
 
 

Delft University of Technology

CMDOWS: a proposed new standard to store and exchange MDO systems

van Gent, Imco; La Rocca, Gianfranco; Hoogreef, Maurice

DOI
10.1007/s13272-018-0307-2
Publication date
2018
Document Version
Final published version
Published in
CEAS Aeronautical Journal

Citation (APA)
van Gent, I., La Rocca, G., & Hoogreef, M. (2018). CMDOWS: a proposed new standard to store and
exchange MDO systems. CEAS Aeronautical Journal, 9(4), 607-627. https://doi.org/10.1007/s13272-018-
0307-2

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13272-018-0307-2
https://doi.org/10.1007/s13272-018-0307-2
https://doi.org/10.1007/s13272-018-0307-2


Vol.:(0123456789)1 3

CEAS Aeronautical Journal (2018) 9:607–627 
https://doi.org/10.1007/s13272-018-0307-2

ORIGINAL PAPER

CMDOWS: a proposed new standard to store and exchange MDO 
systems

Imco van Gent1  · Gianfranco La Rocca1 · Maurice F. M. Hoogreef1

Received: 23 November 2017 / Revised: 26 March 2018 / Accepted: 18 April 2018 / Published online: 23 May 2018 
© The Author(s) 2018

Abstract
This paper proposes a new format to store and exchange multidisciplinary design optimization (MDO) systems. Here, the 
generic term MDO system refers to the set of disciplinary tools, their exchanged data and process connections that, all 
together, define an MDO computational setup. In the process leading to the formal specification of such a computational 
system, the set of tools, data and connections evolves, until a complete MDO system formulation (not executable) is reached. 
The proposed open-source standard, called CMDOWS (Common MDO Workflow Schema), has been developed to support 
this process. The key aspect of the format is its neutral XML-based data representation, making any stored MDO system 
exchangeable between the design team members and applications (e.g., tool repositories, visualization packages) developed 
to support the team in setting up the MDO system. This exchangeability is a key enabler for the creation of a versatile MDO 
framework. Furthermore, CMDOWS provides the starting point to translate any MDO system formulation into an execut-
able workflow using a workflow platform of choice. To the authors’ knowledge, such an exchange format does currently not 
exist, notwithstanding the enormous potential it would have for the exploitation of large-scale MDO in industry. A case study 
demonstrating the use of CMDOWS is presented in this paper. It was concluded that the current version of CMDOWS already 
provides a robust standard to store and exchange MDO systems. The schema will be extended to meet future developments 
and promote its adoption as a recognized standard in the broader MDO community.
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1 Introduction

Multidisciplinary Design Optimization (MDO) is a design 
methodology aimed at capturing and exploiting discipli-
nary interactions to improve multidisciplinary designs 
using special mathematical formulations and computa-
tional structures. Within the aeronautic community, MDO 
is considered an extremely high-potential discipline, both 
for improving the performance of current aircraft designs 
and supporting the development of future configurations. 
However, so far, MDO has primarily been demonstrated 
in literature on academic problems [1–5], while both tech-
nical and non-technical barriers [6–10] have limited its 
adoption by design engineers in industry.

The transformation of MDO from a high-potential dis-
cipline into a wide-spread commodity design method in 
an industrial setting entails a paradigm shift to which it 
can be hard to adapt, especially when this would affect 
the modus operandi of large and heterogeneous design 
teams. Whereas most of the current design methods 
allow the autonomous analysis of different disciplines 
(by manually updating values coming from other disci-
plines), MDO requires the different disciplines to be cou-
pled together in one automated multidisciplinary analy-
sis chain [11]. It is the creation and management of this 
automated chain, going outside (and often off-sight) the 
conventional boundaries of discipline competence, that 
forms a big hurdle in the application of MDO in a col-
laborative environment. In a survey [12] of their collabo-
rative MDO projects over the past decade, the German 
Aerospace Center (DLR) found that around 60–80% of 
the project was generally used to set up the automated 
chain, which did not include any optimization yet. Sev-
eral other literature sources [11, 13] confirm that the so-
called formulation phase is consuming the most project 
resources and is the most complex to handle, rather than 
the actual execution of the numerical optimization. The 
main stages within the formulation and execution phases 
of a typical MDO project are summarized in Fig. 1, which 

will be used throughout this paper to provide context to 
the addressed research developments.

One of the most interesting outcomes from a survey of 
recent MDO literature is that, despite the critical hurdle 
provided by the formulation phase of an MDO system, 
most of the research seems rather concerned with the exe-
cution phase of the MDO system development process. 
Plenty of literature is also available assessing the benefit 
of the MDO methodology in different application areas, 
ranging from aircraft design [14–17] to spacecraft design 
[18, 19] and the design of wind turbines [20–22].

Many recent publications are also available on new 
optimization algorithms and in particular on the develop-
ment of advanced computation infrastructures to exploit 
distributed computing power, e.g., cloud computing. A 
limited amount of recent developments relevant to the for-
mulation phase of MDO systems can be found in literature. 
These include the derivation of new MDO architectures, 
such as [23, 24], that are not included in the exhaustive 
overview published by Martins and Lambe [25]. On the 
other hand, it is peculiar to observe that no new devel-
opments can be found in any of the commercial process 
integration and design optimization (PIDO) platforms (the 
commodity tools for the execution of MDO workflows), 
for what concerns their capability to support users in the 
formulation of MDO problems. As identified by Hoogreef 
[26], there is no PIDO system that is able to advice or sup-
port in the selection of an appropriate MDO architecture 
for the problem at hand, the problem formulation accord-
ing to this architecture, nor in the automatic integration 
of executable MDO workflows according to a given MDO 
architecture.

A limited amount of literature has been found on specific 
research to support the formulation of MDO problems and 
their reconfiguration according to different architectures. 
Some dedicated languages and grammar have been proposed 
such as REMS by Alexandrov and Lewis [27, 28] and Ψ by 
Tosserams [29]. In addition, a few frameworks exist that 
support the modelling process of MDO architectures, such 

Tool
repository

MDO
problem

MDO solution
strategy

Collaborative MDOptimized
design

triggers
iteration

Formulation phase Execution phase

Fig. 1  Different stages of the MDO system in a typical MDO pro-
ject. In the formulation phase (left) the system is specified by going 
from a repository of tools to a strategy to solve the MDO problem. 
The execution phase (right) contains the executable instance of the 

formulated solution strategy and its result. Usually, the found optimal 
design triggers an iteration which requires an adjustment of the MDO 
system at one of the earlier steps to further improve the design
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as �MDO by Marriage [30] and the more recent and popular 
open-source suite OpenMDAO1 [31].

The outcome of this investigation on recent research 
developments and state-of-the-art tools to support the devel-
opment of MDO systems is summarized in Fig. 2. It can be 
concluded that nothing is available to support the automatic 
execution (but not even some form of smooth integration) 
of all the stages specified in Fig. 1. As a consequence, a 
significant amount of manual, error-prone, time-consuming 
and repetitive work is left to MDO specialists and system 
integrators to set up a working MDO system, with the con-
sequences discussed at the beginning of this section.

1.1  New initiatives to support the development 
of MDO systems

Delft University of Technology (DUT) was involved in two 
international research projects that aim at supporting the 
development of MDO systems by strongly reducing their 
setup time. One is the EU-funded project AGILE2 (Aircraft 
3rd Generation MDO for Innovative Collaboration of Het-
erogeneous Teams of Experts), where one of the main goals 
was to reduce by 40% the formulation phase of large col-
laborative MDO systems for aircraft design. Similar objec-
tives were pursued within the ITEA project IDEaliSM3 
(Integrated and Distributed Engineering Services frame-
work for MDO), where partners, from both the aeronautic 
and automotive supply chain, developed tools and methods 
to enable the integration of distributed and collaborative 
MDO frameworks. In both projects, MDO support frame-
works were developed, which included various and different 
applications, that can be grouped according to the following 
five categories:

Tool repositories A tool repository is a database that con-
tains the definitions of a collection of design and analysis 
tools which can be made available to the design team to 
perform MDO. The repository does not necessarily con-
tain the tools themselves, as the sharing of the tool might 
be prohibited by intellectual property restrictions. In that 
case, a repository contains the specification of the (inter-
linked) inputs and outputs of the tools and the way in 
which each tool can be (remotely) executed. In AGILE, a 
very convenient approach to assemble large tool reposito-
ries, also with tools with many inputs and/or outputs, has 
been devised based on the use of a central data schema to 
which each tool input and output is interlinked. Being the 
focus of AGILE on aircraft design, the DLR standard data 
model for aircraft CPACS (Common Parametric Aircraft 
Configuration Schema) [32] has been adopted as central 
data schema. Using this approach, multiple tool reposi-
tories (e.g., a repository containing disciplinary analysis 
tools and a second repository containing surrogate mod-
els) can be combined in a single workflow schema file 
(so-called repository connectivity graph; details later in 
this paper), as long as the interlinking is valid. Remote 
execution of the tools is supported by the collaborative 
architecture developed in AGILE [33].
MDO system formulation applications The platforms 
InFoRMA (Integration, Formalization and Recommenda-
tion of MDO Architectures) [26] and KADMOS (Knowl-
edge- and graph-based Agile Design for Multidiscipli-
nary Optimization System) [34], both developed by DUT 
within the IDEaliSM and AGILE projects, respectively, 
provide two innovative approaches to address the afore-
mentioned challenges of automatic MDO architecture  
(re)configuration and integration into PIDO software, 
based on the specification of the general MDO problem 
definition. Although the implementation and backbone 
technologies differ drastically for both platforms (KAD-
MOS is Python-based and uses the NetworkX graph 
package, while InFoRMA is Java-based and uses seman-
tic web technologies), they both use essentially the same 

Fig. 2  Mapping of the main-
stream research topics and state-
of-the-art solutions in the field 
of MDO on the MDO system 
development process in Fig. 1
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1 http://openm dao.org, accessed March 15th 2018.
2 http://www.agile -proje ct.eu, accessed March 15th 2018.
3 https ://itea3 .org/proje ct/ideal ism.html, accessed March 15th 2018.

http://openmdao.org
http://www.agile-project.eu
https://itea3.org/project/idealism.html
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construct to represent an MDO system throughout the 
formulation phase: graphs [13, 35]. Earlier work [26, 36] 
in IDEaliSM has shown that the use of an MDO system 
formulation platform, such as InFoRMA, can result in a 
significant setup time reduction, even larger than 90%.
Visualization packages The visualization of large MDO 
systems can be challenging, but is crucial to share and 
discuss the design developments within the heterogene-
ous team of experts. A visualization package to inspect 
and communicate the workflow schema files produced 
by the MDO system formulation applications described 
above can also contribute to decreasing the setup time 
and definitely increases the trust of the design team in 
the large, complex automated analysis chain that is being 
built. Many different forms of visualizations suitable to 
MDO developments exist, as discussed by Aigner et al. 
[37], including the well-known XDSM (Extended Design 
Structure Matrix) [38]. Although both KADMOS and 
InFoRMA provide some static MDO visualization capa-
bilities, in AGILE a dedicated web-based visualization 
tool, called VISTOMS (VISualization TOol for MDO 
Systems) has been developed, which can provide various 
dynamic and scalable visualizations [39] via web pages.
Collaborative workflows These workflows are the execut-
able instances of the MDO solution strategy produced 
during the MDO system formulation phase (Fig. 1). The 
term collaborative is used to express the fact these work-
flows combine different disciplinary subworkflows from 
the tool repository, which are owned by different disci-
plinary experts (or teams), into one optimization work-
flow. The combination of such subworkflows can be very 
challenging, especially when the disciplinary teams are 
distributed either geographically, digitally (i.e., subwork-
flows running on different server domains), or both. Two 
main PIDO tools are used in AGILE and IDEaliSM to 
assemble the executable MDO workflows: Optimus by 
Noesis Solutions4 and the Remote Component Environ-
ment (RCE)5 by DLR [40]. Both platforms have been spe-
cifically augmented in these projects to enable the auto-
matic generation of executable workflows based on the 
MDO solution strategy graph produced by KADMOS and 
InFoRMA [26, 41]. Within AGILE the interoperability of 
cross-organizational tools (with access restrictions due to 
intellectual property) in the same executable workflow is 
supported by the Netherlands Aerospace Center (NLR) 
tool BRICS [42].
Schema operations library This category contains the col-
lection of useful methods to inspect, check, or analyze 

the workflow schema file produced by the MDO system 
formulation applications. It contains functions to check 
files for their validity (e.g., with respect to the schema 
definition), to determine key values (e.g., number of 
tools, number of parameters), and to edit instances of the 
schema file (e.g., by removing or adding tools and param-
eters). In AGILE most of these libraries are provided by 
KADMOS and they are equivalent to some of the func-
tions in the TiXI6 and TiGL7 libraries used to inspect and 
adjust CPACS files.

All the new developments discussed so far are summarized 
in Fig. 3, where, similarly to Fig. 2, each one of the pre-
sented MDO support framework applications is positioned 
with respect to the five main stages of the MDO system 
development process presented in Fig. 1.

1.2  Origins of CMDOWS: why a standard to store 
and exchange MDO systems?

In the early phases of the AGILE and IDEaliSM project, 
the various applications used to support the development 
of an MDO system (from the five categories discussed in 
the previous section), were coupled as illustrated in Fig. 4a. 
Indeed most of the applications had to communicate directly 
with each other, with obvious problems of flexibility and 
maintainability of the overall MDO support framework, due 
to the many ad-hoc interfaces. Besides, it was realized that 
the benefits (in terms of overall MDO system setup time 
reduction) of the vendor-neutral graph-based representa-
tions of the MDO workflows produced by KADMOS and 
InFoRMA were limited without the possibility to automati-
cally generate the executable workflows using a PIDO tool 
of choice. Also, the investment in the development of the 
visualization packages would not have been worth it for one 
specific MDO system formulation tool. On the other hand, 
the ad-hoc development of visualization capabilities both 
inside InFoRMA and KADMOS was also not feasible within 
the project time frame.

Eventually, also on the basis of the evident benefit pro-
vided by the CPACS-based central data repository, the 
authors developed the conviction that a dedicated standard 
format to define, store and exchange MDO systems would 
provide a key enabler for the automation of the entire formu-
lation and execution phase of any large collaborative MDO 
system.

The need of such an exchange format was first advo-
cated within IDEaliSM to facilitate the translation of the 
MDO system formalization generated by InFoRMA into 

4 https ://www.noesi ssolu tions .com/our-produ cts/optim us, 
accessed March 15th 2018.
5 http://rcenv ironm ent.de, accessed March 15th 2018.

6 https ://githu b.com/DLR-SC/tixi, accessed March 15th 2018.
7 https ://githu b.com/DLR-SC/tigl, accessed March 15th 2018.

https://www.noesissolutions.com/our-products/optimus
http://rcenvironment.de
https://github.com/DLR-SC/tixi
https://github.com/DLR-SC/tigl
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executable workflows in Optimus. To this purpose a proto-
type neutral format was defined by Hoogreef [26]. However, 
it is in AGILE that the full development of a neutral format 
for storage and exchange of MDO systems has taken place. 
The result is the CMDOWS format, which stands for Com-
mon MDO Workflow Schema and is the main subject of this 
paper (see also Fig. 3, bottom).

The need for standardization in engineering design is, 
of course, not something new. Definitions of standardized 
formats can be found in earlier work and are usually moti-
vated by similar requirements as the CMDOWS format. 
For example, Gondhalekar et al. [43] proposed a neutral 
format in the context of the “behavioural digital aircraft” 
project CRESCENDO [44] to exchange computational 
workflows and demonstrated that through such a format the 

same workflow can be built in two different workflow plat-
forms. Similarly, another format that is gaining momentum 
is the Functional Mock-up Interface (FMI) [45]. FMI is a 
platform-independent standard that is aimed at supporting 
both model exchange and co-simulation of dynamic mod-
els. Both these examples are concerned with the sharing of 
tools within the collaborative workflow, but do not consider 
other types of applications used to support the development 
of MDO systems, as was discussed in the previous sec-
tion. Other formats related to CMDOWS tackle the neutral 
description and visualization of processes, as is done with 
BPMN (Business Process Model and Notation) [46] that is 
maintained by the Object Management Group. A specific 
visualization standard that captures both process and data 
flow is provided by the XDSM by Lambe and Martins [38]. 

Fig. 3  Mapping of the research 
activities within the projects 
AGILE and IDEaliSM on the 
MDO system development 
process in Fig. 1

Tool
repository

MDO
problem

Formulation phase

MDO solution
strategy

Collaborative
workflow

MDOptimized
design

Execution phaseStages of the
MDO system in
a typical MDO 
project

AGILE and
IDEaliSM
research areas

Project
solutions for
supporting
MDO system
development

Engineering
(tool)
library

CPACS-based
multidisciplinary
tool repository

Solutions for the automatic formulation, integration and execution of
complex and distributed MDO systems

PIDO tools 
with

“scriptable”
workflow
definition

Application areas:
•

•
•

Conventional &
novel aircraft
Aircraft systems
Automotive
systems

InFoRMA: semantic web 
technologies-based tool to 

advice, formalize and
integrate MDO architectures

KADMOS: graph manipulation-
based tool to formulate and

integrate collaborative 
MDO systems

•

•

PIDO tools with
automatic
workflow defini-
tion based on a
standard ex-
change format

BRICS tool to
support cross-
organizational
tool interopera-
bility

I
D
E
a
l
i
S
M

A
G
I
L
E

VISTOMS: visualization package to support debugging and
information sharing or complex MDO system formulations

KE-chain: platform for overall MDO system development
process integration

CMDOWS: standard exchange format to store and
exchange MDO systemsCMDOWS

CMDOWS CMDOWS

CMDOWS

CMDOWS

Fig. 4  Links between the MDO 
system formulation platform 
and other MDO framework 
categories with two different 
approaches

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

(a) Direct coupling approach

schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

Schema
operations
library

(b) Central workflow schema approach



612 I. van Gent et al.

1 3

The CMDOWS format proposed in this paper follows the 
philosophy of the above-mentioned standards, but in the 
specific context of collaborative MDO projects and with the 
aim to link together a broader range of applications.

Thanks to the definition of CMDOWS, the application 
links within the MDO support framework being developed 
in AGILE have changed from what is shown in Fig. 4a to 
the new centralized structure shown in Fig. 4b. The graph-
based files generated by KADMOS can be stored first as 
CMDOWS files and then translated into executable work-
flows by any PIDO tool able to interpret such standard. With 
the same level of flexibility, the interconnected tool reposi-
tories introduced above can be translated into CMDOWS 
files, which can then be adjusted and enriched by KADMOS, 
to produce MDO problem graphs (storable again using the 
CMDOWS standard) and finally MDO solution strategy 
graphs based on given architectures (again storable using 
CMDOWS). Eventually, the visualization package, rather 
than accessing the different internal data structures of KAD-
MOS and InFoRMA, can read and visualize their produced 
CMDOWS files and help inspecting and monitoring the state 
of the MDO system during the three stages of the formula-
tion phase.

The five support application categories depicted in Fig. 4b 
can have bidirectional links to the workflow schema, how-
ever, for all of them a primary and a secondary link direction 
can be identified,8 as illustrated in Fig. 5. For example, the 
visualization package has the primary link of being able to 
open any workflow schema file and depict the visualizations. 
A secondary link would be in place, if the visualization 
package would offer users also the possibility to manually 
edit the visualized CMDOWS file. Generally, the primary 

link is the one that is most directly useful and, most of the 
time, also easiest to develop for the category at hand.

1.3  Structure of this paper

This paper is structured as follows: the proposed schema is 
described in full detail starting from the list of functional 
requirements in Sect. 2. CMDOWS files generated for a 
classic MDO benchmark problem are used as examples to 
illustrate the main branches of the schema. The capability 
of the proposed schema to support the full development of a 
complex collaborative MDO system is demonstrated in the 
study case presented in Sect. 3. This case study concerns 
the aerostructural optimization of an aircraft wing using 
the AGILE MDO framework. It includes all the activities 
from tool repository definition to the generation, based on 
CMDOWS, of executable workflows for two different PIDO 
tools. Finally, the main conclusions and an outlook on future 
developments are given in Sect. 4.

2  CMDOWS

In this section the full CMDOWS definition is described 
starting from the functional requirements.

2.1  CMDOWS functional requirements

The proposed schema is based on the following nine main 
functional requirements:

 (I) Machine-interpretable The format in which the 
MDO system is stored should be machine-inter-
pretable up to the finest level of detail.

 (II) Human-readable The schema should allow any 
designer to inspect at least the top-level correct-
ness of the content, while users and developers 
with a background in design engineering or com-
puter science should be able to find and understand 
all the fine details. This human-readability aspect 
is important to enable the use of the schema by 
a wider community and to make connecting new 
MDO framework applications easy.

 (III) Neutral The schema should not contain elements 
that are specific to any project, MDO framework 
application, or developed product. However, the 
schema should accommodate the storage of any 
such additional information at specific locations to 
meet practical issues of certain projects, applica-
tions, or products, thereby allowing project-specific 
additions to the schema file at the dedicated file 
locations.

schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

Schema
operations
library

primary link

secondary link

export
   file of 
repository

     export file of
   MDO problem
and solution strategy

parse file
with MDO

solution
strategy

adjust file contents
                 (GUI)

import
file

export schema
   file of any workflow

write /
read file

  visualize
file contents

Fig. 5  Primary and secondary links between the workflow schema 
and the MDO framework application categories

8 N.B. This ordering of the links can be considered subjective and 
here the ordering is done based on the perspective of the MDO sys-
tem integrator.
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 (IV) Validation File instances that are based on 
CMDOWS, should be easily validated against the 
schema definition.

 (V) Adaptable From one version release to another, the 
schema should always be flexible enough to pro-
vide room for extensions and enrichment, while at 
the same time its basic structure should not change 
too drastically to keep any existing framework 
application links easily (with a small developing 
effort) compliant with the release of each new ver-
sion.

 (VI) Balance of redundant information Data representa-
tion in the schema should aim at minimum redun-
dancy; however, in special cases, this redundancy 
guideline can be violated for convenience (i.e., to 
facilitate the link with certain applications that lack 
the capability to automatically derive the required 
input based of the information stored in the for-
mat). Such redundancies bring the risk of generat-
ing inconsistencies in file instances, and therefore, 
a balance should be found between information that 
can be implicitly and explicitly stored in the file.

 (VII) Support all MDO system stages The schema should 
support storage of the MDO system during the 
three different stages of the formulation phase, as 
indicated in Fig. 1.

 (VIII) Support all MDO framework categories The 
schema should accommodate all information that 
is required to enable the links with the five differ-
ent MDO framework application categories, as 
depicted in Fig. 5.

 (IX) Support tool heterogeneity A broad range of analy-
sis tools from the tool repository, including their 
execution methods, should be stored in the schema, 
such as simple mathematical expressions, remotely 
executed ‘black boxes’, and surrogate models.

With the requirements listed above in mind the CMDOWS 
version 0.7 has been completed and tested for a realistic 
aircraft MDO case.

2.2  CMDOWS definition

The eXtensible Markup Language (XML)9 has been selected 
as the syntax to store the schema definition. This defini-
tion is stored using the XML Schema Definition (XSD)10 
format and this XSD definition of CMDOWS can be used 

to validate any CMDOWS XML instance, thereby meeting 
requirement IV (req-IV) on validation in Sect. 2.1. XSD 
also meets req-I and req-II, as it is both human-readable 
and supports machine-interpretability. In addition, the XML 
format is independent of the programming language used. 
Many programming languages actually include advanced 
modules to work with the XML format, thereby supporting 
the human-readability requirement in the sense that many 
users can easily familiarize themselves with CMDOWS 
within their preferred programming environment. Another 
argument for the use of XML is the recent adoption of the 
XML-based CPACS in the MDO community, meaning that 
many people are already familiar with the use of XML as a 
sharable storage format.

The CMDOWS definition (see Fig. 6) is structured in six 
top-level elements, grouped in three basic categories:

• Information
• Nodes
• Connections

This categorization is based on the assumption that any 
MDO system can be modeled as a graph, as discussed in 
Sect. 1.1. Graph objects consists of nodes and their con-
nections (also referred to as edges). In the elements of the 
information category generic information about the graphs 
is stored, such as its creator, version, and the MDO problem 
definition used in the second stage of the MDO development 
process. Node- and connection-specific information is stored 
as metadata within the respective node and connection 

header

problemDefinition

executableBlocks

parameters <...>

architectureElements

workflow

Nodes

Connections

Information

Fig. 6  Top-level elements of CMDOWS and the three main element 
categories

9 https ://www.w3sch ools.com/xml/defau lt.asp, 
accessed March 15th 2018.
10 https ://www.w3sch ools.com/xml/schem a_intro .asp, 
accessed March 15th 2018.

https://www.w3schools.com/xml/default.asp
https://www.w3schools.com/xml/schema_intro.asp
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categories. Each category will be discussed in a separate 
section.11

An important concept that is used at different locations in 
the schema is the separation between parameters and execut-
able blocks. Any node element describing a tool repository, 
MDO problem, or MDO solution strategy (see Fig. 1) will 
fall under one of these two groups. The parameters group 
refers to all the elements inside an MDO system that are 
assigned a certain value. Parameters are the inputs and/or 
outputs of the executable blocks, such as the actual opti-
mization parameters (whose values remain constant during 
optimization) and the design variables (including both actual 
design variables and the copy or surrogate variables intro-
duced by different MDO strategies). The executable blocks 
are defined as elements that take certain inputs, perform an 
operation, and finally produce certain outputs. Since the dis-
tinction between parameters and executable blocks is a key 
aspect, the element names parameters and executa-
bleBlocks appear at different levels of the schema.

For example, a parameter x1 is input to an executable 
block and will be defined in the main parameters ele-
ment of the nodes category. Generic information about the 
parameter, such as a description, unit, and data type would 
be stored directly on the element as metadata. When this 
parameter has to be indicated as a design variable (including 
bounds and nominal value) for a certain MDO system, then 
this information is stored inside the problemFormula-
tion/parameters element. This way, the elements in 
the nodes category remain independent and valid for any 
MDO system, while the problemFormulation element 
contains information that is specific to the MDO problem 
stage from Fig. 1. The two elements are linked together 
through unique identifiers (UIDs) as will be shown in more 
detail in the next sections.

2.2.1  Top‑level elements

The six top-level elements from Fig. 6 are discussed in more 
detail in this section.

Elements in the information category The information 
elements of CMDOWS are header and problemDefi-
nition. Lower level elements of the information elements 
are shown in Fig. 7. The header element contains meta-
data relative to the CMDOWS file itself, such as the creator, 
a description, the schema version used, etc.

The definition of the MDO problem to be solved can be 
stored in the problemDefinition element. This element 
can get a UID assigned as an attribute (indicated with the @ 
sign in Fig. 7) so that it can be referred to in other parts of the 
schema. The other two main elements of the problem defini-
tion are problemRoles and problemFormulation. 
In the problemRoles branch all the special parameters 
of the MDO system get their roles assigned, such as design, 
objective, constraint, or state variable, including certain 
parameter settings for the problem at hand (i.e., upper and 
lower bounds, constraint types). All executable blocks also 
get a problem role, based on their connections with other 
blocks and their position with respect to the design variables, 
see preDesvarsBlocks and postDesvarsBlocks 
in Fig. 7. The second branch of the problem definition is 
the problemFormulation, where the specification of 
the MDO architecture that should be imposed on the MDO 
problem and the logical order of the executable blocks are 
stored. This logical order is required to determine (among 
others) the feedback between different blocks and can also 
be used to automatically determine problem roles of the 
executable blocks.

Elements in the nodes category The node elements all 
represent either parameters or executable blocks and are 
separated into three subelements: executableBlocks, 
parameters, and architectureElements. Their 
subelements are depicted in Fig. 8. The executable-
Blocks element contains the function blocks that are stored 
in the tool repository. Two main types of executable blocks 
can be stored inside this element: mathematical functions 
and design competences. The mathematical functions are 
simple executable blocks that evaluate analytic expressions 
to determine the value of the outputs. These expressions 
can be stored directly in the mathematicalFunction 
element, thereby storing the full definition of that executable 
block. Hence, the actual operation performed by the block is 
stored for mathematical functions. Contrary to this, design 
competences represent more complex executable blocks 
where the operation performed by the block is unknown 
(or at least cannot be stored as simple mathematical expres-
sions). The designCompetence element, therefore, 
stores a block that performs an unknown operation (it acts 
as a so-called ‘black box’). Instead of storing the operation 
itself, the schema of the designCompetence element 
can accommodate a range of specifications for executing the 
tool. For example, a design competence can be an integrated 
analysis tool on the local system, a remotely called execu-
tion using a special server integration, a surrogate model, 
or any other form of computational module present in a col-
laborative workflow. Additional information about the com-
petences, such as ownership and the outcome of eventual 
verification steps, can be stored in the metadata element, 
see Fig. 8.

11 N.B. For brevity, the description in this paper is limited to the top-
level elements of the schema up to level 4 (when the root element is 
considered to be at level 0), but the full schema, which has elements 
up to level 7, can be inspected at the open-source repository, see: 
http://cmdow s-repo.agile -proje ct.eu.

http://cmdows-repo.agile-project.eu
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The second node element is the parameters ele-
ment. This element contains all the inputs and outputs of 
the executable blocks stored in the main executable-
Blocks element. If the executable blocks are integrated 
using a central data schema approach (i.e., CPACS), then the 
parameters element will contain all the unique elements 
that are used from that data schema as separate parameters. 
Additional information about the parameters can also be 
stored, such as a label, description, unit, and data type (real, 
float, list, etc.).

The last node element is architectureElements. 
This element includes both parameters and execut-
ableBlocks, which differ from those stored in the top-
level parameters and executableBlocks element, 
because they are the additional elements created when an 

MDO architecture is imposed on a specified MDO problem. 
For example, when an MDO architecture has to be imposed 
a new executable block has to be introduced to handle the 
optimization loop: an optimizer. This new element is stored 
as an architectureElements/executable-
Block. New parameters also have to be introduced to con-
nect the optimizer to the rest of the system. Initial guesses 
for all design variables are required as input of the optimizer 
and the optimal (final) values of the design variables, objec-
tive, and constraints have to be connected as outputs. These 
parameters do not exist before the imposition of the MDO 
architecture and are, therefore, instantiated and stored as 
architectureElements/parameters. Similarly, 
other architecture elements are introduced including conver-
gers, consistency constraint functions and other components 

Information

header

creator

description

timestamp

fileVersion

cmdowsVersion

updates <...>

problemDefinition

@uID

problemRoles

parameters

designVariables <...>

designVariable

parameterUID

lowerBound

upperBound

nominalValue

...

objectiveVariables <...>

constraintVariables <...>

constraintVariable

parameterUID

constraintType

constraintOperator

referenceValue

requiredEqualityPrecision

stateVariables <...>

executableBlocks

preCouplingBlocks <...>

coupledBlocks <...>

postCouplingBlocks <...>

preDesvarsBlocks <...>

postDesvarsBlocks <...>

problemFormulation

mdaoArchitecture

convergerType

doeSettings

executableBlocksOrder <...>

...

Fig. 7  Elements in the CMDOWS category Information
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Fig. 8  Elements in the 
CMDOWS category Nodes
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that are specific to a given MDO architecture. For the com-
plete list of possible architecture elements in the schema, 
see Fig. 8. Next to newly introduced elements, the original 
executable blocks are also grouped into different types based 
on their relation to the coupled system by referring to their 
UID, see preCouplingAnalyses element and below 
in Fig. 8. This categorization can, for example, be used for 
assigning colors in the visualization of the CMDOWS file 
or when parsing the file to create an executable workflow.

Elements in the connections category CMDOWS contains 
a single element for storing the connections: workflow. In 
this element two different types of graphs can be stored: data 
graphs and process graphs. The combination of these two 
graphs constitutes the neutral definition of a workflow that 
needs to be executed to solve an MDO problem: the MDO 
solution strategy. The dataGraph element contains a data 
graph storing the connections (or edges) between param-
eters and executable blocks according to their input/output 
relations. This data graph can be stored for any stage of the 
MDO system in Fig. 1, where each stage would be repre-
sented by a separate CMDOWS file. The processGraph 
element is only used for the MDO solution strategy to store 

the process steps for running the different executable blocks. 
Metadata about the graphs can also be stored, such as the 
amount of nodes and edges, and the nesting of the process 
steps for the process graph (Fig. 9).

2.2.2  Illustrative example: storing the Sellar MDO system

The Sellar problem [47], a classical benchmark MDO prob-
lem widely used in MDO literature, was selected to demon-
strate the use of CMDOWS as a schema to store the three 
different stages of the MDO system during the formulation 
phase. As these stages (see Fig. 1) enrich the CMDOWS file 
step by step, the way in which each stage should be stored is 
described here to give the reader a clearer understanding of 
the different elements of the schema. The way this enrich-
ment is performed is out of the scope of this paper, but the 
interested reader is referred to Van Gent et al. [34], where 
this process is discussed in detail using the MDO system 
formulation tool KADMOS.

Stage I: Tool repository The tool repository for the Sellar 
problem consists of eight different tools. The original Sellar 
problem actually contains only five tools, but here, three fic-
titious tools (A, D3, and F2) are added to demonstrate how 
an MDO problem can be based on a subset of tools from 
the repository. In the top right of Fig. 10 a design structure 
matrix of the repository is shown, with the eight tools rep-
resented by the blocks on the diagonal. The only elements 
from the schema needed to store a tool repository are the 
designCompetences, parameters, and workflow/
dataGraph. As shown in Fig. 10, the different execut-
able blocks are integrated differently: for the functions A, 
F1, F2, G1, and G2 mathematical expression are available, 
while the disciplinary analyses D1, D2, and D3 are design 
competences, meaning that the mathematical expressions 
to be executed are assumed to be unknown (for illustration 
purposes). For all executable blocks the inputs and outputs 
of each block are defined by referring to the right elements 
from the parameters list using the relative parameter 
UID (as is shown for parameters z2 and f in the figure). 
Finally, the dataGraph element contains the full graph, 
as illustrated in the lower right corner of the figure, by list-
ing the edges between all executable blocks and parameters. 
The storage of the edge x1 → F1 is illustrated in the figure.

Stage II: MDO problem One additional element is 
required to store the MDO problem in a CMDOWS file: 
problemDefinition, see Fig. 11. In this element, the 
problem roles and problem formulation are indicated. As 
shown in Fig. 11, the parameters z1, z2, and x1 get the spe-
cial role of design variable. Similarly, f is assigned the role 
of objective for the optimization. The roles of the executable 
blocks are also specified and only the tools strictly needed 
to solve the MDO problem have been selected from the tool 

Connections

workflow

problemDefinitionUID

dataGraph

name

edges <...>

metadata

processGraph

name

edges <...>

nodes <...>

metadata

...

Fig. 9  Elements in the CMDOWS category connections
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repository, as the tools F2 and D3 are not present in the data 
graph in Fig. 11 anymore.

Stage III: MDO solution strategy When the problem for-
mulation has been set, in this example to a Multidiscipli-
nary Feasible (MDF) architecture with a Jacobi type con-
verger, the full schema is used to store the MDO solution 

strategy, as depicted in Fig. 12. This strategy is automati-
cally imposed on the MDO problem using the MDO system 
formulation platform KADMOS [34]. Two new elements are 
added to the file with respect to the MDO problem defini-
tion: the architectureElements and the workflow/
processGraph. Actually, it is not just that these elements 
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Fig. 11  Illustration of the storage of the Sellar MDO problem in a CMDOWS file
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Fig. 12  Illustration of the storage of the Sellar MDO solution strategy according to the MDF-Jacobi architecture in a CMDOWS file
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are added, but all the elements in the CMDOWS file are 
updated when the MDO architecture is imposed on the MDO 
problem. For example, compare the data graphs depicted in 
Figs. 11 and 12 to see the large amount of adjusted data con-
nections. With the MDF architecture used in this example, 
the architectural executable blocks optimizer and con-
verger are added to the file, and a range of architectural 
parameters are added, such as initialGuessDesign-
Variables and couplingCopyVariables.

This concludes a brief illustration of the use of CMDOWS 
for storing MDO systems at different stages. The use of 
CMDOWS to store MDO systems has been illustrated here 
for the small Sellar MDO system. Naturally, the schema 
was not created for such small cases, but rather to exchange 
large-scale MDO systems, as discussed in the next section.

3  Case study: AGILE development process 
for aerostructural wing design

In this case study, CMDOWS files have been created for 
a realistic wing aerostructural design case. The power of 
CMDOWS is demonstrated by presenting the different MDO 
framework applications that were integrated using the cen-
tral workflow schema approach in the AGILE project.

3.1  Description

Any standardized schema can be put to the test when the 
exchangeability it is supposed to support can be assessed in a 
realistic case. This was done here by linking different appli-
cations of the AGILE MDO framework through CMDOWS, 
as conceptually shown in Fig. 5. In AGILE, the five stages 
shown in Fig. 1 are supported by a set of MDO framework 
applications, as discussed in Sect. 1.1 (Fig. 3) and more 
elaborately in earlier work [48]. The AGILE MDO frame-
work is a hybrid framework where different partners provide 

an application of their specialty with the aim to improve a 
part of the collaborative MDO design process.

The developments in the AGILE project can be mapped 
directly on to the conceptual overview in Fig. 5. This is 
shown in Fig. 13, where at least one application is available 
for each of the five categories:

• Tool repository:

  KE-chain  The KE-chain platform12 is used in 
AGILE to integrate the complete 
MDO development process, see refer-
ence [48]. With respect to CMDOWS, 
the platform includes a module where 
a design team can add a collection of 
disciplinary tools in the browser and 
can export this online tool repository 
as a CMDOWS file.

  Surrogate model  
repository (SMR)  

A second type of tool repository 
is the SMR [42] developed by the 
NLR. In the SMR a collection of 
surrogate models is stored which can 
also be exported as a CMDOWS file.

• MDO system formulation:

  KADMOS  KADMOS is the only MDO system 
formulation platform that supports 
CMDOWS at the moment. KADMOS 
can import CMDOWS files at any stage, 
transform the MDO system to other stages 
of the formulation phase, and export the 
CMDOWS file of an updated MDO sys-
tem definition.

• Visualization package:

  KADMOS  Basic visualizations of CMDOWS files 
can be provided by KADMOS. This is 
restricted to static PDF files and graphs, 
and is thereby only suitable for small 
MDO systems or to create a top-level 
overview.

 VISTOMS  More sophisticated, dynamic visu-
alizations can be created by opening a 
CMDOWS file with VISTOMS. This 
tool enables the visualization of MDO 
systems of any size in multiple dynamic 
overviews that can be inspected up to the 
finest details. This package is discussed in 

Tool repository

Visualization
package

Collaborative
workflow

MDO system
formulation

Schema 
operations library

CMDOWS

SMR KADMOS

KADMOS

KADMOS
& others

VIST   MS

export
   file of 
repository

     export file of
   MDO problem
and solution strategy

parse file
with MDO

solution
strategy

              import
repository file

write /
read file

visualize file 
    contents

primary link

secondary link

Fig. 13  The established links between CMDOWS and the AGILE 
MDO framework applications for the wing design case study

12 https ://www.ke-chain .com, accessed March 15th 2018.

https://www.ke-chain.com
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full detail by Aigner et al. [37]. Note that 
the visualizations of CMDOWS files can 
also be created online at the open-access 
CMDOWS interface.13

• Collaborative workflow:

  RCE  RCE is an open-source development by DLR 
that is used to create collaborative workflows. 
RCE’s latest version contains an extension to 
import CMDOWS files and directly create an 
executable workflow.

 Optimus  Optimus is a commercial workflow platform 
for which an extension has been created to 
import CMDOWS files. This development 
is discussed in detail in a paper by Van Gent 
et al. [41].

• Schema operations library:

  KADMOS  At the moment KADMOS is the 
only platform that can both import 
and export CMDOWS files. There-
fore, it can also perform standardized 
operations on a CMDOWS file. The 
CMDOWS module of KADMOS 
can be used to automatically adjust 
CMDOWS files or to request infor-
mation stored in the file, such as the 
amount of executable blocks, the 
MDO architecture used, etc.

  General XML  
editors/libraries  

Instead of using KADMOS, general 
XML editors or libraries are also 
used to inspect and adjust CMDOWS 
files. An example of such a library 
is the open-source XML interface 
library TIXI developed by DLR.

3.2  Results

The aerostructural wing design case used here to demon-
strate the integrated platforms has been described in other 
work [26, 34, 37, 41]. In short, the MDO system in this 
case consists of a collection of CPACS-compatible aircraft 
design and analysis tools from DUT. From a tool repository 
of 29 executable blocks and more than 28,000 parameters, 
an MDO problem with eight executable blocks involving 
281 parameters is composed. This MDO problem can then 
be solved using different solution strategies, where in this 

case study the solution strategy demonstrated is the MDF 
architecture with a Jacobi iteration scheme (as was also used 
in the Sellar case illustration in Sect. 2.2.2).

The CMDOWS-compatible framework applications 
shown in Fig. 13 are used for different stages of the MDO 
system in Fig. 1. The use of the applications with respect to 
the first four stages of the MDO system from Fig. 1 is sum-
marized in Fig. 14.

The tool repository in the first step is provided through 
the KE-chain integration. The executable blocks are defined 
by specifying their CPACS input and output files. KE-chain 
then interprets these files and creates the list of unique 
parameters. Additional information on the executable blocks 
(e.g., owner, fidelity level, etc.) is provided through the 
browser interface. The CMDOWS file of the tool repository 
exported by KE-chain can be visualized with the VISTOMS 
application. The VISTOMS application can actually be used 
for any stage of the MDO system in the formulation phase, 
as is shown in Fig. 14.

Next, KADMOS is used to formulate the MDO problem 
that needs to be solved. The tool repository CMDOWS file 
is imported by the MDO system formulation platform and 
KADMOS operations are used to transform the repository 
data graph into the MDO problem representation (more 
details on this can be found in [34]). KADMOS then exports 
the CMDOWS file of the MDO problem and VISTOMS can 
be used again for detailed inspection of the problem formu-
lation. This visualization is generally used to communicate 
the setup of the MDO problem with the design team.

KADMOS is used a second time for composing the MDO 
solution strategy. Based on the MDO problem CMDOWS 
file containing the problemFormulation element, 
KADMOS can impose the solution strategy and provide the 
full workflow description. KADMOS adds architecture ele-
ments to specify the MDO solution strategy according to the 
selected architecture and stores in the CMDOWS file both 
the adjusted data graph and the newly generated process 
graph. At this last formulation stage the VISTOMS pack-
age can be used to check the MDO solution strategy with 
the whole design team, for example using the XDSM shown 
in Fig. 14.

The ultimate test of the full schema now comes when 
the gap with the executable phase has to be bridged. Within 
AGILE, both Optimus and RCE have been extended to ena-
ble automatic generation of executable workflows based on 
CMDOWS files and both have been able to parse executable 
workflows for the wing design case, as shown in the bottom 
of Fig. 14. Any other PIDO tool able to do the same, could 
directly be used interchangeably in the AGILE MDO frame-
work, without any modification to the other applications. 
The parsing of Optimus workflows is discussed in [41]. With 
the availability of the executable workflows the role of the 
CMDOWS format in the formulation phase is concluded.13 http://cmdow s.agile -proje ct.eu, accessed March 15th 2018.

http://cmdows.agile-project.eu
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3.3  Discussion

Looking back at the functional requirements described in 
Sect. 2.1, it is important to note that the executable work-
flows created are truly hybrid workflows. Different types of 
tools are integrated in one top-level collaborative workflow, 
thanks to the support of the CMDOWS format.

The first type is used by the three ‘blue’ tools in the MDO 
solution strategy in Fig. 14. These are local tools that have 
been integrated directly in Optimus and RCE. Then the 

‘green’ disciplinary analyses are of another type, as these 
are subworkflows that need to be executed remotely because 
of intellectual property restrictions (these tools cannot be 
distributed to run them locally). Therefore, these discipli-
nary analysis are integrated using a BRICS [42] component 
to run the actual tool on another server domain. Finally, the 
‘red’ tools are simple mathematical functions describing the 
objective and constraint functions. These mathematical func-
tions are parsed as native scripts in the PIDO tool, since this 
will result in the most efficient execution. The native scripts 

Fig. 14  Visualization of the 
AGILE MDO framework 
applications from Fig. 13 for the 
wing design case, mapped on 
the first four stages of the MDO 
system in Fig. 1
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run the mathematical expressions directly, without the need 
to integrate any tool in the collaborative workflow. This col-
laborative workflow clearly shows that the schema supports 
the tool heterogeneity requirement IX (req-IX) specified in 
Sect. 2.1.

Concerning the other requirements in Sect. 2.1, the wing 
design case study has shown the level of compliance of the 
current schema. The XML CMDOWS instances support 
both human-readability (req-II) and machine-interpretability 
(req-I). This human-readability is also proven by the fact that 
many of the developers of AGILE framework applications 
have been able to connect to CMDOWS in a short time. The 
neutrality of the schema (req-III) has been maintained, even 
when adding new elements to support the links with the 
AGILE framework applications. Hence, there are no traces 
of application-specific elements like KADMOS, KE-Chain, 
Optimus, etc. Moreover, the core structure of CMDOWS 
still allows adjustments (req-V), as the schema was extended 
step by step to link different applications and more adjust-
ments can be made to meet future developments.

A key future improvement that was found concerns the 
redundancy of the content of the schema (req-VI). Through-
out its development, initial CMDOWS versions were always 
very lean in the information stored in a CMDOWS file. 
Some of the application links demanded that certain infor-
mation is stored explicitly in the schema, even though this 
information can be interpreted from the information already 
stored. In future developments, the links with applications 
will be checked for this type of information and per case it 
will be decided whether to explicitly add the information in 
the schema.

The wing design case has shown that three MDO system 
stages (req-VII) are supported and even the bridge to the 
execution phase can be made successfully. At the moment, 
not all links are made with the MDO framework applications 
(req-VIII). The links in Fig. 14 are mostly primary links 
between CMDOWS and the applications, as explained in 
Fig. 5. In future work, all applications will be extended and 
the secondary links will also be developed to enhance the 
capabilities of the AGILE MDO framework.

The implementation of the CMDOWS format in a het-
erogeneous MDO framework has enabled the coupling of 
multiple MDO framework applications that would normally 
operate independently. The associated time reduction that 
motivated this development has not been quantified yet, 
though it is estimated by MDO experts to be significant 
[10, 13]. For example, the time reduction achieved through 
InFoRMA for creation of the executable workflows for the 
same MDO problem, where also the same MDO solution 
strategy was imposed automatically, were beyond 90% [26] 
using a prototype version of a standardized format. The 
quantification of the time reduction impact of CMDOWS 
within a broader MDO framework will be one of the results 

of the final year of AGILE, where the framework integra-
tion supported by CMDOWS will be put to the test in six 
MDO studies of unconventional aircraft configurations (e.g., 
blended-wing body, box-wing). The increased agility of 
the collaborative MDO framework enabled by CMDOWS 
is estimated to contribute time reductions in the order of 
10–20%. This reduction would be amplified in a true MDO 
study project, where the assembly of a single MDO strategy 
is only one of the multiple reconfiguration steps involved. 
In general, any MDO study starts with simple convergence 
studies, followed by sensitivity studies aimed at selecting 
the most convenient set of design variables. Once a given 
MDO strategy has been implemented, the insights obtained 
from the execution typically lead to a change or addition 
of tools, selection of different design variables, objectives 
and constraints, or the switch to a different architecture. As 
demonstrated in AGILE [33, 49], CMDOWS is the actual 
facilitator of these multiple studies providing an essential 
contribution to the pursued agility.

Although the AGILE design cases strongly benefit from 
the adoption of CMDOWS, a number of criteria should be 
considered to evaluate its convenience in a generic MDO 
study case:

• size of the MDO system under consideration
• heterogeneity and distribution of the team
• heterogeneity of the MDO framework
• maturity of the existing MDO framework with respect to 

using CMDOWS

When dealing with large (in terms of number of involved tools 
and coupling parameters) MDO systems, design teams will 
benefit greatly from adapting CMDOWS to quickly set up a 
coherent tool repository and use that repository to formulate 
the MDO problem and solution strategy. Similarly, a hetero-
geneous and distributed team (many specialists with different 
backgrounds working at different locations) will benefit from 
CMDOWS to serve as a “common language” to streamline the 
definition and use of MDO systems of any size.

The heterogeneity of the MDO framework, as indicated 
in Fig.  4, has been the main motivation for developing 
CMDOWS and is also the strongest indication for its effec-
tive use. There is a general skepticism in the development and 
adoption of monolithic, holistic solutions that can cover all 
the aspects of performing MDO projects collaboratively, e.g., 
MDO system definition, visualization, problem formulation, 
reconfiguration and execution. Such solutions, whenever avail-
able, become obsolete quickly and are typically inflexible. A 
simple but comprehensive standard format as CMDOWS, on 
the other hand, allows the (re-)integration of many different 
applications, both commercial and in-house developed, thus 
providing maximum flexibility, scalability and adaptability.
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Finally, it is worth noting that not all people involved in 
a project necessarily need to familiarize themselves with 
CMDOWS, as this depends on the level of maturity of the 
MDO framework in using CMDOWS at the beginning of 
the project. In a mature framework all MDO applications 
will already use and produce CMDOWS files (see Fig. 5) 
and most people involved simply use these applications to 
perform their tasks. Only people involved in developing 
and maintaining the applications will have to invest time 
for familiarization. Based on experience in the AGILE pro-
ject, this familiarization time is limited to 2-3 days with 
some additional time required to understand the basic con-
cepts of MDO and XML. The AGILE project has proven 
that CMDOWS interfaces can be easily developed, includ-
ing parsers for a heterogeneous set of PIDO tools (RCE, 
Optimus). Once the interfaces are in place, the presence of 
CMDOWS is transparent to the user, but does not require 
any direct manipulation nor familiarization with the format 
itself.

4  Conclusions and future developments

The latest version (0.7) of the MDO system exchange for-
mat CMDOWS has been presented in this paper. CMDOWS 
supports the storage of an MDO system of any size at three 
different stages of the formulation phase: tool repository, 
MDO problem, and MDO solution strategy. The main goal 
of CMDOWS is to provide a format that allows different 
MDO framework applications to exchange the definition of 
the MDO system. CMDOWS was demonstrated using an 
aerostructural wing design problem within the AGILE con-
text. Different AGILE MDO framework applications were 
linked to CMDOWS and it was shown that all stages of the 
formulation phase are successfully supported by the schema. 
Moreover, the final formulation stage results in a CMDOWS 
file for which a collaborative workflow can be instantiated 
directly in the workflow softwares Optimus and RCE. This 
last functionality alone is already sufficient to demonstrate 
the key role a standard format to store and exchange MDO 
systems can play in the reduction of the setup time of an 
MDO system. The enabled check and debugging opera-
tions supported by automatically generated visualizations, 
together with the enabled automated generation of execut-
able workflows alone, can reduce setup time of MDO sys-
tems even beyond 90%.

Future work will focus on extending the schema, while 
still maintaining the nine main requirements stated in 
Sect. 2.1. As the AGILE MDO framework will grow, so 
could the schema to support additional or enriched links 
between CMDOWS and the MDO framework applica-
tions. An example of an enriched link would be the future 
extensions that might be required to support the storage 

of multilevel optimization architectures, such as BLISS 
(Bilevel Integrated System Synthesis) [50], since so far the 
schema has only been tested for monolithic formulations.

In conclusion, the current version of CMDOWS already 
demonstrated its potential and versatility by demonstrating 
the connection of five different MDO framework applica-
tions and its support for the development of an MDO system 
from the tool repository to the collaborative workflow stage 
for a realistic aerostructural wing optimization problem. It is 
expected that the presented developments will gain enough 
momentum and lead to a broad adoption of CMDOWS as 
a standard to store and exchange MDO systems for a large 
range of MDO framework applications.
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