

Delft University of Technology

CMDOWS: a proposed new standard to store and exchange MDO systems

van Gent, Imco; La Rocca, Gianfranco; Hoogreef, Maurice

DOI
10.1007/s13272-018-0307-2
Publication date
2018
Document Version
Final published version
Published in
CEAS Aeronautical Journal

Citation (APA)
van Gent, I., La Rocca, G., & Hoogreef, M. (2018). CMDOWS: a proposed new standard to store and
exchange MDO systems. CEAS Aeronautical Journal, 9(4), 607-627. https://doi.org/10.1007/s13272-018-
0307-2

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13272-018-0307-2
https://doi.org/10.1007/s13272-018-0307-2
https://doi.org/10.1007/s13272-018-0307-2

Vol.:(0123456789)1 3

CEAS Aeronautical Journal (2018) 9:607–627
https://doi.org/10.1007/s13272-018-0307-2

ORIGINAL PAPER

CMDOWS: a proposed new standard to store and exchange MDO
systems

Imco van Gent1 · Gianfranco La Rocca1 · Maurice F. M. Hoogreef1

Received: 23 November 2017 / Revised: 26 March 2018 / Accepted: 18 April 2018 / Published online: 23 May 2018
© The Author(s) 2018

Abstract
This paper proposes a new format to store and exchange multidisciplinary design optimization (MDO) systems. Here, the
generic term MDO system refers to the set of disciplinary tools, their exchanged data and process connections that, all
together, define an MDO computational setup. In the process leading to the formal specification of such a computational
system, the set of tools, data and connections evolves, until a complete MDO system formulation (not executable) is reached.
The proposed open-source standard, called CMDOWS (Common MDO Workflow Schema), has been developed to support
this process. The key aspect of the format is its neutral XML-based data representation, making any stored MDO system
exchangeable between the design team members and applications (e.g., tool repositories, visualization packages) developed
to support the team in setting up the MDO system. This exchangeability is a key enabler for the creation of a versatile MDO
framework. Furthermore, CMDOWS provides the starting point to translate any MDO system formulation into an execut-
able workflow using a workflow platform of choice. To the authors’ knowledge, such an exchange format does currently not
exist, notwithstanding the enormous potential it would have for the exploitation of large-scale MDO in industry. A case study
demonstrating the use of CMDOWS is presented in this paper. It was concluded that the current version of CMDOWS already
provides a robust standard to store and exchange MDO systems. The schema will be extended to meet future developments
and promote its adoption as a recognized standard in the broader MDO community.

Keywords MDO · CMDOWS · Standardization · Workflow schema · XML · MDO framework

Abbreviations
AGILE Aircraft 3rd generation MDO for innova-

tive collaboration of heterogeneous teams of
experts

BPMN Business process model and notation
CMDOWS Common MDO workflow schema
CPACS Common parametric aircraft configuration

schema

DLR German Aerospace Center
DUT Delft University of Technology
FMI Functional mock-up interface
IDEaliSM Integrated distributed engineering services

framework for MDO
KADMOS Knowledge and graph-based agile design for

multidisciplinary optimization system
InFoRMA Integration, formalization and recommenda-

tion of MDO architectures
MDO Multidisciplinary design optimization
MDF Multidisciplinary feasible
NLR Netherlands Aerospace Center
PIDO Process integration and design optimization
RCE Remote component environment
SMR Surrogate model repository
UID Unique identifier
VISTOMS Visualization tool for MDO systems
XDSM Extended design structure matrix
XML Extensible markup language
XSD XML schema definition

The research presented in this paper has received funding
from the European Union Horizon 2020 Programme (H2020-
MG-2014-2015) under Grant agreement no. 636202.

 * Imco van Gent
 i.vangent@tudelft.nl

 Gianfranco La Rocca
 g.larocca@tudelft.nl

 Maurice F. M. Hoogreef
 m.f.m.hoogreef@tudelft.nl

1 Faculty of Aerospace Engineering, TU Delft, Kluyverweg 1,
2629 HS Delft, The Netherlands

http://orcid.org/0000-0003-4421-031X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13272-018-0307-2&domain=pdf

608 I. van Gent et al.

1 3

1 Introduction

Multidisciplinary Design Optimization (MDO) is a design
methodology aimed at capturing and exploiting discipli-
nary interactions to improve multidisciplinary designs
using special mathematical formulations and computa-
tional structures. Within the aeronautic community, MDO
is considered an extremely high-potential discipline, both
for improving the performance of current aircraft designs
and supporting the development of future configurations.
However, so far, MDO has primarily been demonstrated
in literature on academic problems [1–5], while both tech-
nical and non-technical barriers [6–10] have limited its
adoption by design engineers in industry.

The transformation of MDO from a high-potential dis-
cipline into a wide-spread commodity design method in
an industrial setting entails a paradigm shift to which it
can be hard to adapt, especially when this would affect
the modus operandi of large and heterogeneous design
teams. Whereas most of the current design methods
allow the autonomous analysis of different disciplines
(by manually updating values coming from other disci-
plines), MDO requires the different disciplines to be cou-
pled together in one automated multidisciplinary analy-
sis chain [11]. It is the creation and management of this
automated chain, going outside (and often off-sight) the
conventional boundaries of discipline competence, that
forms a big hurdle in the application of MDO in a col-
laborative environment. In a survey [12] of their collabo-
rative MDO projects over the past decade, the German
Aerospace Center (DLR) found that around 60–80% of
the project was generally used to set up the automated
chain, which did not include any optimization yet. Sev-
eral other literature sources [11, 13] confirm that the so-
called formulation phase is consuming the most project
resources and is the most complex to handle, rather than
the actual execution of the numerical optimization. The
main stages within the formulation and execution phases
of a typical MDO project are summarized in Fig. 1, which

will be used throughout this paper to provide context to
the addressed research developments.

One of the most interesting outcomes from a survey of
recent MDO literature is that, despite the critical hurdle
provided by the formulation phase of an MDO system,
most of the research seems rather concerned with the exe-
cution phase of the MDO system development process.
Plenty of literature is also available assessing the benefit
of the MDO methodology in different application areas,
ranging from aircraft design [14–17] to spacecraft design
[18, 19] and the design of wind turbines [20–22].

Many recent publications are also available on new
optimization algorithms and in particular on the develop-
ment of advanced computation infrastructures to exploit
distributed computing power, e.g., cloud computing. A
limited amount of recent developments relevant to the for-
mulation phase of MDO systems can be found in literature.
These include the derivation of new MDO architectures,
such as [23, 24], that are not included in the exhaustive
overview published by Martins and Lambe [25]. On the
other hand, it is peculiar to observe that no new devel-
opments can be found in any of the commercial process
integration and design optimization (PIDO) platforms (the
commodity tools for the execution of MDO workflows),
for what concerns their capability to support users in the
formulation of MDO problems. As identified by Hoogreef
[26], there is no PIDO system that is able to advice or sup-
port in the selection of an appropriate MDO architecture
for the problem at hand, the problem formulation accord-
ing to this architecture, nor in the automatic integration
of executable MDO workflows according to a given MDO
architecture.

A limited amount of literature has been found on specific
research to support the formulation of MDO problems and
their reconfiguration according to different architectures.
Some dedicated languages and grammar have been proposed
such as REMS by Alexandrov and Lewis [27, 28] and Ψ by
Tosserams [29]. In addition, a few frameworks exist that
support the modelling process of MDO architectures, such

Tool
repository

MDO
problem

MDO solution
strategy

Collaborative MDOptimized
design

triggers
iteration

Formulation phase Execution phase

Fig. 1 Different stages of the MDO system in a typical MDO pro-
ject. In the formulation phase (left) the system is specified by going
from a repository of tools to a strategy to solve the MDO problem.
The execution phase (right) contains the executable instance of the

formulated solution strategy and its result. Usually, the found optimal
design triggers an iteration which requires an adjustment of the MDO
system at one of the earlier steps to further improve the design

609CMDOWS: a proposed new standard to store and exchange MDO systems

1 3

as �MDO by Marriage [30] and the more recent and popular
open-source suite OpenMDAO1 [31].

The outcome of this investigation on recent research
developments and state-of-the-art tools to support the devel-
opment of MDO systems is summarized in Fig. 2. It can be
concluded that nothing is available to support the automatic
execution (but not even some form of smooth integration)
of all the stages specified in Fig. 1. As a consequence, a
significant amount of manual, error-prone, time-consuming
and repetitive work is left to MDO specialists and system
integrators to set up a working MDO system, with the con-
sequences discussed at the beginning of this section.

1.1 New initiatives to support the development
of MDO systems

Delft University of Technology (DUT) was involved in two
international research projects that aim at supporting the
development of MDO systems by strongly reducing their
setup time. One is the EU-funded project AGILE2 (Aircraft
3rd Generation MDO for Innovative Collaboration of Het-
erogeneous Teams of Experts), where one of the main goals
was to reduce by 40% the formulation phase of large col-
laborative MDO systems for aircraft design. Similar objec-
tives were pursued within the ITEA project IDEaliSM3
(Integrated and Distributed Engineering Services frame-
work for MDO), where partners, from both the aeronautic
and automotive supply chain, developed tools and methods
to enable the integration of distributed and collaborative
MDO frameworks. In both projects, MDO support frame-
works were developed, which included various and different
applications, that can be grouped according to the following
five categories:

Tool repositories A tool repository is a database that con-
tains the definitions of a collection of design and analysis
tools which can be made available to the design team to
perform MDO. The repository does not necessarily con-
tain the tools themselves, as the sharing of the tool might
be prohibited by intellectual property restrictions. In that
case, a repository contains the specification of the (inter-
linked) inputs and outputs of the tools and the way in
which each tool can be (remotely) executed. In AGILE, a
very convenient approach to assemble large tool reposito-
ries, also with tools with many inputs and/or outputs, has
been devised based on the use of a central data schema to
which each tool input and output is interlinked. Being the
focus of AGILE on aircraft design, the DLR standard data
model for aircraft CPACS (Common Parametric Aircraft
Configuration Schema) [32] has been adopted as central
data schema. Using this approach, multiple tool reposi-
tories (e.g., a repository containing disciplinary analysis
tools and a second repository containing surrogate mod-
els) can be combined in a single workflow schema file
(so-called repository connectivity graph; details later in
this paper), as long as the interlinking is valid. Remote
execution of the tools is supported by the collaborative
architecture developed in AGILE [33].
MDO system formulation applications The platforms
InFoRMA (Integration, Formalization and Recommenda-
tion of MDO Architectures) [26] and KADMOS (Knowl-
edge- and graph-based Agile Design for Multidiscipli-
nary Optimization System) [34], both developed by DUT
within the IDEaliSM and AGILE projects, respectively,
provide two innovative approaches to address the afore-
mentioned challenges of automatic MDO architecture
(re)configuration and integration into PIDO software,
based on the specification of the general MDO problem
definition. Although the implementation and backbone
technologies differ drastically for both platforms (KAD-
MOS is Python-based and uses the NetworkX graph
package, while InFoRMA is Java-based and uses seman-
tic web technologies), they both use essentially the same

Fig. 2 Mapping of the main-
stream research topics and state-
of-the-art solutions in the field
of MDO on the MDO system
development process in Fig. 1

Tool
repository

MDO
problem

Formulation phase

MDO solution
strategy

Collaborative
workflow

MDOptimized
design

Execution phaseStages of the
MDO system in
a typical MDO
project

Mainstream
research topics

State-of-the-art
solutions for
supporting MDO
system
development

Standard product
data model format
to enable multi-
disciplinary tool
interoperability
(e.g. CPACS)

Design languages and grammars for
MDO problem formulation New optimization

algorithms
Distributed and
cloud computing

New MDO
architectures

•

•

PIDO tools with
distributed
computing capa-
bilities
CAD and KBE
tools to enable
generative design

•

•

Increasing appli-
cation areas:
•
•
•
•

Aeronautics
Space
Automotive
Wind energy

•
•
•
•

MDO

REMS
OpenMDAO

1 http://openm dao.org, accessed March 15th 2018.
2 http://www.agile -proje ct.eu, accessed March 15th 2018.
3 https ://itea3 .org/proje ct/ideal ism.html, accessed March 15th 2018.

http://openmdao.org
http://www.agile-project.eu
https://itea3.org/project/idealism.html

610 I. van Gent et al.

1 3

construct to represent an MDO system throughout the
formulation phase: graphs [13, 35]. Earlier work [26, 36]
in IDEaliSM has shown that the use of an MDO system
formulation platform, such as InFoRMA, can result in a
significant setup time reduction, even larger than 90%.
Visualization packages The visualization of large MDO
systems can be challenging, but is crucial to share and
discuss the design developments within the heterogene-
ous team of experts. A visualization package to inspect
and communicate the workflow schema files produced
by the MDO system formulation applications described
above can also contribute to decreasing the setup time
and definitely increases the trust of the design team in
the large, complex automated analysis chain that is being
built. Many different forms of visualizations suitable to
MDO developments exist, as discussed by Aigner et al.
[37], including the well-known XDSM (Extended Design
Structure Matrix) [38]. Although both KADMOS and
InFoRMA provide some static MDO visualization capa-
bilities, in AGILE a dedicated web-based visualization
tool, called VISTOMS (VISualization TOol for MDO
Systems) has been developed, which can provide various
dynamic and scalable visualizations [39] via web pages.
Collaborative workflows These workflows are the execut-
able instances of the MDO solution strategy produced
during the MDO system formulation phase (Fig. 1). The
term collaborative is used to express the fact these work-
flows combine different disciplinary subworkflows from
the tool repository, which are owned by different disci-
plinary experts (or teams), into one optimization work-
flow. The combination of such subworkflows can be very
challenging, especially when the disciplinary teams are
distributed either geographically, digitally (i.e., subwork-
flows running on different server domains), or both. Two
main PIDO tools are used in AGILE and IDEaliSM to
assemble the executable MDO workflows: Optimus by
Noesis Solutions4 and the Remote Component Environ-
ment (RCE)5 by DLR [40]. Both platforms have been spe-
cifically augmented in these projects to enable the auto-
matic generation of executable workflows based on the
MDO solution strategy graph produced by KADMOS and
InFoRMA [26, 41]. Within AGILE the interoperability of
cross-organizational tools (with access restrictions due to
intellectual property) in the same executable workflow is
supported by the Netherlands Aerospace Center (NLR)
tool BRICS [42].
Schema operations library This category contains the col-
lection of useful methods to inspect, check, or analyze

the workflow schema file produced by the MDO system
formulation applications. It contains functions to check
files for their validity (e.g., with respect to the schema
definition), to determine key values (e.g., number of
tools, number of parameters), and to edit instances of the
schema file (e.g., by removing or adding tools and param-
eters). In AGILE most of these libraries are provided by
KADMOS and they are equivalent to some of the func-
tions in the TiXI6 and TiGL7 libraries used to inspect and
adjust CPACS files.

All the new developments discussed so far are summarized
in Fig. 3, where, similarly to Fig. 2, each one of the pre-
sented MDO support framework applications is positioned
with respect to the five main stages of the MDO system
development process presented in Fig. 1.

1.2 Origins of CMDOWS: why a standard to store
and exchange MDO systems?

In the early phases of the AGILE and IDEaliSM project,
the various applications used to support the development
of an MDO system (from the five categories discussed in
the previous section), were coupled as illustrated in Fig. 4a.
Indeed most of the applications had to communicate directly
with each other, with obvious problems of flexibility and
maintainability of the overall MDO support framework, due
to the many ad-hoc interfaces. Besides, it was realized that
the benefits (in terms of overall MDO system setup time
reduction) of the vendor-neutral graph-based representa-
tions of the MDO workflows produced by KADMOS and
InFoRMA were limited without the possibility to automati-
cally generate the executable workflows using a PIDO tool
of choice. Also, the investment in the development of the
visualization packages would not have been worth it for one
specific MDO system formulation tool. On the other hand,
the ad-hoc development of visualization capabilities both
inside InFoRMA and KADMOS was also not feasible within
the project time frame.

Eventually, also on the basis of the evident benefit pro-
vided by the CPACS-based central data repository, the
authors developed the conviction that a dedicated standard
format to define, store and exchange MDO systems would
provide a key enabler for the automation of the entire formu-
lation and execution phase of any large collaborative MDO
system.

The need of such an exchange format was first advo-
cated within IDEaliSM to facilitate the translation of the
MDO system formalization generated by InFoRMA into

4 https ://www.noesi ssolu tions .com/our-produ cts/optim us,
accessed March 15th 2018.
5 http://rcenv ironm ent.de, accessed March 15th 2018.

6 https ://githu b.com/DLR-SC/tixi, accessed March 15th 2018.
7 https ://githu b.com/DLR-SC/tigl, accessed March 15th 2018.

https://www.noesissolutions.com/our-products/optimus
http://rcenvironment.de
https://github.com/DLR-SC/tixi
https://github.com/DLR-SC/tigl

611CMDOWS: a proposed new standard to store and exchange MDO systems

1 3

executable workflows in Optimus. To this purpose a proto-
type neutral format was defined by Hoogreef [26]. However,
it is in AGILE that the full development of a neutral format
for storage and exchange of MDO systems has taken place.
The result is the CMDOWS format, which stands for Com-
mon MDO Workflow Schema and is the main subject of this
paper (see also Fig. 3, bottom).

The need for standardization in engineering design is,
of course, not something new. Definitions of standardized
formats can be found in earlier work and are usually moti-
vated by similar requirements as the CMDOWS format.
For example, Gondhalekar et al. [43] proposed a neutral
format in the context of the “behavioural digital aircraft”
project CRESCENDO [44] to exchange computational
workflows and demonstrated that through such a format the

same workflow can be built in two different workflow plat-
forms. Similarly, another format that is gaining momentum
is the Functional Mock-up Interface (FMI) [45]. FMI is a
platform-independent standard that is aimed at supporting
both model exchange and co-simulation of dynamic mod-
els. Both these examples are concerned with the sharing of
tools within the collaborative workflow, but do not consider
other types of applications used to support the development
of MDO systems, as was discussed in the previous sec-
tion. Other formats related to CMDOWS tackle the neutral
description and visualization of processes, as is done with
BPMN (Business Process Model and Notation) [46] that is
maintained by the Object Management Group. A specific
visualization standard that captures both process and data
flow is provided by the XDSM by Lambe and Martins [38].

Fig. 3 Mapping of the research
activities within the projects
AGILE and IDEaliSM on the
MDO system development
process in Fig. 1

Tool
repository

MDO
problem

Formulation phase

MDO solution
strategy

Collaborative
workflow

MDOptimized
design

Execution phaseStages of the
MDO system in
a typical MDO
project

AGILE and
IDEaliSM
research areas

Project
solutions for
supporting
MDO system
development

Engineering
(tool)
library

CPACS-based
multidisciplinary
tool repository

Solutions for the automatic formulation, integration and execution of
complex and distributed MDO systems

PIDO tools
with

“scriptable”
workflow
definition

Application areas:
•

•
•

Conventional &
novel aircraft
Aircraft systems
Automotive
systems

InFoRMA: semantic web
technologies-based tool to

advice, formalize and
integrate MDO architectures

KADMOS: graph manipulation-
based tool to formulate and

integrate collaborative
MDO systems

•

•

PIDO tools with
automatic
workflow defini-
tion based on a
standard ex-
change format

BRICS tool to
support cross-
organizational
tool interopera-
bility

I
D
E
a
l
i
S
M

A
G
I
L
E

VISTOMS: visualization package to support debugging and
information sharing or complex MDO system formulations

KE-chain: platform for overall MDO system development
process integration

CMDOWS: standard exchange format to store and
exchange MDO systemsCMDOWS

CMDOWS CMDOWS

CMDOWS

CMDOWS

Fig. 4 Links between the MDO
system formulation platform
and other MDO framework
categories with two different
approaches

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

(a) Direct coupling approach

schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

Schema
operations
library

(b) Central workflow schema approach

612 I. van Gent et al.

1 3

The CMDOWS format proposed in this paper follows the
philosophy of the above-mentioned standards, but in the
specific context of collaborative MDO projects and with the
aim to link together a broader range of applications.

Thanks to the definition of CMDOWS, the application
links within the MDO support framework being developed
in AGILE have changed from what is shown in Fig. 4a to
the new centralized structure shown in Fig. 4b. The graph-
based files generated by KADMOS can be stored first as
CMDOWS files and then translated into executable work-
flows by any PIDO tool able to interpret such standard. With
the same level of flexibility, the interconnected tool reposi-
tories introduced above can be translated into CMDOWS
files, which can then be adjusted and enriched by KADMOS,
to produce MDO problem graphs (storable again using the
CMDOWS standard) and finally MDO solution strategy
graphs based on given architectures (again storable using
CMDOWS). Eventually, the visualization package, rather
than accessing the different internal data structures of KAD-
MOS and InFoRMA, can read and visualize their produced
CMDOWS files and help inspecting and monitoring the state
of the MDO system during the three stages of the formula-
tion phase.

The five support application categories depicted in Fig. 4b
can have bidirectional links to the workflow schema, how-
ever, for all of them a primary and a secondary link direction
can be identified,8 as illustrated in Fig. 5. For example, the
visualization package has the primary link of being able to
open any workflow schema file and depict the visualizations.
A secondary link would be in place, if the visualization
package would offer users also the possibility to manually
edit the visualized CMDOWS file. Generally, the primary

link is the one that is most directly useful and, most of the
time, also easiest to develop for the category at hand.

1.3 Structure of this paper

This paper is structured as follows: the proposed schema is
described in full detail starting from the list of functional
requirements in Sect. 2. CMDOWS files generated for a
classic MDO benchmark problem are used as examples to
illustrate the main branches of the schema. The capability
of the proposed schema to support the full development of a
complex collaborative MDO system is demonstrated in the
study case presented in Sect. 3. This case study concerns
the aerostructural optimization of an aircraft wing using
the AGILE MDO framework. It includes all the activities
from tool repository definition to the generation, based on
CMDOWS, of executable workflows for two different PIDO
tools. Finally, the main conclusions and an outlook on future
developments are given in Sect. 4.

2 CMDOWS

In this section the full CMDOWS definition is described
starting from the functional requirements.

2.1 CMDOWS functional requirements

The proposed schema is based on the following nine main
functional requirements:

 (I) Machine-interpretable The format in which the
MDO system is stored should be machine-inter-
pretable up to the finest level of detail.

 (II) Human-readable The schema should allow any
designer to inspect at least the top-level correct-
ness of the content, while users and developers
with a background in design engineering or com-
puter science should be able to find and understand
all the fine details. This human-readability aspect
is important to enable the use of the schema by
a wider community and to make connecting new
MDO framework applications easy.

 (III) Neutral The schema should not contain elements
that are specific to any project, MDO framework
application, or developed product. However, the
schema should accommodate the storage of any
such additional information at specific locations to
meet practical issues of certain projects, applica-
tions, or products, thereby allowing project-specific
additions to the schema file at the dedicated file
locations.

schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

Schema
operations
library

primary link

secondary link

export
 file of
repository

 export file of
 MDO problem
and solution strategy

parse file
with MDO

solution
strategy

adjust file contents
 (GUI)

import
file

export schema
 file of any workflow

write /
read file

 visualize
file contents

Fig. 5 Primary and secondary links between the workflow schema
and the MDO framework application categories

8 N.B. This ordering of the links can be considered subjective and
here the ordering is done based on the perspective of the MDO sys-
tem integrator.

613CMDOWS: a proposed new standard to store and exchange MDO systems

1 3

 (IV) Validation File instances that are based on
CMDOWS, should be easily validated against the
schema definition.

 (V) Adaptable From one version release to another, the
schema should always be flexible enough to pro-
vide room for extensions and enrichment, while at
the same time its basic structure should not change
too drastically to keep any existing framework
application links easily (with a small developing
effort) compliant with the release of each new ver-
sion.

 (VI) Balance of redundant information Data representa-
tion in the schema should aim at minimum redun-
dancy; however, in special cases, this redundancy
guideline can be violated for convenience (i.e., to
facilitate the link with certain applications that lack
the capability to automatically derive the required
input based of the information stored in the for-
mat). Such redundancies bring the risk of generat-
ing inconsistencies in file instances, and therefore,
a balance should be found between information that
can be implicitly and explicitly stored in the file.

 (VII) Support all MDO system stages The schema should
support storage of the MDO system during the
three different stages of the formulation phase, as
indicated in Fig. 1.

 (VIII) Support all MDO framework categories The
schema should accommodate all information that
is required to enable the links with the five differ-
ent MDO framework application categories, as
depicted in Fig. 5.

 (IX) Support tool heterogeneity A broad range of analy-
sis tools from the tool repository, including their
execution methods, should be stored in the schema,
such as simple mathematical expressions, remotely
executed ‘black boxes’, and surrogate models.

With the requirements listed above in mind the CMDOWS
version 0.7 has been completed and tested for a realistic
aircraft MDO case.

2.2 CMDOWS definition

The eXtensible Markup Language (XML)9 has been selected
as the syntax to store the schema definition. This defini-
tion is stored using the XML Schema Definition (XSD)10
format and this XSD definition of CMDOWS can be used

to validate any CMDOWS XML instance, thereby meeting
requirement IV (req-IV) on validation in Sect. 2.1. XSD
also meets req-I and req-II, as it is both human-readable
and supports machine-interpretability. In addition, the XML
format is independent of the programming language used.
Many programming languages actually include advanced
modules to work with the XML format, thereby supporting
the human-readability requirement in the sense that many
users can easily familiarize themselves with CMDOWS
within their preferred programming environment. Another
argument for the use of XML is the recent adoption of the
XML-based CPACS in the MDO community, meaning that
many people are already familiar with the use of XML as a
sharable storage format.

The CMDOWS definition (see Fig. 6) is structured in six
top-level elements, grouped in three basic categories:

• Information
• Nodes
• Connections

This categorization is based on the assumption that any
MDO system can be modeled as a graph, as discussed in
Sect. 1.1. Graph objects consists of nodes and their con-
nections (also referred to as edges). In the elements of the
information category generic information about the graphs
is stored, such as its creator, version, and the MDO problem
definition used in the second stage of the MDO development
process. Node- and connection-specific information is stored
as metadata within the respective node and connection

header

problemDefinition

executableBlocks

parameters <...>

architectureElements

workflow

Nodes

Connections

Information

Fig. 6 Top-level elements of CMDOWS and the three main element
categories

9 https ://www.w3sch ools.com/xml/defau lt.asp,
accessed March 15th 2018.
10 https ://www.w3sch ools.com/xml/schem a_intro .asp,
accessed March 15th 2018.

https://www.w3schools.com/xml/default.asp
https://www.w3schools.com/xml/schema_intro.asp

614 I. van Gent et al.

1 3

categories. Each category will be discussed in a separate
section.11

An important concept that is used at different locations in
the schema is the separation between parameters and execut-
able blocks. Any node element describing a tool repository,
MDO problem, or MDO solution strategy (see Fig. 1) will
fall under one of these two groups. The parameters group
refers to all the elements inside an MDO system that are
assigned a certain value. Parameters are the inputs and/or
outputs of the executable blocks, such as the actual opti-
mization parameters (whose values remain constant during
optimization) and the design variables (including both actual
design variables and the copy or surrogate variables intro-
duced by different MDO strategies). The executable blocks
are defined as elements that take certain inputs, perform an
operation, and finally produce certain outputs. Since the dis-
tinction between parameters and executable blocks is a key
aspect, the element names parameters and executa-
bleBlocks appear at different levels of the schema.

For example, a parameter x1 is input to an executable
block and will be defined in the main parameters ele-
ment of the nodes category. Generic information about the
parameter, such as a description, unit, and data type would
be stored directly on the element as metadata. When this
parameter has to be indicated as a design variable (including
bounds and nominal value) for a certain MDO system, then
this information is stored inside the problemFormula-
tion/parameters element. This way, the elements in
the nodes category remain independent and valid for any
MDO system, while the problemFormulation element
contains information that is specific to the MDO problem
stage from Fig. 1. The two elements are linked together
through unique identifiers (UIDs) as will be shown in more
detail in the next sections.

2.2.1 Top‑level elements

The six top-level elements from Fig. 6 are discussed in more
detail in this section.

Elements in the information category The information
elements of CMDOWS are header and problemDefi-
nition. Lower level elements of the information elements
are shown in Fig. 7. The header element contains meta-
data relative to the CMDOWS file itself, such as the creator,
a description, the schema version used, etc.

The definition of the MDO problem to be solved can be
stored in the problemDefinition element. This element
can get a UID assigned as an attribute (indicated with the @
sign in Fig. 7) so that it can be referred to in other parts of the
schema. The other two main elements of the problem defini-
tion are problemRoles and problemFormulation.
In the problemRoles branch all the special parameters
of the MDO system get their roles assigned, such as design,
objective, constraint, or state variable, including certain
parameter settings for the problem at hand (i.e., upper and
lower bounds, constraint types). All executable blocks also
get a problem role, based on their connections with other
blocks and their position with respect to the design variables,
see preDesvarsBlocks and postDesvarsBlocks
in Fig. 7. The second branch of the problem definition is
the problemFormulation, where the specification of
the MDO architecture that should be imposed on the MDO
problem and the logical order of the executable blocks are
stored. This logical order is required to determine (among
others) the feedback between different blocks and can also
be used to automatically determine problem roles of the
executable blocks.

Elements in the nodes category The node elements all
represent either parameters or executable blocks and are
separated into three subelements: executableBlocks,
parameters, and architectureElements. Their
subelements are depicted in Fig. 8. The executable-
Blocks element contains the function blocks that are stored
in the tool repository. Two main types of executable blocks
can be stored inside this element: mathematical functions
and design competences. The mathematical functions are
simple executable blocks that evaluate analytic expressions
to determine the value of the outputs. These expressions
can be stored directly in the mathematicalFunction
element, thereby storing the full definition of that executable
block. Hence, the actual operation performed by the block is
stored for mathematical functions. Contrary to this, design
competences represent more complex executable blocks
where the operation performed by the block is unknown
(or at least cannot be stored as simple mathematical expres-
sions). The designCompetence element, therefore,
stores a block that performs an unknown operation (it acts
as a so-called ‘black box’). Instead of storing the operation
itself, the schema of the designCompetence element
can accommodate a range of specifications for executing the
tool. For example, a design competence can be an integrated
analysis tool on the local system, a remotely called execu-
tion using a special server integration, a surrogate model,
or any other form of computational module present in a col-
laborative workflow. Additional information about the com-
petences, such as ownership and the outcome of eventual
verification steps, can be stored in the metadata element,
see Fig. 8.

11 N.B. For brevity, the description in this paper is limited to the top-
level elements of the schema up to level 4 (when the root element is
considered to be at level 0), but the full schema, which has elements
up to level 7, can be inspected at the open-source repository, see:
http://cmdow s-repo.agile -proje ct.eu.

http://cmdows-repo.agile-project.eu

615CMDOWS: a proposed new standard to store and exchange MDO systems

1 3

The second node element is the parameters ele-
ment. This element contains all the inputs and outputs of
the executable blocks stored in the main executable-
Blocks element. If the executable blocks are integrated
using a central data schema approach (i.e., CPACS), then the
parameters element will contain all the unique elements
that are used from that data schema as separate parameters.
Additional information about the parameters can also be
stored, such as a label, description, unit, and data type (real,
float, list, etc.).

The last node element is architectureElements.
This element includes both parameters and execut-
ableBlocks, which differ from those stored in the top-
level parameters and executableBlocks element,
because they are the additional elements created when an

MDO architecture is imposed on a specified MDO problem.
For example, when an MDO architecture has to be imposed
a new executable block has to be introduced to handle the
optimization loop: an optimizer. This new element is stored
as an architectureElements/executable-
Block. New parameters also have to be introduced to con-
nect the optimizer to the rest of the system. Initial guesses
for all design variables are required as input of the optimizer
and the optimal (final) values of the design variables, objec-
tive, and constraints have to be connected as outputs. These
parameters do not exist before the imposition of the MDO
architecture and are, therefore, instantiated and stored as
architectureElements/parameters. Similarly,
other architecture elements are introduced including conver-
gers, consistency constraint functions and other components

Information

header

creator

description

timestamp

fileVersion

cmdowsVersion

updates <...>

problemDefinition

@uID

problemRoles

parameters

designVariables <...>

designVariable

parameterUID

lowerBound

upperBound

nominalValue

...

objectiveVariables <...>

constraintVariables <...>

constraintVariable

parameterUID

constraintType

constraintOperator

referenceValue

requiredEqualityPrecision

stateVariables <...>

executableBlocks

preCouplingBlocks <...>

coupledBlocks <...>

postCouplingBlocks <...>

preDesvarsBlocks <...>

postDesvarsBlocks <...>

problemFormulation

mdaoArchitecture

convergerType

doeSettings

executableBlocksOrder <...>

...

Fig. 7 Elements in the CMDOWS category Information

616 I. van Gent et al.

1 3

Fig. 8 Elements in the
CMDOWS category Nodes

executableBlocks

mathematicalFunctions <...> mathematicalFunction

@uID

label

inputs <...>

outputs <...>

designCompetences <...> designCompetence

@uID

ID

modeID

instanceID

version

label

inputs <...>

outputs <...>

metadata

projectSpecific

parameters <...>

parameter

@uID

label

note

description

unit

dataType

architectureElements

parameters

instances <...>

initialGuessCouplingVariables <...>

finalCouplingVariables <...>

couplingCopyVariables <...>

initialGuessDesignVariables <...>

finalDesignVariables <...>

finalOutputVariables <...>

consistencyConstraintVariables <...>

doeInputSampleLists <...>

doeOutputSampleLists <...>

executableBlocks

coordinators <...>

optimizers <...>

convergers <...>

does <...>

consistencyConstraintFunctions <...>

preCouplingAnalyses <...>

preIteratorAnalyses <...>

postIteratorAnalyses <...>

coupledAnalyses <...>

postCouplingAnalyses <...>

...

617CMDOWS: a proposed new standard to store and exchange MDO systems

1 3

that are specific to a given MDO architecture. For the com-
plete list of possible architecture elements in the schema,
see Fig. 8. Next to newly introduced elements, the original
executable blocks are also grouped into different types based
on their relation to the coupled system by referring to their
UID, see preCouplingAnalyses element and below
in Fig. 8. This categorization can, for example, be used for
assigning colors in the visualization of the CMDOWS file
or when parsing the file to create an executable workflow.

Elements in the connections category CMDOWS contains
a single element for storing the connections: workflow. In
this element two different types of graphs can be stored: data
graphs and process graphs. The combination of these two
graphs constitutes the neutral definition of a workflow that
needs to be executed to solve an MDO problem: the MDO
solution strategy. The dataGraph element contains a data
graph storing the connections (or edges) between param-
eters and executable blocks according to their input/output
relations. This data graph can be stored for any stage of the
MDO system in Fig. 1, where each stage would be repre-
sented by a separate CMDOWS file. The processGraph
element is only used for the MDO solution strategy to store

the process steps for running the different executable blocks.
Metadata about the graphs can also be stored, such as the
amount of nodes and edges, and the nesting of the process
steps for the process graph (Fig. 9).

2.2.2 Illustrative example: storing the Sellar MDO system

The Sellar problem [47], a classical benchmark MDO prob-
lem widely used in MDO literature, was selected to demon-
strate the use of CMDOWS as a schema to store the three
different stages of the MDO system during the formulation
phase. As these stages (see Fig. 1) enrich the CMDOWS file
step by step, the way in which each stage should be stored is
described here to give the reader a clearer understanding of
the different elements of the schema. The way this enrich-
ment is performed is out of the scope of this paper, but the
interested reader is referred to Van Gent et al. [34], where
this process is discussed in detail using the MDO system
formulation tool KADMOS.

Stage I: Tool repository The tool repository for the Sellar
problem consists of eight different tools. The original Sellar
problem actually contains only five tools, but here, three fic-
titious tools (A, D3, and F2) are added to demonstrate how
an MDO problem can be based on a subset of tools from
the repository. In the top right of Fig. 10 a design structure
matrix of the repository is shown, with the eight tools rep-
resented by the blocks on the diagonal. The only elements
from the schema needed to store a tool repository are the
designCompetences, parameters, and workflow/
dataGraph. As shown in Fig. 10, the different execut-
able blocks are integrated differently: for the functions A,
F1, F2, G1, and G2 mathematical expression are available,
while the disciplinary analyses D1, D2, and D3 are design
competences, meaning that the mathematical expressions
to be executed are assumed to be unknown (for illustration
purposes). For all executable blocks the inputs and outputs
of each block are defined by referring to the right elements
from the parameters list using the relative parameter
UID (as is shown for parameters z2 and f in the figure).
Finally, the dataGraph element contains the full graph,
as illustrated in the lower right corner of the figure, by list-
ing the edges between all executable blocks and parameters.
The storage of the edge x1 → F1 is illustrated in the figure.

Stage II: MDO problem One additional element is
required to store the MDO problem in a CMDOWS file:
problemDefinition, see Fig. 11. In this element, the
problem roles and problem formulation are indicated. As
shown in Fig. 11, the parameters z1, z2, and x1 get the spe-
cial role of design variable. Similarly, f is assigned the role
of objective for the optimization. The roles of the executable
blocks are also specified and only the tools strictly needed
to solve the MDO problem have been selected from the tool

Connections

workflow

problemDefinitionUID

dataGraph

name

edges <...>

metadata

processGraph

name

edges <...>

nodes <...>

metadata

...

Fig. 9 Elements in the CMDOWS category connections

618 I. van Gent et al.

1 3

N
od

es

Co
nn

ec
ti
on

s

In
fo
rm

at
io
n

H
EA

D
ER

W
O

RK
FL

O
W

da
ta

G
ra

ph
ed

ge
s

na
m

e

ed
ge

s

ed
ge

fr
om

Pa
ra

m
et

er
U

ID
:

/d
at

a_
sc

he
m

a/
va

ri
ab

le
s/

x1

to
Ex

ec
ut

ab
le

Bl
oc

kU
ID

:
F1

ed
ge

ed
ge

..
.

m
et

ad
at

a
EX

EC
U

TA
BL

E
BL

O
CK

S

de
si

gn
C

om
pe

te
nc

es
 <

..
.>

D1 D2 D3

m
at

he
m

at
ic

al
Fu

nc
ti

on
s

A F1

@
uI

D:
 F

1

la
be

l:
 F

1

in
pu

ts
 <

..
.>

in
pu

t
pa

ra
m

et
er

U
ID

:
/d

at
a_

sc
he

m
a/

va
ri

ab
le

s/
x1

eq
ua

ti
on

La
be

l:
 x

1

in
pu

t
pa

ra
m

et
er

U
ID

:
/d

at
a_

sc
he

m
a/

an
al

ys
es

/y
1

eq
ua

ti
on

La
be

l:
 y

1

in
pu

t
pa

ra
m

et
er

U
ID

:
/d

at
a_

sc
he

m
a/

an
al

ys
es

/y
2

eq
ua

ti
on

La
be

l:
 y

2

in
pu

t
pa

ra
m

et
er

U
ID

:
/d

at
a_

sc
he

m
a/

va
ri

ab
le

s/
z2

eq
ua

ti
on

La
be

l:
 z

2

ou
tp

ut
s

<.
..

>
ou

tp
ut

pa
ra

m
et

er
U

ID
:

/d
at

a_
sc

he
m

a/
an

al
ys

es
/f

eq
ua

ti
on

:
x1

**
2+

z2
+y

1+
m

at
h.

ex
p(

-y
2)

@
la

ng
u

ag
e:

Py
th

o
n

m
et

ad
at

a

F2 G
1

G
2

PA
RA

M
ET

ER
S

<.
..

>

a f

@
uI

D
:

/d
at

a_
sc

he
m

a/
an

al
ys

es
/f

la
be

l:
 f

g1 g2 x1

@
uI

D
:

/d
at

a_
sc

he
m

a/
va

ri
ab

le
s/

x1

la
be

l:
 x

1

y1 y2 z1 z2

@
uI

D
:

/d
at

a_
sc

he
m

a/
va

ri
ab

le
s/

z2

la
be

l:
 z

2

c

a A
c

c

D
1

y
1

y
1

y
1

y
1

y
2

D
2

y
2

y
2

y
2

x
1

z
2

z
1

z
2

z
1

D
3

x
1

z
2

x
1

z
2

z
1

f
F
1

f
F
2

g
1

G
1

g
2

G
2

D
1

x1

z1z2

y1y2
c

f

G
1

G
2D

2

F1

F2

D
3

g1
g2

A
a

D
at

a
gr

ap
h

D
es

ig
n

st
ru

ct
ur

e
m

at
rix

Fi
g.

 1
0

 Il
lu

str
at

io
n

of
 th

e
sto

ra
ge

 o
f t

he
 S

el
la

r t
oo

l r
ep

os
ito

ry
 in

 a
 C

M
D

O
W

S
fil

e.
 O

n
th

e
rig

ht
 s

id
e

tw
o

vi
su

al
iz

at
io

ns
 o

f t
he

 d
at

a
sto

re
d

in
 th

e
fil

e
ar

e
sh

ow
n:

 th
e

de
si

gn
 st

ru
ct

ur
e

m
at

rix
 a

nd
 a

di

re
ct

ed
 d

at
a

gr
ap

h

619CMDOWS: a proposed new standard to store and exchange MDO systems

1 3

repository, as the tools F2 and D3 are not present in the data
graph in Fig. 11 anymore.

Stage III: MDO solution strategy When the problem for-
mulation has been set, in this example to a Multidiscipli-
nary Feasible (MDF) architecture with a Jacobi type con-
verger, the full schema is used to store the MDO solution

strategy, as depicted in Fig. 12. This strategy is automati-
cally imposed on the MDO problem using the MDO system
formulation platform KADMOS [34]. Two new elements are
added to the file with respect to the MDO problem defini-
tion: the architectureElements and the workflow/
processGraph. Actually, it is not just that these elements

Connections

NodesN d

Information

HEADER

PROBLEM FORMULATION

@UID: SellarProblem

problemFormulation

...

executableBlocksOrder

executableBlock: A

executableBlock: D1

executableBlock: D2

executableBlock:F1

executableBlock: G1

executableBlock: G2

problemRoles

parameters

designVariables

designVariable
x1

lowerBound: -10

upperBound: 10

designVariable z1

...

designVariable z2

...

objectiveVariables
objectiveVariable

f

constraintVariables

constraintVariable

g1

constraintType: inequality

constraintOperator: >=

referenceValue: 0.0

constraintVariable g2

...

executableBlocks

preCouplingBlocks A

coupledBlocks
D1

D2

postCouplingBlocks

F1

G1

G2

PARAMETERS <...>

EXECUTABLE BLOCKS

WORKFLOW
dataGraph

D1x1

z1

z2

y1

y2 c

f

G1

G2

D2

F1

g1
g2

Aa

a

x1
z2
z1

z2
z1

x1
z2

A c c

D1 y1 y1 y1

y2 D2 y2 y2

f F1

g1 G1

g2 G2

Design structure matrix

Data graph

Fig. 11 Illustration of the storage of the Sellar MDO problem in a CMDOWS file

620 I. van Gent et al.

1 3

Connections

NodesN dN

Information

HEADER

PROBLEM FORMULATION

problemFormulation

mdaoArchitecture: MDF

convergerType: Jacobi

executableBlocksOrder

...

PARAMETERS <...>

EXECUTABLE BLOCKS

ARCHITECTURE ELEMENTS

parameters

initialGuessDesignVariables
x1^0

z1^0

z2^0

finalDesignVariables
x1*

z1*

z2*

initialGuessCouplingVariables y1^{c0}

y2^{c0}

couplingCopyVariables y1^c

y2^c

finalCouplingVariables y1*

y2*

finalOutputVariables
f*

g1*

g2*

executableBlocks

coordinators
Coordinator

optimizers
Optimizer

convergers
Converger

preIteratorAnalyses
A

coupledAnalyses D1

D2

postCouplingAnalyses
F1

G1

G2

WORKFLOW

dataGraph

processGraph

name: MDO process MDF-J

edges

edge

fromExecutableBlockUID: A

toExecutableBlockUID: Optimizer

processStepNumber: 1

edge

...

nodes

node

referenceUID: A

processStepNumber: 1

diagonalPosition: 1

node

...

D1

x1

z1
z2

y1
y2

c

f

G1

G2

D2

F1

g1
g2

A
aCOOR

OPT

CONV

z1 z2

z1*

z2*

y2c0

y2*

y2c

g1*

g2*

f*

y1c0

y1c

y1*

XDSM

Process graph

D1

G1

G2

D2

F1

COOR

OPT
CONV

3

4

5

6

7

7

7

8

1

A
2

Data graph

Fig. 12 Illustration of the storage of the Sellar MDO solution strategy according to the MDF-Jacobi architecture in a CMDOWS file

621CMDOWS: a proposed new standard to store and exchange MDO systems

1 3

are added, but all the elements in the CMDOWS file are
updated when the MDO architecture is imposed on the MDO
problem. For example, compare the data graphs depicted in
Figs. 11 and 12 to see the large amount of adjusted data con-
nections. With the MDF architecture used in this example,
the architectural executable blocks optimizer and con-
verger are added to the file, and a range of architectural
parameters are added, such as initialGuessDesign-
Variables and couplingCopyVariables.

This concludes a brief illustration of the use of CMDOWS
for storing MDO systems at different stages. The use of
CMDOWS to store MDO systems has been illustrated here
for the small Sellar MDO system. Naturally, the schema
was not created for such small cases, but rather to exchange
large-scale MDO systems, as discussed in the next section.

3 Case study: AGILE development process
for aerostructural wing design

In this case study, CMDOWS files have been created for
a realistic wing aerostructural design case. The power of
CMDOWS is demonstrated by presenting the different MDO
framework applications that were integrated using the cen-
tral workflow schema approach in the AGILE project.

3.1 Description

Any standardized schema can be put to the test when the
exchangeability it is supposed to support can be assessed in a
realistic case. This was done here by linking different appli-
cations of the AGILE MDO framework through CMDOWS,
as conceptually shown in Fig. 5. In AGILE, the five stages
shown in Fig. 1 are supported by a set of MDO framework
applications, as discussed in Sect. 1.1 (Fig. 3) and more
elaborately in earlier work [48]. The AGILE MDO frame-
work is a hybrid framework where different partners provide

an application of their specialty with the aim to improve a
part of the collaborative MDO design process.

The developments in the AGILE project can be mapped
directly on to the conceptual overview in Fig. 5. This is
shown in Fig. 13, where at least one application is available
for each of the five categories:

• Tool repository:

 KE-chain The KE-chain platform12 is used in
AGILE to integrate the complete
MDO development process, see refer-
ence [48]. With respect to CMDOWS,
the platform includes a module where
a design team can add a collection of
disciplinary tools in the browser and
can export this online tool repository
as a CMDOWS file.

 Surrogate model
repository (SMR)

A second type of tool repository
is the SMR [42] developed by the
NLR. In the SMR a collection of
surrogate models is stored which can
also be exported as a CMDOWS file.

• MDO system formulation:

 KADMOS KADMOS is the only MDO system
formulation platform that supports
CMDOWS at the moment. KADMOS
can import CMDOWS files at any stage,
transform the MDO system to other stages
of the formulation phase, and export the
CMDOWS file of an updated MDO sys-
tem definition.

• Visualization package:

 KADMOS Basic visualizations of CMDOWS files
can be provided by KADMOS. This is
restricted to static PDF files and graphs,
and is thereby only suitable for small
MDO systems or to create a top-level
overview.

 VISTOMS More sophisticated, dynamic visu-
alizations can be created by opening a
CMDOWS file with VISTOMS. This
tool enables the visualization of MDO
systems of any size in multiple dynamic
overviews that can be inspected up to the
finest details. This package is discussed in

Tool repository

Visualization
package

Collaborative
workflow

MDO system
formulation

Schema
operations library

CMDOWS

SMR KADMOS

KADMOS

KADMOS
& others

VIST MS

export
 file of
repository

 export file of
 MDO problem
and solution strategy

parse file
with MDO

solution
strategy

 import
repository file

write /
read file

visualize file
 contents

primary link

secondary link

Fig. 13 The established links between CMDOWS and the AGILE
MDO framework applications for the wing design case study

12 https ://www.ke-chain .com, accessed March 15th 2018.

https://www.ke-chain.com

622 I. van Gent et al.

1 3

full detail by Aigner et al. [37]. Note that
the visualizations of CMDOWS files can
also be created online at the open-access
CMDOWS interface.13

• Collaborative workflow:

 RCE RCE is an open-source development by DLR
that is used to create collaborative workflows.
RCE’s latest version contains an extension to
import CMDOWS files and directly create an
executable workflow.

 Optimus Optimus is a commercial workflow platform
for which an extension has been created to
import CMDOWS files. This development
is discussed in detail in a paper by Van Gent
et al. [41].

• Schema operations library:

 KADMOS At the moment KADMOS is the
only platform that can both import
and export CMDOWS files. There-
fore, it can also perform standardized
operations on a CMDOWS file. The
CMDOWS module of KADMOS
can be used to automatically adjust
CMDOWS files or to request infor-
mation stored in the file, such as the
amount of executable blocks, the
MDO architecture used, etc.

 General XML
editors/libraries

Instead of using KADMOS, general
XML editors or libraries are also
used to inspect and adjust CMDOWS
files. An example of such a library
is the open-source XML interface
library TIXI developed by DLR.

3.2 Results

The aerostructural wing design case used here to demon-
strate the integrated platforms has been described in other
work [26, 34, 37, 41]. In short, the MDO system in this
case consists of a collection of CPACS-compatible aircraft
design and analysis tools from DUT. From a tool repository
of 29 executable blocks and more than 28,000 parameters,
an MDO problem with eight executable blocks involving
281 parameters is composed. This MDO problem can then
be solved using different solution strategies, where in this

case study the solution strategy demonstrated is the MDF
architecture with a Jacobi iteration scheme (as was also used
in the Sellar case illustration in Sect. 2.2.2).

The CMDOWS-compatible framework applications
shown in Fig. 13 are used for different stages of the MDO
system in Fig. 1. The use of the applications with respect to
the first four stages of the MDO system from Fig. 1 is sum-
marized in Fig. 14.

The tool repository in the first step is provided through
the KE-chain integration. The executable blocks are defined
by specifying their CPACS input and output files. KE-chain
then interprets these files and creates the list of unique
parameters. Additional information on the executable blocks
(e.g., owner, fidelity level, etc.) is provided through the
browser interface. The CMDOWS file of the tool repository
exported by KE-chain can be visualized with the VISTOMS
application. The VISTOMS application can actually be used
for any stage of the MDO system in the formulation phase,
as is shown in Fig. 14.

Next, KADMOS is used to formulate the MDO problem
that needs to be solved. The tool repository CMDOWS file
is imported by the MDO system formulation platform and
KADMOS operations are used to transform the repository
data graph into the MDO problem representation (more
details on this can be found in [34]). KADMOS then exports
the CMDOWS file of the MDO problem and VISTOMS can
be used again for detailed inspection of the problem formu-
lation. This visualization is generally used to communicate
the setup of the MDO problem with the design team.

KADMOS is used a second time for composing the MDO
solution strategy. Based on the MDO problem CMDOWS
file containing the problemFormulation element,
KADMOS can impose the solution strategy and provide the
full workflow description. KADMOS adds architecture ele-
ments to specify the MDO solution strategy according to the
selected architecture and stores in the CMDOWS file both
the adjusted data graph and the newly generated process
graph. At this last formulation stage the VISTOMS pack-
age can be used to check the MDO solution strategy with
the whole design team, for example using the XDSM shown
in Fig. 14.

The ultimate test of the full schema now comes when
the gap with the executable phase has to be bridged. Within
AGILE, both Optimus and RCE have been extended to ena-
ble automatic generation of executable workflows based on
CMDOWS files and both have been able to parse executable
workflows for the wing design case, as shown in the bottom
of Fig. 14. Any other PIDO tool able to do the same, could
directly be used interchangeably in the AGILE MDO frame-
work, without any modification to the other applications.
The parsing of Optimus workflows is discussed in [41]. With
the availability of the executable workflows the role of the
CMDOWS format in the formulation phase is concluded.13 http://cmdow s.agile -proje ct.eu, accessed March 15th 2018.

http://cmdows.agile-project.eu

623CMDOWS: a proposed new standard to store and exchange MDO systems

1 3

3.3 Discussion

Looking back at the functional requirements described in
Sect. 2.1, it is important to note that the executable work-
flows created are truly hybrid workflows. Different types of
tools are integrated in one top-level collaborative workflow,
thanks to the support of the CMDOWS format.

The first type is used by the three ‘blue’ tools in the MDO
solution strategy in Fig. 14. These are local tools that have
been integrated directly in Optimus and RCE. Then the

‘green’ disciplinary analyses are of another type, as these
are subworkflows that need to be executed remotely because
of intellectual property restrictions (these tools cannot be
distributed to run them locally). Therefore, these discipli-
nary analysis are integrated using a BRICS [42] component
to run the actual tool on another server domain. Finally, the
‘red’ tools are simple mathematical functions describing the
objective and constraint functions. These mathematical func-
tions are parsed as native scripts in the PIDO tool, since this
will result in the most efficient execution. The native scripts

Fig. 14 Visualization of the
AGILE MDO framework
applications from Fig. 13 for the
wing design case, mapped on
the first four stages of the MDO
system in Fig. 1

0, 10:
Coordinator

1: 2 inp. 2: 7 inp. 3: 21 inp. 4: 9 inp. 5: 4 inp. 6: 20 inp. 6: 14 inp. 6: 3 inp. 8: 3 inp. 8: 8 inp.

1:
HANGAR

[AGILE DC1 WP6
wing startpoint]

3: 103 con. 4: 119 con. 6: 161 con. 6: 107 con. 6: 2 con.

10: 7 outp. 2, 9 3:
Optimizer 3: 7 con.

3:
SCAM-merged

[5modes]
4: 15 con. 6: 15 con. 6: 15 con.

4:
GACA-merged

[2modes]
6: 1 con. 8: 2 con.

5, 7 6:
Converger 6: 2 con. 6: 1 con. 6: 2 con.

10: 1 outp. 7: 1 con.
6:

Q3D[FLC]-
EMWET--seq

10: 1 outp. 7: 1 con.
6:

Q3D[VDE]-
SMFA--seq

8: 1 con.

10: 2 outp. 7: 2 con. 6:
MTOW 8: 1 con. 8: 1 con.

10: 1 outp. 9: 1 con. 8:
OBJ

10: 2 outp. 9: 2 con.
8:

CNSTRNT-merged
[2modes]

->

->

CMDOWS

Tool
repository

VIST MS

MDO
problem

MDO solution
strategy

Collaborative
work�ow

CMDOWS

CMDOWS

KADMOS

KADMOS

VIST MS

VIST MS

export tool
repository

export MDO
problem

import MDO
problem

export MDO
solution strategy

parse collaborative
work�ow

import tool
repository

visualize

visualize

visualize

2 inp. 2 inp. 36 inp. 4 inp. 4 inp. 2 inp. 8 inp. 8 inp. 8 inp. 7 inp. 12 inp. 6 inp. 26 inp. 153 inp. 3 inp. 3 inp. 4 inp. 5 inp.

36 outp.
HANGAR

[AGILE DC1 WP6
wing startpoint]

3 con. 118 con. 118 con. 118 con. 134 con. 120 con. 121 con. 115 con. 174 con. 6 con. 155 con. 138 con. 4 con. 1 con. 1 con. 1 con.

1107 outp.
HANGAR

[AGILE DC1
L0 MDA]

1 con. 118 con. 118 con. 118 con. 134 con. 116 con. 116 con. 119 con. 167 con. 2 con. 1088 con. 135 con. 1 con. 1 con. 2 con. 1 con.

1075 outp. INITIATOR 107 con. 107 con. 107 con. 107 con. 105 con. 105 con. 108 con. 116 con. 2 con. 1138 con. 185 con. 1 con. 1 con. 2 con. 1 con.

SCAM
[wing taper

morph]
6 con. 6 con. 6 con. 6 con. 6 con. 6 con. 6 con. 6 con. 6 con.

2 con.
SCAM

[wing sweep
morph]

2 con. 2 con. 2 con. 2 con. 2 con. 2 con. 2 con. 2 con.

GACA
[mainWing
RefArea]

1 con. 1 con. 1 con.

1 outp.
GACA

[mainWingFuel
TankVol]

1 con.

2 outp.
Q3D
[VDE] 2 con.

4 outp.
Q3D
[FLC] 126 con.

Q3D
[APM] 6 con.

1 outp. EMWET 1 con.

1 outp. SMFA 1 con. 1 con.

104 outp.
PHALANX
[Full Lookup]

3 outp. PROTEUS

4 outp. 1 con. 1 con. 2 con. 1 con. 1 con. MTOW 1 con. 1 con.

2 outp. OBJ

2 outp.
CNSTRNT

[wingLoading]

2 outp.
CNSTRNT

[fuelTankVolume]

2 inp. 28 inp. 9 inp. 20 inp. 14 inp. 3 inp. 3 inp. 8 inp.

HANGAR
[AGILE DC1 WP6
wing startpoint]

103 con. 119 con. 161 con. 107 con. 2 con.

SCAM-merged
[5modes] 15 con. 15 con. 15 con.

GACA-merged
[2modes] 1 con. 2 con.

Q3D[FLC]-
EMWET--seq 1 con.

Q3D[VDE]-
SMFA--seq 1 con. 1 con.

2 con. 1 con. MTOW 1 con. 1 con.

1 outp. OBJ

2 outp.
CNSTRNT-merged

[2modes]

MDO system
stages

AGILE MDO framework
(wing design case)

624 I. van Gent et al.

1 3

run the mathematical expressions directly, without the need
to integrate any tool in the collaborative workflow. This col-
laborative workflow clearly shows that the schema supports
the tool heterogeneity requirement IX (req-IX) specified in
Sect. 2.1.

Concerning the other requirements in Sect. 2.1, the wing
design case study has shown the level of compliance of the
current schema. The XML CMDOWS instances support
both human-readability (req-II) and machine-interpretability
(req-I). This human-readability is also proven by the fact that
many of the developers of AGILE framework applications
have been able to connect to CMDOWS in a short time. The
neutrality of the schema (req-III) has been maintained, even
when adding new elements to support the links with the
AGILE framework applications. Hence, there are no traces
of application-specific elements like KADMOS, KE-Chain,
Optimus, etc. Moreover, the core structure of CMDOWS
still allows adjustments (req-V), as the schema was extended
step by step to link different applications and more adjust-
ments can be made to meet future developments.

A key future improvement that was found concerns the
redundancy of the content of the schema (req-VI). Through-
out its development, initial CMDOWS versions were always
very lean in the information stored in a CMDOWS file.
Some of the application links demanded that certain infor-
mation is stored explicitly in the schema, even though this
information can be interpreted from the information already
stored. In future developments, the links with applications
will be checked for this type of information and per case it
will be decided whether to explicitly add the information in
the schema.

The wing design case has shown that three MDO system
stages (req-VII) are supported and even the bridge to the
execution phase can be made successfully. At the moment,
not all links are made with the MDO framework applications
(req-VIII). The links in Fig. 14 are mostly primary links
between CMDOWS and the applications, as explained in
Fig. 5. In future work, all applications will be extended and
the secondary links will also be developed to enhance the
capabilities of the AGILE MDO framework.

The implementation of the CMDOWS format in a het-
erogeneous MDO framework has enabled the coupling of
multiple MDO framework applications that would normally
operate independently. The associated time reduction that
motivated this development has not been quantified yet,
though it is estimated by MDO experts to be significant
[10, 13]. For example, the time reduction achieved through
InFoRMA for creation of the executable workflows for the
same MDO problem, where also the same MDO solution
strategy was imposed automatically, were beyond 90% [26]
using a prototype version of a standardized format. The
quantification of the time reduction impact of CMDOWS
within a broader MDO framework will be one of the results

of the final year of AGILE, where the framework integra-
tion supported by CMDOWS will be put to the test in six
MDO studies of unconventional aircraft configurations (e.g.,
blended-wing body, box-wing). The increased agility of
the collaborative MDO framework enabled by CMDOWS
is estimated to contribute time reductions in the order of
10–20%. This reduction would be amplified in a true MDO
study project, where the assembly of a single MDO strategy
is only one of the multiple reconfiguration steps involved.
In general, any MDO study starts with simple convergence
studies, followed by sensitivity studies aimed at selecting
the most convenient set of design variables. Once a given
MDO strategy has been implemented, the insights obtained
from the execution typically lead to a change or addition
of tools, selection of different design variables, objectives
and constraints, or the switch to a different architecture. As
demonstrated in AGILE [33, 49], CMDOWS is the actual
facilitator of these multiple studies providing an essential
contribution to the pursued agility.

Although the AGILE design cases strongly benefit from
the adoption of CMDOWS, a number of criteria should be
considered to evaluate its convenience in a generic MDO
study case:

• size of the MDO system under consideration
• heterogeneity and distribution of the team
• heterogeneity of the MDO framework
• maturity of the existing MDO framework with respect to

using CMDOWS

When dealing with large (in terms of number of involved tools
and coupling parameters) MDO systems, design teams will
benefit greatly from adapting CMDOWS to quickly set up a
coherent tool repository and use that repository to formulate
the MDO problem and solution strategy. Similarly, a hetero-
geneous and distributed team (many specialists with different
backgrounds working at different locations) will benefit from
CMDOWS to serve as a “common language” to streamline the
definition and use of MDO systems of any size.

The heterogeneity of the MDO framework, as indicated
in Fig. 4, has been the main motivation for developing
CMDOWS and is also the strongest indication for its effec-
tive use. There is a general skepticism in the development and
adoption of monolithic, holistic solutions that can cover all
the aspects of performing MDO projects collaboratively, e.g.,
MDO system definition, visualization, problem formulation,
reconfiguration and execution. Such solutions, whenever avail-
able, become obsolete quickly and are typically inflexible. A
simple but comprehensive standard format as CMDOWS, on
the other hand, allows the (re-)integration of many different
applications, both commercial and in-house developed, thus
providing maximum flexibility, scalability and adaptability.

625CMDOWS: a proposed new standard to store and exchange MDO systems

1 3

Finally, it is worth noting that not all people involved in
a project necessarily need to familiarize themselves with
CMDOWS, as this depends on the level of maturity of the
MDO framework in using CMDOWS at the beginning of
the project. In a mature framework all MDO applications
will already use and produce CMDOWS files (see Fig. 5)
and most people involved simply use these applications to
perform their tasks. Only people involved in developing
and maintaining the applications will have to invest time
for familiarization. Based on experience in the AGILE pro-
ject, this familiarization time is limited to 2-3 days with
some additional time required to understand the basic con-
cepts of MDO and XML. The AGILE project has proven
that CMDOWS interfaces can be easily developed, includ-
ing parsers for a heterogeneous set of PIDO tools (RCE,
Optimus). Once the interfaces are in place, the presence of
CMDOWS is transparent to the user, but does not require
any direct manipulation nor familiarization with the format
itself.

4 Conclusions and future developments

The latest version (0.7) of the MDO system exchange for-
mat CMDOWS has been presented in this paper. CMDOWS
supports the storage of an MDO system of any size at three
different stages of the formulation phase: tool repository,
MDO problem, and MDO solution strategy. The main goal
of CMDOWS is to provide a format that allows different
MDO framework applications to exchange the definition of
the MDO system. CMDOWS was demonstrated using an
aerostructural wing design problem within the AGILE con-
text. Different AGILE MDO framework applications were
linked to CMDOWS and it was shown that all stages of the
formulation phase are successfully supported by the schema.
Moreover, the final formulation stage results in a CMDOWS
file for which a collaborative workflow can be instantiated
directly in the workflow softwares Optimus and RCE. This
last functionality alone is already sufficient to demonstrate
the key role a standard format to store and exchange MDO
systems can play in the reduction of the setup time of an
MDO system. The enabled check and debugging opera-
tions supported by automatically generated visualizations,
together with the enabled automated generation of execut-
able workflows alone, can reduce setup time of MDO sys-
tems even beyond 90%.

Future work will focus on extending the schema, while
still maintaining the nine main requirements stated in
Sect. 2.1. As the AGILE MDO framework will grow, so
could the schema to support additional or enriched links
between CMDOWS and the MDO framework applica-
tions. An example of an enriched link would be the future
extensions that might be required to support the storage

of multilevel optimization architectures, such as BLISS
(Bilevel Integrated System Synthesis) [50], since so far the
schema has only been tested for monolithic formulations.

In conclusion, the current version of CMDOWS already
demonstrated its potential and versatility by demonstrating
the connection of five different MDO framework applica-
tions and its support for the development of an MDO system
from the tool repository to the collaborative workflow stage
for a realistic aerostructural wing optimization problem. It is
expected that the presented developments will gain enough
momentum and lead to a broad adoption of CMDOWS as
a standard to store and exchange MDO systems for a large
range of MDO framework applications.

Acknowledgements The research presented in this paper has been
performed in the framework of the AGILE project (Aircraft 3rd Gen-
eration MDO for Innovative Collaboration of Heterogeneous Teams of
Experts) and has received funding from the European Union Horizon
2020 Programme (H2020-MG-2014-2015) under Grant agreement No.
636202. The authors are grateful to the partners of the AGILE consor-
tium for their contribution and feedback.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Open‑source references

CMDOWS repository http://cmdow s-repo.agile -proje ct.eu
CMDOWS interface http://cmdow s.agile -proje ct.eu
KADMOS repository https ://bitbu cket.org/imcov angen t/kadmo s
RCE http://rcenv ironm ent.de

References

 1. Kodiyalam, S.: Evaluation of methods for multidisciplinary
design optimization (MDO), Phase I, Contractor Report CR-1998-
208716. National Aeronautics and Space Administration, Langley
Research Center (1998)

 2. Kodiyalam, S., Yuan, C.: Evaluation of methods for multidisci-
plinary design optimization (MDO), Part II, Contractor Report
CR-2000-210313. National Aeronautics and Space Administra-
tion, Langley Research Center (2000)

 3. Brown, N.F., Olds, J.R.: Evaluation of multidisciplinary optimiza-
tion techniques applied to a reusable launch vehicle. J. Spacecr.
Rock. 43(6), 1289–1300 (2006)

 4. Perez, R.E., Liu, H.H.T., Behdinan, K.: Evaluation of multidis-
ciplinary optimization approaches for aircraft conceptual design.
AIAA/ISSMO Multidisciplinary Analysis and Optimization Con-
ference (2004)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://cmdows-repo.agile-project.eu
http://cmdows.agile-project.eu
https://bitbucket.org/imcovangent/kadmos
http://rcenvironment.de

626 I. van Gent et al.

1 3

 5. Roth, B., Kroo, I.: Enhanced collaborative optimization: appli-
cation to an analytic test problem and aircraft design. In: 12th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Con-
ference (2008)

 6. Belie, R.: Non-technical barriers to multidisciplinary optimisation
in the aerospace industry. In: 9th AIAA/ISSMO Symposium of
Multidisciplinary Analysis and Optimisation, pp. 4–6 (2002)

 7. Giesing, J.P., Barthelemy, J.: A summary of industry MDO appli-
cations and needs. AIAA White Paper (1998)

 8. Agte, J., De Weck, O., Sobieszczanski-Sobieski, J., Arendsen,
P., Morris, A., Spieck, M.: MDO: assessment and direction for
advancement—an opinion of one international group. Struct.
Multidiscip. Optim. 40(1–6), 17–33 (2010)

 9. Shahpar, S.: Challenges to overcome for routine usage of auto-
matic optimisation in the propulsion industry. Aeronaut. J.
115(1172), 615 (2011)

 10. Simpson, T.W., Martins, J.R.R.A.: Multidisciplinary design opti-
mization for complex engineered systems: report from a national
science foundation workshop. J. Mech. Des. 133(10), 101002
(2011)

 11. Flager, F., Haymaker, J.: A comparison of multidisciplinary
design, analysis and optimization processes in the building con-
struction and aerospace industries. In: 24th international confer-
ence on information technology in construction, pp. 625–630
(2007)

 12. Ciampa, P.D., Nagel, B.: Towards the 3rd generation MDO col-
laboration environment. In: 30th Congress of the International
Council of the Aeronautical Sciences (2016)

 13. Pate, D.J., Gray, J., German, B.J.: A graph theoretic approach
to problem formulation for multidisciplinary design analysis and
optimization. Struct. Multidiscip. Optim. 49(5), 743–760 (2014)

 14. Meadows, N., Schetz, J., Kapania, R., Bhatia, M., Seber, G.: Mul-
tidisciplinary design optimization of medium-range transonic
truss-braced wing transport aircraft. J. Aircr. 49(6), 1844–1856
(2012)

 15. Mallik, W., Kapania, R., Schetz, J.: Effect of flutter on the multi-
disciplinary design optimization of truss-braced-wing aircraft. J.
Aircr. 52(6), 1858–1872 (2015)

 16. Iwaniuk, A., Wisniowski, W., Zóltak, J.: Multi-disciplinary opti-
misation approach for a light turboprop aircraft-engine integration
and improvement. Aircr. Eng. Aerosp. Technol. 88(2), 348–355
(2016)

 17. Bach, T., Führer, T., Willberg, C., Dähne, S.: Automated sizing of
a composite wing for the usage within a multidisciplinary design
process. Aircr. Eng. Aerosp. Technol. 88(2), 303–310 (2016)

 18. Balesdent, M., Bérend, N., Dépincé, P., Chriette, A.: A survey of
multidisciplinary design optimization methods in launch vehicle
design. Struct. Multidiscip. Optim. 45(5), 619–642 (2012)

 19. Adami, A., Mortazavi, M., Nosratollahi, M.: A new approach in
multidisciplinary design optimization of upper-stages using com-
bined framework. Acta Astronaut. 114, 174–183 (2015)

 20. Ashuri, T., Zaaijer, M., Martins, J., van Bussel, G., van Kuik, G.:
Multidisciplinary design optimization of offshore wind turbines
for minimum levelized cost of energy. Renew. Energy 68, 893–905
(2014)

 21. Ashuri, T., Zaaijer, M., Martins, J., Zhang, J.: Multidisciplinary
design optimization of large wind turbines—technical, economic,
and design challenges. Energy Convers. Manag. 123, 56–70
(2016)

 22. Ashuri, T., Martins, J., Zaaijer, M., van Kuik, G., van Bussel, G.:
Aeroservoelastic design definition of a 20 MW common research
wind turbine model. Wind Energy (2016)

 23. Jiang, P., Wang, J., Zhou, Q., Zhang, X.: An enhanced analytical
target cascading and Kriging model combined approach for mul-
tidisciplinary design optimization. Math Probl Eng (2015)

 24. Ollar, J., Toropov, V., Jones, R.: Sub-space approximations for
MDO problems with disparate disciplinary variable dependence.
Struct. Multidiscip. Optim. 1–10 (2016)

 25. Martins, J.R.R.A., Lambe, A.B.: Multidisciplinary design opti-
mization: a survey of architectures. AIAA J. 51(9), 2049–2075
(2013)

 26. Hoogreef, M.F.M.: Advise, formalize and integrate MDO archi-
tectures—a methodology and implementation. Ph.D. thesis, Delft
University of Technology (2017)

 27. Alexandrov, N., Lewis, R.: Reconfigurability in MDO Problem
Synthesis, Part 1, 10th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference (2004)

 28. Alexandrov, N., Lewis, R.: Reconfigurability in MDO problem
synthesis, Part 2, 10th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference (2004)

 29. Tosserams, S., Hofkamp, A., Etman, L., Rooda, J.: A specification
language for problem partitioning in decomposition-based design
optimization. Struct. Multidiscip. Optim. 42(5), 707–723 (2010)

 30. Marriage, C.: Automatic implementation of multidisciplinary
design optimization architectures using � MDO. Master’s thesis,
University of Toronto, Canada (2008)

 31. Gray, J., Moore, K.T., Hearn, T.A., Naylor, B.A.: A standard plat-
form for testing and comparison of MDAO architectures. In: 8th
AIAA multidisciplinary design optimization specialist conference
(MDO), Honolulu, pp. 1–26 (2012)

 32. Nagel, B., Böhnke, D., Gollnick, V., Schmollgruber, P., Rizzi, A.,
La Rocca, G., Alonso, J.J.: Communication in aircraft design: Can
we establish a common language? In: 28th International Congress
Of The Aeronautical Sciences, Brisbane (2012)

 33. Ciampa, P.D., Baalbergen, E.H., Lombardi, R.: A collaborative
architecture supporting AGILE design of complex aeronautics
products. In: 18th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference (2017)

 34. van Gent, I., La Rocca, G., Veldhuis, L.L.M.: Composing MDAO
symphonies: graph-based generation and manipulation of large
multidisciplinary systems. In: 18th AIAA/ISSMO Multidiscipli-
nary Analysis and Optimization Conference (2017)

 35. Diestel, R.: Graph theory. Graduate Texts in Mathematics,
vol. 173 (2010)

 36. Raju Kulkarni, A., Hoogreef, M.F.M., La Rocca, G.: Combining
semantic web technologies and KBE to solve industrial MDO
problems. In: 18th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference (2017)

 37. Aigner, B., van Gent, I., La Rocca, G., Stumpf, E., Veldhuis,
L.L.M.: Graph-based algorithms and data-driven documents for
formulation and visualization of large MDO systems. CEAS Aero-
naut. J. (2018, accepted)

 38. Lambe, A.B., Martins, J.R.R.A.: Extensions to the design struc-
ture matrix for the description of multidisciplinary design, analy-
sis, and optimization processes. Struct Multidiscip Optim 46(2),
273–284 (2012)

 39. Aigner, B., van Gent, I., La Rocca, G., Stumpf, E., Veldhuis,
L.L.M.: Using graph-based algorithms and data-driven documents
for formulation and visualization of large MDO systems. In: 6th
CEAS Air and Space Conference (2017)

 40. Seider, D., Fischer, P.M., Litz, M., Schreiber, A., Gerndt, A.: Open
source software framework for applications in aeronautics and
space. In: 2012 IEEE Aerospace Conference (2012)

 41. van Gent, I., Lombardi, R., La Rocca, G., d’Ippolito, R.: A fully
automated chain from MDAO problem formulation to workflow
execution. In: EUROGEN 2017 (2017)

 42. Baalbergen, E., Kos, J., Louriou, C., Campguilhem, C., Barron,
J.: Streamlining cross-organisation product design in aeronautics.
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 231(12), 2192–2202
(2017)

627CMDOWS: a proposed new standard to store and exchange MDO systems

1 3

 43. Gondhalekar, A.C., Guenov, M.D., Wenzel, H., Balachandran,
L.K., Nunez, M.: Neutral description and exchange of design
computational workflows. In: 18th International Conference on
Engineering Design (2011)

 44. Kesseler, E., Guenov, M.D.: Advances in collaborative civil aero-
nautical multidisciplinary design optimization. In: American Insti-
tute of Aeronautics and Astronautics (2010)

 45. Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Elmqvist, H.,
Junghanns, A., Mauß, J., Monteiro, M., Neidhold, T., Neumerkel,
D., et al.: The functional mockup interface for tool independent
exchange of simulation models. In: 8th International Modelica
Conference. No. 063, pp. 105–114 (2011)

 46. Grosskopf, A., Decker, G., Weske, M.: The process: business pro-
cess modeling using BPMN. Meghan Kiffer Press (2009)

 47. Sellar, R.S., Batill, S.M., Renaud, J.E.: Response surface based,
concurrent subspace optimization for multidisciplinary system
design. AIAA Paper 714, 1996 (1996)

 48. van Gent, I., Ciampa, P.D., Aigner, B., Jepsen, J., La Rocca, G.,
Schut, E.J.: Knowledge architecture supporting collaborative
MDO in the AGILE paradigm. In: 18th AIAA/ISSMO Multidis-
ciplinary Analysis and Optimization Conference (2017)

 49. Lefebvre, T., Bartoli, N., Dubreuil, S., Panzeri, M., Lombardi, R.,
Della Vecchia, P., Nicolosi, F., Ciampa, P.D., Anisimov, K., Save-
lyev, A.: Methodological enhancements in MDO process inves-
tigated in the AGILE European project. In: 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference (2017)

 50. Sobieszczanski-Sobieski, J., Altus, T.D., Phillips, M., Sandusky,
R.: Bilevel integrated system synthesis for concurrent and distrib-
uted processing. AIAA J. 41(10), 1996–2003 (2003)

	CMDOWS: a proposed new standard to store and exchange MDO systems
	Abstract
	1 Introduction
	1.1 New initiatives to support the development of MDO systems
	1.2 Origins of CMDOWS: why a standard to store and exchange MDO systems?
	1.3 Structure of this paper

	2 CMDOWS
	2.1 CMDOWS functional requirements
	2.2 CMDOWS definition
	2.2.1 Top-level elements
	2.2.2 Illustrative example: storing the Sellar MDO system

	3 Case study: AGILE development process for aerostructural wing design
	3.1 Description
	3.2 Results
	3.3 Discussion

	4 Conclusions and future developments
	Acknowledgements
	References

