
The Interaction Between Two
2D Rarefied Vapor Jets

T.J.M. Broeders





THE INTERACTION BETWEEN TWO 2D RAREFIED
VAPOR JETS

by

T.J.M. Broeders

in partial fulfillment of the requirements for the degree of
Bachelor of Science

Applied Mathematics and Applied Physics
at the Delft University of Technology,

to be defended publicly on Tuesday April 9, 2019 at 15:00 PM.

Student number: 4174879
Project duration: Oct 15, 2018 – Apr 9, 2019
Supervisor: Prof. dr. ir. C.R. Kleijn

Dr. ir. F.J. Vermolen
E. Vesper, M.Sc.

Thesis committee: Dr. J.L.A. Dubbeldam
Dr. S. Kenjereš





ABSTRACT

Steel is commonly coated to protect it from corrosion. One method of applying this is
by using Physical Vapor Deposition, which can be done by using multiple jets. In this
process jets next to each other interact. This paper’s main aim is to investigate the in-
teraction effect of two rarefied two-dimensional vapor jets in vacuum and how this is
influenced by the distance between jets and inlet density. Furthermore, the analytical
solution for the collisionless case for a single jet is extended to dual jets. Additionally,
the objective is to maximize the processing speed for the use of coating, with a certain
uniformity for the parameters researched in this paper and finding an optimal method
in doing so. This study is done by using the Direct Simulation Monte Carlo (DSMC)
method.
The analytical solution gave the same results as the collisionless DSMC method for both
single and dual jets. Simulations with a strong interaction effect resulted in a shock.
These behaved similar compared to three-dimensional jets, in the plane of the jets. The
shock results in a secondary jet, which has a lower density in the middle. The inter-
action effect depends primarily on the inlet density. Multiple regimes are observed for
different inlet density ranging from small change in properties to a shock wave, with a
transitional regime inbetween. The influence of the distance between the jets is found to
result in a higher density at the axis of the inlet behind the shock, for bigger distance be-
tween jets. However, for very small distances between jets compared to the inlet size the
shock is weak. For the optimization, it resulted in the conclusion that the optimal coat-
ing in general is applied with the smallest distance between jets. This generally gives
a better uniform coating and increased performance. However, this is not always the
case when constraining the distance between the jets and sheet, as it only holds if the
shock between the jets for this distance. Furthermore, an approximation is found for the
optimization, which results in fewer simulations needed.
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1
INTRODUCTION

One of the greatest threats to metal is corrosion. One way to protect the metal is by
coating it with Zinc. Steel is commonly coated by immersing it in a bath of molten zinc
known as hot dip galvanization[1]. However, this reheats the steel, which is not always
preferred. Another option for applying a coating is using Physical Vapor Deposition[11].
In this process zinc vapor is sprayed on the sheet, after which it attached on contact. The
process speed of this method depends partly on the number of vapor jets used. However,
two close jets can interact with each other. This interaction changes the vapor deposition
profile and can even result into a shock. This shock results in irregular coating, which
could lead to problems further in the process line. Therefore, a coating is preferable ap-
plied uniform and thus, understanding the interaction effect of two vapor jets could help
optimize this coating process. The interaction effect of two three-dimensional jets has
been researched before[9][7][6][4]. However, there is little literature on the interaction
effect for the two-dimensional case, which represents two infinite long slits in three di-
mensions.
The aim of this study is to investigate the interaction effect of two rarefied vapor jets in
two-dimensions and how to optimize its vapor deposition. This is done by doing simula-
tion using the Direct Simulations Monte Carlo (DSMC) method. However, this is a com-
putational costly method for which simulations can take up to two weeks. Therefore,
we start by first reviewing the analytical solution for the collisionless case for a single
two-dimensional jet[3] and expanding it to the dual jets, as this could serve as a useful
comparison, which is not as computational costly. Additionally, it gives the solution for
one utmost extreme. After this, the conditions at which a shock occurs is studied. The
interaction effect is then compared for different inlet densities and distances between
jets. The inlet density is expected to play a major role in the interaction effect, as this de-
fines the gas flow characteristics. The density greatly influences the collision frequency,
which in turn causes the particles to interact more. The distance between the inlets is
expected to have a smaller influence on the interaction effect for most cases, but it could
influence the deposition profile. For the last part, this thesis will examine a method for
optimizing the process conditions to obtain the desired vapor deposition profile, which
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2 1. INTRODUCTION

is a fast vapor deposition under the condition that the coating is applied within a certain
uniformity.



2
THEORY

2.1. KINETIC THEORY OF GASES
The kinetic theory describes a gas as a system containing a large number of small par-
ticles (molecules). These particles behave according to classical mechanics. As in most
gases, it is assumed that the average distance separating the particles is large compared
to their size, therefore interaction involving three or more particles can be neglected and
thus only binary collisions are taken into account. In this section, we explain the phase
density function and how it is used in kinetic theory of gases to calculate the gas flow
properties and how the analytical solution for the collisionless case is derived.

2.1.1. PHASE DENSITY FUNCTION
In kinetic theory gas flow depends on a huge number of particles, which is practically
impossible to keep track of individually. A solution for this is by using a phase density
function f

(
x, y, z, vx , vy , vz , t

)
. Here x, y and z stand for the coordinates of the position

and the values vx , vy and vz represents the velocity of a particle in corresponding di-
rections, which is also represented by the velocity vector v . This function represents the
relative chance to find a particle at position r with velocity v . The velocity distribution
for each point is thus contained in f . The phase density function can therefore be used
to calculate the macroscopic properties of the gas. The local values for number density
n, average velocity V and temperature T are calculated by[2]

n =
Ñ

R3
f dv , (2.1a)

V = 1

n

Ñ
R3

v f dv , (2.1b)

T = m

3nk

Ñ
R3

||V −v ||2 f dv . (2.1c)

In the equation for the temperature, k stands for the Bolzmann constant and m repre-
sent the mass of a molecule.
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4 2. THEORY

2.1.2. BOLTZMANN EQUATION
In the previous part we explained the phase density function f . This function changes
over time as particles move and collide with each other. In 1872[15], Ludwig Boltzmann
established a partial differential equation describing the progression of the density func-
tion. This equation, known as the Boltzmann equation, shows that the change in time
can be split into two parts. They are the change caused by collisions and the change
caused by movement v and acceleration due to an external force F , i.e.

∂ f

∂t
+v · ∂ f

∂r
+ 1

m
F · ∂ f

∂v
=

(
∂ f

∂t

)
col l

, (2.2)

where r stands for the point in space. The collision term was also determined by Boltz-
mann. The Boltzmann equation has for most cases no known exact solution and is there-
fore commonly solved with a numerical approach. In this paper the Direct Simulation
Monte Carlo (DSMC) method is used to evaluate the particle behavior.
The phase density function for a gas in thermodynamic equilibrium is expressed by the
Maxwell-Boltzmann distribution[14], i.e.

f
(
vx , vy , vz

)= n
( m

2πkT

)3/2
exp

(
−m||v ||2

2kT

)
. (2.3)

This equation is independent of the position and is the time independent solution for the
Boltzmann equation for a closed box. When taking stream velocity V into account, the
velocity v is replaced by v −V . The Maxwell-Boltzmann distribution described above is
for a three dimensional gas, and is proportional to a three dimensional normal distribu-
tion. This has the property that the velocities vx , vy and vz are uncorrelated. Therefore,
the equation can be written as

f = n fx fy fz , (2.4)

with the functions fx , fy and fz as one dimensional normal distributions, i.e.

fx =
√

m

2πkT
exp

(
−m|vx −Vx |2

2kT

)
. (2.5)

These functions have the property,
∫ ∞
−∞ fx dx = 1. These distributions are used in cal-

culating the analytical solution for the collisionless case and for initializing the particle
speed in the simulation.

2.1.3. COLLISIONLESS ANALYTICAL SOLUTION
As mentioned in previous section, the Boltzmann equation is not commonly solved ana-
lytically. However, there is an analytical solution for the gas flow of a single jet expansion
in vacuum if collisions are ignored. The analytical solution for the number density and
velocity were solved by Cai [3], who used Narasimha’s[12] work for collisionless expan-
sion from a point source.
We assume a vacuum space without external forces and introduce a point source of
molecules at the origin. All particles in the domain come from the source. The veloc-
ity of each particle is constant, as it is not changed by collisions or external forces. This
means that at a point r , there are only particles with velocity v which points into the
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same direction, i.e r̂ = v̂ . This is equivalent to v t = r for some positive value of t .
For a two-dimensional jet in vacuum emanating from a finite-size slit, the previous prin-
ciple still holds. Every particle comes from a point on the inlet. Therefore, the condition
t v = r −r s must hold for some positive value t and some coordinate r s of a point on the
slit. In other words, at point r only particles for which the conditions hold, are found.
Therefore, define the set Ωr as the collection of all the velocities v for which the condi-
tion holds. This set is position dependent and each velocity in this set corresponds to a
point of the slit. At the entire inlet is assumed to have the Maxwell-Boltzmann distribu-
tion as phase density function f0. The phase density function for a point r can then be
expressed by

f (r , v ) =
{

f0 (v ) v ∈Ωr ,

0 v ∉Ωr .
(2.6)

Using this, the equations 2.1a-2.1c can be written as the integral over the set Ωr . The
macroscopic gas properties can be written as:

n
(
x, y

)=Ñ
Ωr

f0 dv , (2.7a)

V
(
x, y

)= 1

n
(
x, y

) Ñ
Ωr

v f0 dv , (2.7b)

T
(
x, y

)= m

3kn
(
x, y

) Ñ
Ωr

||V −v ||2 f0 dv . (2.7c)

The equations for number density and velocity where solved and validated by Chumpei
and Boyd[3]. The temperature was solved and validated by Khasawneh, Liu and Cai[8].
These solutions can be found in appendix A.

2.2. THE KNUDSEN NUMBER
In rarefied gas flow particle behavior results from collision. Therefore, the frequency
of collisions influences the gas behavior. A gas can be characterized by the Knudsen
number K n. This number is a dimensionless number defined by the ratio between the
mean free path λ and a characteristic length L, i.e.

K n = λ

L
. (2.8)

The mean free path is the average distance particle move between collisions. The length
L is in literature loosely defined as a characteristic length to some traits of a system. In
this paper, the following definitions for Knudsen numbers are used.

2.2.1. THE STAGNATION KNUDSEN NUMBER
Each of the simulations depends on its inlet parameters. In practical experiments, these
parameters depend on how the gas is inserted. For the vapor deposition apparatus we
study, this is done by evaporating a material in a box. The gas is then assumed to leave
the box accelerating in an isotropic process from stagnation conditions up to the speed
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of sound. The mean free path λs at the stagnation condition is then used for the stagna-
tion Knudsen number, denoted by

K ns = λs

h
. (2.9)

Here h stands for the width of the inlet.
In this paper, the same value for h is chosen for all cases. Furthermore, the inlet temper-
ature T0 and velocity V 0 are also kept the same. The inlet number density n0 is changed
and depends on K ns by equation[9]

K ns = 1p
2σn h

, (2.10)

with collision cross-section σ.

2.2.2. THE PENETRATION KNUDSEN NUMBER
The degree of interaction of two vapor jets can be classified by the penetration Knudsen
number K np . This was introduced by Dankert and Koppenwallner [9] to distinguish
between regimes.

y

x

λp
lp

θ

Figure 2.1: Defining K np for dual jets, showing the penetration mean free path λp , the penetration length lp
and the angle θ from the inlet.

The penetration Knudsen number is only defined on the mid-line between the jets.
Looking at figure 2.1, the particles on the mid-line coming from the bottom inlet with
angle θ, start to move through the other plume. The distance it needs to travel to move
past middle of the other plume is denoted by lp . The penetration mean free path λp , is
defined as the average distance a particle from one plume travels before it collides with a
particle from the other plume. The penetration Knudsen number is defined by the ratio
between λp and lp , i.e.

K np = λp

lp
. (2.11)
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This Knudsen number depends on the angle θ, but can also be expressed depending on
the position of the mid-line. In practice, particles could have collided many times before
arriving at the mid-line. Therefore, this number is calculated without the interaction
taken into account.
Equation 2.11 can be solved by using the data of a single jet. The mean free path λp of a
particle going through one jet can be approximated by assuming that the relative speed
between two plumes is equal to 2Vy . The gives us

λp = ||V ||
2Vy nσ

, (2.12)

with collision cross-section σ. Using this equation with equality ||V ||
L = Vx

lp,x
, the equation

can be written as

K np = 1

2nσl
. (2.13)

K np depends on the position. Therefore, it is the minimum value K np,mi n used to de-
scribe the interaction effect.

2.3. DIRECT SIMULATION MONTE CARLO
The Direct Simulation Monte Carlo (DSMC) method is commonly used to simulate rar-
efied gas flow [5, 10]. It is part of computational fluid dynamics (CFD) and it is a proba-
bilistic simulation for solving the Boltzmann equation. DSMC is a particle based method
which uses a stochastic model to determine collisions to mimic gas flow. The movement
and collision of particles are decoupled from each other. This makes it computationally
faster than other particle based simulations such as Molecular Dynamics (MD). How-
ever, this also makes it inaccurate for cases in which the exact collision plays a major
role. In this section we shall explain the workings of the DSMC method and how to get
accurate results.

2.3.1. THE DSMC METHOD
In DSMC, particles representing a large number of molecules are used to simulate gas
flow. The workings of DSMC can be summarized by a few simple steps. These steps
are conducted each time step of the DSMC simulation. The computational domain is
discretized on a mesh. First initialize particles with a prescribed spatial and velocity dis-
tribution at the inlet, then move the particles during a time step ∆t . After that, particles
within the same mesh cell are selected as potential collision partners, after which colli-
sions are computed. The mesh is then used to sample the properties as the last step.
We shall discuss these steps in more detail. At the inlet boundary new particles are ini-
tialized. These particles velocities and positions are sampled from their corresponding
distribution. For the position this is a uniform distribution and for the velocity this is the
Maxwell-Boltzmann distribution 2.3. After this, each particle is moved depending only
on its own velocity, and thus independent of other particles. Particles moving over the
boundary are dealt with according to the type of boundary. Subsequently, the collisions
are calculated. Particles are first sorted by cell. For each cell the maximum number of
collisions is determined. This is achieved by first determining the maximum number of



8 2. THEORY

collisions. For each of these collisions, two random particles are chosen in the cell. Each
of these pairs are then accepted or declined to collide randomly depending on their rela-
tive velocity. Each accepted collision changes the velocities of the two particles. The new
velocities satisfy the momentum and energy conservation and are determined by the
collisions angle which is chosen by a stochastic process. There are different models[2]
to simulate the collisions, such as the hard-sphere and soft-sphere model. In this paper,
the variable hard-sphere model is used[2].
To conclude, here are some properties for a better understanding: The DSMC method
does not take other particles into account when moving. It is possible to have two par-
ticles at the same position, and as the collision process in a cell does not take position
into account, these particles have a normal chance to collide.

2.3.2. DISCRETIZATION ERROR
A DSMC simulation is always numerically stable, regardless of time-step, but not always
accurate. The discretization error depends on the time step, the cell size and the number
of particles per cell.
The time step ∆t should be small enough for the particle to move multiple time steps
between collisions, because the movement and collision process should be decoupled.
In other words, ∆t must be significantly smaller than the mean collision time τc . A good
rule of thumb [2] is to set the time step smaller than one tenth of the mean collision time.
The cell size ∆x should be small enough in order to avoid collisions of particles far apart
from each other to prevent instant transport of energy and momentum over a large dis-
tance. Therefore, the cell size should be smaller than the mean free pathλ. Bird [2] states
that as a rule of thumb, the cell size should be smaller than one third of the mean free
path.
The number of particles in a cell Ncel l determines the number of possible different col-
lisions. This should be sufficiently high such that two particles do not collide too often
which each other and should also be sufficiently high to accurately calculate average gas
properties. The rule of thumb[2] is that it should be above or equal to twenty.
In short, the criteria for an accurate DSMC simulation are:

1. ∆t < 1
10τc ,

2. ∆x < 1
3λ,

3. Ncel l ≥ 20.

Fulfilling these criteria throughout the domain results in high computational cost, espe-
cially for an expansion flow. Therefore, the criteria are fulfilled within and upstream the
region of interest. In this paper, ∆t < 1

5τc is used to save computational time.
Particles should not be able to jump over cells. This commonly does not happen when
following the rule of thumb above because a particle will be in a cell for around three
time steps on average. However, particles can pass cells in cases with∆x <<λ. This hap-
pens for example by disabling the collisions. In these cases, the flow velocity V should be
taken into account such that on average the particles stay in the cell for two time steps,
i.e. ||V ||∆t

∆x < 0.5. Otherwise, a biased could be introduced as the probability for certain
velocity could be effected.
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2.3.3. AVERAGING MACROSCOPIC PROPERTIES AND THEIR STATISTICAL ER-
ROR

There are different definitions for calculating the average of macroscopic properties.
Those of the gases are determined for each separate cell. As we assume we have a steady
state, an average can be obtained by using a number of time steps It . The number of
particles in a cell Ncel l can be averaged, with the average number of particles Nav in a
cell defined by

Nav = 〈Ncel l 〉. (2.14)

From this follows the density ρ, with the help of the number of molecules each particle
represents neqv , the mass of single Zinc molecule m and the volume of the cell Vcel l . The
density can be calculated by

ρ = Nav
neqv m

Vcel l
. (2.15)

The average velocity of the gas in the cell U is calculated not by averaging over time but
by averaging over the total number of particles N . This way, each particle is weighted by
its number of time steps in the cell. The average velocity is the average of the particle
velocities in the cell,

U = 1

N

N∑
i=1

v i . (2.16)

The temperature T of the cell is calculated in a similar way, but as it is proportional to
the variance of the velocity, it is calculated by the unbiased estimation of the variance,
this gives

T = 2m

3k

1

N −1

N∑
i=1

|vi −V |2 . (2.17)

The version of dsmcFoam used, calculated T as

T = 2m

3k

1

N

N∑
i=1

|vi −V |2 . (2.18)

This formula is biased for small values of N [16] and should not be used in those cases.
The above discussed properties have a statistical error resulting from averaging over a fi-
nite number. These are explained by Sun and Boyd [16], and can be expressed as follows:

ENav =
p

N It , (2.19a)

Eρ = ENav

neqv m

Vcel l
, (2.19b)

EU =
√

k T

m N
, (2.19c)

ET =
√

2T 2

3N −1
. (2.19d)

These statistical errors do not take into account that particles stay in the cell for multiple
time steps. A more accurate error estimate is discussed later in this paper. All of these
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errors are proportional to 1/
p

N , which can be increased by averaging over a longer time
or by increasing the number of particles.



3
CASE SETUP

The DSMC simulation is conducted with OpenFoam+ solver of OpenFOAM-2.4.0-MNF[17].
The version used has a small bias in the calculations for the temperature, which is ex-
plained in section 2.3.2. The DSMC method implemented in OpenFoam uses subcells
to separate the particles for the collision process. This method[2] divides each cell into
eight smaller cells, in which particles have a higher chance to collide within the same
subcell. Therefore, the length of cells is taken twice as large as the one given by the rule
of thumb, explained in section 2.3.2. Furthermore, the time step has also been taken
larger than the rule of thumb to increase computation time. The effect of the increased
time step has been tested for a dual jets case, which gave no significant difference. The
conditions set for the simulations in this paper follow

1. ∆t < 1
5τc ,

2. ∆x < 2
3λ and

3. Ncel l ≥ 20

for all cells, except for the low density area at the boundary. For all simulations, the
following inlet conditions are kept the same. The inlet velocity V is kept at 356.5m/s in
the x-direction and the inlet Temperature T0 at 600K. The simulations are done for the
monatomic gas zinc. The collision follow the variable-hard sphere model. [2]
For the cases of the single jet flow, the domain is represented by figure 3.1. The width h
of the inlet is 3.0mm for all cases. The size of the domain is Lx = 75mm by Ly = 33mm
by Lz = 0.001mm, for which the length in the z-direction does not influence the results
of the DSMC. The boundary conditions of the domain are deletion boundaries at the
edges of the x,y-directions and a symmetry boundary in the z-direction, reducing the
three-dimensional simulation to a two-dimensional case.

11
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y

xh

Figure 3.1: Representation of the solo jet expansion domain.

For the case of the dual jet expansion, the domain is shown by figure 3.2. In these
cases most simulations have a size of Lx = 30mm by Ly = l +4.5mm by Lz = 0.001mm,
here the domain depends on the distance l to the middle of the inlet. The boundary
conditions is the same as for the solo jet case except for the symmetry boundary at y = 0.

y

x

h

l

Figure 3.2: Representation of the dual jets expansion domain.

When particles pass through a symmetry boundary, their velocity is mirrored. Pass-
ing any other boundary results in the particle being deleted. This includes the inlet
boundary boundary at which the particles are generated. This should give a difference
between DSMC and experimental results, which should be taken into account when
comparing. However, this is not part of the present study.

3.1. AUTOCORRELATION
As explained in section 2.3.3, the estimates for the statistical error do not take the effects
of autocorrelation into account. This can result from particles being sampled multiple
times. Decreasing the time step by half, doubles the number of particles Nav in equation
2.19b, but should not significantly decrease the observed statistical error. When parti-
cles are in a cell they can collide, however these collisions do not change the number of
particles in the cell or the total momentum in the cell, as collisions follow the law of con-
servation of mass and momentum. This means that the velocity of the gas flow is also
kept the same and such also the kinetic energy of the gas. It follows from energy conser-
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vation, that the temperature is unaffected by collision. In short, the properties change
only when particles enter or leave the cell. However, this is influenced partly by colli-
sions, as they do exchange energy and momentum between particles. The autocorrela-
tion is calculated for different points in the domain for 16000 time steps. Figures 3.3-3.6
shows the autocorrelation function, ACF, for K ns = 0.0020 for the point (x = 0.293mm,
y = 4.515mm). This point is located 0.293mm behind the inlet, with the middle of the
inlet at l = 4.5mm.

Figure 3.3: The autocorrelation function for the density at the point (x = 0.293mm, y = 4.515mm). The two
lines represent the 2σ relative standard deviation of the density.
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Figure 3.4: The autocorrelation function for the velocity Vx at the point (x = 0.293mm, y = 4.515mm). The two
lines represent the 2σ relative standard deviation of the data.

Figure 3.5: The autocorrelation function for the velocity Vy at the point (x = 0.293mm, y = 4.515mm). The two
lines represent the 2σ relative standard deviation of the data.
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Figure 3.6: The autocorrelation function for the temperature at the point (x = 0.293mm, y = 4.515mm). The
two lines represent the 2σ relative standard deviation of the temperature.

The figures shows that the auto correlation functions differ for different macroscopic
properties. The density has a longer autocorrelation time compared to the others. This
can be explained by the fact that the number density depends on the number of particles
in the cell Ncel l . This number can only change when particles enter or leave the cell by
a set amount. The value of Ncel l has, therefore, a higher chance to have a value close to
previous value of Ncel l . The other properties do not depend on a set amount. When the
same number of particles would enter and leave, the number density is unchanged, but
the other properties can be changed. Furthermore, individual properties of particles are
changed by collisions.
The autocorrelation function shows that after a certain number of time steps the values
are uncorrelated. However, this number does not represent the average, as it includes
even the time-steps with small but noticeable autocorrelation. Using this number of
time step gives thus an overestimation. Therefore, the difference between the first two
points is used to calculate the average number of time steps τneeded. This is done by as-
suming the autocorrelation decreases by the same relative amount each time step. This
method correlates better when comparing the expected error with the error found. Table
3.1 shows the average time steps τ for the different macroscopic properties at different
points. It shows that larger cells have in general a larger value for τ. This is expected,
as particles will be on average longer in these cells. However, this is not the only cause,
as the diversity of the properties of the particles also influences the value of τ, which is
lower for cells farther away of the inlet. The values for τ can be used to get a better error
estimate by increasing the unautocorrelated errors in section 2.3.3 by its correspondingp
τ.

The values for τ found in table 3.1 are case depended. However, by keeping the same
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Table 3.1: The number of time steps τ needed for significant unautocorrelated macroscopic property at differ-
ent point, with corresponding cell size.

No.
position (mm) cellsize (µm)

τρ τVx τVy τTx y d x d y

1 0.020 4.49 29.8 30.0 2.12 1.28 1.25 1.30
2 0.293 4.49 31.8 30.0 2.24 1.68 1.02 1.55
3 0.293 4.52 31.8 30.0 2.27 1.67 1.04 1.55
4 6.27 1.67 79.5 30.0 3.44 2.92 1.00 2.56
5 8.59 4.49 98.0 30.0 4.06 3.82 2.31 3.49
6 25.6 4.49 235 30.0 5.53 5.32 3.41 4.75
7 25.6 7.47 235 44.3 6.10 5.89 4.35 5.35

ratio between the cell sizes and the time step, we expect the values for τ to be roughly
the same.



4
ANALYTIC SOLUTION FOR THE

COLLISIONLESS CASE

The collisionless case can be solved analytically. We first compare the analytical solution
for the single jet with DSMC results for a verification of the code. Additionally, we will
show how collisions change the flow field of a single jet. After that, the analytical solution
for the dual jets is derived from the single jet and compared to the DSMC.

4.1. SINGLE JET IN VACUUM

For the single jet expansion in vacuum, the analytical solution for the collisionless case
is compared with a collisionless DSMC simulation. The analytical solutions for the col-
lisionless single jet expansion in vacuum are found in Appendix A. As shown in figures
4.1-4.5, the analytic solution for the density ρ, velocities Vx and Vy , temperature T and
pressure p agree with the DSMC results within the discretization error. This confirms
the study of Cai and Boyd [3] and the study of Khasawneh, Liu and Cai[8]. The agree-
ment was expected, as both the analytical solution and DSMC result have the same inlet
distribution 2.3 and solve the collisionless Boltzmann equation.

17
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Figure 4.1: Comparison of density for the collisionless DSMC and analytical solution, for a single jet.

Figure 4.2: Comparison of average velocity in the x-direction for the collisionless DSMC and analytical solu-
tion, for a single jet.
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Figure 4.3: Comparison of average velocity in the y-direction for the collisionless DSMC and analytical solu-
tion, for a single jet.

Figure 4.4: Comparison of temperature for the collisionless DSMC and analytical solution, for a single jet.
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Figure 4.5: Comparison of pressure for the collisionless DSMC and analytical solution, for a single jet.

When particles collide their velocities change. This influences the behavior of the
gas, which results in a deviation from the collisionless case. To observe the quantitative
difference and the dependency of K ns , the analytical solution is compared to multiple
DSMC results for single jet for different K ns values. Figure 4.6 compares the density
of the collisionless analytical solution with the case K n = 0.05. The density decreases
more during the expansion for K ns = 0.05. The mass flow coming from the inlet is the
same, which means that the gas should expand quicker. The magnitude of the velocities
is compared in figure 4.7. As expected, the velocity is smaller for the collisionless case,
which corresponds to the findings of the density. From the conservation of energy, it
follows, that an increase in velocity comes along with a decrease of temperature (figure
4.8). The particles have a velocity in three dimensions. The thermal energy is distributed
equally over the directions at the inlet. The thermal energy in z-direction is thus con-
verted to kinetic energy through collisions. This conversion results in a different flow
field, as for smaller K ns the mass flow becomes greater in the y-direction and thus lower
in the x-direction. The simulation has also a back flow over the boundary at x = 0, but
this can be neglected.
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Figure 4.6: Comparison of density for the analytical solution and a DSMC for K ns = 0.050, for a single jet.

Figure 4.7: Comparison of average velocity for the analytical solution and a DSMC for K ns = 0.050, for a single
jet.
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Figure 4.8: Comparison of the temperature for the analytical solution and a DSMC for K ns = 0.050, for a single
jet.

We thus found that the collisionless case differs from the case with collision. To com-
pare this difference, we looked at the horizontal line at y = 0. Figure 4.9 shows the ratio
of the density between the DSMC result and analytical results for different K ns . It shows
that the relative difference is higher for lower K ns and it depends on the position. For
K ns = 5 the analytical solution is an accurate approximation, but this is not the case for
lower stagnation Knudsen number. Furthermore, the density at the inlet is higher com-
pared to the collisionless case. This results from the effect of back flow and is influence
by collisions.
The density for a three-dimensional expansion in vacuum Li[9] approximates the den-
sity assuming ρ∝ 1

R2 , with R the radial distance to the inlet. The 1
R2 term is independent

of K ns . For our two-dimensional domain, this becomes ∝ 1
R . Which holds true for the

collisionless case with R > 3mm. However, figure 4.9 contradicts that this is indepen-
dent of K ns within the domain of interest, as the ratios decreases in the domain. The
discrepancy can be explained by the conversion of thermal energy to kinetic energy. The
thermal energy in the z-direction also acts like a reservoir, for which the collision fre-
quency determines how fast this energy can be transformed to kinetic energy. This, as
discussed before, influences the change in velocity and thereby the change in density.
The method by Li[9], should thus not be used for stagnation Knudsen number above
0.05. The approximation was already flawed for small R, as the inlet is not a point source.
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Figure 4.9: The density ratio between with and without collisions, for different K ns at y = 0.

4.2. DUAL JETS IN VACUUM
For the case of two jets in vacuum for the two dimensional case, the analytical solution
is found by using the formulas for the single jet and combining them. With two inlets,
there are two setsΩ1 andΩ2, corresponding to each inlets. The number density ndual of
the dual jet, can thus be expressed like equation 2.7a, by

ndual
(
x, y

)=Ñ
Ω1∪Ω2

f0 dv

In this equation the integral can be rewritten as two integrals, one for each set. This gives

ndual
(
x, y

)=Ñ
Ω1

f0 dv +
Ñ

Ω2

f0 dv .

These integrals are the number density nsol o for a solo jet, i.e.

ndual
(
x, y

)= nsol o,1 +nsol o,2. (4.1)

The number density for dual jets is thus the summation of two solo jets.
The same approach can be used for the velocity V dual . Equation 2.7b can be used for
dual inlets by again integrating over the two setsΩ1 andΩ2.

V dual
(
x, y

)= 1

ndual

Ñ
Ω1∪Ω2

v f0 dv .

The integral in this equation is then divided by the sets, i.e.

V dual
(
x, y

)= 1

ndual

(Ñ
Ω1

v f0 dv +
Ñ

Ω2

v f0 dv
)

.
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The integrals rewritten by using equation 2.7b. This gives the equation

V dual
(
x, y

)= nsol o,1v sol o,1 +nsol o,2v sol o,2

ndual
. (4.2)

The velocity of the gas for dual jets, is thus the average velocity weighted by the number
density.
The temperature Tdual of the dual jet is derived from the internal energy. Equation 2.7c,
can be rewritten as two parts corresponding to the total energy eT and kinetic energy
eki n . These are defined by

eT = m

k

1

3n

Ñ
||v ||2 f0 dv ,

eki n = m

k

1

3n

Ñ
||V ||2 f0 dv .

The second equation can be written as eki n = m
k

||V ||2
3n , because V in a constant in the

integral. Rewriting the equation for Tdual , gives us

Tdual =−m

k

||V dual ||2
3

+ m

3k

nsol o,1eT,sol o,1 +nsol o,2eT,sol o,2

ndual
. (4.3)

In this equation eT,sol o stands for the part corresponding to one inlet. Which is expressed
in appendix A.
These equations for collisionless dual jets expansion in vacuum are then compared with
a collisionless DSMC simulation. These results are found in figures 4.10-4.15. These fig-
ures confirm that the analytical solution is equal to the DSMC results within the bounds
of the statistical error. The equations discussed are not only useful for the collisonless
case. If the result of a single jet simulation is used, then the equations still holds. This
gives the collisionless effect between jets, which can be used to compare the difference
in effect for all the macroscopic properties.
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Figure 4.10: Comparison of density for the collisionless DSMC and analytical solution, for two jets.

Figure 4.11: Comparison of average velocity in the x-direction for the collisionless DSMC and analytical solu-
tion, for two jets.
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Figure 4.12: Comparison of average velocity in the y-direction for the collisionless DSMC and analytical solu-
tion, for two jets.

Figure 4.13: Comparison the velocity magnitude for the collisionless DSMC and analytical solution, for two
jets.
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Figure 4.14: Comparison of temperature for the collisionless DSMC and analytical solution, for two jets.

Figure 4.15: Comparison of pressure for the collisionless DSMC and analytical solution, for two jets.





5
INTERACTION BETWEEN THE JETS

A shock wave can occur when two vapor jets interact with each other. This happens
when the penetration Knudsen number K np is small enough. Particles from both jets
will then collide. These particles have a high relative velocity in y-direction and thus a
high thermal energy. Through collisions, this thermal energy is converted to the other
directions. These particles do thus not penetrate the other jet, but will stay between the
jets. This gas has thus a high density and low flow velocity, which acts as a wall for the ap-
proaching particles. This results in a shock wave. Figures 5.1-5.7 show the properties for
K ns = 0.0065 and l = 4.5mm, with the inlet from 3mm to 6mm. The domain is extended
by the use of symmetry. This case has a shock which results into a secondary jet. The
shock occurs were there is an abrupt increase in density, shown in figure 5.1. The area
unaffected by the shock wave has the same properties compared to the solo jet. This
area is thus unaffected by the interaction and can be used in calculating K np,mi n . The
shock changes the gas flow direction, shown in figure 5.3. The secondary jet is similar to
the three-dimensional case [7]. Both have a lower density in the middle of secondary jet.

29
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Figure 5.1: Contours of the density for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 4.5mm.

Figure 5.2: Contours of the magnitude of the velocity for two interacting jets with inlet condition K ns = 0.0065
and separation distance l = 4.5mm.
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Figure 5.3: Contours of the magnitude of the velocity with gas flow direction, for two interacting jets with inlet
condition K ns = 0.0065 and separation distance l = 4.5mm.

Figure 5.4: Contours of the velocity Vx for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 4.5mm.
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Figure 5.5: Contours of the velocity Vx for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 4.5mm.

Figure 5.6: Contours of the temperature for two interacting jets with inlet condition K ns = 0.0065 and separa-
tion distance l = 4.5mm.
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Figure 5.7: Contours of the pressure for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 4.5mm.

Figure 5.8: Contours of Mach number for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 4.5mm, with the black line at M = 1, dividing subsonic and supersonic.
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5.1. THE INTERACTION EFFECT OF STAGNATION KNUDSEN NUM-
BER

When the particles of both jets collide with each other, the gas flow changes as the jets
interact. This depends on the frequency of collisions, which is influenced by the density
and thus by K ns . The collisionless case has no interaction, but for K ns = 0.0065 (figure
5.1) the interaction results in a shock wave. The interaction effect can be classified by the
minimum penetration Knudsen number K np,mi n . Figure 5.9 shows K np,mi n depending
on K ns for different simulations with l = 4.5mm. Here K np,mi n depends linear on K ns

with K np,mi n ≈ 7.6K ns .

Figure 5.9: The minimum penetration Knudsen number depending depending on the stagnation Knudsen
number, for different simulation with separation distance l = 4.5mm.

Figure 5.10 shows the density field for K ns = 0.05. Compared to the analytical so-
lution (figure 4.10), there is a small but noticeable difference, which is that the density
contour lines are less round compared to the collisionless case. For K ns = 0.02, shown
in figure 5.11, there is a clear difference compared to the collisionless case and the con-
tour lines looks like the those of K ns = 0.0065. However, there is no clear shock. Taking
K ns = 0.01 (figure 5.12) gives a small and broad shock compared to K ns = 0.0065 with
the same contour lines. The results for K ns = 0.005, shown in 5.13, looks the same as
K ns = 0.0065 but has a sharper shock (figure 5.15).
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Figure 5.10: Contours of the density for two interacting jets with inlet condition K ns = 0.05 and separation
distance l = 4.5mm.

Figure 5.11: Contours of the density for two interacting jets with inlet condition K ns = 0.02 and separation
distance l = 4.5mm.
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Figure 5.12: Contours of the density for two interacting jets with inlet condition K ns = 0.01 and separation
distance l = 4.5mm.

Figure 5.13: Contours of the density for two interacting jets with inlet condition K ns = 0.05 and separation
distance l = 4.5mm.

The interaction effect can also be observed by the mass flow over the the jet axis, i.e.
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line y = l = 4.5mm. The mass flow from a single jet is zero over this line, and thus all mass
flow results from the other jet and its interaction. The mass flow over the line from 0 to
x are shown in figure 5.14. The mass flows are normalized by the mass flow through the
inlet ṁi n . The interaction between the jets changes the mass flow across the jet axis. The
mass total mass flow is unchanged. The interaction effect moves the mass flow further
over the line. When a shock occurs, the mass flow becomes close to zero before a certain
point and is thus halted. Figure 5.15 shows the density on the line y = l = 4.5 for the
different K ns . The figures shows a shock for the lower K ns , which becomes narrower for
smaller K ns .

Figure 5.14: The normalized mass flow over the line y = 4.5mm till the point x, for different K ns .
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Figure 5.15: The relative density at the axis of the inlet, i.e. y = l , for different K ns .

5.2. THE EFFECT OF THE DISTANCE BETWEEN THE JETS

The distance between the center of the inlet and the symmetry line is denoted l . This
distance influences the interaction effect. Following equation 2.13, K np is calculated by
using the number density from a single jet (figure 5.16). Here l starts from 1.5mm= h/2,
at which the two inlets are merged to one. This figures shows that a stronger interaction
should be observed for smaller l as K np becomes smaller. However, this is not found
in the results of the DSMC. Take for example l = h/2, the two inlets are connected and
can be simulated by one, which has no shock. For l ¿ h/2, the two jets behave like a
single larger one. Figure 5.17 shows the density for the case with l = 0.05mm, here the
density field is similar to a single jet case. Taking l = 0.5 results in a shock, however the
shock extends less far compared to figure 5.1. These results contradict with K np (figure
5.16). This is caused by the definition of K np , which does not take the size of the inlet
into account.
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Figure 5.16: The minimum penetration Knudsen number depending on the distance between jets.

Figure 5.17: Contours of the density for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 2.0mm.
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Figure 5.18: Contours of the density for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 1.55mm.

Figure 5.19 and 5.20 shows the density profile for l = 3.0mm and l = 7.5mm. The
other properties can be found in appendix B. These profiles are similar to a scaled ver-
sion of l = 4.5mm (figure 5.17), with a reduces density at the shock profile for larger l
as the gas expends. Figure 5.21 shows the density over the line y = l relative to the inlet
density. For small x the mass flow is the same. This is expected, as before the shock the
density is equal to that of a single jet. The density increases sharply at the point the shock
passes the line y = l , after which the density decreases like an expansion. However, the
density is higher for larger values of l , after the shock. The effect on the density of the
second jet thus becomes stronger the farther the two jets are. This is different compared
to the collisionless case, for which further distance between jets results in a smaller effect
on the density.
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Figure 5.19: Contours of the density for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 3.0mm.

Figure 5.20: Contours of the density for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 7.5mm.
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Figure 5.21: The density at the axis of the inlet, i.e. at y = l , for different l with K ns = 0.0065.

Figure 5.22 shows the mass flow rate ṁpen over the line y = l from 0 to x. These
lines are similar to each other. Scaling x by the inverse of l −b with b = 0.5mm gives two
comparable functions, shown in figure 5.23. The two functions can be approximated by
each other with equation

ṁpen (x, l1) ≈ ṁpen

(
x

l2 −b

l1 −b
, l2

)
. (5.1)

The value of b can be changed to get a better approximation for a certain x. If b is taken
as function of x, then the approximation becomes an equality. This approximation is
also true for different K ns . The comparison for K ns = 0.05 is shown in figure 5.24.
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Figure 5.22: The mass flow rate over the line y = l from 0 to x, for different simulations with K ns = 0.0065.

Figure 5.23: The mass flow rate depending on x
l−b with b = 0.5mm, over the line y = l from 0 to x, for different

simulations with K ns = 0.0065.
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Figure 5.24: The mass flow rate depending on x
l−b with b = 0.5mm, over the line y = l from 0 to x, for different

simulations with K ns = 0.05.



6
OPTIMIZING VAPOR DEPOSITION

Coating a metal sheet with zinc can be done by Physical Vapor Deposition. The zinc va-
por from the source will expand into vacuum and attach to the metal, forming a coating.
Using our setup of two jets, we find the optimal coating depending on the parameters
stagnation Knudsen number K ns , distance between jets l and distance between the in-
let and the sheet d . Figure 6.1 shows the setup.

y

x

sheet

d

l

Figure 6.1: Visualization of the optimization problem.

The optimal coating is found by using an optimization problem. We want to optimize
a cost function c, with constraints g . This gives the optimization problem:
Find d , l ,K ns to

45
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maximize c (d , l ,K ns )
subject to g (d , l ,K ns ) > 0,

10mm ≤ d ≤ 30mm,
3.0mm ≤ l ≤ 7.5mm,
0.005 ≤ K ns ≤ 0.05,

The domain for K ns is chosen to include the jet interaction effect ranging from small
interaction to a clear shock. The length between inlets l has a lower bound for practical
constraints. The constraints for d are caused by practical limitations, as for a smaller
value the gas has no room to expand and high values of d are inefficient.
In this section, we will define the optimal coating as the highest deposition speed, while
being applied uniformly. An approximation for the cost function and constraint is found
and how this results in a faster search method.

6.1. COST FUNCTION
For practical use, we are interested in vapor deposition with multiple jets. Therefore, we
look at the mass flow rate of the area between the jets, as for multiple jets the plate can be
partitioned. We optimize the coating by the coating speed. A faster coating speed results
in a higher production. The coating speed depends on the mass flow rate over the area
of the sheet. The mass flow rate over an area A is expressed by

ṁ =
Ï

A
ρV ·dA. (6.1)

The mass flow rate ṁcoat over the sheet can be expressed by

ṁcoat =
∫ l

0
ρVx dy. (6.2)

Figure 6.2 shows an example of ρVx . The mass flow rate has the unit kg s−1m−1 as the
size of the z-direction is arbitrary. Using the symmetry boundary at y = 0, the setup is
shown in figure 6.3.

l
ṁcoat

d

Figure 6.3: The mass flow rate ṁcoat over the sheet, distance d behind the inlet.

The coating speed is proportional to ṁcoat
l . Optimizing the coating speed can thus

be done by maximizing

c (d , l ,K ns ) =
∫ l

0 ρVx dy

l
, (6.3)
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Figure 6.2: The vapor deposition ρVx , for K ns = 0.0065 and l = 4.5mm, for different positions d of the sheet.

which has the unit kg s−1m−2. The sheet is assumed to not alter the gas flow. Therefore,
a simulation contains the entire domain of d . A new simulation is thus only needed
for different l and K ns . The simulations are in a steady state, the mass contained in an
arbitrary volume remains the same. That means that the total flux over the boundary is
zero, which can be expressed by

∮
S ρv · n̂ d s = 0. We are interested in the area between

the jets shown in figure 6.4.

l

ṁpen

ṁcoat

ṁback

ṁi n

sheet

d

Figure 6.4: Visualization of the mass flow. The sheet is not simulated.

The boundary of this area can be divided in five parts, the symmetry line, the bound-
ary at the sheet, the boundary over the axis of the jet, the inlet and the boundary below
the inlet. The mass flow at the inlet ṁi nlet and the mass flow between the inlet and sym-
metry line or back flow ṁback are both independent of d . The mass flow rate across the
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symmetry boundary is zero. The cost function depends on the mass flow rate across the
sheet. The mass flow rate of the coating can be written as

ṁcoat (d) = ṁi nlet −ṁback −ṁpen (d) , (6.4)

where ṁpen stands for the mass flow crossing the middle of the jet, which depends on d ,
as shown in figure 6.4. The cost function can therefore be rewritten as

c = ṁi n −ṁback −ṁpen

l
. (6.5)

The mass flow rate at the inlet ṁi n can be approximated by ρ0Vx,0h, which are the inlet
density and inlet velocity. However, not all particles are simulated. The particles with
negative vx are not generated. The mass flow ignoring collision is calculated by

ṁi nlet = hρ0

∫ ∞

−Vx,0

fx dvx

∫ ∞

−Vx,0

vx fx dvx

with fx the Maxwell-Boltzmann distribution from equation 2.5. Solving the integrals
gives

ṁi nlet ,An = hρ0

[
Vx,0

1+erf
(
Vx,0β

) + 1

2
√
πβ

exp
(−βV 2

x,0

)]
, (6.6)

with β=
√

m/2kT0. This is the mass flow rate generated by the DSMC. However, there is
a difference between this and the observed mass flow. This is caused by particles mov-
ing back through the inlet, which are then deleted. The particles going back accounts for
0.03ṁi nlet ,An . This is shown in figure 6.5. The relative number of particles lost through
the inlet does increase for lower K ns , but this difference is neglected.

The back flow ṁback depends on both the distance between inlets l and stagnation
Knudsen number K ns . Figure 6.6 shows the back flow relative to ṁi nlet . It shows that
ṁback depends on l and is consistent for K ns under a certain value. The values with
K ns = 0.05 have a higher inaccuracy caused by larger cells.
The penetration mass flow rate ṁpen for different l , shown in figures 5.23 and 5.24, are

similar. It was found that ṁpen (d , l1) ≈ ṁpen

(
d l2−b

l1−b , l2

)
, for a certain b around 0.5mm

depending on d . The cost function can thus be approximated under certain conditions.
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Figure 6.5: The relative mass flow rate lost through the inlet, for different inlet condition K ns and distance
between jets l .

Figure 6.7: The cost function c depending on the position of the sheet d , for K ns = 0.005.

Figure 6.7 shows the cost function for the DSMC simulation with K ns = 0.005 and l
for 3.0, 4.5 and 7.5mm. The cost functions are constant until a certain dshock at which
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Figure 6.6: The relative back flow rate, for different inlet condition K ns and distance between jets l .

the shock leaves the line y = l , as ṁpen is zero. Therefore, the cost function can be ap-
proximated by mi n

l for d < dshock when a shock occurs. If there is no shock, then mi n
l is

only accurate for d ≈ 0mm. The cost function is therefor bounded by

mi n

l
≥ c (0, l ,K ns ) ≥ c (d , l ,K ns ) . (6.7)

The upper limit is proportional to 1
K n

1
l . Furthermore, figure 6.7 shows that for d > dshock

the cost function is higher for larger l , which agrees with the results for the density (figure
5.21). The higher cost function for larger l is not observed for gas flow without a shock
(figure 6.8).
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Figure 6.8: The cost function c depending on the position of the sheet d , for K ns = 0.05.

6.2. CONSTRAINT
A coating is in practice not uniformly applied to the sheet. This uniformity is quanti-
fied by the surface roughness Ra , which can be calculated by the relative difference in
thickness hi compared to the average, for multiple points i , by[18]

Ra = 1

n

n∑
i=1

|hi |. (6.8)

In our case the roughness depends on the thickness of the coating. Therefore, we intro-
duce the relative roughness ra , which is defined by

ra = 1

ṁcoat

∫ l

0
|ρVx −ṁcoat |dy. (6.9)

The relative roughness in this thesis is only used to describe the uniformity of the va-
por deposition. The measured roughness of a sheet of metal also depends on other as-
pects such as surface diffusion, which are not discussed in this thesis. There are different
methods for defining the roughness. We use the arithmetic average, which does not de-
pend on small statistical errors. The constraint is to have a relative roughness below a
certain number, i.e.

ra (d , l ,K ns ) ≤ ra,max . (6.10)

The relative roughness for different K ns = 0.005 simulations is shown in figure 6.9. At
d = 0, the mass flow is concentrated at the inlet combined with the back flow, results in
high uniformity. The gas expands, which distributes the mass flow thereby lowering ra .
This continues until the shock results in a rise. The shock then moves to the boundary of
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the sheet at which ra start to decrease slowly as the entire shock is outside the roughness
domain. The roughness is usually lower for smaller l and is only higher at the bump.
Comparing these results with figure 6.10, shows again that the roughness is lower for
smaller l . However, for K ns = 0.05 there is no shock and the roughness is consequently
smaller for the whole domain.

Figure 6.9: The relative roughness ra depending on the position of the sheet d , for K ns = 0.005.
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Figure 6.10: The relative roughness ra depending on the position of the sheet d , for K ns = 0.05.

The roughness shows similarity depending on d . Comparing the roughness with
each other, the same way as was done for the penetration mass flow ṁpen , shows the
same correlation. However, for d = 0 and at the bump the difference is significant. This
difference for small d is outside the optimization domain and thus irrelevant. The dif-
ference caused by the bump is significant but for small difference between l1 and l2, the
approximation

ra (d , l1) ≈ ra

(
d

l2 −b

l1 −b
, l2

)
(6.11)

still holds. A better option is to use this approximation for a linear progression between
two simulations. For K ns = 0.05 in figure 6.12, the approximation also holds.
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Figure 6.11: The relative roughness ra depending on d
l−b with b = 0.5mm, for K ns = 0.005.

Figure 6.12: The relative roughness ra depending on d
l−b with b = 0.5mm, for K ns = 0.05.
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Figure 6.13: The relative roughness ra depending on the position of the sheet d , for l = 3.0mm.

The roughness changes for different K ns . Figure 6.13 shows, the roughness to be
smaller for larger K ns . The roughness for K ns = 0.05 is general the lowest and is even
lower compared to the collisionless case. It is even lower as in figure 6.13, as the statistical
error starts to influence its value.

6.3. RESULTS
For the optimiziaton problem:
Find d , l ,K ns to

maximize c (d , l ,K ns )
subject to ra ≤ ra,max

10mm ≤ d ≤ 30mm,
3.0mm ≤ l ≤ 7.5mm,
0.005 ≤ K ns ≤ 0.05,

with,

c (d , l ,K ns ) =
∫ l

0 ρV dy

l
(6.12)

and ra,max = ∞, gives the optimal solution at K ns = 0.005, as smaller K ns will always
result in a higher cost function. This is because, the effect of K ns on the total mass flow
is sufficiently larger compared to the change in the interaction effect. The optimum is
at d = 10mm, as the cost function is a strictly decreasing function. However, the optimal
is not expected to be on the boundary. This follows from figure 6.7, the maximum of
the cost function for l = 3.0mm is not contained in the domain of the optimization and
the cost function is not larger for the whole domain. Using the approximation 5.1 with
b = 0.5mm, gives an estimation of the cost function for a range of l . Figure 6.14 shows
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the approximated cost functions for the cases l = 3.0mm and l = 4.5mm, which show a
significant difference. The average and linear progression are also shown. These lines
should give a better estimate between these points.

Figure 6.14: The approximated cost function by using the data from l = 3.0mm and l = 4.5mm using b =
0.5mm. The approximation is done for both simulations, the average and linear progression. With K ns = 0.005
and d = 10mm

These results can be used in a line search, in which each step gives a value for l closer
to the optimum. These approximations used a constant value for b, which can be im-
proved by using a calculated function b (d), for which two simulations are needed. This
approximation is compared to simulation in figure 6.15. It shows that the approximation
is sufficiently close.



6.3. RESULTS 57

Figure 6.15: The approximated cost function with b depending on d . Compared with data

Figure 6.16: The approximated cost function with an optimum at l = 3.17.

Using a closer points, the optimum is approximated to be at l = 3.17mm with the
optimum c = 0.4363, as shown in figure 6.16. The optimum has a relative roughness of
ra,opt = 0.0887. If ra,opt ≤ ra,max then the roughness constraint does not influence the
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optimum. This is lower than the roughness at the shock regime. Therefore, the approxi-
mation for the roughness can be used for all K ns as the regime for which the approxima-
tion does not hold within the region of interest. For lower ra,max , the roughness starts to
play a role. The roughness can be approximated similarly to the penetration mass flow.
This results in an estimate without doing multiple simulations. Taking ra,max just below
ra,opt , the optimum should be close to the previous optimum. The direction of the new
position is found by using the partial derivatives for the cost function and the relative
roughness. The ratios

∂c

∂d

(
∂ra

∂d

)−1

, (6.13a)

∂c

∂l

(
∂ra

∂l

)−1

, (6.13b)

∂c

∂ [K ns ]

(
∂ra

∂ [K ns ]

)−1

(6.13c)

(6.13d)

give the change of the cost function given by the change in relative roughness. A high
ratio means big change in cost function compared to the roughness. The ratio for l is the
smallest. Therefore the new optimum would again be at the line K ns = 0.005, d = 10mm.
The roughness at d = 10mm, l = 3.0mm and K ns = 0.005 is 0.0850. For 0.0887 < ra,max <
0.0850, the optimization is a one dimensional optimization in the l-direction given by:
Find l to

maximize c (l )
subject to ra ≤ ra,max

3.0mm ≤ l ≤ 7.5mm.
This can be solved using a line search. For ra,max = 0.085, the optimum is found at d =
10mm, l = 3.0mm and K ns = 0.005. The ratios of partial derivatives is still smallest for
l . However, l is bounded by the domain. Therefore, the optimum will be on the line, l =
3.0mm and K ns = 0.005. This gives a one-dimensional optimization problem in the d-
direction, for 0.085 < ra,max < 0.0148. just below 0.0148, it becomes a one-dimensional
optimization problem in the K ns -direction. The optimum depending on the relative
roughness is shown in figure 6.17.
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Figure 6.17: The optimal cost function depending on the limiter ra,max .

6.4. GRADIENT DESCENT
One way to find an optimum is by using the gradient descent algorithm [13]. It utilises
the gradient of the cost function ∇c(x i ) for point x i to find the next point x i+1 in a se-
quence (xn)n∈N, which leads to a local optimum. Different methods can be applied to
find the next point x i+1 by tuning the direction and size of the next step.
This method uses the gradients of the cost function and constraints to find the next point
x i . However, the cost function is bounded proportional to 1/l and 1/K ns . Therefore, it
is easier to use

x =
 xd

xl

xK n

=



1

d
1

l
1

K ns

 , (6.14)

as this gives a linear dependence. The gradient can be approximated using the Taylor
series. The first order Taylor series approximates the derivative of the cost function with
respect to a vector r by

∂c

∂r̂
= c (x + r )− c (x)

|r | +O (|r |) . (6.15)

Taking r as a small distance in the xi -direction gives

∂c

∂xi
≈ c (x +h x̂i )− c (x)

h
. (6.16)
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The partial derivative for xd follows from the simulation. Therefore, two additional sim-
ulations must be done to get the gradient with this method. The gradient can also be
approximated by using

∇c =



∂c

∂xd

∂c

∂xl

∂c

∂xK n


=



∂[xl (ṁi n −ṁpen)]

∂xd

∂[xl (ṁi n −ṁpen)]

∂xl

∂[xl (ṁi n −ṁpen)]

∂xK n


=



−xl
∂ṁpen

∂xd

xd (xl +b)

xl

∂ṁpen

∂xd
+ṁi n −ṁpen

xl
∂(ṁi n −ṁpen)

∂xK n


. (6.17)

Here we use the approximation for
∂ṁpen

∂xl
= −xd (xl +b)

x2
l

∂ṁpen

∂xd
, which results from

equation 5.1. The partial derivative with respect to xd is given by the simulation. The
partial derivative for xK n is unknown and can be approximated using the Taylor series.
This method uses one additional simulation to estimate the gradient.
However, approximating the cost function and roughness uses fewer simulations than
both gradient descent methods. The approximation gives a rough estimation for the en-
tire range of l and has no significant difference for nearby l . Using this to do a line search
is thereby in general faster than a gradient descent over the line l . These findings can be
useful for future problems. If all constraints can be approximated for different l , then
the optimum can be found with fewer simulations compared to gradient descent.
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CONCLUSIONS

The purpose of the current study was to determine the interaction effect between two
rarefied two-dimensional vapor jets in vacuum. The aim was to observe different regimes
and in particular the one with a shock. For this purpose, we derived the analytical solu-
tion for the collisionless case to determine the difference caused by the interaction effect.
Furthermore, we wanted to know how the interaction effect depends on the stagnation
Knudsen number K ns and the distance between jets l . Additionally, we studied how to
optimize the mass flow for coating using these parameters.
The macroscopic properties have a statistical error, which is influenced by the time step.
The autocorrelation in a cell depends on the macroscopic properties and the properties
and position of the cell. Larger cells result in general in a longer autocorrelation time.
The analytical solution is found to match the collisionless DSMC results for both the
single jet and the dual jets. However, the density field of a solo jet is not equal to the an-
alytical solution below a certain K ns value. Therefore, the analytical solution should not
be used as a single jet approximation to observe the effect of a second jet. Furthermore,
the analytical solution should not be used to estimate the penetration Knudsen num-
ber as a better method was found. However, the derivative of the equations can be used
in combination with a single jet simulation, to generate a interactionless comparison.
A dual jets simulation with a stagnation Knudsen number of 0.0065 results in a shock
wave, which is caused by a secondary jet resulted from the interaction. This secondary
jet splits the density, which causes uniformity for physical vapor deposition. Addition-
ally, the shock protects the jet from particles of the other jet, in the region before the
shock. This region is therefore unaffected by the other jet and thus equal to the single
jet, which can be used for calculating the penetration Knudsen number.
There are different interaction effects depending on the stagnation Knudsen number
K ns which is inversely proportional to the inlet density. For K ns ≈ 0.05, the interaction
effect is small and is similar to the collisionless case. However, there is a small interaction
effect, which causes the density between the jets to be higher compared to a collisionless
effect. Lower K ns around 0.02, shows a noticeable effect on the density field. However,
there is no shock. Simulation with K ns below 0.01 showed a shock, which is steeper for
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smaller K ns .
The distance between inlets l also changes the interaction effect. For l much smaller
than the width of the inlet h, the interaction effect can be neglected and the macroscopic
properties are similar to that of a single larger jet. This contradicts with the penetration
Knudsen number, which expected a larger interaction effect. Comparing larger l , shows
no difference, apart from a further position of the shock and lower density for larger dis-
tance between inlets. Noticeable is the lower density at the axis of the inlet after the
shock, for smaller l .
The optimization resulted to be optimal for smallest distance l between jets, for which
the relative mass flow increases and the uniformity decreases. However, this changes
after the shock leaves the mass flow region. Then larger distances between inlet have a
higher cost value. The optimal value for l is thus where the shock leaves the mass flow
region, which is for l = 3.17mm at 10mm. For the optimization it is shown, that the mass
flow rate and constrained can be approximated for different l , which is accurate for small
difference. This gives a good estimation where the optimal resides, and is thus useful for
a line search. The similarity is also useful in the gradient descent methods, to calcu-
late a partial derivative, which is otherwise approximated. This reduces the number of
required simulations.
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RECOMMENDATIONS

More research is needed to better understand the interaction effect. How do the inlet
temperature and inlet velocity influence the interaction effect. The temperature influ-
ences the inlet velocity fluctuations in all directions. This could influence the interaction
effect as it would result in higher relative speed for the particles between the jets. It would
be interesting to assess diatomic gas, as this gives another energy reservoir, which may
change the behavior.
A better parameter is required to describe the interaction effect, which could be done by
taking the size of the inlet into account. The ratio between the size inlet and gap between
inlet is expected to influence the interaction.
Further research could look at the interaction effect at higher densities cases. However,
these have a high computational cost with the Direct Simulation Monte Carlo method.
Therefore, continuum mechanics should be used. These higher densities cases could
help us understand the limit of the interaction effect.
The similarity found for the penetration mass flow for different length between inlets
could depend on the velocity of the gas flow. Whether this is true should be studied.
Understanding this similarity can help us understand the interaction effect. A more ac-
curate approximation of the penetration mass flow can also be used for similar optimiza-
tion problems.
Further research in vapor deposition with multiple jets shows the interaction effect be-
tween two shock wave. This can be done by using two symmetry boundaries. Since the
studied Physical Vapor Deposition apparatus will have multiple nozzles, this problem
seems to be worth studying.
This research could also be validated by experimental results. Hover, it is expected to
be technically challenging to manufacture two long slits with homogeneous inlet condi-
tions.
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ANALYTIC SOLUTION SINGLE JET

The analytical solution for the two-dimensional solo jet expansion in vacuum is given
below. These solutions calculate the properties in the x,y-domain. The number density
and velocity where solved and validated by Chumpei and Boyd[3]. The temperature was
solved and validated by Khasawneh, Liu and Cai[8]. These formulas use two angles θ1

and θ2. These angles are the angles at the two end points of the inlet. They are calculated
with the inverse tangent by

θ1 = tan−1
(

y −h/2

x

)
,

θ2 = tan−1
(

y +h/2

x

)
.

Here h stands for the size of the inlet. The analytical solution also depend on the specific

plume exiting speed S0 =U0

√
m

2kT0
, where U0 stands for the inlet speed, T0 for the inlet

temperature, m the mass of one particle and k the Boltzmann constant. Using U0 and
the angles θ1, θ2 the equation for the number density is given by

n
(
x, y

)=exp
(−S2

0

)
2π

(θ2 −θ1)+ 1

4
[erf(S0 sinθ2)−erf(S0 sinθ1)]

+ S0

2
p
π

∫ θ2

θ1

exp
(−S2

0 sin2θ
)

erf(S0 cosθ)dθ.

(A.2)

The velocity of the gas flow is different depending on the direction. Therefore, Vx and Vy

are calculated independently with

Vx
(
x, y

)=
√

2kT0

m

exp
(−S2

0

)
2nπ

(
S0 (θ2 −θ1)

2
+ S0 [sin(2θ2)− sin(2θ1)]

4

+p
π

∫ θ2

θ1

[(
1

2
cosθ+S2

0 cos3θ

)
[1+erf(S0 cosθ)]exp

(
S2

0 cos2θ
)]

dθ

)
,

(A.3)
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Vy
(
x, y

)=
√

2kT0

m

1

4
p
πn

(
exp

(−S2
0 sin2θ1

)
cosθ1 [1+erf(S0 cosθ1)]

−exp
(−S2

0 sin2θ2
)

cosθ2 [1+erf(S0 cosθ2)]

)
.

(A.4)

Both equations depend on the number density n
(
x, y

)
.

The temperature of the gas is calculated by

T
(
x, y

)=−
V 2

x +V 2
y

3

m

k
+eT . (A.5)

With eT the part that corresponds to the total energy which is expressed by

eT =T0 exp
(−S2

0

)
6πn

[
3∆θ+S2

0

(
∆θ+ 1

2
[sin(2θ2)− sin(2θ2)]

)
+2S0

p
π

∫ θ2

θ1

(
2cosθ+S2

0 cos3θ
)

exp
(
S2

0 cos2θ
)

[1+erf(S0 cosθ)]dθ

]
.

(A.6)

The equation for T is split as for calculating the analytical solution for the dual jets is
calculated by using eT and not T . The equations for the properties are all symmetric
over the line x = 0.
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FLOW FIELD RESULTS

Figure B.1: Contours of the magnitude of the velocity for two interacting jets with inlet condition K ns = 0.0065
and separation distance l = 3.0mm.
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Figure B.2: Contours of the velocity Vx for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 3.0mm.

Figure B.3: Contours of the velocity Vx for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 3.0mm.
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Figure B.4: Contours of the temperature for two interacting jets with inlet condition K ns = 0.0065 and separa-
tion distance l = 3.0mm.

Figure B.5: Contours of the pressure for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 3.0mm.
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Figure B.6: Contours of Mach number for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 3.0mm, with the black line at M = 1, dividing subsonic and supersonic.

Figure B.7: Contours of the magnitude of the velocity for two interacting jets with inlet condition K ns = 0.0065
and separation distance l = 7.5mm.
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Figure B.8: Contours of the velocity Vx for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 7.5mm.

Figure B.9: Contours of the velocity Vx for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 7.5mm.
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Figure B.10: Contours of the temperature for two interacting jets with inlet condition K ns = 0.0065 and sepa-
ration distance l = 7.5mm.

Figure B.11: Contours of the pressure for two interacting jets with inlet condition K ns = 0.0065 and separation
distance l = 7.5mm.
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Figure B.12: Contours of Mach number for two interacting jets with inlet condition K ns = 0.0065 and separa-
tion distance l = 7.5mm, with the black line at M = 1, dividing subsonic and supersonic.

Figure B.13: Contours of the magnitude of the velocity for two interacting jets with inlet condition K ns = 0.02
and separation distance l = 4.5mm.
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Figure B.14: Contours of the velocity Vx for two interacting jets with inlet condition K ns = 0.02 and separation
distance l = 4.5mm.

Figure B.15: Contours of the velocity Vx for two interacting jets with inlet condition K ns = 0.02 and separation
distance l = 4.5mm.
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Figure B.16: Contours of the temperature for two interacting jets with inlet condition K ns = 0.02 and separa-
tion distance l = 4.5mm.

Figure B.17: Contours of the pressure for two interacting jets with inlet condition K ns = 0.02 and separation
distance l = 4.5mm.
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Figure B.18: Contours of Mach number for two interacting jets with inlet condition K ns = 0.02 and separation
distance l = 4.5mm, with the black line at M = 1, dividing subsonic and supersonic.
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