<]
TUDelft

Delft University of Technology

Reinforcement Learning in Railway Timetable Rescheduling

Zhu, Yonggqiu; Wang, Hongrui; Goverde, Rob

DOI
10.1109/ITSC45102.2020.9294188

Publication date
2020

Document Version
Final published version

Published in
2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020

Citation (APA)

Zhu, Y., Wang, H., & Goverde, R. (2020). Reinforcement Learning in Railway Timetable Rescheduling. In
2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020 Article 9294188
(2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020). IEEE.
https://doi.org/10.1109/ITSC45102.2020.9294188

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/ITSC45102.2020.9294188
https://doi.org/10.1109/ITSC45102.2020.9294188

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Reinforcement Learning in Railway Timetable Rescheduling

Yonggiu Zhu!, Hongrui Wang? and Rob M.P. Goverde?

Abstract— Real-time railway traffic management is impor-
tant for the daily operations of railway systems. It predicts and
resolves operational conflicts caused by events like excessive
passenger boardings/alightings. Traditional optimization meth-
ods for this problem are restricted by the size of the prob-
lem instances. Therefore, this paper proposes a reinforcement
learning-based timetable rescheduling method. Our method
learns how to reschedule a timetable off-line and then can be
applied online to make an optimal dispatching decision imme-
diately by sensing the current state of the railway environment.
Experiments show that the rescheduling solution obtained by
the proposed reinforcement learning method is affected by the
state representation of the railway environment. The proposed
method was tested to a part of the Dutch railways considering
scenarios with single initial train delays and multiple initial
train delays. In both cases, our method found high-quality
rescheduling solutions within limited training episodes.

I. INTRODUCTION

Railway operations rely on a timetable that specifies the
arrival/departure time of each train at each station satisfying
all operational requirements (e.g. safety distances between
running trains). In an ideal situation, trains are operated
exactly according to the planned timetable to provide trav-
ellers with punctual services. In practice, however, there will
always be daily variations and disturbances. For example
during peak hours, the dwell time of a train at a station could
be extended due to excessive passenger alighting and/or
boarding. In this circumstance, the train will depart from
this station with a certain delay (primary delay). If the
delay is large enough, it may cause follow-up delays to the
arrivals and/or departures of the same train at the downstream
stations, and propagate also to following trains via route
conflicts or transfer connections (secondary delay). Therefore
when a delay is detected, it is necessary to predict the
potential conflicts and resolve them (if any) with the aim of
e.g., minimizing the total secondary delays. This problem is
generally called Train Timetable Rescheduling (TTR), which
has been extensively studied in the literature. An overview
of models and algorithms for TTR is presented in [1].

Most literature formulates TTR as an Alternative Graph
(AG) model [2], [3], or a Mixed Integer Linear Programming
(MILP) model [4], [5]. These models are often solved by
heuristic algorithms in order to obtain feasible solutions in
a timely manner. To speed up the computation further, a

Yonggiu Zhu is with the
Planning, Delft University of Technology,
y.zhu-5@tudelft.nl

2Honrgui Wang is with the Section of Railway Engineering, Delft Univer-
sity of Technology, Delft, The Netherlands h.wang-8@tudelft.nl

3Rob M.P. Goverde is with the Department of Transport and
Planning, Delft University of Technology, Delft, The Netherlands
r.m.p.goverde@tudelft.nl

Department of Transport and
Delft, The Netherlands

parallelized algorithmic approach incorporating a heuristic
algorithm has been developed in [6]. For the same reason,
a concept of ‘dynamic impact zone’ has been proposed in
[7] to decompose the TTR problem in space and time so
that only a limited number of operational conflicts need
to be resolved. Although traditional optimization methods
are constantly improved in terms of computation efficiency,
they are still restricted by the size of problem instances.
To overcome this limitation, a few studies [8]-[12] applied
machine learning techniques to realize TTR, in particular the
technique of Reinforcement Learning.

Reinforcement learning is learning how to map states of
an environment to actions so that the cumulative reward of
these actions can be maximized [13]. The learner (generally
called agent) autonomously explores which actions lead to
the most reward via a trial-and-error learning process, which
can be seen as a process of training the agent. An agent
trained with sufficient samples is able to make an optimal
decision given the state of the environment. The basic idea
of reinforcement learning makes it promising for real-time
problems since it has learned already how to solve the
problem beforehand, and the extensive learning experiences
ensures its performance in terms of solution quality.

In the literature of reinforcement learning-based TTR [8]-
[12], a traffic controller is commonly considered as the
agent who take actions by sensing the current state of the
railway environment. In [8], the actions are deciding the
sequence of trains departing from the stations. The state
is represented by the actual departure and arrival times
of all trains at all stations. This way of representing a
state may limit the applicability of the trained agent to
other railway networks, in which different train schedules
are used. In [9], the actions are deciding the sequence of
trains passing through a junction. The state is represented
by the trains that are still waiting for passing through the
junction. The focus is on one isolated junction of a double-
track railway line. An extension is made in [10] to include
multiple junctions, which are considered independently of
each other without traffic coordination. In [11], re-ordering
and re-timing trains are both considered for a single-track
railway line. The actions are controlling the signals along
the tracks by turning them to red (stop) or green (proceed)
color so that the movements of trains are under control.
The state is represented by the availability of all tracks, the
current locations of all trains in the system, and the current
system time. In [12], single-track and double-track railway
lines can both be handled. The actions are controlling train
movements by deciding whether a train should wait at the
current resource or move forward to the next resource. A

Authorized licensed use limited to: TU Delft Library. Downloaded on February 25,2021 at 15:20:21 UTC from IEEE Xplore. Restrictions apply.

resource is a station or an open track segment (the area
between two neighbouring stations). It is assumed that a
track can only be occupied by one train at a time, which
mostly holds to the tracks within stations but not to the tracks
in open track segments (hereinafter referred to as segment
for simplicity). The state is represented by the availability
of a few resources close to the train currently concerned,
which significantly reduces the state space compared to [11].
For a railway network with multiple train lines operating on
the same corridors periodically, this state representation is
not sufficient for the agent to distinguish between different
situations. As a result, the agent may be trained to take the
same actions in different situations in which the agent should
have taken different actions to obtain a better solution.

This paper applies reinforcement learning to enable TTR
inspired by [12]. One of our contributions is considering a
more realistic railway operation where multiple trains are
allowed to occupy the same open track simultaneously, as
long as these trains are running in the same direction and
separated safely. Another contribution is that the railway en-
vironment is effectively represented, particularly for periodic
heterogeneous train services. We will show by numerical
experiments that the state representation affects the solution
quality. The remainder of this paper is organized as follows.
In Section II we give a brief introduction to the reinforcement
learning technique adopted in this paper: Q-learning. Then,
Section III explains how we apply Q-learning to realize
TTR. The proposed method is tested in Section IV, and
finally Section V concludes the paper and points out future
directions.

II. BASIC CONCEPT OF Q-LEARNING

Q-learning is a model-free reinforcement learning method,
which does not need a state transition function of the envi-
ronment [13]. It is thus suitable for a complex environment
that needs much effort to be accurately modelled. Due to
the complexity of the railway environment, this paper uses
Q-learning.

The key elements of Q-learning include a set of states S,
a set of actions A per state, a reward function R(s,a), and
a state-action value function @ (s,a). The reward function
R(s,a) returns a reward of taking action a at state s. The
value function @) (s, a) indicates how good action a is given
the state s. When an action « is taken at state s, a reward
R(s, a) is returned and then the value function is updated as

Q(s.) « Q(s.a) +a [R(s,) + ymax Q(s'.0) = Q(s,0)]

where « refers to the learning rate (0 < « < 1), -y represents
the discount factor (0 < v < 1), and s’ is the next state
from state s by taking action a. Parameter o determines
to what extent the new information should override the
old information, and v determines the importance of future
rewards [13]. The basic idea of Q-learning is to update
Q (s,a) via a trial-and-error process, during which actions
are selected by a certain rule. The e-greedy (0 < ¢ < 1)
method is an action selection rule, which aims to take a trade-
off between exploitation and exploration. At any state s,

the method selects action arg max, Q(s,a) with probability
(1 — €) (exploitation), or selects randomly from among all
the actions, independently of the Q-value, with probability €
(exploration) [13].

The value function (s, a) is constantly updated in a series
of episodes. An episode is one simulation from the initial
state of the environment until the termination state is reached.
Based on a well-trained Q(s,a), an optimal action given a
state s will be arg max, Q(s,a).

III. Q-LEARNING IN TRAIN TIMETABLE RESCHEDULING

In this section, we first introduce how to represent the
railway environment and ensure safe train operations by
different headways in Section III-A. Then, we explain how
to simulate the railway environment, and the key elements
of Q-learning required per simulation in Section III-B.

A. Railway environment representation

A railway environment is represented by stations con-
nected by open tracks as shown in Fig. 1, which is an
example of a double-track railway line. Inspired by [12],
we define a station as a resource, which consists of at least
one track. A track of a station is assumed to be occupied
by at most one train at a time regardless of the direction
from which this train comes. For an open track segment,
we define each open track in the segment as a resource.
We consider a double-track railway line so that each open
track is uni-directional, which means that it can be occupied
only by trains running in a specific direction. For example
in Fig. 1, the lower track of segment a-b is for the upstream
trains only, while the upper track is for the downstream trains
only. A track of a segment can be occupied by multiple
trains simultaneously if these trains are separated by safety
distances according to the implemented block signalling
system.

Station a Section a-b Station b

upstream
Fig. 1. Example of a double-track railway line

A resource r is associated with multiple attributes, which
are introduced in Tab. I. The attributes in the upper part of
Tab. I are fixed, whereas the attributes in the lower part are
variable.

For a station resource 7, the availability is determined
by y(rs), of which each entry indicates the earliest time
when a track of r, will become available. Each track of r; is
assumed to be bi-directional, d(rs) = both. The size of y(r)
is equal to the number of tracks in 7. Each entry of y(ry) is
initialized with value O representing that the corresponding
track is ready to be used, and when a train starts occupying
the track the value will be updated to the expected departure

Authorized licensed use limited to: TU Delft Library. Downloaded on February 25,2021 at 15:20:21 UTC from IEEE Xplore. Restrictions apply.

time of this train from this track plus a minimum headway
hd,q, after which another train can arrive at the same track.
In other words, a departure-arrival headway hq , is enforced
between consecutive trains, which will occupy the same track
of a station. If an entry of y(rs) is associated with a time
earlier than the current system time and no train will occupy
it at that moment, then its value will be updated to O again
indicating that the corresponding track is available.

TABLE I
ATTRIBUTES OF A RESOURCE 1
Attribute Description
u(r) Index of resource r, which is a unique number assigned
to each station or section, u(r) € {1,...,n}
p(r) The type of resource, which is either a station or a section.
d(r) The possible train directions of r,
d(r) € {up, down, both}
n(r) The number of tracks in 7
y(r) A vector, of which entry ¢ indicates the earliest time when
track ¢ of r will become available
z(r) A list, of which element ¢ indicates the train that is currently
occupying track ¢ of r
TABLE II
TYPES OF HEADWAYS CONSIDERED IN THIS PAPER
Headway Description
hd,a The minimum headway between the departure of a train
and the arrival of another train, which occupy the same
track of a station
hd,q The minimum headway between the departure times of
two consecutive trains at the same station. The departure
time of a train at a station corresponds to the time of the
train entering the next open track from this station.
ha,a The minimum headway between the arrival times of two

consecutive trains at the same station. The arrival time
of a train at a station corresponds to the time of the train
leaving from the previous open track to this station.

For an open track resource r,, the availability is deter-
mined by y(r,) that consists of only one entry in this case.
Note that this paper considers a double-track railway line,
so each open track r, is uni-directional indicating that it can
be occupied only by trains running in a specific direction,
d(r,) = up or d(r,) = down. Nonetheless, our method can
be easily extended to a mixed-track railway line with few
modifications. The value of y(r,) is initialized to 0 indicating
that the open track is ready to be used. When a train enters
this open track, y(r,) will be updated to the entering time
(i.e. the departure time from the upstream station relative
the open track) plus a minimum headway hg q, after which
another train can enter the same track. A minimum headway
(hg,q or hgg) is defined as the minimum time separation
between the departure/arrival times of two successive trains
at a station [15]. To prevent overtaking in an open track (in
case of extended running times), a minimum headway h, ,
is enforced between two consecutive trains that will arrive at
the next station from the same open track. Every time a train ¢
enters an open track, its expected departure time 7; from this
track (i.e. the arrival time at the downstream station relative
to the open track) is compared to the expected departure time
m of the previous train ¢’ that entered the same open track
earlier and is still occupying this track. If 7, — 7y < hg q,
then m; < my + hg o is performed to respect the minimum

arrival-arrival headway. Otherwise, no update will happen to
m;. Note that there is no need to compare a train ¢ to its
previous train ¢’ that has already left the open track when
train ¢ enters the track. Tab. II lists the headways considered
in this paper to ensure safe train operations.

Attribute z(r,) is initialized as an empty list for an open
track resource r,. Every time a train enters the open track
resource 7, z(r,) will be added with one element indicating
the corresponding train number (a unique number for each
train). When a train leaves the open track resource, its train
number will be removed from z(r,). For a station resource
s, 2(rs) is initialized as a list consisting of n(r,) elements
with value 0. Here, n(r;) represents the number of tracks in
rs. An element of z(rs) will be updated when a train arrives
at the corresponding track, and will return to value 0 when
the train departs from the track.

B. Railway environment simulation

An event-based simulation method is used to simulate the
railway environment. An event e is a departure or arrival
of a train at a station. Event e is associated with multiple
attributes, which are introduced in Tab. III. The attributes in
the upper part of Tab. III are fixed, while x(e) and A(e)
are variables representing respectively the rescheduled time
and the delay of event e. The value of z(e) is initialized
as o(e) + 6(e), and A(e) = x(e) — o(e), in which o(e)
is the original scheduled time of event e and f(e) > 0 is
the initial delay of event e given at the beginning of the
simulation. Note that for an arrival event e the resource r(e)
to be occupied when e occurs corresponds to station s(e),
while for a departure event e its r(e) corresponds to the
downstream section relative to station s(e).

TABLE III
ATTRIBUTES OF AN EVENT e
Attribute Description
p(e) The type of event e, p(e) € {arr,dep}
t(e) The train corresponding to event e
s(e) The station corresponding to event e
r(e) The resource to be occupied by train t(e) when event
e occurs
o(e) The original scheduled time of event e
0(e) The initial delay of event e
z(e) The rescheduled time of event e
Ale) The delay of event e

The set of events is denoted by E. At each simulation
step, the event e* with the earliest rescheduled time will be
selected,

e* = argmin {z(e),e € E} (1)

and an action will be selected by the Q-agent to e*.
Action set

The agent has an action set {0,1}. Action ¢ = 0 means
that the agent decides not to implement event e* at time
x(e*) but instead delay its occurrence by a fixed A min.
Namely, z(e*) + z(e*) + A. Action a = 1 means that the
agent decides to implement e* at time x(e*). If this action
is implementable, then e* is removed from the event set
E. Action ¢ = 1 may not be implementable if z(e*) >

Authorized licensed use limited to: TU Delft Library. Downloaded on February 25,2021 at 15:20:21 UTC from IEEE Xplore. Restrictions apply.

min{y(r’),7 = r(e)}, which indicates that none of the
tracks in resource 7’ is available to receive train t(e*) at
time x(e*). In this case, the simulation terminates. Here, r’
is the resource 7(e) to be occupied by event e when e occurs.
After each type of action (¢ = 0 or a = 1), the variable
attributes of the resources and of the events in E will be
updated accordingly. For example, if event e* is delayed for
A min, then the rescheduled times and delays of the following
events corresponding to the same train ¢(e*) will be updated
before starting the next simulation step. Suppose e is one of
the following events of train ¢(e*), then its rescheduled time
z(e) will be updated to the earliest time it could occur, which
is counted as z:(e*) plus the shortest time needed from event
€* to event e if this earliest time is later than o(e). Otherwise,
x(e) will not be updated since earlier departures/arrivals are
not allowed.

Reward function

A penalty -1 is given for an action a = 0O since it delays
a train arrival/departure. A reward +1 is given for an action
a = 1 if it is implementable (i.e. no operational conflict).
Otherwise, action a = 1 is given with a penalty -10.

States

A state s of the railway environment is defined as

s = {A(e*),c(rl),...,,c(rn),r(e*)},)

in which e* is the current event as defined in Equation (1),
A(e*) is the delay of event e*, ¢(r;) refers to the congestion
level of resource 74, i € {1,...,n}, and r(e*) is the resource
to be occupied by train #(e*) when e* occurs. r(e*) €
{r1,...,mn}. We define A(e*) = A(e*) if Ale*) < D,
where D is the largest delay considered. Otherwise, A(e*) =
D. The congestion level of a resource is defined respectively
for a station resource and a section resource as follows.

For a station resource rg, the congestion level ¢(rs) is 0
if all tracks in r, are available, 1 if one track in 7, is not
available, or 2 if at least two tracks in r, are not available.
For an open track resource 1., the congestion level c(r,)
is 0 if r, is not occupied by any train, 1 if r, is occupied
by one train, or 2 if 7, is occupied by at least two trains.
Recall that in Section III-A we explained that a track of a
resource is available or not depends on the corresponding
entry in y(r), which indicates the earliest time that the track
will become available. Only if the earliest available time of
a track is smaller than x(e*), then the track is considered as
available at the current simulation step.

The size of a state s is relevant to the number of resources
considered. In the extreme case, all resources included in the
railway environment are considered, which may lead to a
large state size causing memory issues. Therefore in a state
vector s, only n resources are considered, which include the
resource that is currently occupied by train ¢(e*), and the
next n — 1 resources to be occupied by train ¢(e*). Note that
the route for each train is assumed to be fixed so that the
next n resources are always known. If the total number of
the next resources m is smaller than n — 1 (m < n — 1),
then the (n — (m + 1)) resources behind train t(e*) will be

considered in state vector s to ensure s has n resources in
total.

The total number of states |\S| is (D+1) x 3™ xn, where D
is the largest delay considered (note that a delay can be 0), 3
refers to the number of congestion levels of a resource, and
n is the number of considered resources. |S| is not relevant
to the scale of the railway environment and the total number
of trains. In Section IV, we will investigate the impact of
n on the performance of the Q-learning method in terms of
solution quality.

A simulation of the railway environment is initialized with
all trains waiting at their origins, and will terminate when all
trains reached their destinations (corresponding to an empty
E) or if an action ¢ = 1 is not implementable due to a
conflict. A simulation is one training episode for the agent
to learn the state-action value function Q(s, a). The agent are
trained with sufficient episodes to obtain a good Q(s, a).

IV. CASE STUDY

We use a double-track railway line from the Netherlands
to investigate the performance of the proposed reinforcement
learning-based timetable rescheduling method. Fig. 2 shows
the track layout of the considered railway line, as well as the
train lines, which are operating half-hourly in each direction.

Train lines

Eindhoven

oJo)
Roermond)
=
3
—

63000 O O
Gp Hze Mz wt

Fig. 2. The track layout and line plan of the considered railway

A. Parameter settings

For the Q-learning method, we set the learning rate «
to 1, and the discount factor v to 0.9. The state-action
value function Q(s,a) is initialized with Q(s,0) = —1
and Q(s,1) = 1, Vs € S. This is because our objective
is minimizing train delays so that moving a train forward
(a = 1) is generally preferred over holding a train (a = 0)
unless it leads to a conflict. A good initial Q(s,a) helps to
speed up the convergence of a goal-directed reinforcement
learning [14]. For the e-greedy action selection rule, the value
of € is initialized as 0.5, which is applied with a decay
rate of 0.9 in each following episode. In that sense, we
favour exploitation when gaining more training experience.
The total number of training episodes is set to 50.

The value of A is set to 0.5 min, which means that an
action a = 0 is to delay an event e for 0.5 min longer
than its current rescheduled time z(e). All types of minimum
headways, hq.q, Na,o and hq g, are set to 3 min.

B. Influence of the state vector on solution quality

Recall Equation (2), in which a state vector s is defined.
Experiments are designed to investigate how the elements
in s impact the solution quality. First, we consider whether

Authorized licensed use limited to: TU Delft Library. Downloaded on February 25,2021 at 15:20:21 UTC from IEEE Xplore. Restrictions apply.

including A(e*) in state s will have a difference in solution
quality. Recall that A(e*) indicates the delay of event e*.
We also investigated the impact of the number of resources
n considered in s. In this section, we consider a single initial
delay that the departure of the 2nd upstream train from line
3500 (in purple) is initially delayed for 8 min at its origin
station Roermond (Rm). This departure event is highlighted
with a red circle in Fig. 3 and Fig. 4.

TABLE IV
RESULTS WITH DIFFERENT STATE REPRESENTATIONS
Case A(e*) n Total Case A(e*) n Total
delay [min] delay [min]
L1 - 2 273 1L.1 0,10 2 169
12 - 3 273 11.2 0,10 3 140
13 - 4 193 11.3 0,10 4 116
1.4 - 5 157 1.4 0,10 5 116
L5 - 6 157 1L5 0,10 6 116
1.6 - 7 123 11.6 0,10 7 114
Ehv Line 800
Line 3500
Line 6400
Gp
Hze
Mz
wt
Rm g4
7:00 7:30 8:00 8:30 9:00 9:30 10:00

Fig. 3. Rescheduled timetable of case 1.6, in which state s excludes delay
element A(e*) and considers n = 7 resources

Ehv

Line 800
Line 3500
Line 6400

R

9:30 10:00
Fig. 4. Rescheduled timetable of case I1.6, in which state s includes the
delay element A(e*) € [0,10] and considers n = 7 resources

m { . . .
7:00 7:30 8:00 8:30 9:00

Tab. IV shows the total train delay of the final solution
(after all training episodes) obtained by the Q-learning
method under different settings of state vectors. The left
part of Tab. IV shows the results of excluding A(e*) in s
with different n, and the right part of Tab. IV shows the
results of including A(e*) in s with different n, in which
[0, 10] represents the range of delay values. Tab. IV indicates
that the representation of a state affects the solution quality
in terms of the total train delay. More resources (larger n)
considered in a state s leads to a better rescheduled timetable
with less train delays. Also, including the delay A(e*) of the
current event e* results in a better rescheduling solution.

Fig. 3 shows the rescheduled timetable of case 1.6 that
does not includes A(e*) and considers 7 resources in a
state. The solid lines represent the rescheduled train services,
and the dashed lines refer to the original scheduled train

services that are delayed in the rescheduled timetable. The
initial train delay is highlighted with a red solid circle.
The train services which experienced unnecessary delays
in the obtained rescheduling solution are highlighted with
red dotted ellipses. For example in section Wt-Mz the time
separation between an upstream train from line 6400 (in
black) and an upstream train from line 3500 (in purple) is
larger than the minimum headway required, and this also
happened to two upstream trains running from station Gp
to station Ehv. There are also two upstream trains from line
6400 (in black) delayed when departing from station Wt,
which were unnecessary from the perspective of required
headways.

Compared to Fig. 3, a better rescheduled timetable with
less delays is shown in Fig. 4, which corresponds to case I1.6
that includes A(e*) and considers 7 resources in a state. In
Fig. 4, all secondary delays are necessary in order to respect
operational requirements.

C. Influence of the state vector on solution convergence

We computed the total reward obtained from a simulation
episode, which are the sum of rewards/penalties of all actions
taken in this episode. For each case of Tab. IV, the total
reward per episode is shown in Fig. 5 and Fig. 6.

200

@
S

—+—n=7

Episode Reward
3
8

e
1
l
'
'
'
'
'
'
'
'
'
1

R ER
REELE
gl . I

8

I
5 10 12 15 20 25 30 35 40 45
Episode

Fig. 5. Episode rewards of cases 1.1-1.6, which exclude the delay element
A(e*) in a state s

200 -

Episode Reward
3
8
T

15 20 25 30 35 40 45 50
Episode

Fig. 6. Episode rewards of cases II.1-I1.6, which include the delay element
A(e*) in a state s

Fig. 5 is the results of cases I.1-1.6, which exclude the
delay element A(e*) in a state s. It can be seen that
when considering n = 2 resources in state s no solution
improvements were found after 3 episodes, whereas when
considering n = 7 resources more episodes (12 episodes)
were required for obtaining a stable solution. These are
highlighted by the black and red dashed lines, respectively.
Nevertheless, when excluding A(e*) in a state s the solution
converges around 4 episodes in most of the corresponding
cases.

Fig. 6 is the results of cases II.1-11.6, which include the
delay element A(e*) in a state s. In all of these cases,
at least 9 episodes were needed for solution convergence.
This is because of the increasing state space by including
A(e*). Nevertheless, after 11 episodes all cases obtained

Authorized licensed use limited to: TU Delft Library. Downloaded on February 25,2021 at 15:20:21 UTC from IEEE Xplore. Restrictions apply.

stable solutions. The black and red dashed lines highlight
respectively the smallest and largest numbers of training
episodes required for obtain stable solutions among cases
IL.1-11.6.

D. Multiple initial delays

In this section, we set up another two delay scenarios,
which have respectively 2 and 3 initial delayed train events.
We trained the Q-agent in each delay scenario with the same
state representation as in case II.6 shown in Tab. IV. The
rescheduled timetables for the two delay scenarios are shown
respectively in Fig. 7, and Fig. 8, where the initial delayed
events were highlighted with red circles. All secondary
delays in these scenarios are necessary to avoid operational
conflicts.

The scenarios with 2 and 3 initial delays needed respec-
tively 12 and 30 training episodes to find stable solutions.
This indicates that with more number of initial delays
considered, the Q-agent needs more training episodes for

solution convergence.
Ehv

Line 800
Line 3500
Line 6400

Gp

Hze

Mz

wt

Rm { {)

7:00 7:30 8:00 8:30 9:00 9:30 10:00
Fig. 7. Rescheduled timetable with 2 initial delays

Ehv B
Line 800
Line 3500
Line 6400

Gp

Hze

Mz

wt

Rm { {)

7:00 7:30 8:00 8:30 9:00 9:30 10:00

Fig. 8. Rescheduled timetable with 3 initial delays

V. CONCLUSIONS

This paper employs a reinforcement learning method,
more specifically Q-learning, to realize railway timetable
rescheduling. Multiple types of headways are considered
in this method to ensure that the rescheduled timetables
respect the operational requirements. Numerical experiments
were performed to investigate the influence of the state
representation on solution quality and solution convergence.
It was found that an effective state representation of the
railway environment helps the Q-agent to learn the optimal
action to be taken for each train event. An effective state
representation considers more elements of the environment,
and thus increases the state space and slows down the
solution convergence. Nevertheless, in all cases with one

single initial delay, at most 12 training episodes were needed
to find stable solutions. We tested the proposed Q-learning
method also to scenarios with multiple initial delays, under
which more training episodes (at most 30) were required for
solution convergence compared to the scenarios with a single
initial delay.

In future, we will deal with a larger railway network with
more stations and trains. Besides, we will employ extensive
historical delay data from the actual railway operations to
train the Q-agent so that it can be more experienced to handle
various situations with better rescheduling solutions. Another
direction will be extending the reinforcement learning-based
timetable rescheduling method for major disruptions [16].

REFERENCES

[1] V. Cacchiani, D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf,
and J. Wagenaar, “An overview of recovery models and algorithms
for real-time railway rescheduling,” Transportation Research Part B:
Methodological, vol. 63, pp. 15-37, 2014.

[2] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo, “A tabu search
algorithm for rerouting trains during rail operations,” Transportation
Research Part B: Methodological, vol. 44, no. 1, pp. 175-192, 2010.

[3] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo, “Dispatching
and coordination in multi-area railway traffic management,” Comput-
ers & Operations Research, vol. 44, pp. 146-160, 2014.

[4] J. Tornquist, and J. A. Persson, “N-tracked railway traffic re-
scheduling during disturbances,” Transportation Research Part B:
Methodological, vol. 41, no. 3, pp. 342-362, 2007.

[5] J. T. Krasemann, “Design of an effective algorithm for fast response
to the re-scheduling of railway traffic during disturbances,” Trans-
portation Research Part C: Emerging Technologies, vol. 20, no. 1, pp.
62-78, 2012.

[6] S.P.Josyula, J. T. Krasemann, and L. Lundberg, “A parallel algorithm
for train rescheduling,” Transportation Research Part C: Emerging
Technologies, vol. 95, pp. 545-569, 2018.

[71 S. Van Thielen, F. Corman, and P. Vansteenwegen, “Considering
a dynamic impact zone for real-time railway traffic management,”
Transportation research part B: methodological, vol. 111, pp. 39-59,
2018.

[8] L. Ning, Y. Li, M. Zhou, H. Song, and H. Dong, “A deep reinforcement
learning approach to high-speed train timetable rescheduling under
disturbances,” In the 22nd IEEE Intelligent Transportation Systems
Conference (ITSC), pp. 3469-3474, Oct, 2019.

[9] T. Ghasempour, and B. Heydecker, “Adaptive railway traffic control

using approximate dynamic programming,” Transportation Research

Part C: Emerging Technologies, 2019.

T. Ghasempour, G. L. Nicholson, D. Kirkwood, T. Fujiyama and B.

Heydecker, “Distributed Approximate Dynamic Control for Traffic

Management of Busy Railway Networks,” IEEE Transactions on

Intelligent Transportation Systems, 2019.

[11] D. gemrov, R. Marseti¢, M. Zura, L. Todorovski, and A. Srdic,
“Reinforcement learning approach for train rescheduling on a single-
track railway,” Transportation Research Part B: Methodological, vol.
86, pp. 250-267, 2016.

[12] H. Khadilkar, “A scalable reinforcement learning algorithm for

scheduling railway lines,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 20, no. 2, pp. 727-736, 2019.

R. S. Sutton, and A. G. Barto, Reinforcement learning: An introduc-

tion, 2nd Edition, Cambridge, MA, USA: MIT Press, 2018.

[14] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Reward function
and initial values: Better choices for accelerated goal-directed rein-
forcement learning,” In International Conference on Artificial Neural
Networks, Springer, Berlin, Heidelberg, pp. 840-849, 2006.

[15] R.M.P. Goverde, F. Corman, and A. D’Ariano, “Railway line capacity
consumption of different railway signalling systems under scheduled
and disturbed conditions,” Journal of Rail Transport Planning &
Management, vol. 3, no. 3, pp. 78-94, 2013.

[16] Y. Zhu, and R.M.P. Goverde, “Railway timetable rescheduling with
flexible stopping and flexible short-turning during disruptions,” Trans-
portation Research Part B: Methodological, vol. 123, pp. 149-181,
2019.

[10

[13

Authorized licensed use limited to: TU Delft Library. Downloaded on February 25,2021 at 15:20:21 UTC from IEEE Xplore. Restrictions apply.

