model parameters. Bulyan [43]
improves Krum by applying a variant of Trimmed Mean method. Trimmed Mean
[20] aggregates each dimension of model parameters independently and it computes
the mean for a range of parameters. Median [20] takes median for aggregation.
[44] indicated that one can use FedAvg aggregation rules, by clipping weights and
adding noise, to mitigate backdoor attacks. [21] proposed a robust aggregation
algorithm based on sign aggregation [45] so-called RLR which changes the central
server’s learning rate based on the signs of agents updates. Recently, [22] proposed a
defending framework based on the clustering algorithm (HDBSCAN) so-called FLAME
which can cluster dynamically all local updates based on their cosine distance
into two groups separately. FLAME uses weight clipping for scaling-up malicious
weights and noise addition for smoothing the boundary of clustering after filtering
malicious updates. [23] designed a robust FL aggregation rule called DeepSight
using HDBSCAN. Their design leverages parameter distribution, output, and cosine
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distance to cluster all updates and further applies the clipping method. DeepSight
fully exploits information leakage from malicious updates and provides a more
precise detection than FLAME. SparseFed [46] performs norm clipping to all local
updates and averages the updates as the aggregate. Top-k values of the aggregation
update are extracted to filter out potential malicious parameters and returned to
each agent who locally updates the models using this sparse update. CRFL [39]
provides certified robustness in FL frameworks. It exploits parameter clipping and
perturbing during federated averaging aggregation. In the test stage, it constructs a
“smoothed" classifier using parameter smoothing. The robust accuracy of each test
sample can be certified by this classifier when the number of compromised clients
or perturbation to the test input is below a certified threshold.

3.3. THREAT MODEL AND MOTIVATION

We consider the same threat model as in [12-14].

3.3.1. ATTACKERS GOAL

Following [13-15, 19], we enable the attacker to manipulate the global model to
predict a target label on any samples with an attacker-chosen trigger (i.e. the
backdoor task). From the viewpoint of the attacker, there are two main objectives:
preserving functionality for benign tasks (i.e., maintaining global model accuracy)
and ensuring attack effectiveness for backdoor tasks (i.e., achieving high backdoor
accuracy on the poisoned model). Two additional goals are considered in our
attack including attack stealthiness and robustness. Attack stealthiness implies
that poisoned samples exhibit visual similarity to clean ones while robustness is
demonstrated by its effectiveness against backdoor defenses on FL. Unlike untargeted
poisoning attacks [47] preventing the convergence of the global model, the goal of
our attack is to manipulate malicious agents’ local training processes to achieve high
accuracy in the backdoor task without undermining the main task. Thus, the global
model’s behavior is naturally normal on clean data samples while it will predict
poisoned data into a target label with a high attack success rate.

3.3.2. ATTACKER’S CAPABILITY AND KNOWLEDGE

We assume the attacker only has full access to malicious agents’ clients, local
training processes and training datasets. The attacker cannot change the aggregation
algorithm of the server and manipulate the training processes and training datasets
of the honest agents so that the model updates of those agents will not be affected
by the attack. Unlike some backdoor attacks strictly requiring malicious agents
to collude together, our assumption here does not need this collusion. Note we
naturally allow malicious agents to collude but our attack can work well without this
collusion, which means that we require fewer restrictions than others. At last, we do
not require the attacker to know the FL aggregation rules applied in the server.
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3.3.3. TECHNICAL MOTIVATION

Existing attacks cannot reduce the distance between benign and malicious update
in the parameter space and thus they can be easily detected by the state-of-the-art
robust FL systems using parameter inspection. We study a new attack perspective in
the sense that the attacker can restrain the disparity among parameters by training
loss function of l,-norm distance or cosine similarity. Some attacks, such as SMP,
have used the similar objective terms to constrain the distance. In Figure 3.3, we
show that it is not sufficient yet to only limit the distance among the parameters
as we can still see the difference between benign and malicious updates. To
tackle the issue, we introduce a new objective to further eliminate the influence of
those backdoor neurons found by TNS. Unlike SMP, the philosophy of Chironex is
to convert the malicious parameters to become benign, i.e. fooling the server to
regard malicious updates as benign ones. In the figure, we see that the malicious
model parameters of Chironex are very close to the benign parameters so that
the malicious updates are much less abnormal. We further state that the attacker
does not need to know a concrete FL aggregation algorithm before applying our
attack, which makes the attack more general and practical. The experimental results
(see Section 3.5.4) show that two penalties Z;,s and £, 4;5; work well with the
combination of classification loss %y,4in and £, so that we can eliminate the
impact of those backdoor neurons and meanwhile achieve practical performance
w.r.t. attack success rate (ASR) and global model accuracy (MA).

3.4. PROPOSED METHODOLOGY

We provide problem formulation and technical details in this section. Specifically,
we first introduce our trigger injection function to insert a specific pattern into
the frequency domain. Then, we formulate the optimization problem by three
attack objectives, i.e., (1) high accuracy on clean and backdoor tasks, (2) backdoor
neuron constraint and (3) model camouflage. We utilize step-forward training to
obtain benign and malicious reference models on clean and poisoned datasets. We
introduce a novel method to search backdoor neurons on the malicious reference
model and constrain the impact of those neurons. Additionally, we minimize the
l,-norm distance between malicious parameters and benign ones from the benign
reference model to achieve model camouflage. The frequently used notations in this
paper are shown in Table 3.1.

3.4.1. PROBLEM FORMULATION

Trigger injection function ¢. Taking the image classification task as an example,
we first introduce a frequency trigger function ¢(:) to produce the poisoned dataset
Dy, with the imperceptible trigger ¢ through frequency space. Given a clean sample
x € [0,1]7*W*C (height H, width W and channel C) and a specific trigger image x/,
we first transform them into frequency domain via discrete cosine transform (DCT)
2(-) as:

H-1w-1 . )
2u,v,c)=N,N, ¥ ¥ x(i,j,c)cos%cos%, (3.2)
i=0 j=0
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Table 3.1: Notation Summary.

Notation | Description || Notation | Description

&' Update of agent at round ¢ p Neuron list of TNS
D, Clean dataset a,B Lagrange coefficients
Dpa Poisoned dataset G! Global model at round ¢
w Blend ratio Vi Target label
10] Trigger injection function ¢ Threshold for P

n Malicious agents rate Ir Learning rate

L§ Local model of agent i at round ¢ o Threshold of RLR

Y Neuron sensitivity rate S FL Server

all.] Activation of neuron i of layer [ () Measurement of P
bét.] Bias of neuron i s Cluster size of Defenses
ni Neuron i X # of Samples in TNS
w[ll.] Weight of neuron i n # of total agents

m # of malicious agents R Total training round

where u,i€{0,1,---,H-1}, v,je{0,1,---,W—-1} and c€{0,1,---,C—-1}. N, and N,
are normalization terms, N, £ v1/H if u=0 and otherwise N, = v2/H. Similarly,
N, £ V1/W if v=0 and otherwise N, £ v2/W. Triples (i, j,¢) and (u,v,c) refer to a
specific pixel and frequency band of x and its frequency form respectively. Then, we
blend the trigger pattern ¢ (spectrum of 2(x") and 2(x) to generate the poisoned
sample x4 with a binary mask 4 =1, ,cec(0:25:0.4w:, Where A determines the
location and size of trigger to be blended and w is the blend ratio to decide the
proportion of information contributed by x’. Finally, we utilize inverse DCT (IDCT)
27'() to obtain the spatial form of poisoned sample x,;. The entire frequency
trigger injection method is held:

(,b(x)29_1(@(x)(1—ﬂ)+[(1—w)@(x)+wt]*M). (3.3)

The goal of this function is to mislead the prediction of ¢(x) to the target label y;.
Attack objectives. We propose a stealthy backdoor attack against FL on computer
vision tasks. In the following, we denote the clean training dataset as D, = {(x;, y,-)}'l.g Cll
containing |D.| images. In practice, we randomly select samples from D, to produce
poisoned training dataset Dy, by the proposed ¢(-) with a specific poison ratio. For
a clean sample and its label (x,y) from D., we poison the clean sample to (¢(x), y;)
by backdoor injection function ¢(-), where y; is the target label.

Our main objective is to learn backdoor parameters 0, (trained by Dp;) by
constraining the influence of backdoor neurons and making the parameters close to
the benign parameters 8., trained a step-forward by D.. Given a malicious local
model LZ 4 at round t with 634 and a backdoor injection function ¢(-), we minimize
the following loss function to hold the performance of the main task on D,:

Lmain = Z gce(de(x)’y)’ (3.4)
(x,y)ED,
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where £¢¢ denotes the cross entropy loss. To provide a practical attack success rate,
we minimize the following loss function on the backdoor task:

Loa= Y, LWy @), yo). 3.5)
(x,y)€Dpq

We notice that the backdoor training is a kind of “shortcut" learning which means
several backdoor-sensitive neurons are easily affected via the backdoor task with
certain preferences while they have less contribution on the main task training.
To achieve stealthiness, we minimize the following constrained loss function on
poisoned data to reduce the impact of those backdoor-sensitive neurons:

Lins= Y. (wfyl+1bfyD, (3.6)
(i,Dey (Ppq,Pc)

where Z;,s is backdoor neurons constraint loss, w(-) is our measurement between
the backdoor neuron list P,; and the clean neuron list P, found by benign and
backdoor TNS, w[ll.] and b[ll.] are the weight and bias corresponding to the i-th
neuron nfl.] of the I-th layer. The detailed information about how to obtain two lists
P, and Pp,4 are provided in Section 3.4.2.

To capture parameter similarity to support model camouflage, we restrain the loss

corresponding to l-norm distance between 0,4 and 0.;,:

ZLhaist = 10pa = Ocinll2, (3.7

where 0, is the parameters of malicious model and 8., is the estimated benign
parameters. The details of model camouflage are provided in Section 3.4.3.

Given the three objectives from eqs. (3.4) and (3.5), eq. (3.6) and eq. (3.7), we
formalize the final attacker’s objectives as a constrained optimization problem:

argmin Lyain + Lpa + @ Lns + PLhaise (3.8)
Opa
where we use @ and B to control the strength of the constraint loss. We can
achieve the optimization by constraining the contribution introduced by backdoor
neurons (which are identified by TNS) and implementing the model camouflage.
The overview of Chironex is in Figure 3.1.

3.4.2. BACKDOOR NEURON CONSTRAINT BY TNS

To compute backdoor neuron constraint in Equation (3.6), we here use the proposed
TNS to find task-sensitive neurons in each layer of Deep Neural Networks (DNNs).
We first give the task-sensitive (influential) neurons (TSN) in Definition 3.4.1 by
following the same philosophy as in [15]. The neurons satisfying the (task) sensitivity
contribute significantly to a certain task! (i.e. either a main or a backdoor task);
and if they are sensitive to a backdoor task, we call them backdoor neurons. We
use the activation value of a neuron to measure its contribution or influence of a
classification.

IThese TSN deliver more contributions than others in the task. Changing their weights also outputs a
crucial impact on the specific task (while this doesnt apply to the non-TSN)
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Algorithm 3: Task-sensitive Neuron Searcher (TNS)

1 Input: Samples X, Model .«

2 Parameter: Number of Linear Layers L, Weights w of Model .#, Activation
Value a, Neurons n, Index of Neurons i, j, Sensitivity Rate y, Target Label y;,
Neuron List II

3 Output: List P

4 Initialize IT =[]

5 Initialize P = {0}

6 for X; € X do

7 GetActivationValue( 4, X;)

8 Append(HL,n[Lyt])

9 P[n[Lyt]] +=1

10 for [e L (descend order) do

11 for n[ | € 11’ do

12 for n[l]‘]1 € nl‘1 do

13 if |wm m > |y*a ]I then
14 Append(l'[l 1 []] 1
15 [ []1 ]+ 1

16 end

17 end

18 end

19 end

20 end

21 return P

Definition 3.4.1 (Task-sensitive Neuron). Given a real positive number y, a neuron n,
its activation value a, weight w, the activation value A of the neuron of the next layer
connecting to n, the neuron n for classification is task-sensitive with vy-sensitivity if
lwx al > |y x Al.

To effectively search the sensitive neurons, we apply a mixed strategy including
forward and backward analysis. For the deeper linear layers, where neurons
contribute more significantly compared to the shallow layers (e.g., convolutional
layers), we apply backward analysis to meticulously identify task-sensitive neurons.
First, we feed input samples to DNN. For a certain neuron n[Li] of layer L, we
compare all activation values a IM 1 of M neurons n IIM in the previous layer
L—-1, connecting to n[] to actlvatlon value a[] of thls neuron. Second, we set a
sensmmty rate y for the current layer L. We compute each neurons contribution as
Iwm mll where w[L]1 is the weight of n[]] If Iw[]] [11 U> |y« aml, L 1 can
be identified as a backdoor neuron which contributes more to the backdoor task in
this layer. Algorithm 3 shows how we identify all task-sensitive neurons and generate

the neuron list. For shallow layers, we use forward analysis to select the top 5% of
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neurons with the highest activations in each layer. This approach enables our attack
to establish connections between the layers.

We further minimize Z;,; by TNS based on benign and malicious models with
clean and poisoned samples to rectify those backdoor neurons. The minimization of
this objective provides a crucial functionality: eliminating the distinguishable impacts
on backdoor parameters. At round ¢, we assume the attacker chooses clean samples
X, from D, as input of the current global model G'. We use TNS to generate a
clean neuron list of global model G by X,.. Then, we train a step-forward malicious
model LZ d with Dp, to identify backdoor neurons to be rectified. Given G, LZ & X
and Dy, we apply TNS to find the neuron lists P, and Pj; for main and backdoor
tasks respectively. We use threshold ¢ to figure out distinguishable backdoor neurons
from clean ones. We set ¥(Ppq,P.) = {(i,l)l(Phd[nfl.]] —Pc[n[li]]) >&1e{l,2,---,L}}.
If (i,]) e w(Ppq— P.), we add the absolute value of the difference between ¢ and

w[ll.], b[ll.] of n[ll.] to ZLins. To eliminate the influence of backdoor neurons, we
enforce w[ll.], b[ll.] to approach zero. Finally, we compute TNS loss function as
Lins = y (Iw[ll.]|+|b[li]|) and train 63,; with it. The details are shown in

(i,)ey(Ppg—Py)

Figure 3.1 (a) (b) (c) and (d)-left, and in lines 2 -5 and 8 of Algorithm 4.

Why does TNS work? We found that backdoor neurons are distinguishable from
the clean neurons (which mostly contribute to the main task) and meanwhile, they
could only and significantly contribute to the backdoor task. By minimizing Z;;;
and %4, the contribution of the backdoor neurons is redistributed to other neurons
that have less contribution to the backdoor task. In this way, we encourage those
neurons with “less" contribution to play a part in the backdoor task. In Figure 3.6,
we show the results of the disparity between the backdoor and clean neuron lists
to confirm that minimizing %;,s can reduce the contribution of those backdoor
neurons at the parameter level, without affecting the sensitivity of the clean neurons
in the main task. Thus, we can maintain a high attack accuracy but also have a low
level of influence incurred by those backdoor neurons.

3.4.3. MODEL CAMOUFLAGE

Given the computation of Z;,s, our next task is to disguise 04 as 0.;, by minimizing
the distance loss £}, 4;5; in Equation (3.7). To this end, we design a new backdoor
training approach motivated by [12] to manipulate the malicious parameters more
naturally like benign ones trained by D, (which are owned by the attacker). Instead
of estimating the current global model parameters through averaged updates from
the previous iteration [12], we get the malicious and benign parameters sufficiently
close to each other which makes the attack stealthy. We allow the attacker to train
both two models based on the same set of its own data, which doesnt violate
our assumptions. Similar to the backdoor neuron constraint process, we also use
step-forward training with D, to obtain a benign reference model Lf;ln to estimate
the expected benign model parameters 0.,. During backdoor training, we use
Equation (3.7) to enforce the malicious parameters to be indistinguishable from 6,
in the training stage. We set l,-norm distance as the measurement for parameter
similarity and f as a hyperparameter that controls the strength of model camouflage




66 3. STEALTHY BACKDOOR ATTACK AGAINST FEDERATED LEARNING

between 0., and 0,4. The computation of £}, ;s is shown in Figure 3.1 (d)-right
and (e), and in lines 6 and 8 of Algorithm 4. As last, we train the malicious model
with Dy, via Equation (3.8). The details of Chironex are given in Algorithm 4.

3.5. EXPERIMENTS
3.5.1. EXPERIMENTAL SETUP

Datasets and Network Structures. We tested the effectiveness of Chironex on five
standard image datasets: MNIST [48], Fashion-MNIST (FMNIST) [49], CIFAR-10
[50], FEMNIST [51] and Tiny-ImageNet [52] in the independent and identically
distribution (i.i.d). and non-ii.d. data distribution settings. Specifically, MNIST
contains 70k (28x28) handwritten digits images divided into ten mutually exclusive
classes, in which 60k are for training and 10k for testing. FMNIST provides the same
amount and size of grayscale images with ten classes. CIFAR-10 includes 60k (32x32)
color images with the same number of classes, in which 50k are for training and 10k
for testing. FEMNIST contains about 800k (28x28) handwritten digits and characters
images divided into 62 classes provided by 3,550 users, which is commonly used
in federated learning frameworks. Tiny-ImageNet has 200 classes and 100k (64x64)
colored images. Each class includes 500 training samples, 50 validation and 50 test
samples. The data are distributed in both i.i.d. and non-i.i.d. fashion among agents.
In the non-i.i.d. context, we set a g of the dataset to evaluate the degree of non-i.i.d.
level by following [38]. Since there are 10 classes, we divide the agents into 10 groups.

Algorithm 4: Chironex Backdoor Attack

1 Input: Clean Dataset D., Poisoned Dataset Dj,;, Global Model G! with
Parameters 6, Clean Samples X,

2 Parameter: Threshold ¢, Hyperparameters «a, f, Client Learning Rate Ir,

3 Output: Malicious Update 6},;' Copy Global model: L} , with 6,4 — G'

4 Get Clean Neuron List: P, = TNS(G?, X,)

5 A Step-forward Training for Malicious Model: LZ 4 < Train G' on Dyy

6 Poison Clean Samples: X4 = p(X,)

7 Get Backdoor Neuron List: Py, = TNS(LZ 4 Xbad)

8 L?ln with Parameters 0., — A Step-forward Training for Benign Model with G’
on D,

9 for batche Dy, do

10 Compute the Loss: £ = Lpain+ Lpa+a* Lips+ P * Lpaisr as in
Equation (3.8)

11 Train parameters 0, of th] 4 With Stochastic Gradient Descent (SGD) under
Learning Rate Ir./2

12 end

13 (5,2;'1 = de -0

14 return 5.1
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Figure 3.2: Attack Stealthiness via FNR and FPR against FLAME for different attacks.
(a)-(b): MNIST, (c)-(d): FMNIST and (e)-(f): CIFAR-10.

A training sample with label y € {0,1,---,9} is allocated to a group (and hereafter
we can call it as group y) with probability ¢ >0 and to any other groups with
probability 1_Tq. In the group y, each agent’s training data is in i.i.d manner. g =0.1
represents the dataset of local agent is i.i.d; while the degree of no-i.i.d increases
with a growing g. All images in the datasets are normalized to [0,1]. We performed
the experiments on commonly used DNN models including the classic CNN model
for MNIST, FMNIST and FEMNIST, ResNet18 [53] for CIFAR-10 and Tiny-ImageNet.

Implementation. We set n =1000 agents with m =10 malicious agents to train the
global model for R =200 rounds with FedAvg in the i.i.d. manner as the default
setting. The ratio of the compromised agents to all agents n ="' =1%. In each
round, the server randomly selects 10 clients for local model aggregation. We used
learning rate Ir. =0.1 for local training and Ir; =1 for central server aggregation
while malicious agents used malicious learning rate Ir,;, =0.05 to perform backdoor
attacks. Local models were trained by SGD optimizer. We set ll%dll as poison data
rate (PDR), which is the fraction of injected poisoned data Dpq4 wcith target label in
the overall clean training dataset D, with the attacker-chosen label. We set PDR
=20% as default. We found that if a,f > 1, the malicious model parameters are
close to those of the benign model but the attack performance does not work well.
If @, « 1, the results are the other way around. To balance the trade-off, we set
a=0.5 and B=0.5. We choose the “Hello Kitty" pattern in [54] as our trigger image
x! as default. Some poisoned examples are shown in Figure 3.7. For Chironex attack,
we set proper ¢ and y for different network structures. ¢ is strongly related to the

number of samples fed into models in TNS and NN layers. For TNS, we leverage
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Table 3.2: Attack Performance via MA (%) and ASR (%) for several attacks against no/different defenses on MNIST, FMNIST and

CIFAR-10 in the i.i.d. context. We show the averaged results (Mean+SD) of 10 independent runs.

| Defense — | No Defense Clipping Median RLR FLAME DeepSight
Dataset | 7 Attack | 7 MA ASR MA ASR MA ASR MA ASR MA ASR MA ASR
No Attack 99.07+0.04 - 98.72+0.06 - 98.64+0.05 - 93.05+2.38 - 98.91+0.05 - 97.39£0.16 -
Backdoor (Baseline) | 98.89+0.09 99.96+0.05 98.39+0.03 0.00+0.00 98.56+0.07 0.00+0.00 94.95+0.23 0.00+£0.00  98.96+0.02 0.00+£0.00  98.36+0.05 0.00+0.00
MNIST DBA 98.87+0.06  98.99+0.05 98.41+0.17 0.00£0.00  98.04+0.12 4.01+£3.29  93.29+2.86 0.90£1.19  98.80+0.19 1.01+£0.57  97.28+0.10 0.00+0.00
Edge-Case 98.76£0.11 98.91+0.48 98.73+0.05 98.19+0.21 98.25+0.31 0.00+0.00 93.56+2.46 0.00+0.00  98.26+0.06 0.00£0.00  97.82+0.04 0.00+0.00
SMP 98.93+£0.05  99.16+£0.08 98.53+0.07  97.03£0.23 98.49+0.09 80.19+2.83 94.17+1.16 0.00+£0.00  98.71+0.11 0.00£0.00  97.90+0.03 0.00+0.00
Chironex (Ours) 98.96+0.03 99.38+0.62 98.17+0.04 97.93+0.17 98.53+0.08 99.52+1.04 94.72+1.13 98.88+0.09 98.84+0.07 93.72+4.26 97.03+0.10 94.28+1.26
No Attack 92.41+0.20 - 92.20+0.75 - 90.84+0.19 - 81.54+0.93 - 91.354+0.13 - 91.9740.16 -
Backdoor (Baseline) | 91.05+0.04 99.97+0.05 91.17+0.09 00.00+0.00 90.42+0.07 0.00+0.00 78.77£0.17 0.00+£0.00  90.04+0.06 0.00£0.00  90.63+0.20 0.00+0.00
EMNIST DBA 90.28+1.19  98.40+0.12  90.85+0.20  00.00+£0.00  90.49+0.17 2.05£1.05  81.31+0.70 10.5+6.85  90.15+0.35 3.16£2.00  91.45+0.09 0.00+£0.00
Neurotoxin 91.22+0.18  99.83+0.04 91.05+0.36 0.00+0.00 90.39+0.15 3.26+0.91 81.20+0.62 0.00+£0.00  90.49+0.58 0.00£0.00  91.03+0.07 2.41+1.78
SMP 90.95+£0.32  99.07+0.39 90.83+0.45 97.31+£0.89 90.36+0.04 75.74+2.60  80.27+0.39 0.00+£0.00  90.51+0.26 0.00£0.00  90.89+0.18 0.00+0.00
Chironex (Ours) 91.44+0.14 97.831£0.34 90.62+0.71  98.13+0.33 90.79+0.12 93.46+1.32 81.86+0.20 99.80+0.07 90.65+0.22 97.60+0.67 91.29+0.13 95.03+0.80
No Attack 89.19+1.05 - 89.42+0.77 - 89.56+0.89 - 89.86+1.92 - 91.03+0.51 - 89.43+0.80 -
Backdoor (Baseline) | 86.35+0.67 96.95+1.79 88.83+0.60 0.00+0.00  88.03+0.82 9.72+5.15 89.07+2.10 0.00+0.00 89.20+1.29 8.40+2.29 88.14+0.82 5.07+2.38
CIFAR-10 DBA 86.45+0.63  93.36+5.44  87.92+0.19 0.00£0.00  87.24+0.80 42.63+7.35 79.25+2.14 51.53+4.81 53.02+0.83 11.63+3.79  89.17+0.54 32.85+4.98
Edge-Case 86.65+0.78 90.53+1.21 88.27+0.84 98.01+0.58 87.19+0.39 20.83+4.69 89.33+1.75 32.26+5.21 82.60+1.30 17.91+3.43 89.38+0.59 20.09+3.20
SMP 86.30£0.64  95.47+1.02 87.09+£0.57 97.04+£0.99 87.27+0.69 74.86+4.46 89.04+2.05 80.53+6.17 82.48+0.59 15.884+2.94 89.26+0.87 28.27+5.05
Chironex (Ours) 86.23+0.54 98.52+1.61 88.14+0.52 98.26+0.80 87.10+0.83 93.37+3.29 89.17+2.01 95.69+4.14 89.24+0.76 91.52+3.99 89.06+0.79 97.97+3.71
No Attack 57.36+0.07 - 56.27+0.20 - 56.03+0.18 - 56.83+1.27 - 57.13+£0.25 - 56.92+0.47 -
Backdoor (Baseline) | 56.29+0.27  98.96+0.15 55.39+0.31 0.00+0.00 56.73+£0.91 0.00+0.00 56.39+£0.73 0.00+0.00 55.07+0.76 0.00+0.00 57.88+0.50 0.00+0.00
Tiny-ImageNet DBA 55.28+0.42  98.29+0.57 57.31+0.63 0.00+0.00 56.04+0.16 0.00+0.00 57.29+1.70 0.00+0.00 56.19+0.33 0.00£0.00  57.82+0.37 0.00+0.00
Neurotoxin 56.82+0.12  98.78+0.06 56.67+0.17  59.98+0.40 56.71+0.34 10.48+1.95 55.85+0.96 0.00+0.00 56.83+0.39 0.00+0.00 57.14+0.67 0.81+£0.33
SMP 57.06+0.05 97.26+0.09 55.81+0.13  96.93£0.23 56.27+0.66 90.47+1.79  54.19+0.92 0.00+0.00 55.61+0.21 0.00£0.00  56.97+0.07 0.00+0.00
Chironex (Ours) 56.91+£0.29  98.37+0.48 56.17+0.14 97.85+0.68 57.43+0.29 98.721+0.94 55.21+1.03 96.52+0.27 57.19+0.96 94.08+2.04 57.03+0.34 95.71+0.83
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the entire poisoned dataset to find backdoor neurons and the same size of clean
dataset to find benign ones. We set ¢ as half of the number of the poisoned samples
for each dataset, indicating a neuron has a significant impact on more than half of
classification tasks. We set y to 0.05 to distinguish backdoor neurons from clean
ones under a given ¢, indicating the settings for ¢,y are practical.

Evaluation Metrics:

» Global Model Accuracy (MA). We set the test accuracy on clean validation samples
fed into the global model as MA.

e Attack Success Rate (ASR). We set the ratio of backdoored examples fed into the
global model misclassied as the target label as ASR.

» False Negatives Rate (FNR). FNR evaluates the attack robustness, i.e. how well the
attack evades the detection of robust FL aggregation. We set it as % indicating
the ratio of malicious updates for which the defense produces wrong predictions to
the total number of malicious models, i.e., the fraction of the number of malicious
updates misclassified into benign updates cluster (False Negative - FN), where TP
is True Positive showing the number of malicious updates correctly classified as
malicious.

e False Positives Rate (FPR). This investigates the robustness. FPR = % denotes
the ratio of benign updates that are misclassified as malicious (False Positive - FP)
to the total number of benign models, where TN is True Negative indicating the
number of benign updates correctly classified as benign.

3.5.2. EVALUATION OF ATTACK WITHOUT DEFENSE

We used a backdoor attack with both main and backdoor objectives as our baseline
and included other attacks - DBA, Edge-Case [15], SMP [12] and Neurotoxin [19] -
into the comparison. We tested our attack effectiveness through MA and ASR under
FedAvg without defense. We conducted a single-target attack for each backdoor
method, in which we chose a base label (class 5) misclassified into one target label
¥: (class 7) for all the compared methods per dataset. The results in the i.i.d. setting
are presented in Table 3.2. As for FedAvg with “no defense" on MNIST and FMNIST,
Chironex achieves >98% ASR and meanwhile, it maintains MA close to benign
model accuracy (< 1% gap). Although MA on CIFAR-10 is slightly lower than on
other datasets, Chironex still outperforms other attacks and yields the highest ASR,
roughly 95.4%. Chironex also outputs MA that is significantly close to the baseline
attack, with a 0.27% gap. For a more complex dataset Tiny-ImageNet, Chironex
provides excellent performance on stealthiness against SOTA defenses. Although its
MA values are lower than others, Chironex is still more stealthy and delivers nearly
the best ASR, >95%. As compared to its ASR results on other datasets, there is a
slight drop on Tiny-ImageNet, which is roughly 1%~2%.

3.5.3. EVALUATION OF ATTACK WITH DEFENSES

Besides the norm clipping defense [55], we evaluated attack effectiveness against four
robust FL aggregation rules, namely Median, RLR, FLAME, and DeepSight. For robust
FL, we used RLR threshold p =40 for each setting and set FLAME and DeepSight
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minimum cluster size s= 1?0 +1=6. The results in the ii.d. setting are shown
in Table 3.2. Since Edge-Case is not applicable on FMNIST and Tiny-ImageNet,
its results are not given in Table 3.2. Chironex can provide excellent robustness
against secure FL aggregation algorithms. Under FLAME and DeepSight on MNIST
and FMNIST, Chironex is more robust than (most of) others and maintains high
ASR values, >93%. Whilst the MA values on CIFAR-10 are slightly lower than those
of other attacks, Chironex still delivers a solid ASR >93% under Median and RLR.
Under DeepSight on CIFAR-10, Chironex achieves nearly 2-3x improvement on ASR
as compared to others. We see that Chironex distinctively outperforms others against
FLAME and DeepSight.

Evaluation of Attack with Defenses on Tiny-ImageNet. We evaluated the stealthiness
of Chironex and other backdoor attacks on Tiny-ImageNet (which is a real-world
and more complex dataset). In Table 3.4, Chironex provides excellent performance
on stealthiness against SOTA defenses. Although its MA values are lower than others),
Chironex is still more stealthy and delivers nearly the best ASR, >95%. As compared
to its ASR results on other datasets, there is a slight drop on Tiny-ImageNet, which
is roughly 1%~2%.

Table 3.4: Attack Performance via MA (%) and ASR (%) for several attacks against
no/different defenses on Tiny-ImageNet in the i.i.d. context.

Defense No Defense Clipping Median RLR FLAME DeepSight
Attack MA ASR MA ASR MA ASR MA ASR MA ASR MA ASR

No Attack 57.36 - 56.27 - 56.03 - 56.83 - 57.13 - 56.92 -

Baseline 56.29 98.96 5539 0.00 56.73 0.00 5639 0.00 5507 0.00 57.88 0.00
DBA 55.28 98.29 5731 0.00 56.04 0.00 57.29 0.00 56.19 0.00 57.82 0.00
SMP 57.06 9726 5581 9693 56.27 9047 5419 0.00 5561 0.00 56.97 0.00

Chironex 56.91 98.37 56.17 97.85 57.43 98.72 55.21 96.52 57.19 94.08 57.03 95.71

The FNR/FPR results against FLAME are shown in Figure 3.2. Chironex achieves
an overwhelming advantage on attack effectiveness under FLAME. Its FNR can reach
approx. 80% on MNIST and FMNIST while still standing at nearly 60% on CIFAR-10,
which is nearly 4-8x higher than others. This indicates that FLAME could be more
likely to cluster most of malicious updates into benign ones under Chironex than
other attacks. As for FPR, Chironex maintains around 40% but others are seriously
restricted under 10%.

To further verify the stealthiness of Chironex, we tested principal component
analysis (PCA) of model parameter updates between benign and malicious agents
under FLAME, see Figure 3.3. We reduced model parameters to three dimensions
and compared the differences. The model update of baseline attack is distinguishable
from those benign updates while malicious updates given by Chironex can be
mis-identified as “benign" (where the low dimensional malicious parameters stay
extremely close to benign ones). This is so because: 1) we constrain the impact
of those backdoor neurons to make them be “seen" as clean neurons; and 2) we
manipulate the malicious parameters to get close to the benign ones trained by the
attacker. These reduce the differences between benign and malicious updates and
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thus make Chironex stealthy.

Why does Chironex achieve distinctive effectiveness under robust FL? Due to our
design at the parameter level, malicious and benign updates are indistinguishable.

e Against Median. Since the malicious and benign parameters are close to each
other, the probability of being selected from all the updates is increased as compared
to other attacks. Thus, Chironex can evade Median.

 Against RLR. The malicious updates generated by Chironex have almost the same
sign of the parameters at each dimension because of the parameter similarity. Since
the sum of parameter sign of our method is smaller than its threshold p, RLR can
easily treat malicious updates as benign.

o Against FLAME and DeepSight. SMP obtains a lower ASR on CIFAR-10 than
Chironex as its core design is to limit the distance between updates based on
the global model of the previous round. By restraining the distance directly
between malicious and benign parameters from the attacker, one may yield a
precise estimation of the update at the current round. But this approach can be
still identified by investigating the difference at the output layer between benign
and malicious models. To bypass the detection, we focus on limiting the impact
of backdoor-sensitive neurons. By introducing two loss function terms %, and
Z1,aist» we guarantee that malicious parameters have no distinct contributions,
allowing our attack to provide excellent stealthiness.

3.5.4. HYPERPARAMETER ANALYSIS

Influence of PDR and the proportion of compromised agents 7. We examined
our attack effectiveness and robustness under different PDR and 7 settings. We
set PDR =20% and 1=1% as default. In Table 3.5, we give the performance with
FedAvg on three datasets. Chironex works very well with PDR =50%, reaching above
98.80% (MA) and 99.55% (ASR) on MNIST and 91.30% (MA) and 98.68% (ASR) on
FMNIST. Although the performance on Tiny-ImageNet is worse than those of MNIST
and FMNIST, Chironex still can provide around 59.12% (MA) and 85.31% (ASR) even
when PDR =1%. We note decreasing PDR could improve MA but weaken ASR. We
also investigated the performance with different 5. In Table 3.3, we see that using a
small n can increase MA but slightly harm ASR against defenses. Chironex presents
a relatively weak performance on ASR (< 50%) when the adversary controls only one
malicious client.

Influence of «,f. We used different hyperparameter settings to visualize the
influence of stealthiness budget a,f on various datasets. The «,f limit the impacts
of backdoor neurons and the similarity between benign and malicious updates
respectively. We restrained that a,f <1 considering the impact of the main task
and backdoor task training. The results against FLAME are in Figure 3.4. For
FMNIST, reducing « (from 0.5 to 0.1) with a fixed f can make our malicious updates
less indistinguishable because the contributions of backdoor neurons do increase.
Reversely, fixing an a with decreasing f could perform a moderate decline on
stealthiness. If we keep reducing either of them, Chironex suffers from a significant
drop on ASR. For example, ASR is only around 20% with a = 0.0 and fully declines to
0% with =0.0. Whilst a, =0.5, Chironex can achieve the best stealthiness against
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FLAME, with almost 100% ASR. The similar experimental results can be observed on
Tiny-ImageNet.

Table 3.5: Attack Performance via MA (%) and ASR (%) with FedAvg for different PDR
settings.

Dataset | PDR | MA ASR

1% | 99.13+0.14 97.14+0.43
10% | 99.27+0.28 97.21+0.23

MNIST 20% | 99.03£0.13 98.46%0.07
50% | 98.80+0.08 99.55+0.11
1% | 92.34+£0.57 95.64+0.95
FMNIST 10% | 91.62+0.59 96.37+0.71

20% | 91.67+£0.45 97.90+0.18
50% | 91.30+0.11 98.68+0.87

1% | 59.12+0.20 85.31+1.38
10% | 58.79+0.39 87.79+1.02
20% | 57.53+0.78 91.12+1.78
50% | 56.36+0.66 92.34+1.90

Tiny-ImageNet

Influence of the degree of non-i.i.d. level g. We set several degrees of FEMNIST and
FMNIST data distribution g to test Chironex in the non-i.i.d context. In Figure 3.5,
we present its performance with robust FL aggregation rules as compared to baseline
backdoor attacks on FEMNIST. From g =0.1 to g =0.9, Chironex achieves high ASR
(>90%) and maintains MA with a small descent (<5%). But under RLR, it has a
continuous drop on ASR, obtaining around 75% with g =0.9. While g =1, both
MA and ASR experience a sharp decline (around 30% on ASR and >50% on MA),
against Median and RLR. This is so because the malicious agents cannot maintain
the similarity between malicious and benign updates, which makes the attack easily
detectable by the defenses. However, we see that Chironex performs more stable
with g =1 under FLAME and DeepSight (both <20% decrease on MA and ASR).

The disparity of Neuron lists P,; and P.. In Figure 3.6, we demonstrate the
distinction in ascending order between the backdoor and clean neuron lists by
subtracting approach. The results show that certain backdoor neurons of each layer
do contribute to the backdoor task noticeably and significantly but they deliver no
influence on the main task.

3.5.5. TRIGGER VISUALIZATION

Although the attacker can arbitrarily choose the trigger because the local dataset is
not visible to the server in the context of FL, using a more stealthy trigger naturally
decreases the cosine dissimilarity between benign and malicious parameters [13],
which could make our malicious updates more robust against defenses. To verify the
natural stealthiness of the designed trigger under human inspection, we showcase
poisoned samples on CIFAR-10 via our frequency trigger function in Figure 3.7. The
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Figure 3.3: Principal component analysis (PCA) of model parameter updates for
benign and malicious agents under FLAME.
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Figure 3.4: MA (%) and ASR (%) of Backdoor (Baseline) and Chironex (Ours) with
FLAME for different a, § settings.

results confirm that Chironex achieves sufficient natural stealthiness that can evade
human inspection.
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Figure 3.5: Attack Performance via MA (%) and ASR (%) for different degrees of
non-i.i.d. setting on FEMNIST. We compare Chironex (Ours) to Baseline
on different defenses.
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Figure 3.6: The differences between P,; and P, of each layer in ascend order by
TNS for classic CNN architecture (including 2 hidden dense layers) on
FMNIST.

3.6. CONCLUSION AND DISCUSSION

We designed an effective and stealthy backdoor attack throught frequency domain
against FL by constraining the influence of backdoor neurons and enforcing backdoor
parameters to update towards benign parameters. The empirical experiments show
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Clean images Trigger image ! Poisoned images

Figure 3.7: Visualization of poisoned images on Tiny-ImageNet. Our attack provides
practical natural stealthiness of poisoned samples.

that our design can achieve a practical attack performance and evade most of the
current defending strategies and human inspection. We hope this work could inspire
further studies in developing secure and robust FL aggregation algorithms.

3.6.1. DISCUSSION.

Tasks. In this work, we concentrate on various computer vision tasks, which have
been the focus of numerous existing works [13, 17]. In the future, we intend
to expand the scope of this work to other machine learning tasks, e.g., natural
language processing. Chironex requires additional computational costs as we apply
the step-forward approach.

Dataset. Applying Chironex to more complex real-world datasets (e.g., ImageNet
[56]) will not harm its attack effectiveness and stealthiness because it manipulates
malicious parameters by limiting the impact of backdoor neurons rather than input
samples. Beyond that, we can easily apply TNS to state-of-the-art CNN architectures,
such as VGG [57], ResNet [53], which have similar structures (conv + fc) as ours.
We also state that Chironex can provide attack effectiveness and stealthiness on text
and speech datasets (e.g., Reddit and Sentiment140 in [51]), where the next-word
prediction task and the speech recognition may use the Recurrent Neural Networks
(RNNs). The proposed TNS is still applicable to RNNs. One may try to use other
types of datasets and NNs at the training stage, but this will not affect the main
conclusions on our attack performance.

Computational cost. Chironex requires extra computational cost as we apply the
step-forward approach. To reduce the costs, we may allow malicious agents to
collude together to obtain a shared malicious update by split learning.

The fraction of malicious agents 7. This parameter naturally affects the performance
of Chironex. When 71 =20% (see Table 3.3), we see that Chironex can achieve
the highest ASR without any loss on MA. But if we decrease 1, the ASR clearly
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experiences a decline. We may keep reducing the n (i.e. increasing the number of
benign agents) to < 1%, then the ASR drops more seriously. This is because the
impact on the backdoor task of malicious parameters is naturally diminished as the
number of benign agents increases, see Table 3.3.

Defenses. We used popular and well-studied defenses, instead of all existing
countermeasures, to evaluate the proposed attack’s performance. The interested
readers may leverage other defenses to test Chironex and the performance could not
be significantly affected. We take FLTrust [38] as an example. It uses a small dataset
to train a reference model and further compares local updates with the model via
cosine distance. Since the distance between malicious and benign updates are still
close to each other under Chironex, we can still fool the FLTrust’s aggregator.
Durability. The focus of Chironex relies on stealthiness rather than persistence
(e.g., Neurotoxin [19]) on attack effectiveness. Neurotoxin manipulates malicious
parameters based on gradients in magnitude, which is different from Chironex
focusing on constraining the contributions of backdoor neurons (by smoothing their
contributions to other “less-influence" neurons). It produces a clear increase in the
dissimilarity of parameters and thus it cant provide the same level of stealthiness as
ours. The dissimilarity difference can be addressed in Chironex by constraining the
contribution of backdoor neuron parameters (i.e, reducing the cosine dissimilarity
between benign and malicious parameters). We state that persistence is orthogonal
with the main focus of this work, and we leave it as an open problem. A possible
solution to achieve persistence could be to decelerate the learning rate of malicious
agents as in [14].
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GENERATIVE BACKDOOR ATTACK
AGAINST FEDERATED LEARNING

Current backdoor attacks against federated learning (FL) manipulate inputs with
universal triggers or semantic patterns, which can be detected and filtered by certain
defense mechanisms such as norm clipping, trigger inversion. In this work, we
propose a generator-assisted backdoor attack with flexible triggers, FTA, against FL
defenses. We consider the stealthiness of both input and feature space of triggers
under decentralized settings. In this method, we propose a generative trigger function
that can learn to manipulate the benign samples with naturally imperceptible trigger
patterns and simultaneously minimize representation distance between poisoned and
benign samples under the attacker-chosen label (stealthiness). Moreover, our trigger
generator repeatedly produces triggers for each sample (flexibility) in each FL iteration
(adaptivity), allowing it to adjust to changes of feature representations between global
models of different rounds. Instead of using universal triggers of existing works,
we break this wall by providing three desiderata (i.e., stealthiness, flexibility and
adaptivity), which helps our attack avoid the presence of backdoor-related feature
representations. Extensive experiments confirm the effectiveness (above 98% attack
success rate) and superior stealthiness of our attack compared to prior attacks under
seven well-studied FL defenses.

This chapter is based on the paper “FTA: Stealthy Backdoor Attack with Flexible Triggers against
Federated Learning." by Qiao, Y., Liu, D., Panaousis, M., Conti, M., and Liang, K., which is under
review from IEEE Transactions on Artificial Intelligence (2025).
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4.1. INTRODUCTION

Federated learning (FL) has recently provided practical performance in various
real-world applications and tasks, such as prediction of oxygen requirements of
symptomatic patients with COVID-19 [1], autonomous driving [2], Gboard [3]
and Siri [4]. It supports collaborative training of an accurate global model by
allowing multiple agents to upload local updates, such as gradients or weights,
to a server without compromising local datasets. However, this decentralized
paradigm unfortunately exposes FL to a security threat backdoor attacks [5-9].
Existing backdoor defenses on FL possess the capability to scrutinize the anomaly of
malicious model updates. Prior attacks fail to achieve adequate stealthiness under
those robust FL systems due to malicious parameters tuning introduced by the
backdoor task.

We summarize the following open problems from the existing backdoor attacks
against FL:

P1: The abnormality of feature extraction in convolutional layers. Existing attacks
use patch-based triggers (“squares”, “stripe" and etc.) [6, 8-10] on a fixed position
or semantic backdoor triggers (shared attributes within the same class) [7, 10].
However, we found that these triggers fail to provide enough “stealthiness" of the
hidden features of the poisoned samples. This is so because latent representations
of poisoned samples extracted from filters standalone compared to the benign
counterparts. Figure 4.10 (a) intuitively illustrates the statement. This abnormality
induces weight outliers in the parameter space.

P2: The abnormality of backdoor routing in fully connected layers. In
fully-connected (FC) layers, the backdoor task is to establish a new routing [11, 12],
separated from benign ones, between the independent hidden features of attacker’s
trigger pattern and its corresponding target label, which yields an anomaly at the
parameter level. The cause of this anomaly is natural, since the output neurons for
the target label must contribute to both benign and backdoor routing, which requires
significant weight/bias adjustments to the neurons involved. Therefore, backdoor
routing can be seen as the secondary source of these abnormalities. Note that these
abnormalities (P1-2) would arise in existing universal trigger designs under FL.

P3: The perceptible trigger for inference. Perhaps, it is not necessary to guarantee
natural stealthiness of triggers on training data against FL, since its accessibility
is limited to each client exclusively due to the privacy issue. However, the test
input with perceptible perturbation in FL [6, 8-10] can be easily identified by an
evaluator or a user who can distinguish the difference between ‘just an incorrect
classification/prediction of the model and the purposeful wrong decision due to a
backdoor in the test/use stage.

In this work, we regard the problems P1-3 as the stealthiness of backdoor attacks
in the context of FL. A natural question then arises: could we eliminate the anomalies
introduced by new backdoor features and routing (i.e., tackling P1-2) while making
the trigger sufficiently stealthy for inference on decentralized scenario (i.e., addressing
P3)?

To provide a concrete answer, we propose a stealthy generator-assisted backdoor
attack, FTA, to adaptively (per FL iteration) provide triggers in a flexible manner
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Figure 4.1: Overview of FTA. (I) Learn the optimal trigger generator g;. (II) Train
malicious model fy. Inference/Backdoor Attack: The global model
performs well on benign tasks while misclassifying the poisoned samples
to the target label.

(per sample) on decentralized setup. FTA achieves a satisfied stealthiness by
producing imperceptible triggers with a generative neural network (GAN) [13, 14]
in a flexible way for each sample and in an adaptive manner during entire FL
iterations. To address P3, our triggers should provide natural stealthiness to avoid
inspection during inference. To solve P1, the difference of hidden representation
between poisoned data and benign counterparts should be minimized. Due to
the imperceptibility between poisoned and benign data in latent representation,
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the correspondent backdoor routing will not be formed and thus P2 is effectively
addressed.
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Figure 4.2: Visualization of backdoored images. Top: the original image; backdoored
samples generated by baseline/Neurotoxin, DBA, Edge-case, and FTA;

Bottom: the residual maps. Our flexible triggers appear as imperceptible
noise.
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Specifically, the proposed generator is learned to minimize the representation
distance for each poisoned sample between output prediction and the target label,
which can ensure similar feature representations of poisoned samples to benign
ones with target label (P1). This can also reduce the abnormality of creating an
extra routing for backdoor in P2 since the similar features make poisoned data “look
like" benign ones with target label, allowing poisoned data to reuse the benign
routing. As a result, the backdoor task does not need to be learned entirely from
scratch, thereby achieving high attack efficiency, as shown in Figure 4.3. Meanwhile,
our trigger is less perceptible and more flexible than predefined patch-based ones in
prior attacks (P3). Further, to make the flexible trigger robust and adaptive to the
changes in global model, the generator is continuously trained across FL iterations.
Finally, we formulate the process of finding optimal trigger generator and training
malicious model in a bi-level and constrained optimization problem, and achieve
the optimum by proposing a simple but efficient optimization process. Compared
with existing works using patch-wise triggers, we break this wall and for the first
time make the generated trigger stealthy, flexible and adaptive in FL setups. We
illustrate learning the trigger generator, training the malicious model and testing
the backdoor in Figure 4.1, and showcase various backdoor images in Figure 4.2 to
demonstrate the imperceptible perturbation by our generator.

Our main contributions are summarized as follows:
 We propose a stealthy generator-assisted backdoor attack (FTA) against robust
FL. Instead of utilizing an universal trigger pattern, we design a novel trigger
generator that produces naturally imperceptible triggers during inference stage. Our
flexible triggers provide hidden feature similarity of benign data and successfully
lead poisoned data to reuse benign routing of target label. Hereby FTA can avoid
anomaly in parameter space and improve attack effectiveness.

e We design a new learnable and adaptive generator that can learn the flexible
triggers for global model at current FL iteration to achieve the best attack
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effectiveness. We propose a bi-level and constrained optimization problem to find
our optimal generator each iteration efficiently We then formulate a customized
learning process and solve it with reasonable complexity, making it applicable to the
FL scenario.

o Finally, we present intensive experiments to empirically demonstrate that the
proposed attack provides state-of-the-art effectiveness and stealthiness against eight
well-study defense mechanisms under four benchmark datasets.

4.2. RELATED WORK

4.2.1. FEDERATED LEARNING

Consider the empirical risk minimization (ERM) in FL setting where the goal is
to learn a global classifier fp:% — & that maps an input x€ X to a target label
y€% . Recall that the FL server cannot access the training dataset. It aggregates
the parameters/gradients from local agents performing centralized training with
local datasets. The de-facto standard rule for aggregating the updates is so-called
FedAvg [15]. The training task is to learn the global parameters 68 by solving
the finite-sum optimization: rngin fo= %Z?ﬂ fo;» where n is the number of

participating agents. At round #, the server S randomly selects n’ € {1,2,...,n}
agents to participate in the aggregation and send the global model 6% to them.
Each of the agents i trains its local classifier fp, : &; — %; with its local dataset
D; ={(xj,y;) : xj € Zi,yj €%;,j=1,2,..,, N} for some epochs, where N =|D;|, by
certain optimization algorithm, e.g., stochastic gradient descent (SGD). The objective
of agent i is to train a local model as: 9;‘ = argHI}linZ(xj,J’j)‘:—Di ZL(fpr (xj),y;), where £

stands for the classification loss, e.g., cross-entropy loss. Then agent i computes its
local update as 6 l’ =0 - 67, and sends back to S. Finally, the server aggregates all
updates and produces the new global model with an average /™! =% + %Zienz 5t
where y is the global learning rate. When the global model 6 converges or the
training reaches a specific iteration upper bound, the aggregation process terminates
and outputs a final global model. During inference, given a benign sample x and its
true label y, the learned global classifier fy will behave well as: fy(x) =y.

Optimizations of FL have been proposed for various purposes, e.g., privacy
[16], security [17, 18], heterogeneity [19], communication efficiency [20, 21] and
personalization issues [22, 23].

4.2.2. BACKDOOR ATTACKS ON FL

The most well-known backdoor attack on FL is introduced in [10], where the
adversary scales up the weights of malicious model updates to maximize attack
impact and replace the global model with its malicious local model. To fully exploit
the distributed learning methodology of FL, the local trigger patterns are used in [6]
to generate poisoned images for different malicious models, while the data from the
tail of the input data distribution is leveraged in [7]. Durable backdoor attacks are
proposed in [8], and make attack itself more persistent in the federated scenarios.




90 4. GENERATIVE BACKDOOR ATTACK AGAINST FEDERATED LEARNING

We state that this kind of attacks mainly focuses on the persistence, whereas our
focus is on stealthiness.

Existing works rely on a universal trigger or tail data, which do not fully exploit
the “attribute” of trigger. Our design is fully applicable and complementary to prior
attacks. By learning a stealthy trigger generator and injecting the sample-specific
triggers, we can significantly decrease the anomalies in P1-3 and reinforce the
stealthiness of backdoor attacks.

4.2.3. BACKDOOR DEFENSES ON FL

There are a number of defenses that provide empirical robustness against backdoor
attacks.

Dimension-wise filtering. Trimmed-mean [24] aggregates each dimension of model
updates of all agents independently. It sorts the parameters of the j-dimension of
all updates and removes m of the largest and smallest parameters in that dimension.
Finally, it computes the arithmetic mean of the rest parameters as the aggregate
of dimension j. Similarly, Median [24] takes the arithmetic median value of each
dimension for aggregation. SignSGD [25] only aggregates the signs of the gradients
(of all agents) and returns the sign to agents for updating the local models.
Vector-wise scaling. Norm clipping [26] bounds the /;,-norm of all updates to a fixed
threshold due to high norms of malicious updates. For a threshold 7 and an update
V, if the norm of the update ||V|| > 7, V is scaled by ﬁ. The server averages all the
updates, scaled or not, for aggregation.

Vector-wise filtering. Krum [17] selects a local model, with the smallest Euclidean
distance to n— f —1 of other local models, as the global model. A variant of Krum
called Multi-Krum [17] selects a local model using Krum and removes it from the
remaining models repeatedly. The selected model is added to a selection S until S
has ¢ models such that n—c>2m+2, where n is the number of selected models
and m is the number of malicious models. Finally, Multi-Krum averages the selected
model updates. RFA [27] aggregates model updates and makes FedAvg robust
to outliers by replacing the averaging aggregation with an approximate geometric
median.

Certification. CRFL [28] provides certified robustness in FL frameworks. It exploits
parameter clipping and perturbing during federated averaging aggregation. In the
test stage, it constructs a “smoothed" classifier using parameter smoothing. The
robust accuracy of each test sample can be certified by this classifier when the
number of compromised clients or perturbation to the test input is below a certified
threshold.

Sparsification. SparseFed [29] performs norm clipping to all local updates and
averages the updates as the aggregate. Topj values of the aggregation update are
extracted and returned to each agent who locally updates the models using this
sparse update.

Cluster-based filtering. Recently, [30] proposed a defending framework FLAME
based on the clustering algorithm (HDBSCAN) which can cluster dynamically all
local updates based on their cosine distance into two groups separately. FLAME uses
weight clipping for scaling-up malicious weights and noise addition for smoothing
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the boundary of clustering after filtering malicious updates. By using HDBSCAN,
[31] designed a robust FL aggregation rule called DeepSight. Their design leverages
the distribution of labels for the output layer, output of random inputs, and cosine
similarity of updates to cluster all agents’ updates and further applies the clipping
method.

4.3. THREAT MODEL AND INTUITION
4.3.1. THREAT MODEL

Attacker’s Knowledge & Capabilities: We consider the same threat model as in prior
works [5, 7, 8, 10, 29, 32], where the attacker can have full access to malicious agent
device(s), local training processes and training datasets. Furthermore, we do not
require the attacker to know the FL aggregation rules applied in the server.
Attacker’s Goal: Unlike untargeted poisoning attacks [33] preventing the convergence
of the global model, the goal of our attack is to manipulate malicious agents’
local training processes to achieve high accuracy in the backdoor task without
undermining benign accuracy.

4.3.2. OUR INTUITION

Recall that prior attacks use universal predefined patterns (see Figure 4.2) which
cannot guarantee stealthiness (P1-3) since the poisoned samples are visually
inconsistent with natural inputs. These triggers (including tail data) used in whole
FL iterations with noticeable modification can introduce new hidden features during
extraction and further influence the process of backdoor routing. Consequently,
this makes prior attacks be easily detected by current robust defenses due to P1-2.
Also, the inconsistency between benign and poisoned samples is not stealthy for the
attacker during the global model inference (P3) and the triggers can be inversed in
decentralized setup.

Compared to prior attacks that focus on manipulating parameters, we bridge
the gap and focus on designing stealty triggers. To address P1-3, a well-designed
trigger should provide 4 superiorities: 1) the poisoned sample is naturally stealthy
to the original benign sample; 2) the trigger is able to achieve feature similarity
between poisoned and benign samples of target label; 3) the trigger can eliminate
the anomaly between backdoor and benign routing during learning; 4) the trigger
design framework can evade robust FL defenses. The only solution that provides
these advantages over prior works simultaneously is flexible triggers. The optimal
flexible triggers are learnt to make latent representations of poisoned samples similar
to benign ones and thus make the reuse of benign routing possible, which naturally
diminish the presence of outlier at parameter level. Therefore, to achieve the
flexibilty of trigger patterns and satisfy four requirements, we propose a learnable
and adaptive trigger generator to produce flexible and stealthy triggers.

v.s. Trigger generators in centralized setting. One may argue that the attacker
can simply apply a similar (trigger) generator in centralized setup [34-38] on FL to
achieve imperceptible trigger and stealthy model update.
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o Stealthiness. For example, the attacker can use a generator to produce
imperceptible triggers for poisoned samples and make their hidden features similar
to original benign samples’ as in [36, 38]. This, however, cannot ensure the
indistinguishable perturbation of model parameters (caused by backdoor routing)
during malicious training and fail to capture the stealthiness (in P1-2). This is
so because it only constrains the distinction of the input domain and the hidden
features between poisoned and benign samples other than the hidden features
between poisoned and benign samples of farget label. In other words, a centralized
generator masks triggers in the input domain and feature space of benign samples,
conceals the poisoned sample for visibility and feature representation, whereas this
cannot ensure the absence of backdoor routing for poisoned data. A stealthy
backdoor attack on FL should mitigate the routing introduced by backdoor task
training and guarantee the stealthiness of model parameters instead of just the
hidden features of poisoned samples compared to their original inputs.

e Learning. The centralized learning process of existing trigger generator cannot
directly apply to decentralized setups due to the continuously changing of global
model and time consumption of training trigger generator. As an example, IBA
[38] directly constrains the distance of feature representation between benign and
poisoned samples. This approach cannot achieve satisfied attack effectiveness due to
the inaccurate hidden features of benign samples before global model convergence.
In contrast, we propose a customized optimization method for the FL scenario that
can learn the optimal trigger generator for global model of current iteration to
achieve the best attack effectiveness and practical computational cost as depicted in
Section 4.4.3 and Table 4.3, respectively.

» Defenses. We note that the robust FL aggregator can only access local updates of
all agents other than local training datasets. The centralized backdoor attack does
not require consideration of the magnitude of the malicious parameters. However,
in reality, the magnitude of malicious updates is usually larger than that of benign
updates under FL setups. In that regard, norm clipping can effectively weaken
and even eliminate the impact of the backdoor [26, 32]. Thanks to the flexibility
of our triggers, we advance the state-of-the-art by enhancing the stealthiness and
effectiveness of the backdoor attack even against well-studied defenses such as trigger
inversion method on FL, e.g. FLIP [39]. FLIP is effective in removing prior backdoors
with patch-based triggers whereas our attack can naturally evade this SOTA FL defense.

4.4. PROPOSED METHODOLOGY: FTA
4.4.1. FTA TRIGGER FUNCTION

We first introduce our trigger function I : & — % with a given generative network,
i.e., our trigger generator. To eliminate three abnormalities of P1-3, the key insight
of our trigger function is to guarantee: 1) The perturbations of poisoned sample are
imperceptible; and 2) The trigger generator can effectively learn representations of
the target label for flexible triggers. Given a benign sample x and corresponding
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label y, we formally model 9¢ and target labeling function 7 as follows:
=T =x+gx), yY=nQ)=c (4.1)

where g is the generator, ¢ is the parameters of g, and c is the specific target label.
We use the same neural network architectures as [34] to build our trigger generator,
i.e.,, autoencoder and U-Net architectures [40].

4.4.2., PROBLEM FORMULATION

Based on the federated scenario in Section 4.2.1, the attacker’s main objective is to
train the malicious models in order to alter the behavior of the global model f (with
parameters ) as follows:

6" =argmin ) L(fr), N+ Y. Loy, 4.2)
0 (xyeDeiy (x,y)EDpy

where D, is clean local dataset and Dy, is a small fraction of clean samples in
D¢, to produce poisoned data via Equation (4.1). And the poison ratio is defined as
|Dpgl/|D¢inl. During inference, given a clean input x and its true label y, the victim
model f behaves as: f(x) =y, f(T (x)) =n(y).

To eliminate the anomaly introduced by backdoor representations, our additional
goal is to learn a stealthy trigger generator g to produce flexible and stealthy triggers
with the following: 1) the generated triggers ensure that poisoned images do not
bring visual disparities compared to benign ones; 2) the poisoned global model
simultaneously performs indifferently on test input x but changes its prediction
on the poisoned sample x' to the target label; and 3) the feature representation
of backdoor sample 9 (x) is similar to its benign input x. To achieve similar
feature representations under target label, we here introduce representation distance
between the model prediction of input and the target class as follows:

%(x»y)fﬂ): ||f6(x)L—O()’)||2, (43)

where fp(x); is the logits of the output layer L, O(y) is the one-hot vector of label
y. It approximates the similarity between input sample and the target label in the
representation space. By minimizing %(x/, ¢, fy), we can force the generator to learn
the feature representations of target label from victim model into trigger pattern for
each poisoned sample.

Therefore, the overall attack objectives of FTA can be formulated as a constrained
optimization as follows:

min Z L(fo:(x),¥)
0.4 (x,y)€Dern

+ ) L(fp X,y
(x',y")€Dpq , (4.4)
s.t. (i) & =argmin Z R, Y, fo))
13 (x’,y’)eDbd
(i) dix',x)<e
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where ¢ is current FL round, d is l>-norm distance, € is a constant threshold value to
ensure a minimal perturbation. In the above bilevel problem, we optimize malicious
model fy: that is associated with a generative trigger function J¢. However, solving
this problem in Equation (4.4) is not trivial under FL scenario since the global model
fo varies in each iteration and the non-linear constraint. Thus, the learned trigger
function J¢ is unstable based on dynamic fy. The detailed optimization procedure
is depicted in the following subsection.

4.4.3. FTA’S OPTIMIZATION

To address the constrained optimization in Equation (4.4), existing function-based
attacks [34, 36, 41] alternately updating fy while keeping gr unchanged, or the
other way round, for many iterations. However, it involves a large amount of
computational cost and makes the training process unstable according to our trials.
Thus, we divide FTA optimization into two phases within a single FL round, with
each phase executed in only one iteration over a few epochs. In phase one, we fix
the global model fy: and only learn the trigger generator gz. In phase two, we use
the pretrained g¢ to generate Dy, and train the malicious classifier fy:. Note that we
reuse generator g¢ trained in ¢-th round for the next attack round. By doing so, we
prevent the generator g¢ from overfitting, enabling it to be continuously learned to
extract feature representations of the target label from dynamic global models across
different rounds. Furthermore, this mechanism allows the malicious model to reuse
the benign routing for poisoned samples without significantly tuning the parameters
for backdoor task (achieving P1-2). Algorithm 5 describes the details of optimization
procedure of FTA in ¢-th FL round.

4.5. ATTACK EVALUATION

We show that FTA outperforms 3 SOTA attacks (under 8 robust FL defenses) by
conducting experiments on different computer vision tasks.

4.5.1. EXPERIMENTAL SETUP

Datasets and Models. We demonstrate the effectiveness of FTA backdoor through
comprehensive experiments on four publicly available datasets, namely Fashion-
MNIST (FMNIST) [42], FEMNIST [43], CIFAR-10 [44], and Tiny-ImageNet (TI) [45]. In
Fashion-MNIST, CIFAR-10 and Tiny-ImageNet, a Dirichlet distribution with a degree
of 0.7 is used to divide training data for the number of total agent parties. For
FEMNIST, we randomly choose data of 3000 users from the dataset and randomly
distribute every training agent with the training data from 3 users. The classification
model used in the experiments includes Classic CNN, VGG11 [46], and ResNetl8
[47]. These datasets and models are representative and commonly used in existing
backdoor and FL research works.



4.5. ATTACK EVALUATION 95

Algorithm 5: FTA Optimization

1 Input: Clean dataset D.;,, Global model f with parameters 6', Trigger
generator g with parameters ¢, Learning rates yy and yg, Batch of clean and
poisoned dataset B, and Bpg, Number of Epochs ef and eg

Output: Malicious model update §™

Initialize parameters 0 and ¢

Dy4 — Poison a random subset of D, by Equation (4.1)

/1 Stage I: Update flexible generator g

Sample minibatch (x',y') € Bpy from Dyy

for i=1,2,---,e; do
| Optimize ¢ by using SGD with fixed fpr on Byg: € —E—ygVeR(X, Y, for)

end

10 £* — ¢ /] save for next attack round

11 // Stage II: Train malicious model fy:

12 Sample minibatch (x, y) € By, from D, and (x,y) € By from Dy

13 for i=1,2,---,er do

14 Optimize 0’ by using SGD with fixed gz on B, and Bjg:

O — 0" —y (Vi (L (fpr (X, 1)) + L (fe (X, ¥))

15 end

16 Compute malicious update: 6§ — 01 —g*

17 return 6"

© NS g e W N

4.5.2. DETAILS OF THE TASKS

The details of 4 computer vision tasks are described in Table 4.1. To prove the
stealthiness against defenses of FTA, we use a decentralized setting with non-i.i.d.
data distribution among all agents. The attacker chooses the all-to-one type of
backdoor attack (except Edge-case [7]), fooling the global model to misclassify the
poisoned images of any label to an attacker-chosen target label. We apply backdoor
attacks from different phases of training. In FEMNIST task, we follow the same
setting as [6], where the attacker begins to attack when the benign accuracy of
global models starts to converge. For other tasks, we perform backdoor attacks at
the beginning of FL training. In this sense, as mentioned in [6], benign updates
are more likely to share common patterns of gradients and have a larger magnitude
than malicious updates, which can significantly restrict the effectiveness of malicious
updates. Note we consider such a setting for the bottom performance of attacks and
further, we still see that our attack performs more effectively than prior works in this
case (see Figure 4.3).

Implementation. The implementation of all the attacks and FL frameworks is based
on PyTorch [48]. We test all experiments on a server with one Intel Xeon E5-2620
CPU and one NVIDIA A40 GPU with 32G RAM. As in Neurotoxin [8], we assume that
the attacker can only compromise a limited number of agents (<1% ) in practice
[32] and uses them to launch the attack by uploading manipulated gradients to the
server. Following a practical scenario for the attacker given in [8], 10 agents among
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Table 4.1: The datasets, and their corresponding models and hyperparameters.

Fahion-MNIST

FEMNIST CIFAR-10

Tiny-ImageNet

Classes

10

200

Size of training set

737837

100000

Size of testing set

Total agents

2000

Malicious agents

1

Agents per FL round

10

\
|
\
80014 |
\
|
\

10 10

\
|
\
| 10000
\
|
\

10

Phase to start attack Attack from scratch ‘ Attack after convergence ‘ Attack from scratch ‘ Attack from scratch

Poison fraction 0.1
Trigger size 1 ‘ 1.5 ‘ 1.5 ‘ 3
Dataset size of trigger generator 1024
| 4 | 5 | 5
Epochs of backdoor task 5 (FTA: 2) | 10 (FTA: 4) | 10 (FTA: 5) | 10 (FTA: 5)
Learning rate of trigger generator 0.01 | 0.01 | 0.001 | 0.01
Epochs of trigger generator 5 ‘ 5 ‘ 10 ‘ 10
Local data distribution non-i.i.d.
Classification model Classic CNN ‘ Classic CNN ‘ ResNet-18 ‘ ResNet-18
Trigger generator model Autoencoder ‘ Autoencoder ‘ U-Net ‘ Autoencoder
Learning rate of benign task 0.1 ‘ 0.01 ‘ 0.01 ‘ 0.001
Learning rate of backdoor task 0.1 ‘ 0.01 ‘ 0.01 ‘ 0.01
Edge-case FALSE | TRUE | TRUE | FALSE

|
\
|
\
|
\
|
\
|
\
|
Epochs of benign task ‘ 2
\
\
\
|
\
\
\
\
\
Other hyperparameters |

Momentum:0.9, Weight Decay: 10™*

thousands of agents are selected for training in each round and their updates are
used for aggregation and updating the server model. The target labels are “sneaker”
in Fashion-MNIST, “digit 1" in FEMNIST, “truck" in CIFAR-10 and “tree frog" in
Tiny-ImageNet. We set the poison ratio to 10%. All local clients use SGD as an
optimizer and train for local training epochs with a batch size of 256. The attacker
has its own local malicious learning rate and epochs to maximize its backdoor
performance. It also needs to train its local trigger generator with learning rate and
epochs before performing local malicious training on the downloaded global model.
Attack modes. We test stealthiness and durability of FTA with two attack modes
respectively, i.e., fixed-frequency and few-shot as Neurotoxin. (i) Fixed-frequency
mode: The server randomly chooses 10 agents among all agents. The attacker
controls exactly one agent in each round in which they participate. For other
rounds, 10 benign agents are randomly chosen among all agents. (ii) Few-shot mode:
The attacker participates only in Attack_num rounds. During these rounds, we
ensure that one malicious agent is selected for training. After Attack_num rounds
or backdoor accuracy has reached 95%, the attack will stop. Under this setting, the
attack can take effect quickly, and gradually weaken by benign updates after the
attack is stopped.

Evaluation Metrics. We evaluate the performance based on attack success rate
(ASR) and benign accuracy according to the following criteria: effectiveness and
stealthiness against current SOTA defense methods under fixed-frequency mode,
durability evaluated under few-shot mode.

Comparison. We compare FTA with three SOTA attacks, namely DBA, Neurotoxin
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and Edge-case [7], and the baseline attack method described in [8] under different
settings and eight defenses (a variant of norm clipping based on [26], FLAME
[30], Multi-Krum [17], Trimmed-mean [24], RFA [27], SparseFed [29], SignSGD [25]
and Foolsgold [49]). Regarding the attack methods, we set the top-k ratio of
0.95 for Neurotoxin, in line with the recommended settings in [8]. For DBA, we
use 4 distributed strips as backdoor trigger patterns. Both the baseline attack and
Neurotoxin employ a “square" trigger pattern on the top left as the backdoor trigger.
We conduct Edge-case attack on CIFAR-10 and FEMNIST. Specifically, for CIFAR-10,
we use the southwest airplane as the backdoored images and set the target label
as “bird". For FEMNIST, we use images of “7 in ARDIS [50] as poisoned samples
with the target label set as the digit “1. The dataset settings of the experiments are
the same as those used in [7]. The results demonstrate that FTA delivers the best
performance as compared to others.

4.5.3. ATTACK EFFECTIVENESS

Attack effectiveness under fixed-frequency mode. Compared to the attacks with
unified triggers, FTA converges much faster and delivers the best BA in all cases
since our poisoned data can reuse benign routing of target label, see Figure 4.3. It
can yield a high backdoor accuracy on the server model within very few rounds
(<50) and maintain above 97% accuracy on average. Especially in Tiny-ImageNet,
FTA reaches 100% accuracy extremely fast, with at least 25% advantage compared
to others. In CIFAR-10, FTA achieves nearly 83% BA after 50 rounds which is 60%
higher than other attacks on average. There is only <5% BA gap between FTA and
Edge-case on FEMNIST in the beginning and later, they reach the same BA after 100
rounds. We note that the backdoor task of Edge-case in FEMNIST is relatively easy,
mapping 7-like images to the target label of digit “1", which makes its convergence
slightly faster than ours.

Attack effectiveness under few-shot mode. As an independent interest, we test the
durability of the attacks during training stage in this setting. In our experiments,
the Attack_num is 100 for all attacks, and the total FL round is 1000 for CIFAR-10,
and 500 for other datasets. The results under few-shot settings are shown in
Figure 4.4. All attacks reach a high BA rapidly after consistently poisoning the server
model, then BA gradually drops after stopping attacking and the backdoor injected
into the server model is gradually weakened by the aggregation of benign updates.
FTA’s performance drops much slower than the baseline attack. For example, in
Fashion-MNIST and after 500 rounds, FTA still remains 73% BA, which is only 9%
less than Neurotoxin, 61% higher than the baseline. Moreover, FTA can beat DBA
and the baseline on Tiny-ImageNet. After 500 rounds, FTA maintains 37% accuracy
while the baseline and DBA only have 5%, which is 45% less than Neurotoxin.
However, Neurotoxin cannot provide the same stealthiness as shown in following
comparison under robust FL defenses. Since malicious and benign updates have
a similar direction by FTA, the effectiveness of FTA's backdoor can survive after
few-shot attack. In conclusion, FTA has long-term attack effectiveness even if we stop
attacking early since the poisoned data with our well-learned triggers contain similar
features to benign data and can be naturally misclassified into the target label with
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Figure 4.3: Fixed-frequency attack performance under FedAvg. FTA is more efficient
than others.

certain confidence by server model.

Influence on Benign accuracy. We showcase the benign accuracy of both the
baseline attack and FTA, and also consider the accuracy without backdoor attacks
under FedAvg. We start FTA and the baseline from a specific round (e.g., 0 or 200
for different datasets) and perform the attacks during Attack_num rounds. We record
the accuracy once the attacks have ended. From Table 4.2, it is evident that FTA
results in a slightly smaller decrease in benign accuracy compared to baseline attack.

Table 4.2: Benign accuracy of the baseline attack. FTA and no attackers circumstance
under different datasets. Benign accuracy drops by = 1.5% in FTA
compared to the accuracy without attack.

Dataset ‘ Attack start epoch ‘ Attack_num ‘ No attack (%) ‘ Baseline attack (%) ‘ FTA (%)
Fashion-MNIST 0 50 90.21 85.14 90.02
FEMNIST 200 50 92.06 91.27 92.05
CIFAR-10 0 100 61.73 56.34 60.61
Tiny-ImageNet 0 100 25.21 19.06 25.13

Computational cost. We understand the significance of the external computational
cost and time consumption of backdoor training on malicious devices in our
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Figure 4.4: Few-shot attack performance under FedAvg. FTA is more durable than
baseline.

proposed attack under FL scenario. Training with GANs in federated systems
introduces extra time consumption. However, our attack does not significantly
increase the computational and time cost due to our optimization procedure.
Compared to training benign task and baseline backdoor task, FTA only needs to
train an additional trigger generator which is actually a small generative neural
network. Our generator only consists of several convolutional layers in total. It is
worth noting that the datasets used to train both two network structures comprise
only 1024 poisoned samples as shown in Table 4.1 whose sizes are relatively small
compared to the entire training dataset. For instance, the training dataset for our
trigger generator accounts for approximately 0.14% of the FEMNIST dataset Therefore,
the time consumption and computational cost for training this generative network
are very minimal. The remaining time consumption is comparable to training a
benign local model. As shown in Table 4.3, Neurotoxin requires approximately 2x the
time and memory compared to benign training to complete backdoor training for
one FL round. This is attributed to an additional local benign training requirement
in Neurotoxin. However, FTA consumes less than 30% additional time and 25%
additional computational cost for backdoor training compared to benign ones. Given
that FTA remains under 70% of the cost of Neurotoxin, it is practical to conduct an
FTA attack in decentralized scenario.
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Table 4.3: Time consumption and computational cost (MEAN+SD) of different
attack methods in one FL iteration under Fashion-MNIST, CIFAR-10 and
Tiny-ImageNet.

Dataset— ‘ Fashion-MNIST CIFAR-10 Tiny-ImageNet
Attack| ‘ Time (s) Memories (MB) Time (s) Memories (MB) Time (s) Memories (MB)
Benign 1.62+0.19 76.8 14.11+1.45 125.1 37.92+2.71 233.5

Baseline Attack | 1.67+0.25 81.6 14.81+2.10 127.2 38.52+2.19 226.4
DBA 1.57+0.31 81.7 14.91+1.86 124.7 38.74+1.92 248.5
Neurotoxin 3.39+0.66 120.4 27.85+1.74 279.3 76.38+3.46 478.7
FTA 2.04£0.52 86 18.38+1.89 169.1 46.98+2.14 298.4

4.5.4. STEALTHINESS AGAINST DEFENSIVE MEASURES

We test the stealthiness (P1-2) of FTA and other attacks using 8 SOTA robust FL
defenses introduced in Section 4.2.3, such as norm clipping and FLAME, under
fixed-frequency scenarios. All four tasks are involved in this defense evaluation.
The results, see Figure 4.5 show that FTA can break the listed defenses. Beyond
this, we also evaluate different tasks on Multi-Krum, Trimmed-mean, RFA, SignSGD,
Foolsgold and SparseFed. FTA maintains its stealthiness and robustness under these
defenses.

Resistance to Vector-wise Scaling. We use the norm clipping as the vector-wise
scaling defense method, which is regarded as a potent defense and has proven
effective in mitigating prior attacks [32]. On the server side, norm clipping is applied
on all updates before performing FedAvg. Inspired by [26], we utilize the variant
of this method in our experiments. As introduced in Section 4.5.2, if we begin
the attack from scratch, the norm of benign updates will be unstable and keep
fluctuating, making us hard to set a fixed norm bound for all updates. We here filter
out the biggest and smallest updates and compute the average norm magnitude
based on the rest updates, and set it as the norm bound in current FL iteration.

As shown in Figure 4.5 (a)-(d), this variant of norm clipping can effectively
undermine prior attacks in Fashion-MNIST, CIFAR-10, and Tiny-ImageNet. It fails in
FEMNIST because benign updates have a larger norm (for example, 1.2 in FEMNIST
at round 10, but only 0.3 in Fashion-MNIST), which cannot effectively clip the norm
of malicious updates, thus resulting in a higher BA of existing attacks. We see that
FTA provides the best BA which is less influenced by clipping than others. FTA
only needs a much smaller norm to effectively fool the global model. Although
converging a bit slowly in FEMNIST, FTA can finally output a similar performance
(above 98%) compared to others.

Resistance to Cluster-based Filtering. The cluster-based filtering defense method
is FLAME [30], which has demonstrated its effectiveness in mitigating SOTA attacks
against FL. It mainly uses HDBSCAN clustering algorithm based on cosine similarity
between all updates and strains the updates with the least similarity compared
with other updates. In fig. 4.5 (e)-(h), we see that FLAME can effectively sieve
malicious updates of other attacks in Fashion-MNIST and CIFAR-10, but provides
relatively weak effectiveness in FEMNIST and Tiny-ImageNet. This is so because data
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distribution among different agents are fairly in non-i.i.d. manner. Cosine similarity
between benign updates is naturally low, making malicious updates possibly evade
from the clustering filter.

Similar to the result of Multi-Krum (see Section 4.5.4), FTA achieves >99% BA
and finishes the convergence within 50 rounds in CIFAR-10 and Tiny-ImageNet,
while delivering an acceptable degradation of accuracy, <20%, in Fashion-MNIST.
In FEMNIST, FTA converges slightly slower than the baseline and Neurotoxin but
eventually maintains a similar accuracy with only 2% difference. The result proves
that FTA enforces malicious updates to have highly cosine-similarity against benign
updates due to the same reason in Section 4.5.4, so that it can bypass the defenses
based on similarity of updates.

Resistance to vector-wise filtering. Multi-Krum is used as the vector-wise defense
method. As described in Section 4.2.3, it calculates the Euclidean distance between
all updates and selects n— f —1 updates with the smallest Euclidean distances for
aggregation. In Figure 4.6, the defense manages to filter out almost all malicious
updates of prior attacks and effectively degrade their attacks’ performance. In
contrast, local update of FTA cannot be easily filtered and thus FTA outperforms
others. In CIFAR-10 and Tiny-ImageNet, the attack performance is steady for FTA
(nearly 100%) within 40 rounds to converge. In FEMNIST, Multi-Krum only results
in a 10% BA degradation for FTA while BAs of others are restricted to 0%. In
Fashion-MNIST, Multi-Krum can sieve malicious updates of FTA occasionally, leading
to a longer convergence time, but still fails to completely defend the FTA. Malicious
updates produced by FTA (which successfully eliminates the anomalies in P1-2) are
with a similar Euclidean distance compared to benign updates, making them more
stealthy than other attacks’.

Resistance to dimension-wise filtering. @ We choose Trimmed-mean as the
representative of dimension-wise filtering. As mentioned in Section 4.2.3, the
dimensions of updates are sorted respectively, and the top m highest and smallest
updates are removed, and the arithmetic mean of the rest parameters is computed
for aggregated updates. In our experiments, m is set as 2 because we assume there
is no more than one malicious agent during FL iteration, and setting a higher m can
result in lower convergence. As shown in Figure 4.7, Trimmed-mean successfully
filters out the compared attacks in Fashion-MNIST and Tiny-ImageNet, and its effects
are weakened in CIFAR-10 and FEMNIST. However, FTA survives in all four tasks and
performs the best under trimmed-mean. In CIFAR-10, it completes the convergence
within 30 rounds and remains 99.9% BA. In Fashion-MNIST and FEMNIST, FTA takes
above 50 rounds to fully converge, and the final accuracy manages to reach 96%.
The performance of FTA is significantly degraded in Tiny-ImageNet, but still with
30% advantage over other attacks on average. The update of FTA shares a similar
weights/biases distribution of benign updates. This ensures our attack to defeat the
defenses based on dimension-wise filtering.

Resistance to RFA. In Figure 4.8, FTA provides the best performance among others
in Fashion-MNIST, CIFAR-10 and Tiny-ImageNet. In FEMNIST, it converges much
faster than prior attacks. Although its accuracy is 8% lower than the baseline in the
middle of training, FTA achieves the same performance at the end (of training).
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Figure 4.6: The effectiveness of attack under Multi-Krum in 4 tasks.

Resistance to SignSGD. As shown in Figure 4.9 (a)-(b), SignSGD mitigates prior
backdoor attacks with a universal trigger pattern. However, FTA still defeats it and
remains 94% and 99% BA on Fashion-MNIST and Tiny-ImageNet, respectively.

Resistance to Foolsgold. From Figure 4.9 (c), we see that Foolsgold hinders the
convergence speed of FTA in Fashion-MNIST, which requires FTA to perform extra 25
rounds for convergence. In this sense, FTA still converges much faster than others.

Resistance to sparsification. We choose SparseFed as the representative of the
sparsification defense. In Figure 4.9 (d), only Neurotoxin and FTA are capable
of breaking through SparseFed on Tiny-ImageNet. The BA of Neurotoxin exhibits
fluctuations (between 22% and 36%) throughout the training process, unable to
maintain a continuous rise. In contrast, FTA demonstrates the ability to consistently
poison the global model and later achieves an impressive accuracy of 90% by round
150. The reason for the above performance difference is that the backdoor task of
FTA captures imperceptible perturbations on model parameters, which eliminates the
anomalies of poisoning training. The backdoor tasks trained by FTA are more likely
to contribute to the same dimensions of gradients as benign updates. Consequently,
the top-k filtering mechanism implemented in the server side is ineffective to filter
out FTA’s backdoor effect.
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Figure 4.7: The effectiveness of attack under Trimmed-mean in 4 tasks.

4.5.5. EXPLANATION VIA FEATURE VISUALIZATION BY T-SNE

We use t-SNE [51] visualization result on CIFAR-10 to illustrate why FTA is more
stealthy than the attacks without “flexible" triggers. We select 1,000 images from
different classes uniformly and choose another 100 images randomly from the dataset
and add triggers to them (in particular, patch-based trigger “square" in baseline
method, flexible triggers in FTA). To analyze the hidden features of these samples,
we use two global poisoned models injected by baseline attack and FTA respectively.
We exploit the output of each sample in the last convolutional layer as the feature
representation. Next, we apply dimensionality reduction techniques and cluster the
latent representations of these samples using t-SNE. From Figure 4.10 (a)-(b), We see
that in the baseline, the distance of clusters between images of the target label “7
and the poisoned images are clearly distinguishable. So the parameters responsible
for backdoor routing should do adjustments to map the hidden representations of
poisoned images to target label. In FTA, the hidden features of poisoned data
overlapped with benign data of target label, which eliminates the anomaly in feature
extraction (P1). FTA can reuse the benign routing in FC layers for backdoor tasks,
resulting in much less abnormality in backdoor routing (P2), thus the malicious
updates can be more similar to benign ones, see Figure 4.10 (c)-(d), producing a
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Figure 4.8: The effectiveness of attack under RFA in 4 tasks.

natural parameter stealthiness.

4.5.6. NATURAL STEALTHINESS

We evaluate the natural stealthiness of our backdoor samples by SSIM [52] and LPIPS
[53] to indicate that P3 is well addressed by FTA flexible triggers. For each dataset,
we randomly select 500 sample images from test dataset to evaluate the trigger
stealthiness. As the SSIM value increases, the poisoned sample looks more stealthy.
But for LPIPS, that is the other way round. Table 4.4 shows that FTA achieves
excellent stealthiness in all cases. Specifically, SSIM values of FTA are the highest in
these datasets, which are close to 1. LPIPS values of FTA are 2-7x improvement to
that of baseline attack. Although the baseline attack and Neurotoxin, which uses
a universal square pattern, performs well on more complex datasets, using such a
patch-based pattern can make the original image look “unnatural”.

The benign and poisoned samples with flexible triggers of different sizes generated
by FTA are presented in Figure 4.11. For Tiny-ImageNet and CIFAR-10, it is hard for
human inspection to immediately identify the triggers, which proves the stealthiness
in P3. In Fashion-MNIST and FEMNIST, the triggers are easier to distinguish because
there is only one channel of the input samples in the datasets. But those flexible
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Figure 4.9: (a)-(b): The effectiveness of attack under SignSGD in Fashion-MNIST

and Tiny-ImageNet.

(0):

The effectiveness of attack under Foolsgold

in Fashion-MNIST. (d): The effectiveness of attack under SparseFed in
Tiny-ImageNet.

triggers are still much more stealthy compared to those produced by prior attacks
on FL (see Figure 4.2).

Table 4.4: Natural stealthiness of FTA triggers (SSIM1 and LPIPS]).

Dataset ‘ Metric ‘ Baseline DBA  Neurotoxin Edge-case FTA(Ours)
. SSIM 0.9376  0.9052 0.9359 - 0.9967
Fashion-MNIST | '/ prpg | 'Na NA NA NA NA
CIFAR-10 SSIM 0.9612 0.9440 0.9638 0.7354 0.9978
LPIPS 0.0058  0.0091 0.0075 0.3171 0.0008
Tinv-ImageNet SSIM 0.9851  0.9734 0.9810 - 0.9881
Y 8 LPIPS 0.0072  0.0149 0.0086 - 0.0029
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4.5.7. ABLATION STUDY IN FTA ATTACK

We here analyze several hyperparameters that are critical for the FTA's performance
including trigger size, poison fraction and dataset size of trigger generator.

Trigger size. This size refers to the l,-norm bound of the trigger generated by
the generator, corresponding to € in Equation (4.4). In Figure 4.12 (a)-(d), the
trigger size significantly influences the attack performance in all the tasks. The
ASRs of FTA drop seriously and eventually reach closely to 0% while we keep
decreasing the trigger size, in which evidences can be seen in CIFAR-10, FEMNIST,
and Tiny-ImageNet. Additionally, the trigger with a size of 2 in CIFAR-10 and
Tiny-ImageNet is indistinguishable from human inspection (see Figure 4.11), while
for Fashion-MNIST and FEMNIST (in which images have 2 dimensions), additional
noise can be still easily detected. Thus, a balance between visual stealthiness and
effectiveness should be considered before performing FTA attack.

Poison fraction. This refers to the fraction of poisoned training samples in the
original training dataset of the attacker. Setting a low poison fraction can benefit
the attack’s stealthiness by having less abnormality in parameters and less influence
on benign tasks. But this can slow down the attack effectiveness, as a side effect.
Fortunately, we find that FTA can still take effect under a low poison fraction. We set
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the local training batch size to 256 for all the tasks, follow the standard settings of
other FL frameworks, and set the poison fraction as 0.1. In Figure 4.12 (e)-(h), FTA
is still effective whilst the fraction drops to 0.05. We also find that sensitivities to
poison fraction can vary among tasks. In Fashion-MNIST and CIFAR-10, FTA remains
its performance even if poison fraction =0.01, in which only around 3 samples are
posoined in each batch. As for FEMNIST and Tiny-ImageNet, under the same rate,
the backdoor tasks are dramatically weakened by the benign ones.

Dataset size of trigger generator. Theoretically, if this dataset is small-scale, the
trigger generator could not be properly trained, thus resulting in bad quality and
further endangering the attack performance. During the training, if the attacker
controls multiple agents, it can merge all local datasets into one for generator
training. However, in many cases, the attacker can only control relatively limited
agents and is provided by a small-scale dataset for training. Recall that in algorithm 5
we use the same dataset for the malicious model and trigger generator training. We
set the size of dataset for learning trigger generator to 1024 for all tasks in default.
From fig. 4.12 (i)-() in section 4.5.7, we see that this concern should not be crucial
for FTA. Even if the size of the dataset is only set to 32, FTA can provide a high
attack performance. We note that the training process here is somewhat similar
to generative adversarial networks, in which we do not require a large amount of
samples in the training dataset.

4.6. CONCLUSION AND DISCUSSION

We design an effective and stealthy backdoor attack against FL called FTA by
learning an adaptive generator to produce imperceptible and flexible triggers, making
poisoned samples have similar hidden features to benign samples with target label.
FTA can provide stealthiness and robustness in making hidden features of poisoned
samples consistent with benign samples of target label; reducing the abnormality of
parameters during backdoor task training; manipulating triggers with imperceptible
perturbation for training/testing stage; learning the adaptive trigger generator across
different FL rounds to generate flexible triggers with best performance. The empirical
experiments demonstrate that FTA can achieve a practical performance to evade
SOTA FL defenses.

4.6.1. DISCUSSION

In this work, we concentrate on the computer vision tasks, which have been the
focus of numerous existing works [6, 7, 34, 36, 54]. In the future, we intend to expand
the scope of this work by applying our design to other real-world applications, such
as natural language processing (NLP) and reinforcement learning (RL), as well as
other vision tasks, e.g., object detection.

The primary focus of FTA is to achieve stealthiness rather than durability, in
contrast to other attacks such as Neurotoxin [8]. Neurotoxin manipulates malicious
parameters based on gradients in magnitude, which yields a clear increase in the
dissimilarity of parameters and thus harms the stealthiness of the attack. FTA
addresses the dissimilarity difference of weights/biases introduced by backdoor
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training by using a stealthy and adaptive trigger generator, which makes the hidden
features of poisoned samples similar to benign ones. We emphasize that the
durability of backdoor attacks on FL is orthogonal to the main focus of this work,
and we leave it as an open problem. A possible solution to achieve persistence could
be to decelerate the learning rate of malicious agents, as proposed in [10].
Comparison. In addition to the defenses evaluated in this paper, we discuss our
attack effectiveness under other defenses below. As depicted in FLDetector [55], in a
typical FL scenario where the server does not have a validation dataset that Fltrust
[56] requires, the global model remains susceptible to backdoor attacks. However,
the stringent demand by FLtrust for an extra validation dataset could not be practical
for conventional FL frameworks and applications. Furthermore, Fltrust eliminates
backdoor effectiveness based on cosine dissimilarity which is similar to the approach
used in FLAME. As shown in fig. 4.10, FTAs malicious updates have less dissimilarity
to benign updates than the baseline attacks. Therefore, we can state that FTA can
evade Fltrust according to the results obtained under FLAME. DnC [57] primarily
focuses on untargeted poisoning attacks rather than backdoor attacks, and its main
objective is to reduce the accuracy of FL models. Accordingly, we do not consider it
as a “proper" SOTA backdoor defense (to our attack). In particular, DnC is a kind of
vector-wise filtering defense. In our experiments, conducted under Multi-krum and
RFA, we ascertain that FTA is robust against vector-wise filtering. In conclusion, FTA
can also successfully evade DnC, much like Multi-krum and RFA. As for certified
defense like Flcert [58], while it is a promising approach to robustness certification,
it is not intended to detect and filter out malicious updates in FL. As outlined in
Flcert, the certified accuracy of the global model experiences a decline with the
increase of malicious agents. Fortunately, FTA can cope with a very challenging
threat model, where the attacker is allowed to control merely one malicious agent
out of thousands. We thus can achieve a certified accuracy almost on par with
the original global model accuracy against Flcert. FLIP [39] only considers static
backdoors as potential attacks, i.e. patch-based patterns, whereas FTA can use
flexible triggers to break FLIP’s threat model. Using the flexible trigger generator, FTA
can produce sample-specific triggers which pose challenges when applying universal
trigger inversion method in FLIP’s step 1.

Broader Impacts. Our study exposes the vulnerability of distributed learning systems
to practical and stealthy backdoor attacks, which calls for defensive studies to
counter generator-based backdoor attacks. In this sense, this work has a positive
impact on the future research of machine learning safety. However, there is a
concern that our work could be exploited by adversaries in physical world, which
potentially brings a negative impact to society.
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DIFFUSION-BASED PURIFICATION
AGAINST ADVERSARIAL ATTACKS

While adversarial training (AT) and purification (AP) offer some defense against
adversarial attacks, deep neural networks (DNNs) remain susceptible to increasingly
sophisticated attack strategies. This paper introduces Multi-Scale Inpainting Defense
(MSID), an AP-based technique that leverages the generative power of Denoised
Diffusion Probabilistic Models (DDPMs) to achieve improved robustness. MSID
identifies perturbed image regions through multi-scale superpixel segmentation and
occlusion analysis, subsequently using DDPMs for inpainting while maintaining
visual consistency. This novel approach allows MSID to effectively defend against a
wide range of attacks, including those that bypass traditional AT and AP Experiments
on CIFAR-10 and ImageNet demonstrate state-of-the-art performance, with MSID
outperforming existing AP methods by up to 5.42% and 10.75% respectively against
AutoAttack. MSID also shows improvements against PGD (2.49%) and unseen attacks
(36.9%), demonstrating its effectiveness as a robust defense against adversarial attacks.

This chapter is based on the paper “MSID: Multi-Scale Diffusion-Based Inpainting Defense Against
Adversarial Attacks" by Popovici, A., Qiao, Y., Liu, D., Smaragdakis, G. and Liang, K., which is under
review.
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5.1. INTRODUCTION

Deep neural networks (DNNs), despite their impressive image classification
capabilities, remain vulnerable to adversarial attacks [1-4]. These attacks introduce
imperceptible image perturbations, leading to misclassifications and significant safety
concerns [5, 6]. Developing robust defenses is therefore crucial. Two primary defense
strategies exist: adversarial training (AT) and adversarial purification (AP). AT [5, 7,
8] enhances robustness by training DNNs on adversarial examples. While effective
against known attacks, AT suffers from overfitting, struggles with unseen attacks and
image corruptions [9-12], and often degrades standard accuracy while increasing
computational complexity [13]. AP offers an alternative, pre-processing images to
remove adversarial perturbations before inference [14-16]. Often implemented using
generative models [17-22], AP provides a plug-and-play defense against unseen
attacks without classifier retraining. However, AP generally shows lower standard
accuracy than AT [23, 24]. Creating effective purification models, especially for
large-scale datasets, remains challenging due to the inherent trade-off between
preserving image semantics and removing perturbations [22].

Recently, diffusion models have emerged as a promising approach for generative
AP [25, 26]. Their superior sample quality, exceeding even GANs in image generation
[27, 28], make them well-suited. The inherent denoising process aligns with
purification, and their stochastic nature offers potential for robust stochastic defenses
[29]. These properties make diffusion models a compelling area for improving DNN
robustness against adversarial attacks.

While significant progress has been made in defending against adversarial attacks,
current methods have limitations. Existing adversarial purification techniques, such
as those explored in [19, 22, 30], are vulnerable to color-based attacks. This
vulnerability originate from the inherent sensitivity of DDPM models to image colors
[19], making them susceptible to even subtle chromatic manipulations introduced by
adversaries.

Moreover, AT methods often degrade standard accuracy and struggle with
defending unseen attacks [10, 11, 31]. These limitations create a gap in robust image
classification: the lack of a defense that simultaneously maintains high standard
accuracy, effectively adversarial perturbations and provides robustness against a
diverse range of attacks, including color-based attacks and unseen attacks. Therefore,
this research develops a new defense that improves resistance to color-based attacks
and aims to outperform current state-of-the-art in robust accuracy

MSID performs targeted adversarial perturbation removal through a four-step
process: (1) Hierarchical Perturbation Localization (HPL): We introduce HPL,
a novel method for identifying potentially perturbed image regions at multiple
scales. HPL leverages superpixel segmentation at various granularities to capture
both coarse and fine-grained image features. This multi-scale approach enables
the identification of perturbed regions at different levels of detail, improving the
accuracy of subsequent steps. (2) Occlusion sensitivity map generation: Occlusion
sensitivity maps [32] are generated for each superpixel scale. These maps highlight
regions where occlusions (simulated by blurring out superpixels) substantially affect
the classifiers output. This identifies areas likely containing adversarial perturbations,
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as perturbations in these sensitive regions would cause the greatest misclassification
effect. The multi-scale approach allows capturing sensitivity information across
different levels of image structure, enhancing the robustness and accuracy of
perturbation localization. (3) Targeted inpainting: Regions identified as highly
sensitive by the occlusion maps are then inpainted using a pre-trained denoising
diffusion probabilistic model (DDPM). Unlike classic diffusion models that operate
globally on the entire image, inpainting allows for localized restoration, preserving
image content while specifically targeting and removing the identified adversarial
perturbations. This targeted approach offers greater control and accuracy compared
to global denoising, minimizing the risk of altering semantically important image
features. (4) Removing artifacts: The grid used for inpainting introduces artifacts.
Variance Preservation Sampling (VPS) [33] refines the processed image within the
diffusion model’s latent space, resulting in a natural, artifact-free final image.

Extensive experiments across diverse datasets (CIFAR-10 and ImageNet) and
model architectures (ResNet, WideResNet and Vision Transformer (ViT)) demonstrate
state-of-the-art performance, surpassing existing AP and AT methods. Our method
significantly improves robust accuracy compared to existing AP techniques. Against
AutoAttack [34] l», we achieved gains up to 5.42% on CIFAR-10 and 10.75% on
ImageNet. Similar improvements were seen against PGD I, (up to 2.49% on
CIFAR-10 and 10.75% on ImageNet). Furthermore, against the color-based adversarial
attack cADV [35], we achieved 64.84% robust accuracy on Imagenet and 75.19%
on CIFAR-10, demonstrating its effectiveness against this attack type. Finally, our
approach shows a considerably larger advantage (up to 36.9% improvement) over
state-of-the-art adversarial training methods against unseen attacks. This work
presents the first application of DDPM inpainting for adversarial purification, offering
a novel and effective defense strategy combining Explainable Al (XAI) and AP.

The main contributions of this work are as follows:

* This paper, to the best of our knowledge, is the first to apply DDPM inpainting
for adversarial purification, enabling targeted removal of perturbations while
preserving benign image features, unlike classical diffusion models which
operate globally.

* We propose a novel defense technique which combines occlusion sensitivity
maps to identify vulnerable regions in adversarial images. This allows
precise identification and removal of adversarial perturbations, improving the
robsutness compared to methods that lack targeted restoration.

* MSID shows promising adversarial robustness against color-based attacks, a
challenging type of attacks needing more research. On CIFAR-10, MSID
achieves 75.19% robust accuracy, and on ImageNet, 64.84%.

» Extensive experiments show our method substantially outperforms previous AP
methods. MSID achieves gains up to 5.42% (CIFAR-10) and 10.75% (ImageNet)
against AutoAttack, with further improvements of 2.49% against PGD and
36.9% against unseen attacks.
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5.2. RELATED WORKS

Early work in AP relied heavily on generative adversarial networks (GANSs).
Samangouei et al. introduced Defense-GAN [36], a system that uses a GAN trained
on clean images to identify and remove the adversarial perturbations added to an
image before it’s classified. A key advantage of Defense-GAN is its model-agnostic
nature; it can be used with various DNN architectures and is effective against a
wide range of attack methods. Building on this, Song et al. proposed PixelDefend
[37], another generative model-based approach. Their insight was that adversarial
examples often lie in low-probability regions of the data distribution. PixelDefend
cleverly moves these perturbed images towards higher-probability regions, effectively
purifying them before classification. This method, too, is model-agnostic and works
well with pre-trained classifiers.

Energy-based models (EBMs) have also proven to be a valuable tool for
adversarial purification. Du & Mordatch [38] demonstrated the broad applicability of
EBMs across diverse tasks, achieving state-of-the-art results in adversarially robust
classification. Grathwohl et al. [39] significantly advanced the use of EBMs by
reinterpreting standard discriminative classifiers as EBMs, leading to improvements
in both robustness and out-of-distribution detection. Subsequently, Hill et al. [20]
leveraged Markov Chain Monte Carlo (MCMC) sampling within an EBM framework
to purify adversarial examples, achieving considerable results even against the most
advanced attacks. Srinivasan et al. [14] presented MALADE, which uses the
Metropolis-adjusted Langevin algorithm (MALA) to effectively project adversarial
samples onto the correct class manifold, also achieving state-of-the-art performance.
Yoon et al. [21] further enhanced the efficiency of EBM-based purification by
incorporating Denoising Score Matching, dramatically reducing the number of
computationally expensive MCMC steps needed.

More recently, diffusion models have emerged as a powerful new tool for AP.
Nie et al. proposed DiffPure [19], which employs a forward and reverse diffusion
process to effectively remove adversarial noise. Wang et al. [22] integrated
guidance into the denoising process of a Denoised Diffusion Probabilistic Model
(DDPM) for purifying images. Unlike existing methods, AGDM [40] introduces
a novel adversarial guidance that incorporates semantic information without
directly involving adversarial perturbations. This guidance is implemented via an
auxiliary neural network trained adversarially, focusing on distances in the latent
representation space rather than at the pixel level. Chen et al. [41] further advanced
this area with the Robust Diffusion Classifier (RDC), a generative classifier built
upon pre-trained diffusion models. RDC maximizes data likelihood and employs
Bayes’ theorem for robust classification without relying on specific adversarial attack
training, also incorporating a new multi-head diffusion backbone and efficient
sampling strategies to reduce computational cost. Finally, Lin et al. [30] proposed
AToP (Adversarial Training on Purification), a novel hybrid approach that combines
adversarial training and purification to address the individual limitations of each
method, aiming for improved robustness and better generalization to unseen attacks.
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5.3. PRELIMINARY

5.3.1. ADVERSARIAL ATTACKS

We focus on adversarial attacks against deep neural networks, denoted by fy(x),
where 6 represents the model’s parameters and x € & is the input data, belonging to
the input space Z cR?. The output of the DNN is a prediction vector fy(x) € RX,
where K is the number of classes. We assume a classification setting where the
predicted class is given by argmax fp (x)k.

)

Figure 5.1: Illustration of adversarial example generation. The original image x is
perturbed by & to create the adversarial example x’, which is misclassified
by the DNN fp.

Adversarial Examples. An adversarial example is a carefully crafted perturbation,
8, of a benign input x, resulting in x'=x+6. This perturbation is designed
to be imperceptible to humans, thus constrained in magnitude, I6|p <e¢, while
simultaneously causing the DNN, fy, to misclassify the input (as visualized in
Figure 5.1). Formally, an adversarial example x’ satisfies:

fo(x) # fo(x) (Misclassification),

61, <e (Perceptual similarity),
where ||, denotes the ¢,-norm, commonly ¢, (maximum perturbation per feature),
¢y (Euclidean distance), or ¢; (Manhattan distance), and € represents the maximum
permissible perturbation magnitude (the perturbation budget). Effectively, generating

an adversarial example involves maximizing the loss function of the classifier, fy (or
similarly, minimizing the classifier’s confidence in the true label):

6=arg|%1”ax$(fg(x+6),y), (5.1)
<€

where £ is the loss function and y is the true label of x.

5.3.2. ADVERSARIAL TRAINING AND ADVERSARIAL PURIFICATION
Adversarial attacks exploit the sensitivity of the models by crafting carefully perturbed
inputs, x' = x+6, that induce misclassification [5]. These perturbations, &, are
typically constrained in magnitude ||§]| <€ to maintain perceptual similarity to the
original input x, yet effectively maximize the loss function of the classifier fy:

6:argﬁs1”ax££(f9(x+6),y), (5.2)
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where € represents the maximum permissible perturbation scale, often measured
using norms like I, or I,. Several defense mechanisms [8, 42] have been proposed
to counter these attacks, with AT and AP being prominent approaches.

Adversarial training (AT) enhances the robustness of fy by explicitly incorporating
adversarial examples into the training process. This involves solving a min-max
optimization problem:

minEp, - (xy | Max ZL(fo(x+6),y)|. (5.3)
0 I6l<e

Essentially, AT aims to minimize the classifier’s loss on the worst-case adversarial
perturbations within the e-ball around each training sample. While effective, this
approach incurs a significant computational overhead due to the inner maximization
step and can sometimes lead to a trade-off between robustness and standard data
accuracy.

Adversarial purification (AP) offers an alternative defense strategy by introducing
a separate purification model g,. This model acts as a pre-processing step,
transforming the potentially adversarial input x" before it is fed to the classifier fj.
The goal is to mitigate the impact of the adversarial perturbation 4, ideally resulting
in the same classification output as the clean input:

fo(gy(x+8)) = fo(x). (5.4)

Notably, AP does not necessitate perfect reconstruction of the original input
(gy(x+06) #x). Instead, it focuses on removing the adversarial noise sufficient for
correct classification. By focusing on removing classification-disrupting noise, rather
than perfectly reconstructing the input, AP becomes a versatile tool applicable to a
wide range of classifiers. This characteristic allows AP to function as a plug-and-play
module, compatible with various classifiers and often implemented using pre-trained
generative models for gg. The effectiveness of AP, however, relies heavily on
the purifier’s ability to distinguish and neutralize adversarial perturbations without
excessively affecting the underlying semantic content of the input.

5.3.3. DIFFUSION MODELS

Diffusion models [25, 26] have emerged as a powerful class of generative models,
demonstrating remarkable capabilities in synthesizing high-quality images through
an iterative denoising process applied to samples from a known distribution. Their
underlying mechanism involves two key processes: a forward diffusion process and
a reverse denoising process.

Forward diffusion process. It, also known as the diffusion process, gradually adds
Gaussian noise to the data distribution p(x¢) over T time steps. This process can be
defined by a Markov chain with transition probabilities p(x;|x;—;) given by

pXelxp1) = N Xy \/ 1 _ﬁtxt—l;ﬁtl); (5.5)

where f; € (0,1) are variance schedules controlling the amount of noise added at
each time step ¢, and I is the identity matrix. Commonly used schedules include
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linear, cosine, and sigmoid schedules. The schedule can be learned as well. This
formulation allows us to sample x; at any time step ¢ directly from xy using:

pXIX0) = N g3 v/ @ Xo, (1 - @), (5.6)

where a; = H§=106s and a;=1-;. As f increases, X; becomes increasingly noisy
and converges to a standard Gaussian distribution when T — oo.

Backward diffusion process. The backward diffusion process, also known as the
reverse process, aims to learn the reverse of the forward diffusion. It starts from
a sample x7 ~ A(0,I) and iteratively removes noise to generate a sample from the
data distribution p(xg). The reverse process is also a Markov chain defined by

PX-11Xg) = A (X1 oy (X, 1), 2y (Xg, 1)), (56.7)

where py(x;,f) and Z,(x;, ) are the learned mean and covariance, respectively,
parameterized by a neural network with parameters y. This neural network is
typically a U-Net architecture [43, 44]. In practice, the covariance is often fixed to a
time-dependent constant derived from the forward process variance schedule, and
only the mean is learned. The goal of training a diffusion model is to learn the
parameters y such that the reverse process faithfully approximates the true posterior
p(X;-11x;). This is typically done by minimizing a variational bound on the negative
log-likelihood.

The inherent denoising capability of diffusion models presents a compelling
opportunity for their application in adversarial purification. By interpreting
adversarial perturbations as a form of noise added to the clean input, diffusion
models can be leveraged to denoise and purify adversarial examples.

5.4. METHOD

5.4.1. OVERVIEW OF PROPOSED FRAMEWORK

Our defense method comprises two main stages (see Figure 5.2): (1) generating
occlusion sensitivity maps and (2) restoring image via an inpainting diffusion
model. The first stage leverages the observation that the same image region, when
considered at different scales, can have distinct impacts on the class prediction
score. (see Figure 5.2 (b)). Analyzing the occlusion sensitivity map of an adversarial
image reveals the region most responsible for misclassification. The second stage
then inpaints these sensitive, presumably perturbed, regions using a DDPM-based
inpainting model. This simultaneously removes the adversarial perturbations while
preserving image similarity.

5.4.2. GENERATE OCCLUSION SENSITIVITY MAPS

Explainable Al (XAI) research primarily aims to reveal the underlying reasoning in
machine learning models [45]. Numerous methods have been introduced, including
attribution techniques [46], concept-based approaches [47, 48], and global analysis
tools [49, 50]. Our approach applied a model-agnostic technique that focuses on
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Figure 5.2: The proposed Multi-Scale Superpixel Inpainting for Defense (MSID)
method removes targeted adversarial perturbations from images in four
steps. Step (a): the adversarial example x' undergoes multi-scale
superpixel segmentation, capturing both coarse and fine details to
precisely identify potentially perturbed regions. Step (b): occlusion
sensitivity maps are generated at each superpixel scale. This involves
blurring individual superpixels and measuring the resulting impact on
classifier output, effectively highlighting potentially perturbed areas. Step
(c): a mask M is created to identify highly sensitive regions based on
these sensitivity maps, which are then restored using a pre-trained DDPM
(Step (d)). This targeted inpainting removes the perturbations while
preserving uncorrupted image features. Step (e): Variance Preservation
Sampling (VPS) is applied to the restored image to mitigate grid-based
inpainting artifacts, ensuring an artifact-free final output y.

occluding specific features and observing the resulting changes in model predictions
[32]. Two key factors determine the accuracy of an occlusion sensitivity map: pixel
grouping and the choice of imputer for occluded features. These choices are critical
because they directly affect the map’s ability to identify true sensitive regions and
therefore, the effectiveness of any defense built upon it. Incorrect choices can lead
to a weak defense. To ensure accurate identification of sensitive regions, we use
superpixels for grouping, which allows us to capture meaningful image features.
Furthermore, we use Gaussian blurring technique to impute occluded superpixels.
Below we detail the rationale behind these choices and explain why they are critical
for building a robust defense.

Pixel Grouping: For images x € RY*"*" with width w, height h, and n color
channels, individual pixels often represent redundant information due to their
proximity to one another [51]. Therefore, it is more effective to to treat each cluster
of pixels (superpixels) as a singular feature. Superpixels are created by segmenting
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the entire image into separate patches N ={1,2,..., lsyperpixelst, which reduces the
computational load, because 7syperpixers <w-h-n. For our method, we employed
the SLIC algorithm [52], as it typically generates superpixels that adhere to local
gradients in the image, grouping contextually related pixels and thus enhancing the
interpretability of sensitivity maps.

Feature Occlusion: In creating the occluded prediction f.(xs) (where xs denotes
the part of the image X restricted to the feature subset S, identified using SLIC),
it is generally infeasible to exclude features S (the complement of S) entirely.
Instead, their influence on the models predictions must be minimized. The
only model-agnostic approach is to generate occluded samples (xs, X3), where Xg
represents artificially generated values provided by an imputer g. The occluded
model prediction is then expressed as:

felxs)= Y. felxs, X3). (5.8)
X5~q

Here, we used the marginal distribution g = p(Xg) to decouple S and S. Our
chosen imputer, a Gaussian blurring technique, replaces occluded regions with a
blurred effect, preserving the broader structure of the image while eliminating finer
details. Given a binary mask M, the blurred image X’ is defined as:

X' =Blur(Xg, M, 0). (5.9)

The Gaussian blur, controlled by its standard deviation o, is chosen as our imputer
because blurring hides features, preserving context, unlike erasure which introduces
discontinuities in the image. This helps minimize out-of-distribution (OOD) artifacts
by maintaining contextual similarity in occluded areas [53]. Furthermore, blurring
can bring adversarial examples closer to their groundtruth labels, potentially
alleviating adversarial properties [54].

Multi-Scale Superpixel Segmentation: Traditional occlusion sensitivity is calculated
by occluding patches over the image and observing how much the classifiers
output changes [51]. However, this does not align with the contextual image
features. In order to find the region that contributes the most to the classification
and presumably contains the adversarial noise that triggers the misclassification,
our method uses superpixels at three various scales (fine, medium and coarse).
Occluding at multiple scales reveals how both fine details and broader image
structures contribute to the classification. For instance, fine-scale occlusion might
highlight subtle texture differences essential for differentiating dog breeds, while
coarse-scale occlusion might show the importance of overall dog shape.

Map Fusion: We combine sensitivity maps from multiple scales using a weighted
average, prioritizing coarser maps to highlight major regions while incorporating
finer details. Coarser maps, with their broader view, provide the overall structure,
while finer maps add the necessary precision. The fused sensitivity map is generated
as follows: First, distinct regions are identified within the coarsest-scale sensitivity
map. Then, for each identified region, a weighted average of the corresponding areas
in the finer-scale maps is calculated (see Equation (5.10)). The weights w,, where
nel,2,3, correspond to the relative importance of scales 1, 2, and 3, respectively.
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Figure 5.3: Visualization of the multi-scale sensitivity map fusion process. The arrows
indicate how regions in finer-scale maps correspond to coarser maps.

The terms F,, denote the sets of elements associated with the n-th fine scale, while
|Fy| indicates the number of elements in these sets. Within the summations, S;
represents the score corresponding to each superpixel j in the respective sets. Finally,
S) is the score for coarse scale. This iterative masking and averaging process yields
a smoothed sensitivity map, highlighting the most important areas with increased
accuracy (see Equation (5.10)). Figure 5.3 illustrates this fusion process, showing how
information from different scales is combined.

1
@ Z Sj)+LU2‘

feFs

Scombined = W3

1
@f - S])+ wi - S (5.10)
€L

Our multi-scale approach offers a significant advantage by integrating hierarchical
spatial information, providing a deeper understanding of regional significance at
different levels. This results in a refined heatmap that accurately reflects important
image areas without reducing detail, thus offering richer insights into the classifier’s
decision-making process.

Clustering: To effectively identify and target the most important image regions for
classification, we employ k-means clustering [55] on the superpixel sensitivity scores.
This approach allows us to move beyond simply selecting the top-k most sensitive
superpixels and instead identify clusters that collectively contribute significantly to
the model’s decision. By clustering based on sensitivity, we capture the inherent
grouping of important image areas, potentially encompassing regions that might be
missed by a purely rank-based selection. Finally, we obtain the mask M by clustering
the sensitivity regions and selecting the top k most sensitive. This mask is then used
for the inpainting process.
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5.4.3. IMAGE RESTORATION VIA DDPM-BASED INPAINTING

Once the most sensitive regions of the image are identified and masked, MSID
uses the recently proposed DiffPIR framework [56] to perform inpainting. DiffPIR

leverages the power of DDPMs within a plug-and-play image restoration framework.

It addresses the image restoration problem formulated as:

1
202

x:argmxin ||y—J€(x)||2+/1,0)’(x), (5.11)
where z represents the degraded image, #°(-) is the degradation operator (in our
case masking the most important region), 0% is the noise variance, and 2(-) is
the prior probability distribution with regularization parameter A. DiffPIR tackles
this optimization problem Equation (5.11) by decoupling the data term and the
prior term. This decoupling is achieved using the Half-Quadratic Splitting (HQS)
algorithm [57], which iteratively solves two subproblems through the introduction of
an auxiliary variable z as follows:

2k =argmzin ||z—xk||2+32‘(z), (5.12)

1
2(A 1 w)?
X1 =argmin||y = A0 + po llx - 2%, (5.13)

Prior Subproblem: This subproblem (see Equation (5.12)) involves enforcing the

prior distribution of the image, which is modeled by a denoising diffusion model.

The prior term is solved using a Gaussian denoising operator, where the goal is to
recover the clean image from the noisy image.
Data Subproblem: This subproblem (see Equation (5.13)) enforces consistency with
the observed data y given the degradation operator #(-). For inpainting, #(:)
represents a mask that hides the perturbation region, and the data subproblem
aims to find an image that matches the unmasked pixels while respecting the prior
imposed by the DDPM.

To establish a connection between Equation (5.12) and the diffusion process,
consider the objective of recovering a noise-free image z; from a noisy image x;

with a noise level 6, defined as \/% =0;. Given the noise schedule {f;} and

the hyperparameter A, which acts as a guidance scaling parameter, much like in
classifier-free diffusion models, the value of &, is known. Equation (5.12) may be
interpreted as a proximal operator. Recognizing that the gradient of the negative
log-likelihood of the image prior 22(x) is equivalent to the negative score function
—sp(x), we can reformulate Equation (5.12) as:

1-a;

2 = X+ —— Sg(xg). (5.14)
ag

This implies that z; represents the estimated clean image x/ obtained using the
"Variance Exploding" Stochastic Differential Equation (SDE) formulation of diffusion

models, where sp(xi) denotes the score function parameterizing the diffusion mode.

For clarity, Equation (5.12) and Equation (5.13) can be expressed as a three-step
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process:
o _ o1 2
Xy =argmin — |lz— x¢[|” + P(2), (5.15)
z 202
s :argmxinlly—if(x)llz+pt||x—x(()n I, (5.16)
xeo1 < %, (5.17)

2
where ptz/l(g—’t‘) . Equation (5.16) represents the denoising step leveraging the

diffusion prior, aiming to find the most probable noise-free image x(()t) given the
noisy input x;. Subsequently, Equation (5.15) functions as the data term, refining the
denoised image x((f) by incorporating the observed data y and the forward operator
H(-). Finally, Equation (5.17) updates the image estimate for the next iteration of the
algorithm.

DiffPIR [56] observes that the noise term may not provide sufficient perturbation.
Therefore, it introduces a hyperparameter { to control noise injection. This
modification leads to the explicit formulation presented as follows:

Va iz +V1-a, (V1-06+/Cep). (5.18)

¢ governs the variance of the noise injected at each step. In particular, the
sampling strategy becomes deterministic when { is set to 0. Algorithm 6 provides a
comprehensive outline of the DiffPIR algorithm.

Algorithm 6: DiffPIR

1 Require: s, T, y, 0y, {(ﬂ}tT:p (A
2 Ensure: The restored image x

2
3 Initialize xr ~ . (0, 1), pre-calculate p, = A %%
t
afort=T to1l do
5 x(()f) =, /dLl(x, +(1—ag)sg(xg, 1)) // Predict Zp with score model as denoiser

6 fc(()” =argmin, ||y — Hx)[? +p.llx - xé” I? // Solving data proximal
subproblem
7 é= 1—;&[(’“ - \/dtfc((f)) /1 Calculate effective é(x, y)

8 € ~N(0,I)
9 Xi_1= \/dt_lfcé[) +v1—-a;_1(v/1-(€+ \/fet) /1 Reverse diffusion sampling

10 end
11 return xop

When it comes to inpainting, DiffPIR demonstrates significant advantages over
other diffusion-based methods. Its ability to handle arbitrary degradation operators,
as opposed to DDRM’s [58] linear operators, makes it particularly well-suited for
inpainting tasks where the missing regions can be represented by complex masks.
Furthermore, DiffPIR is faster compared to Diffusion Posterior Sampling (DPS) [59],
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especially when dealing with large or complex missing areas. The enhanced speed
does not come at the cost of quality, DiffPIR consistently produces high-fidelity
inpainted images, even with fewer sampling steps, outperforming the reconstruction
accuracy of DPS in such scenarios.

Contextual cues: Our defense strategy is built on the simple observation (see
Figure 5.2 (b)) that different parts of an image hold varying levels of importance
when a model makes a decision. Some areas are more "sensitive" than others,
meaning they have a greater impact on the model’s decision. By identifying and
masking these sensitive regions, we aim to neutralize adversarial perturbations while
preserving the overall structure of the image. However, inpainting models rely on
the surrounding context to fill in missing information, and removing entire regions

can strip them of the context they need to accurately reconstruct the original image.

To address this, we use a strategy of selectively unmasking certain pixels within the
masked region. Providing the inpainting model with contextual information allows
it to better understand the underlying structure and content of the masked area,
leading to more accurate and realistic inpainting results. To aid this process, we use
a square grid with some randomness.

Figure 5.4: Examples of jittered grids for providing contextual cues during inpainting.

Each subfigure shows a different realization of the jittered grid applied
to the same masked region. The variation in grid point placement
helps avoid deterministic patterns and provides more diverse contextual
information.

Each point on this grid represents the top-left corner of a square, and we introduce
a slight "jitter" to each point’s position. This creates a more organic arrangement,
subtly shifting each point from its original grid location. Figure 5.4 shows several
examples of this jittered grid approach, illustrating the variation in unmasked pixel
placement. This approach helps to avoid deterministic patterns and ensures a more
realistic distribution of sampling points, ultimately contributing to the effectiveness
of our inpainting method.

Removing artifacts: Our AP defense leverages a masking and inpainting approach.

To ensure the inpainting model retains sufficient context for accurate reconstruction,
we unmask a set of pixels within the masked sensitive regions using a jittered
square grid. While this provides contextual cues, it introduces a new challenge:
the unmasked pixels themselves become artifacts within the inpainted image. To
address this, we introduce a final refinement step using Variance Preservation
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Sampling (VPS) technique [33]. Figure 5.5 illustrates the effect of VPS on removing
the grid artifacts from the inpainted image. VPS operates by iteratively refining the
image representation within the diffusion models latent space, guiding it towards a
high probability region that corresponds to clean, artifact-free images. This process
effectively eliminates the unwanted unmasked pixels while preserving the integrity
of the underlying image structure and the quality achieved in the initial inpainting
step.

The core idea is to guide a degraded image towards a "clean" state by ensuring
it follows the learned distribution of the pre-trained model, while remaining similar
to the original degraded input. This is achieved through a two-stage process: ODE
inversion for faithfulness and VPS for restoration.

First, given a degraded image y, we approximate invertibility of the diffusion
model's ODE sampling process. Specifically, Denoising Diffusion Implicit Models
(DDIM) inversion is used to find a corresponding latent representation y;:

yr =DDIM ™} (y) (5.19)

The parameter 7 controls the strength of this inversion. While y; effectively encodes
the degraded image, it typically resides in a low-probability region of the diffusion
model’s latent space, making direct generation of a high-quality restoration unlikely.
Subsequently, VPS refines the latent y; by iteratively guiding it towards a nearby
high-probability region, representing the distribution of clean images learnt by the
diffusion model. This iterative refinement consists of two steps at each timestep
t €[r,0): First, the latent is updated M times using a combination of the gradient
of the log-probability density (computed using the pre-trained diffusion model) as
follow:

vyl =y Vlogp, (v ") +nge™ (5.20)

such that 77; and g are bound by the constraint:

m=yd-a), nNg=vyC-y)v1-a.. (5.21)

where y is a scalar within the range 0 <y <1 that defines the step size, while a;
represents the noise schedule from Equation (5.5). After the variance preservation
step, a DDIM step is applied to further denoise and refine the latent:

;-1 = DDIMStep(y™)

This two-step process progressively guides the latent towards the high-probability
region associated with clean images. The gradient term Vlogp,(y™!) is efficiently
computed using the pre-trained diffusion model, specifically by relating it to the
predicted noise ey:
_eg (v L)

vi-a;
By iteratively applying VPS, we remove the artifacts of the degraded image by
leveraging the priors captured by the pre-trained diffusion model.

Viogp: (1" ") =
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(a) (b)

Figure 5.5: Comparison of inpainted image artifacts and purified results ssing
DreamClean. (a) Image after inpainting, with artifacts; (b) Purified image
after DreamClean processing.

Since our primary goal is to eliminate the artifacts introduced by the masking, we
opted for a fast inverse approach in our implementation. Instead of using the DDIM
inverse, we utilized the method described in Equation (5.5).

Bridging the gap between theoretical formulation and practical implementation,
Algorithm 7 presents the details of the removing artifacts algorithm, showing the
mathematical principles described above.

Algorithm 7: Removing artifacts algorithm

1 Require: y,7,M,n;,ng, A pre-trained diffusion model €
2 Ensure: The purified image yy
3 yo — y // DDIM inversion, producing the latent y;
4 yr=Varyo+v1-aqe
5 for t=7to1do
6 yg — y: // Variance Preservation Sampling, no change to ¢
7 | forl=0toL-1do
t
8 ‘ Vi ~yf—meaiy¢_’—$ +1g€
9 | end
10 | y;—y! // DDIM Step, from ¢ to t—1

_ G ot _
0|y o V@ (LR T ey (1)

12 end
13 return ¥,

In summary, we first carefully mask and inpaint the sensitive regions, then we use
DreamClean with its VPS technique to polish the image and remove any residual
artifacts introduced by the unmasking strategy.
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5.5. EXPERIMENTS

We test effectiveness of MSID under several attack methods, including AutoAttack
[34], Projected Gradient Descent (PGD) [8], spatially transformed attacks (StAdv) [60],
cADV [35] and SPSA [61]. We measure our defense performance using standard
and robust accuracy metrics. Section 5.5.1 describes our experimental setup and
Section 5.5.2 compares MSID to existing state-of-the-art AT and AP methods.

5.5.1. EXPERIMENTAL SETUP

Datasets and network architectures: Our evaluation involves two datasets: CIFAR-10
(with ResNet and WideResNet architectures) and ImageNet (with ResNet and ViT
[62, 63]). We benchmark MSID against state-of-the-art defenses from RobustBench
[64] and compare with other AP methods using their published settings. For
the purification process, we utilize pre-trained diffusion models based on a U-Net
architecture [65] from Ho et al. [25] for CIFAR-10, while employing models from
Dhariwal & Nichol [28] for ImageNet.
Adversarial attacks: The robustness of MSID is evaluated against a diverse set of
adversarial attacks. We implement AutoAttack [34], a benchmark encompassing both
white-box and black-box attacks (l, and I, threat models). To assess resilience
against non-/,-norm attacks, we include spatially transformed adversarial examples
(StAdv) [60]. Furthermore, we use the PGD to conduct additional experiments.
MSID, which relies on multiple passes through neural networks, might encounter
challenges with obfuscated gradients [66]. To address this, we test our defense
method against strong adaptive attacks, including the BPDA+EOT attack [66]. We
evaluate the effectiveness of this attack against our defense on the CIFAR-10 dataset.
Finally, we generate adversarial examples using the score-based black-box attack,
SPSA [61] and a color-based adversarial attack cADV [35], to ensure a comprehensive
evaluation.
Evaluation metrics: We assess the effectiveness of the defense mechanisms using two
key metrics: standard accuracy (on clean data) and robust accuracy (on adversarially
perturbed data). Given the considerable computational cost of evaluating models
against a wide range of attacks, we adopted the approach of Nie et al. [19], using a
random subset of 512 test images for our robust accuracy evaluation.
Implementation details: All experiments in this paper are conducted using the
hyperparameters detailed below and implemented in PyTorch [67] on an NVIDIA
V100 GPU. For multi-scale superpixel segmentation, we use three scales: 5, 10,
and 15 superpixels for CIFAR-10 and 100, 200, and 300 superpixels for ImageNet.
For each scale, we assign weights as follows: w; =0.2, w; =0.3, and ws = 0.5.
DiffPIR relies on four key hyperparameters: T (timesteps), u (resampling iterations),
A (conditioning guidance strength), and { (noise level). DreamClean introduces
three additional hyperparameters: 7 (inverse strength), and y (step size). Through
empirical optimization, we determine the following optimal values: T =20, u =10,
A=10, {=0.5, and y=0.05. The inverse strength parameter, 7, is set to 50 for
CIFAR-10 and 100 for ImageNet. In the SLIC algorithm, we set the compactness
parameter to 10, while all other parameters are left at their default values as specified
in the scikit-image library [68]. Selecting the top-3 clusters based on average
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sensitivity ensures that coherent image regions, rather than isolated superpixels, are
masked.

Table 5.1: Standard and robust accuracy against AutoAttack on CIFAR-10 with
WideResNet classifier models.

(a) AutoAttack Iy (€ =8/255) (b) AutoAttack I (e =0.5)
e eGSR NSCgy B Sde
Zhang et al. [69] v 85.36 59.96 Augustin et al. [76] v 92.23 77.93
AT Wu et al. [70] v 88.25 60.04 ° AT Rebuffi et al. [74] X 91.79 78.32
E, Gowal et al. [71] v 89.48 62.70 g? Wang et al. [75] x 95.16 83.68
?: Cui et al. [72] x 92.16 67.73 § Yoon et al. [21] x 85.66 83.51
% Yoon et al. [21] x 85.66 68.42 é Lin et al. [30] x 90.62 85.77
& Lee & Kim [73] x 90.16 79.11 ﬁ AP Nie et al. [19] x 91.4 86.43
§ AP Nie et al. [19] X 89.02 78.21 = Lee & Kim [73] X 90.16 87.29
Lin et al. [30] x 90.62 82.76 Ours x 90.23 88.28
Ours X 90.23 87.89 © ,p  Gowaletal [71] x 90.90 74.03
Rebulffi et al. [74] x 88.54 64.25 I; Rebuffi et al. [74] v 95.74 81.44
AT Gowal et al. [71] v 91.10 65.87 % Nie et al. [19] x 92.68 85.70
E Rebuffi et al. [74] v 92.23 66.58 é AP Lin et al. [30] x 91.99 86.78
"I Wang et al. [75] x 93.25 70.69 ﬁ Lee & Kim [73] X 90.53 87.39
% Yoon et al. [21] x 86.76 60.86 = Ours x 90.23 88.86
& Nie et al. [19] x 90.43 74.83
2 AP Lee&Kim (73] x 90.53 76.35
Lin et al. [30] x 91.99 80.12
Ours X 90.86 85.54

5.5.2. COMPARISON WITH THE STATE-OF-THE-ART

We test our new defense against AutoAttack, using both I, and I, attack methods.
The performance is compared with state-of-the-art adversarial training (AT) defenses
from RobustBench and state-of-the-art adversarial purification (AP) defenses from
the literature. As shown in Tables 5.1a, 5.1b and 5.4b, our defense achieves
state-of-the-art on CIFAR-10 (using WideResNet-28-10 and WideResNet-70-16) and
ImageNet (using ResNet-50, ViT and WideResNet-50-2). Importantly, we achieve this
without using extra data, unlike some competing methods. Specifically, our method
improves robust accuracy by 5.13% and 5.42% compared to the second-best defense
against /., attacks on WideResNet-28-10 and WideResNet-70-16 respectively, and by
8.57%, 11.18% and 10.75% on ResNet-50, WideResNet-50-2 and ViT for ImageNet
(see Table 5.4b). Against I, attacks on CIFAR-10, we observe a 1.47% improvement
over the best AP defense. These consistent improvements across different datasets
and adversarial attacks strongly suggest our adversarial purification technique is a
highly effective defense strategy.
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5.5.3. DEFENSE AGAINST UNSEEN ATTACKS

AT suffers from poor generalization to unseen attacks. Models robust to one
attack may be vulnerable to others. This is proved by evaluating methods against
three attacks (AutoAttack [, Il and StAdv) as shown in Table 5.2 (seen attacks
are underlined). While standard AT methods (e.g.,, Adv Train with l.) perform
poorly against unseen attacks (e.g., I» and StAdv), our method shows robustness
across all three. Table 5.2 illustrates that AT methods are constrained in their
ability to defend against novel attacks, as they are effective only against the specific
adversarial examples they were trained on. Conversely, AP methods demonstrate
strong generalization capabilities, effectively defending against previously unseen
attacks. Compared to these AP defenses, our approach achieves substantially higher
robust accuracy, with improvements of 45.5%, 50.67%, and 36.9% on Iy, [, and
StAdv respectively.

Table 5.2: Standard accuracy and robust accuracy against AutoAttack I, (e =8/255),
I (¢=1) and StAdv non-I, (¢ =0.05) threat models on CIFAR-10 with
ResNet-50 model.

Method Standard -, AA I Stadv
Acc.

Standard Training 94.8 0.0 0.0 0.0
AT with I [10] 86.8 49.0 19.2 4.8
AT with I, [10] 85.0 39.5 47.8 7.8

AT with StAdv [10] 86.2 0.1 0.2 53.9
AT with all [10] 84.0 25.7 30.5 40.0
PAT-self [10] 824 30.2 34.9 46.4
Adv. CRAIG [12] 83.2 40.0 33.9 49.6
DiffPure [19] 88.2 79.57 81.29 68.73
AToP [30] 89.1 83.42 82.44 70.59
Ours 88.7 85.5 84.57 86.5

5.5.4. ROBUST EVALUATION OF DIFFUSION-BASED PURIFICATION

We comprehensively evaluate the robustness of our proposed method using the
PGD attack. Our method demonstrates substantially improved robustness, achieving
86.52% and 89.25% robust accuracy against I, and I, attacks, respectively, on
WideResNet-28-10, and 85.54% and 88.08% on WideResNet-70-16. This represents a
2.49% and 2.16% improvement over the state-of-the-art for WideResNet-28-10, and
1.62% and 2.04% for WideResNet-70-16. Furthermore, on ImageNet (see Table 5.4a),
our method shows a 8.57% improvement in robust accuracy for ResNet-50, 11.18%
for WideResNet-50-2 and 10.75% for ViT.
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Table 5.3: Standard and robust accuracy against PGD on CIFAR-10 with WideResNet
classifier models.

(@) PGD I (e =8/255) (b) PGD Ip (¢=0.5)
Extra  Standard Robust Extra  Standard Robust
Type Method Data Acc. Acc. Type Method Data Acc. Acc.
Pang et al. [77] v 88.62 64.95 Pang et al. [79] v 90.93 83.75
AT Gowal et al. [71] v 88.54 65.93 = AT Rebuffi et al. [74] x 91.79 85.05
2, Gowal et al. [78] v 87.51 66.01 g Augustin et al. [76] v 93.96 86.14
@ D
N -
2 Yoon et al. [21] x 85.66 79.28 E Yoon et al. [21] x 85.66 80.13
7]
% Nie et al. [19] x 91.41 80.78 % Nie et al. [19] x 91.41 83.11
~
3 AP Wang et al. [22 x 93.50 81.05 § AP Wang et al. [22 x 93.50 85.76
S Lee & Kim [73] x 90.16 84.03 Lee & Kim [73] x 90.16 87.09
Ours x 90.23 86.52 Ours x 90.23 89.25
Gowal et al. [71] v 91.10 68.66 Rebuffi et al. [74] x 92.41 86.24
© AT Gowal et al. [78] v 88.75 69.03 © AT Gowal et al. [71] v 94.74 88.18
Ié Rebuffi et al. [74] x 92.22 69.97 Ié Rebuffi et al. [74] X 95.74 89.62
2> Yoon et al. [21] x 86.76 74.58 2> Yoon et al. [21] x 86.76 78.54
7] 7]
% Nie et al. [19] x 92.15 79.15 % Nie et al. [19] x 92.15 82.93
g AP Wang et al. [22 x 93.50 83.33 ; AP Wang et al. [22 x 93.50 84.16
Lee & Kim [73] x 90.53 83.92 Lee & Kim [73] x 90.53 86.04
Ours x 90.86 85.54 Ours x 90.86 88.08

Table 5.4: Comparison of standard accuracy and robust accuracy against PGD I,
(€ =4/255) and AutoAttack /., (e =4/255) on ImageNet.

(a) PGD I (b) AutoAttack oo
Standard Robust Standard Robust
Type Method Ace. Acc. Type Method Acc. Acc.
AT Wong et al. [13] 53.83 28.04 Wong et al. [13] 55.62 26.95
Salman et al.[80] 63.86 39.11 2 AT Salman et al.[80] 64.02 37.89
< .
Nie et al.[19] 71.48 5059 % Bai et al.[51] 67.3 35.51
AP Lee & Kim [73] 70.74 54.73 = Ap Nie et al.[19] 67.79 66.23
Wang et al. [22] 70.17 67.06 Ours 76.39 74.80
Ours 76.39 74.60 g AT Salman et al.[80] 68.46 39.25
0
Z Nie et al.[19] 71.16 64.21
§ AP
Ours 78.60 75.39
AT Bai et al.[81] 66.50 35.50
=
> Nie et al.[19] 73.63 52.33
AP

Ours 75.11 63.08
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Figure 5.6: Standard accuracy and robust accuracy against SPSA I, (€ =8/255) on
CIFAR-10 with WideRestNet-28-10.

Method Standard Acc. Robust Acc.
Yoon et al. [21] 86.14 80.80
Wang et al.[22] 93.50 87.44

Ours 90.23 86.52

5.5.5. DEFENSE AGAINST SCORE-BASED BLACK-BOX ATTACK

Even without direct access to a model or its gradients, attackers can effectively
estimate gradients using a large number of samples. One such method, SPSA [61],
approximates gradients through a finite-difference approach, sampling points near
an input. This gradient estimation allows attackers to craft adversarial perturbations
even when model internals are unavailable. To evaluate the robustness of our
defense against such attacks, we test it against SPSA with an I, constraint (¢ = 8/255)
on CIFAR-10 using WideRestNet-28-10. As Figure 5.6 shows, our method achieves
state-of-the-art performance, reaching 86.52% robust accuracya mere 0.92% below
Wang’s defense [22].

5.5.6. DEFENSE AGAINST COLOR-BASED ADVERSARIAL ATTACK

cADV [35] generates adversarial examples by manipulating the color of an image. It
leverages a pre-trained colorization model, guiding it to produce colorizations that
misclassify the image while maintaining a natural appearance. This differs from
other attacks that typically add small, imperceptible perturbations constrained by
L, norms. cADV, however, introduces large, smooth, and semantically consistent
color changes. Instead of minimizing L, distance, cADV searches the color space
for adversarial examples, exploiting the colorization model’s inherent understanding
of natural color relationships and boundaries. Our proposed method demonstrates
notable performance against the cAdv attack on both, CIFAR-10 and Imagenet
datasets, as shown in Table 5.7.

Figure 5.7: Robust Accuracy of MSID against cAdv attack.

Dataset Model Robust Acc.
Resnet-50 75.19
CIFAR-10 WRN-28-10 74.15
WRN-70-16 72.46

Imagenet  Resnet-50 64.84
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5.5.7. DEFENSE AGAINST STRONG ADAPTIVE ATTACKS

It is important to note that for AP methods that involve optimization loops or
non-differentiable operations, BPDA attack is widely recognized as the most effective
attack [82]. When considering stochastic defense methods, BPDA+EOT attack
has become the standard benchmark for evaluating the latest advancements in
adversarial purification [20, 21, 73]. For our evaluation we used EOT with 20
iterations.

Figure 5.8: Standard and robust accuracy against BPDA+EOT on CIFAR-10 with
WideResNet-28-10.

Method Standard Acc. Robust Acc.
BPDA 50+EOT Hill et al. [20] 84.12 54.9
BPDA 40+4+EOT Yoon et al. [21] 86.14 70.01
BPDA 40+EOT Wang et al. [22] 93.50 79.83
BPDA 40+EOT Ours 90.23 74.21

5.6. ABLATION STUDIES

IMPACT OF CONTEXTUAL CUES ON ROBUSTNESS TO ADVERSARIAL ATTACKS

To assess the impact of incorporating contextual cues in our inpainting method, we
evaluate the robust accuracy of our model against a comprehensive set of adversarial
attacks previously tested on CIFAR-10 and ImageNet datasets, excluding contextual
cues. The results in Table 5.5 demonstrate a significant decrease in robust accuracy
when the contextual cues are removed from the inpainting process.

Table 5.5: Impact of contextual cues on robustness.

Attack Dataset  Attack parameters Model Robust Acc.
CIFAR-10 loo(€e =8/255) WRN-28-10 46.67
AutoAttack Imagenet loo(€ =8/255) Resnet-50 57.96
SPSA CIFAR-10 loo(e =8/255) WRN-28-10 50.39
PGD CIFAR-10 loo(€ =8/255) WRN-28-10 51.95
Imagenet loo(€ = 8/255) Resnet-50 64.84
StAdv CIFAR-10 non-I, (e = 0.05) Resnet-50 52.92

ANALYSING THE CONTRIBUTION OF MULTI-SCALE INFORMATION IN OCCLUSION
SENSITIVITY MAPPING

The number of scales used in our defense directly influences its robust accuracy.
We assess the impact of varying the number of scales (see Figure 5.9) under PGD
I attacks with € =8/255 on CIFAR-10. Robust accuracy increased sharply with each
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additional scale up to three scales. However, beyond three scales, the gains in
robustness plateaued. Therefore, to balance the computational overhead introduced
by incorporating more scales against the resulting improvement in robust accuracy,
we determine that three scales provide the optimal trade-off. While adding scales
offers negligible robustness, they require a greater computational cost, making three
scales the most efficient and effective choice for our defense. This multi-scale
approach achieves greater robustness than a single-scale alternative by capturing
both finer image details and adversarial perturbations.

—e— Performance
88.00
86.00
84.00

82.00

@
o
o
S

Robust accuracy

78.00

76.00

74.00 L L L L L L L L
1 2 3 4 5 6 7 8
Number of scales

Figure 5.9: Impact of single vs multi-scale sensitivity maps on robust accuracy.

EVALUATION OF BINARY MASK GENERATION TECHNIQUES

Identifying the optimal strategy for converting the continuous sensitivity map into
a binary mask can effectively guide the inpainting process toward the removal
of adversarial perturbations. @ Two primary mechanisms in MSID framework,
thresholding and clustering, are evaluated across various hyperparameter setups to
analyze their effectiveness against PGD attacks with ¢ = 8/255.

Thresholding: We first evaluate the thresholding approach by sorting pixel sensitivity
values in decreasing order and selecting the top 5%, 10%, 20%, and 30% as potentially
perturbed regions. The robust accuracy of our defense is then measured for each
of these thresholds. In Figure 5.10, it shows a linear increase in robust accuracy
up to the 20% threshold, followed by a sharp decrease at 30%. This suggests that
while masking a small percentage of the most sensitive pixels effectively removes
adversarial perturbations, masking too large a region negatively impacts performance.
This decrease likely results from the removal of benign image features important for
correct classification. By masking beyond the 20% threshold, the inpainting process
not only removes potential adversarial perturbations, but also eliminates essential
contextual information, reducing the classifier’s ability to make accurate predictions.
Clustering: Subsequently, we investigate a clustering-based approach using k-means
with k values of 3, 5, and 7. Similar to the thresholding approach, we selecte the
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Figure 5.10: Robust accuracy vs. threshold percentage for mask generation using
sensitivity-based thresholding. The plot shows that performance peaks

at 20% and then decreases, suggesting that masking too many pixels
removes important benign features crucial for accurate classification.
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Figure 5.11: Robust accuracy vs. number of top-r clusters selected for inpainting using
k-means clustering. Results are shown for k =3 (left), k =5 (middle), and
k =7 (right). Each plot demonstrates a peak in performance followed by
a slight decrease, indicating the trade-off between removing adversarial
perturbations and preserving benign features.

top-r clusters based on their centroid sensitivity and calculated the robust accuracy

for each configuration. Figure 5.11 presents the performance of these experiments.

Each k value exhibits a peak in robust accuracy followed by a slight decrease as
more clusters are selected for inpainting. This trend mirrors the observations from
the thresholding approach, reinforcing the balance between removing adversarial
perturbations and preserving benign features. Selecting too many clusters for
inpainting results in the loss of crucial image information, ultimately diminishing
the defense’s effectiveness.

When comparing the two approaches, k-means clustering consistently yields better
robust accuracy than thresholding. This superior performance can be attributed to
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the clustering algorithm’s ability to capture the inherent structure of important image
regions. By grouping pixels based on both sensitivity and spatial proximity, clustering
potentially identifies perturbed regions that a rank-based thresholding approach
might miss. Furthermore, clustering ensures that connected regions, rather than
isolated superpixels, are targeted for inpainting, preserving contextual information
and minimizing the disruption of benign features. This characteristic proves essential
in maintaining the integrity of the image and facilitating accurate classification even
after inpainting. Therefore, we conclude that clustering-based mask generation offers
a more robust and effective approach for adversarial purification in MSID compared
to simple thresholding techniques.

EVALUATING IMPUTATION STRATEGIES FOR ROBUST OCCLUSION SENSITIVITY MAPS

We investigate the impact of different imputation strategies on the robustness
of MSID against adversarial attacks, specifically focusing on the generation of
the occlusion sensitivity map. This map identifies important image regions for
classification. We hypothesize that the method used to fill occluded regions during
sensitivity analysis would significantly influence the robustness of the defense. Three
imputation strategies were evaluated: (1) Zero-value imputation; (2) Histogram-based
imputation and (3) Blurring-based imputation. These represent a set of approaches,
from simple constant filling to more context-aware methods. Each imputation
method is tested on images perturbed by a PGD attack with € =8/255.

Our results demonstrate a clear difference in the robustness achieved with
different imputation methods. As shown in Figure 5.12, zero-value imputation
results in a robust accuracy of 79%, while histogram-based imputation achieves 76%.
Blurring-based imputation outperforms the others, achieving a robust accuracy of
86%.

Blurring-based imputation’s superior performance could arise from its ability to
preserve contextual information. The Gaussian blur, unlike the sharp changes
introduced by zero-value or even the potentially harsh constant color fills of
histogram-based imputation, hides features rather than erasing them. This
minimizes the introduction of out-of-distribution (OOD) artifacts by maintaining
contextual similarity in occluded areas. By smoothing out sharp transitions and
preserving the overall image structure, blurring can bring adversarial examples closer
to their ground-truth labels, potentially reversing adversarial properties.

In contrast, zero-value imputation, while simple, creates discontinuities in the
image. These artificial boundaries introduce unnatural features that are not present
in the original data distribution. Furthermore, the complete removal of information
in the occluded region can lead to a loss of crucial contextual cues that might be
necessary for accurate sensitivity maps generation.

Histogram-based imputation, while attempting to maintain some color consistency,
suffers from a similar, although less extreme issue. While the filled regions are
less harsh than zero-value imputation, the constant color blocks can still introduce
unnatural patterns. Additionally, the random sampling from the histogram, while
preserving some color characteristics, fails to capture the spatial structure and texture
of the occluded region, further obstructing accurate sensitivity map generation.
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Therefore, our findings suggest that preserving contextual information during
occlusion is essential for generating a robust sensitivity map and consequently,
for enhancing the robustness of MSID against adversarial attacks. Blurring-based
imputation, by maintaining this contextual similarity and minimizing OOD artifacts,
provides the most effective strategy for occlusion in this context.

9.0

Robust Accuracy (%)
&3
2

Zero-value Imputation Histogram-based Imputation
Imputation Methods

Blurring-based Imputation

Figure 5.12: Robust accuracy of MSID under PGD attack (epsilon=8/255) using
different imputation strategies during occlusion sensitivity map genera-
tion. Blurring-based imputation demonstrates superior robustness (86%)
compared to zero-value (79%) and histogram-based (76%) imputation.

5.7. CONCLUSION

This work proposes MSID, an AP-based defense that leverages DDPM and occlusion
sensitivity maps. = MSID pioneers the use of DDPM inpainting for targeted
perturbation removal, neutralizing adversarial perturbations while preserving benign
features. Multi-scale occlusion analysis guides the inpainting process for precise
attack mitigation.  Extensive experiments demonstrate MSID’s state-of-the-art
performance and superior generalization to unseen attacks, including effectiveness
against color-based attacks beyond traditional L,-norm perturbations.  This
underscores the potential of integratin XAl and generative models for robust defense.

5.8. LIMITATIONS AND FUTURE WORK
5.8.1. LIMITATIONS

This work presents a novel approach to AP using multi-scale inpainting with DDPMs.
Despite the promising results, several limitations should be acknowledged:
Computational cost: MSID relies on multi-scale superpixel segmentation, occlusion
sensitivity map generation, and iterative DDPM inpainting. These processes,
especially the DDPM component, are computationally expensive, potentially limiting
the applicability of MSID in real-time or resource-constrained environments.
Dependence on pre-trained DDPMs: The effectiveness of MSID is tied to the quality
of the pre-trained DDPM. Performance might vary depending on the dataset and
architecture the DDPM was trained on, potentially requiring retraining or fine-tuning




142 5. DIFFUSION-BASED PURIFICATION AGAINST ADVERSARIAL ATTACKS

for optimal performance across different tasks. Furthermore, the availability of
pre-trained DDPMs for specific datasets or domains can be a limitation.

Limited evaluation against adaptive attacks: While the current evaluation includes
a gray-box scenario (as detailed in Section 5.4) and testing against BPDA+EOT,
a more comprehensive assessment against a wider array of adaptive attacks is
important. The specific mechanisms of MSID, particularly the occlusion sensitivity
maps, could potentially be exploited by adaptive adversaries to create stronger
adversarial examples.

Hyperparameter Sensitivity: MSID introduces several hyperparameters related
to superpixel segmentation, occlusion sensitivity analysis, DDPM inpainting, and
artifact removal. The optimal values for these hyperparameters vary across datasets
and attack types, requiring careful tuning. A more thorough investigation of
hyperparameter sensitivity and potential automated tuning methods could further
enhance the defense.

Limited comparison against diverse defense strategies: This work benchmarks MSID
primarily against DM-based adversarial purification and AT. While demonstrating
state-of-the-art performance within this subset of defenses, a broader evaluation
covering other defense strategies, including certified defenses or non-diffusion based
AP is necessary for a more comprehensive assessment of MSID’s capabilities.

5.8.2. FUTURE WORK

This work opens up some interesting research directions. One key area is
boosting the speed of our method. Right now, the DDPM inpainting step is a
computational bottleneck. We need to explore faster ways to sample from DDPMs
or even entirely different inpainting methods that are less computationally intensive
without compromising image quality. Improving how we approximate the occlusion
sensitivity maps could also help speed things up. Furthermore, investigating
alternative Explainable AI (XAI) techniques for guiding the inpainting process could
lead to more efficient and targeted restorations.

We also need to make MSID more robust against adaptive attacks. Our current
testing has not covered the full spectrum of adversarial attacks, particularly strong
adaptive attacks

Setting the right hyperparameters for MSID can be tricky. Automating this process,
perhaps using would make the method much easier to use and more adaptable to
different datasets and tasks.

Finally, we need a more comprehensive comparison of MSID against other defense
strategies. This includes certified defenses and purification methods that don't rely
on diffusion models. A more comprehensive comparison will help us understand
MSID’s strengths and weaknesses compared to other defenses.
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DISCUSSION

DNNs have achieved remarkable progress across a wide range of real-world
applications. Furthermore, model architectures such as CNNs and ViTs, coupled
with diverse training paradigms, have proven highly effective in solving numerous
computer vision tasks.

Recent studies have highlighted the susceptibility of DNNs to various security
threats, including adversarial and backdoor attacks. Adversarial attacks undermine
model robustness by exploiting small and imperceptible perturbations in input
data, thereby causing incorrect outputs. Backdoor attacks, on the other hand,
compromise data integrity by altering a small subset of samples with triggers to
embed malicious behaviors, often referred to as Trojans, within the victim model.
These vulnerabilities pose significant risks to the trustworthiness and reliability of
DNN models, particularly in safety-critical applications, where such attacks can lead
to catastrophic consequences.

In the field of adversarial machine learning, we investigate three pivotal research
challenges related to the trustworthiness and reliability of DNN models in both
centralized and decentralized settings. These challenges include stealthiness and
robustness in data and model aspects.

This chapter first summarizes the contributions of the thesis, showing how our
proposed methods address the security challenges and research questions outlined
in Sections 1.2 and 1.3. We then discuss the limitations of the proposed methods
and potential future works.

6.1. CONTRIBUTION IN BACKDOOR ATTACKS

In this section, we present a summary of our contributions, as outlined in
Chapters 2 to 4, which address three research questions regarding the stealthiness
and robustness of backdoor attacks. First, we focus on the design of robust and
dual-domain stealthy triggers to perform backdoor attacks under the black-box
setting. Then, we analyze the anomalies in feature representations and model
parameters, and propose stealthy backdoor attacks against robust FL aggregation
rules.
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6.1.1. STEALTHINESS AND ROBUSTNESS IN CENTRALIZED BACKDOOR
ATTACKS

The first problem we investigate in Chapter 2 is:

Q1: How can effectiveness, dual-domain stealthiness, and robustness be simultaneously
achieved in backdoor attacks under practical settings?

To answer the question, we first constrain the trigger location in the low-frequency
region to achieve robustness against image preprocessing methods. Then, we
minimize frequency perturbations of the trigger and optimize frequency bands
to maximize attack effectiveness and stealthiness. Since we cannot access the
victim models in the practical settings, we search the optimal trigger via simulated
annealing to effectively optimize two properties of the trigger in discrete spectral
space on the surrogate models.

While addressing this research question, we first observe that even slight trigger
perturbations in the frequency domain can be detected and learned by visual neural
networks. Therefore, using untrusted or harmful datasets from the Internet to train
private models poses a significant backdoor threat. Second, our solution has an
inherent limitation in stealthiness against advanced white-box backdoor defenses.
This is because, in practical scenarios, the attacker cannot access the victim model
and thus cannot ensure stealthiness in the latent space. Finally, since we only insert
the trigger into the dataset without modifying the model parameters, such malicious
data manipulations can be effectively mitigated by our solution of Q3.

6.1.2. STEALTHINESS IN DECENTRALIZED BACKDOOR ATTACKS

The second problem we address in Chapter 3 is the following:

Q2: How can malicious updates be disguised as benign ones at the parameter level
to bypass current detection strategies while still maintaining the effectiveness of the
backdoor attack?

To answer the question, we first introduce a frequency trigger function that
generates imperceptible poisoned samples to achieve stealthiness in the input space.
Next, we propose a task-sensitive neuron searcher to identify backdoor neurons
during backdoor training. We further constrain the impact of those backdoor neurons
and restrain parameter dissimilarity between malicious and benign parameters.
Together, these constraints ensure that malicious updates remain indistinguishable
from benign ones, effectively bypassing existing FL defenses.

While addressing this research question, we prioritize the stealthiness in our
trigger design, as visible triggers introduce distinctive backdoor features that can
be detected and mitigated by trigger inversion techniques. In this solution, we
manipulate only the model parameters and do not fully leverage the local data
with advanced triggers to enhance stealthiness against FL defenses. Although the
defender does not have access to the attacker’s local training data, it is strongly
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recommended to design advanced trigger patterns instead of relying on simple
patch-based triggers. For example, a universal trigger pattern presents a limitation in
these solutions, as each poisoned sample would exhibit a unified backdoor feature
during activation, making the backdoor behavior easier to detect. Additionally,
our solution by penalizing the influence of backdoor neurons and constraining
the distance between model parameters is relatively straightforward and does not
fundamentally address the abnormal parameter effects introduced during backdoor
training. Finally, it is important to note that in decentralized settings, the attacker
has an advantage in terms of knowledge, as they inherently have access to benign
data and models, unlike the threat model in Q1.
Another problem we investigate in Chapter 4 is the following:

Q3: How to eliminate the anomalies introduced during backdoor training while
making the trigger sufficiently stealthy for inference under FL settings?

To answer the question, we utilize a trigger generator to produce stealthy
sample-specific triggers to achieve stealthiness in the input space. To solve the
abnormalities introduced by backdoor training, we minimize the discrepancy in
hidden features between poisoned data and their benign counterparts while training
the generator. This idea naturally reduce the abnormality of creating an extra routing
for backdoor since the latent features make poisoned data “looks like" benign ones
with target label. Additionally, to make our triggers adaptive to the changes in
global model, the generator is continuously trained across FL iterations. Finally, we
formulate the process of finding optimal trigger generator and training malicious
model in a bi-level, non-convex and constrained optimization problem, and achieve
optimum by proposing a simple but practical optimization process.

While addressing this research question, we build upon the challenges discussed
in Q2 to further improve attack stealthiness against FL detections. We first
enhance stealthiness in the input space by constraining the L, norm of the triggers
generated by our trigger generator. Next, we introduce an approach to achieve
stealthiness from a data perspective similar to attacks in centralized settings. As
our sample-specific triggers generate feature representations closely resembling
benign data, they fundamentally eliminate the anomalies typically introduced during
backdoor training. Moreover, since the triggers are sample-specific, it is more difficult
to leverage trigger inversion mechanisms to reverse flexible triggers compared to
universal triggers. Our solution exposes a critical challenge to current FL defenses
and motivates the development of more robust defensive techniques capable of
detecting malicious clients from both data and model aspects.

6.2. CONTRIBUTION IN ADVERSARIAL DEFENSES

In this section, we present a summary of our contributions in Chapter 5, which
address the research question related to the robustness of adversarial purification.
We aim to the development of a targeted strategy for the localization and removal of
adversarial perturbations, as well as for the restoration of images with the capability
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of generative models.

6.2.1. ROBUSTNESS IN ADVERSARIAL PURIFICATION
The final problem we address in Chapter 5 is the following:

Q4: How can adversarial perturbations be effectively mitigated while preserving fine-
grained clean features to maintain high clean accuracy during adversarial purification?

To answer the question, we first utilize multi-scale occlusion sensitivity maps
to identify the target regions to be purified. This enables targeted purification,
focusing on removing adversarial noise only from specific areas while preserving
clean image features to maintain high clean accuracy. Unlike conventional diffusion
model processes that disrupt the entire image, we leverage the DDPM inpainting
technique to restore localized information, which precisely mitigates adversarial
perturbations. To further achieve high clean accuracy, we utilize jittered grid
unmasking for DDPM inpainting to keep critical contextual information required for
accurate reconstruction.

Although our approach is primarily designed to defend against adversarial attacks,
it can also be applied to purify backdoor triggers, particularly in black-box attacks
that only manipulate input images, such as the method proposed in Q1. This
effectiveness stems from the ability of our method to identify the most sensitive
regions (trigger locations) for model prediction and to disrupt those pixels, thereby
neutralizing the backdoor triggers. However, our solution may face challenges when
addressing sparse adversarial or backdoor attacks, where adversarial perturbations or
triggers compromise only a few scattered pixels. This limitation arises because our
XAI tools are capable of identifying target regions rather than isolated single pixels.
In the future, we plan to enhance our approach by replacing the current diffusion
models with more advanced architectures — such as diffusion transformers for image
inpainting — that leverage transformers as their backbone.

6.3. LIMITATIONS AND FUTURE WORKS
STEALTHINESS AND ROBUSTNESS IN CENTRALIZED BACKDOOR ATTACKS

Although we have made a significant advancement in dual-domain stealthy and
robust backdoor attacks in Chapter 2, certain limitations remain in our approach
including task diversity, optimization efficiency and attack effectiveness against
state-of-the-art backdoor defense mechanisms.

Tasks. In this work, we concentrate on various computer vision tasks, which have
been the focus of numerous existing works [1-5]. Extending our attack to other
input domains (e.g., text) is challenging because applying DCT-based perturbations
(triggers) to text embeddings can result in semantically incoherent output. However,
our method can be easily integrated into backdoor attack frameworks against
multimodal models, such as vision-language models [6, 7], which also rely on
embedding triggers in the image domain. In the future, we intend to expand the
scope of this work to other vision tasks, e.g., objection detection and semantic
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segmentation. Our method (OD), prior works [8-10] use trigger injection function
similar to Equation (1.8) (in Chapter 1) in classification tasks, enabling the insertion
of frequency triggers into images. However, most mainstream attacks in OD
rely on visible patch-based triggers to ensure successful capture by cameras in
real-world applications, such as autonomous driving. Due to this dependency, our
invisible frequency attack cannot be applied to physical OD tasks. Additionally,
we plan to investigate the vulnerabilities of diffusion models against our proposed
attack. Transferring our attack to diffusion models (DMs) is straightforward, as
backdooring DMs [11, 12] relies on trigger injection functions similar to those used
in classification tasks.

Optimization efficiency. The trigger search process is executed in a hybrid
GPU-CPU environment during trigger evaluation and optimization phases. For
example, searching optimal triggers for large-scale datasets during the optimization
process can require several minutes or hours due to the computational complexity
involved. It deserves further efforts to design a GPU-accelerated SA to minimize data
transmission across hardware, thus improving the efficiency of our proposed attack.
Effectiveness against state-of-the-art backdoor defenses. Note that black-box
attacks fail to achieve the same level of robustness against state-of-the-art backdoor
defenses as white-box methods due to the lack of control over the training process
of the victim model. This is further empirically supported by [13], which also
proposes a black-box frequency imperceptible attack. The results indicate that while
current black-box frequency attacks exhibit superior stealthiness in both spatial
and frequency domains, they lack robustness against advanced white-box backdoor
defenses. Unlike white-box attacks, black-box attacks inherently face this limitation.
To defend against black-box attacks, defenders can also leverage image purification
methods as in [14] and our proposed technique in Chapter 5 to remove malicious
triggers from poisoned inputs. In conclusion, black-box backdoor attacks are less
harmful than white-box attacks under robust defenses. Additionally, purifying
poisoned samples under black-box attacks is often easier than detecting hidden
trojans in compromised models.

STEALTHINESS IN DECENTRALIZED BACKDOOR ATTACKS

In Chapters 3 and 4, we address the challenge of enhancing stealthiness in
backdoor attacks under decentralized settings. However, both methods exhibit shared
limitations that warrant further investigation. For example, both proposed attacks
focus on stealthiness, i.e., bypassing robust FL defenses, rather than durability, i.e.,
maintaining backdoor effectiveness in the global model after the attacker stops
uploading poisoned updates.

Tasks. In Chapters 3 and 4, we concentrate on various computer vision tasks,
which have been the focus of numerous existing works [15-20]. In the future, we
intend to expand the scope of this work by applying our design to other real-world
applications, such as natural language processing (NLP) and reinforcement learning
(RL), as well as other vision tasks, e.g., object detection. As demonstrated in the
limitations of centralized backdoor attacks, methods in Chapters 3 and 4 can be
extended to other vision tasks, such as object detection. Since the triggers used in
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Chapters 3 and 4 are imperceptible, slight modifications are necessary to ensure
successful attacks in physical OD tasks. In Chapter 3, our frequency trigger can be
replaced with a patch-based trigger. In Chapter 4, the natural stealthiness constraint
in Equation (4.4) can be relaxed to allow visible triggers. The method in Chapter 3
can be easily extended to NLP tasks, as it only involves identifying malicious neurons
and manipulating model parameters without requiring input modifications. However,
the method in Chapter 4 requires an image generator to produce triggers, making it
inapplicable in the text domain.

Computational cost. In Chapter 3, the step-forward training needs additional
computational costs. To mitigate these expenses, we may consider enabling malicious
agents to collaborate in generating a shared malicious update through split learning.
Since malicious clients can collude in FL, generating a shared update is relatively
straightforward. Similarly, in Chapter 4, the use of generative adversarial networks
incurs additional training overhead. To address this limitation, future research could
focus on developing more efficient and lightweight generative networks without the
loss of attack performance. Additionally, it is feasible to leverage few-shot learning
to reduce the number of training samples required for the generator, lowering its
computation cost.

Durability. In Chapters 3 and 4, the primary focus of the methods is to achieve
stealthiness rather than durability, in contrast to durable backdoor attacks. We
emphasize that the durability of backdoor attacks on FL is orthogonal to stealthiness,
and we leave it as an open problem. State-of-the-art methods, such as [21], propose
a solution that ensures both attack stealthiness and durability. It achieves stealthiness
by injecting the backdoor into specific layers, and enhances backdoor durability by
avoiding frequently updated gradient coordinates. Such a philosophy can be applied
to the method in Chapter 3 to enhance durability by avoiding updating certain
parameters during the model camouflage phase.

ROBUSTNESS IN ADVERSARIAL PURIFICATION

In Chapter 5, we present a novel AP-based purification method using multi-scale
inpainting with DDPMs to enhance the robustness of DNN models. Despite the
promising results, several limitations should be acknowledged and solved in the
future.

Computational cost. Our defense mechanism integrates multi-scale superpixel
segmentation, occlusion sensitivity map generation, and iterative DDPM inpainting.
While effective, these processes, particularly DDPM process, are computationally
expensive, which may restrict the applicability of our approach in real-time or
resource-constrained scenarios. Future research should prioritize the development
of more efficient sampling methods for DDPMs or explore alternative inpainting
strategies that balance computational efficiency with high-quality image restoration.
It is feasible to accelerate our original pretrained DDPMs sampling process using
a distribution-based distillation strategy. Specifically, [22] introduces the Denoising
Student framework, which reduces iterative denoising steps through knowledge
distillation. By applying this technique to our pretrained models, we can distill a
student model that significantly speeds up sampling. Additionally, improving the
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approximation of occlusion sensitivity maps could further enhance processing speed.
Investigating alternative Explainable AI techniques to guide the inpainting process
could lead to more efficient and targeted image restoration techniques. For instance,
occlusion maps can be replaced with other XAI techniques, such as LIME [23], to
assess the efficiency and robustness of our approach. Such a comparison would
provide deeper insights into how XAI tools influence the image restoration process.
Hyperparameter sensitivity. Our proposed method incorporates several hyperpara-
meters regarding superpixel segmentation, occlusion sensitivity analysis, DDPM
inpainting, and artifact removal. The optimal configuration of these hyperparameters
is highly dependent on the specific dataset and type of adversarial attacks, necessitat-
ing careful hyperparameter tuning. A detailed analysis of hyperparameter sensitivity,
coupled with the development of automated tuning strategies, could significantly
improve the adaptability of the defense mechanism across diverse datasets and
tasks. However, running hyperparameter tuning algorithms, such as grid search,
random search, and Bayesian optimization, is impractical in our framework, since
evaluating performance for a single hyperparameter configuration already introduces
high computational costs. It is possible to reduce hyperparameter sensitivity by
avoiding using components that rely on large hyperparameters. For example, we
can sacrifice image quality by avoiding DreamClean and its Variance Preservation
Sampling technique, thereby eliminating the need for additional hyperparameters.
More evaluation against adaptive attacks. While the current evaluation includes
a gray-box scenario, a more comprehensive evaluation against a broader range of
adaptive attacks is crucial for a comprehensive understanding of the robustness
of our method. In particular, the specific mechanisms of our approach, such
as occlusion sensitivity maps, may present potential vulnerabilities that adaptive
adversaries could exploit to generate more effective adversarial examples. It is
possible to implement an adaptive attack that remains effective even after masking
occlusion sensitivity maps (by inserting malicious perturbations into unimportant
regions) and evaluate the robustness under this attack. Testing the full spectrum of
adversarial strategies, particularly advanced adaptive attacks, is crucial to improving
the resilience of our method against such threats.
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