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4S3F Diagnostic Bayesian Network method: discussion 
about application and technical design 
Ziao Wang a, Arjen Meijer  a, Laure Itard a 
a Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, the Netherlands, {Ziao. Wang, 
A.Meijer, L.C.M.Itard}@tudelft.nl 

Abstract. In practice, automated energy performance fault diagnosis systems are seldom 
installed in HVAC systems. The main reason is that a specific Fault Detection and Diagnosis (FDD) 
setup is time-consuming and expensive because the existing methods are component-specific, 
not aligned with HVAC design practices, and not fully automated. 4S3F (four symptoms three 
faults) method, based on system engineering and Diagnostic Bayesian Networks (DBN), was 
proposed to decrease the gap between the design of HVAC systems for buildings and energy 
performance diagnosis, and proofs of concepts were tested on diverse parts of the HVAC system 
of one specific building. In order to test the further applicability potential of the method, it is 
necessary to expand these tests and to study possible problems arising in practice, like the lack 
of sensors installed in a specific system or practical difficulties in the construction of the 4S3F 
Bayesian network by HVAC or control. However, due to the small number of validations carried 
out on the environment, parameters, and installation process of this method still need further 
discussion and refinements.  In this paper, we investigate how to construct the DBN for the quite 
generic AHU (Air Handling Unit) of a, with mechanical supply and exhaust, heating and cooling 
coils, and heat recovery. The paper describes the possible DBN's depending on the technical 
design and the measurement points. The diverse Bayesians networks are compared, and it is 
concluded that also, with a limited number of sensors, a diagnostic network can be set up. It is 
also concluded that step-by-step instructions would be needed to facilitate the work of HVAC 
engineers when setting up the diagnosis model. 

Keywords. Bayesian network, building energy performance, building energy diagnostics  
DOI: https://doi.org/10.34641/clima.2022.82

1. Introduction
10-30% of the energy used in buildings is wasted
even in the most modern ones due to malfunctioning, 
degradation of the installed equipment, and
suboptimal setpoints. The developments in the smart
meter field, sensors, building management systems,
and machine learning or artificial intelligence
algorithms provide an opportunity to monitor real-
time building performance, occupant behaviour,
energy consumption and analyze the real-time data
flow for building diagnosis and control. Taking the
benefit of the development of these technologies,
fault detection and diagnosis (FDD) technology for
buildings has taken a big leap in recent years, and
various amount of FDD methods for building energy
systems have been proposed and developed, such as
for HVAC level energy efficiency [1-3], chillers [4-6],
air handling unit [7-10], sensors [11]. Effective FDD
tools for building system is estimated to save 10-40%
building energy consumption [12]. However,
automated energy performance diagnosis is seldom
applied in practice despite many proposed methods.
Many researchers have recognized the major
challenges in faults diagnosing of building energy

systems in the last decade [13-16]. The first reason is 
that the setup of FDD methods is highly customized 
for each building because of different types of 
sensors, air handling unit, chillers, hot coils and 
available data. This condition makes standardization 
and a consistent approach for a broad application 
difficult. Second, It is very time-consuming to design 
and set up a FDD model. Third, when data-driven 
model are used, data about the correct functioning of 
the equipment is needed, but very difficult to obtain 
Fourth, when white-box models are used, they are 
difficult to set up for a complex system. Fifth, it is 
hard to apply the current methods to novel energy 
systems such as smart energy grids, thermally 
activated building systems, and adaptive façade, it. 
Sixth, an integrated approach for different HVAC 
components, controls, indoor environments and 
energy performance is lacking. Sevenths, energy 
performance FDD is far from being automated. In 
most scenarios, only data monitoring from BMS is 
automated, and HVAC engineers or energy experts 
need to diagnose the faults based on their 
experience.  

In order to fill these gaps, the 4S3F (4 symptoms and 
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3 faults) method was proposed and proven by Taal 
[16]. This method separates the detection of 
symptoms and the diagnosis of faults. In the 
symptom detection part, the complete list of possible 
symptoms is generated from the HVAC diagrams and 
all possible components and their control systems. 
They are then checked constantly during operation. 
In the fault diagnosis and isolation part, all possible 
faults are identified from all possible components, 
models, and controls in the HVAC diagram. Then, 
symptoms and faults are connected through 
Diagnostic Bayesian Network (DBN). Using DBN 
models, the faults are identified based on the 
probability of observed symptoms, and the diagnosis 
runs simultaneously through all system levels. 
However, due to the small number of installations in 
practice so far, the possible problems that appeared 
in practice during the technical design are rarely 
studied and discussed, such as the lack of sensors or 
how to choose the system level of the Bayesian 
network model for certain HVAC components. In this 
paper, the 4S3F method is set up for the AHU (Air 
Handling Unit) of the HHS building, a generic type 
with mechanical supply, exhaust, heating and cooling 
coils, and heat recovery. This paper describes and 
compares diverse possibilities for the Bayesian 
network and discusses how the 4S3F method could 
be applied under different scenarios and conditions 
(e.g., limited number of data points and sensors). 
After an introduction of the 4S3S method in section 2 
and a description of the air handling unit in section 3, 
the setup of the Bayesian network in the current 
sensor environment is researched in section 4, while 
the setup in a sensor-rich environment is explained 
in section 5 and the set up in a sensor-poor 
environment in section 6. Current AHU's may have 
few sensors, and it is relevant to show which 
diagnostics can still be done in this case. Sensor-rich 
environments, on the other side, are expected to 
become more common and to improve the quality of 
the diagnostic. They are compared in section 7and 
conclusions are drawn in section 8. 

2. Introduction of 4S3F method
2.1 4S3F method 

Symptom detection methods vary in FDD methods 
for energy performance. The detection is made by 
comparing actual and simulated energy 
performances in quantitative model-based methods, 
applying "operational state of systems, components, 
and controls" in rule-based methods, and tracing 
irregularities in the possibly correct operational 
patterns in data-driven methods. Frequently, further 
information obtained from maintenance and 
inspection data is also collected. In order to clarify 
the complicated symptoms in different methods, four 
categories are summarized by Taal [16]: "Balance 
symptoms," "Energy Performance (EP) symptom," 
"Operational State (OS) symptoms," and "Additional 
systems." 

1. "Balance symptoms," based on energy balance

deviations, belong to the quantitative model-based 
approach established from system theory and the 
first law of thermodynamics. Only balance equations 
are used, but not complex white-box models. 
2. "Energy Performance (EP) symptom," based on
deviations in energy performance metrics, like a
deviation from an expected COP, is applicable for
both quantitative and qualitative model-based
approaches.
3. "Operational state (OS) symptoms," based on
deviations of operating state from the expected
conditions, e.g., a temperature or flow is not as it
should be. This symptom could be either a qualitative 
model-based approach or a data-driven approach,
and the outliers could be estimated through the
historical data.
4. "Additional symptoms," based on additional
information, are gathered either from historical and
maintenance data or results from specific FDD
included in trade components.
DBN diagnoses provide an effective solution in the
HVAC fault diagnosis area because a DBN model is
based on the probability theory in which the
probability of faults is calculated according to the
occurrence of symptoms. Therefore, the diagnosis
process of DBN is very similar to the operation
methods of HVAC experts. In the 4S3F approach [17,
18], all faults are divided into three general
categories:
1. Component faults: Components faults include
malfunction and degradation of the components,
sensors, and incorrect installation or design.
2. Control faults:  Control faults include incorrect
setpoints, on-off control of components, and
software faults.
3. Model faults: Model faults include models that are
constructed to calculate missing and derived
measurements or parameters. It also includes wrong
assumptions (e.g., no heat loss in ducts).

The relationship between the Four types of 
symptoms and three types of faults is described in 
Fig. 1. 

2.2 4S3F model setup 

There are several steps to set up a 4S3F DBN model. 
Firstly, the object systems and subsystems should be 
selected. It is essential to choose a system or 
aggregated systems that have minimal necessary 
sensors—secondly, the presence and the absence of 

Balance 
symptom

EP 
symptom

OS 
symptom

Additional 
Symptom

Component 
fault

Control fault

Model fault

Fig. 1 – 4S3F DBN model faults and symptoms 
relationships from [16]. 

2 of 8



symptoms should be determined. There are two 
steps for symptom detection. At first, all possible 
symptoms are listed once during the setup, based on 
the I&PD. Secondly, and not handled in this paper, 
symptoms are detected in certain time spans during 
operation (e.g., hours, day, week, month), and the 
automated comparison between the recorded value 
and expected value is processed, see [16, 17]. 
Thirdly, once the list of all possible symptoms has 
been determined during setup, the possible faults 
should also be identified the same way based on the 
system diagrams. Fourth, as one symptom can arise 
from many different faults, a fault can lead to various 
symptoms. Hence, the combination of all observed 
symptoms should be analyzed and linked to possible 
faults. Fifth, once all possible faults and symptoms 
are identified, the relationships between faults and 
symptoms are translated to a DBN, with which the 
probability of a specific fault can be estimated. The 
structure of the DBN is very similar to the structure 
of the HVAC diagrams. Therefore, the construction of 
this DBN model is expected to be straightforward for 
HVAC engineers.  

3. Description of the Air Handling
Unit (AHU)

3.1 Scheme of the AHU in HHS building 

The Air handling unit (AHU) of the HHS building is 
quite a standard and generic one and is used to 
demonstrate the different ways of setting up the 
Bayesian network in the 4S3F method. The HVAC 
diagram of the AHU system (See Fig. 2) is used.  

The AHU provides ventilation and partial heating, 
cooling to the different building zones, and consumes 
a significant amount of energy. The AHU in HHS has 
a mechanical supply and exhaust and heat recovery. 
For the supply part (below in the diagram), it 
consists of an inlet damper (ID), filter (IFI), heat 
wheel (WW30-01), heating coil (HC), cooling coil 
(CC), fan (IF) and noise reduction damper (ND1). For 
the exhaust part (above in the diagram), it consists of 
an outlet damper (OD), filter (OFI), heat wheel 

(WW30-01), and fan (OF). The heat wheel recovers 
heat from the output air to the input air. CD30-02 and 
CD30-1 are motors to control the opening and 

closing of the inlet damper (ID) and outlet damper 
(OD). TV30-01 and AV30-01 are motors to control 
the speed of the fans. The fresh air is taken from the 
outside. The inlet flow rate sensor FT30-03 records 
the intake airflow. The inlet filter (IFI) will then 
remove the finer particles in the intake air. After air 
passes through the heat wheel, the heating coil (HC) 
would be switched on if the heating is needed. The 
cooling coil (CC) will be switched on if cooling is 
needed. When the heated or cooled air passes 
through the intake fan (IF), it will be accelerated. The 
noise reduction damper (ND1) will reduce the noise 
from the system. After the air passes through the 
noise reduction damper, it will be pushed to the 
building rooms. The exhaust air will be sucked into 
the output duct from the building rooms. The sucked 
air will pass the noise reduction damper (ND2) at 
first. The output filter (OFI) will remove the finer 
particles as the intake filter. The heat wheel will 
recover some heat from the exhaust air to the supply 
air through conduction heat transfer. The output fan 
(OF) will accelerate the speed of air. The output flow 
rate sensor FT30-04 records the exhaust airflow. 
After passing through the output damper, the 
exhaust air will be pushed to the exterior of the 
building. The available sensors are also shown in the 
diagrams (Fig. 2). FT30-03 and FT30-04 are flow 
sensors. PDT30-01 and PDT30-02 are pressure 
difference sensors. They can record the pressure 
difference of the filters. TA30-01 is a temperature 
sensor. It records air temperature after the heating 
coil. TT30-05/MT30-01 and TT10-06/MT30-02 are 
temperature sensors and moisture sensors. PT30-01 
and PT30-02 are pressure sensors. They record 
pressure in the duct. It can detect smoke in the duct. 
The output air (OA) is measured by the temperature 
sensor TT30-10, and the input air (IA) is measured 
by the temperature sensor TT30-00. 

In the zoom-in diagram (Fig. 3), FT31-01-65-1 and 
64-6 are flow sensors. TT31-01-64-7 and 64-4 and
TT31-02-64-8 and 64-5 are temperature sensors.
They record water temperature before and after the
heat exchange process. The heating coil is connected
to a heat generator (e.g., boiler or the condenser of a

heat pump). The cooling coil is connected to a cold 
generator (e.g., the evaporator of a chiller or a 
reversible heat pump, or an ATES system). 

Fig. 2 – P&ID diagram of AHU in HSS 
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4. Case one: Setup in Actual
environment

The AHU in the HHS building is quite generic. Once 
the DBN for this AHU has been constructed, it can be 
used in many other types of AHU systems with few 
modifications. In the actual setup environment, the 
symptoms of balance, Energy performance (EP), an 
operation state (OS) are considered. As described in 
the AHU scheme section, there are several possible 
balance symptoms. The heat losses in the diverse 
systems, components, and mechanical efficiencies 
are indicators for energy balance symptoms 
determination. These symptoms could be calculated 
from aggregated systems or subsystems. As shown in 
Fig. 2, there are two levels of systems presented, 
which are the AHU system, including heating coil and 
cooling coil, and the heating coil and cooling coil as a 
subsystem shown in Fig. 3. At the AHU system level, 
based on the information from the collected sensors, 
the following symptoms could be determined. 
Symptoms arise from information that can be 
measured and therefore relates strongly to sensors. 

4.1 Energy balance symptoms 

To identify energy balance symptoms, incoming 
energy and outcoming energy need to be calculated 
and measured, which means the measurement of 
flow rate and temperature from different 
components, systems, or subsystems are usually 
required. There are two observed energy balance 
symptoms. A first symptom will be if the energy 
balance on the heating coil is not zero. The water flow 
in the unit is recorded by FT30-01 (Fig.3). 
Temperature before the water goes into and after the 
heating coil is recorded by the temperature sensor 
TT30-01 and TT30-02 (Fig.3). By using this 
information, heat transfer could be calculated. The 

heat transferred from the heating coil to AHU can be 
calculated by using the total heat after the heating 
coil minus the heat generated before the heating coil. 
The total heat after the heating coil is derived from 
sensor TA30-01. The heat generated before the 
heating coil is calculated by TT30-00, FT30-03, and 
the recovered heat from the heat wheel. The 
recovered heat from the heat wheel was obtained by 
creating a "virtual sensor" by knowing the heat wheel 
efficiency, which will be introduced in 4.2. If the 
result of this balance is not zero, it will be considered 
unbalanced. Second, the energy balance on the 
cooling coil is not zero. Same as the heating coil, the 
water flow in the unit is recorded by FT30-01(Fig.3). 
Temperature before the water goes into and after the 
coiling coil is recorded by the temperature sensor 
TT30-01 and TT30-02(Fig.3). The heat generation of 
the cooling coil could be calculated through sensors 
information, and the total heat after the coiling coil is 
obtained by TT30-05. However, more symptoms 
may be identified if more temperature sensors were 
installed. This possibility will be discussed in case 
two. 

4.2 Energy performance symptoms 

The actual efficiency of the heat wheel (HW) being 
different from the efficiency rating listed by the heat 
wheel producer could be considered as a 
performance symptom. No other energy 
performance symptoms can be determined as the 
only specifications found from the supplier's 
information are the heat wheel's efficiency rating. In 
this AHU diagram, the intake flow rate (IFR),  input 
air temperature (IA), Air temperature after heating 
coil (TAH), output air temperature in the duct(OAD), 
output air flowrate (OFR), and output air 
temperature (OA) are recorded by the various 
sensors. The heat generated from the heating coil 
(Qheat) is calculated through diagrams shown in Fig. 
3. Using these data, the heat recovered from the heat
wheel could be estimated and compared with the
efficiency rating provided by the supplier.

4.3 Operation state symptoms 

The observable OS symptoms are as follows: 

1. Difference between the AHU temperature setpoint
and the recorded data from the temperature sensor
TT30-05.
2. The cold-water supply temperature from TT31-01
is different from the specifications.
3. The hot water supply temperature from TT31-01
is different from the specifications.
4. The abnormal pressure difference of the inlet filter 
and outlet filter pressure sensors
These are all components being controlled. No other
operational symptoms can be observed from the
P&ID.

4.4 Identifiable faults 

FT31-01
65-1

TCV31-01

Cooling coil Heatingcoil

61-6
TCV30-01

61-4

TT31-01
64-7

TT31-02
64-8

TT31-02

CP30-01

64-5

18-3

TT31-01
64-4

FT31-01
64-6

Fig. 3 – P&ID diagram of Heating and cooling coil 
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Basically, a fault is everything that can potentially 
ever be wrong. In the current case, all three types of 
possible faults can be identified as follows. 
1. The control of the AHU temperature setting (TS)
can be faulty.
2. The twenty-six components of the AHU can be
faulty, including twenty sensors, a heating coil,
cooling coil, heat wheel, fan motor, filter, and
damper faults.
3. Three assumed models in 4.1 and 4.2 of heating
coil heat balance, cooling coil heat balance, and the
energy performance balance of heat wheel can be
faulty.

4.6 Relationship between faults and 
symptoms and DBN model  

To decrease complexity a bit when explaining the 
relationships, we group together some faults and 
symptoms, as explained below, resulting in 6 
possible symptoms and 13 fault nodes (instead of 26) 
To construct this DBN, six possible symptoms 
presented above are highlighted in black color (Fig. 
4). Intake filter pressure difference (PD1) and output 
pressure difference (PD2), and setpoint and actual 
temperature difference (SPD) are OS symptoms. The 
energy efficiency of the heat wheel (EHW) is EP 
symptoms. Symptoms of heating and cooling coils 
are aggregated as heating (H) and cooling coils (C). 
Because faults that lead to these symptoms are 
almost identical, they could be isolated later. All 
listed faults are marked in blue color. All faults that 
come from the same sensor types are combined into 
one node for reducing the drawing complexity, such 
as Flow rate sensor (FT), pressure difference sensor 
(PDT), and Temperature sensor (TT), and they could 
be separated later for more accurate analysis. Three 
balance model fault heat wheel balance model 
(HWM), Heating coil balance model (HM), and 
cooling coil balance model (CM) are listed separately. 
All of these faults and symptoms are connected 
through the DBN (Fig. 4). The knowledge and 
experience of experts are needed to decide how to 

connect faults and symptoms. For example, motor 
broken (M), damper broken (D), polluted filter (F), 
Pressure difference sensor broken (PD) may lead to 
symptoms in output pressure difference (PD2) and 
intake filter pressure difference (PD1). Then these 
faults and symptoms should be connected. Moreover, 
flowrate sensor broken (FT), temperature sensor 
broken (TT), motor broken (M), Heat wheel not 
working (HWW), and Heat wheel balance model 
incorrect (HWM) may lead to symptoms of the 
inefficiency of the heat wheel. So, these symptoms 
and faults should be connected.  
The description and explanation of the probability 
data and how to apply a conditional probability table 

to each node of the DBN model are not the purposes 
of this paper. Therefore, it will be discussed in future 
research. The DBN (Fig. 4) can be constructed and 
understood when compared with HVAC diagrams 
(Fig. 2, Fig. 3). 

5. Case two: sensor-rich
environment

In this section, the case of an ideal environment will 
be discussed in which more sensors and 
information are available. 

5.1 Energy balance symptoms 

As described in the previous section, the heating and 
cooling coil's energy balance can be identified. In the 
ideal scenarios, if the connected or aggregated 
system information is available, more balance 
symptoms could be identified. Firstly, suppose the 
total amount of heat generated in the heat generator 
is known, as well as how this heat is distributed to 
separated systems, including the heating coil, via a 
hydronic system. In that case, the heat balance model 
for the efficiency of the aggregated system could be 
constructed. Secondly, with the measurement of heat 
distributed to AHU, the energy balance model of the 
heat generator system at the subsystem level can be 
made. Thirdly, the air pressure balance model could 
be constructed if there are air pressure sensors at the 

PD1: Intake �ilter pressure 
difference
PD2: Output presure difference
EHW:Ef�iciency of heat wheel
H: Heating coil
C: Cooling coil 
SPD: Set point and actual tempera -
ture difference
F: Filter 
M: motor
D: Damper
PDT: Presure difference sensor
FT: Flow rate sensor
TT: temperature sensor
HWM: Heat wheel balance model
HM: Heating coil balance model
CM: Cooling coil balance model
HWW: Heating wheel not working
HW: Heating coil not working
CW: Cooling coil not working
TSD: Temperature and setpoint 
difference

Symptom

Fault
PD1

EHW

HWW HW CW TSD

H C
SPD

PD2

F D PDT FT M TT HWM HM CM

Fig. 4 – DBN model in actual scenarios 
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inlet air duct, output air duct, and terminal rooms. 

5.2 Performance symptoms 

Unlike the previous section, the performance balance 
symptoms could be more accurate and substantial if 
only a few sensors were added. Suppose the 
temperature sensor (TT1) is installed between the 
heat wheel and the heating coil. In that case, it could 
record the intake air temperature before it passes 
through the heating coil. Then several new 
performance balances could be identified. At first, 
because this sensor was absent, the heat wheel 
efficiency calculation was based on the total heat 
balance equation in the previous section. Now, with 
this new sensor, the heat generated from the heating 
coil could be isolated. The extra heat obtained from 
the heat wheel could be calculated by deducting the 
reading from TT1 and the intake air temperature 
sensor TT30-00. Within this sensor, the calculation 
of the efficiency of the heat wheel can be done more 
quickly and directly. Secondly, the efficiency 
calculation of the heating coil and cooling coil 
becomes possible. The efficiency of the heating and 
cooling coil can be calculated by comparing the heat 
generated or removed from these two coils and the 
heat obtained between sensors TT30-05 and TT1.  

5.3 Operation state symptoms 

The observable operation state symptoms will also 
be expanded if more information is added. At first, if 
the setpoint fan speed and the motor rotation data 
are recorded. Then the operation state symptoms of 
the fan will be identified by comparing this setpoint 
and rotation speed. Moreover, suppose the specific 
flow rate of the supply water in the heating and 
cooling coil is collected. In that case, symptoms of the 
cold-water supply and hot-water supply could be 
observed by comparing data in the flowrate sensor 
(FT30-01) and the specific parameter provided by 
the supplier.  

5.4 Identifiable faults 

The identified faults could also be expanded if more 

information is available. The new assumed sensors 
(e.g., TT1) will be additional potential sensor faults. 
Furthermore, several new model faults (e.g., the air 
pressure balance model) will be added as new 
balance symptoms are included. Additionally, the 
new control fault like fan speed difference between 
set speed and actual can be identified.  

5.5 DBN model 

The newly added symptoms, faults, and possibly are 
marked as purple and yellow (Fig. 5). The DBN 
model becomes more powerful and complex, with 
the possibility to identify more symptoms and faults 
at different levels. Several new energy balances and 
performance symptoms are added due to the 
information from the heat generator. It can be 
further analyzed if a more accurate diagnosis is 
needed. New added sensor fault TT1 is listed 
separately to compare with the previous DBN model 
that one added sensor could affect several 
components in the fault diagnosis. As presented in 
the DBN diagram, motor broken (M), motor speed 
sensor broken (MS) may lead to the symptoms of 
motor rotation and setpoint difference. Flowrate 
sensor broken (F), damper broken (D), pressure 
sensor broken (PT), and air pressure balance model 

incorrect (APM) may lead to air pressure balance 
difference (AB). Moreover, aggregated system heat 
balance model incorrect (AHM) is connected to 
heating coil and cooling coil symptoms. Here too, a 
specific DBN model could be constructed as another 
subsystem. 

6. Case 3: sensor-poor environment
6.1 Balance symptoms 

In the worst cases, necessary sensors for identifying 
balance symptoms may be unavailable because too 
few flow and temperature sensors have been placed; 
Therefore, no balance symptoms are detected.  

6.2 Performance symptoms 

Fig. 5 – DBN model in expected scenarios 

PD1: Intake �ilter pressure 
difference
PD2: output presure difference
EHW: Ef�iciency of heat wheel
H: Heating coil
C: Cooling coil 
SPD: Set point and actual tempera -
ture difference
MD: Motor rotation and set point 
difference
AB: Air pressure balance
F: Filter 
M: motor
D: Damper
PDT: Presure difference sensor
FT: Flow rate sensor
TT: temperature sensor
HWM: Heat wheel balance model
HM: Heating coil balance model
CM: Cooling coil balance model
HWW: Heating wheel not working
HW: Heating coil not working
CW: Cooling coil not working
TSD: Temperature and setpoint 
difference

MS: Motor sensor
TT1: assumed temperature sensor
PT: Pressure sensor
APM: Air pressure balance model
AHM: Aggregated system heat 
balance model.

Symptom

Fault

Added fualt

Added symptom

PD1

EHW

HWW HW CW TSD

H C
SPD

PD2

F D PDT FT

MD

AB

M TT HWM HM CM MS PT APM AHM
TT1
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It is still possible to have some basic performance 
information in sensor-poor environments. For 
example, the air is not heated or cooled, or no air 
comes through the AHU.  

6.3 Operation state symptoms 

Operation state symptoms are essential almost in all 
scenarios, as they are coupled to the control of the 
system, and there is always some kind of control. The 
setpoint's temperature difference and actual 
situation are observable in any case. The difference 
in water supply temperature in the heating coil and 
cooling coil between actual values and specifications 
may still be obtained.  

6.4 Identified faults 

The number of faults that can be identified decreases 
significantly in this scenario. The number of sensor 
faults is reduced because there are few available 
sensors. There are also no model faults since no 
balance model could be constructed. Only a few 
system faults and control faults are observable, such 
as incorrect setpoints or degradation of components. 

6.5 DBN model 

This leads to a relatively simple DBN model, 
constructed based on the available information (Fig. 
6). In the end, nine faults are identifiable.  Due to the 
lack of sensors, almost all symptoms can lead to the 
set point and actual temperature difference fault 
(SPD). Therefore, this DBN model's fault detection 
and diagnosis ability have diminished a lot because 
of the limited data. If more sensors are placed later, 
more nodes can be added to this model and improve 
its fault detection and diagnosis ability. 

7. Comparison of the three sensor
environments

Three different DBN models were proposed based on 
different setup scenarios. It is apparent that a sensor-

rich environment is an ideal condition to apply the 
4S3F method. Multiple sensors will lead to more 
precise and effective fault diagnosis because of more 
identified symptoms and faults. The accuracy of the 
diagnosis may also increase because redundant 
information will lead to more precise fault 
probabilities. However, it also causes more 
complicated DBN models. It will increase the time 
needed for setup, computational time, and 
probability table requirements. Besides, it is very 
costly to install a large number of sensors. The 4S3F 
model set up in the actual environment is suitable for 
most practical situations where not all desired 
sensors cannot be placed. It can still perform specific 
fault-diagnosing tasks. In our example, twenty-six 
faults can still be identified (if happening). Many 
methods like virtual sensors could be applied in this 
situation to maximize the use of measured data. In a 
poor sensor environment, where many key sensors 
are lacking, the diagnosis ability of this method is 
lower due to limited information. However, the 4S3F 
method would still diagnose nine faults even in this 
situation. The accuracy of the diagnosis would be less 
than in the other environments. But the valuable 

faults and diagnosis could still be achieved. It may 
even be recommended for HVAC engineers to get 
acquainted with the 4S3F method in such a poor 
sensor environment, as it is easier to construct.  

8. Conclusion and recommendation
This paper mainly discussed the engineering process 
of the proposed 4S3F method to an Air Handling Unit 
(AHU). Obviously, the application difficulty still 
exists with this recently proposed method. In 
general, more sensors mean a more precise model. 
However, it also increases the complexity of the 
model leading to higher computational time and 
time-consuming design. A solution for larger-scale 
complex systems needs to be explored in the future, 
but modular solutions will surely have a place herein. 
Moreover, standardization and library of module 
components have a great potential to accelerate the 
modeling setup process to avoid repetitive work. 

Fig. 6 – DBN model in sensor-poor scenario 

H: Heating coil
C: Cooling coil 
SPD: Set point and actual tempera -
ture difference
F: Filter 
M: motor
D: Damper
FT: Flow rate sensor
TT: temperature sensor
HWW: Heating wheel not working
HW: Heating coil not working
CW: Cooling coil not working
TSD: Temperature and setpoint 
difference
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Furthermore, we showed that by only adding one 
additional sensor, the accuracy and variety of the 
observed equations in symptoms is significantly 
increased, which indicates that there may be a 
possible economical solution for sensor installation 
if the places for placing sensors are well designed. In 
the end, step-to-step instructions would accelerate 
the model setup speed for HVAC engineers to avoid 
time-wasting of explorations of the setup method. 
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