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Abstract

Time-frequency analysis and digital signal processing are important tools in the field of coastal engineering.
Both can be done using techniques like Fourier or wavelet analysis, however, analysts from this field experi-
ence a threshold to use wavelet analysis instead of their current methods, often Fourier-based. This is due to
the lack of guidelines in the many choices accompanied by applying wavelets [29]. This thesis investigates
the added value of wavelet analysis in the field of coastal engineering. There are two wavelet transform types:
continuous and discrete. The first one is most often used for time-frequency analysis. The range of signals
that can be analysed more accurately has been increased by adding different signal extension methods and a
method to quantify the effect of missing data points, based on the wavelets energy distribution. This allows
a more accurate time-frequency analysis of time-series that cannot be assessed in the Fourier domain. The
continuous wavelet coefficients can also be used for separating incident and reflected waves. Because the
wave number of a wave is dependent on its frequency, the wavelet-based method performs equally well or
worse for stationary signals than the current Fourier coefficient based method [38, 63]. For coastal engineer-
ing time-series with a changing mean water level, the time-dependency of the wavelet transform results in
better separation than the Fourier coefficient based case. The discrete wavelet transform is mostly deployed
in digital signal processing. Filtering in the discrete wavelet domain allows for better justification of the fil-
tering of different signal elements such as noise and transients for signals that behave non-stationary, like
measurements of impacts. The difference with the standard time or frequency domain methods lies within
this justification, instead of a ’gut feeling’ often used. Different algorithms to determine thresholds for use in
noise filters have been tested. The soft applied universal threshold was the most effective of the compared al-
gorithms in filtering noise from a non-stationary signal. In stationary signal cases, the low-pass filter showed
better performance. The discrete wavelet decomposition offers many signal processing opportunities due to
the wide range of wavelets that can be chosen.
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Preface

This thesis explores the applications of wavelet analysis in the field of coastal engineering. Coastal engineer-
ing is a branch of civil engineering, mostly concerned with the challenges of building in coastal areas. The
subject of this thesis was commissioned by Deltares1, an independent research institute for applied research
in the field of water and subsurface. The main areas of expertise of this institute are flood risk, delta planning,
infrastructure, environment, and water and subsoil resources. Deltares has a large number of experimental
facilities which allow them to do scaled and full-scale experiments. The department of Coastal Structures
and Waves, concerned with the effects of waves on coastal structures, has supervised me during the research.
They conduct a lot of experiments to quantify the effects of waves on structures, by using various measure-
ment techniques among other a point measurements resulting in time series of a particular quantity, e.g.
surface elevation.

In coastal engineering in general and at Deltares in specific most time-series are analysed using the
Fourier transform, to investigate frequency behaviour. Wavelet analysis is a time-frequency analysis, which
adds the notion of time to frequency analysis. Instead of studying only time or frequency behaviour, the
coupling of the two can be studied as well. This characteristic allows the analysis and processing of non-
stationary signals, where Fourier analysis in theory is only applicable to stationary signals. This thesis ex-
plores, improves and applies the two different branches of wavelet analysis, i.e. continuous and discrete, to
many coastal engineering challenges.

The three main subjects of this thesis are the expansion of the use of the wavelet power spectrum to
common coastal engineering time-series, the application of wavelet coefficients in separating waves and the
application of discrete wavelet filters to coastal engineering experimental signals. The added value of wavelet
analysis lies in the addition of the notion of time. Non-stationary time-series are best analysed using wavelet
analysis, although this is mostly qualitative and not quantitative. Problems like missing data points can be
analysed with a certain reliability in the wavelet domain, which is not possible in the frequency domain. The
separation of waves based on wavelet coefficients is much more effective in non-stationary wave situations
than the Fourier-based method. Filtering in the discrete wavelet domain has many advantages concerning
non-stationary time-series as well. However, in coastal engineering, these are sometimes hard to exploit due
to the wide range of scales in the time-series.

The thesis committee consists of four members. Prof.dr.ir. C. Vuik, professor of numerical analysis and
also my daily supervisor, and prof.dr.ir. A.W. Heemink, professor of mathematical physics, are both from the
department of Applied Mathematics at the Delft University of Technology. Ir. J. Kramer is a project engineer in
the department of Coastal Structures and Waves at Deltares and ir. A. Capel is a senior advisor and researcher
in that same department. Both conduct a lot of experiments in the Deltares facilities.
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List of symbols

Symbol Explanation

Capital Fourier or Wavelet Transform of signal, e.g. X (ω), X (a,b)
Bold A vector, e.g. x = {x j } j=0,...,N−1

a Scale parameter in continuous wavelet domain
ai i th level of approximation coefficients (Discrete Wavelet Transform)
A Set of scales for the DCWT
b Translation parameter in continuous wavelet domain
Ca, j Separation coefficient at scale a and gauge j
di i th level of detail coefficients (Discrete Wavelet Transform)
dB Decibel: 10log10(·)
f Frequency variable

[
Hz = s−1

]
fs Sampling frequency [Hz]
fN Nyquist frequency [Hz], i.e. fN = fs /2
fψ Wavelets centre frequency [Hz], fψ = 1/λψ

g Gravitational acceleration parameter
[
m/s2

]
, 9.81 m/s2 on earth

h Water depth parameter [m]
H(x) Heaviside Step function, see equation 13
i i 2 =−1, imaginary unit
k Wave number [rad/m], see Section D.1
N Length of discrete signal
m Unit for meters
rad radians
t Time variable [s]
s Unit for seconds
S Sparsity based on PSR
S() Smoothing operator

S f
xx (ω) Energy spectral density (ESD) of x(t ) [·2/Hz]

Sw
xx (a,b) Rectified wavelet power spectrum (RWPS) of x(t )

w Wavelet coefficient in discrete wavelet domain
W (a,b) Wavelet coefficient in continuous wavelet domain
W x y Cross-wavelet transform (XWT) of signals x and y
x(t ) Signal function in continuous time
x[n] Signal function in discrete time
Z Complex waveform
δ(x) Delta Dirac function, see equation 11
δi j Kronecker delta function, see equation 12
γ2

x y Coherence between signal x and y , see equation 2.33
∆t Sampling interval [s]
∆x Spacing difference [m]
ϵ Residual
ζ(t ) Analytic wave function, i.e. Re(ζ(t )) = η(t )
η(t ) Real wave function
θ(t ) Phase, can be function or constant [rad]
θx y Phase difference between signal x and y (see Section 2.4.3)
κ(t ) Scale Averaged Wavelet Power, SAWP
λ Wave length [m]
λψ Equivalent wavelength of wavelet [s], λψ = 1/ fψ; linear relationship scale a: λψa = aλψ

µ Mean
σ Standard deviation
σ2 Variance
ϕ(t ) Refinable function
ψ(t ) Wavelet
ψab(t ) Continuous wavelet at scale a, with translation b
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ABBREVIATIONS, SYMBOLS AND MATHS viii

Symbol Explanation

τa e-folding time of a wavelet, see Section 3.1.3
ω Radial frequency variable [rad/sec], ω= 2π f
Ω Sum of weighting factors

Mathematics
Complex Numbers
The imaginary number i is defined as i 2 =−1. A complex number z = x + i y consists of a real part Re(z) = x
and an imaginary part Im(z) = y . The modulus of this complex number z is defined by |z| =

√
x2 + y2 and the

argument θ = arg(z) by

arg(z) = arctan

(
Im(z)

Re(z)

)
. (1)

Complex number can be written in polar form as z = |z|e iθ. The complex conjugate of a complex number is
defined as z∗ = Re(z)− i Im(z) = |z|e−iθ.

Mathematical operators

Operator Operation

(·)∗ Complex conjugate

〈x1, x2〉 Inner product operation
∞∫

−∞
x1(t )(x2(t ))∗ dt

∗ Convolution
~ Circular convolution
arg(·) Argument function
·̃ Estimator of (·)
· Mean value; x = 1

N

N−1∑
j=0

x j

Re(·) Real part of ·
Im(·) Imaginary part of ·
F{·}(ω) Continuous Fourier Transform
F−1{·}(t ) Inverse Continuous Fourier Transform
G{·}(ω) Windowed Fourier Transform
O(·) Landau’s O-symbol
W{·}(a,b) Continuous Wavelet Transform
W−1{·}(t ) Inverse Continuous Wavelet Transform

Functions
Root Mean Square Error
The root mean square error (RMSE) of two vectors discrete signals x[n] and y[n] is defined as√√√√ 1

N

N−1∑
n=0

(x[n]− y[n])2. (2)

Expected Value

E[x] = lim
N→∞

1

N

N∑
i=1

xi (3)

Variance

Var(x) =σ2 = E
[
(x −E[x])2]= E

[
x2]−E[x]2 (4)

Median of Absolute Deviation (MAD)
The median of absolute deviation (MAD) of a time-series x[n] is defined as the median of the time-series
|x[n]−E[x]|.

MASTER THESIS T. DE ROOIJ
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Convolution
The convolution of two signals x(t ), y(t ) is defined by

(x ∗ y)(t ) :=
∫ ∞

−∞
x(τ)y(t −τ) dτ=

∫ ∞

−∞
x(t −τ)y(τ) dτ= (y ∗x)(t ). (5)

It is important to note that the convolution of two signals in the time domain is equivalent to the multiplica-
tion of their transforms in the frequency domain [42]. This is known as the convolution property:

F(x ∗ y)(ω) = X (ω) ·Y (ω). (6)

The (discrete) convolution of two discrete time signals x[n] and y[n] (assume both length N ) is given by:

(x ∗ y)[n] =
∞∑

k=−∞
x[k]y[n −k], for 0 ≤ n < N . (7)

To compute the discrete convolution, information from x[n], n ≥ N is needed, but the signal does not exist
there. The circular convolution considers these two signals as periodic, such that x[N ] = x[0], x[N +1] = x[1]
etc. The computation (7) is abbreviated to

(x ~ y)[n] =
N−1∑
k=0

x[k]y[n −k], (8)

where the ~ denotes the circular or cyclic convolution.

Cross Correlation
The cross correlation of two complex signals x(t ) and y(t ) is defined by [20]

(x ⋆ y)(t ) :=
∫ ∞

−∞
x(τ)∗ · y(t +τ) dτ= x(−t )∗∗ y(t ). (9)

The auto correlation of a function x(t ) is the cross correlation of this function with itself; (x ⋆x)(t ).
In the Fourier domain the cross correlation satisfies F{x ⋆ y}(ω) = X (ω)∗ ·Y (ω). The autocorrelation thus

satisfies F{x ⋆x}(ω) = X (ω)∗ ·X (ω) = |X (ω)|2.
In statistics the autocorrelation expressed as the expected value of two signals, i.e.

E[x(t1)x(t2)]. (10)

Delta Dirac function
The Delta (Dirac) function is a theoretical function with a support reduced to t = 0, but with an integral of 1.
This theoretical function simplifies computations, leaving convergence issues aside [37]. The Delta function
δ(t ) associates any continuous function f (t ) to its value at t = 0:∫ ∞

−∞
δ(t − t0) f (t ) dt = f (t0). (11)

Note that by this property that
f (t )∗δ(t ) = f (t ).

The Kronecker delta function is the discrete counterpart of the Delta Dirac function. It is defined by:

δi j =
{

1 if i = j
0 elsewhere

. (12)

Heaviside Step function

H(x) =


0 x < 0
1/2 x = 0
1 x > 0

(13)
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1
Introduction

Time-frequency analysis is the study of the behaviour of signals in the time-frequency space. Knowledge of
this behaviour allows researchers to characterise it and filter unwanted elements. Time-frequency analysis
was introduced in 1946 by Dennis Gabor. He came up with the idea to place a window over the signal and
apply the Fourier transform to the windowed signal, to provide insight into the time-frequency behaviour of
a signal [18]. Fourier analysis, along with its transform, was introduced in the early 1800’s, which allowed the
study of signals in the frequency domain. From the 1960’s researchers from different disciplines started to
adjust the window that was introduced by Gabor, by changing its size depending on the frequency of interest.
Meyer1, Daubechies and Mallat unified this work in the mid-eighties, marking the birth of wavelet analysis
[13, 36].

Wavelet analysis has strong similarities with Fourier analysis. The advantage of wavelet analysis over
Fourier analysis is that there is not one base as in Fourier analysis (i.e. a base sines and cosines), but there
are many bases to choose from, called wavelets, hence the name wavelet analysis [29, 30, 57]. This offers
a broader range of applications, and therefore wavelet analysis is adopted in many different fields, such as
electrical engineering, ecology, finance, etc. [2, 9, 42]. In civil engineering, the wavelet transform became
more and more popular since the turn of the century. However, guidelines are missing for the application of
wavelet analysis in different fields of civil engineering [29]. One such field is the field of coastal engineering.

Bosboom and Stive [7, p.1], experts from the field, describe coastal engineering as: "[...] the branch of
civil engineering concerned with the planning, design, construction and maintenance of works in the coastal
zone." These works are divided into soft and hard measures. Soft measures make use of natural coastal mate-
rial, such as beach nourishments, while hard measures consist of man-made structures, for instance, break-
waters. The purposes of these measures are plentiful: from the development of harbours to the control of
shoreline erosion. The most important ones are defence structures against floodings [7]. These floodings can
be caused by natural effects such as storms, tides and tsunamis. Above all the long-term sea-level rise is a
thread for low-lying areas all over the world. Thus coastal engineering deals with relevant social-economic
problems.

In the field of coastal engineering different kinds of signals are investigated, e.g. pressures, forces and
elevations. These signals are always digital, i.e. they are sampled with a certain frequency and stored on a
computer. These signals can be the result of experiments on (scaled) hard measures, such as collected in
the facilities at Deltares. Furthermore, they can be the result of in situ measurements or simulations of both
soft and hard measures [15, 34]. This results in a wide variety of challenges: ranging from time-frequency
analysis for measurements with missing data points to filtering pressure sensor measurement data plagued
by noise. The filtering of (digital) signals is one of many components of digital signal processing. Digital
signal processing is the application of a wide variety of signal processing operations by digital means, for
instance, a computer [46]. Time-series concerning hard measures often have some unique characteristics,
such as large amplitude differences in a short amount of time, that are a better fit to analyse and process using
wavelet analysis than current methods. Wavelets are not applied much in the area of coastal engineering. The
abundance of choices in wavelet analysis, such as a choice of base, creates a threshold to apply it in this field.
Guidelines regarding the use of wavelet analysis in the field of coastal engineering are needed, to decrease
this experienced threshold.

1This years Abel Prize is appointed to Yves Meyer for his work in wavelet analysis [5].
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1.1. RESEARCH 2

1.1. Research
The goal of this thesis is to derive guidelines for practical applications of wavelet analysis in the field of coastal
engineering. Application of these guidelines by coastal engineers could contribute in the knowledge to cope
with the unique characteristics of signals seen in the field of coastal engineering and thus could assist in the
future creation of coastal infrastructure. Because there is such a wide range of signals, the scope of this thesis
is limited to time-series. Hence, the main research question of this thesis is:

How can wavelet analysis improve time-series analysis and processing

in the field of coastal engineering?

It is important to note that wavelet analysis is divided into two categories. The first category uses con-
tinuous wavelet coefficients to do time-frequency analysis and some basic signal processing [29, 55]. Time-
frequency analysis based on the continuous wavelet transform has already been applied much in coastal en-
gineering, often based on the guidelines from other research fields [15, 16, 22, 29, 55]. An interesting feature
of the continuous wavelet coefficients is that they can be used in digital signal processing instead of Fourier
coefficients [21, 34]. This offers opportunities for problems where the behaviour in the frequency domain
depends on time.

The second category is the discrete wavelet transform, which is applied in digital signal processing only
[28, 42]. An example of the application of the discrete wavelet transform is the JPEG-format [14, 42]. The
coefficients in the discrete wavelet decomposition have many applications in digital signal processing, from
denoising and compression to filtering specific signal elements. The focus of this thesis lies in the application
of wavelet analysis in general. Therefore the sub-questions are divided into the application of the discrete and
the continuous branch. Another sub-question will address the added value of wavelet analysis onto coastal
engineering signals. These questions are presented at the end of the next chapter, Background.

1.2. Overview
The next chapter will provide background with respect to coastal engineering time-series, Fourier and wavelet
analysis. It is concluded with four research questions. The first and second sub-question concern the appli-
cation of the continuous wavelet transform and are addressed in Chapter 3. The third sub-question consid-
ers the application of the discrete wavelet transform and is discussed in Chapter 4. In Chapter 5 the added
value of wavelet analysis with respect to current methods for signals from the field of coastal engineering is
addressed. Lastly, the research questions will be answered in Chapter 6, followed by recommendations for
future research. The appendices contain some theoretical additions and results that could not be presented
in the main part of this thesis. The content of the appendices is summarised on page 78.

Figure 1.1: A schematic overview of the content of this thesis.
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2
Background

As addressed in the introduction, the aim of this research is to derive the guidelines with respect to the
application of wavelet analysis in the field of coastal engineering. This chapter provides the background for
these guidelines. Therefore it starts with the definition of a time-series and which different analyses there are.
Two types of analysis will be explained more elaborate: Fourier Analysis in Section 2.2 and Wavelet Analysis in
Section 2.3. These analyses are applied in both (time-)frequency analysis and digital signal processing, which
is discussed in respectively Section 2.4 and 2.5. At the end of this chapter, the research questions supporting
the main research question will be presented.

2.1. Time-series and Signal Analysis
In the field of coastal engineering, many different time-series are analysed and processed. These time-series
are the result of simulations and measurements, which are conducted in the field or an experimental envi-
ronment. The most common measured quantities in coastal engineering are distances, forces and pressures.
The measurements are often analysed, processed, or a combination of these two. In Section 2.1.1 some gen-
eral characteristics of time-series are discussed. This is followed by different types of signal analysis, which
are elucidated in Section 2.2 and 2.3. At the end of this chapter, in Section 2.6, the challenges with respect to
coastal engineering time-series are discussed.

2.1.1. Time-series
Time-series are generally divided into two categories: deterministic and random signals. Deterministic sig-
nals can be modelled completely as a function of a variable, for instance time. A deterministic signal has
a known and unambiguous value at every point in time [11, 20]. These signals are composed of additions,
subtractions, delays, derivations and integrals of deterministic parts. Random or stochastic signals are non-
deterministic signals [20]. These are modelled using probability theory.

Most signals in coastal engineering are considered random; they are the result of a so-called random
process. Such a process can produce an entirety of random signals, which is called an ensemble. One signal
from such an ensemble is known as a sample function in mathematics or as a realisation in signal analysis.
Random signals cannot be described deterministically. They are characterised by characteristics that are valid
for the whole ensemble [20]. The whole ensemble is the set of realisations {xi (t )}, consisting of the individual
random signals x1(t ), x2(t ), etc.

Two important properties of ensembles are the expected value and the variance (or its square root: the
standard derivation) at one moment in time. E.g. for the ensemble x = {xi } the expected value is defined as:

E[x(t0)] = lim
N→∞

1

N

N∑
i=1

xi (t0).

. These characteristics are called time-dependent if they change in time. It should be noted that the time
average of a signal is the average over the whole time domain, which can be computed for every ensemble
member individually. The quadratic average of an ensemble, E

[
x2(t )

]
, is used to describe the average power

of a random process. The expected value and variance often suffice to describe common random signals. The

3



2.1. TIME-SERIES AND SIGNAL ANALYSIS 4

more general formulation of the expected value and the variance of an ensemble at a certain time t0 is given
by [11]:

E
[

f (x(t0))
]

. (2.1)

The expected value is thus expressed by f (x) = x and the variance by f (x) = (x −E[x])2. A probability density
function is a description of a characteristic (2.1) for the whole time t . Advanced models of random processes
can become very complicated, using higher-order statistics, such as f (x) = x3 in (2.1) [20].

Random processes, which result in random signals, have a lot of different classifications. Two important
classes are stationary processes and linear processes. Often, such a process always relates two (or more)
signals to each other. An example of a process is ’a megaphone’: one or more people talk into one end, the
process in the megaphone amplifies the voices and the horn will broadcast the amplified combination of
voices.

Stationary and ergodic random processes
A random process is called stationary if its statistical properties do not change over time. In the example
of the megaphone, your voice is amplified with the same factor at all times. This is considered a stationary
process. An ensemble can be stationary as well, implying that the statistical properties of the ensemble do not
change over time. For instance, its mean and variance are the same for all times. An ensemble is stationary to
the order N if [11]:

E[ f (x(t1), x(t2), . . . , x(tN ))] = E[ f (x(t1 +∆t ), x(t2 +∆t ), . . . , x(tN +∆t ))] (2.2)

for all ∆t . All signals from this ensemble are stationary as well. This expression is difficult to use, therefore a
random process is often called stationary if its second-order expected values only depend on the difference
of observed time points t1− t2 [20]. This can be checked using the autocorrelation function (9). Note that this
mathematical description excludes finite random signals and deterministic functions other than constant
functions as stationary [20]. A random process is called weak stationary if only the autocorrelation and the
expected value of a signal are stationary [8, 11], respectively if for all ∆t

E[x(t1)x(t2)] = E[x(t1 +∆t )x(t2 +∆t )], and E[x(t1)] = E[x(t1 +∆t )].

For a stationary random process for which all time averages are the same as all ensemble averages, the process
is an ergodic random process [11, 20]. This holds for all function f (x) from (2.2). A signal is again called weak
ergodic if the autocorrelation and expected value of the signal are the same as their time averages [20].

Linearity
A process or function f (x) is a linear process if the following relationship holds [11]:

f (Ax +B y) = A f (x)+B f (y). (2.3)

For instance if two people talk into the same megaphone at the same time, both their voices are equally
amplified. If one of them starts to talk louder, the result will be louder as well. However, if the megaphone
is limited to a certain maximum output volume, it could be that this louder person is amplified less then the
other person. Then the process is classified as non-linear. Important is that a signal can be the result of a
non-linear process, but cannot be non-linear on its own. If a signal is the result of a non-linear process, it is
often referred to as non-linear as well.

Time invariance
The last important characteristic of a system is its time invariance. This means that the response to a delayed
input signal results in a corresponding delayed output signal [20]. Systems that are both linear and time-
invariant are abbreviated to LTI systems.

2.1.2. Signal Analysis
There are different methods to analyse the time-frequency behaviour of a signal. This section will present
different ’observation options’ of temporal information. These ’data types’ could also be applied to spatial
information, but that is outside the scope of this thesis. The goal is to find an easy retrieval of both temporal
and frequency information of a signal x : R→ C, a function of time t . An important theme in analysis is the
representation of a known or unknown function (or signal, time-series) x(t ) by special known functions [6].
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2.1. TIME-SERIES AND SIGNAL ANALYSIS 5

Often the function is referred to as (time) signal or time-series, which is a broader concept of a function or
sequence that represents information [20].

For the representation of the function, a set of functions is chosen. This set always has a mathematical
correspondence. The analytical properties of a set tend to show the evident or hidden symmetries of the
considered function x(t ). This family is known as the basis functions. In general, the set is given by

{eα|α ∈ I } with the basis functions t 7→ eα(t ). (2.4)

The index set I can be discrete, but also continuous. An arbitrary function x(t ) can thus be represented in the
form

x(t ) = ∑
α∈I

cαeα(t ) (2.5)

in the discrete case. This expression (2.5) is called a representation. In the continuous case the representation
is expressed as an integral:

x(t ) =
∫

I
c(α)eα(t ) dα.

Here the cα, or c(α), is the coefficient belonging to the basis function eα(t ). The set of coefficients {cα|α ∈
I } is called the analysis of x with respect to the family {eα|α ∈ I }. The inverse operation that takes a given
set of coefficients as input and returns the function itself as output is called the synthesis of x by means of
eα. There are tons of different families of basis functions to choose from. The Taylor polynomial for instance
uses higher and higher derivatives of the function x(t ). In this thesis two different families will be addressed.
These are known respectively as the complex exponentials in Fourier analysis (FA, Section 2.2) and wavelets
in wavelet analysis (WA, Section 2.3). First a brief overview of these techniques is presented, using an example
comprehensible for readers with different backgrounds: a guitar player striking three strings separately. After
that these techniques will be elaborated more.

Time Domain
The receiver of a time signal, for instance, an ear receiving sound waves, a cellphone receiving the 4G sig-
nals or laser equipment measuring wave heights at Deltares, always receives an amplitude at a given time.
Mathematically this is seen as a function: x(t ), mostly being referred to as a (time) signal in signal analy-
sis. From this signal, many properties of the transmitter, transmission and receiver can be derived using the
right techniques. However, in transmission the signal x(t ) can be disturbed, making it hard to draw the right
conclusions based on the time signal.

Fourier Transform
The signal x(t ) does contain more information than just the amplitude at a given time. With the right math-
ematical transformations, an insight into the different frequencies of the signal can be given. The Fourier
transform (FT) is a common and much-used transformation to derive the energy density per frequency of a
signal. This transformation represents the signal in the Fourier or frequency domain. Remember the guitar
player? If only the time domain signal of the sound is considered, one cannot know which notes were played.
However, we do know at what times the strings were struck, by observing the amplitude differences in time.
If only the Fourier transform of the signal is considered, the representation of the signal in the frequency
domain, one can tell exactly which notes were played, but not in which order.

Short-term Fourier Transform
A (practised) listener, however, can tell both the notes and the order in which these notes were played! This
is impossible when only the time domain or the frequency domain of the signal is reviewed. A visual repre-
sentation of these domains is shown in Figure 2.1(a-b). In the early twentieth century, Gabor [6] was the first
to act on this shortcoming, developing the Gabor transform. He used the combination of a window function
and the Fourier transform to derive a coupling of the temporal and frequency domain. Hence, this method
gives insight into the occurrence of frequencies in distinct time intervals as depicted in Figure 2.1c. Later his
work was placed in the framework of the short-term Fourier transform (STFT, Section 2.2.3). A disadvantage
of this method is the relatively large loss of both temporal and frequency information, which is explained by
the uncertainty principle (see Section A.2.1).
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2.2. FOURIER ANALYSIS 6

Wavelet Analysis
The introduction of wavelet analysis minimises these losses. Wavelet analysis is a tool that cuts the function
x(t ) up into different frequency components, studying each component with a resolution matching its scale
[14]. So it is like the STFT, but more optimised. In the 1960’s the basis of the wavelet transform was developed
in both mathematics and physics. In the late 1980’s the approaches from different disciplines were combined,
which led to the theory of wavelet analysis as it is known today. As shown in Figure 2.1d, for different frequen-
cies the time spacings are different, this again finds its explanation in the uncertainty principle. The simpler
explanation is that it takes longer for a low-frequency wave to complete a full cycle. Therefore one will have
to ’listen longer’ to detect it. A high frequent wave can be detected in much less time. However, in this case, it
is harder to determine which frequency it is.

(a) Time domain (b) Fourier or frequency domain

(c) Short-term Fourier domain (d) Wavelet domain

Figure 2.1: Schematic representation of the four different analyses of a signal.

2.2. Fourier Analysis
In the last section, four different kinds of signal analysis were discussed. This section will explain Fourier
analysis and the short-term Fourier transform. The next section addresses wavelet analysis. In the formal
Fourier analysis, the basis functions as described in equation 2.4 are from the family of complex exponentials:

t 7→ e i kt = cos(kt )+ i sin(kt ), k ∈Z. (2.6)

This is a family of 2π-periodic, orthonormal functions. For any f ∈ L2(R/2π), measurable functions f : R→C,
the formal definition of the Fourier transform can be applied. This theory was expanded to cover not only
these specific functions, but all functions on R. This results in the Fourier series representation of x(t ):

x(t ) :=
∞∑

k=−∞
ck e i kt . (2.7)
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2.2.1. Continuous Fourier Transform
The Fourier transform (abbreviated to FT) of a time signal, or function, x ∈ L1 is defined by the integral [11]

F{x(t )}(ω) =Fx(ω) = X (ω) :=
∞∫

−∞
x(t )e−iωt dt , ω ∈R. (2.8)

Here ω denotes the angular frequency in rad/s, i.e. 2π f . This transform gives a representation in the com-
plex domain of the frequency content of the time signal x(t ). Often the modulus of the Fourier transform
is displayed against the frequency ω to indicate the energy density over the spectrum. As discussed before,
information concerning time-localisation cannot be read off from X (ω). Therefore it is impossible to deter-
mine at what time, which frequencies are present in the signal. However, when one is looking out for one
frequency, like radars which respond to very specific frequencies, this characteristic of the Fourier transform
is very convenient.

X (ω) is also known as the two-sided spectrum of x(t ). The original time signal can be reconstructed from
this spectrum by using the inverse Fourier transform (IFT)

x(t ) = 1

2π

∞∫
−∞

X (ω)e iωt dω, (2.9)

the linear combination of the pure oscillations of all frequencies ω ∈ R. Note that for a periodic, continuous
time signal the CFT is discrete in frequencies because the CFT will exist of a finite set of basis coefficients.
However, for a general non-periodic signal this will not hold. An important characteristic of a stationary
signal is that its frequency content does not change over time, i.e. its Fourier coefficients are time-invariant
[42]. This implies that both the power spectral density and the autocorrelation of the signal are time-invariant
too.

The Fourier transform of a signal consists of a real and an imaginary part. The decomposition F{x}(ω) =
X (ω) = Y (ω)+i Z (ω) is known as the Cartesian or quadrature form [11]. An other well known form is the polar
form: X (ω) = |X (ω)|e i arg(X (ω)). This is also known as the magnitude-phase form, in which the real functions
|X (ω)| and arg(X (ω)) denote the magnitude and the phase of the signal. The quadrature Fourier series uses
the property that the complex exponential can be written as a sum of a sine and a cosine, which leads to
another representation of any physical waveform x(t ) (over the interval a < t < a +T ) [11]:

x(t ) =
∞∑

n=−∞
an cosnω0t +bn sinnω0t (2.10)

where an =


1

T

a+T∫
a

x(t ) dt n = 0

2

T

a+T∫
a

x(t )cosnω0t dt n ≥ 1

and bn =


0 n = 0
2

T

a+T∫
a

x(t )sinnω0t dt n ≥ 1
.

2.2.2. From Continuous to Discrete
As stated before, most signals in the field of coastal engineering are discrete. The continuous Fourier trans-
form is therefore not applicable to these signals. The sampling theory describes how these so-called sampled
signals can be transformed using the discrete Fourier transform (DFT). In Appendix A this theory and some
advantages and disadvantages are discussed more elaborate.

A sampled signal can be represented as a sum of delta functions. For this we assume a uniform sampling,
sampled with the sampling frequency fs =∆t−1 [Hz]. Assume a continuous signal x(t ) is being sampled, then
the uniform sampling of this signal is described as

xsampled(t ) =
∞∑

k=−∞
x(t )δ(t −k∆t ) =

∞∑
k=−∞

x(k∆t )δ(t −k∆t ).

Now determine the Fourier transform of xsampled(t ), using the linearity property (G.1) of the Fourier transform
and the Fourier transform of the Delta function (G.9) to derive the discrete time Fourier transform (DTFT,
discrete in time, continuous in frequency):

F
{

xsampled
}

(ω) = Xsampled(ω) =
∞∑

k=−∞
x(k∆t )e−iωk∆t .
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Most sampled signals x(k∆t ) = x[k] are finite. For now, we will work with the abbreviated expression for a
signal of length N

X (ω) =
N−1∑
k=0

x(k∆t )e−iωk∆t . (2.11)

Discrete Fourier Transform
Expression (2.11) can be simplified further, by discretisation of the frequency domain. In the discrete Fourier
transform (DFT) the following set of orthogonal basis functions is used [37]:{

en[k] = exp

(
i 2πnk

N

)}
0≤n≤N

. (2.12)

Using this basis, the discrete Fourier transform (DFT) is defined. This transform is discrete in both time and
frequency. Now again consider a discrete time signal, given by x[k], with k ∈N and finite with a duration of
time T , then the DFT becomes

F{x[k]}[n] := X [n] =
k=N−1∑

k=0
x[k]e−i 2πnk/N , where n = 0,1,2, . . . , N −1, (2.13)

and the inverse operation is given by

F−1{X [n]}[k] := x[k] = 1

N

N−1∑
n=0

X [n]e i 2πnk/N , where k = 0,1,2, . . . , N −1. (2.14)

Note that the basis functions (2.12) are independent of the sampling frequency or the total duration of the
signal x[n]. The resulting DFT has domain [− fsample/2, fsample/2].

Fast Fourier Transform
The fast Fourier transform (FFT) is a faster implementation of the DFT algorithm. The direct computation of
the DFT is ofO(N 2) arithmetic operations [46]. The FFT algorithm brings this number down toO(N log N ) op-
erations by breaking the large convolution from equation 2.13 into shorter convolutions, lowering the num-
ber of operations [46]. The terms are interchangeable because the DFT and FFT algorithm both result in the
same Fourier coefficients.

2.2.3. Short-term Fourier Transform
To apply time-frequency analysis, a connection between time and frequency information has to be extracted
from a time signal. The WFT makes use of a so-called window function g : R → R≥0 to connect time and
frequency [6]. This window function should have the property of compact support, containing t = 0, or at
least a maximum at t = 0, and decaying fast for |t | → ∞ and

∫ ∞
−∞ g (t ) dt = 1. A widely used window is the

Gabor window, named after the physicist mentioned in the introduction. He remarked that the window Nσ,0

is optimal to extract time-frequency information using the Fourier transform. This Gabor transform window
is given by

g (t ) =Nσ,0(t ) := 1p
2πσ

e−t 2/2σ2
, with σ constant. (2.15)

The choice for a window like (2.15) instead of a rectangular pulse for instance is obvious to the reader familiar
with Fourier transform properties. The sharp cut off by a rectangular window will lead to rippling effects,
described in Section A.1. These contributions will disturb the results. The WFT is the CFT of the signal x(t )
multiplied with the window function g (t ).

The chosen window g will be slid over the signal x(t ) not to select the full signal, only parts of it. Therefore
the window transform is defined as

gs : t 7→ g (t − s), (2.16)

a translation by s ∈R of the window g . Note that for s > 0 the window is translated to the right. Now define:

G{x}(ω, s) :=
∫ ∞

−∞
x(t )g (t − s)e−iωt dt =

∫ ∞

−∞
x(t )gs (t )e−iωt dt . (2.17)

This use of the translated window transform is widely known as the short-term Fourier transform (STFT)
because the multiplication by g (t − s) localises the Fourier integral in the neighbourhood of t = s [37]. The
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2.3. WAVELET ANALYSIS 9

value of G{x}(ω, s) represents again the complex amplitude by which the pure harmonic e iωt is present in the
signal x(t )gs (t ) for that particular s. By the redundancy of information of the signal x(t ) in the STFTG{x}(ω, s),
there are many inverse transformations defined [6]. The representation of this transformation is often given
by a spectrogram. The spectrogram is a measure of the energy of x(t ) in the time-frequency neighbourhood of
(ω, s). This neighborhood is specified by its so-called Heisenberg box hω,s (see Section A.2.1). For large signals,
the spectrogram can become quite hard to read. The two most applied enhancers are window overlapping
and bin averaging. This last one, however, decreases time-frequency resolution even further.

Discrete Short-term Fourier Transform
The derivation of the discrete short-term Fourier transform (DSTFT) is following the same steps as the deriva-
tion from the continuous Fourier transform to the discrete Fourier transform. In the discrete case a discrete
window or window sequence g [n] is chosen. Most of the time this is a symmetric discrete signal of period N ,
with unit norm ∥g∥ = 1 [37]. The discrete signal x[n] is multiplied with the shifted window sequence g [n −k],
resulting in the expression

X (ω,k) =
∞∑

n=−∞
x[n]g [n −k]e−iωn = x[n]e iωn ∗ g [n].

The same step as for the DFT (Section 2.2.2) is done, leading to the expression for the DSTFT [37]:

X [n,k] =
N−1∑
ℓ=0

x[n]g [n −k]exp

(−i 2πnℓ

N

)
.

2.3. Wavelet Analysis
In wavelet analysis, a different set of basis functions is chosen. Instead of using the complex polynomials, a
so-called wavelet ψ(t ) is used. The wavelet transform of a continuous time signal x(t ) is defined by [64]

W{x}(a,b) =W (a,b) =
∞∫

−∞
x(t )ψ∗

ab(t ) dt , (2.18)

where ψ∗
ab is the complex conjugate of a daughter wavelet. This expression denotes the autocorrelation (9)

of the signal x(t ) with this daughter wavelet, which is derived by scaling and translating the wavelet ψ(t ) by
respectively a scaling factor a and a translation b:

ψab(t ) = 1p
a
ψ

(
t −b

a

)
. (2.19)

This scaling ensures energy conservation, i.e. all wavelets have the same unit energy (2.20b). A wavelet func-
tion is characterised by a finite support and a zero mean value. This is where the term wavelet originates
from; a function with these two characteristics will be of a short wavelike shape. The formal definition of a
wavelet is: a function ψ : R→C satisfying the conditions [6]:

ψ ∈ L2, (2.20a)

∥ψ∥ = 1, and (2.20b)

Cψ :=
∫
R\{}

|Fψ(ω)|2
|ω| dω<∞. (2.20c)

Wavelets can be both real or complex valued. This leads to respectively real or complex-valued coeffi-
cients. It is important to note that a continuous wavelet is often a composition of a wave and a window. Dif-
ferent continuous wavelets are presented in Section C.2. Observe the Complex Morlet wavelet as an example

(see Table C.1). It is the product of a wave described by e iω0t and a Gaussian window, e−t 2/2. The wavelet
transform is therefore very similar to the STFT. However, due to the scaling, the size of the window changes
per frequency, as is depicted in Figure 2.1d. This allows the investigation of a larger range of frequencies than
in the STFT.
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2.3. WAVELET ANALYSIS 10

2.3.1. Continuous Wavelet Transform for Discrete Signals
For the discrete case we consider signals that are samples with a constant sampling interval ∆t . To compute
the wavelet transform of a discrete signal, the integral has to be discretised. This discretisation can be written
as a sum:

W DT(a,b) =
N−1∑
m=0

x[m] ·
√

∆t

a
ψ∗

(
t −b

a

)
. (2.21)

The factor
p
∆t has been added to assure that

∣∣W DT(a,b)
∣∣ ≈ |W (a,b)|, so that the discrete coefficients are a

good approximation of the continuous ones. By maintaining a continuous translation, this transformation
has much abundant information. By discretising b with the sampling frequency fs we find the discretised
continuous wavelet transform as

W (a,n∆t ) =W [a,n] =
N−1∑
m=0

x[m] ·
√

∆t

a
ψ∗

(
(m −n)∆t

a

)
= x[n]∗

√
∆t

a
ψ∗

[
n∆t

a

]
. (2.22)

This discretised expression approaches the continuous wavelet transform very well and is therefore referred
to as the continuous wavelet transform in most modern literature [1, 15, 34, 55]. In this thesis, however, the
term discretised continuous wavelet transform (DCWT) is preferred.

The fastest way to compute the coefficients is through the Fourier domain [55]. This is divided into four
steps. It starts with a discrete signal x[n].

1. Compute the Fourier transform X =F{x} using the FFT.

2. Choose a (discretised) wavelet function ψ[n] (with Ψ=F{ψ}) and a set of scales to analyse.

3. For each scale, construct the normalised wavelet function using

Ψ(aωk ) =
√

2πa

∆t
Ψ0[aωk ], ωk =


2πk

N∆t
: k ≤ N /2

2πk

N∆t
: k > N /2

. (2.23)

4. Find the wavelet transform at all scales a using the inverse FFT:

W (a,n∆t ) =W [a,n] =F−1 {
X [ωk ] ·Ψ∗[aωk ]

}= N−1∑
k=0

X [ωk ]Ψ∗[aωk ]e iωk n∆t . (2.24)

Reconstruction
By the redundancy of the DCWT coefficients in time and scale the reconstruction is less arbitrary than the
reconstruction of a signal from the Fourier domain. However, it is possible to reconstruct the time-series with
a completely different wavelet function [55]. The easiest function possible would be the Delta function δ(t ).
Assume a discrete number of scales A = {a1, a2, . . .}, logarithmically scaled with distance ai+1 −ai = log(∆a).
In that case the reconstructed real valued time-series becomes [55]:

x[n] = ∆a
p
∆t

Cδψ(0,0)

J∑
j=0

Re(W [a j ,n])

a1/2
j

, (2.25)

with Cδ a constant defined by:

Cδ =
∆a

p
∆t

ψ(0,0)

J∑
j=0

Re([Wδ[a j ])

a1/2
j

, where Wδ[a] = 1

N

N−1∑
k=0

Ψ∗[aωk ].

The result x[n] in (2.25) is known as an analytical signal. When the decomposed signal was real, the real value
of this analytical signal represents the reconstruction of the original signal.
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2.3. WAVELET ANALYSIS 11

2.3.2. Discrete Wavelet Transform
The discrete wavelet transform (DWT) is a powerful tool to decompose a signal. Discrete signals can be de-
composed into the same number of elements as the original signal. Therefore it is much less abundant than
the continuous wavelet transform. The DWT theory can be approached from the definition of the CWT, with
the addition of the notion of frames in Hilbert spaces [6, 14, 37]. Here, however, the definition of the DWT
through a multi resolution analysis (MRA) is presented, which has two main advantages. The first advantage
is that the MRA theory is discrete to begin with, resulting in a more natural derivation of the DWT, easier to
implement as a computer algorithm [6, 28, 42]. Secondly, the MRA structure allows for a convenient, fast and
exact calculation of wavelet coefficients by providing a recursion relation.

In a nutshell: a multi resolution analysis1 of the L2 space consists of a set of nested subspaces Vn , that
comply with six conditions. These conditions ensure that the analysis can represent all functions in the L2

space in a unique way. A function is projected on the subspace Vn using the refinable function ϕn . This
function is called orthogonal if 〈ϕ(x),ϕ(x −k)〉 = δ0k ∀k ∈ Z \ {0}. The difference of the projection onto two
consecutive subspaces, Vn+1 and Vn , can be described by the projection using the wavelet ψn and is known
as the fine detail. The discrete wavelet transform describes a function as the sum of the projection on space
Vℓ and a summation of all fine details above. This summation is finite for discrete signals. Important to know
is that the daughter wavelets are not used for an arbitrary set of scales and all translations, but as a fixed set:

ψnk (t ) = 2n/2ψ(2n t −k). (2.26)

This fixed set leads to a number of N discrete wavelet coefficients for a signal of length N .

Fast Wavelet Transform
The fast wavelet transform (FWT) is the fast implementation of the DWT. The algorithm is based on filters,
first described in the late 1980’s by Daubechies [13]. The signal at level n, sn , is filtered using a wavelet,
which results in d ′

n+1, the detail ’signal’ at the next level. The approximation ’signal’ at that same level can
be determined by subtracting: a′

n+1 = sn −d ′
n−1, however, in the FWT case a filter implementation is used as

well. Both the detail and approximation signal are then down-sampled by a factor 2 to determine the detail
and approximation coefficients at level n + 1: dn+1 and an+1. By combining the information in these two
sets of coefficients, the original signal can be reconstructed (see Figure 2.2a). By cascading the algorithm;
using the approximation coefficients as input for the next step, more levels of coefficients are determined.
To reconstruct the original input the last set of approximation coefficients and all detail coefficients are used
(see Figure 2.2b).

(a) One decomposition and reconstruction of the fast wavelet transform

(b) Three decomposition steps and one reconstruction of the cascaded fast wavelet
transform.

Figure 2.2: Fast Wavelet Transform, the ai are the approximation coefficients, the di the detailed coefficients at level i .

2.3.3. Wavelets
In the previous sections both the continuous and discrete wavelet transform are presented. As explained
earlier, there are many different wavelets available. An overview of these different wavelets is presented here.

1More background concerning the MRA and an example of the Haar wavelet is presented in Appendix B.
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2.3. WAVELET ANALYSIS 12

In Appendix C a more elaborate description of a lot of different wavelets is given, in Appendix B the Haar
wavelet is derived from the definition of the multi resolution analysis..

In this section, a little overview of the different wavelets is given. The realm of wavelets is divided into two
types of wavelets: continuous and discrete wavelets. This difference is because both transforms discretise
scale differently. The discrete wavelet transform generally uses an exponential scale with base 2 (see (2.26)),
whereas the continuous wavelet transform uses a much smaller base (∼ 2−10). Moreover, different wavelet
characteristics are preferred in the different transforms. Wavelets that result in a good time-frequency repre-
sentation of a signal are not suitable to create a sparse representation that is created by the DWT.2 Vice versa,
wavelets that create sparse representations result in poor time-frequency analyses. Wavelets have many char-
acteristics of which the most important ones are listed here.

Orthogonality As mentioned in Section 2.3.2 wavelet decomposition is characterised by a refinable function ϕ(x) and
a wavelet ψ(x). In the bi-orthogonal case there is a set of two refinable functions ϕ and ϕ̃, such that
〈ϕ(x), ϕ̃(x −k)〉 = δ0k . An orthogonal wavelet family is also bi-orthogonal, i.e. the family is its dual.

Symmetry A family is known as symmetric if the wavelet function is a symmetric function. Note that an orthogonal
family of real wavelets cannot be symmetric.

Moments The number of vanishing moments influences the support in time and frequency space of the wavelet
and the scaling function. If there is a larger support in the time domain a smaller support in frequency
domain can be achieved and vice versa. The definition of the discrete and continuous moments is
presented in respectively Section B.6 and C.1.1.

Filter Most discrete wavelets have the advantage that they can be written as a filter, i.e. they can be imple-
mented using the FWT. This is beneficial in computations, these can be done by low-level electronics.
The filter length ℓ f of the wavelet determines the size of the wavelet and the maximum decomposition

level: 2max.level ·ℓ f = N , where N is the length of the signal. To ensure max.level ∈ N different signal
extension modes can be applied, which will be discussed later.

Continuous Wavelets
There are many continuous wavelets, of which only a hand full are often used in time-frequency analysis.
They are divided into complex and real wavelets, as presented in Figure 2.3. Real wavelets in combination
with real signals lead to real coefficients, so they do not convey phase information. Edges in signals are often
detected by using wavelets with a relatively short time support. This has all to do with the time-frequency
distribution of the wavelet. For a wavelet to be applicable in time-frequency analysis, it has to have a relative
short bandwidth in the frequency domain [30]. This is a characteristic that a lot of discrete wavelets lack and
therefore are not used much in the continuous wavelet transform.

Figure 2.3: An overview of the most used continuous wavelets. More elaborate description of these wavelets in Sec-
tion C.2.

2Only the discretised Meyer wavelet is sometimes used in the DWT, see Table C.2.
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2.3. WAVELET ANALYSIS 13

The continuous wavelets are dependent on t , whereas the discrete wavelets are defined dimensionless.
Continuous wavelets are characterised by a centre frequency, fψ in Hz. Its centre frequency is of course
inversely proportional to its equivalent wavelength λψ = 1/ fψ in seconds. The equivalent wavelength of a
wavelet is proportional to the scale a: λψa = a ·λψ. The e-folding time of a wavelet, τa , is based on the drop of
power for a discontinuity at the edge by a factor e−2 [55]. This time is used to determine edge effects, which
are more elaborately addressed in Section 3.1.3. The e-folding time at a certain scale is proportional to the
scale, i.e. τa ·a. A more elaborate description of the different continuous wavelets is presented in Section C.2.
An example of two different Morlet wavelets is shown in Figure 2.4.

(a) Fourier coefficients (b) Function in time

Figure 2.4: The Fourier coefficients and functions in time for two different Morlet wavelets with the same centre
frequency fψ = 2.

Discrete Wavelets
In the discrete wavelet transform much more wavelets are employed than in the continuous wavelet trans-
form. In Figure 2.5 an overview of the most commonly used wavelets is presented. If one would want to merge
the continuous and discrete wavelets shown in Figure 2.3 and Figure 2.53, the continuous wavelets would be
addressed as ’non-orthogonal’. The lack of orthogonality makes them less suited for discrete wavelet trans-
formation. Techniques such as lifting can be used to create an unlimited amount of new discrete wavelets
based on these wavelets [28]. How to pick the right discrete wavelet for your signal is discussed later.

Figure 2.5: An overview of the most used discrete wavelets. More elaborate description of these wavelets in Section C.3.

3Both figures are based on the work of van Berkel [57] and expanded with some extra information.
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2.4. Time-frequency Analysis using Fourier and Wavelet Coefficients
Fourier and wavelet coefficients are applied in many engineering fields. The magnitude of the coefficients is
often used as a measure of the energy density of a signal. The argument of the coefficients can be employed in
many different ways, which is addressed after that. At the end, some different time-frequency analysis tools
are discussed.

2.4.1. Amplitude
To determine which (time-)frequency components are present in a signal, often the magnitude spectrum is
analysed. Expressed by |X (ω)| in the continuous Fourier domain and by |W (a,b)| in the continuous wavelet
domain.

Spectral Densities
The energy spectral density of a signal describes the distribution of the energy of a signal over the frequencies.
Assume a discrete signal x[n] with the Fourier coefficients X [k], then the energy E of a discrete signal x[n] is
defined as [46]

Ex =
N−1∑
n=0

|x[n]|2 = N
N−1∑
k=0

|X [k]|2, (2.27)

which is known as Parseval’s relation. The expression |X [k]|2 is therefore known as the energy density spec-
trum (EDS). The variance density spectrum (or power density spectrum (PSD) in most engineering fields [46])
has the property that the integral over the frequencies equals the variance (or average power) of the signal.
The variance density spectrum (VDS) for discrete signals is thus defined by

S f
xx [k] = fs

N 2 |X [k]|2. (2.28)

The variance density spectrum in coastal engineering is denoted as E( f ), which has the units m2/Hz for time-
series containing water elevations [24]. If the VDS of only one ensemble member is assessed, the error of the
raw spectrum is around 100%. This poor reliability is not acceptable and is often improved by dividing the
signal into p segments and averaging the spectra of these different segments. The error then reduces by a
factor

p
p and the frequency resolution decreases from ∆ f (= fs /N ) to p∆ f Hz [24]. The segmenting will only

integrate to the variance of the signal for stationary signals.

Wavelet Power Spectrum
The scalogram or wavelet power spectrum (WPS) is often defined as the square of the modulus of the wavelet
coefficients [19, 55]. In the same manner as the energy density spectrum for Fourier coefficients:

Sw
xx (a,b) = |W (a,b)|2. (2.29)

For a white noise time-series the expected value of these WPS values is equal to the variance of that signal for
all a and b [55]. Therefore, the WPS presents a measure of the power relative to a white noise signal with the
same variance as the signal. Liu et al. [32] show that this definition is not a physically consistent definition
of energy, in an average sense. It should be the transformation coefficient squared divided by the scale it is
associated to, i.e.

Sw
xx

R(a,b) =
∣∣W (a,b)2

∣∣
a

. (2.30)

This quantity is denotes as the rectified wavelet power spectrum (RWPS). Note the behaviour of noise, how-
ever, becomes dependent on the scale. An example of these effects are given in Demonstration 2.1

2.4.2. Averaging Wavelet Coefficients
By averaging the wavelet power spectrum in time the so-called global wavelet spectrum (GWS) is created. The
rectified global wavelet spectrum (RGWS) is the time average of the RWPS. This global wavelet spectrum pro-
vides a consistent and unbiased estimation of the true power spectrum of a time-series [55]. The addition of
the scale in the rectified one leads to a bias. Furthermore, it could provide a useful measure to base the back-
ground spectrum for significance testing. Examples of these measures are presented in Demonstration 2.1.
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The scale averaged wavelet power (SAWP) is used to examine fluctuations in power over a range of scales,
also referred to as a band. The SAWP between two scales a0 and a1 is defined by [55]

κ(t ) = ∆a∆t

Cδ

a1∑
a=a0

|Wa(t )|2
a

. (2.31)

This results in a time-series containing the average variance of the wavelet coefficients in a certain frequency
band. It can, therefore, be used to examine modulation of one time-series by another. When further exami-
nation is needed, the cross-wavelet spectrum is often used.

Demonstration 2.1 (Energy density) In this demonstration, an example is given of the different
measures of energy density presented in Section 2.4. Four waves with an amplitude of 1 m and
periods of 2−3, 1/2, 2, and 8 seconds are summed. To show the difference of the effect of noise on
the variance density spectrum and the (rectified) global wavelet spectra, white Gaussian noise with
a variance of the signal has been added to the signal. The VDS of the signal and the noisy signal
are presented in Figure 2.6a. This representation indeed is rather grassy; a more reliable VDS of
the signal is presented in Figure 2.6b. The effects of the segmenting are very clear: the frequency
resolution and maximum period have decreased.

In the spectrum of the signal without noise, four peaks of equal size are present at the periods of
the waves: all waves contain equal energy. The WPS and RWPS of the noiseless signal are presented
in Figure 2.6c and 2.6d. The difference between these two if clear. The rectified WPS shows four
’peaks’ of equal height, whereas the normal one does not; the peaks increase in intensity. This
effect is also shown in the time-averaged (R)WPS, the (rectified) global wavelet spectra, shown in
Figure 2.6g and 2.6h. This difference is due to the scaling of the wavelet: a high scale (thus large
period) wavelet has a smaller amplitude compared to a lower scale wavelet. Assume these wavelets
have an equivalent wavelength of respectively λψ1 > λψ2 . The correlation of the wavelet ψ1 with a
sine (amplitude 1, period of λψ1 ), results in a smaller value than the correlation between ψ2 a sine
with the same amplitude but period λψ2 . By dividing the results by the corresponding scales, this
’problem’ is solved.

However, if we add noise to the signal, the RWPS and RGWS are disturbed differently than the
WPS and the EDS. The WPS and GWPS of the noisy signal are shown in Figure 2.6e and 2.6f. The
power of white Gaussian noise is equally distributed over all frequencies [55], which is clear in from
EDS and the GWS (Figure 2.6a, 2.6g). When applying the rectification as proposed by Liu et al. [32],
the energy of the wavelet becomes dependent on the scale of the wavelet. The energy in the low
scale wavelet is larger than the energy in the high scale wavelet, which leads to the linear decrease
in noise power as shown in the RGWS in Figure 2.6h.

Scaling of energy
The heart of the problem described in Demonstration 2.1 lies in the definition of the Fourier and wavelet
analysis. The discrete coefficients do not contain information for one specific frequency (at a specific time),
but information over the neighbourhood [32]. These neighbourhoods are graphically shown in Figure 2.1. To
define a physically consistent energy, the coefficients have to be multiplied by a factor. In a global analysis
as Fourier analysis, this factor is independent of the scale, which therefore does not affect the analysis. In
wavelet analysis, a localised analysis, this factor is dependent on the scale, and therefore these effects appear
[32]. For an orthonormal wavelets basis, the derivation in (2.30) is correct. However, all popular wavelets used
in time-frequency analysis lack this characteristic4 and thus this introduced scaling is not correct.

This difference between the energy scaling in the Fourier spectrum and the wavelet power spectrum is a
threshold for analysts to use this method. An often used solution is to scale the WPS values logarithmically,
which decreases the difference in peak height (optically). The other problem that arises it that the units of
the energy expressed by the WPS are not in terms of the regular m2/Hz for instance. The WPS, however, can
be expressed in relation to energy in white Gaussian noise, because that is equal over all coefficients [55].
All in all the WPS and RWPS are effective in qualitative time-frequency analysis and not in quantitative time-
frequency analysis. For quantitative analysis, it is better to use the Fourier transform or the short-term Fourier

4Most orthonormal discrete wavelets are for instance not symmetric, which makes them unsuitable for time-frequency analysis.
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(a) VDS of the signal with and without noise (b) Same VDS, based on 40 segments

(c) WPS - no noise (d) RWPS - no noise

(e) WPS - noise (f ) RWPS - noise

(g) GWS of both signals (h) RGWS of both signals

Figure 2.6: Different energy spectral densities discussed in Section 2.4. The used wavelet is the Morlet 10 wavelet.
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transform. Often a quantitative analysis is about the significance of events. The theoretical noise behaviour
in the wavelet domain is effective in determining the significance of time-frequency behaviour [19, 55, 64].

2.4.3. Phase
The argument (1) of both the Fourier and Wavelet coefficient, respectively arg(X (ω)) and arg(W (a,b)), con-
tains the phase difference of the complex waveform with respect to the signal. In the Fourier transform this
is the complex exponential e iωt and for the wavelet transform it is the wavelet ψ(a,b). Note that this wavelet
has to be complex to determine the argument. The phase difference between two signals is often assessed in
cross-spectral form.

2.4.4. Cross Spectral Information
The relation between different time-series is also often of interest of data analysts. Both in the Fourier as the
wavelet domain this can be studied. The continuous wavelet coefficients are therefore employed in the cross-
wavelet tools. The three best known are the cross-wavelet power spectrum, the wavelet phase difference and
the wavelet coherency [2]. These know different applications in for instance ecology [9, 10, 48], finance [2]
and meteorology [55]. Al three tools will be discussed shortly. Significance testing for these cross-wavelet
tools is almost always done via Monte Carlo simulations [2].

The cross-wavelet transform (XWT) of two time-series x(t ) and y(t ) is defined as [2, 55]

Sw
x y =W {x}W ∗{y}. (2.32)

The XWT exposes region with high common power and reveals information about the phase relationship [22].
The quantity Sw

x y can be divided by the scale it is associated with, to produce the Rectified Cross-wavelet Spec-
trum (RXWS). The cross-wavelet power spectrum is defined by the modulus of the given product, |Sw

x y |, and
illustrates the local correlation between the two time-series at each scale. The complex argument arg(W x y )
can be interpreted as the local relative phase between x and y . Normalisation of both time-series will result
in a different cross-wavelet spectrum if they are of different magnitudes. By normalising both series, the re-
gions of high power correlation are not dominated by the time-series with the larger variance anymore. This
will not have any effect on the phase behaviour that can be extracted from the XWT. The cross-power spectral
density, the equivalent of the XWT in the Fourier domain, is defined as the Fourier transform of the cross-

correlation (2.32) of two signals and denoted by S f
x y . This quantity is always real and therefore only indicates

frequencies of common high power [46].
The phase difference of two wavelet transforms indicates the delay of the oscillations between two time-

series as a function of time and scale and is defined as the argument of the XWT (1) [2, 55]. Different values
point to lagging or leading phase of the function x or y as:

arg(Sw
x y ) ∈


(0,π/2) series are in phase, y is leading with phase ϕx,y ,
(−π/2,0) series are in phase, x is leading with phase −ϕx,y ,
{−π,π} x and y are in anti phase,
(π/2,π) x is leading,
(−π,−π/2) y is leading.

2.4.5. Coherence
Another measure for correlation between two time-series is the coherence. Two waves are said to be coher-
ent if they have the same wavelength and there is a constant phase difference between them [41]. Where
the cross-spectra correlates regions of high power, the coherence correlates regions of constant phase differ-
ence. The term coherence is used in the Fourier domain as well, which is called coherence. Coherence in the
wavelet domain will be referred to as wavelet coherence. The coherence (in the Fourier domain) between two
continuous functions x(t ) and y(t ) is defined as [50]

γ2
x y (ω) = |S f

x y (ω)|2

S f
xx (ω)S f

y y (ω)
. (2.33)

For this value holds 0 ≤ γ2
x y (ω) ≤ 1.

This value can be read as the fractional portion of the output power that is (linearly) contributed by the
input power. So if x(t ) = y(t ) the coherence equals 1. This value of 1 implies that the two signals are linearly
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related. If the signals are uncorrelated, then Sx y (ω) = 0 and so will the coherence be. Any value in between 0
and 1 indicates a partially linear relationship. This difference has three main contributors [22]:

1. In both signals noise can be present;

2. The two signals are not completely linearly related, there is some non-linear relation between the two;

3. The signal y(t ) is determined not only by x(t ) but also by other input signals.

When this coherence function is directly implemented in the discrete functions, all values are equal to 1
even if the signals are uncorrelated. So when sampled signals are used, the estimates of the smoothed power
and cross-spectral density functions should be used [50], using a smoothing function S():

γ̃2
x y (ω) =

∣∣S (
S f

x y (ω)
)∣∣2

S
(
S f

xx (ω)
)

S
(
S f

y y (ω)
) . (2.34)

If no smoothing is applied the sampled coherence function γ̂2
x y will be one for all ω [50], this even holds

for unrelated signals. By smoothing the three different variables of the sampled coherence function γ̃2
x y , the

coherence will be close to the real coherence γ2
x y . The smoothing, however, will result in a reduced frequency

resolution. For more considerations regarding this smoothing, the reader is referred to Shin and Hammond
[50].

Wavelet Coherence
The described coherence functions results are only valid for stationary signal cases [61]. When non-stationary
signals need to be addressed, the wavelet coherence is used. The continuous wavelet coherence (WC) of
functions x and y for scale a and translation b is defined as [22]

γ2
x y (a,b) =

∣∣∣S (
a−1Sw

x y (a,b)
)∣∣∣2

S
(
a−1

∣∣Sw
y (a,b)

∣∣2
)
·S

(
a−1

∣∣Sw
y (a,b)

∣∣2
) , (2.35)

where S() is again a smoothing operator. This time the smoothing operator consists of a smoothing in time
and in scale: S(W ) = Stime(Sscale(W )). Again, without smoothing operator, the wavelet coherence will be one
everywhere, just as in the Fourier case [55]. The wavelet coherence can be seen as a localised correlation
coefficient in the time-frequency space, i.e. when there is little power in the XWT coherence can still be
detected. However, to find this relation, some time and frequency information is lost due to the smoothing
process. For further considerations of this wavelet coherence smoothing and a suitable smoothing operator
for the Morlet wavelet, the reader is referred to Grinsted et al. [22]. There are two main advantages of the
wavelet coherence (WC) over the cross-wavelet transform (XWT): the first is that the WC is a normalised
value, the second one is that the WC is less disturbed by spurious coincidences compared to the XWT. Though
there are some redundancies between the XWT and WC, they do complement each other [22].

2.4.6. Stationarity Signals and Linear Representation
The definition of a stationary signal as presented in (2.2) is difficult to understand. The other explanation
comes from the time-frequency domain. Assume a simple non-stationary signal: a recording of length 2T
seconds, the first T seconds are filled with no signal, followed by a sine wave with amplitude 1 for the next T
seconds. If this signal is Fourier transformed and the power per wave is expressed in the ESD, this signal will
be interpreted as the presence of wave with an amplitude of 1/2 over the whole time domain. This is not true,
and therefore the Fourier transform is unsuited to apply to non-stationary signals, i.e. the wrong conclusions
may be drawn. However, if the wavelet transform is applied, there will be a clear difference in the first and
last part of the signal, which may result in better conclusions. This is why the stationarity of a signal can also
be recognised on its time-frequency behaviour, i.e. if the frequency content of a signal does not change over
time, it is often referred to as stationary.

The Fourier and wavelet transform do share an important characteristic: when a signal is transformed
(either Fourier or wavelet), the signal is represented as a linear combination of basis functions (eα(t ) in equa-
tion 2.5, respectively complex exponentials or wavelets). The description of a non-linear signal by means of a
linear combination of basis functions does have a mathematical meaning. However, this does often not have
a physical meaning [25]. This means that a non-linear signal is ’identified’ as a sum of harmonics (mathe-
matical), but physically it can be something else, for instance, one wave with a changing harmonic. This is a
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characteristic that should be kept in mind when analysing signals; non-linear signals are not recognised as
such in both methods.

2.5. Digital Signal Processing
All presented methods have a decomposition and a reconstruction formula, i.e. the transformations can be
reversed. The application of the reconstruction allows for signal processing in these domains, by decompos-
ing, adjusting the coefficients and reconstructing. Signal processing using the DCWT is not addressed much
because filtering in the discrete wavelet domain is more efficient. On the one hand due to the faster FWT
implementation and on the other hand due to the relative large reconstruction error of the DCWT. The re-
construction error of the FFT or DWT, which are often only affected by the rounding error of the computer, is
normally in the absolute range of 10−15.

2.5.1. Elements of a Signal
When applying digital signal processing, filters are often used. They are used to separate different elements
in the signal from the rest of the signal. A signal is therefore assumed to be a linear combination of different
signal elements. A number of these elements is therefore addressed here shortly. In Section 2.5.2 the use of
filters in frequency and wavelet domain are explained.

Noise
A received waveform x(t ) = s(t )+ v(t ) usually consists of two parts: a desired part s(t ), containing the infor-
mation, and the undesired part v(t ) [11]. The desired part is referred to as the signal, the undesired part as
noise. The sum of these parts s(t ) is then referred to as the noisy signal or received signal. This is noise in the
broadest sense of the word, and it has all kinds of shapes and sizes: it can be ’added’ to the desired signal by
the sender, the measurement equipment or other processes. Often noise is assumed to be of constant power
in all frequencies, white noise, but could also be contained in specific frequencies, which is known as coloured
noise. These names are in convention with light; white light contains photons of all frequencies and coloured
light only those of specific frequencies. Noise does not always have to be of constant power, but can, for in-
stance, fade out or build up. This is known as non-stationary noise. The amount of noise on a signal is often
described using the signal-to-noise ratio, SNR for short [11]. It is the ratio between the power of the signal
and the power of the noise:

SNR = Psignal

Pnoise
, (2.36)

often expressed in decibels. If the variance of the signal and noise are known and the signal is of zero-mean,
the SNR is also expressed by

SNR =
σ2

signal

σ2
noise

. (2.37)

Transients and Discontinuities
The detection of transients and discontinuities (or edges in signal analysis) is very important in most engi-
neering fields. Any discontinuity measured by a sensor may characterise an event [42]. Transients are always
of short duration and unpredictable nature, changing frequency over time and often decay fast: the param-
eters of the transient and its arrival time are unknown. In the Fourier domain the STFT is used to determine
the location of the transient. The trade-off between time and frequency chosen beforehand influences the
detection of a certain transient. The time-frequency representation of the WT, on the other hand, enables
exact localisation of any abrupt change, impossible for the STFT. This is not only applicable to transients,
but also to discontinuities. Transients usually only appear in the lower scales of the discrete wavelet trans-
form, whereas the higher scales represent the low-frequency basis of the signal. The choice of wavelet is very
important in the detection of transients; since the wavelet coefficients represent the correlation between the
transient and the wavelet function used. The detection will improve when the shape of the transient and
wavelet are similar [42]. Discontinuities are recognizable by their high detail coefficients over a lot of decom-
position levels in the discrete wavelet case. Especially the Haar wavelet had good discontinuity recognising
properties because it is a discontinuous wavelet.
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Amplification or delay
The noise theory discussed until now concerns noise as an addition to the signal: additional noise. Often a
large share of the mutation of a signal consists of this additional noise [11]. However, noise can also adjust
or adapt the signal in other ways: noise can also be a distortion of the amplification or delay of (parts of) the
signal. Amplification (or damping) and the delay of parts of the signal may have different causes. Note that
if the whole signal has been amplified or delayed with the same factor, this does not affect the signal analysis
that much. These two noise effects are often modelled as filters. Damping is often a result of the range of the
measurement equipment. For instance, the detection of sounds by the human ear rapidly decays under 50
Hz, which can be modelled as a damping. In a spectrum or WPS, this can be noted from the amplification or
damping of specific frequencies or detail coefficients.

Delays can have a lot of different causes, also often modelled as a filter. As addressed before, a delay is
modelled as a phase change in the Fourier domain (G.2). Therefore it is also known as phase noise. Phase
noise is hard to detect because it is a non-linear effect. E.g. sin(ω0t +θ(t )) has a basis frequency of ω0 = 2π f0,
however, this might be altered by the phase change θ(t ). Because both the wavelet and Fourier transform
are linear transforms, some phase changes θ(t ) might be hard to detect: by the linearity they are modelled as
different frequencies instead of one phase changing frequency.

2.5.2. Filters
These different signal elements are often filtered from the signal. For instance, noise filtering or denoising is
a much applied in signal processing. The goal of denoising is to filter the noise present in the measurement
without distorting the underlying signal. In the Fourier domain, a filter removes energy from some frequency
bands. Generally speaking, there are two types of filters in this domain: low-pass filters and high-pass filters,
respectively filtering out high and low frequencies from the signal. Combinations of these filters lead to band-
pass, band-stop and more kinds of filters [46].

As discussed before, discrete wavelet coefficients are mainly used in signal processing, especially filtering.
The difference with the filters in the Fourier domain is that the discrete wavelet filters can filter out some
elements in a frequency band, while other elements pass. This is impossible for a Fourier filter: all elements
in a frequency band are damped with the same factor.

The first level of the discrete wavelet approximation coefficients addresses the highest frequencies present
in the signal. As the levels of decomposition rise, the addressed frequencies are lower; in the low scale detail
levels, a lot of high-frequency components of the signal are caught. Noise can be present in all decomposition
levels, however, often there is much noise in the high frequencies (low levels), with respect to the signal power
in the higher levels. Only some of the coefficients are important in supporting discontinuities or other high-
frequency signal components. This assumption lies at the basis of FWT filtering: by applying a threshold to
the coefficients in the low scales, noise is reduced.

The two most used ways of thresholding are hard and soft thresholding, though there are a lot of ’inter-
mediate’ thresholding possibilities [3], as shown in Figure 2.7. Hard thresholding for a threshold T is defined
by (w is the discrete wavelet coefficient):

wnew =
{

0 |w | < T
w else

, (2.38)

and soft thresholding by

wnew =


0 |w | < T
w −T w ≥ T
w +T w ≤−T

. (2.39)

Applying the thresholds is a simple process, the crux lies in determining the thresholds. The most used
threshold is the so-called universal threshold [51]:

T =σnoise
1

√
2log(N1). (2.40)

This universal threshold is based on the standard deviation of the noise of the first detail level σnoise
1 . N1 is

the number of elements of the first detail level. The standard deviation of the noise is often replaced by an
estimator based on the Median of Absolute Derivation (MAD) of the detail level di , σ̃i

noise = MAD(di )/0.675
[42] based on a Gaussian White Noise (GWN) assumption.

By using different thresholds, different types of signal elements can be taken out. The results of filtering
in the wavelet domain can be even further improved by using techniques like:
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1. Shifting [28] uses the not shift invariant characteristic of the FWT. By shifting the original signal and
averaging the denoised copies, a better approximation of the underlying signal can be reached.

2. Cycle spinning [28] is a process that shifts the approximation coefficients at every step.

3. A combination of different algorithms, or cascading different algorithms by using the output of one
algorithm as input for another.

Figure 2.7: Different types of discrete wavelet thresholding. From Antoniadis [3, Figure 1].

Linearity and Stationarity
Linearity and stationary are characteristics of a signal. Both Fourier and wavelet analysis are linear analyses;
they decompose the signal into a sum of linear combinations. Elements that can be filtered have to be el-
ements in this sum. Non-linear elements thus are hard to filter by either the Fourier or wavelet transform,
because they are not described by a linear combination.

Fourier analysis is only suited for stationary signals; the frequency content of a signal cannot change over
time. The magnitude of a Fourier coefficient |X (ω)| is either 0 or larger than that, i.e. the frequency is present
in the signal or not. So if a frequency component is filtered out, it is filtered from the signal at all times. In
the wavelet transform the magnitude of a wavelet with scale a1 and translation b1 can be larger than zero,
while at another time b2 |X (a1,b2)| = 0. Signals with a changing frequency content, are better filtered using
the wavelet transform. One can decide to not address a certain frequency at a certain time, but at another
time it can be filtered.

2.5.3. Other Techniques
Time-frequency analysis and (digital) signal processes are not only implemented in the Fourier and wavelet
domain. Of course the behaviour of the signal in the time domain gives information about the signal as well.
Filtering signals without transformations is also applied, i.e. filtering in the time domain. The advantage
of this type of filtering is that fewer calculations are needed because the signal does not have to be trans-
formed (twice). These filters are often referred to as signal smoothing filters, for they optically make the
signal smoother. The most used filters are [39]: the (weighted) moving average filter and the Savitsky-Golay
filter. Another type of filter is the Kalman filter, which is much more computationally intensive. This filter fil-
ters signals based on a model prediction of the signal and the signal itself [62]. It can be applied on temporal
information, but also in the Fourier or wavelet domain.

Multi-channel Approach
The focus of this thesis lies in single-channel noise reduction methods. In this method, it is assumed that
there is only one sensor available. In multi-channel noise reduction methods, the input of different sensors
is used to suppress noise. A good example is a modern mobile phone, which often has two or more micro-
phones to record a voice when calling, to be able to suppress noise better. This method is most used in speech
enhancement, however, multi-channel noise reduction can have some application in the field of coastal en-
gineering as well. The multi-channel approach can be applied in al different kinds of domains, among which
the wavelet domain.

Hilbert-Huang Transform
In time-frequency analysis there are more options than the STFT or the wavelet transform. The Hilbert Huang
transform has been developed by NASA in the late 90s, to specifically analyse non-linear, non-stationary
data [27]. Applications of this transform emerged around 2005 [26, 44]. This method combines an empirical
mode decomposition with Hilbert spectral analysis [25]. The signal is first decomposed in so-called empirical
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modes: simple harmonic components which can have variable amplitude and frequency in time. These
modes are then analysed using Hilbert spectral analysis, which computes instantaneous frequencies easily.
The Hilbert transform of a signal x(t ), H{x}(iω) is defined by[20]:

H{x}(ω) := 1

π
F{x(t )}(ω)∗ 1

ω
= 1

π

∞∫
−∞

X (η)

ω−η
dη.

In contrary to the Fourier and wavelet transform, the basis of this decomposition, the empirical modes,
is adaptive. The instantaneous frequency is a controversial definition, and inceptive: when something is
instantaneous, it is localised in time. However, time and frequency are inverse quantities, resulting in the
ambiguity [17]. The resulting algorithm, the called the Hilbert-Huang transform has a lot of empirical support
[25, 26, 44]. An overview of the comparison of the three methods is given in Table 2.1. The most important
improvement of the Hilbert-Huang transform with respect to the Fourier and wavelet transform is that it is a
non-linear transform, allowing better analyse of non-linear systems.

This all sounds very promising, however, the great drawback of this method is the lack of theoretical base.
Due to its adaptive base, one element of the basis could counteract another element, resulting in a false
energy distribution in time-frequency. This is in contrast with Fourier and wavelet analysis, which both have
an elegant mathematical framework, very suitable for model building [17].

Table 2.1: Comparative summary of the Fourier, wavelet and HH transform. From [25, Tab. 1].

Fourier Wavelet Hilbert-Huang
Basis a priori: e iωt a priori: ψ(t ) adaptive
Frequency convolution: convolution: differentiation:

global uncertainty regional uncertainty local, certainty
Presentation energy frequency energy-time-frequency energy-time-frequency

STFT: energy-time-frequency
Non-linear no no yes
Non-stationary no yes yes
Feature extraction no discrete: no, yes

continuous: yes
Theoretical base theory complete theory complete empirical base
Computation time FFT: O(N log2 N ) CWT: no fast algorithm O(N log N )

STFT: O(N 2 log N ) DWT (all scales): O(N 2 log N )
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2.6. Coastal Engineering Challenges
This chapter started with the description of time-series of which some important characteristics were dis-
cussed, such as stationarity and linearity. Thereafter the field of signal analysis was explored. The different
domains, to know the time, frequency and wavelet domain are summarised in Figure 2.1.

Fourier analysis and wavelet analysis are elaborately explored in respectively Section 2.2 and 2.3. The
main difference between the two methods is that Fourier analysis correlates the signal with infinite com-
plex exponentials with a certain specific frequency, whereas wavelet analysis correlates the signal with finite
supported functions, that can be real or complex. This allows time-frequency analysis through wavelet coef-
ficients. In the Fourier domain only frequencies can be studied. The discrete wavelet transform is a ’compact
form’ of the continuous wavelet transform, which gives other insights into signals.

In Section 2.4 different applications of both the continuous and discrete wavelet coefficients are ad-
dressed. Moreover, a clear overview of the different continuous and discrete wavelets and their different
characteristics is given (in respectively Figure 2.3 and 2.5). In this last section, different coastal engineering
challenges are coupled with possible solutions based on wavelets. Based on this outline, the sub-questions
to answer the research question are presented.

In the field of coastal engineering, many time-series are recorded. These measurements concern both
soft or hard measures. Measurements on hard measures (structures) are often conducted in an experimental
setting. This often results in time-series containing pressures and forces. Soft measures are measured both in
the field and in experimental settings, resulting in pressures, surface elevations, velocities and temperatures.
Furthermore, wind speeds, water temperature etcetera are recorded and often used as input for models.

Time-frequency Analysis
Time-frequency analysis allows analysts to get an overview of the behaviour of a signal, which sometimes
is not directly observed from the time-series or the spectrum. Especially when signals are non-stationary,
i.e. some frequency components can dominate a time-series at some time, while at another time they are
not present, the Fourier spectrum is not worth much. Missing data points or other (known) disturbances
often appear in long-term soft measure measurements, for instance, due to deterioration of the equipment
or power failure. A lot of experience with these signals is needed to correctly analyse them. Wavelet analysis
might provide solutions concerning these problems.

A threshold in the use of wavelet analysis in many fields is the different concept of ’energy’, expressed in
the wavelet power spectrum. The correction per scale by Liu et al. [32] presented in Section 2.4.1 addresses
this problem for small bandwidth phenomena, but has some drawbacks as well. In time-frequency analysis,
wavelet analysis will serve better as a qualitative than a quantitative method. It is especially useful when very
high and very low scale processes are in play, if the scales differ less, the short-term Fourier Transform will
offer a more quantitative alternative.

Separating Waves
Time-frequency analysis is often based on the energy distribution, which is based on the magnitudes of the
coefficients. An example of the use of phase information (Section 2.4.3) in coastal engineering is the sepa-
ration of incident and reflected waves. Measurements record a superposition of the two, and therefore they
have to be separated. This information is important for testing constructions. Constructions, or scale models
of them, are tested on different characteristics such as stability and overtopping. To determine these char-
acteristics, the reconstruction of the wave pattern (as close to the construction as possible) is indispensable.
The reconstruction of the incident wave is used to determine whether the imposed spectrum is met. Based
on the reflected wave a measure of absorption is determined.

The most often used method to separate these waves is based on Fourier coefficients and was proposed
by Mansard and Funke [38]. Their method uses information of three gauges, which is an expansion of the
analysis of Goda and Suzuki [21], who solved the problem using two measurement gauges. The expansion
to N gauges was done in the early 1990’s by Zelt and Skjelbreia [63]. The use of wavelet coefficients in this
application is rather new. In 2010 a method was proposed by Ma et al. [34] using two gauges to separate waves.
An expansion to multiple gauges is indispensable to show comparable results to the Fourier coefficients based
methods. This subject will be treated more elaborate in Section 3.2.

Noise Reduction
The testing of constructions often includes the effect of impacts on these structures. These impacts are mea-
sured through force and pressure sensors. The impacts result in non-stationary elements in the recordings.
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Examples of recordings of impacts are shown in Section F.1.3. These signals are subject to a lot of noise. Due to
their non-stationary nature, it is expected that filters that apply thresholding in the discrete wavelet domain
would perform better than filters in the time or frequency domain.

2.6.1. Research Questions
All in all, it can be concluded that there is a lot of potential for wavelet analysis in the field of coastal engi-
neering. The main research question of this thesis is:

How can wavelet analysis improve time-series analysis and processing

in the field of coastal engineering?

Four research questions have been drafted to answer this question. They concern the application of both
amplitude and phase determined in the continuous wavelet transform, the application of the discrete wavelet
transform in denoising and the added value over the current methods.

1. What improvements are necessary for the (discretised) continuous wavelet transform to improve time-
frequency analysis for time-series in the field of coastal engineering?

2. Does the separation of incident and reflected waves based on wavelet coefficients for N gauges perform
better than the separation based on Fourier coefficients?

3. Which discrete wavelet-based algorithm is best suited to remove noise from coastal engineering sig-
nals?

4. What is the added value of wavelet analysis over current time-series analysis methods in coastal engi-
neering?

The thesis overview in Figure 1.1 has been expanded with these research questions in Figure 2.8. To an-
swer the first two sub-questions, the next chapter focusses on the continuous wavelet transform. In Chapter 4
different wavelet-based noise filter algorithms are compared. The added value of both continuous and dis-
crete wavelet transform is discussed for some coastal engineering time-series in Chapter 5. The conclusions
and the answer to the main research question are presented in Chapter 6.

Figure 2.8: The schematic overview of the contents of this thesis expanded with the four research questions.
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Continuous Wavelet Coefficients

This chapter focusses on applications of the continuous wavelet coefficients, computed using the the dis-
cretised continuous wavelet transform, DCWT, see equation 2.22. As explained in the last chapter, these
coefficients are used in time-frequency analysis and to separate waves. In this chapter the wavelet coeffi-
cients based methods are compared to the Fourier coefficients based methods. First, the most used and
freely available protocol to determine the DCWT of a signal by Torrence and Compo [55, 56] is presented.
Their algorithm is the basis for over 5800 scientific publications (Scopus, 9 May 2017), among which some of
Deltares [15, 16]. This algorithm is expanded to allow better analysis of time-series, with special interest in
challenges in coastal engineering time-series (Section 3.1). This section is followed by a section with an im-
portant coastal engineering application of the continuous wavelet coefficients: the separation of 2D waves.
The errors of this algorithm can be analysed using both traditional and wavelet-based measures. The added
value of these expansions and improvements will be discussed in Chapter 5.

To calculate the coefficient via the DCWT (2.22) it is most efficient to utilise the convolution property
(6). Torrence and Compo [55] have proposed a protocol around the algorithm to determine the reliability of
the coefficients as well. The protocol is given below. To the reader unknown terms are discussed after the
protocol. Furthermore, expansions and improvements are discussed per step as well.

1. Apply signal extension, by padding zeros, if necessary, this results in the signal x.

2. Compute the Fourier transform X =F{x} using the FFT.

3. Choose a wavelet function ψ (with Ψ=F{ψ}) and a set of scales
(

A = {
a1, . . . , aNA

})
to analyse.

4. For each scale, construct the normalised wavelet function using equation 2.23.

5. Find the wavelet transform at all scales a j using the inverse FFT (2.24).

6. Determine the cone of influence and the Fourier wavelength at that scale. The cone of influence shows
which coefficients are effected because the wavelet crosses the edge of the signal.

7. Remove any padding and contour plot the wavelet power spectrum.

8. Determine the confidence contour of the scalogram. Plot this contour and the cone of influence on top
of the scalogram.

3.1. Expansion
Some steps of the presented protocol can be expanded to improve analysis of the DCWT results, specifically
for time-series from the field of coastal engineering. These expansions of the original protocol are discussed
in this section. The computational resources are discussed later, in Section 5.3.

1. Extending the discrete signal over its boundaries is has two reasons. The first one is the circularity
assumption made in the convolution through the FFT. The convolution (5) is an infinite sum. The
signal is not infinite because of its discrete nature. In the circular convolution (8) the signal is assumed
to be periodic. This will lead to edge effects in the wavelet coefficients.

Furthermore, the FFT algorithm is most effective for signals of length 2k , k ∈ N. If signal extension is
applied, it is best to pad a signal with a length 2k−1 < L ≤ 2k to a length of 2k+1 instead of 2k (k ∈N). In
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Section 3.1.3 different extension methods are added to the just one method discussed by Torrence and
Compo [55], zero padding.

2. The computation of the Fourier transform of a function in general is not hard, but when data points
are missing, it is impossible to compute the Fourier transform. By adding dummy values at the missing
data points, the effects on the spectrum are hard to predict. Missing data points is a frequent defect
in coastal engineering time-series. In Section 3.1.4 a solution is proposed, together with two methods
to access the reliability of the calculated wavelet coefficients. For cyclic time-series there will not be a
cone of influence and extending is therefore not needed.

3. The choice of wavelet and set of scales influences one’s analysis. Different types of continuous wavelets
are already addressed in Section 2.3.3. For long signals or a large set of scales, the number of wavelet
coefficients can become very large. Some considerations regarding these problems are discussed in
Section 3.1.1 and 3.1.2.

5. Whether the FFT algorithm is still the best way to go for signals with missing data points is addressed
in Section 3.1.4.

6. The cone of influence is based on the e-folding time of the wavelet Section 3.1.3. In Section 3.1.4 other
reliability measures are addressed, that do not only address the edges of the signal, but also the missing
data points.

8. The significance contour is not addressed in this research. The significance can be determined analyt-
ically or by applying Monte Carlo methods [55].

3.1.1. Choice of Wavelet, Number of Scales
The wavelets generally used in time-frequency analysis are shown in Figure 2.3. Choosing a wavelet depends
on the objective of the analysis: edge detection, time-frequency analysis or phase analysis. Then there is the
choice for a complex of real wavelet. Imagine a simple oscillation (a sine) and a simple wavelet. When a
real wavelet and an oscillation are out of phase, the wavelet coefficient becomes very small, due to the low
correlation. A complex wavelet consists of a real and a complex part. This complex part is phase shifted with
respect to the real part of the complex wavelet, which allows it to express both the positive and negative parts
of an oscillation in one coefficient, i.e. if the real part has a low correlation, the imaginary part has a high
correlation and vice versa.

The continuous wavelets often possess a parameter which can be tweaked. This parameter influences
both the centre frequency fψ and the bandwidth of the wavelet at scale 1, not its time support. Tweaking
this parameter changes the time-frequency distribution of the wavelet. Often the higher this parameter, the
smaller its bandwidth and thus the larger its time support for a specific equivalent wavelength. The parame-
ters for different wavelets are presented in Section C.2.

Because the bandwidth of the wavelet increases as the scale increases, often a logarithmic scaling is cho-
sen for the scales. The inverse CWT operation as defined in (2.25), assumes the use of a logarithmic scaling.
This bandwidth on his term influences the number of scales that needed to cover the whole frequency do-
main. It is safe to assume that most wavelets cover the domain if a choice of 10 scales per octave (doubling of
scales) is used [32].

3.1.2. Down-sampling
For long signals the discrete wavelet transform might become too large to store in memory, or takes much
time to compute the continuous wavelet coefficients. When there is only an interest in relatively low frequen-
cies, down-sampling can be applied to speed up the process. Down-sampling is the process of reducing the
sampling rate of a time-series. A down-sampled time-series contains fewer data points, which reduces the
CWT computation time and the memory needed to store the result. Down-sampling is a sampling rate con-
version process [46]. The focus here lies on the sampling rate conversion in the digital domain and how this
effects the CWT coefficients. Consider a signal x[n] with a sampling frequency fx = 1/∆tx which is down-
sampled to signal y[m] with fx > fy = 1/∆ty . Only rational sampling rate conversion will be addressed, i.e.
fx / fy ∈Q. First, an integer conversion factor is addressed, followed by a more general rational factor.

Down-sampling with an integer factor d , can be done by simply selecting every d th value of the time-
series. This is known as decimating and will lead to major aliasing effects1. To avoid aliasing, the bandwidth

1For more information about aliasing see Section A.1
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of the signal x[n] has to be reduced to fmax = fx /d . The signal can be decimated after applying the low pass
filter h[n], to cut off the high frequencies inducing the aliasing, i.e.

y[m] =
∞∑

k=0
h[k]x[md −k]. (3.1)

This combination of filtering and decimating is called down-sampling and it results in a time-variant system:
if x[n] produces y[m], then x[n −n0] does only result in y[n −n0] if n0 is a multiple of d . For the spectra of
the original signal x[n] (X [k]) and the resulting spectrum of y[n] (Y [k]) the following relationship holds:

Y [k] = 1

d
X

[
k

d

]
.

From this relationship can be concluded that the resulting spectrum is a scaled variant of the original spec-
trum. Note that this scaling does not preserve energy. The energy in the time-series is reduced with a factor
1/
p

d . From the definition of energy given in equation 2.27 it is directly clear why there is less energy after
than before: the number of data points decreases, which results in less energy.

When a signals sampling rate is converted by a rational factor i /d , it first has to be interpolated by a factor
i , and then decimated by a factor d . The interpolation process by a natural factor i converts the signal x[n]
to the signal w[m], where fw = i fx . This is obtained by first adding i −1 zeros between successive values of
x[n] to obtain v[m]:

v[m] =
{

x[m/i ] m ∈ {iℓ | ℓ ∈N},
0 elsewhere.

.

The spectrum of the new signal v[m] has the same shape as the spectrum of x[n]: V [ω] = X [ωi ]. The spec-
trum is an i -fold periodic repetition of the original spectrum. These repetitions, however, are non-unique.
Thus the signal v[m] has to be passed through a low pass filter g [m]. This filter ideally cuts off all repetitions
and scales the result by a factor i so that w[m] = x[m/i ] for m ∈ {iℓ | ℓ ∈N}. This results in the interpolation

w[m] =
∞∑

k=−∞
g [m −k]v[k] =

∞∑
k=−∞

g [m −ki ]x[k].

When the sampling rate by a factor i /d is considered, first the signal has to be interpolated by a factor
i , because this keeps the original spectral shape in tact. Then the signal can be decimated to find the signal
with a new sampling rate of fy = fx i /d . The interpolation term already has a normalization term, thus the
energy of the signal is conserved. However, the decimation process does not. Therefore a signal that has been
resampled with a rate of i /d , will have an energy reduction of 1/

p
d as well. For other non-rational sampling

rate conversions, different techniques can be used; those are not within the scope of this study.
Down-sampling affects the frequency content of the signal by filtering high-frequencies and preserving

low frequencies. This operation, therefore, does not affect the mean of the signal, but the standard deviation
of the signal will decay as the new sampling frequency increases. The discrete wavelet coefficients of a down-
sampled signal have to be scaled with a factor

p
d to ensure that the coefficients are equal to the original

coefficients. This can be shown by substituting the original signal spectrum X [ω] for the down-sampled
signals spectrum Y [ω] into equation 2.24. For ℓ= n/d holds:

W (ℓ, a) =F−1 {
Y (ωk )Ψ∗(aωk )

}=F−1
{p

d
1

d
X

(ωk

d

)
Ψ∗(aωk )

}
. (3.2)

The spectrum
1p
d

X
(ωk

d

)
is a scaled version of the original spectrum X (ω), with the energy preserved. Note

that this is not the spectrum belonging to the down-sampled signal, but it is only used to not change the
wavelet coefficients due to down-sampling. The smaller number of samples in the time-series due to down-
sampling will result in a smaller number of samples in the wavelet approximation. In Figure 3.1 two different
signals are compared.

Demonstration 3.1 (Down-sampling) In Figure 3.1a the wavelet power spectrum of a random sig-
nal is presented. The wavelet power spectrum of the down-sampled signal multiplied by a factorp

50 is found in Figure 3.1b. From the signal at the top it is clear that the down-sampling has in-
fluenced a lot of high frequencies. These are therefore not shown; both wavelet power spectra are
based on the same set of scales.

In Figure 3.1c and 3.1d, the argument of the wavelet coefficient for both signals is given. Again
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the same pattern arises as before, however, note the arguments of the down-sampled signal is much
coarser. This is especially clear for small periods. This is due to the decrease in resolution. The sig-
nal has 9500 data points and the down-sampled signal has less than 200. This leads to a resolution
difference visible in the figures.

(a) |W (a,b)|2 without down-sampling (b) |W (a,b)|2, down-sampling factor 50

(c) arg(W (a,b)) without down-sampling (d) arg(W (a,b)), down-sampling factor 50

Figure 3.1: A random generated noise signal is down-sampled with a factor 50. Boundaries are padded with zeros.

3.1.3. Wavelet Coefficients near the Boundaries
As explained in Section 3.1, the signal is extended to prevent edge effect from distorting the time-frequency
analysis near the edges of the signal. At low scales, wavelets have a small support in the time domain, so
the number of affected wavelet coefficients will be small. The higher the scale, the larger the support of the
wavelet in the time domain and the more wavelet coefficients are affected.

Cone of Influence
The cone of influence (COI) is the name of a line that shows which wavelet coefficients are and are not in-
fluenced by the boundaries, in theory. Outside the cone, the coefficients are expected to be influenced by
the boundary. In general holds: the closer to the boundary, the more affected a coefficient will be. This cone
is based the e-folding time τa of the used wavelet [55]. This is the time in which the wavelet power of a
Delta Dirac peak at the edge of a signal has decreased by a factor e−2. This time is proportional to the used
scale: the higher the scale, the larger the e-folding time. The cone of influence is a guideline and not a strict
border. There will still be coefficients affected by the signal extension within the cone. Strictly speaking, all
coefficients within the compact support of the wavelet are influenced by the signal extension. This compact
support is larger than the e-folding time. In the following paragraphs, the cone will be expanded, and the
effect of missing data points on the wavelet coefficients will be added to the cone of influence.

Signal Extension
The reliability of wavelet coefficients near the edges of the signal depends on the choice of signal extension.
So what are the options to pad the time-series and which ones are the best? In DWT practice a number
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of paddings are proposed and implemented [54]. Some of these have also been implemented in the CWT
algorithm. After itemising these different extensions, including some advantages and disadvantages, some
recommendation for different kinds of signals are presented in Figure 3.2.

• No padding:
x0 x1 · · · xN−2 xN−1

No padding is the most obvious and easy choice to make. As mentioned before, some FFT algorithms
perform optimal when a signal of length ℓoptimal ∈ {2k | k ∈ N} is used. So when padding has to be

applied, it makes sense to lengthen the signal up to a length in {2k | k ∈ N}. For the signals we use,
the time efficiency is negligible. The FFT algorithm has the circular convolution property [11]; when a
convolution is computed through the Fourier transform, the signal is treated as a periodic signal. This
could lead to unexpected behaviour at the beginning and end of the signal. When padding is applied,
it is convenient to make sure that the signal is not extended with just a few data points, but with many,
that way the circularity will have little influence on the result. Of course, padding is superfluous when
handling a cyclic signal.

• Zero padding:
· · · 0 0 x0 x1 · · · xN−2 xN−1 0 0 · · ·

This type of padding is never advised. At first glance the zeros do not contribute anything to the coef-
ficients near the edge. This is true, however, this can create large jumps in the signal, which leads to
unwanted high and low scale behaviour near the edges of the signal.

• Constant padding: repeating the values x0 and xN−1 at the edges of the signal

· · · x0 x0 x0 x1 · · · xN−2 xN−1 xN−1 xN−1 · · ·

This type of padding will not lead to high coefficients at low scales, but might lead to high coefficients
in the high scales. Advised to use when |xN−1 −x0| is relatively large.

• Symmetric padding: the series is mirrored in the edges

· · · x1 x0 x0 x1 · · · xN−2 xN−1 xN−1 xN−2 · · ·

• Reflect padding: the series is mirrored in the points x0 and xN−1

· · · x2 x1 x0 x1 · · · xN−2 xN−1 xN−2 xN−3 · · ·

• Periodic padding: the signal is assumed periodic

· · · xN−2 xN−1 x0 x1 · · · xN−2 xN−1 x0 x1 · · ·

Periodic padding would lead to almost the same scalogram as when no padding is applied. The padded
signal is longer than the original signal, which allows higher scale wavelets (with a long time support)
in the analysis. For high scales, the support of the wavelet can be important to improve the analysis.

Symmetric, reflect and periodic padding all are best applicable to periodic signals. The difference
between symmetric or reflect padding is the repetition of the value at the edge of the signal. This
will mostly affect the low scale coefficient behaviour. When |xN−1 − x0| is relatively large, reflect and
symmetric padding are chosen above periodic padding. E.g. periodic padding will then lead to high
coefficients in the low scales.

• Linear padding: the end points of the signal are connected linearly:
(∆= xN−1 −x0, h is the number of data points to add)

· · ·
(

x0 −2
∆

h

) (
x0 − ∆

h

)
x0 x1 · · · xN−2 xN−1

(
xN−1 + ∆

h

) (
xN−1 +2

∆

h

)
· · ·

This type of padding may result in high low scale coefficients, because of the abrupt change of deriva-
tive at the edges. For a relatively large value of ∆ also high scale coefficients will increase.
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• Linear continuation: the ends are extended using the first derivatives in the ends (d1 = x0 − x1, dN =
xN−1 −xN−2)

· · · (x0 −2d1) (x0 −d1) x0 x1 · · · xN−2 xN−1 (xN−1 +dN ) (xN−1 +2dN ) · · ·

This type of padding is not advised to use. The derivative based on two neighbouring points can be
very large due to the erratic behaviour of (noisy) measurements.

• Smooth padding: instead of using the first order derivative (linear continuation), higher order deriva-
tives are used.

• Smooth padding: in stead of using the derivative based on the edge values, the derivative is based on
the difference over the whole signal, i.e. x0 − xN−1. For signals with a trend (i.e. non-stationary) this
might be very effective.

• Mean value padding: x̄ = 1

N

N−1∑
i=0

xi

· · · x̄ x̄ x0 x1 · · · xN−2 xN−1 x̄ x̄ · · ·

This type of padding has the same effect as zero-padding on a normalised signal. It might lead to some
spurious low scale coefficients, but for the high scales, it will be an effective estimator of the signal. Do
not use when the signal has a trend.

• Noise padding: add noise to both ends, this could be from a Gaussian distribution or a random walk.

· · · N(x̄,var) N(x̄,var) x0 x1 · · · xN−2 xN−1 N(x̄,var) N(x̄,var) · · ·

On high scale coefficients the effects will be more or less the same as for the mean value padding. The
noisy behaviour will result a unpredictable effect at all scales and is not implemented therefore.

Figure 3.2: Different signals and the preferred signal extension method. For more explanation of
the pro’s and con’s of a method, consult the more elaborate overview above.

MASTER THESIS T. DE ROOIJ



3.1. EXPANSION 31

3.1.4. Missing Data Points
Time-series in coastal engineering often have some missing data points. These defects are caused by many
different causes, for instance, an equipment-damaging storm or power failure at sea. When the equipment
has been restarted, the measurements are often continued. When applying Fourier analysis, it is only valid
to asses the spectrum when the signal is stationary. Missing data points cannot be part of a stationary sig-
nal. When these missing data points are replaced by values to apply the Fourier Transform, the signal stays
non-stationary. The spectrum, therefore, does not reflect the frequencies of uninterrupted signal. A set of
consecutive missing data points is called a gap. Often, a gap is filled with NaN’s2. When there is a NaN in a
time-series, many computations return NaN’s as well, resulting in a large disturbance in the analysis. There-
fore these have to be addressed; there are two relatively simple ways:

• Implement the convolution form of the DCWT algorithm. When a NaN appears in the computation,
the coefficient will become a NaN as well, which will lead to a scalogram with blank spots. However,
the most efficient convolution algorithms will result in all NaN coefficients, even if the NaN is not in
the time support of the wavelet. Moreover, blank spots do not have any indication of reliability or
whatsoever. It is just a yes or no: a NaN has or has not been part of the computation.

• When using the FFT form of the DCWT algorithm, there cannot be any NaN’s in the signal, because this
will lead to a full NaN FFT. To use this implementation of the algorithm, missing data points have to be
filled in. This will lead to a full scalogram, however, the cone of influence has to be adapted in such a
way that it shows the influence of not only the boundary but also of the NaN’s.

The second option has been implemented and tested with coastal engineering data. There are different ways
to fill the ’blank’ spaces. We will consider two cases; the NaN values are depicted with a dash (−):

• NaN(’s) at the edge of the signal:
x = [− ·· · − xk xk+1 · · · xN−1

]
or x = [

x0 x1 · · · xk − ·· · −]
.

These are best addressed by the different signal extension modes discussed before; i.e. omit the missing
data points near the edges before applying signal extension.

• NaN(’s) not at the edge of the signal: x = [
x0 · · · xk − ·· · − xℓ · · · xN−1

]
, which cannot be

addressed by the different signal extension modes.

Of course multiple gaps can occur in a signal. Again there are many ways to replace the missing data points:

• Zero filling: replace the missing values by 0’s.

• Linear filling: fill the gap with a linear interpolation between the values adjacent to the gap.

• Noise filling: replace the missing values with random noise.

• Mean value filling: replace the missing values by the mean value of the time-series.

• Median filling: replace the missing values by the median of the time-series.

• Higher order interpolation methods can be used to fill values within gaps. However, for these methods
to work, there have to be enough values at the edges of the gap. This cannot be assured for field data,
where effects like

[· · · − xi − ·· ·] can occur.

Note that the Fourier transform can be applied to time-series where the missing data points are filled as
well. The filled data points are non-stationary signal elements, which cause unwanted effects in the result-
ing spectrum. For a signal with constant frequency content over the whole time, a decrease in power over
the whole spectrum is expected when some data points are eliminated, plus some effects of the jumps at the
edges of the filling. The effect on a signal with a changing frequency content is addressed in Demonstra-
tion 3.2.

Demonstration 3.2 (Effect of missing data points on spectrum) In Figure 3.3a two signals are plot-
ted. The original signal consists of 100 random real waves plus a non-linear element: a waveform
with a linearly increasing frequency from 0 to 500 Hz over the whole duration. In the other signal,
10% of the data points are swapped for zeros. If the spectra are compared, we note that for many
frequencies the energy indeed is approximately 10% less than the energy of the original signal. How-
ever, in the band 200 - 350 Hz this is not true. The non-linear element loses more power than the
waves and thus the spectrum is affected. This effect cannot be predicted when the underlying signal

2NaN is short for ’not any number’
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element is unknown.

(a) A non-stationary signal and 10% of its data points
missing, filled with zeros.

(b) The variance density spectra of both signals.

Figure 3.3: A signal, its power spectral density and the effect if 10% of the data points are missing.

Expanding the Cone of Influence
In the case of the wavelet power spectrum, some of the coefficients near the gap will be affected, but not all
coefficients as is the case for the spectrum. This is due to the finite support of the wavelet. Some coefficients,
such as low scale, with a time support within the gap, will be affected severely. The same wavelet with a time
support completely outside the gap will not be affected at all. So, a lot of coefficients are affected a bit, and
therefore an expression for the degree of affectedness will be derived. If the edges of the gaps are interpreted
as beginnings and ends of signals, the cone of influence can be divided into multiple cones of influence.

Demonstration 3.3 (Cones of influence) For the coming demonstrations, gaps are made into a sig-
nal with zeros. This signal is shown in Figure 3.4a. It contains only zeros and some gaps. The gaps
from left to right have a length of 100, 10, 50, 217, 1 data point(s). The sampling frequency of this
signal is 1 Hz.

In that same Figure, the expansion based on the cone of influence is shown. Expected is that
the missing of one data point (last gap) should influence a little number of wavelet coefficients.
However, in the figure is shown that the effect of one missing data point is enormous. Therefore, a
different solution has to be found.

Zones of Influence
Consider a wavelet at scale a. The cone of influence is based on the fact that a certain part of the wavelet
extends over the border, based on the e-folding time. Assume this part to be q . If one data point is missing
from the signal, the wavelet at scale a is affected less than this part q , however, by the expansion of the cone
of influence, it is ruled out. Therefore a better measure can be developed. This measure is expressed in the
fraction g , determined per translation n and scale a:

gan = number of known data points in time-series for t ∈ [n −τa ·a,n +τa ·a]

total number of data points in t ∈ [n −τa ·a,n +τa ·a]
. (3.3)

If this fraction g is 1, there are no missing data points in the ’significant’ time support of the wavelet. If this
fraction is 0, all data points within this time support are missing. The values that are padded at the boundaries
are considered as NaNs as well. The example presented in Demonstration 3.3 is expanded using this method
and presented in Demonstration 3.4. Note that the shapes are not cones anymore and therefore the term
’Zones of Influence’ will be used from now on (abbreviated to ZOI).
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Demonstration 3.4 (Zones of influence 1.0) In Figure 3.4b the contours based on a value of g = 0.9
are shown. If the value of g is equal to 1, the cones of influence from Figure 3.4a are retrieved. As
the period increases, the time support of the influence increases until there is a horizontal line and
the influence stops. Even a non-connected area is created at about (5000, 1000). The horizontal
line is the result of the increasing time support of the wavelet. The fraction g crosses the limit
(0.9 in this case) from one to the other scale. For the non-connected area holds the same, where
the combination of the two gaps left and right from the t = 5000 seconds influence the number
of known data points in g (3.3). The solid horizontal lines are remarkable and do not seem very
natural. A different path, therefore, is explored in the next section.

3.1.5. Wavelet Energy Distribution
This approach does not address the place of the gap with respect to the translation of the wavelet. Wavelets
have finite support, their amplitude decays to zero and most have the characteristic |ψ(0)| ≥ |ψ(t )| ∀t . The
fraction g presented in (3.3) does not take these characteristics in account. So a better approximation can
be used to determine the effect of missing data points. Therefore the wavelets energy is employed, defined
in equation 2.27. For the discrete time-series x[ j ] of length N with sampling interval ∆t and the daughter
wavelet ψan =ψ(a,n∆t ) the fraction gan is defined as

gan =

N∑
j=0

xNaN[ j ] · ∣∣ψan[ j ]
∣∣2

N∑
j=0

∣∣ψan[ j ]
∣∣2

, with xNaN[ j ] =
{

0 if x[ j ] is a NaN,
1 elsewhere

. (3.4)

This fraction is the amount of energy of the wavelet that is correlated with non-missing data-points divided
by the total energy of the wavelet within the discrete domain of the signal.

The convolution operation can be used to efficiently compute this fraction at one scale for all translations.
When the compact support of the wavelet is completely within a gap, the resulting fraction will be 0. When
it is completely outside a gap, the result is 1. Other values are within this range. The value represents the
relative amount of energy of the wavelet used in computing the coefficient. To take the boundary effects into
account, the signal xNaN[ j ] is padded with zeros on both sides. Which results in values of 0.5 at the edges
of the signal, because half the wavelet is within the support of the discrete signal x[ j ] and half the wavelet
is outside. The zones of influence derived from this wavelet energy distribution are expected to be more of
a droplet shape because a general continuous wavelets energy is highest in the centre and decays fast. The
example from Demonstration 3.3 is discussed in Demonstration 3.5. In Demonstration 3.6 the accuracy of
the determined values are compared to the real change of the coefficients.

Demonstration 3.5 (Zones of influence 2.0) In Figure 3.4c and 3.4d two contours based on the
wavelet energy distribution are presented. The first is based on a significance value of 0.9, the sec-
ond of 0.95. By comparing the first one with the first attempt from Figure 3.4b, some clear improve-
ments are visible. The horizontal stops are not there, and more droplet like shapes are presented.
The significance of 0.95 (Figure 3.4d) clearly decreased the number of reliable coefficients. How-
ever, compared to the expansion of the cone of influence in Figure 3.4a, below the short gaps there
is much improvement.

Demonstration 3.6 (Accuracy of the zones) The most important question regarding the zones of
influence is whether the estimate of this influence is correct. I.e. consider a zone of influence of
95%: the coefficients within this zone should be disturbed at most 5%, but are they?

To find out, an artificial signal is created. The signal consists of some sines, cosines and a small
noise contribution. First the clean wavelet power spectrum (WPS) is created, denoted by Ssignal

(Figure 3.5a). The signal extension method used is the zero padding. Then a number of NaN’s are
introduced, which results in the WPS SNaN in Figure 3.5b. This WPS is extended using the smooth
signal extension method, based on the first derivative at the edge of the signal.

First have a look at the computed significance levels of the zones of influence of the signal with
gaps in Figure 3.5c. As expected the influence of the gaps decreases as the scales increase (as do
the periods). The WPS of the disturbed signal SNaN shows that the gaps and the different signal
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extension method have major effects on the wavelet coefficients. At the borders, the coefficients
increase, due to the extreme boundary condition. The coefficients in the gaps have not uniformly
increased or decreased with respect to the coefficients in Figure 3.5a. We note that the white line,
the 0.9999 significance border contains most of the changes. Now we compute the relative change
of the WPSs: |Ssignal − SNaN|/|Ssignal|. To compare this to the computed zones of influence in Fig-
ure 3.5c, the value 1−|Ssignal −SNaN|/|Ssignal| is shown in Figure 3.5d. This way the value 1 denotes
a 100% match between the original and adjusted coefficient and the 0 a complete mismatch. The
predicted zones of influence are close to the real zones of influence but do differ at some points.

The influence can be split into contributions of the boundary and the gap. First, consider the
contribution of the boundary. Here the most striking feature is that the wavelet coefficient is af-
fected severely by the signal extension method, although a small part of the wavelet is expected to
be determined by the signal extension. The effect of the gaps is a lot closer to the computed zones
of influence, however, still there is some unwanted behaviour. In the low scale range, the highly
disturbed wavelet coefficients are well predicted. For the larger scales, there are many spots where
the difference is much larger than expected. For instance around the period of 512 seconds, under
the second gap at 5800 seconds, large differences are present. Compare these spots in the WPSs in
Figure 3.5a and 3.5b and note that these spots occur mostly where the wavelet coefficients are rela-
tively low. The absolute difference (figure not included) shows that the absolute change of the high
and low valued coefficients around this point is very close. Therefore the relative change is much
worse for coefficients with a small modulus.

At the lowest scales an interesting effect arises: wavelet coefficients of the lowest scales at the
edges of the signal and the gaps, belonging to wavelets that theoretically should not be influenced
by the gaps are inside the computed 0.9999 zone of influence in Figure 3.5c. In Figure 3.5d this
affection of low scale coefficients can be noted, although it is hard to see. These figures are created
using the Morlet wavelet, but this effect also shows for other wavelets. This effect is independent
of the gaps in the signal, or with the signal extension method: it is the result of the discretisation
of the low-scale wavelets Fourier distribution used in the Torrence and Compo code [56]. At ω =
0 a small value is assigned, which leads to the addition of a constant in the time domain. This
results in a contribution of time-series values outside the theoretical low-scale wavelets support to
its coefficient.

The definition of the cone of influence is based on the effect of a discontinuity at the edge of the signal [55],
and therefore cannot be applied to gaps. The wavelets energy distribution has been used to quantify the effect
of gaps and the boundaries of the signal onto the resulting wavelet power spectrum. In Demonstration 3.6
the real disturbance and the disturbance based on the wavelets energy distribution have been compared.
Two important things are shown. Firstly, the old cone and new zones of influence have to be interpreted with
great care, they do give a general insight into changes of the coefficients by gaps and the boundaries, but they
do not predict the exact influence. Moreover, secondly, the choice of signal extension method has a large
influence on the wavelet power spectrum. It is important to choose a suitable signal extension method. From
these effects of the extensions, we may conclude that better filling methods may reduce the influence of the
gaps on the WPS enormously. When the filling of the gap is close to the original signal, the theoretical zones of
influence are a much better approximation of the real influence. For instance, when a single NaN is replaced
by an average of the two neighbouring values, it is very hard to spot the differences between the original and
the signal with gaps.

Better estimates of wavelet coefficients can be reached by filling the data points using data at other mo-
ments, or data from other measurement points (in combination with a model). Fourier analysis can then also
be applied again. However, there will not be a cone of influence to show the analyst which coefficients are
expected to be affected by the filling because all coefficients are.

Finally, the minimum equivalent wavelet period of 2∆t/λψ as advised by Torrence and Compo [55] is not
sufficient. The low scale coefficients are affected by the signal values outside the theoretical time support
of the wavelet. This is due to discretisation effects and can, therefore, be worse for some wavelets than for
others. By using a minimum scale of 3∆t/λψ the problem is solved for all wavelets currently available in the
package.
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(a) On top: zero signal filled with gaps, below: multiple cones of influence: the beginning and end of gaps are
interpreted as respectively the end and beginning of a signal.

(b) Zones of influence based on the fraction g from (3.3). Solid contour shows g = 0.9.

(c) Zones of influence based on the wavelets energy distribution (3.4). Dashed contour shows significance 0.9
based on wavelet energy distribution.

(d) Zones of influence based on the wavelets energy distribution (3.4). Dashed contour shows significance 0.95
based on wavelet energy distribution.

Figure 3.4: From cone of influence to zones of influence, in three steps. All figures are based on the Morlet
6 wavelet. The dotted line in (b)-(d) shows the cone of influence of the boundaries based on the
e-folding time.
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(a) The WPS of the signal without gaps Ssignal.
Zones of influence given by lines, signifi-
cance of lines from bottom to top: 0.6, 0.8,
0.9, 0.95, 0.98, 0.9999 (white line)

(b) The WPS of the disturbed signal SNaN, with the signif-
icance lines from (b). Signal extension mode ’smooth’
results in very high coefficients at the boundary. This
is therefore an extreme example. Using a more suit-
able signal extension method results in boundary val-
ues close to those in (a).

(c) The expected zones of influence based on two large
gaps and one single NaN. Colors represent the relative
amount of the wavelets energy used in computation of
the coefficient. The black lines correspond with the
colorbar, the white line represents the 0.9999 signifi-
cance value.

dummy

(d) The computed influence based on wavelet
power presented in (a) and (c). The val-
ues represents 1−|SNaN−Ssignal|/|Ssignal|.
White line is same as in (b).

Figure 3.5: The zones of influence: comparison of computed zones in (b) and real influence in (d).
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3.2. Separation of Incident and Reflected Waves (2D)
In Section 2.4.3 is explained why the separation of incident and reflected waves is of special interest in the field
of coastal engineering. A much-used solution to this problem was published by Mansard and Funke [38], who
recover the separated waves in the Fourier domain based on three points of measurement. This method was
generalised to N points by Zelt and Skjelbreia [63]. Both these methods use amplitude and phase information
in Fourier coefficients to separate these waves. Throughout the rest of this chapter, the method of Zelt and
Skjelbreia [63] will be referred to, because for two or three gauges in the system, their solution is equal to the
solution as published by respectively Goda and Suzuki [21] and Mansard and Funke [38]. This section starts
with the general theory about how to separate incident from reflected waves, based on the analytic solution
by Ma et al. [34]. They proposed a wavelet coefficient based method using two gauges. An expansion of
this method will be presented in Section 3.2.3, followed by all kinds of factors influencing the results of the
separation.

Let us first start with the theory. A general experimental set-up in which incident and reflected waves are
to be separated is shown in Figure 3.6. On the left, there is a wave maker which creates waves. These waves
propagate through the flume and bump onto the construction at the right end of the flume. For simplicity
assume that they are being (partially) reflected or absorbed at this point. So there are waves travelling from left
to right, and from right to left, i.e. in one dimension. Let us assume that the mean water level is h meters above
the floor. If this mean water level changes (over time or over space) this problem becomes a two dimensional
problem.

Figure 3.6: Measurement set-up in a flume for separating incident and reflected waves, two gauges are depicted [34, fig.1].

Throughout the flume wave gauges are placed, measuring the water level that is constantly changing due
to the waves travelling back and forth. In the sketch in Figure 3.6 two gauges are depicted, later a scenario
with more than two gauges will be addressed. The waves created by the wave maker are assumed to be a linear
combination of harmonics. A wave gauge at location x will therefore also measure a linear combination of
harmonics, i.e. the wave gauges measures a water level deviation of

η(x, t ) =
∞∑

ℓ=−∞
aℓ cos(ωℓt +θℓ). (3.5)

All these waves have an individual amplitude aℓ, frequency ωℓ and phase θℓ. The measurement is divided
into its different harmonics (ωℓ), for which the incident and reflected waves can be separated [34, 63]. The
solutions per harmonic can be summed to recover the total incident and reflected wave.

So, from now on consider one single wave (with a fixed frequencyω) propagating from left to right through
the channel. This wave is called the incident wave:

ηincident(t ) =W I cosωt +θI . (3.6a)

This is the wave created by the wave maker at the left of the channel. This point, i.e. x = 0, will be the point of
reference for now. This wave has amplitude W I , radial frequency ω and phase θI . At the end of the channel,
the wave is being partially reflected or absorbed. The reflected wave as observed from the reference point
(wave maker) is described by

ηreflected(t ) =W R cos(ωt +θR ). (3.6b)

Typically W R ≤W I holds for the amplitude of the reflected wave. However, this is not a necessary condition.
The phase of the reflected wave, θR , depends among others on the length of the channel, the original phase
θI and the reflection properties of the construction.
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Now, assume there are two gauges in the channel, one on a distance of x1 from the wave maker and the
second one at a distance x2 > x1. Define x2 − x1 = ∆x, as depicted in Figure 3.6. The surface elevation as
recorded at point x1 is measured as one wave with amplitude a1 and phase θ1. However, it is the sum of the
incident and reflected wave at that point:

η(x1, t ) = ξ1 cos(ωt +θ1) (3.7a)

=W I cos(ωt −kx1 +θI )+W R cos(ωt +kx1 +θR ).

The incident and reflected wave were defined at the reference point, so at the point x1 a phase shift is intro-
duced with respect to that point x = 0. This phase shift is expressed in −kx1, for the reflected wave it is +kx1

because it is travelling in the other direction. This phase shift depends on the wave number k, a measure of
the number of oscillations per distance for waves of different frequencies. More theory about this number is
presented in Section D.1. It is important to know that the wave number depends on the depth of the water
the wave is travelling in (d), the frequency of the wave (ω) and the gravitational acceleration (g ).At point x2,
the measured water level is thus described by

η(x2, t ) = ξ2 cos(ωt +θ2)

=W I cos(ωt −kx2 +θI )+W R cos(ωt +kx2 +θR ) (3.7b)

=W I cos(ωt −kx1 −k∆x +θI )+W R cos(ωt +kx1 +k∆x +θR ).

Reconstructing the incident and reflected waves through the equations (3.7) directly is hard. Therefore
their analytic forms are being used. The real part of these analytic wave descriptions are the waves described
by (3.7):

ζ(x1, t ) = ξ1e i (ωt+θ1)

=W I e i (ωt−kx1+θI ) + W R e i (ωt+kx1+θR ), (3.8a)

ζ(x2, t ) = ξ2e i (ωt+θ2)

=W I e i (ωt−kx1−k∆x+θI ) + W R e i (ωt+kx2+k∆x+θR ) (3.8b)

=W I e i (ωt−kx1+θI )e−i k∆x + W R e i (ωt+kx2+θR )e i k∆x .

The incident and reflected analytic waves can be reconstructed from these equations through the following
relationship3 [34]:

W I e i (ωt−kx1+θI ) = ζ(x1, t )e i k∆x −ζ(x2, t )

2i sin(k∆x)
, (3.9a)

W R e i (ωt−kx1+θR ) = ζ(x1, t )e−i k∆x −ζ(x2, t )

−2i sin(k∆x)
. (3.9b)

This are two complex equations for two complex amplitudes W I e i (ωt−kx1+θI ) and W R e i (ωt−kx1+θR ). The real
parts of these analytic separated waves result in the separated waves that were present at the gauge. Note
that this is the solution at the distance x1 from the wave maker. These equations can be extended to a sloping
bathymetry and obliquely incident waves [34, 35].

3.2.1. The Coefficients
The analytical expressions of the waves in (3.8) can be based on Fourier or wavelet coefficients. To explain
this, go back to the definition of a discrete representation (2.5) from Chapter 2:

x(t ) = ∑
α∈I

cαeα(t ).

In the case of Fourier and wavelet analysis, the coefficients cα are based on the correlation between the cho-
sen basis functions eα(t ) and the function x(t ). This results in complex coefficients4, which on their term can

3In Section D.2 the derivation of this result is given.
4If complex wavelets are used in the decomposition.
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be used as the analytic signal, i.e. the analytic form of a measurement at a general location x for the frequency
ω can be represented as

ζ(x, t ) = ξe i (ωt+θ) = ξ︸︷︷︸
|cα|

· e iθ︸︷︷︸
arg(cα)

·e iωt︸︷︷︸
eα(t )

= cαeα(t ).

The equations 3.9 are solved by using the coefficients cα and thus without basis function eα(t ), which is the
term e iωt in (3.9). The time-series of the incident and reflected waves are reconstructed by ’adding’ the basis
functions, i.e. by applying the inverse transformation.

Goda and Suzuki [21] use Fourier coefficients for cα, which is a good match with the given derivation be-
cause in Fourier analysis the basis functions are complex exponentials. Ma et al. [34] uses continuous wavelet
coefficients for the analytic form, where the basis functions eα(t ) consist of scaled and translated versions of
a wavelet ψ(t ). The linear representation (2.5) in both Fourier and continuous wavelet transform results in a
linear representation in respectively frequencies and scales. Using these transforms on a measured waveform
already applies the linear decomposition as expressed in (3.5). Ma et al. [34] use numerical examples, simu-
lations with large numbers of waves in stationary and non-stationary situations, to show that their method is
independent of the length of the channel. They find an average reflection coefficient error of 3.3%. A compa-
rable error is found in the verification presented in Figure D.1.

3.2.2. Dependency of Gauge Distance ∆x and Wave Number k
The largest influence on the correctness of the recovered separate waves is the distance between the gauges.
The reconstruction formulas (3.9a) and (3.9b) both depend on the factor 1/sin(k∆x). Remember that the
wave number k actually depends on the frequency ω and thus scale a (see equation D.1). Figure 3.7 shows the
effect of the distance between the gauges on that factor sin(k∆x). The value of this factor sometimes is zero
or a value very close to zero. Computational errors are caused by values of sin(k∆x) close to 0. These errors
result in the wrong estimation of the separate waves. For values where sin(k∆x) = 0, the solution cannot be
derived at all.

The best solution is to place the gauges in such a way that the factor sin(k∆x) > 0 for all frequencies of
interest. This can, however, be impossible for a large frequency bandwidth. This problem can be solved
by combining measurements from gauges at multiple distances. The Fourier counterpart of this algorithm,
developed by Goda and Suzuki [21], has this same shortcoming. This algorithm has been expanded twice,
once to three gauges by Mansard and Funke [38] and finally to N gauges by Zelt and Skjelbreia [63]. This
expansion is applied to the wavelet coefficients in Section 3.2.3. The other solution would be to carefully
choose the spacing of the scales to avoid these critical points. This option, however, is not explored in this
thesis.

Another important assumption has been made in the derivation process. That assumption is that the
wave number based on the centre frequency of the wavelet at scale a, fc = fψ · a, is representable for all
frequencies in the bandwidth of the wavelet ψa(t ). This is not true, and this assumption cannot be without
side effects. This and a comparison to the method using the Fourier transform by Zelt and Skjelbreia [63] will
be addressed after expanding the method to N gauges.

Figure 3.7: The effect of the placement of the gauges on the factor sin(k∆x). The wave number is
based on the solution of the dispersion equation for a water depth of 1 meter.
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3.2.3. Expanding to N Gauges
As described in the last section, the information of multiple gauges can be used to separate the incident and
reflected wave more accurately over larger bandwidths. This section starts with a mathematical derivation for
a number of N ≥ 2 gauges. This derivation is followed by a verification that shows that the N = 2 case results
in the same equations as derived by Ma et al. [34]. Then the error of the solution is analysed.

So now assume that, instead of two, there are N gauges in the system: at different distances x1 < x j < xN .
Again assume the incident and reflected wave are described by (3.6). Define the distance between gauge m
and n as ∆xmn = xn −xm . Gauge m is used as as reference point, then the analytical form of the wave at scale
a of the wave height measured at gauge j becomes

ζa, j (t ) =W I
a, j e i

(
ωa t−ka xm+θI

a
)
e−i ka∆xm j +W R

a, j e i
(
ωa t+ka xm+θR

a
)
e i ka∆xm j , j = 1, . . . , N . (3.10)

This is a generalisation of the step from (3.8a) to (3.8b). W I
a, j denotes the modulus of the wavelet coefficient of

the incident wave at scale a, W R
a, j idem for the reflected wave. ka is the wave number for the centre frequency

of the wavelet at scale a. First we substitute the analytical representation of the incident and reflected wave
at the reference point m for

W I
a, j e i

(
ωa t−ka xm+θI

a
)
= Z I

a , W R
a, j e i

(
ωa t+ka xm+θR

a
)
= Z R

a .

For N = 2 this system of equations from (3.10) is solved by (3.9), as will be shown later. For larger N , this
system becomes overdetermined. The linear least squares method is applied to solve this. Instead of solving

Z I
a and Z R

a , equations for the estimates, respectively Z̃ I
a and Z̃ R

a , will be solved. Therefore the residual ϵa, j

is defined as the difference between the estimated water level at gauge j minus the measured water level at
gauge j (both for scale a):

ϵa, j =
(

Z̃ I
a e−i ka∆xm j + Z̃ R

a e i ka∆xm j
)
−ζa, j . (3.11)

The system is solved for Z̃ I
a and Z̃ R

a by minimising the sum of the moduli of the residuals. For reasons
discussed later, a weighting factor wa, j > 0 is added per gauge. Define the sum of the weighting factors as
Ωa =∑

j wa, j . The objective is to determine the minimum of

N∑
j=1

wa, j |ϵa, j |2 =
N∑

j=1
wa, j ϵa, j ϵa, j

∗. (3.12)

If the derivative of this sum with respect to the real and imaginary parts of Z̃ I
a and Z̃ R

a equals zero, the mini-
mum occurs. The following relationship holds at that point [63]:

N∑
j=1

wa, j ϵa, j e i ka∆xm j =
N∑

j=1
wa, j ϵa, j e−i ka∆xm j = 0. (3.13)

Again we have two complex equations for two complex amplitudes. Substituting (3.11) into (3.13) yields the
two equations:

N∑
j=1

wa, j

(
Z̃ I

a e−i ka∆xm j + Z̃ R
a e i ka∆xm j −ζa, j

)
e i ka∆xm j = 0 ⇒

N∑
j=1

wa, j ζa, j e i ka∆xm j = Z̃ I
aΩa + Z̃ R

a

N∑
j=1

wa, j e2i ka∆xm j ,

N∑
j=1

wa, j

(
Z̃ I

a e−i ka∆xm j + Z̃ R
a e i ka∆xm j −ζa, j

)
e−i ka∆xm j = 0 ⇒

N∑
j=1

wa, j ζa, j e−i ka∆xm j = Z̃ I
a

N∑
j=1

wa, j e−2i ka∆xm j + Z̃ R
a Ωa .

This can be written as a matrix-vector product:
Ωa

N∑
j=1

wa, j e2i ka∆xm j

N∑
j=1

wa, j e−2i ka∆xm j Ωa


�Z I

a

Z R
a

=


N∑

j=1
wa, j ζa, j e i ka∆xm j

N∑
j=1

wa, j ζa, j e−i ka∆xm j

 . (3.14)

This matrix-vector product has a unique solution if the matrix is non-singular. Singularity should thus be

avoided, this will be addressed later. Z̃ I
a and Z̃ R

a are solved as:

Z̃ I
a = 1

D

(
Ωa

N∑
j=1

wa, j ζa, j e i ka∆xm j −
N∑

j=1
wa, j e2i ka∆xm j

N∑
j=1

wa, j ζa, j e−i ka∆xm j

)
, (3.15a)
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Z̃ R
a = 1

D

(
Ωa

N∑
j=1

wa, j ζa, j e−i ka∆xm j −
N∑

j=1
wa, j e−2i ka∆xm j

N∑
j=1

wa, j ζa, j e i ka∆xm j

)
, (3.15b)

with the discriminant

D =Ω2
a −

N∑
j=1

wa, j e−2i ka∆xm j
N∑

j=1
wa, j e2i ka∆xm j . (3.15c)

Note that the discriminant D is a real quantity and can be rewritten to [63]:

D =Ω2
a −

(
N∑

j=1
wa, j cos(2ka∆xm j )

)2

−
(

N∑
j=1

wa, j sin(2ka∆xm j )

)2

= 4
N∑

j=1

∑
ℓ< j

w2
a, j sin2(ka∆xℓ j ). (3.16)

Verification for Two Gauges
First is shown that the N gauge expression for N = 2 is equal to the method of Ma et al. [34]. By manipulating
(3.15a), we can express the separation coefficient at scale a, Ca, j , as

Z̃ I
a =

N∑
j=1

Ca, j ζa, j =
N∑

j=1
ζa, j

wa, j

D

(
Ωae i ka∆xm j −e−i ka∆xm j

N∑
ℓ=1

wℓe2i ka∆xmℓ

)
︸ ︷︷ ︸

=Ca, j

. (3.17)

The coefficient Ca, j can be simplified to:

Ca, j =
wa, j

D

(
Ωae i ka∆xm j −e−i ka∆xm j

N∑
ℓ=1

wℓe2i ka∆xmℓ

)

= wa, j

D

(
N∑
ℓ=1

wℓe i ka∆xm j −e−i ka∆xm j
N∑
ℓ=1

wℓe2i ka∆xmℓ

)

= wa, j

D

N∑
ℓ=1

wℓ

(
e i ka∆(x j −xm ) −e i ka∆(2xℓ−2xm )e−i ka∆(x j −xm )

)
= wa, j

D

N∑
ℓ=1

wℓe−i ka (xm−xℓ)2i sin(ka(x j −xℓ))
[

use ei (a−b)−e−i (a−b)ei (2c−2b)=e−i (b−c)2i sin(a−c)
]

ca, j = 2i
wa, j

D
e−i ka xm

N∑
ℓ=1

wℓe i ka xℓ sin(ka∆xℓ j )

Now assume there are two gauges at a distance x1 < x2, and the equations are solved at x1 (thus m = 1).
The weights of the two gauges are both equal to 1, i.e. w1 = w2 = 1. Then the discriminant (3.16) simplifies to:

D = 4sin2(ka∆x12).

Ca,1 and Ca,2 are then solved as:

Ca,1 = 2i
1

D
e−i ka x1

2∑
ℓ=1

e i ka xℓ sin(ka∆xℓ1) = 2i
1

D
e−i ka x1

(
e i ka x1 sin(ka∆x11)+e i ka x2 sin(ka∆x21)

)
= 2i

1

D
e−i ka x1

(
−e i ka x2 sin(ka∆x12)

)
=−2i

1

4sin2(ka∆x12)
e−i ka x1 e i ka x2 sin(ka∆x12)

= e i ka∆x12

2i sin(ka∆x12)

and

Ca,2 = 2i
1

D
e−i ka x1

2∑
ℓ=1

e i ka xℓ sin(ka∆xℓ2) = 2i

D
e−i ka x1

(
e i ka x1 sin(ka∆x12)+e i ka x2 sin(ka∆x22)

)
= 2i

4sin2(ka∆x12)
sin(ka∆x12) = −1

2i sin(ka∆x12)
.

MASTER THESIS T. DE ROOIJ



3.2. SEPARATION OF INCIDENT AND REFLECTED WAVES (2D) 42

When these values for Ca,1 and Ca,2 are substituted into (3.17) equation 3.9a is recovered. For the reflected
wave, the same similarity with (3.9b) can be shown, using the relationship [63]

Z̃ R
a =

N∑
j=1

C∗
a, j ζa, j . (3.18)

Numerical test show the same results when the analytic solution (3.9) or the least squares approximation
(3.15) for N = 2.

3.2.4. Error Analysis and Reduction
The residual at scale a is defined by (3.11). This can be rewritten such that

ζa, j = Z̃ I
a e−i ka∆xm j + Z̃ R

a e i ka∆xm j −ϵa, j .

If this expression is filled into (3.17) and (3.18) an expression of the error for both the incident and reflected
wave is found as

Z̃ I
a = Z I

a −
n∑

j=1
Ca, j ϵa, j , Z̃ R

a = Z R
a −

n∑
j=1

C∗
a, j ϵa, j .

If the residual signal is zero the ’exact’ coefficients are obtained5. This is the case for N = 2. Otherwise
the error at gauge j for scale a, ϵa, j , is amplified by the coefficient Ca, j . This amplification of the error is
represented by the factor

∣∣Ca, j
∣∣= ∣∣∣∣∣ ∂Z̃ I

a

∂ϵa, j

∣∣∣∣∣=
∣∣∣∣∣ ∂Z̃ R

a

∂ϵa, j

∣∣∣∣∣= 2
wa, j

D

∣∣∣∣∣ N∑
ℓ=1

wa,ℓe i ka xℓ sin(ka∆xℓ j )

∣∣∣∣∣ . (3.19)

The error is worst when D = 0. For N arbitrarily placed gauges, this occurs if ka∆xmn = ℓπ (ℓ ∈ Z). The
error can be reduced by influencing the weight wa,n , n ∈ {1, . . . N }. Zelt and Skjelbreia [63] have introduced a
weighting that should reduce the error, which is discussed in Demonstration 3.13.

In numerical experiments without noise and with a constant wave number the residual signal will contain
mainly errors due to discretisation. These will be present near the boundaries of the signal due to signal
extension and the circularity of the convolution. In real experiments the residual signal also accounts for
effects like [63]

• Noise;

• Discretisation errors;

• Non-linear hydrodynamic effects;

• Deviations from the linear dispersion relation (D.1);

• Wave motions in the third dimension, i.e. over de width of the channel (also known as cross modes);

• Viscous effects;

• Energy dissipation (for instance by friction or wave breaking).

In this section factors such as gauge placement and weighting and how they affect the error will be dis-
cussed. The next section explores the effect of the characteristics of the signals on the result. This will all be
based on numerical experiments. Chapter 5 present an example of the separation of a time-series from the
field of coastal engineering. These numerical examples are based on the signals described in Demonstra-
tion 3.7.

Demonstration 3.7 (Separate coastal engineering time-series) Numerically simulated waves will
be separated using wavelet coefficients. These results will be compared to the results from the
Fourier algorithm from Zelt and Skjelbreia [63]. Note that this algorithm for N = 2 is equal to Goda
and Suzuki [21] and for N = 3 to Mansard and Funke [38] [63]. The signals are based on a general
measurement set-up in a flume at Deltares. On one end there is a wave maker, on the other end,
there is some structure that is being tested. The gauge placement is given in Table 3.1. This is the

5These coefficients are not necessarily the exact coefficients, but the relationship Z̃ I
a + Z̃ R

a = ζa, j will hold when the residual at scale a is

zero. By assuming Z I
a +Z R

a = ζa, j , the relationship Z̃ I
a + Z̃ R

a = Z I
a +Z R

a holds as well.
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standard set-up at Deltares, based on the optimal criterion from Zelt and Skjelbreia [63]. In the
comparison is worked with the deviation of the mean water level, because the frequency ω= 0 can
not be separated (i.e. for all scales k = 0).

The wave spectrum is based on a much-used spectrum in coastal engineering, a JONSWAP spec-
trum [24]. The peak frequency lies at 0.8 Hz. Random frequencies in the range [0.01, fN] are picked.
The sample frequency fs = 12 Hz is used, so the Nyquist frequency is 6 Hz. The assumed water
depth is 0.7 meter, and the wave numbers are based on the solution of the linear dispersion equa-
tion (D.1).

Number of gauges Distances from wave maker
2 39.382, 40.1
3 39.382, 39.83, 40.1
4 35.742, 39.382, 39.83, 40.1
5 35.742, 38.726, 39.382, 39.83, 40.1

Table 3.1: Distance of gauges used in the demonstrations

Gauge Placement
As mentioned the determinant is non-zero if for all gauges m and n( ̸= m) holds: ka∆xmn = ℓπ (ℓ ∈ Z). This
is the same as 2|∆xmn |/aλψ ∈ Z for each combination of m,n ∈ {1, . . . , N }. This is observed most easily by
checking the behaviour of sin(k∆x) as shown in Figure 3.7. Wave gauge positions should be chosen carefully
to ensure that this criterion is not approached near frequencies of interest.

Demonstration 3.8 (Wave number) Before considering different numbers of gauges, the
wave number is shortly addressed. When the wave number is set equal to all frequencies, an almost
perfect reconstruction of the incident and reflected wave is achieved, shown in Figure D.3. The error
in the reconstruction of the incident and reflected wave is in the order of magnitude of the error of
the reconstruction of the signal from the wavelet coefficients. When the wave number is based on
the solution of the linear dispersion equation (D.1), the error of the reflection coefficient based on
the wavelet coefficients is approximately 5% (see Figure D.2).

This error is mostly due to the very low frequencies and the frequencies above 1.5 Hz. The error
in the low frequencies and at the spikes visible in the Fourier spectrum is due to the critical gauge
placement, which will be addressed in Demonstration 3.9. Note that in the frequencies above 3.5
Hz the recovered spectrum based on the wavelet coefficients is worse than the one based on the
Fourier coefficients. This is discussed more elaborate in Demonstration 3.10.

Demonstration 3.9 (Critical gauge placement, number of gauges) It is known from the mathemat-
ics that the gauge placement is very important for the results. A combination of the right dis-
tance and number of gauges ensures the best result. The improvement between the case using
two gauges (Figure D.2) and three gauges (Figure D.4) is very large. The estimate of the reflection
coefficient in the Fourier case decrease from 79% to 6% and for the wavelets from 5% to 0.2%. The
addition of more gauges (five: Figure D.5) does improve the result for the Fourier-based method
to 0.5%. The reconstruction of the separated waves based on the wavelet coefficients shows an
underestimation of energy in the incident and reflected waves, which was not the case for three
gauges, which showed overestimation. The estimate of the reflection coefficients is comparable to
the three gauges case. The Fourier-based methods over-estimates the waves in both cases, due to
low-frequency behaviour.

The Fourier method is more plagued by low frequencies when a little number of gauges is used.
The higher number of gauges suppresses the distortion by low frequencies in both methods. For
the wavelet-based method, the high-frequency errors increase when more gauges are used: for five
gauges the reconstructed incident and reflected wave both contain almost 5% less energy the origi-
nal separate waves. The addition of the fourth and fifth gauge introduced a relatively large distance
with respect to the distances when only three gauges are used (see Table 3.1). The introduction of
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this large distance results in a larger error.

Different Wavelets, Number of Scales
On the first eye changing wavelets would not effect the results of the separation. That is does, is shown in
Demonstration 3.10.

Demonstration 3.10 (Different wavelets) For the results shown in Figure D.2 the Morlet 60 wavelet
has been used, and in Figure D.9 the Morlet 6 wavelet. The difference between the Morlet 6 and
Morlet 10 wavelet is depicted in Figure 2.4. By increasing the parameter to 60, the wavelet becomes
even more localised in frequency, but more spread out in time. The Morlet 6 wavelet is performing
over 15 times worse than the Morlet 60 wavelet. Increasing the number of gauges does not change
this fact, as can be observed in Figure D.5 and D.10. Note that for low frequencies, they both recon-
struct the same spectra, but for higher frequencies, this does not hold. If the wave number is again
assumed equal, there is little to no difference between the separation using these two wavelets, as
can be seen in Figure D.3 and D.11.

So answer to this problem consists of three factors: the wavelet, the frequency of the wave and the wave
number. As mentioned before in Section 3.2.2, the separation depends on the assumption that the wave
number is valid for all frequencies within the band of the wavelet. Because the Morlet 60 wavelet has a much
smaller bandwidth than the Morlet 6 wavelet, this assumption is valid for more frequencies. This problem
increases when higher frequencies are studied. In coastal engineering, these higher frequencies do not occur
frequent, which allows this method to be used. Other wavelets with smaller bandwidth can be implemented
to avoid this problem for higher frequencies.

Another influencer is the number of scales. For a too small number, the reconstruction will start deviating
more from the original signal: the combined bandwidth of the wavelets of all scales do not cover the band-
width of the signal as described before. For good results it is important to take the guidelines in Section 3.1.2
into account. By increasing the number of scales, the errors due to the estimate of the wave number are not
expected to decrease drastically. The error might even increase because a higher number of scales results in a
more dense set of frequencies. A more dense set of frequencies results in more solutions with a determinant
close to zero.

Demonstration 3.11 (Number of scales) The general setting of 200 scales (Figure D.5) is compared
to two other numbers of scales. By decreasing the number of scales, the reconstruction error of the
separated waves increases much (Figure D.12): from 0.001% to about 12%. This results in estimates
of m0 of the incident and reflected wave that are off with over 170%. Notable is that, although the
reconstruction error is large, the estimate of the reflection coefficient is still quite accurate. Increas-
ing the number of scales to 1000 does not decrease the reconstruction error (Figure D.13), it is also
around 0.001%, and therefore the estimates of the values are comparable to the estimates using 200
scales.

Determinant Limiter
Finding the right gauge placement is one way to ensure that the results are less disturbed by a close-to-zero
valued determinant. However, this is not always possible. In measurements, it may happen that the gauges
are wrongly placed, or that there is just a limited amount of gauges available. By introducing a limiter based
on the determinant, the frequencies or scales (in respectively the Fourier or wavelet-based solutions) for
which the determinant is under a certain limit are eliminated. The reconstructed wave values are set to 0.6

This has the opposite effect as dividing by close-to-zero values. As could be observed, this often resulted
in more energy in both separated waves. The disposal of energy by using the determinant limiter is expected
to result in a bit weaker resulting signal: some energy is left out of the reconstruction that is in both original
signals. In wavelet analysis, another option is to limit the maximum period used in determining the wavelet
coefficients. For low frequencies, this results in the same effect as omitting the frequencies for which the
determinant is under the limit.

6This is already used in practice at Deltares.
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Demonstration 3.12 (Determinant limiter, pmax) A determinant limiter has been added, and the
results are improved very much. Both algorithms without determinant limiter do overestimate the
reflection coefficient quite severely in the two gauges case (Figure D.2). However, by adding a deter-
minant limiter of 0.1, the estimation of the reflection coefficient for both algorithms is around 1%
off, instead of 80% and 5% in respectively the Fourier and wavelet cases. This is shown in Figure D.6.
From the recovered spectra it is clear that the spikes at the erroneous frequencies are not present
anymore.

If the determinant limiter is increased more, more energy is taken from the separated waves.
The results of the use of a determinant limit of 0.5 is shown in Figure D.14. For estimating the
reflection coefficient, this is not that big of a problem if the relative energy change in the recon-
structed incident and reflected wave is approximately the same. However, the introduction of this
determinant limiter may lead to other underestimation problems when other wave characteristics
are studied. So, this limiter has to be used with care.

More or less the same results are found in the wavelet algorithm by limiting the maximum pe-
riod pmax of the decomposition. This, however, does only effect the low frequencies and not the
high frequencies for which the determinant is close to 0. The limitation of pmax can be used to
suppress the effect discussed in Demonstration 3.8.

Weighting
As mentioned before, the error can be reduced by introducing the weighting factor into the equations. Zelt
and Skjelbreia [63] propose a weighting coefficient based on two characteristics. The first characteristic is
the quantification of the phase difference associated with the spacing between gauge j and the other gauges.
Multiples of one-half the wavelength associated with scale a are undesirable. The second characteristic is
the spacing relative to the wavelength: a large spacing is undesirable. Especially for wavelets, where for large
distances the factor k∆x is much more off. The resulting weighting coefficients of Zelt and Skjelbreia [63] are
defined as:

wa, j =
n∑

ℓ=1
G(ka∆xℓ j ) with G

(
ka∆xℓ j

)= sin2
(
ka∆xℓ j

)
1+ (

ka∆xℓ j /π
)2 . (3.20)

This weighting will result in an estimate for the incident and reflected wave that is the same (aside from a
phase shift) for all reference points.

Demonstration 3.13 (Weighting factors) The effects of the addition of the weights from (3.20) is
higher when the number of gauges is little. The higher the number of gauges, the less need there is
for the weights. For three gauges, the error of the Fourier case reduces from 6% to about 3%, in the
wavelet case there is little difference observed (see Figure D.4 and D.15).

3.2.5. Linearity, Stationarity and Noise
As both the Fourier and wavelet transform are linear operations, they are not fit to analyse non-linear signals
with. The separation of waves is a perfect example of where this analysis would fail. Again assume two gauges
for simplicity. The assumption on which the whole analysis is built is that both gauges measure the same
linear combination of waves, different by only a phase shift. If for instance, a wave changes frequencies
between two points (i.e. a non-linear relationship), this assumption is not valid. Non-linear effects will,
therefore, result in a larger residual signal and thus an underestimation of both separated waves. Linear
relations, such as a sloping bathymetries [34] and oblique incident waves [35] can be added to the separation
algorithms.

Furthermore Ma et al. [34] note that this method is not suitable for breaking waves because energy is
dissipated in the wave breaking. This loss of energy due to breaking reduces the energy measured at the
gauges, for both incident and reflected waves. This will cause wrong estimates for the reflection behaviour
of the structure. Whether the estimate increases or decreases depends on whether the incident or reflected
waves lose more energy in this process. This, however, will be a problem for every method that determines
the energy in the wave at a certain distance from the reflecting area.
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Stationarity
Fourier analysis, in theory, is not applicable to non-stationary waves, and wavelet analysis is. Remember
that a signal is non-stationary if the statistical properties of the ensemble it belongs to change over time
(see page 4), which in one of the members of the ensemble often translates to a changing frequency content
over time. For the demonstrations above this is not true, the statistical properties of the ensemble used are
constant in time. To create a non-stationary signal, it is most easy to change the mean or the variance of the
signal.

Changing the mean has a nasty side-effect: the wave number is dependent on the water level and this
becomes a variable of time. This causes the following time dependencies in (3.15) as follows:

Z̃ I
a (t ) = 1

D(t )

(
Ωa(t )

N∑
j=1

wa, j (t )ζa, j (t )e i ka (t )∆xm j −
N∑

j=1
wa, j (t )e2i ka (t )∆xm j

N∑
j=1

wa, j (t )ζa, j (t )e−i ka (t )∆xm j

)
,

(3.21a)

Z̃ R
a (t ) = 1

D(t )

(
Ωa

N∑
j=1

wa, j (t )ζa, j (t )e−i ka (t )∆xm j −
N∑

j=1
wa, j (t )e−2i ka (t )∆xm j

N∑
j=1

wa, j (t )ζa, j (t )e i ka (t )∆xm j

)
,

(3.21b)

with discrimant

D(t ) =Ωa(t )2 −
N∑

j=1
wa, j (t )e−2i ka (t )∆xm j

N∑
j=1

wa, j (t )e2ka∆xm j . (3.21c)

The effect of non-stationary signals on the algorithm is discussed in Demonstration 3.14, 3.15 and 3.16.

Demonstration 3.14 (Change reflection coefficient over time) By changing the reflection coeffi-
cient over time, the variance of the signal changes over time. Because the water level remains equal,
this problem can be solved using (3.15). The results are presented in Figure D.16. Clearly, the chang-
ing variance has little effects on both algorithms. Their performance is comparable to the stationary
reflection coefficient case (Figure D.5).

Demonstration 3.15 (Sloping signal) In this demonstration, a water level variation of 0.5 meters
over 8 minutes has been added to the signal. The water depth, therefore, changes from 1 meter to
1.5 meters. The effect of this slope on both methods is directly clear from the results presented in
Figure D.17.

The Fourier method is disturbed by two effects. The first effect is the changing water depth,
which effects the wave number through time. As the water level rises, the error of the Fourier sepa-
rated waves becomes more variable. The other effect is the presence of low frequencies that are the
result of the non-stationarity.

The result is that the wavelet separated waves are much closer to the original incident and re-
flected wave than the Fourier separated waves. The deviations of the wavelet separated important
values are in the same order of magnitude as the case without slope (Figure D.5).

Demonstration 3.16 (Jumps) For this example the wave number was assumed to be for the depth
of 1 meter, jumps of 0.5 meter were added as non-stationary elements. As known from Fourier
analysis a jump is build of all frequencies (see equation G.10). However, the CWT is limited both
at the lower frequencies because of boundary effects and on the higher end due to discretisation.
The Fourier transform in general has a lower lowest frequency and a higher highest frequency. The
results can be observed in Figure D.18. Both the separation in Fourier and wavelet domain cannot
(fully) reconstruct the jump. When the signal is extended, it becomes clear from the error of the
wavelet reconstruction that both the high and low frequencies close to the jump are missing to
reconstruct the jump. The shape of the used wavelet, the Morlet 60 wavelet, is visible in the plot. In
the Fourier case, there are also some expected Gibbs ripples at the edges of the jump.

Noise
The last signal element to discuss is noise. Noise can be present in the measurement, but can also be the
result of for processes in the flume. Assume on both measurements uncorrelated noise is present. In this
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ideal case it is expected that the noise does not affect the separation, i.e. it will all be directed to the residual
signal. This type of noise is addressed in Demonstration 3.17. By filtering the signal before separating the
waves, the effects of the noise on the signal is decreased.

Correlated noise, on the other hand, can be the result of processes in the flume for instance resonance of
the structure or due to the digital processing of the signals. When there is a correlation between the noise of
the gauges, this will not end up in the residual, but in the separated waves.

Demonstration 3.17 (Noise) In this demonstration different amounts of noise have been added to
the simulated measurements. White Gaussian noise has been added with powers of 1/100, 1/10, 1,
10 and 100 times the power of the incident wave. The determinant limiter is set to 0.1. Both the
two and five gauges cases are discussed here. In the case of where noise powers of 1/100, 1/10 and
1 times the power of the incident wave are added, the resulting separated waves for both methods
are very close to the cases without additional noise. This is because the noise is spread over the
whole spectrum, whereas the main power of the signal is in the frequency band [0.5,2] Hz. In the
frequencies outside this band some disturbance is detected, but this does not significantly affect
the results (i.e. reflection coefficient, m0 etc.).

As the noise power increases, the separation is disturbed more; but there is a significant differ-
ence between the two and five gauges cases. In the extreme case of noise that has the power of
100 times the power of the incident wave, both results based on Fourier or wavelet coefficients are
nowhere near the original incident and reflected wave. Both, however, perform better in the five
gauges case than in the two gauges case: the energy in the separated waves is much less in the five
gauges case than in the two gauges case. This is due to the lesser random correlations between
five different noise signals than between two. Therefore more noise is filtered when there are more
gauges in the system.

The results are shown in the appendix for a noise power of 10 times the incident wave power in
both the three and five gauges case (respectively Figure D.19 and D.20). They are compared with
the no noise cases in Figure D.7 and Figure D.8. By observing the spectra, it is clear that the noise in
the high frequencies disturbs the resulting separation: noise on the signal is added to both incident
and reflected wave. The main power bandwidth (0.5-2 Hz) of the separated waves is recovered well:
the noise has little effect on the separated waves in this bandwidth.

In the five gauges case, the same random noise signal has been added to all gauges, which shows
no difference at all with the uncorrelated noise case. This effect can be subscribed to the lack of
phase difference between the noise. To distort the analysis, the noise has to have a correlation
with the phase difference k∆x. Noise present in the flume, such as resonance behaviour, will be
correlated with the right phase difference, which will affect the results.

From this demonstration may be concluded that filtering is not necessary for high SNR signals.
The least squares method can filter low power noise very well. The more gauges there are in the
system, the better the noise can be filtered. Signals with an SNR<0 dB will distort the algorithm and
filtering on beforehand is advised.

3.2.6. Residual Signal Analysis
For real signals, the separated signals cannot be compared to a ’known’ original incident and reflected wave.
How well the estimate is, has to be based on the residuals. These can be computed by subtracting the sum
of the recovered incident and reflected wave from the original signal. The residuals can be investigated in
three different domains. These are the time domain, the frequency (Fourier) domain and the wavelet (time-
frequency) domain.

If waves are compared in the time domain, the difference between the crest and trough height per wave is
often analysed [24]. A wave is then defined as the signal between two up or down-crossings. Characteristics
such as the height of the 1% highest waves of a set of waves are often based on these values. These values can
be used to investigate the error over time.

In the frequency domain, the error per frequency is investigated. Moreover, the reflection coefficient
often depends on the frequency. Therefore the frequency domain is the most common domain to analyse the
separated waves in.

The residual coefficients in the wavelet domain can be analysed as well. These are defined by (3.11).
Averaging the wavelet coefficients in scale is an estimator for the spectrum of the error, which can also be
computed using the Fourier transform. The global wavelet spectrum thus has no added value over the Fourier
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method.
The time domain method based on the crossings has the disadvantage that the residual wave often con-

tains a different amount of zero-crossings than the original wave, which makes it hard to determine the (rel-
ative) error ’per wave’. A solution is to determine the maximum difference between the zero (up or down)
crossings of the other wave. Here the scale averaged wavelet power spectrum (2.31) is used. A measure for
the error over time can be made by dividing the SAWP of the original signal by the SAWP of the residual signal,
resulting in:

ϵrel(t ) =

∑
a

∣∣∣W{
η j − η̃I

j − η̃R
j

}
(a, t )

∣∣∣2

a∑
a

∣∣W{η j }(a, t )
∣∣2

a

. (3.22)

Residual analysis using this measure is applied in Chapter 5.

3.3. Guidelines
In this chapter two main subjects were discussed. The first subject was the improvement of time-frequency
analysis through the continuous wavelet coefficients. The second subject was the application of continuous
wavelet coefficients to separate incident and reflected waves travelling over one axis. The guidelines with
respect to the WPS are best summarised in the form of the algorithm as presented at the beginning of this
chapter.

Continuous Wavelet Coefficients
1. Apply signal extension to the signal. This results in the signal x. There are many different signal exten-

sions possible (see Section 3.1.3) of which the most important ones are summarised in Figure 3.2.

2. Compute the Fourier transform x =F{x} using the FFT. Missing data points disturb the FFT and there-
fore have to be filled; different methods are presented in Section 3.1.4. The better the filling complies
to the underlying data points, the less errors there will be in the coefficients based on a transformation
with these points.

3. Choose a wavelet function ψ and a set of scales to analyse the signal as described in Section 3.1.1. The
most used continuous wavelets are summarised in Figure 2.3. When the objective is to separate waves,
it is important to pick a complex wavelet, with a small bandwidth.

4. For each scale, construct the normalised wavelet function using (2.23).

5. Find the wavelet transform at all scales a using the inverse FFT, see equation 2.24.

6. Determine the zones of influence. For a signal without missing data points, the cone of influence based
on the e-folding time suffices. However, if a signal has missing data points, the zones of influence allows
for more insight into the time-frequency behaviour of the signal. It is important to remember that the
coefficients depend on the signal, the signal extension and the filling used. Different choices will lead
to different coefficients. The COI and ZOI are only guidelines for the reliability of the coefficients, not
strict borders.

7. The last two steps remain unchanged, i.e. remove any padding and contour plot the wavelet power
spectrum;

8. and determine the confidence contour of the scalogram. Plot this contour and the cone of influence on
top of the scalogram.

When averaging in time or scale is applied to the resulting coefficients, the effects of the signal extension on
the coefficients have to be taken into account. Especially for high scales, the global wavelet spectrum may be
underestimated. The scale averaged wavelet power is less trustworthy closer to the edges of the signal.

Separating Waves
The second main subject of this chapter was the separation of incident and reflected waves. Ma et al. [34]
separates waves based on wavelet coefficients for two gauges. Zelt and Skjelbreia [63] use Fourier coefficients
to separate the waves for N gauges. In this chapter a combination of these methods is presented: wavelet
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coefficients of measurements from N gauges are used to separate waves. In Section 3.2.4 all influencing
factors on the error of the separation are discussed. Numerical demonstrations of the influence of these
factors are shown as well. A summary of the effects of these factors for the two methods is presented in
Table 3.2.

Separation based on wavelets does not perform better than separation based on Fourier coefficients, ex-
cept for non-stationary signals (as described in Demonstration 3.15). For these cases wavelet analysis shows
its added value, by correctly separating the waves without effects of the slope. The wavelet-based method
is affected much by the combination of the wave number k, the bandwidth of the wavelet and the distance
between the gauges ∆x. Because the wave number cannot be changed, it is important to minimise the dis-
tances between the gauges and the bandwidth of the wavelet used. Analysing the residual using the relative
error in time based on the SAWP (3.22) allows analysis of the error over time.

For both method the error between the reconstruction and the original signals is rather high when using
two gauges, and much less when more than two are taken into account. By adding more gauges the solutions
improve a more and more, but the largest step is made from two to three gauges. Therefore the use of three
well-spaced wave gauges is advised to solve the separation problem. More would lead to unnecessary costs
(gauges) and data. Applying the weightings proposed by Zelt and Skjelbreia [63] does not seem to improve
the results much.

The added value of these two subjects is addressed in Section 5.1. First, the noise filtering application of
the discrete wavelet transform to signals in the field of coastal engineering is discussed.

Table 3.2: Summary of the influence of the different factors on the incident and reflected waves, for both Fourier (Zelt
and Skjelbreia [63]) and wavelet coefficients.

Factor Zelt and Skjelbreia [63] Wavelet-coefficient based

Wave number No influence High frequency distortion

Number of gauges

Two: poor separation, three: increased performance, more: improvement if
the determinant limiter is not used, else little difference. Distance between
gauges influences the power loss in the separated signals using De Rooij,
place gauges close together for less power loss

Gauge placement Important: 2|∆xmn |/aλψ ∈Z for each combination of m,n ∈ {1, . . . , N } [63]

Determinant limiter Corrects the results
Improves results, but also omits en-
ergy which leads to underestimation

Weightings No influence of the proposed weightings by Zelt and Skjelbreia [63]

Low frequency limit
Still large error for higher frequencies
with determinant limiter close to 0

Results close to solution with determi-
nant limiter, less energy is omitted

Wavelet -
Wave number: short bandwidth
wavelet important

Non-stationarity
Distortion for changing mean for low
frequencies

No distortion for changing mean;
time-dependent wave number can be
applied

Noise
For high SNR, most noise goes to the residual, for low SNR, first filter the
measurements before separating. More noise is reduced when a larger num-
ber of gauges is used.
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4
Denoising in the Discrete Wavelet Domain

In the previous chapter the computation and application of the continuous wavelet transform is discussed.
This chapter concentrates on the application of the discrete wavelet transform (DWT) in noise filtering. Other
applications of the applicability of the DWT are discussed in Chapter 5. In Section 2.3.2 the computation of
the discrete wavelet transform was addressed and the basics of filtering using these discrete wavelet coef-
ficients in Section 2.5.2. This chapter starts with a more elaborate overview of the different noise filter al-
gorithms, followed by a description of the test cases. After that, the performance of the different filters is
presented in Section 4.3, concluded with a discussion of the results.

4.1. Filter Algorithms
In Section 2.5.2 the basics of wavelet filtering are addressed: a signal is filtered by applying a threshold to
(some) levels of detail coefficients. In Figure 4.1(a-d) some different discrete wavelet-based noise filter algo-
rithms are shown in a more detailed scheme. A traditional wavelet filter algorithm is shown in Figure 4.1a.
At the start of the filtering protocol a choice for a decomposition level k is made, resulting in k sets of detail
coefficients and one set of approximation coefficients after applying the DWT. To filter the signal, thresholds
have to be picked. This threshold is often based on the standard deviation (equation 4) of the first detail level,
d1. The universal threshold presented in (2.40) is an example of such a threshold. Thresholds at a certain level
can also be based on the coefficients in that level, instead of the coefficients in the first level. When the thresh-
olds are determined, they can be applied using hard, soft or other types of thresholding methods (more are
shown in Figure 2.7). The thresholded coefficients are then inverse transformed, resulting in a filtered signal.

A disadvantage of this traditional filtering is the choice of decomposition level selection before applying

(a) Traditional wavelet filtering. Thresholds are often based
on the standard deviation (std) of the first level. Another
possibility is a per level threshold.

(b) Subjective wavelet filtering, changes with respect to tra-
ditional wavelet filtering (see (a)) in red.

Figure 4.1: Different filter algorithms
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(c) Wavelet filtering based on a signal free period in the sig-
nal; threshold selection based on this period.

(d) Wavelet filtering by Srivastava [51], level selection possi-
ble via subjective and objective methods.

(e) Colours of the coefficients match colours in the plots containing the
filters.

Figure 4.1: Filtering algorithms and implementation. The di denote the detail coefficients in level i , the ai the approxi-
mation coefficients. By thresholding they are adjusted to d ′

i and a′
i respectively.

the filter. This is a very subjective method that will lead to trial-and-error experiments to determine the cor-
rect levels. To improve the accessibility of subjective level selection, the decomposition level k is selected af-
ter all detail and approximation levels are visually judged. The judgement is discussed in Demonstration 4.1.
This visual (subjective) level selection is shown in Figure 4.1b.

In this chapter, the results of this traditional filtering method, using both soft and hard thresholding, is
compared to the results of two other threshold determination methods. Both these methods were presented
by Srivastava et al. [51]. The first method is based on the fact that there is a period in the signal where there is
no underlying signal: the measurement equipment is already turned on, but the experiment has not started
yet. The recordings should therefore only contain noise. The discrete signal x[n] is assumed to consist of two
parts: a part in which is known there is no signal present, xidle[n] and a part in which the signal is present,
xsignal[n]. First, the whole signal is decomposed to select a decomposition level. The signal xidle[n] is then
padded with zeros until it has the same size as x[n]. This padded signal is decomposed, and the detail coef-
ficient thresholds are based on the maximum and minimum values in this decomposition. These thresholds
are applied by soft thresholding, (2.39). The support of the choice for soft thresholding follows from the ques-
tion: what if hard thresholding is used? Then noise just a bit above the threshold will have a large impact on
the filtered result, which is an unwanted effect. Therefore soft thresholding is used. This algorithm is denoted
as the ’signal-free’ algorithm.

The last algorithm is named after Srivastava [51]. There are three main differences between this algorithm
and the more traditional ones. All three differences are highlighted in Figure 4.1d. The first one is the use
of an objective measure to select the decomposition level. This measure is based on the peak-to-sum ratio
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(PSR) of the coefficients. The peak-to-sum ratio for a vector x is defined as

PSR(x) =
max

n
(|xn |)∑

n
|xn |

. (4.1)

This ratio is not only used to select the decomposition level, but also to determine the lower and upper thresh-
olds, which is the second difference. In the original thresholding, there is one threshold for the absolute value
of the coefficients, not one for coefficients above and below zero. This change has also been applied to the
signal free based filter. The last one is the use of hard filtering of the approximation coefficients at level k,
where normally only detail levels are filtered, to also address the low-frequency noise in the signal.

It has been discussed before that most of the algorithms rely on a subjective level selection to denoise the
signal. Only the Srivastava et al. [51] algorithm has an objective level selection method. To be able to subjec-
tively select a level a clear overview of all approximation and detail levels have to be presented. In Figure 4.1e
the different colours refer to the different colours used for lines in plots discussed in the demonstrations in
this chapter. Blue lines represent the original detail and approximation coefficients up to k levels, the grey
signals represent the computed coefficients that are not used in the filtered reconstruction, and the orange
signals are the filtered coefficients. The thresholds are shown by dashed red lines; long dashes show the lower
threshold, short dashes the upper.

4.2. Test Signals
In the last section, the different algorithms that are being tested were discussed. In this section, the signals
on which they are tested are presented. For this the discrete signal s[n] is defined as the sum of three signals:

s[n] = x[n]+w[n]+ v[n].

Here x is the basis signal, this can be a stationary or a non-stationary signal. The non-stationary signal is
based on the impacts present in the force measurement presented in Section F.1.3. w denotes the measure-
ment noise, such as resonance behaviour, only added in the non-stationary signal case. It has a contribution
around the 48 Hz and 120 Hz, like the force signal presented in Section F.1.3. At last v contains environmen-
tal noise, this can be white noise, red noise and noise at very specific frequencies, for instance originating
from the power supply. However, from real data an SNR of over 200 dB was detected for the power supply
noise (and its mirrors), it has been added to some test signals, but much effect is not expected because of
its low contribution. Moreover, non-stationary environmental noise, such as nearby cellphone calls, are not
simulated. The noise will be scaled with different signal-to-noise ratios (SNR, (2.36)). The test signals have a
duration of 2 minutes, with a sampling frequency of 3 kHz. All test signals are filtered once, to compare the
results of the different algorithms on the same case.

Demonstration 4.1 (Test signal and discrete wavelet coefficients) The three different elements of
one of the test signals are depicted in Figure 4.2a. The four signals s[n], x[n], w[n] and v[n] are
shown separately in this figure. The Symlets 8 wavelet is applied to decompose the signal s. This
wavelet is advised for natural signals [51]. All the approximation and detail levels of this signal are
shown in Figure 4.2b. In this demonstration, most noise is contained in the high-frequency range;
i.e. the non-stationary signal is of relatively low frequency. This can be seen very clearly in the ap-
proximation coefficients; the contribution of the noise drastically decreases as details are omitted.
This property is used to choose the maximum level to filter: in levels 1-7 noise is identified in the
approximation component, for levels 8 and 9 this becomes harder, for levels 10 and up the noise
is not distinguishable in the approximation coefficient. So a subjective choice for decomposition
level 9 will be used for all algorithms expect the Srivastava et al. [51] algorithm.

A decomposition level of 9 is chosen for all algorithms except the Srivastava et al. [51] algorithm based
on the results presented in Demonstration 4.1. After implementing the algorithms, some fine-tuning can
be applied. Often this concerns changing thresholds or threshold methods. This fine-tuning, however, is not
applied in this chapter, because the objective is to find the best denoising algorithm, not the best data analyst.
As explained before, this algorithm bases some choices on the PSR, (4.1). Srivastava et al. [51] claims that this
ratio is a good universal measure, however, after some tests with longer signals, different conclusions have to
be drawn. This discrepancy in thresholds is because the Srivastava test signals contain 4096 sampling points,
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signals in the field of coastal engineering easily contain over 3 million sampling points, which blows up the
sum term in the PSR (4.1). Therefore the adjusted version contains a limited PSR, which is the maximum of
the peak-to-sum ratios of segments of 4096 samples of the full-length input.

(a) The three signals and their sum

(b) The approximation and detail coefficients for the signal s from Figure 4.2a using the
Symlets 8 wavelet. On the left of the coefficients the levels and the centre frequencies
fc of the wavelets are given. Note that all x-scales are the same, the y-scales are
different. The black line shows the line y = 0.

Figure 4.2: Signal from Demonstration 4.1

Demonstration 4.2 (Srivastava filtering) The result of the Srivastava algorithm using the adjusted
PSR is shown in Figure 4.3. The S denotes the PSR of the detail coefficients. For S < 0.01 the detail
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coefficients are all considered noise, for 0.01 ≥ S < 0.2, there is noise present, but peaks contain
information about the signal. For S ≥ 0.2 there is almost no noise in the detail coefficients, so these
are not filtered. Therefore the decomposition level is chosen as the last level with S < 0.2. Both these
values are empirically based and can be adjusted for different signals. The automated threshold
computation shows fairly good results. In level 4-6 the contribution of w in the signal is recognised
and filtered out. The upper threshold of this approximation component is too high and will filter
too much out. This can be adjusted manually, which will not be applied in this chapter.

Figure 4.3: The approximation and detail coefficients and their thresholds, as by the Sri-
vastava algorithm. The colours correspond with the colours in Figure 4.1e.
The S denotes the PSR (or sparsity) of the detail coefficients at that level.

Let us compare the results from Demonstration 4.2 to the results of the hard thresholding algorithm using
the universal threshold in Figure E.4 and to the signal free approach (Figure E.3), where for both a maximum
decomposition level of 9 is subjectively selected. The different thresholding algorithms have resulted in dif-
ferent filtered results. The thresholds based on the signal free period let some part of the measurement noise
through in the detail levels 4-6, while the universal threshold and the Srivastava based threshold filter it all
out. Because there is no approximation coefficient filtering, both the hard and signal free based threshold did
not omit any peaks from the stationary basis signal x, in contrast to the Srivastava algorithm. The effects on
the reconstruction will be discussed in Section 4.3.

Comparison: Fourier Filtering
The performance of the wavelet filtering algorithms is being compared to the performance of a low pass filter.
The filter has not been optimised per signal; neither are the wavelet filters. Some fine-tuning could increase
the performance of the Fourier filter, which also holds for the wavelet filters. A low pass filter with a band-pass
frequency of 10 Hz and a band stop frequency of 15 Hz is applied in both the stationary and non-stationary
basis signal case. When the measurement noise w was not intended to be filtered out, a band-pass frequency
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of 100 Hz and a band stop frequency of 150 Hz has been applied. The Fourier filter has been implemented via
Matlab. In Chapter 5 some examples using coastal engineering data are discussed.

4.2.1. Different Wavelets
Until thus far the different choices of algorithms have been presented. There are, however, more choices that
influence the filter result. The choice of wavelet, for instance, also effects the performance of the algorithms.
In the Appendix C, in Table C.2, an overview of the different wavelets available in the PyWavelets package is
presented. A total number of 75 wavelets that can be used the PyWavelets package [54]. From these, a set of
five wavelets has been chosen to compare. These are:

Haar The Haar wavelet is expected to show poor results: its discontinuous behaviour in time or spectrum do
not match any of the signals. This does also result in discontinuous behaviour in the filtered result.

Symmlet 8 Advised by Srivastava [51] for natural signals.

Coiflet 3 Its spectrum is close to the Symmlet 8 wavelet spectrum. So, little difference is expected.

Bior 2.8 A bi-orthogonal, symmetric wavelet. The spectrum of this wavelet has high resemblance with the spec-
trum of the stationary signal than the others: it has a faster decay toward high frequencies. The num-
bers denote respectively the number of vanishing moments of the wavelet and scaling function. (For
more information see Appendix B.)

Daub 20 The Daubechies 20 wavelet is a wavelet with a long support in comparison to the others. Because of its
high number of vanishing moments it has a short support in the frequency space.

These wavelets and their spectra are depicted in Section C.3.1. The choice of wavelet influences the choice
of threshold, the reconstruction of the underlying signal and much more. The attentive reader notes that the
tested wavelets are all real wavelets. This can be justified by the fact that the test signals are real, just like most
signals from the field of coastal engineering. This leads to real coefficients, that can be used in the different
algorithms. If a complex wavelet is used, the coefficients contain magnitude and phase information. This
phase information is not needed for any of the algorithms, and thus only the magnitude information is of
use. The algorithm based on a universal threshold applied with hard thresholding, from level 9 and up, is
used to compare the results per wavelet.

4.2.2. Signal Extension Modes
In Section 3.1.3 the importance of the right signal extension method is emphasised. In the discrete wavelet
domain, this is as important as in the continuous domain. Signal extension modes have to be applied to
most signals; it is very important that the right signal extension mode is chosen before applying a filter. The
thresholds are often based on the wavelet coefficients. If these coefficients are distorted by signal extension,
this might lead to wrong threshold choices. Especially the thresholds based on a signal-free time are sensitive
to poor signal extension mode choices. The PyWavelets packages [54] possesses 6 different signal extension
modes:

• Zero-padding;

• Constant-padding;

• Symmetric padding;

• Reflect-padding;

• Periodic: signal is treated periodic, a special mode to compute the least possible number of coefficients
is called ’periodization’;

• Linear extension.

The standard setting of the PyWavelets decomposition function is the symmetric extension. This setting
has been used for all test cases. The coefficients near the boundaries in Figure 4.2b do not show any remark-
able behaviour in the detail coefficients, as do the approximation coefficients.

4.2.3. Different Dilation Factor
In the derivation of the DWT through multi resolution analysis (Appendix B) has been done with the dilation
factor 2. Generally speaking, the use of this factor 2 results in the wavelet in the next level being twice as long
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and the bandwidth of that same wavelet is halved. Another dilation factor can be used as well [28]. With a
dilation factor m > 2, for one scaling functions, there are m−1 different wavelets. The use of different dilation
factors may have its advantages [4]. A dilation factor of 2 results in a shift variant transform, with another
dilation factor the transform can become more or less shift invariant, and a larger set of smooth wavelet
families can be used. These families can posses characteristics like both symmetry and orthogonality, which
cannot be in the case of m = 2. The use of a larger dilation factor will, however, not necessarily result in better
algorithms. It will complicate the filtering steps, because it results in more coefficient levels, leading to more
thresholds, which is less user-friendly.

4.3. Results
In this section, the results of the performance of the different filter are compared to the results of the low
pass filter. First, the results of the different algorithms are discussed, followed by the effect of the different
wavelets. The results are discussed in difference in signal-to-noise ratio (SNR) in dB.

4.3.1. Filters
The result of the comparison of the performance of the different filters on the different signals is presented
in Figure E.1. Here, the first thing to note is the lack of improvement in any red noise case. The red noise
that is added to the signal has a slope of -6 dB per octave, which originates from sound signal processing. An
example of a signal and its red noise can be found in Figure E.11. This has high power for low frequencies,
decreasing as the frequency increases. This results in much disturbance of the signal in and below the range
of frequencies it consists of (1-10 Hz). Therefore the red noise is not filtered by any of these filters. Moreover,
this kind of noise is not present often in coastal engineering time-series. A different filter design is needed to
filter this type of noise, which was not a part of this thesis. The red noise cases will therefore not be discussed
any further.

In the stationary cases the low-pass filter outperforms all wavelet filter algorithms, although, for the higher
SNR, the signal free and universal hard threshold method approach the performance of the low pass filter.
This result is to be expected because the low pass filter is very effective in filtering higher frequencies. If we
compare the different wavelet filtering algorithms in the stationary cases, the Srivastava algorithm performs
the worst, in the high SNR case it even distorts the signal more. The Srivastava algorithm was not to expected
to perform well in the stationary signal case; i.e. the PSR is effective to filter peaks from the rest of the signal.
In the stationary case, there are no real peaks, therefore this a poor measure.

In the case where the non-stationary signal has to be filtered from the noise, it is the other way around:
the wavelet filter algorithms perform better than the low pass filter. In general, it is noted that the filters have
more effect when there is more noise on the signal. This is consistent with the low pass filter performance in
all cases as well. First, the filtering of both measurement and environmental noise is addressed. The universal
threshold (applied hard or soft) performs much worse in the case when there is measurement noise present
than in the case where there is no measurement noise. The Srivastava and signal free based algorithms show
less difference between these two cases. No conclusion can be drawn on the effect of the power supply based
on this data, the results with and without are too close together. To do give a statement about the effect of the
power supply, the experiment should be repeated many times.

From the results presented in Figure E.1 it is concluded that in the high SNR cases there is little differ-
ence between low pass and wavelet filtering for the stationary case. When the noise increases, especially the
universal soft, hard and signal free based algorithms perform much better than the low pass base case. The
performance of the Srivastava algorithm stays behind, even with the adapted PSR.

In Figure E.12 the result of different filters is shown. This is for the non-stationary case, with much noise,
SNR= −10 dB and measurement noise. From this figure it is clear that the low pass filter leaves too much
noise on the signal, the other signals show a nice reconstruction of the jump in the signal. They all show some
deviations at different places. From this figure, one cannot derive which of the four algorithms performs the
best overall. However, it is clear that the soft and the signal free based best reconstructs the maximum peak.
The application of soft or hard thresholding, based on the MAD do have almost the same filter result, this is
due too high thresholds. Therefore there is little difference between soft and hard thresholding.

4.3.2. Wavelet Comparison
In the comparison of the five different wavelets, the hard thresholding based on the universal threshold was
used. Due to the poor results for filtering red noise, only the white noise cases are compared. The results in
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terms of the difference of SNR are presented in Figure E.2. The results per wavelets are addressed here:

Haar Was expected to show the worst results, because of its discontinuous nature. In the stationary basis
signal case the Haar wavelet was outperformed by all other wavelets. In the non-stationary, high SNR
case it seems to perform slightly better than the others in filtering w . The Haar-wavelet is a relative
short wavelet (filter size 2), therefore the addition of an extra decomposition level could increase its
performance. The downside of the Haar wavelet is that the reconstruction will shows jumps.

Symmlet 8 In the stationary signal case this wavelet has a comparable performance with the Coiflet 3 and Daubechies
20 wavelet. In the non-stationary case, it performs best in filtering both the measurement noise and
the environmental noise from the signal.

Coiflet 3 This wavelet has a spectrum that is very similar to the Symmlet 8 wavelet. This is also directly observed
from the results: their performances differ just slightly. It is outperformed by one of the other wavelets
in all cases.

Bior 2.8 The bi-orthogonal wavelet can increase the SNR at least 0.5 dB with respect to the other wavelets in
the stationary x case. In the non-stationary base case, it performs best in filtering the environmental
noise. Other wavelets are better for filtering both the environmental and the measurement noise. The
bi-orthogonal wavelet is the only symmetric wavelet in this comparison. The stationary signals and the
measurement noise w both have symmetric characteristics. This is why these are addressed best by the
bi orthogonal 2.8 wavelet.

Daub 20 The Daubechies 20 wavelet results in comparable noise reduction with respect to the Symmlet 8 and
Coiflet 3 wavelets.

4.3.3. Discussion
When dealing with stationary signals and white noise, the use of standard low pass filtered is advised over the
use of wavelet filtering. This is consistent with the Fourier theory, which is well-suited to stationary signal
situations. For non-stationary signals, especially signals containing peaks and discontinuities, the Fourier
theory is not applicable anymore.

Wavelet analysis is better applicable to these non-stationary cases. Filtering in the wavelet domain shows
much better results than the use of the low pass filter. However, in this domain, there are much more choices
to make than in the frequency filter domain. What wavelet to choose? What signal extension mode to pick?
Which decomposition level to use? It is shown that different wavelets result in different outcomes of the algo-
rithms. From theory, it is known that the resemblance of the wavelet in time and frequency domain with the
signal is a good estimator of its effectiveness [37]. This theory is consistent with the results of the comparison
presented in this chapter. The signal extension mode has to fit the data and has to prevent large jumps or
other discontinuous behaviour to affect the coefficients as little as possible. A subjective and objective mea-
sure to pick the decomposition level have been presented, a combination of these two will be a good guide
for an analyst.

There are many fine-tuning elements that differ per used signal, such as finding a filter that does filter the
environmental noise but does not filter the measurement noise. A general objective method does not seem to
exist; it is probably easier, faster and more precise to apply some subjective fine-tuning to the thresholds for
a whole set of similar signals. The Srivastava conclusions are well-drawn for the short signals they address,
but they do not hold for the 30 minutes 3 kHz sampled signals from the coastal engineering field.

4.4. Recommendations Noise Filters
At the end of this thesis some recommendations will be discussed. These are focussed on the application
of the discrete wavelet transform in the field of coastal engineering. Therefore some recommendations con-
cerning the compared wavelet-based noise are addressed here. For starters, red noise cases will have to be
challenged with different algorithms. The algorithms compared in this chapter are not suitable in these situ-
ations.

The signal free algorithm does show high noise reduction, however, there are some improvements to this
algorithm. First note that the signal free period is zero-padded, however, we know from DWT theory this
might lead to high coefficients at the boundary between the signal free period and the zero-padded part. For
instance, a mean value of the signal containing part of the signal could be used as well. However, also other
signal extension modes can be evaluated. Furthermore, it is interesting to consider whether approximation
level filtering can be part of the signal free based algorithm.
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The Srivastava algorithm did not work as well as predicted. The peak-to-signal ratio is a good basis as
a measure, but very dependent on the combination of number of peaks in comparison to the length of the
signal. Furthermore, the approximation level filtering is not always necessary. It often disturbs the signal
more than the same algorithm without the approximation level filtering. The use of the peak-to-signal ratio
to select the right decomposition level has proven itself useful and could be used in different algorithms. A
separate threshold for coefficients above and below zero is another improvement which can be used in other
algorithms.

Most wavelet filter algorithms show great improvements in SNR in stationary noise situations. Non-
stationary noise situations have not been addressed, but the performance is predicted to drop. The thresholds
are stationary, and when applied to non-stationary noise, this cannot result in non-stationary noise filtering.
This also has been seen in the coastal engineering signals, where some non-stationary noise is present. More-
over, a different thresholding technique may show some improvements as well (see Figure 2.7).

On the computational side of the algorithms there are many improvements possible. However, not much
time will be gained for the signals discussed. The computers are fast enough to change from time to discrete
wavelet domain and back in little time. If there is need for improvements, one can think of the use of the fast
Fourier transform instead of the convolution, and to implement a DWT algorithm without down-sampling to
speed up the shifting algorithm.
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Added Value of Wavelet Analysis

Multiple applications of wavelet analysis have been addressed and expanded in the two previous chapters,
to improve signal analysis and signal processing in the field of coastal engineering. In Chapter 3 the different
applications of the continuous wavelet transform are discussed. The interpretation of coastal engineering
data is improved by adding different signal extensions and zones of influence offer guidance for missing data
points. Long signals can be down-sampled in to analyse them faster. Furthermore the separation technique
for incident and reflected waves in the wavelet domain has been expanded and compared to the current
Fourier method by Zelt and Skjelbreia [63]. Section 5.1 addresses the added value of these applications of the
continuous wavelet coefficients.

Section 5.2 focusses on applications of the discrete wavelet transform, of which noise filtering is already
discussed in Chapter 4. In this chapter, a comparison is made mainly between Fourier and wavelet filters.
However, in this chapter, these two will be compared to the filter technique used at Deltares. Furthermore,
some other applications of the discrete wavelet transform in digital signal processing will be addressed. At
the end of the chapter, the computational intensity of the Fourier and wavelet approaches are compared.

5.1. Spectral Information
In this section, the use of regular (Fourier) spectral information is compared to the spectral information ex-
pressed by the continuous wavelet coefficients. These are determined in discretised form using the DCWT,
(2.22). In Section 3.1.2 is described that for long or over-sampled signals, down-sampling can be applied. The
down-sampling procedure, however, removes energy from the signal. To compare the wavelet coefficients
based on down-sampling with the coefficients based on the original signal, they should be multiplied by a
factor

p
d , as described in equation 3.2.

In Section 3.1.3 it has been made clear that the continuous wavelet coefficients near the boundaries are
sensitive to the signal extension method that is used. In Figure 3.2 the most common signal shapes are tied to
preferred signal extension methods. Important is to take the drawbacks of the signal extension method into
account. The signal extension method should be chosen with care, based on the objective of the analysis.

5.1.1. Missing Data Points
Missing data points disturb standard frequency analysis. For a stationary signal, the effects of some missing
data points are fairly predictable, i.e. the power in the spectrum is expected to reduce with the same factor
for all frequencies. Filling gaps could lead to sharp edges in the signal disturbing both low and high fre-
quencies. A comparison of two energy spectra (one disturbed, the other not) is given in Demonstration 3.2.
The introduction of sharp edges by filling the data results in disturbance over all frequencies. This is due to
the frequency contribution of the sharp edge (see equation G.10). If the signal is non-stationary or contains
non-linear signal elements, these effects are even much more unpredictable.

As the wavelet coefficients are dependent on translation (time), the effect of the gap onto the coefficients
can be taken into account. This is done by determining the amount of wavelet energy disturbed by the miss-
ing data points (see equation 3.4). In Figure 5.1 the so-called zones of influence are depicted with dashed
lines. They show the wavelets that are disturbed more than 95%. In the 8 to 16 days area some areas are

59



5.1. SPECTRAL INFORMATION 60

marked as significant that are outside the cone of influence based areas (dotted lines). This expansion results
in more insight into time-frequency behaviour of the presented signal, that was not available before.

Figure 5.1: Wavelet power spectrum of surface elevation measurements from the Westerschelde (see Section F.1.1). WPS
based on Morlet 6 wavelet, mean signal extension and mean NaN filling applied. COI: dotted line; 95% ZOI:
dashed line; 95% confidence area based on WGN assumption: black line.

Other Wavelet Applications
Regular coherence and correlation of spectra based on missing data time-series are not used because they
are unreliable. The wavelet cross spectrum can be calculated, and its reliability could be determined by mul-
tiplying the zones of influence of the two signals. In the wavelet coherence, the smoothing operator has to be
taken into account when using the zones of influence to determine reliability. Averaging of the wavelet power
spectrum will lead to the same problems as the Fourier transform for filled signals, i.e. the effect of the filling
on the result is hard to predict.

5.1.2. Separating Waves
In the standard wave separating techniques, Fourier coefficients are used to separate the incident and re-
flected wave. In Section 3.2.5 is shown that wavelet coefficients are more effective to use in separating non-
stationary signal cases than Fourier coefficients. Fortunately, many signals in coastal engineering have sta-
tionary characteristics, which allow analysis through the Fourier coefficients [24]. In the following example, a
non-stationary wave from the field of coastal engineering is discussed. Not only the separation of the incident
and reflected wave is discussed; other wavelet applications will be addressed as well.

The non-stationary case that is addressed in the following example is an experiment where the water level
in the flume is increased by 20 cm over 72 minutes and then decreased again, to mimic the effects of the tide.
A more elaborate signal description is given in Section F.1.2. This increase in water level influences the wave
number k. There are two options to apply the method of Zelt and Skjelbreia [63] on this signal. The first is
to apply the separation to segments of the signal, assuming a constant water level within this interval1. This,

1Is applied at Deltares at this moment
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however, results in separated waves with discontinuities. The other option is to use the mean water level for
the whole signal, as is done in Section 3.2. This does result in separated continuous waves. That is the case
that is compared with the separation using wavelet coefficients in this section.

Figure 5.2: Wavelet power spectrum of deviation of water level at first gauge using the Morlet 60 wavelet.

Averaging
The signal used to separate waves is shown in Figure 5.2. The wavelet power spectrum shows high power in
the periods of 1-4 and 8-64 seconds. The first band, 1-4 seconds, is dictated by the settings of the wave maker.
In the band between 8 to 64 seconds is relative much power compared to the periods between 4 to 8 seconds.
This power is assumed to be the result of the pumps that actively regulate the mean water level in the flume
during the experiment. These two bands are also distinct in the global wavelet spectrum shown in Figure 5.3a.
In this figure, the global wavelet spectrum is compared to the regular Fourier spectrum. In general, the GWS
is a good approximation of the underlying Fourier spectrum [55], however, note that in this case the wavelet
power decreases after a period of 256 seconds and the Fourier power increases. This discrepancy is the result
of the non-stationary water level and will cause low-frequency effects in the separation in the algorithm of
Zelt and Skjelbreia [63].

Cross-wavelet Applications
Furthermore, we have a look at the cross-wavelet spectrum and wavelet coherence of two neighbouring mea-
surements. These are shown in Figure 5.3b and Figure 5.3c. It is clear that the power in both period bands
is present in both signals. From the wavelet coherence plot, the coherence between the two signals is not
directly clear. From the average over scale, it becomes clearer that the coherence in the 4-64 seconds period
band is high (Figure 5.3d).

Separated Waves
The waves are separated using both Fourier and wavelet coefficients. In the Fourier case, the mean water level
over the whole experiment is used to determine the wave number. Three cases are compared: no determinant
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limiter, a determinant limiter of 0.1 and the case without determinant limiter and without all frequencies
below 1/10 Hz. The results of these cases are presented in Section F.2.1.

When no determinant limiter is used, the Fourier-based reflection coefficient is 1. As expected, it is
plagued by especially low-frequency disturbance. The wavelet-based reflection coefficient is around 0.45.
This is pretty high because a reflection coefficient ≤ 1/3 is expected.

When the determinant limiter of 0.1 is used both methods find a reflection coefficient of about 0.25. The
reconstructed waves do not overlap exactly, but their wave characteristics are comparable. When the limiter
is used, some energy that is in the waves is not taken into account in the reconstruction. If instead of a limiter,
only the frequencies below 1/10 Hz are not taken into account, the Fourier reflection coefficient is about 0.5.
The wavelet-based reflection coefficient, however, becomes 0.26, just slightly higher than in the determinant
limiter case. This is because the m0 of the incident wave is slightly lower and the m0 of the reflected wave
slightly higher. The total energy of the sum of the reconstructed waves is comparable.

So the difference between 0.26 and 0.42 can be assigned to the frequencies below 1/10 Hz. These were
assumed to be the result of the active water level regulation. Looking back at the cross-wavelet spectrum
shown in Figure 5.3b, much energy is present in the periods above 10 seconds. Moreover, the coherence of
these periods is large as well, thus on beforehand this effect could have been predicted.

(a) Comparison of Fourier spectrum and GWS using the
Morlet 6 wavelet.

(b) Cross-wavelet spectrum for the first and second water
height meter (Morlet 60 wavelet).

(c) The wavelet coherence for the first and second water
height meter (Morlet 6 wavelet, using code of Grinsted
et al. [22]).

(d) The Fourier coherence and average wavelet coherence

Figure 5.3: Cross-spectral analysis of waves for WL657585e (more information: Section F.1.2)

Residual Analysis
Residual analysis is performed on the case with a minimum frequency of 1/10 Hz, without determinant lim-
iter (Figure F.5). This analysis is done for the separation based on Fourier coefficients and based on wavelet
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coefficients. In Figure 5.4a the spectra of the residual for both methods are shown. As is expected from the re-
sults in Figure F.5 the relative error per frequency deviates between the wavelet and Fourier-based separation
near the frequencies affected by the gauge spacing. Note that this relative error is mostly high at low power
frequencies, therefore the contribution to the absolute error is low.

This also becomes clear from the error of the separated waves over time. In Figure 5.4b three different er-
rors are displayed for the first 2000 seconds of the measurement. The error based on the wave height distance
between two down-crossings of the original signal minus the water level is plagued by many spikes. This is
because the down-crossings of the original signal are not at the same places as the down-crossings of the
residual signal. The other two errors are based on the scale averaged wavelet spectrum (SWAP) of the residual
signal, as defined in equation 3.22. The error of the Fourier and the wavelet-based solutions are almost equal.
Note that this method of analysing the residual error is thus not flawless. From the results (Figure F.5) it is
clear that the estimate based on the wavelet coefficients is much better than the one based on the Fourier
coefficients. Errors in the incident and reflected wave often cancel each other, resulting in a comparable
residual signal.

In Figure 5.4c the error and the wave height are both shown in time. There is a clear correlation visible
between a high relative error and high waves, i.e. for larger waves the relative error is larger. Sorting the waves
from high to low does indeed show that the correlation is true (see Figure F.6). Thus the absolute error for
large waves is even larger. So the separation of waves is less accurate for larger waves, i.e. the largest incident
and reflected waves are underestimated or overestimated most. This effect was predicted based on the fact
that higher waves are subject to non-linear processes that are not taken into account due to the linearity
assumption at the basis of the separation algorithm.
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(a) Relative error per frequency of separated waves. (b) Relative error in time, based on difference between crest
and though per wave (on the left) and based on SAWP (on
the right).

(c) On the left: height difference per wave in time. On the right: ϵrel(t ) from (3.22) for both methods.

Figure 5.4: Residual analysis of separated waves case WL657585e (more information: Section F.1.2). The relative errors
based on the SAWP are filtered using a moving average filter with a length of an average wave (i.e. 43). The
Morlet 6 wavelet is used to determine wavelet power.
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5.2. Discrete Wavelet Decomposition Filtering
There are numerous applications of filtering in Coastal Engineering. In Chapter 4 different noise filters are
compared. In this section also other applications will be presented. The first one is filtering in general. Often
data analyst filter signals based on gut feelings, lacking a justification of the used filter. The first example
shows that these gut feelings are correct int his case. However, comparable results can be obtained through
reasoning based on the discrete wavelet decomposition. The second example will show the added value
of filtering with respect to non-stationary signals and the brought spectrum of discrete wavelets. The last
example shows the filtering of a transient from the rest of the signal.

Filter Force
The first example discussed here, is a force measurement from the measurement A3W1T304 (see Section F.1.3).
The goal of the filtering is to reconstruct the peak forces in the signal. Due to effects such as resonance and
noise, the peak can be over or underestimated. Such an error has its effect on structures that are designed or
tested based on these measurements.

These signals are normally filtered using the Savitsky-Golay(x, y) filter. This filter bases the filtered data
point on the fitting of a y th order polynomial through x data points [39]. The setting used in this case is based
on ’gut feelings’ and is set on x = 201 and y = 5. This will be compared to two wavelet filters and a low-pass
filter with a cut off frequency of 16 Hz. The wavelet used in both filters is the Symlets 8 wavelets, based on its
result in Chapter 4. The objective of the filtering is to find the peak force of the signal.

The first DWD filter is based on noise in the ten first seconds of the measurement (Figure F.8). The result
of this filter is shown in Figure 5.5a. Noise is filtered out, but the resonance frequency is still in the signal.
If the moments of impact are studied more carefully (Figure F.7), the approximation coefficients show that
the resonance frequency is mainly caught in the sixth and seventh detail levels. The second filter (Figure F.9)
therefore omits all detail coefficients from these levels. Resulting the signals shown in Figure 5.5b.

Both wavelet filters have also been applied in shifted mode. The peak values of the different filters are:

• For the Savitsky-Golay(201,5) a peak value of 20.8 is recovered,

• the low-pass filter recovered 20.5 at the peak,

• the wavelet filter (with detail levels 6 and 7 omitted) without shifting 20.9 and

• the shifted one 20.3.

Note that these values are relatively close together, but that the shifted wavelet filter has recovered the lowest
value. For many structures, some resonance is expected, but this may be not as much as in the scaled model
in the flume. By soft thresholding, the analyst can choose to damp the resonance. This is much easier in
wavelet analysis than using other filter types.

(a) Filtering noise from signal (b) Filtering noise and resonance from signal

Figure 5.5: Filtering force signal from A3W1T304 (see Section F.1.3).
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Over-topping Reservoir
In this second example, we consider a water height measurement from the over-topping reservoir. To learn
more about the forces on the structure, the water slamming over the structure is captured in the over-topping
reservoir. The goal is to determine the volume of water that is filling this reservoir. This can be done by
multiplying the water level difference due to an over-topping with the area of the reservoir. However, due to
non-stationary effects such as sloshing this water level is quite hard to read. To reconstruct the underlying
signal with jumps and without these vibrations a wavelet filter based on the Haar wavelet can be used (Sec-
tion C.2). A standard frequency filter would be completely useless because filtering would lead to a smoothing
of the jumps.

The Haar wavelet, in general, is not much used, however, for this application it is perfectly fit. There
will not be a delicate filter design as discussed above, only the reconstruction of the approximation levels
will be used. In Figure 5.6a the reconstruction of a number of different levels is shown. The level 15 and 16
reconstructions appear to be too fine to use as estimator for the surface elevation after a pulse. The level 17
and 18 reconstructions, on the other hand, are too coarse. This is illustrated in Figure 5.6b. The width of the
Haar wavelet these levels is too large to catch the jumps on a smaller scale.

Here the level 16 or 17 approximation level would be advised. Jumps are reconstructed very clearly, how-
ever, they do not all appear on the time at which the largest difference in the original signal is observed. This
is the result of the dyadic structure of the discrete wavelet decomposition. By shifting the signal, the jumps
can be shifted so that they occur at the same time as the original jump. By changing the sampling interval the
problem cannot be solved, i.e. this problem moves to other scales. For jumps close to each other, lower level
approximation coefficients will have to be used to reconstruct the jumps at that scale.

(a) Part of the signal (b) Smaller part of the signal

Figure 5.6: Reconstructing jumps in signal using the approximation levels of the Haar wavelet decomposition.

Transient
Another useful application of filters in the discrete wavelet domain is the ability to extract transients from a
signal. Transients are signal elements of short duration and unpredictable nature. A transient decays fast, has
an unknown frequency content, and has an unknown arrival time [42]. For instance when forces on structures
in breaking wave conditions are investigated transient-like signal elements appear in coastal engineering
research. Such a signal is considered in this final example. Due to the confidentiality of this recording, no
background or dimensions regarding this signal are given.

In Figure 5.7 two consecutive wave impact are presented. The first hit is a non-breaking wave; the second
one is due to a breaking wave. The force exerted on the structure by such a breaking wave is in general
described as the sum of a regular wave force and a ’triangle’ on top of it. This signal is filtered using the
Symmlet 8 wavelet. The filtering is done in a number of steps; all these steps are presented in Figure 5.7b.
This figure presents the result of a shifted algorithm because the filtering without shifting shows less desirable
results. First the noise was filtered, followed by the resonance of the structure.

The next step is to filter the transient. This is done by carefully adjusting the filter. The assumption of
the sum of a regular wave and a ’triangle’ on top was tried to reconstruct. As can be observed in Figure 5.7b,
a clear triangular shape is present in the transient at the time of the second wave peak. The peak without
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the transient shows some sharp edges; this is due to the shifted filter. The first peak of the ’transient filtered’
signal also is decreased in height. This is because the wavelet content of the transient overlaps the wavelet
content of the entire signal. This form of transient filtering is a local operation. Especially because the wave
heights differ and therefore the shape of the transient. To design a discrete wavelet filter to extract transients
from many waves in one time-series is very hard and should use non-stationary thresholds. The final filter
(for the ’transient filtered’ line in Figure 5.7b) is presented in the Appendix, Figure F.10.

(a) Two hits of waves on the structure. The first hit was a reg-
ular wave, the second a breaking wave.

(b) Filtering the transient from the original signal in multiple
steps. Final filter in Figure F.10.

Figure 5.7: Filtering transient in a coastal engineering force measurement. Dimensions are left out for confidentiality.
The thin dotted line indicated the 0 force level.

5.3. Computation
The last comparison between the two techniques is the difference in computing capacity. In this section, two
important facets of the computation will be addressed. The first is the number of floating point operations
(flops) needed to perform a given task. The second one is the amount of memory needed to store the re-
sults. This is expressed in the number of floats. Assume there are G gauges, recording signals consisting of N
data points (i.e. floats). Complex-valued floats need twice as much space to save as real-valued floats. The
computation time for the wave number is not taken into account.

Fourier
As discussed on page 8, the Fourier Transform needs O(N log N ) flops to compute. A multiplication in the
Fourier domain with a filter takes N flops. A Fourier transformed signal can be stored in the same amount
of floats as the original signal. The wave separation technique by Zelt and Skjelbreia [63] uses four sums that
sum over the number of gauges, G . Therefore solving the system of equations uses O(G) flops per frequency,
so to find the solution of the separation problem in the frequency domain, therefore, is of O(NG) flops. Note
that this is without the operations needed to solve for the complex exponentials e i kx and the wave number
through the dispersion relationship.

CWT
The CWT (2.22) results cannot be stored in the same amount of floats as the original signal. Assume the CWT
is performed over A number of scales, then the resulting wavelet coefficients consist of AN complex floats.
The cone of influence needs little space to be saved, A floats. The zones of influence are very costly to store
compared to the COI, with AN floats. Due to the computation through the FFT, it only takes AN log N flops
to compute these coefficients. The reconstruction formula (2.25) uses O(AN ) flops if the coefficients Cδ is
already known. When it has to be computed the reconstruction is of O(AN 2) flops.

The separation of the incident and reflected wave based on wavelet coefficients takes O(G AN ) flops for
G gauges and A scales and N steps in time. Again the computation of the exponential function and the wave
number are not taken into account. However, in the non-stationary case, these have to be computed AN
times, instead of just A times in the discrete case.
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DWT
The discrete wavelet coefficients can be computed very effectively through the fast wavelet transform algo-
rithm. This algorithm is of O(N 2 log N ) flops. The result can be stored in O(N ) floats, the same as for amount
as for the original signal. Determining thresholds depends on the techniques used. General denoising meth-
ods use O(N log N ) operations [51]. So denoising discrete wavelet coefficients takes O(N 2 log N ) flops, which
is an order N higher than filtering using discrete Fourier coefficients.

Considerations
All work in this thesis has been applied on a 4 GB RAM personal computer. On such a machine the differ-
ence in computation time between the FFT and DWT is not noticeable (for time-series containing up to 3
million data points). The PyWavelets [54] package uses the FWT algorithm and computes the results very
fast. The continuous wavelet transform, on the other hand, takes more time to compute. The used basis
code of Torrence and Compo [56] is less optimised than the FWT based code. Furthermore, there are side
processes running, for instance, to calculate the wavelets used in the algorithm and the COI. Often the most
time-consuming part of the time-frequency analysis is the creation of figures. The creation of contour plots
(WPS) is much more expensive than plotting a line (VDS).

The separation of the incident and reflected wave is not very expensive. The computation time for solv-
ing the exponential function and the dispersion relation dominate these two processes, and these were not
taken into account because the number of flops for these operations is unknown. This is not a problem for
this comparison because both the Fourier and wavelet cases are slowed down by the same factor by these
processes. Solving the non-stationary wavelet-based separation problem presented in Section 5.1.2 (about
180.000 data points) took about 1550 seconds, while the stationary separation using Fourier coefficients only
takes 8 seconds, which is quite a large difference. It is not too much, and the code can be optimised if faster
computation times are desired, or the signal can be down-sampled to decrease N .

5.4. Discussion
The results presented in this chapter offer some opportunities. However, the results are not a major improve-
ment in comparison with the current method. The (discretised) continuous wavelet transform is a powerful
tool in time-frequency analysis. By choosing the correct signal extension method and use the zone of influ-
ence to cope with the effects of gaps in the data, the effectiveness of the time-frequency analysis has been
expanded.

In many applications, the wavelet coefficients can be used instead of Fourier coefficients. The example
addressed in Section 5.1.2 discussed many applications of the wavelet coefficients. The signal used has a non-
stationary mean, theoretically better suitable for wavelet analysis than Fourier analysis. The global wavelet
spectrum does not have added value to the Fourier spectrum for stationary signals. In this non-stationary
case, it is clear that the global wavelet spectrum expresses the power distribution of the signal better than the
spectrum.

The scale averaged wavelet power, on the other hand, allows insight into the power distribution of a signal
in time. This is used to show that the separation algorithms have a larger relative error for large waves than for
small waves. The separation of waves using wavelet or Fourier coefficients often results in separated waves
that are very similar. Import differences between the solutions are that wavelet transform has a lower density
in the frequency domain which results in less disturbance due to critical gauge spacing. The introduction of
the determinant limiter improves the result of the Fourier coefficient based algorithm much more. On the
other hand, the lower density is a downside, because the wave number is frequency dependent, which results
in less accurate reconstruction of waves above certain frequencies.

For waves in the field of coastal engineering, this often is not a problem because high frequencies are of
very low power. The near and far shore waves have a more narrow range of wave numbers, so a larger set
of frequencies can be separated in these conditions. When a signal has non-stationary elements such as a
changing mean water level, the wavelet coefficients are more suitable for separating the waves.

5.4.1. Guidelines Discrete Wavelet Transform
At the end of Chapter 3 some guidelines regarding the use of the continuous wavelet coefficients have been
discussed. In Chapter 4 different noise filters have been discussed, and in this chapter some other applica-
tions of the discrete wavelet transform with respect to coastal engineering signals were shown. Therefore
some guidelines regarding the discrete wavelet transform are summarised here. The discrete wavelet trans-
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form gives a whole other insight into the signals behaviour than the discrete Fourier transform and threshold-
ing in this domain leads is a whole different approach to filtering than filtering in the Fourier domain. In the
Fourier domain coefficients are changed by the same factor, while in the wavelet domain this is not necessary.

Important in digital signal processing using wavelets is the right choice of wavelet. In Figure 2.5 an
overview of the most common available discrete wavelets is given. The resemblance of the wavelet to the
signal in time or frequency domain is very important. For instance, is your signal discontinuous, choose a
discontinuous wavelet. Does the spectrum of your signal decay fast? Pick a wavelet with the same charac-
teristic. For most signals from natural sources, the Symlet or Coiflet wavelets are preferred [51]. Especially
low-level wavelets such as the Haar wavelet or Daubechies < 4 often result in non-fluent filter results. If more
time-consuming filter expansions are used, such as shifting (see Section 2.5.2), the choice of wavelet influ-
ences the result less. The added value of filtering in the discrete wavelet domain is to apply thresholding;
omitting entire sets of coefficients often leads to results that can also be achieved using Fourier filters.
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6
Conclusion and Recommendations

The goal of the research was to create guidelines to guide analysts in applying wavelet analysis on time-series
from the field of coastal engineering. The wavelet transform is divided into two domains: the continuous
wavelet transform and the discrete wavelet transform. Specific guidelines regarding these transforms are
discussed at the ends of respectively Chapter 3 and Chapter 5. Moreover, in Chapter 5 the added value is
shown of both transforms in time-frequency analysis and digital signal processing in coastal engineering.
In this last chapter, the answer to the research questions and the conclusions of this work will be shared,
followed by some recommendations and suggestions for future research.

6.1. Conclusions
What improvements are necessary for the (discretised) continuous wavelet transform to improve time-frequency
analysis for time-series in the field of coastal engineering?
The discretised continuous wavelet transform based on the work of Torrence and Compo [55] has been ex-
panded by the addition of different signal extension modes. The right choice of extension mode increases the
reliability of the wavelet power spectrum outside the cone of influence. In Figure 3.2 some recommendations
regarding the right choice are presented. To improve time-frequency analysis of signals with missing data
points, the zones of influences have been developed. These zones indicate the disturbance of the wavelet
coefficients, based on the wavelets energy distribution. These improvements allow better time-frequency
analysis for time-series from the field of coastal engineering.

Does the separation of incident and reflected waves based on wavelet coefficients for N gauges perform better
than the separation based on Fourier coefficients?
The results of Ma et al. [34] and Zelt and Skjelbreia [63] have been combined to create an algorithm to sepa-
rate incident and reflected waves for more than two gauges. These waves do only travel back and forth in one
direction. Due to the increasing bandwidth of wavelets for higher frequencies, the algorithm using Fourier co-
efficients shows better results than the one based on wavelet coefficients for high frequencies. However, this
effect can be minimised by choosing a small bandwidth wavelet. The other option is to minimise the distance
between different gauges. For relative low frequencies, which frequently occur in coastal engineering prob-
lems (< 5 Hz), there is almost no difference between the solution based on wavelet or Fourier coefficients. The
determinant limiter that was introduced reduces the amount of energy in the reconstructed signals based on
wavelet coefficients more than those based on Fourier coefficients. This is due to the resolution difference
in the frequency domain of both methods. Conversely, the wavelet algorithm is less plagued by the close to
zero determinant, resulting in more reliable separation without limiter. In the Fourier-based separation, the
determinant limiter is indispensable. When wavelet coefficients are used, it is important to limit the higher
scales.

When a non-stationary mean is introduced, the Fourier algorithm is plagued by low-frequency noise. Fur-
thermore, the wave number changes over time, which cannot be included in the Fourier algorithm. Because
the wavelet coefficients depend on time, the change of the wave number can be incorporated, decreasing the
error of the separation with respect to the Fourier separated waves. All in all, it is concluded that the separa-
tion based on wavelet coefficient is better applicable to coastal engineering time-series than the one based
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on Fourier coefficients. In particular for signals with a changing mean water level, for stationary signals the
solutions do not differ significantly. A number of three gauges is enough to correctly separate waves using
both methods.

Which discrete wavelet-based algorithm is best suited to remove noise from coastal engineering signals?
The results of four discrete wavelet-based algorithms were compared to the results of a low pass Fourier filter.
The low pass filter showed better results in filtering stationary signals. This is also in line with the theory.
As is the fact that the wavelet-based algorithms performed better on the non-stationary signal cases. The
Srivastava et al. [51] based thresholds did not work out as well as predicted. The threshold based on an idle
period is much more effective in suppressing environmental noise, whereas the threshold based on the MAD
did show the best results in filtering both environmental and measurement noise.

The choice of wavelet also influences the output of the filter. Comparing five different ones, lead to the
conclusion that symmetric wavelets are a better fit to filter stationary signals, than non-symmetric wavelets.
Natural non-stationary signals are better denoised if the discrete wavelet decomposition is constructed using
wavelets that mimic natural frequency behaviour. The Symmlets 8 and the Coiflet 3 outperformed the Haar,
Daubechies and bi-orthogonal wavelet, as predicted by their spectra and literature.

What is the added value of wavelet analysis over current time-series analysis methods in coastal engineering?
The added value of wavelet analysis is the addition of an extra dimension. Instead of observing signal be-
haviour in time or frequency, the wavelet coefficients are dependent on both time and frequency. Methods
allowing similar insights exist, such as the short-term Fourier transform, but are not optimal. The downside of
any time-frequency method is that a trade-off has to be made between the resolution in time and frequency.
The resolution cannot be the same compared to only the time or frequency domain.

This trade-off is most clear in the separation of waves, where the wavelet-based separation performs
worse than the Fourier-based separation for high frequencies. In the field of coastal engineering, however,
these high frequencies do not arise very frequent, and therefore the wavelet and Fourier-based separation
methods can be used interchangeably. However, when the mean water level changes over time, the wave
number in the wavelet-based separation can be adapted in order to separate the waves better. For the Fourier-
based method this is impossible; here lies the added value of the wavelet coefficients with respect to the cur-
rent method based on Fourier coefficients [21, 38, 63]. Solving the non-stationary problem based on wavelets
is much more expensive than solving the stationary problem based on Fourier coefficients due to the fact that
the dispersion relation and the complex exponent have to be solved many more times.

The limited time support of the wavelets ensures that local signal elements, for instance, a discontinu-
ity, only affects coefficients near that jump. This is in contrast to the Fourier coefficients, which are affected
globally by a local event. Filling missing data points leads to discontinuities which affect all Fourier coeffi-
cients. The disturbance of the wavelet coefficients can be estimated using the wavelet energy distribution.
This allows analysis of frequencies that are not possible in current methods. In coastal engineering long-
term measurements are very common and these often show defects like missing data points. The zones of
influence allow time-frequency analysis for these signals.

The examples in Section 5.2 show the wide employability of filtering signal elements in the discrete wavelet
domain. The best example of this wide applicability is the reconstruction of jumps using the Haar wavelet.
This reconstruction is not possible in any other domain than the wavelet domain. The large number of
wavelets available (Figure 2.5) leads to many opportunities. If this is not even enough, wavelets can be
created to fit the objective better. The filtering in the wavelet domain has most added value in separating
non-stationary signal elements from the rest of the signal. It is much more powerful than current time or
Fourier-based methods.

How can wavelet analysis improve time-series analysis and processing in the field of
coastal engineering?
All in all, wavelet analysis offers many improvements with respect to currently used time and Fourier-based
methods. The wavelet power spectrum and cross-wavelet applications can be applied to signals that are
disturbed by missing or incorrect data points. The effect of the gaps can be estimated based on the wavelet
energy distribution. This allows quantitative analysis of different frequency components in time.

The separation of waves for signals with a changing mean water level can be solved without dividing
the signal into parts. A continuous separated solution is a major improvement with respect to the non-
continuous solution based on the Fourier separation currently in use. Furthermore, many challenges can
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be solved using the discrete wavelet transform. The discrete wavelet decomposition gives more insight into
the behaviour of a signal and its noise. This allows analysts to justify the filter applied, which is a major
improvement with respect to the empirically based filters that are currently in use.

The use of the wavelet transform, however, often is more time-consuming. On the one hand, the num-
ber of arithmetic operations for most applications is an O(N ) more than the Fourier-based analyses. On the
other hand, there is more information to process, which also takes more time. However, this quantity of infor-
mation is what allows wavelet analysis to improve current methods. It provides more information about the
signals behaviour and is better able to cope with non-stationary signal elements. This results in a better sep-
aration of waves in non-stationary conditions, mathematically justified filters for all sorts of signal elements
and better insight into the time-frequency behaviour of a signal.

6.2. Recommendations and Future Research
In this section, some recommendations and suggestions for future research are shared. These are divided
into three items. The first concerns the time-frequency analysis based on the results from Section 3.1, the
second concerns the separation of waves based on the continuous wavelet coefficients. The third shows some
suggestions regarding the added value of the discrete wavelet transform. Some recommendations concerning
the noise filter algorithm are already discussed in Section 4.4.

The largest recommendation regarding time-frequency analysis based on the continuous wavelet coeffi-
cients is to apply it. Although the physical interpretation of the signals is not expressed in the same quantity
as the Fourier transform, wavelet analysis has proven to be an effective analysis tool in other fields of research,
especially for signals with non-stationary elements, which also occur frequently in coastal engineering. The
extension of the cone of influence to the zones of influence allows time-frequency analysis for signals with
missing data points. This extension is based on the wavelet energy distribution. Another measure could be
based on the window function that is present in most continuous wavelets. The statistical significance of
the wavelet power spectrum was not addressed in this thesis but is important in the time-frequency analy-
sis. Monte Carlo simulations can always offer good results but are very time-consuming. Available analytical
descriptions of background spectra can speed up time-frequency analysis using wavelets.

The separation of waves based on wavelet coefficients is as effective as the method based on Fourier
coefficients for waves considered in coastal engineering. Future research could focus on the use of the chosen
set of scales to evade the critical points where sin(k∆x) is (close to) zero. Therefore the reconstruction (2.25)
has to be adjusted. There is more to gain regarding the reconstruction; the used reconstruction equation
has quite a large reconstruction error in comparison to the discrete Fourier and wavelet reconstructions.
By implementing a reconstruction using the analysing wavelet, this error might be decreased, which affects
the separated waves. The design of a wavelet for the specific goal of separating non-linear waveforms (for
instance as presented by Lykke Andersen et al. [33]), could improve separation results as well. The error
analysis based on the SWAP (3.22) can be used to determine the error for the different wave sizes. Finally,
the wavelet-based algorithm can be expanded to sloping bathymetry [34], oblique incident waves [35] and
possible even waves travelling in two dimensions.

With respect to the discrete wavelet transform, only the tip of the iceberg has been shown. There are
many expansions such as wavelet packets, multi-wavelets and the use of different dilation factors that could
improve filter results [28]. This, however, will not benefit the user experience. The thresholding will become
much more complicated, especially for those with little background in discrete wavelet theory. To improve
the discrete wavelet filtering as applied in this thesis, a wavelet can be designed that complies to the charac-
teristics of the signal to filter. Additionally, a (wavelet-based) filter resulting in the desired filtered signal has
not been found yet for the presented coastal engineering signals. The development of such an algorithm is of
much added value for the filtering of much repeated measurements. For now manual fine-tuning seems to
be indispensable in filtering. For noise that is increasing in power in time, non-stationary thresholds can be
explored as well.
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A
Sampling Theory

This appendix is an expansion of the short summary of the assumption made in sampling theory to step from
continuous to discrete wavelet analysis (Section 2.2.2).

A.1. Nyquist-Shannon Sampling Theorem
As mentioned before the sampling of a signal can be seen as multiplying the continuous signal x(t ) by a set
of Delta impulses (Section 2.2.2). The Nyquist-Shannon theorem relates properties of the signal to the prop-
erties of the sampling frequency and vice versa. This theorem mainly has effect in the Fourier approach used
in both the Fourier transform as the short-term Fourier transform. The spectrum of the original signal x(t ),
X (ω), repeats at every frequency interval of fs in the spectrum of the sampled signal Xsampled(ω) [42]. These
repetitions are called images. However, if the original spectrum X (ω) is not limited by a maximum frequency
(also known as bandwidth) so that fmax ≤ fs /2, the repetitions of X (ω) result in overlapping. The high fre-
quency components of X (ω) are added to its low frequency components, resulting in a distorted Xsampled(ω).
The repetitions of the spectrum can be cut out by using a low pass filter. In this case the choice for a filter
selecting the domain [− fs /2, fs /2] is made. This, however, does not remove the overlapping components.

This distortion of the recovered signal due to insufficient sampling frequency is known as aliasing [42].
Signals with sudden transitions or noticeable noise often contain frequency components of which ω → ∞,
these are therefore impossible to catch by any sampling frequency and are always affected by aliasing ef-
fects. These might be small, however. To recover an analogue signal properly from the sampled signal,
fs ≥ 2 fmax [11, 42]. This minimum sampling frequency for a signal is known as the Nyquist frequency, de-
fined as fN = 2 fmax [11]. Sampling a signal under the Nyquist frequency is called under-sampling, sampling
with a frequency over the Nyquist frequency is called over-sampling. Is over-sampling a problem? No it is not,
but working with an over-sampled signal results in doing computations that are not strictly necessary. How-
ever, when the Nyquist rate is based on the bandwidth of the sampled signal, over-sampling could reduce
noise, aliasing and improves the resolution of your signal. These effects are all explained by a theorem called
the Nyquist-Shannon or Sampling Theorem. A proof of this theorem is given by Couch [11].

A.1.1. Filtering
The images of a spectrum can be taken out of the spectrum using a gate function G(ω). This function in
signal analysis is referred to as a filter. Filters can be applied using computers, but often also analogue fil-
tering (in the form of electronics) is used. An audio amplifier for instance often contains a set of analogue
filters to determine the audio signals for the low, mid and high speakers. Often measurement equipment
apply filtering effects to the measurements. A low pass filter is a filter that passes all frequencies under the
cutoff frequency ωm. In this same way, bandpass and high pass filters are used to respectively pass signals in
a certain bandwidth and above a certain cutoff frequency. This filtering can be interpreted as a multiplica-
tion in the frequency domain: Xfiltered(ω) = Xsampled(ω)G(ω). If Heaviside windows (13) are used, the Gibbs
phenomenon or ripple effect arises [42].

By truncating the spectrum of the signal, a lot of relative large ripples appear in the time domain. Choos-
ing a longer window leads to increased ripple frequency, with no effect on the ripples magnitude [42]. A
solution to this problem is choosing smoother windows, however, this results in loss of frequency resolution.
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A. SAMPLING THEORY 81

The filter determines the quality of the signal approximation [42]. Because the DFT is done using a com-
puter, the signal is of finite length T . This can be interpreted as multiplying the original infinite signal with a
block window w(t ) = 1[0,T ]. By the inversion property of the Fourier transform (G.7), this will result in rippling
effects in the spectrum, which is often observed in spectra.

A.1.2. Fourier Transform Requirements
The Fourier transform cannot just be applied to all functions existing. In mathematical terms the Fourier
transform only exists for functions in the L2 space [20]. This ensures the convergence of the integral in equa-
tion 2.8. In physical terms one would speak of functions with a finite energy [11]. Discrete signals can be
interpreted as truncated signals, which will thus always be of finite energy. For these, the Fourier transform
should be restricted to the representation of smooth, 2π-periodic functions [45]. When used to represent
non-periodic functions, or functions with discontinuities, the Gibbs-effect will be present in the spectrum,
and convergence around the boundaries will be non-uniform. There are efficient ways to weaken this effect
[45], but this is a large disadvantage of the Fourier transform. Vice versa, when signals in the Fourier domain
are truncated, the Gibbs effect shows in the time domain.

A.2. Regularity and Decay
The regularity of a signal x(t ) affects the decay of its Fourier transform |X (ω)| and vice versa [37]. The decay
depends completely on the worst singular behaviour of x(t ). If there exists a constant K and ϵ> 0 such that

|X (ω)| ≤ K

1+|ω|p+1+ϵ , then x ∈C p . (A.1)

For instance a step function, which is in C 0, results in a decay of O(1/|ω|).

A.2.1. Uncertainty Principle
Equation A.1 shows that for a fast decaying spectrum |X (ω)| the signal x(t ) has regular variations in time. The
energy of the signal x(t ) therefore has to be spread over a relatively large domain. The uncertainty principle
relates the localization of energy in time with the localization in frequency. This principle is known to many
as the Heisenberg uncertainty principle, for its implications in quantum mechanics which were discovered by
Werner Heisenberg in the late 1920’s. Assume a signal x(t ) of which the time spread is reduced, but the total
energy is kept constant:

xs (t ) = 1p
s

x

(
t

s

)
, (A.2)

then its Fourier transform (use Appendix G) is F{xs }(ω) =p
sX (sω). So the increased localization in the tem-

poral domain (s < 1) has led to a decreased localization in the frequency domain. These concentrations of
energy in time and frequency are therefore restricted.

This restriction is mathematically described by the uncertainty principle. The simplest explanation of this
principle is that if one wants to detect a frequency, one has to observe at least one period of the signal. So for
low frequencies, this takes a lot of time. For high frequencies, very small time ranges have to be considered.
The uncertainty principle knows a number of different mathematical formulations [6, 20, 28, 37]. The prin-
ciple [37] states that the product of the temporal variance σ2

t and the frequency variance σ2
ω of a signal x(t )

and its Fourier transform respectively are restricted by

σ2
t σ

2
ω ≥ 1

4
. (A.3)

The equality only holds for special cases of the signal. In addition, if a function x(t ) ̸= 0 has a compact support
(the signal is of finite length), then its Fourier transform F{x}(ω) cannot have a compact support and vice
versa [37].

Heisenberg Boxes
The so-called Heisenberg box is the result of this principle. This box limits the temporal and frequency pre-
cision of the STFT and the wavelet transform. The temporal and frequency variance are determined by the
choice of the window function g (t ). Assume g (t ) real and symmetric, with gs,ξ(t ) = e iξt g (t − s). Then the
variances are only dependent on time and frequency, and therefore independent of the translation s and
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the modulation ξ (see equation A.4). Hence gs,ξ(t ) corresponds to a Heisenberg box of area σtσω, centered
around (s,ξ) [37], this is illustrated in Figure A.1. Because the window function does not change, the STFT is
of identical resolution across the whole time-frequency plane.

σ2
t =

∫ ∞

−∞
t 2|g (t )|2 dt , σ2

ω =
∫ ∞

−∞
ω2|F{g (t )}(ω)|2 dt . (A.4)

Figure A.1: Heisenberg boxes of two windowed Fourier transforms, where f̂ :=F f [12, 37].

Choice of Windows
From the above, we may conclude that the resolution in time and frequency of the STFT is dependent on
the spread of the window in time and frequency. Notice that from the Heisenberg uncertainty principle (A.3)
follows that the minimal area of an Heisenberg box is 1/2. Mallat [37] shows that this can only be reached if
g is a Gaussian window function. However, the organization of this box, width vs. height, can be arranged, to
match a specific temporal or frequency resolution. This can be done by scaling the window g (t ) as in (A.2).
The wavelet transform uses this scaling, which results in a changing resolution in the time-frequency plane
as depicted in Figure 2.1d.

g (t ) finite?
For numerical applications, g (t ) must have a compact support, for it is finite. However, this results in an infi-
nite support of the window function in the frequency domain [37]. The frequency resolution of the transform
is maximised by concentrating the energy of F{g }(ω) near ω= 0. Then the temporal and frequency variance
σt and σω are not to deviating. If we for instance choose to shrink σω to 0 (i.e. by choosing g (t ) = δ(t )), this
results in the normal Fourier transform: high frequency resolution, but no temporal resolution.
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B
Multi Resolution Analysis

The multi resolution analysis or multi resolution approximation (MRA) is a common way of define the discrete
wavelet transform. The discrete wavelet transform (DWT) theory can be approached from the definition of the
CWT, with addition of the notion of frames in Hilbert spaces [6, 14, 37]. Here however, the MRA approach of
the DWT will be followed, which has two main advantages. The first advantage is that the MRA theory is
discrete to begin with, resulting in a more natural derivation of the DWT, which is easier to implement as a
computer algorithm [6, 28, 42]. Secondly, the MRA structure allows for convenient, fast and exact calculation
of wavelet coefficients by providing a recursion relation, for both the discrete and the continuous case. This
recursion relation is a relation between scaling coefficients at a given scale 2−n−1 and the scaling and wavelet
coefficients at the next coarser scale 2−n [59]. This section starts with the definition of a refinable function
and an MRA and it ends with the definition of the DWT. This is followed by the covering of bi-orthogonal
MRAs, in addition to the orthogonal ones discussed here. Through out this section the example of the Haar
wavelet will be used. First we start with a refinable function, which is a function ϕ : R→ C which satisfies a
two-scale refinement equation, or recursion relation of the form

ϕ(t ) =p
2

k1∑
k=k0

hkϕ(2t −k). (B.1)

The hk ∈ C are known as the recursion coefficients. A refinable function ϕ is called orthogonal if for k ∈ Z

[6, 28]
〈ϕ(t ),ϕ(t −k)〉 = δ0k holds. (B.2)

Haar function An example of such an orthogonal refinable function is the Haar function, defined
as

ϕHaar(t ) := 1[0,1] =
{

1 0 ≤ t ≤ 1
0 elsewhere

. (B.3)

The Haar function is orthogonal and refinable with h0 = h1 = 1/
p

2, as shown in Figure C.1.

The set {V j } j∈Z is called a orthogonal multi resolution analysis (MRA) of L2, where V j , j ∈Z is a sequence
of subspaces of L2, if it complies to six conditions [28]:

V j ⊂V j+1 (nested subsets) (B.4a)

∪ j∈ZV j = L2 (density axiom) (B.4b)

∩ j∈ZV j = {0} (separation axiom) (B.4c)

f (t ) ∈Vn ⇐⇒ f (2x) ∈ f (2t ) ∈Vn+1 ∀n ∈Z (scaling property) (B.4d)

f (t ) ∈Vn ⇐⇒ f (2x) ∈ f (t −2−nk) ∈Vn ∀n,k ∈Z (scaling property) (B.4e)

∃ϕ(t ) ∈ L2such that {ϕ(t −k) : k ∈Z} forms an orthogonal basis of V0 (scaling function) (B.4f)
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(a) The Haar scaling function ϕHaar(t )
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0
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1

(b) The refined Haar scaling function
ϕHaar(t ) =p

2(ϕHaar(2t )/
p

2+ϕHaar(2t −1)/
p

2)

Figure B.1: Example: the Haar scaling function.

There also exist MRAs built on non orthogonal scaling functions, these will be discussed later (Section B.5).
Orthonormalising an existing scaling function is possible, but the resulting new ϕ often does not have com-
pact support anymore, losing its function for practical applications [28]. The fourth condition (B.4d) ex-
presses the main property of an MRA: each subspace Vn consists of the functions in V0 compressed by a factor
2n , therefore spanning V0. From this can be concluded that a stable basis of Vn is given by {ϕnk (t ) : n ∈ Z},
where

ϕnk (t ) = 2n/2ϕ(2n t −k), k ∈N. (B.5)

The last condition (B.4f) implies that any function f ∈V0 can be written uniquely as a sum of coefficients
fk multiplied with a scaling function

f (t ) = ∑
k∈Z

fk
∗ϕ(t −k), (B.6)

converging in L2. The essential characteristic of the MRA is that ϕ(t ) ∈ V0 can be written in the terms of the
basis of V1 as

ϕ(t ) =∑
k

hkϕ1k (t ) =p
2
∑
k

hkϕ(2t −k), (B.7)

for some coefficients hk . This is called the refinement equation. From this follows that ϕ is a refinable func-
tion, for ϕ complies to the recursion relation (B.1). This refinement equation can be an infinite sum, but for
now we will continue assuming a finite sum. The orthogonality condition (B.2) in this form becomes∑

k
hk h∗

k−2ℓ = δ0ℓ. (B.8)

The orthogonal projection onto the subspace Vn , denoted with Pn , of an arbitrary function f ∈ L2 is given by

Pn f =∑
k
〈 f ,ϕnk〉ϕnk . (B.9)

Note that the projection Pn f cannot represent details smaller than 2−n . Therefore we say that functions in Vn

have resolution or scale 2−n . An MRA provides a sequence of approximations Pn f of increasing accuracy to a
given function f .

Orthogonal projection Lets continue with the Haar example. We are going to approximate the
function cos(t ) on the interval [0,10]. We start with the function ϕHaar (B.3), then

P0 f (t ) =∑
k
〈 f ,ϕ0k〉ϕ0k =∑

k
〈cos t ,ϕHaar(t −k)〉 ·ϕHaar(t −k).

And so the same can be applied to P1 f (t ):

P1 f (t ) =∑
k
〈 f ,ϕ1k〉ϕ1k =∑

k
〈cos t ,

p
2ϕHaar(2t −k)〉 ·p2ϕHaar(2t −k).
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The result of this approximation is given in Figure B.2. Note that the Haar function produces an
orthogonal MRA.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

t

f (t ) = cos t
P0 f
P1 f

Figure B.2: Orthogonal projection of the function cos t using the Haar function (B.3).

B.1. Fine Details
Orthogonal components In Example B.2 we have seen that we can approximate a function using
the scaling function ϕ. The representation of, for instance, a function x(t ) ∈ V1 can be done by the
space V1, but also by all spaces V j , j > 1 [42]. This representation, however, is not very efficient,
because more parameters than necessary are needed. How do you use less parameters? Note we
used the functions in V1 only to represent the part of x(t ) which could not be represented by V0.
If we only use the difference between the spaces V1 and V0 to describe x(t ), less parameters are
needed. Therefore the space W0 will be explicitly designed. This space W0 is in V1, but not in V0 and
therefore is called the orthogonal component of V0 in V1. A more mathematical description follows.

When this difference between two approximations at different levels is considered, the applicability of the
MRA rises. The difference between two levels of resolution 2−n and 2−n−1 is also called the fine detail at
resolution 2−n , denoted as Qn :

Qn f = Pn+1 f −Pn f . (B.10)

Note that Qn is also an orthogonal projection [28] and that its range Wn is orthogonal to Vn , so the direct sum
of the function space Vn and Wn is Vn+1:

Vn ⊕Wn =Vn+1.

This is the final step that brings us to another definition of the wavelet, approached discretely instead of
continuous. Wavelets are an element of an orthogonal MRA. For any orthogonal MRA with scaling function
ϕ [28] ⊕

n
Wn = L2 dense (B.11a)

Wk ⊥Wn if k ̸= n (B.11b)

f (t ) ∈Wn ⇐⇒ f (2t ) ∈Wn+1∀n ∈Z (B.11c)

f (t ) ∈Wn ⇐⇒ f (t −2−nk) ∈Wn∀n,k ∈Z (B.11d)

∃ψ ∈ L2, called a wavelet, such that {ϕ(t −k) : k ∈Z} forms an orthogonal basis of W0

and {ψnk : n,k ∈Z} forms a stable basis of L2. (B.11e)

Since ψ ∈V1, it can be represented as

ψ(t ) =∑
k

gkϕ1k =p
2
∑
k

gkϕ(2x −k), with gk = (−1)k hN−k , with N odd. (B.11f)
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Here ψ is known as the mother wavelet. In terms of the wavelet function, the projection Qn is given, in the
same way as Pn (B.9):

Qn f =∑
k
〈 f ,ψnk〉ψnk . (B.12)

This projection is the final step to the discrete wavelet transform DWT.

The Haar wavelet Now we will apply this to the example of the Haar function from Example B.1, to
introduce our first wavelet build using MRA: the Haar wavelet (see Figure B.3). The coefficients gk

from (B.11f) to create the Haar wavelet are {g0, g1} = {h1,−h0} =
{1/

p
2,−1/

p
2}, resulting in the function ψHaar(t ) = 1[0;0.5)(t )− 1[0.5;1)(t ).

−0.5 0 0.5 1 1.5
0

0.5

1

(a) The Haar scaling function ϕHaar(t )

−0.5 0 0.5 1 1.5

−1

0

1

(b) The Haar wavelet ψHaar(t )

Figure B.3: The Haar scaling function and wavelet.

B.2. Discrete Wavelet Transformation
We have seen that given a function f ∈ L2 we can represent it as a complete decomposition in terms of detail
at all levels:

f =
∞∑

k=−∞
Qk f .

As an alternative one can choose to start at a level ℓ and use the approximation at resolution 2−ℓ together
with the detail at finer resolution, to decompose f as:

f = Pℓ f +
∞∑

k=ℓ
Qk f .

An infinite sum is not practical applicable, so the sum is reduced to a finite sum: therefore we assume f ∈Vn

for some n > ℓ. Then the discrete wavelet transform (DWT) is described by

f = Pn f = Pℓ f +
n−1∑
k=ℓ

Qk f . (B.13)

The DWT approach is similar to the CWT approach, except of using continuous scale a and translation b,
these are chosen discretely as scale n and translation k. The mother wavelet ψ(t ) is chosen and the daughter
wavelets are

ψnk (t ) = 2n/2ψ(2n t −k). (B.14)

The nk Heisenberg box has size 2−nσt × 2nσω, with different spacings for different frequencies, as for the
continuous case. The inverse operation of the DWT will be discussed in Section B.7.

DWT This is the last time the Haar example will be discussed. For the Haar example P0 f and P1 f
have been computed, following the DWT (B.13) we should find that P1 f = P0 f +Q0 f . Therefore we
use (B.12) to find

Q0 f =∑
k
〈 f ,ψ0k〉ψ0k =∑

k
〈cos t ,1[0;0.5)(t −k)− 1[0.5;1)(t −k)〉 · (1[0;0.5)(t −k)− 1[0.5;1)(t −k)).
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The result is shown in Figure B.4.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5
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t

f (t ) = cos t
P0 f
Q0 f
P1 f = P0 f +Q0 f

Figure B.4: Discrete wavelet decomposition of cos t using the Haar function (B.3) and Haar wavelet.

B.3. Requirements for Wavelet Transform
As for the Fourier transform, the integral defining the coefficients should converge. So, just like for the Fourier
transform, only functions in the L2 space are theoretically suitable for wavelet transformation [37]. For dis-
crete signals some requirements will be discussed in Section B.7. However, effects such as the Gibbs effect
are not present in the wavelet transform. This makes the wavelet transform much more suitable to use for
signals with discontinuities. The Fourier transform can also show unwanted effects in the reconstruction of
non periodic functions, for instance a linear function. The reconstruction of the wavelet transform for both
non periodic as periodic functions is close to perfect. Because the wavelet transform (up to a certain scale)
only catches local effect, the wavelet transform is also better applicable to non-stationary signals.

B.3.1. From CWT to DWT
As mentioned before, there are two ways to derive the DWT. Following the MRA theory, we have found an
expression for the (discrete) wavelet coefficient belonging to wavelet ψnk (from (B.12)): 〈 f ,ψnk〉. The defi-
nition of the inner product on L2 shows the similarity with the continuous wavelet coefficient from (2.18).
The CWT and DWT coefficients are defined through the same integral. Therefore a large set of functions is
suitable for both continuous and discrete wavelet transform. However, the most are better suited for one or
the other; an overview is given in Appendix C. The DWT cannot be derived directly from the CWT expression
(2.18), because the set of discrete scales and translations cannot be chosen arbitrarily. The justification of this
choice can be made through the notion of frames from the Hilbert space theory, which results in the same
expression for the DWT as presented in equation B.13 [6, 14, 37]. A major advantage of the MRA approach
is that an efficient algorithm of the DWT is easily derived, for both orthogonal and non orthogonal wavelets
(see Section B.5). This algorithm will be explained to the reader in Section B.7.

B.4. The Design Equations
The Fourier transforms of the scaling function and the wavelet are indispensable in the design of wavelets.
Here they are shortly reviewed. H(ω) and G(ω) are known as the symbol of respectively the refinable function
and the wavelet[28]:

Φ(ω) =Fϕ(ω) = H(ω/2)Φ(ω/2), with H(ω) = 1
p

2

∑
k

hk e−i kω, (B.15)

Ψ(ω) =Fψ(ω) =G(ω/2)Ψ(ω/2), with G(ω) = 1p
2

∑
k

gk e−i kω. (B.16)
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The orthogonality condition (B.8) in the Fourier domain becomes

|H(ω)|2 +|H(ω+π)|2 = 1. (B.17)

Relationship (B.15) can be substituted recursively, to find the formal limit

Φ(ω) =
[ ∞∏

k=1
H(2−kω)

]
Φ(0). (B.18)

This approach is effective in the creation of wavelets. This relation can also be used to calculate the refine-
ment equation corresponding to a certain low pass filter [31]. If convergence of this infinite product is as-
sumed, this expression provides a way to compute ϕ(t ) theoretically. Φ(0) can be chosen arbitrarily: solutions
of the refinement equation (B.7) are only defined up to a constant factor. Choose Φ(0) ̸= 0 to find solutions
other than ϕ(t ) = 0. Multiples of the solution of the equation are also solutions to the equation.

B.4.1. Cascade Algorithm
The cascade algorithm is a more suitable way than (B.18) to approximate point values of ϕ(t ) [28]. This al-
gorithm applies a fixed point iteration applied to the refinement equation. Starting by choosing a suitable
scaling function ϕ(0)(t ), and define

ϕ(n)(t ) =p
2
∑
k

hkϕ
(n−1)(2t −k), (B.19)

which will converge in many cases.

B.5. bi-orthogonal Wavelets
In the derivation of the DWT we used the existence of orthogonal MRAs. These orthogonal MRAs, however,
are not very common [28] and therefore the bi-orthogonal MRA will be discussed. We first start with an
example from linear algebra, to explain the concept of bi-orthogonality.

bi-orthogonal system Consider two independent vectors b1 and b2 ∈R2. By independence, b1 and
b2 are a basis for R. If b1 ⊥ b2, this basis is called orthogonal, if also both vectors are unit vectors,
the basis is called orthonormal. Any vector x ∈ R2 can be written as x = αb1 +βb2. If we choose
B = [b1,b2], then we can solve for the coefficients:

x = B

[
α

β

]
= Bc ⇒ c = B−1x .

This, however, is not as easily solved for a nonorthogonal set as for an orthogonal set of basis vectors.
Therefore the dual base {b̃1, b̃1} is introduced. These vectors comply to [42]

〈b1, b̃1〉 = 1, 〈b2, b̃2〉 = 1, 〈b2, b̃1〉 = 0, 〈b1, b̃2〉 = 0,

such that we can use the relation c = B−1x = B̃ x , to determine the coefficients α and β. This matrix
B̃ is chosen B̃ = [

b̃1, b̃1
]ᵀ

such that

x = (
b̃ᵀ

1 x
)

b1 +
(
b̃ᵀ

2 x
)

b2. (B.20)

E.g. we choose two non orthogonal vectors, spanning R2 and a vector x :

b1 =
[

1
0

]
, b2 =

[
1/2p
3/2

]
x =

[
1
1

]
.

The dual base for the given b1 and b2 is given by

b̃1 =
[

1
−1/

p
3

]
and b̃2 =

[
0

2/
p

3

]
.
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Then

b̃ᵀ
1 x = 1−1/

p
3, b̃ᵀ

2 x = 2/
p

3, ⇒ (1−1/
p

3)

[
1
0

]
+2/

p
3

[
1/2p
3/2

]
=

[
1
1

]
= x .

The sets {b1,b2} and {b̃1, b̃2} are a bi-orthogonal system of R2.

As the word bi in bi-orthogonal implies, the bi-orthogonal MRA has not one but two refinable functions
as a basis. Refinable functions in general are relatively easy to find, but a lot of them do not result in orthog-
onal MRAs, so the orthogonality conditions will be replaced by milder bi-orthogonality conditions [28]. Two
refinable functions ϕ and ϕ̃ are called bi-orthogonal if

〈ϕ(x), ϕ̃(x −k)〉 = δ0k .

ϕ̃ then is referred to as the dual of ϕ. This dual, however, is not unique [28], dual lifting, a process dis-
cussed later, will produce numerous other duals of the same ϕ. These two scaling functions define two MRAs:
{Vn}n∈Z and {Ṽn}n∈Z. Then the construction of the projections follows the same line of reasoning as in Exam-
ple B.5: there are two projections, Pn (B.21a) and P̃n (B.21b) to project a function from L2 to {Vn}n∈Z and
{Ṽn}n∈Z respectively.

The projections Qn (B.21c) and Q̃n (B.21d) are defined as before, spanning the spaces {Wn}n∈Z and {W̃n}n∈Z
respectively. The space Wn is now orthogonal to Ṽn , such that the fine detail relation (B.10) still holds. The
same hold for W̃n and Vn . Now note that Vn⊕Wn =Vn+1 still holds, but now as a nonorthogonal direct sum in-
stead of an orthogonal one. Keinert [28] states that finding wavelet functions ψ and ψ̃ which span the spaces
Wn and W̃n is not that hard, but stability is not guaranteed.

Pn f =∑
k
〈 f , ϕ̃nk〉ϕnk , (B.21a)

P̃n f =∑
k
〈 f ,ϕnk〉ϕ̃nk , (B.21b)

Qn f = Pn+1 f −Pn f , (B.21c)

Q̃n f = P̃n+1 f − P̃n f . (B.21d)

When an orthogonal wavelet is used for decomposition, the representation of the signal is the most com-
pact: the number of convolutions at a scale is proportional to the size of a scale [55]. This will result in
a relative sparse representation of the signal. This is characteristic is very desirable in signal compression
[28]. An aperiodic shift in time-series produces a different wavelet spectrum, this is often not beneficial in
time-series analysis. When a bi-orthogonal wavelet is used, the large scales are highly redundant, the wavelet
coefficients at adjacent times are highly correlated. This makes the bi-orthogonal wavelets better applicable
to time-series analysis where smooth, continuous variations in wavelet coefficients are expected [55].

B.6. Discrete Moments
In Section C.1 the importance of the number of vanishing moments for the wavelet transform has been ad-
dressed. The discrete wavelet do have vanishing moments, just like the continuous case. They, however, can
be defined by their coefficients: the kth discrete moment of the refinement function ϕ and the wavelet ψ
are defined by their coefficients hk and gk . The m denotes the moment of the refinable function, the n the
moment of the wavelet [28].

mk = 1p
2

∑
ℓ

ℓk hℓ, nk = 1p
2

∑
ℓ

ℓk gℓ,

mk = i k dk h

dωk
(0), nk = i k dk g

dωk
(0).

If in particular m0 = h(0) = 1, the zeroth moment of a refinement function is 1. These discrete moments are
uniquely defined and easy to calculate. They can be computed using the relation between the discrete and
continuous moments:

µk = 2−k
k∑

p=0

(
k

t

)
mk−pµp , νk = 2−k

k∑
p=0

(
k

t

)
nk−pµp .
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B.7. Discrete Wavelet Transform Algorithmic
In this section of the chapter the two or three steps of the algorithm performing the DWT are explained. Some
different formulations of the DWT algorithm are discussed, which are essential to the building of wavelets.
The resulting algorithm needs O(N log2 N ) operations, which as fast as the DFT„ however, it is asymptotically
faster than the STFT algorithm, using O(N 2 log2 N ) operations. The two or three steps to do a complete DWT
for a 1D signal of finite length are [28]:

1. Optional: preprocessing of the signal (Section B.10);

2. Handling the boundary conditions (Section B.11); and

3. Applying the algorithm (Section B.8).

Finally there are different ways of formulation and implementation of the algorithm. These will be discussed
at the end of this section. This section is started with the final step of the DWT: the algorithm. Note we
assume the use of bi-orthogonal wavelets, if one uses a orthogonal wavelets the tildes in this explanation can
be dropped. The DWT is based on the decomposition of the space Vn :

Vn =Vℓ⊕Wℓ⊕ . . .⊕Wn−1.

B.8. The Algorithm
We start with a function s ∈ Vn (or signal), which by the theory can be represented by its coefficient vector
sn = {snk }k=1,...,N :

s(t ) =∑
k

s∗nkϕnk (t ). (B.22)

The function can also be expanded into two parts:

s(t ) =∑
k

s∗ℓkϕℓk (t )+
n−1∑
j=ℓ

∑
k

d∗
j kψ j k (t ).

The notations s and d originate from the Haar wavelet, where s denotes the sum and d the difference. For
regular wavelets, it is easier to remind s as the smooth part and d as the (fine) detail [28]. The complex
conjugate notation of the coefficients comes from the multi-wavelet theory. The DWT and inverse DWT
(IDWT) convert the coefficients snk to sℓk and d j k , j = ℓ, . . . ,n−1 and vice versa. Signals consisting of equally
spaced samples of the signal s frequently are in the form s(2−nk). The conversion of s(2−nk) to snk is called
preprocessing, the reverse processes post-processing. Both are explained later. So the signal s is decomposed
in its components in Vn−1 and Wn−1 by

s = Pn−1s +Qn−1s =∑
k
〈s, ϕ̃n−1, j 〉ϕn−1, j +

∑
k
〈s,ψ̃n−1, j 〉ψn−1, j

⇒ sn =∑
k

s∗n−1, jϕn−1, j +
∑
k

d∗
n−1, jψn−1, j .

By this the (discrete) signal s, sn in vector notation, is decomposed in two pieces: sn−1 (B.23a) and dn−1

(B.23b) [28]. From this the signal can be reconstructed following (B.23c).

sn−1, j =
∑
k

h̃k−2 j snk , (B.23a)

dn−1, j =
∑
k

g̃k−2 j snk , (B.23b)

snk =∑
j

(h∗
k−2 j sn−1, j + g∗

k−2 j dn−1, j ) (B.23c)

Where we define

〈ϕn−1, j , ϕ̃nk〉 = hk−2 j , 〈ϕn−1, j ,ψ̃nk〉 = gk−2 j , 〈ϕ̃n−1, j ,ϕnk〉 = h̃k−2 j , 〈ψ̃n−1, j ,ϕnk〉 = g̃k−2 j .
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B.8.1. Convolution Implementation
The decomposition step can be written as two discrete convolutions, of computation time O(N log2 N ) using
the same improvement as the FFT algorithm. These convolutions are

((−)h̃ ∗ sn) j =
∑
k

h̃−( j−k)snk , ((−)g̃ ∗ sn) j =
∑
k

g̃−( j−k)snk , (B.24a)

which are followed by down-sampling to determine sn−1 and dn−1 (assume computation time of O(1)):

sn−1 = (↓ 2)((−)h̃ ∗ sn), dn−1 = (↓ 2)((−)g̃ ∗ sn). (B.24b)

This is only one step of the algorithm, in practice these steps often repeated several times:

sn → sn−1,dn−1

sn−1 → sn−2,dn−2

...

sℓ+1 → sℓ,dℓ.

Because in every step, the length of the components sn−1, dn−1 is half the length of the components sn , dn ,
the algorithm has to compute O(N )+O(N /2)+O(N /4)+ . . . =O(N ) convolutions. This results in O(N 2 log2 N )
arithmetic operations to determine the discrete wavelet transform of a signal. The reconstruction of the signal
from the DWT is opposite to the decomposition: first upsampling, followed by two convolutions:

sn = h∗∗ (↑ 2)sn−1 +g∗∗ (↑ 2)dn−1. (B.24c)

B.8.2. Programming the Routine
When we start with a signal sn of length N , the first step produces sn−1 and dn−1, which are both of length
N /2. These signals are most of the time stored in the same place as the original signal sn . So the output of the
DWT routine after several steps becomes then 

sℓ
dℓ

dℓ+1
...

dn−1

 .

This vector can be stored in the same space as sn with which the routine started. This representation results in
an ugly programmable routine. The matrix formulation of the DWT results in a more appealing matrix-vector
product notation.

Both the decomposition as the reconstruction can be implemented as infinite matrix-vector products
[28]. Here (sd )n = [

. . . , sn,−1,dn,−1, sn,0,dn,0, sn,1,dn,1, . . .
]ᵀ

, such that the decomposition step can be written
as

(sd )n−1 = L̃sn , with L̃ =


· · · · · · · · ·
· · · L̃0 L̃1 · · ·

· · · L̃0 L̃1 · · ·
· · · · · · · · ·

 , for L̃k =
[

h̃2k h̃2k+1

g̃2k g̃2k+1

]
. (B.25)

The reconstruction step can thus be written as

sn = L∗(sd )n−1,

where the perfect reconstruction condition is expressed as L∗L̃ = I . The finite, and therefore applicable ver-
sions will be derived when the boundaries are discussed.
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B.9. Filter Formulation
The filter formulation of this algorithm will be discussed shortly for it is widely used [40, 42, 54]. In the algo-
rithm the decomposition is given by a convolution and a down-sampling. The recomposition is given as a up
sampling step follow by a convolution with the same signal. These steps are shown in Figure B.5. From these
figures it is clear that both filters g [n] and h[n] have different properties. The filter g [n] is a high pass filter,
whereas the filter h[n] is a low pass filter. The down-sampled low pass filter output is then treated as an input
for the next stage, passing through the same analyzing filters. From this follows that admissible wavelets are
either high pass or band pass filters [42]. This process can be repeated until the desired number of stages is
achieved. An example for three stages is found in Figure B.6. In the recomposition it is clear why only the
most coarse smooth part and all fine details are saved. By omitting the finest details, a signal can for instance
be compressed. The representation in Figure B.6 is known as the dyadic implementation. The recomposition
filters are known as interpolating filters. If wavelet packets are used, not only the smooth part is fed into the
decomposition again, but also the detail parts are decomposed. If not all detail parts are decomposed, this
can lead to interesting distributions of the time-frequency plane.They are almost nowhere used to display
data, but have different applications in mostly compression and noise reduction [42].

Wavelets can be designed from this filter perspective, where h[n] can be seen as high pass filter and g [n]
as a low pass filter. This design perspective will not be addressed much in this thesis. However, note that the
choice of filter h[n] has impact on the vanishing moments, the regularity and the decay of the accompanied
wavelet. The choice of the coefficients of h[n] that lead to maximum regularity differs from the choice of
a maximum number of vanishing moments [14]. The filter implementation of the DWT algorithm is also
known as the Fast Wavelet Transform (FWT) and was first proposed by Mallat in 1988. It finds it strength
in using the Fourier transform of the signals and the convolution property (6) [37]. This will be elaborated
further in Section B.12.

B.10. Pre- and Post-processing
As mentioned in the begin of Section B.7, the data, mostly in the form of a signal s(2−nk), has to be converted
to the coefficients snk from (B.22). Keinert [28] discusses a few options to find the coefficients snk (assume
the signal s(t ) is real for simplification):

• Use for the coefficients their exact values: snk =
∞∫

−∞
s(t )ϕ̃nk (t ) dt . This is only feasible for continuous

signals s(t ).

• For discrete signals, for instance the trapezoidal rule can be used: snk ≈ 2−n/2 ∑
ℓ s(2−nℓ)ϕ̃(ℓ−k) dt . It

is important to note that the point values of ϕ̃ at the integer points are known. Higher order quadrature
rules can be used too. The trapezoidal rule is one of the many quadrature rules, in general form written
as [58] ∫ t2

t1

f (t ) dt ≈
K∑

k=1
wk f (vk ),

where K is the number of quadrature points, wk the weights and vk the quadrature points in [t1, t2]. The
Gaussian rules are a special type of these quadrature rules, where the integration points and weights
are chosen such that the highest order of accuracy is reached for a particular number of integration
points vk .

• Keinert [28] suggests to use snk ≈ s(2−nk). Both Walnut [59] and Keinert [28] refer to the book of Strang
and Nguyen [52], where this assumption is called a wavelet crime. However, Keinert [28] shows that
for smooth s (at least two times differentiable) the truncation error is smaller than the coefficients by a
factor of order 2−n .

(a) One step decomposition (b) One step reconstruction

Figure B.5: Filter formulation of the DWT algorithm.
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(a) Three steps decomposition

(b) Three steps reconstruction

Figure B.6: Filter formulation of the algorithm for a three step algorithm

Post-processing is the above described process in reverse: the conversion from snk to s(t ). There are two
main approaches for post-processing:

• Adding up scaling function expansions in between sampling points to retrieve the continuous signal
s(t ). Because many scaling functions are not smooth, this might lead to a non continuous reconstruc-
tion [28].

• The alternative is finding intermediate points using interpolation.

• Other approaches from papers or books, a start point is given by Keinert [28].

B.11. Boundaries: Different Approaches
In Section B.8 the infinite approach of the algorithm and the corresponding implementation (B.25) has been
discussed. Of course this infinite approach is not implementable, therefore boundaries are introduced to
abbreviate the infinite approach to a finite implementation. As for the infinite length DWT the finite length
algorithm will be assumed linear, where the form of L̃n is changed to:

(sd )n−1 = L̃n sn , with L̃n =
L̃b ⊘

L̃i

⊘ L̃e

 . (B.26)

Here the subscript b, i and e stand for begin, interior and end. In the begin and end parts of the matrix, the
boundaries will be handled. Generally the size of Lb and Le are small with respect to the size of Ln and they
both remain constant at all levels. The interior L̃i is a segment of the infinite matrix L̃ from (B.25). This part
makes up the most of the matrix, approximately doubling in size when going from n to n +1. For the IDWT
to exist, the matrix L̃n has to be invertible. In the orthogonal case L−1

n = L∗
n , for the bi-orthogonal case the

’inverse’ L∗
n has an analogous structure, being

L∗
n =

L̃∗
b ⊘

L̃∗
i

⊘ L̃∗
e

 .
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There are three main ways to implement boundaries [28]. These boundary methods often do require some
preprocessing. The choice for a specific method is data dependent. This will be discussed in the following
enumeration. If one has non-periodic, non-symmetric data, and the boundary function approach is too
hard, Keinert [28] advises to use linear extension for it is easy to implement and does not introduce artificial
jumps in the data. For signals with enough zeros at the begin and end of the signal, the boundary handling is
irrelevant.

• The data extension approach. This method extends the signal across the boundaries, such that each
extended coefficient is a linear combination of known coefficients. The resulting L̃n can be singular,
though most of the times it is not. The inverse L∗

n might not have the correct form such that reconstruc-
tion is possible. In this method several extension methods, known as modes in Matlab and Python:

– Periodic extension: the signal is assumed to be periodic, so the h- and g -coefficients disappear-
ing on the left side of the matrix appear at the right and vice versa. This extension always works,
preserving orthogonality and approximation O(h). Matlab and Python also know an extension
method called periodization [40, 54]. Periodization is virtually the same as periodic extension„
however, it ensures the smallest length wavelet decomposition. When the data is not truly peri-
odic, the jump at the boundary leads to large d-coefficients [28].

– Zero extension, also known as zero padding is done by truncating the infinite matrix L̃. The non-
existing infinite part of the signal is observed as 0’s. This also introduces jumps, as the periodic
extension, and this method does not preserve orthogonality or approximation orders [28].

– Symmetric extension mirrors the data in the endpoints, resulting in the coefficients in L̃ that dis-
appear at the ends, get mirrored back. There are three ways of reflection: whole-sample sym-
metry, half-sample symmetry and antisymmetric reflection (only useful in the case s0 = 0). If the
data extension type matches the type of symmetry of the scaling function, the finite DWT will be
equivalent to an infinite DWT [28].

– Extrapolation does not conserve the orthogonality condition. Constant extrapolation leads to ap-
proximation O(2−n), linear approximation (also known as smooth-padding [54]) to order O(2−2n)
[28].

• The matrix completion approach guarantees L̃nL∗
n = I , approaching the problem from a linear algebra

view. The downside is that this approach generally does not conserve approximation order.

• The boundary function approach is the most time-consuming approach, preserving both orthogo-
nality and approximation order. This approach introduces special functions at the boundaries of the
interval which, unlike ϕ0, do not extend over the border. The decomposition and reconstruction algo-
rithm have to be worked out newly. The hardest part is to derive boundary wavelets which have the
same number of vanishing moments as the original [37].

• Instead of assuming the periodicity of the signal, periodic wavelets can be used. Wavelets that cross
one border of the domain are made periodic [37]. These wavelets create high amplitude wavelet coef-
ficients in the neighborhood of the borders of the domain and do not have vanishing moments. The
method is mathematically the same as extending the data periodically [37].

DWT decomposition An example of a DWT decomposition: the signal at the bottom is decom-
posed four times. Note that the length of the detail coefficient vector is half the length of its pre-
decessor and that the resulting smooth part and the fourth detail coefficients vector have the same
length. The coefficients on the right have been translated to their contribution to the signal (left).
The sum of the contributions results in the original signal. The error is negligible: in the order of
10−15 (see Figure B.7c)

B.12. Formulations
Till now we have seen the so-called matrix notation of the DWT. This notation is very convenient for those
used to linear algebra. There are two different formulations of the DWT. The first is the modulation formu-
lation, which is a way of looking at the DWT from Fourier analysis. This way is not implementable, but this
is useful in the creation of new wavelets bases, for instance by using the lifting method [28].The polyphase

MASTER THESIS T. DE ROOIJ



B. MULTI RESOLUTION ANALYSIS 95

formulation arranges the calculation of the DWT in such a way that convolutions are used without wasting
computations. The direct implementation of the DWT in terms of the convolutions throws away the half of
the computed values in the downscaling step. This is very regrettable, therefore the polyphase formulation
uses convolutions without wasting computations [28].

(a) An example of a DWT decomposition: the signal at the bottom is decomposed four times using the DWT
algorithm. On the right the coefficients are translated to their contribution to the signal.

Figure B.7: Figures with Example B.6.
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(b) The detail coefficients from (a) depicted differently.

(c) The error between the reconstruction and the original signal from Example B.6, in numerical terms is the
error 0.

Figure B.7: Figures with Example B.6.

B.12.1. Modulation Formulation
Here we use the symbol formulation. For the discrete sequence a = {ak } the symbol is defined as a(ω) =∑

k ak e−i kω. Remember that c = a∗b, then c(ω) = a(ω)b(ω). Down- and up-sampling are also defined for the
Fourier domain as

(↓ 2)a(ω) = 1

2
[a(ω/2)+a(ω/2+π)] ,

(↑ 2)a(ω) = a(2ω).

The full DWT algorithm in terms of the symbols is the modulation formulation. The original signal is
sn(ω), then the decomposition in sn−1 and dn−1 becomes

sn−1(2ω) = 1p
2

[
h̃(ω)sn(ω)+ h̃(ω+π)sn(ω+π)

]
,

dn−1(2ω) = 1p
2

[
g̃ (ω)sn(ω)+ g̃ (ω+π)sn(ω+π)

]
.

In this we recognise the convolution step from (B.24a) and the sampling step from (B.24b). The reconstruction
is the same as (B.24c):

sn(ω) =p
2[h(ω)∗sn−1(2ω)+ g (ω)∗dn−1(2ω)].
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This formulation can also be given in the matrix form. For the decomposition equation as[
sn−1(2ω)
dn−1(2ω)

]
= M̃ · 1

2
p

2

[
sn(ω)

sn(ω+π)

]
, with M(ω) =

[
h(ω) h(ω+π)
g (ω) g (ω+π)

]
. (B.27)

This matrix M is called the modulation matrix. For the reconstruction equation a redundant statement has
to be added, which is the second row of the matrix formulation:[

sn(ω)
sn(ω+π)

]
= M∗ ·p2

[
sn−1(2ω)
dn−1(2ω)

]
.

From these expressions another bi-orthogonality condition can be derived: M(ω)∗M̃(ω) = I . Note again that
for the orthogonal MRA case, the tildes can be eliminated. The condition M(ω)∗M(ω) = I is then called
paraunitary.

B.12.2. Polyphase Formulation
The polyphase formulation begins by splitting the signal and the recursion coefficients into odd and even
phases. The notation used for the even and odd phases a0 and a1 of a sequence a = {ak } is defined by a0,k =
a2k and a1,k = a2k+1. Using this notation, the convolution (B.24a) to find sn−1 can be written as [28]

sn−1 = (−)h̃0 ∗ sn,0 + (−)h̃1 ∗ sn,1.

The odd and even phases are computed separately and finally recombined. Note that the number of floating
point operations is unchanged from the direct implementation.

The polyphase symbols of the sequence a are given by

a0(ω) =∑
k

a0,k e−i kω =∑
k

a2k e−i kω, a1(ω) =∑
k

a1,k e−i kω =∑
k

a2k+1e−i kω.

Then the decomposition of the signal s can be written as[
sn−1(ω)
dn−1(ω)

]
= P̃

[
sn,0(ω)
sn,1(ω)

]
with P (ω) =

[
h0(ω) h1(ω)
g0(ω) g1(ω)

]
.

Where P (ω) is called the polyphase matrix. As for the modulation approach, the tildes can be dropped when
an orthogonal MRA is used. The reconstruction step then is[

sn,0(ω)
sn,1(ω)

]
= P∗

[
sn−1(ω)
dn−1(ω)

]
.

The bi-orthogonality condition in this formulation becomes P (ω)∗P̃ (ω) = I . For the orthogonal MRA the
polyphase matrix is paraunitary, as for the modulation formulation.

B.12.3. Multi-wavelets and Wavelet Packets
Wavelet analysis knows two extensions which are really common in modern research: multi-wavelets and
wavelet packets. These will be briefly be addressed. Remember the definition of the scaling function ϕ via the
recursion relation (B.1), and its application in the refinement equation (B.7). Generalizations of this equation
lead to all kind of other constructions [28, 42, 49]: wavelet packets, multivariate wavelets, ridgelets, curvelets,
vaguelettes and much more. This theory is out of the scope of this thesis, but will be explained in a few
sentences. The multi-wavelet theory is more complicated than the wavelet theory. The general idea is the
replacement of the scaling function ϕ(t ) by a function vector ϕ(t ) (in bold), known as a multiscale function

ϕ(t ) =

ϕ1(t )
...

ϕr (t )

 .

In the refinement equation (B.7) the recursion coefficients will become r × r matrices Hk :

ϕ(t ) =p
m

∑
k

Hkϕ(mt −k).
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Also note the addition of the dilation factor m. In the MRA theory discussed so far, the factor m = 2 was
used. The whole derivation can be done using a factor m, which adds some complexity to the notation and
is therefore skipped. The factor m = 2 is also well suitable for computer implementation. The advantage
of multi-wavelets is their short support, coupled with high smoothness and high approximation orders. In
addition they can be both symmetric and orthogonal, in contrary to the ’normal’ wavelets. The disadvantages
are the complexity of the theory and the requirement of pre- and post-proccesing steps in the algorithm,
which takes more computation time [28].

A wavelet packet choses different decomposition [49]. The spaces Wn are "split" again in two orthogonal
subspaces. The basis functions for these subspaces, are constructed from both the refinable function as the
wavelet. This approach leads to a redundant representation of the input data, and is best known by its use
in the FBI Fingerprint Compression Specification [49]. The time-frequency plane distribution changes from a
’regular’ grid such as in Figure 2.1 but can be something like Figure B.8, still the boxes have the same area by
the Heisenbergs restriction. These techniques are not discussed further in this thesis.

Figure B.8: Example of the distribution of the time-frequency plane by wavelet packets.
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C
Wavelets

In this appendix an overview of important wavelet characteristics (Section C.1) and the most common wavelets
is presented. These wavelets are summarised in Figure 2.3 and 2.5. Two commonly used numerical packages
provide an extensive toolbox to apply wavelet transformations, including a lot of wavelets [40, 54]. When the
wavelets characteristics originate from a toolbox, this is cited as [TB]. The continuous wavelets are discussed
in Section C.2 and the discrete in Section C.3.

C.1. Wavelet Characteristics
In Appendix 2 the formal definition of a wavelet is given by (2.20). The discrete approach of the definition of a
wavelet is presented in Section B.2. These wavelets do have the same characteristics. But what characteristics
do make a wavelet a good wavelet? Sweldens [53] gives a very general description of wavelets to start with:
"Wavelets are building blocks that can quickly decorrelate data." This sentence contains the three main char-
acteristics of a wavelets. A wavelet is a building block, the first characteristic, for a general function or time
signal. This is consistent with the MRA approach: the mathematical description of a basis fits this building
block description.

The second characteristic is the power to decorrelate. This has not been addressed much yet, but the main
message is that we can get an accurate approximation of the original signal x(t ) by only using a small fraction
of the wavelet coefficients. Therefore the wavelet in a way has to resemble the data we want to represent, this
leads to three core properties [53]:

• A wavelet has to have compact support to ensure localization in time;

• a wavelet has to be smooth, which results in decay towards high frequencies, to also have localization
in frequency. This localization in frequency is referred to as selectivity;

• and a wavelet has to have vanishing moments, which results in decay toward low frequencies.

The last characteristic is hidden in the word quickly. Sweldens [53] decribes that we want to switch be-
tween the original representation and the wavelet representation of some data in a time proportional to the
size of the data. This characteristic of course is very important to ensure the applicability of wavelets. At last
there is a choice between orthogonal and bi-orthogonal wavelets, this is further elaborated in Section B.5.

C.1.1. Vanishing Moments
In the last section three core properties have been discussed. The last one was the property of ’having vanish-
ing moments’. This subsection will shine some light on these moments. The name moment comes from the
probabilistic idea of a moment generating function. For a random variable, the nth derivative, evaluated at 0
gives the nth moment of this variable [47] . The best known moments are the first moment (expected value)
and the second moment (expected value of the square of the random variable).

One way to differentiate various wavelet is by their vanishing moments. In wavelet theory the moments
are a number to estimate the rate of decay of a wavelet ψ(t ) [31]. The rate of decay for a general function f (t )
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can be estimated by the formal integral
∞∫

−∞
t k f (t ) dt .

Here the parameter k indicates the rate of decay. If we for example consider the function f (t ) = cos t/t 2, then
we know that the integral converges to 0 for k = 0 and k = 1. For k = 2 this integral converges to π. For a
general wavelet ψ(t ) we say it has p vanishing moments if [31]

∞∫
−∞

t kψ(t ) dt = 0 for 0 ≤ k < p ∈N. (C.1)

This leads to descriptions of moments for both discrete and continuous wavelets. The continuous moments
µk and νk are defined by the integral (C.1) as

µk =
∫ ∞

−∞
t kϕ(t ) dt , νk =

∫ ∞

−∞
t kψ(t ) dt .

In the Fourier domain, this can be checked by evaluating the transform of the derivatives of the functions. A
function has p vanishing moments if the first p −1 derivatives of its Fourier transform are zero at ω= 0 [31].
This leads to the analogous expression [28]:

µk = 2πi k dkΦ

dωk
(0), νk = 2πi k dkΨ

dωk
(0).

Note that the continuous moment µ0 is not determined for the refinement equation [28], it depends on the
scaling ofϕ. µ0 can be picked arbitrarily for any givenϕ, but for a bi-orthogonal pair the following relationship
has to hold: µ̃∗

0 ·µ0 = 1. However, when µ0 has been chosen, all other continuous moments are uniquely
defined.

The definition of the moments are clear. A moment is called vanishing if it is equal to 0. The advantage of
the vanishing moments is the possibility to write the wavelet as a low pass filter. This simplifies the wavelet
design process [31]. The higher the number of vanishing moments, the more complex a wavelet is and there-
fore it is more accurate in the representation of a complex signal. The disadvantage of a high number of
vanishing moments is that it results in a longer support. As the number of vanishing moments increases,
polynomials up to that order will not be identified by the wavelet.

C.1.2. Localization and Selectivity
So a wavelet with one vanishing moment, p = 1, cannot identify constant signals, but it does identify linear,
quadratic, etc. signals. In an analysis with a wavelet with two vanishing moments, linear signals cannot be
identified anymore. In the Fourier transform, for each analyzing function one frequency is addressed. In
the wavelet transform a range of frequencies is encompassed in one analyzing function ψ(t ). So to analyse
a lower range of frequencies, you need to be more selective, earlier referred to as ’localization in frequency’.
However, if we link this to the uncertainty principle, we note that the more selective a wavelet is, the less
compact support it has. This links the selectivity of the wavelet to its number of vanishing moments.

C.1.3. Regularity and decay
The last related aspect of wavelets is its regularity. Wavelet with low regularity create jagged representations
of the signal which is analysed, wavelets with high regularity result in smoother representation of the func-
tions. The more vanishing moments a wavelet has, the higher the regularity of the wavelet. However, the
regularity of a wavelet increases linearly with the support width [14]. The application of the wavelet analy-
sis lets us assess wavelet for different properties. Compact supported orthonormal wavelets are suitable for
sparse representations of large matrices. Therefore the number of vanishing moments is far more important
than the regularity [14]. For compression, smoothness is important to observe as little of the compression as
possible, placing high regularity over number of vanishing moments [14].
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C.2. Continuous Wavelets
A summary of the most used continuous wavelets is presented in Table C.1. Thereafter they are addressed
more elaborately. At last two examples of the Morlet wavelet are presented, because of their extensive use in
time-frequency analysis. Continuous wavelets are defined by functions, not by filters. However, most of them
do have a filter implementation as well. Often the filter has to be truncated to become finite. There is also a
differentiation in analytic or complex and real wavelets [37, 55]. Analytic wavelets often are wavelets of which
their Fourier transforms are zero for negative frequencies:

Ψ(ω) = 0 ∀ω< 0.

Therefore an analytic wavelet has to be complex, but it can be characterised by its real part only [37]. The
advantage of the use of an analytic wavelet is that they can measure time evolution of frequency transients by
separating amplitude and phase components: it is better adapted to capturing oscillatory behaviour in time
series [55]. Real wavelets often are used to detect sharp signal transitions.

• The Complex Morlet wavelet is described as a complex wave e i 2πω0t within the Gaussian envelope

e−t 2/2. The term in font of the expression ensures unit energy. It complies to the admissibility con-
ditions of a wavelet for ω0 ≥ 6. Often ω0 = 6 is chosen in time-frequency analysis [55]. However, in
Demonstration 3.10 is concluded that a Morlet 60 wavelet is much better applicable for separating
waves.

• The Morlet wavelet is the real part of the complex Morlet wavelet [42]. The example given in Table C.1 is
used in the Mathworks Toolbox [TB]. The complex Morlet is sometimes referred to as "Morlet" as well.

• The (derivative of ) Gaussian wavelet family is a set of wavelets, derived from the derivatives of the

Gaussian function, e−t 2
. This function can be derived infinitely many times, therefore there are a lot of

Gaussian wavelets. The best known is the Mexican Hat wavelet, which is described next. The Mexican
Hat wavelet is an example of a nice wavelet, with compact support and mean value zero [42]. Not all
derivatives lead to wavelet with these nice characteristics. For a n-times differentiated Gaussian, the
number of vanishing moments is n too. Moreover, if n is even the wavelet is symmetric, for odd n it is
anti symmetric.

Table C.1: A summary of most common continuous wavelets. The ’present in literature’ parameters and functions con-
cerning these wavelets are presented here. They are summarised in Figure 2.3.

Name Wavelet ψ(t ) F{ψ}(ω) =Ψ(ω) e-folding
time τa

Equivalent wave-
length λψ

Complex Morlet
[42, 55]

π−1/4e−iω0t e−t 2/2 π−1/4H(ω)e−(ω−ω0)2/2 p
2

4π

ω0 +
√

2+ω2
0

Morlet [42] e t 2/2 cos(5t ) -
p

2 −

Paul, order m [55]
2m i m m!
p
π(2m)!

(1− i t )−(m+1) 2m
p

m(2m −1)!
H(ω)ωm e−ω 1/

p
2

2πp
m +1/2

(Derivative of)
Gaussian, order
m [55]

(−1)m+1

p
Γ (m +1/2)

dm

dt m

(
e−t 2/2

) −i m
p
Γ (m +1/2)

ωm e−ω2/2 p
2

2πp
m +1/2

Complex (Deriva-
tive of) Gaussian,
order m [23]

C · dm

dt m

(
e−iω0t e−t 2/2

)
- - idem

Complex Shan-
non, order m
[43]

√
fb

(
sinc

(
fb t

m

))m

eiω0t - - -

Shannon [42] sinc

(
t

2

)
cos

(
3πt

2

)
- - -

Meyer [13] - see (C.4) - -
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• The Mexican hat wavelet is probably the best known continuous wavelet. It is defined by [42]:

ψmexh(t ) = K (1− t 2)e−(t 2/2), K = 2p
3π1/4

. (C.2)

The factor K normalises the Mexican hat wavelet. If K = 1 the wavelet is known as the unnormalised
Mexican hat [42]. The wavelet is named after its shape, however, it is originally known as the Ricker
wavelet. It is the second derivative of Gaussian wavelet and it is specifically well localised in time and
has a zero mean value [42]. The support [−5,5] can be used in a finite filter approximation. Note that
this support is much larger than its support based on its e-folding time: [−p2,

p
2].

• The complex (derivative of ) Gaussian wavelet family, also known as the Hermitian or Gabor wavelet
family, has the same properties as the Gaussian wavelet family, the only difference is that this is a com-
plex wavelet. It is made complex by multiplying the Gaussian window with a complex exponential
function e−iω0t . The C in the formula from Table C.1 is the normalising term.

• The complex Shannon wavelet is defined by a set of complex waveform within a sinc() function enve-
lope [43], where

sinc(t ) = sin(πt )

πt
. (C.3)

It has integer order m, a bandwidth parameter fb controlling the width of the main lobe of the sinc()
function and wavelet centre frequency ω0. The centre frequency also determines the number of oscil-
lations within the main lobe. The imaginairy part of the complex Shannon wavelet is shifted π/4 from
the real part. This wavelet has infinite support and is therefore not much used.

• The Shannon wavelet as defined in Table C.1 is real and symmetric but does not have a finite support
[42]„ however, it is infinitely differentiable and Ψ(ω) is zero in the neighbourhood of ω= 0, as are all its
derivatives [37]. We may conclude that it has infinitely many vanishing moments. It is therefore not a
good wavelet to apply wavelet analysis with [42]. The Shannon wavelet is a specific case of the spline
wavelets [37].

The Morlet, Gaussian and Shannon wavelets are also known as crude wavelets [TB]. These wavelets
only have minimal properties. Their downsides are that the scaling function ϕ(t ) does not exist, the
analysis is not orthogonal or bi-orthogonal and ψ(t ) is not of compact support. Therefore reconstruc-
tion is not insured and there are no fast algorithms to do calculations with. These wavelets are only
useful for a (complex) continuous decomposition. Good properties are the symmetry and explicit dec-
laration of the wavelet ψ(t ) [TB]. Complex wavelet can have a spectrum for which Ψ(ω)|ω<0 = 0, such
that a wavelet transform for only positive frequencies is possible.

• The Paul wavelet is a well localised mother wavelet, like the Morlet, and Gaussian wavelet. It can be
used for the same applications, however, often one of the others is used.

• The Meyer wavelet is a symmetric and orthogonal wavelet invented by Meyer in 1990 [14]. It is a band-
limited wavelet, limited to 2π/3 ≤ |ω| ≤ 8π/3, which results in an infinite support in the time domain
[42]. Its amplitude in time decays rapidly, making it suitable for wavelet analysis. The Meyer scaling
function satisfies [14]

Φ(ω) =



1p
2π

e iω/2 sin

[
π

2
ν

(
3

2π
|ω|−1

)]
for

2π

3
≤ |ω| ≤ 4π

3
,

1p
2π

e iω/2 cos

[
π

2
ν

(
3

4π
|ω|−1

)]
for

4π

3
≤ |ω| ≤ 8π

3
,

0 elsewhere.

(C.4)

where

ν(x) =


0 x ≤ 0,

sin2
(π

2
x
)

0 ≤ x ≤ 1,

1 x ≥ 1.
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The Meyer wavelet has infinite vanishing moments [37]. The Meyer wavelet is known as an infinitely
regular wavelet [TB]. It can be applied in both continuous and discrete wavelet analysis. Its filter imple-
mentation, however, is not a finite impulse response filter. The analysis of the pair ψMeyer and ϕMeyer is
orthogonal. Both functions are infinitely differentiable and have compact support. The symmetry and
infinite regularity are its most important properties. The difficulty of this wavelet lies within the filter
implementation: there is no fast algorithm available for the filter is of infinite impulse response.

C.3. Discrete Wavelets
Discrete wavelets are derived from the MRA approach which are easily implemented on a computer for they
possess easy implementable filters. The most used ones were are all designed before 1992, a lot of them by
Daubechies [14]. This section starts with an itemisation of these most used discrete wavelets, followed by an
overview of the wavelets available in the PyWavelets [54] package inTable C.2. After that the five wavelets that
were compared in Appendix 4 are presented.

• The Haar wavelet has been discussed extensively in examples in this chapter. Named after its inventor
Alfred Haar who laid the foundation of multi resolution analysis in 1910 [6].

• Daubechies wavelets are wavelets designed by Ingrid Daubechies [13]. They are called by their number
of vanishing moments p„ however, sometimes they are referred to as 2p, which is consistent with the
filter length of the particular Daubechies wavelet. So the Daubechies 2 wavelet has two vanishing mo-
ments, and a filter length of four and therefore sometimes referred to as Daubechies 4. In this thesis the
number of vanishing moments is leading. Note that de Daubechies 1 wavelet is the same as the Haar
wavelet. The Daubechies wavelets are orthogonal, have a support of [0,2p −1] [28] and are asymmetric
[TB].

• Coiflets, just like the Daubechies wavelets, are orthogonal wavelets. These are also designed by Ingrid
Daubechies on request of Ronald Coifman [14]. They are designed such that not only the wavelet,
but also the scaling function has a number of vanishing moments. The advantage of Coiflets is for
smooth signals s(t ), the scaling function expansion coefficients snk are very close to s(2−nk) [28], such
that preprocessing can be omitted. This results in near symmetric wavelets, which are all orthogonal.
Narasimhan et al. [42] notes that some Coiflets have no zeros at ω = π, which results in a non smooth
wavelet, with possibly high frequency components. The error of the reconstructed signal therefore
will be relatively large. There are again infinitely many Coiflets, numbered with n, with a number of
vanishing moments p = 2n. The support of the wavelet is [0,6n −1] and their filters are of length 6n
[TB].

All above mentioned wavelets are orthogonal and compactly supported. These wavelet all have an
orthogonal analysis, with an existing compactly supported ψ(t ) and ϕ(t ). Their ψ(t ) has a known
number of vanishing moments and their finite impulse response filter description is very clear. These
properties make them suitable for both continuous and discrete wavelet transformation, with appli-
cability of the fast wavelet transform algorithm. The main difficulty using these wavelets is their poor
regularity [TB].

• Symmlets are an adaptation of the Daubechies wavelets. They are an answer of Daubechies to the re-
quest from engineers for linear phase filters. Such linear filters are symmetric around b ∈Z. Note that
therefore the Haar wavelet is not symmetric, although its coefficients are symmetric. If a filter is not
symmetric, its deviation from symmetry is judged by how much its phase deviates from a linear func-
tion. These symmetrised Daubechies wavelets are close to symmetric, but not completely symmetric
[14]. This characteristic caused the wavelets of this family to be bi-orthogonal. Again these wavelets are
numbered by their number of vanishing moments.

• Cohen wavelets, also known as Cohen-Daubechies-Feauveau wavelets are scalar bi-orthogonal wavelets
derived from the Daubechies wavelet using the lifting factor technique. In both MATLAB and Python
these wavelets are known as the bi-orthogonal wavelets [40, 54]. Again a lot of them can be made, the
vanishing moments p and p̃ of the wavelet and dual wavelet function are restricted by p + p̃ = 2k for
k ∈ Z. They are symmetric around 0 if p is even and around 1/2 for p odd [28, 42]. The supports of
these wavelets differs for the decomposition and reconstruction step (respectively ψ and ψ̃), they are
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[0,2p+1] and [0,2p̃+1]. The filter lengths differ a lot by choice of p and p̃, but is limited by max{p, p̃}+2
[TB]. Note that the Cohen(1,1) wavelet is the Haar wavelet.

• Spline wavelets [TB], also known as Battle-Lemarié wavelets [37] are computed from spline MRA. The
Fourier transform of the wavelet is chosen a block B-spline, leading to a band limiting finite impulse
response. The wavelet ψ(t ) has p = m + 1 vanishing moments if its Fourier transform is made up of
splines of order m. The resulting wavelet ψ has an exponential decay. They are again referred to with
their number of vanishing moments p. In relation with the Meyer wavelet, they are less regular, but
they decay faster [37]. For p even we have ψ symmetric about 1/2, and for p odd it is antisymmetric
around the same point. The spline wavelet of order 1 is again the Haar wavelet. The choice of such a
spline MRA can lead to both orthogonal and bi-orthogonal wavelet bases [37, TB].

The Symmlets, Cohen and spline wavelets are part of the bi-orthogonal and compactly supported
wavelet pairs [TB]. They have in common that that ψ(t ), ψ̃(t ), ϕ(t ) and ϕ̃(t ) are compactly supported.
They have a known number of vanishing moments and are regular. These wavelet are applicable in
both continuous and discrete analysis, and again the FWT algorithm is applicable. The wavelets have
symmetry with finite impulse response filters, have desirable properties for decomposition and recon-
struction and nice allocation is possible. The main downside is the loss of orthogonality [TB].

• The Discrete Meyer wavelet is the finite filter approximation of the Meyer wavelet [60]. It remains
orthogonal and symmetric. By the truncation it is the finite impulse response implementation of the
Meyer wavelet. Technically this thus is a discrete wavelet.

The Meyer wavelet is known as an infinitely regular wavelet [TB]. It can be applied in both continuous
and discrete wavelet analysis. Its filter implementation, however, is not a finite impulse response filter.
The analysis of the pair ψMeyer and ϕMeyer is orthogonal. Both functions are infinitely differentiable
and have compact support. The symmetry and infinite regularity are its most important properties.
The difficulty of this wavelet lies within the filter implementation: there is no fast algorithm available
for the filter is of infinite impulse response.

Table C.2: An overview of the FWT applicable wavelets available in the PyWavelets package [54]. x is the number of
vanishing moments, if specified. For more information about these characteristics, please have a look at Ap-
pendix B.

Wavelet family Filter Orth. Biorth. Sym. Extra information
length

Haar 2 Yes No No Same as Daubechies 1 wavelet
Discontinuous: little number of applica-
tions

Daubechies x 2x Yes Yes No x ≥ 1
Symmlet x 2x Yes Yes Near x ≥ 2

Derived from Daubechies wavelet to be
near symmetric

Coiflet x 6x Yes Yes Near x ≥ 1
Derived from Daubechies wavelet, scaling
functions have vanishing moments

Bi-orthogonal ≥ 6 No Yes Yes Also known as Spline wavelet. Exception: bi
orthogonal 1.1 wavelet is the Haar wavelet

Reverse bi orthogonal ≥ 6 No Yes Yes Dual set of the bi-orthogonal wavelets
Discrete Meyer 62 Yes Yes Yes finite impulse response filter approximation

of Meyer wavelet
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C.3.1. Five Discrete Wavelets and Their Spectra

Figure C.1: The Haar wavelet

Figure C.2: The Symmlet 8 wavelet

Figure C.3: The Coiflet 3 wavelet
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Figure C.4: The Bi-orthogonal 2.8 wavelet

Figure C.5: The Daubechies 20 wavelet
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D
Separating Incident and Reflected Waves

This appendix provides some extra background regarding the separation of incident and reflected waves and
presents the results of the comparison of the Fourier and wavelet coefficient based solutions. The first section
starts with a little background regarding the wave number, followed by the full derivation of the separated
waves for two gauges, based on the work of Ma et al. [34]. In Section D.3 the results are presented which are
discussed in Section 3.2.4. Section D.3.1 shortly addresses the information that is presented in these results.

D.1. Wave Number
The wave number k is measure of the spatial frequency of a wave. It is defined as cycles per unit distance,
i.e. its unit is rad/m. It is based on linear wave theory, where it is assumed that the amplitude of the wave is
small compared to the wave length and water depth [24]. For free harmonic wave the relationship between
the radian frequency ω and the wave number k is given by the so-called dispersion equation [24]:

ω2 = g k tanh(kd), (D.1)

for any arbitrary depth d [m] and gravitational acceleration g [m/s2]. The gravitational acceleration on earth
is approximately 9.81 m/s2. Because this relationship is an implicit expression in terms of the wave number,
an iterating process is used to calculate the wave number. An example of such a process is given by Holthui-
jsen [24].

The dispersion relation is often simplified for deep and shallow water. In deep water kd →∞ and there-
fore tanh(kd) → 1, then the dispersion relationship approaches

ω=
√

g k0, (D.2)

where k0 is the deep-water wave number. In very shallow water kd → 0 and therefore tanh(kd) → kd , then
the dispersion relationship approaches

ω= k
√

g d . (D.3)

D.2. Derivation for Two Gauges
In Section 3.2 the analytic solution to the separated incident and reflected wave based on two gauges is ad-
dressed shortly. In this section, the whole derivation is given. Assume there are two gauges in the channel,
one on a distance of x1 from the wave maker and the second one at a distance x2 > x1. Define x2 − x1 = ∆x.
The situation is depicted in Figure 3.6. The surface elevation as recorded at point x1 is:

η(x1, t ) =WI cos(ωt −kx1 +θI )+WR cos(ωt +kx1 +θR ) (D.4a)

and so at x2 we find the following expression:

η(x2, t ) =WI cos(ωt −kx2 +θI )+WR cos(ωt +kx2 +θR ) (D.4b)

=WI cos(ωt −kx1 −k∆x +θI )+WR cos(ωt +kx1 +k∆x +θR ).
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Reconstructing the incident and reflected waves through these equations directly is hard, therefore their an-
alytic forms are being used:

ζ(x1, t ) = WI e i (ωt−kx1+θI ) + WR e i (ωt+kx1+θR ) and (D.5a)

ζ(x2, t ) = WI e i (ωt−kx2+θI ) + WR e i (ωt+kx2+θR )

WI e i (ωt−kx1−k∆x+θI ) + WR e i (ωt+kx2+k∆x+θR ) (D.5b)

= WI e i (ωt−kx1+θI )e−i k∆x + WR e i (ωt+kx2+θR )e i k∆x .

Note that the real part of ζ(x1, t ) is η(x1, t ) and the same holds for ζ(x2, t ) and η(x2, t ). In general the wave
number k and the distance between the two gauges, ∆x, is known. Using the exponential form of the sine
function,

sin(x) = e i x −e−i x

2i
, (D.6)

the analytic form of the incident and reflected waves at point x1 can be obtained as follows.

ζ(x1, t )e i k∆x −ζ(x2, t ) = WI e i (ωt−kx1+θI )e i k∆x +WR e i (ωt+kx1+θR )e i k∆x

−WI e i (ωt−kx1+θI )e−i k∆x −WR e i (ωt+kx2+θR )e i k∆x

= WI e i (ωt−kx1+θI )e i k∆x −WI e i (ωt−kx1+θi )e−i k∆x

= WI e i (ωt−kx1+θI )
(
e i k∆x −e−i k∆x

)
Divide this result by 2i · sin(i k∆x) to find:

aI e i (ωt−kx1+θi ) = ζ(x1, t )e i k∆x −ζ(x2, t )

2i sin(k∆x)
. (D.7a)

In the same manner the analytic expression of the reflected wave is found as:

aR e i (ωt+kx1+θR ) = ζ(x1, t )e−i k∆x −ζ(x2, t )

−2i sin(k∆x)
. (D.7b)

The real parts of the solutions will result in the incident and reflected wave at point x1.
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D.3. Results
D.3.1. Reading the Results
In the following section the results for separating incident and reflected waves are presented. These results
are a comparison between the separation based on Fourier coefficients [63] and the separation based on
wavelet coefficients as presented in this thesis Section 3.2. The results start with a number of settings, such
as the kind of signal, the wavelet, the distances of the used gauges etc. This is followed by a table (without
borders) which shows different RMSE’s:

Reconstruction The difference between the original signal and the signal transformed back and forth, i.e.

Fourier x(t )−F−1{F{x}}(t )

Wavelet x(t )−W−1{W{x}}(t )

Sum The difference between the sum of the recovered incident and reflected wave and the original signal,
this is the RMSE of the residuals defined in equation 3.19.

Incident The difference between the reconstructed and the original incident wave.

Reflected Idem for the reflected wave.

Then there is a table that contains measures that are often used in coastal engineering, which are compared
with respect to the ’original’ ones, based on the numerical incident and reflected waves.

Ref.cff. Short for reflection coefficient, defined by √
m0reflected

m0incident
; (D.8)

m0_in m0 of the incident wave, defined by equation D.9;

m0_ref m0 of the reflected wave.

The Moment of the Wave Spectrum

The moment mn is defined as the nth order moment of the variance density spectrum. The zeroth order
moment is equal to the variance of the surface elevation x(t ) [24], i.e.

m0 = Var(x(t )). (D.9)

Figures
Finally a number of figures are presented. The first row of figures shows the incident waves; i.e. the original
one, the recovered ones and the difference between the recovered and the incident. The second row shows
the same figures for the reflected waves. In the last row the different spectra can be compared. Note that
the energy density on the left y-axis is scaled logarithmically. On the right y-axis the reflection coefficient per
frequency is shown, which is defined by the energy density of the reflected wave divided by the energy density
of the incident wave (per frequency).
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Signal 90 waves from JONSWAP spectrum with f in [0.3,2]
Wavelet Morlet Parameter 6
Sampling freq 25 Duration 480.0 sec = 8.0 min
Determined at gauge 11.0
Using gauges [ 11.  12.]
with distances [ 0.  1.]
Wavenumber dispersion with water depth -1
Noise no Weights no
No of steps CWT 200
p_min 8.000667E-02 p_max 4E+00
Error CWT reconstruction and original 1.062284E-02
Error CWT reconstruction and sum 4.540368E-17
Error CWT reconstruction incident and original incident 1.407499E-02
Error CWT reconstruction reflected and original reflected 1.105085E-02
  
 Original Wavelet filtering % difference
Reflection coeff 4.989225E-01 5.085815E-01 1.93595454481
m0_incident 5.672494E-03 7.398267E-03 30.4235262141
m0_reflected 1.412018E-03 1.913599E-03 35.5222882748

Figure D.1: Verification of error study by Ma et al. [34]. Water depth: 1 meter shallow water.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 39.382
Using gauges [ 39.382  40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.714063E-16 1.03757E-03
sum 2.02122E-14 3.626032E-16
incident 1.282526E-01 1.398801E-02
reflected 1.282526E-01 1.397111E-02
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.013296E-01 8.994054E-01 79.4 5.272067E-01 5.16
m0_in 5.5754E-03 2.209132E-02 296.23 5.878451E-03 5.44
m0_ref 1.401273E-03 1.787033E-02 1175.29 1.633897E-03 16.6

Figure D.2: Separating waves using 2 gauges
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 39.382
Using gauges [ 39.382  40.1  ]
Wavenumber equal with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0.0
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.945462E-16 1.156294E-03
sum 2.731964E-17 6.464717E-17
incident 3.507527E-02 1.398079E-03
reflected 3.507528E-02 1.211011E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.017083E-01 1E+00 99.32 5.016081E-01 -0.02
m0_in 5.599747E-03 2.274359E-03 -59.38 5.725979E-03 2.25
m0_ref 1.409519E-03 2.274359E-03 61.36 1.440717E-03 2.21

Figure D.3: Separating waves using 2 gauges, using an equal wave number for all frequencies. The Fourier algorithm was
disables in this example.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 39.382
Using gauges [ 39.382  39.83   40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.793458E-16 1.045626E-03
sum 1.579025E-03 1.701242E-03
incident 1.585319E-02 3.387655E-03
reflected 1.572349E-02 2.58678E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.029976E-01 5.335495E-01 6.07 5.039578E-01 0.19
m0_in 5.598901E-03 5.844593E-03 4.39 5.716851E-03 2.11
m0_ref 1.416559E-03 1.66381E-03 17.45 1.451928E-03 2.5

Figure D.4: Separating waves using 3 gauges
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 35.742
Using gauges [ 35.742  38.726  39.382  39.83   40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.513282E-16 9.131862E-04
sum 4.853375E-03 7.743863E-03
incident 7.782599E-03 9.207705E-03
reflected 6.376457E-03 5.471597E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.024461E-01 5.051175E-01 0.53 5.006965E-01 -0.35
m0_in 5.612317E-03 5.646311E-03 0.61 5.364472E-03 -4.42
m0_ref 1.416841E-03 1.440621E-03 1.68 1.344857E-03 -5.08

Figure D.5: Separating waves using 5 gauges
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 39.382
Using gauges [ 39.382  40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0.1
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.714063E-16 1.03757E-03
sum 1.396335E-02 1.158056E-02
incident 1.234553E-02 1.150164E-02
reflected 7.85703E-03 7.384558E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.013296E-01 5.064333E-01 1.02 5.065781E-01 1.05
m0_in 5.5754E-03 5.457513E-03 -2.11 5.554474E-03 -0.38
m0_ref 1.401273E-03 1.399714E-03 -0.11 1.425397E-03 1.72

Figure D.6: Separating waves using 2 gauges, a determinant limiter of 0.1 has been added.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 39.382
Using gauges [ 39.382  39.83   40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0.1
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.793458E-16 1.045626E-03
sum 1.679487E-03 1.731344E-03
incident 2.721639E-03 3.003698E-03
reflected 1.829881E-03 2.110095E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.029976E-01 5.034707E-01 0.09 5.03642E-01 0.13
m0_in 5.598901E-03 5.599655E-03 0.01 5.714215E-03 2.06
m0_ref 1.416559E-03 1.419416E-03 0.2 1.44944E-03 2.32

Figure D.7: Separating waves using 3 gauges, a determinant limiter of 0.1 has been added.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 35.742
Using gauges [ 35.742  38.726  39.382  39.83   40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0.1
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.513282E-16 9.131862E-04
sum 4.853573E-03 7.743863E-03
incident 5.62117E-03 9.207705E-03
reflected 3.411883E-03 5.471597E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.024461E-01 5.012945E-01 -0.23 5.006965E-01 -0.35
m0_in 5.612317E-03 5.617279E-03 0.09 5.364472E-03 -4.42
m0_ref 1.416841E-03 1.411601E-03 -0.37 1.344857E-03 -5.08

Figure D.8: Separating waves using 5 gauges, a determinant limiter of 0.1 has been added.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 6.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 39.382
Using gauges [ 39.382  40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0
p_min 1.666956E-01 p_max 1.753438E+02
  
RMSE Fourier Wavelet
reconstruction 1.754694E-16 8.094903E-03
sum 4.151245E-14 2.427245E-15
incident 1.864212E-01 9.062197E-02
reflected 1.864213E-01 9.219416E-02
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.039467E-01 9.472165E-01 87.96 9.468592E-01 87.89
m0_in 5.55159E-03 4.028092E-02 625.57 9.806519E-03 76.64
m0_ref 1.409894E-03 3.614081E-02 2463.37 8.791959E-03 523.59

Figure D.9: Separating waves using 2 gauges, the Morlet 6 wavelet is used.

MASTER THESIS T. DE ROOIJ



D. SEPARATING INCIDENT AND REFLECTED WAVES 119

Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 6.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 35.742
Using gauges [ 35.742  38.726  39.382  39.83   40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0
p_min 1.666956E-01 p_max 1.753438E+02
  
RMSE Fourier Wavelet
reconstruction 1.49919E-16 7.131343E-03
sum 6.033238E-03 4.20067E-02
incident 8.564489E-03 4.358948E-02
reflected 5.884976E-03 2.517018E-02
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 4.997987E-01 5.058063E-01 1.2 5.687812E-01 13.8
m0_in 5.631724E-03 5.615814E-03 -0.28 1.328323E-03 -76.41
m0_ref 1.406798E-03 1.43675E-03 2.13 4.297284E-04 -69.45

Figure D.10: Separating waves using 2 gauges, the Morlet 6 wavelet is used.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 6.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 39.382
Using gauges [ 39.382  40.1  ]
Wavenumber equal with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0.0
p_min 1.666956E-01 p_max 1.753438E+02
  
RMSE Fourier Wavelet
reconstruction 1.690193E-16 7.587509E-03
sum 2.633091E-17 7.19489E-17
incident 4.182334E-02 7.042717E-03
reflected 4.182334E-02 3.89677E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 4.967628E-01 1E+00 101.3 4.966376E-01 -0.03
m0_in 5.678219E-03 1.790534E-03 -68.47 6.737207E-03 18.65
m0_ref 1.401233E-03 1.790534E-03 27.78 1.661724E-03 18.59

Figure D.11: Separating waves using 2 gauges, using the same wave number for all frequencies and the Morlet 6 wavelet.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 35.742
Using gauges [ 35.742  38.726  39.382  39.83   40.1  ]
Wavenumber disperion with water depth 1
Noise no Weights no
No of steps CWT 20
Determinant limit 0.0
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.513282E-16 1.242043E-01
sum 4.853375E-03 2.701533E-02
incident 7.782599E-03 1.107794E-01
reflected 6.376457E-03 5.617696E-02
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.024461E-01 5.051175E-01 0.53 5.028802E-01 0.09
m0_in 5.612317E-03 5.646311E-03 0.61 1.537792E-02 174.0
m0_ref 1.416841E-03 1.440621E-03 1.68 3.888897E-03 174.48

Figure D.12: Separating waves using 5 gauges, using too little scales; 20 scales.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 35.742
Using gauges [ 35.742  38.726  39.382  39.83   40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights no
No of steps CWT 1000
Determinant limit 0.0
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.501484E-16 1.25802E-03
sum 3.788041E-03 7.06129E-03
incident 6.930915E-03 8.285033E-03
reflected 6.054826E-03 4.931244E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 4.991929E-01 5.040241E-01 0.97 5.006313E-01 0.29
m0_in 5.572451E-03 5.582134E-03 0.17 5.347351E-03 -4.04
m0_ref 1.388619E-03 1.418087E-03 2.12 1.340216E-03 -3.49

Figure D.13: Separating waves using 5 gauges, using many scales; 1000 scales.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 39.382
Using gauges [ 39.382  40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0.5
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.714063E-16 1.03757E-03
sum 2.151178E-02 1.977146E-02
incident 1.806545E-02 1.676688E-02
reflected 9.452914E-03 8.831368E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.013296E-01 5.039098E-01 0.51 5.046765E-01 0.67
m0_in 5.5754E-03 5.254034E-03 -5.76 5.343346E-03 -4.16
m0_ref 1.401273E-03 1.334131E-03 -4.79 1.360941E-03 -2.88

Figure D.14: Separating waves using 2 gauges, a determinant limiter of 0.5 has been added.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 39.382
Using gauges [ 39.382  39.83   40.1  ]
Wavenumber dispersion with water depth 1
Noise no Weights zelt
No of steps CWT 200
Determinant limit 0
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.378247E-16 8.438111E-04
sum 1.177983E-03 1.331431E-03
incident 1.005492E-02 2.675956E-03
reflected 1.005925E-02 2.519676E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 4.989154E-01 5.117766E-01 2.58 4.996177E-01 0.14
m0_in 5.698587E-03 5.801439E-03 1.8 5.821553E-03 2.16
m0_ref 1.418473E-03 1.519486E-03 7.12 1.453164E-03 2.45

Figure D.15: Separating waves using 3 gauges, added the weightings described in equation 3.20.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2], refl.cff changes
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 35.742
Using gauges [ 35.742  38.726  39.382  39.83   40.1  ]
Wavenumber disperion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0.0
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.845117E-16 2.893224E-03
sum 4.703134E-03 8.699147E-03
incident 6.176124E-03 9.499821E-03
reflected 3.143778E-03 6.266618E-03
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 7.092311E-01 7.118718E-01 0.37 7.121914E-01 0.42
m0_in 5.593476E-03 5.568218E-03 -0.45 5.324922E-03 -4.8
m0_ref 2.813567E-03 2.821758E-03 0.29 2.700888E-03 -4.0

Figure D.16: Separating waves using 5 gauges, reflection coefficient changes over time; following a half a sine over the
entire interval.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2], slope in signal
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 35.742
Using gauges [ 35.742  38.726  39.382  39.83   40.1  ]
Wavenumber disperion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0.0
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 2.729379E-16 1.448473E-01
sum 1.749256E-02 2.389889E-02
incident 7.997851E-02 1.546532E-02
reflected 6.664183E-02 1.266747E-02
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.016754E-01 7.03346E-01 40.2 5.185117E-01 3.36
m0_in 5.627654E-03 1.17803E-02 109.33 5.518058E-03 -1.95
m0_ref 1.416358E-03 5.827664E-03 311.45 1.483554E-03 4.74

Figure D.17: Separating waves using 5 gauges, slope added to the signal. Increase of water level of 0.5 meter in 8 minutes.
The sum of the wavelet separated incident and reflected wave is not close to the original signal because the
slope is not present in the separated waves.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2], non stationary reflection
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 35.742
Using gauges [ 35.742  38.726  39.382  39.83   40.1  ]
Wavenumber disperion with water depth 1
Noise no Weights no
No of steps CWT 200
Determinant limit 0.0
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 6.919914E-16 4.038558E-01
sum 4.705659E-02 4.721172E-02
incident 1.216143E-01 2.353307E-01
reflected 1.217744E-01 2.353185E-01
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 9.527674E-01 9.554861E-01 0.29 7.129344E-01 -25.17
m0_in 4.91902E-02 5.000326E-02 1.65 8.91487E-03 -81.88
m0_ref 4.465318E-02 4.565066E-02 2.23 4.531209E-03 -89.85

Figure D.18: Separating waves using 5 gauges, jumps added to signal.
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Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 39.382
Using gauges [ 39.382  39.83   40.1  ]
Wavenumber disperion with water depth 1
Noise var/0.1 Weights no
No of steps CWT 200
Determinant limit 0.1
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 1.987186E-16 5.914581E-03
sum 3.293101E-02 2.78428E-02
incident 4.85699E-02 4.050161E-02
reflected 4.840732E-02 4.030858E-02
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.011157E-01 6.76284E-01 34.96 6.337757E-01 26.47
m0_in 5.622184E-03 8.077011E-03 43.66 7.472823E-03 32.92
m0_ref 1.411826E-03 3.694102E-03 161.65 3.001621E-03 112.61

Figure D.19: Separating waves using 3 gauges, noise added to the signal of 10 times the incident wave power. Solved using
a determinant limiter of 0.1.

MASTER THESIS T. DE ROOIJ



D. SEPARATING INCIDENT AND REFLECTED WAVES 129

Signal 200 waves from JONSWAP spectrum with f in [0.01,fs/2]
Wavelet Morlet Parameter 60.0
Sampling freq 12 Duration 480.0 sec = 8.0 min
Determined at gauge 35.742
Using gauges [ 35.742  38.726  39.382  39.83   40.1  ]
Wavenumber disperion with water depth 1
Noise var/0.1 Weights no
No of steps CWT 200
Determinant limit 0.1
p_min 1.666956E-01 p_max 1.777215E+01
  
RMSE Fourier Wavelet
reconstruction 2.147517E-16 8.35714E-03
sum 4.258662E-02 3.904357E-02
incident 3.093711E-02 2.371355E-02
reflected 3.099383E-02 2.300432E-02
  
 Original Fourier % diff Wavelet % diff
Ref.cff. 5.016262E-01 6.05833E-01 20.77 5.699105E-01 13.61
m0_in 5.564055E-03 6.380366E-03 14.67 5.700034E-03 2.44
m0_ref 1.400077E-03 2.341809E-03 67.26 1.851359E-03 32.23

Figure D.20: Separating waves using 5 gauges, noise added to the signal of 10 times the incident wave power. Solved using
a determinant limiter of 0.1.
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E.1. Denoising
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Figure E.1: The increase of SNR for the different filter methods. ’Idle’ is the algorithm based on a signal free period,
Srivastava* is the Srivastava algorithm with the adjusted peak-to-sum ratio.
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Figure E.2: The increase of SNR for for the different wavelets in hard thresholding for the white noise cases
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E.2. Examples of Other Filters

Figure E.3: The approximation and detail coefficients and their thresholds, based on the hard thresholding methods. The
colours correspond with the colours in Figure 3e) of the original file. The S denotes the peak-to-sum ratio (or
sparsity) of the detail coefficients at that level.

MASTER THESIS T. DE ROOIJ



E. FILTER RESULTS 133

Figure E.4: The approximation and detail coefficients and their thresholds, based on the first 30 seconds being signal free.
The colours correspond with the colours in Figure 3e) of the original file. The S denotes the peak-to-sum ratio
(or sparsity) of the detail coefficients at that level.
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E.3. Comparison of Wavelets in Filtering

Figure E.5: The hard filtering algorithm applied with the Haar wavelet for the non-stationary signal with w and a SNR of
0 dB.
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Figure E.6: The hard filtering algorithm applied with the Symlet 8 wavelet for the non-stationary signal with w and a SNR
of 0 dB.

Figure E.7: The hard filtering algorithm applied with the Coiflet 3 wavelet for the non-stationary signal with w and a SNR
of 0 dB.
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Figure E.8: The hard filtering algorithm applied with the Biorthogonal 2.8 wavelet for the non-stationary signal with w
and a SNR of 0 dB.

Figure E.9: The hard filtering algorithm applied with the Daubechies 20 wavelet for the non-stationary signal with w and
a SNR of 0 dB.
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E.4. Periodic Signal Extension

Figure E.10: Figure 5 from original, now using periodic signal extension instead of symmetric signal extension.
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E.5. Signals

Figure E.11: non-stationary signal, with red noise.

Figure E.12: A peak in the non-stationary noise case, with SNR=-10 dB, measurement noise and power supply noise. On
the left the original signals, on the right the filtered results.
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F
Added Value Wavelet Analysis

This appendix supports the result in Appendix 5. The signals used to compare the different techniques are
presented in the first section of this chapter. In the second section some supporting figures are shown.

F.1. Signals
F.1.1. Westerschelde
This set of measurements comes from the Westerschelde, a river in the Netherlands. This are the values over
the year 2016, from the gauge at Walsoorden. This data is made available via https://waterberichtgeving.rws.
nl/water-en-weer/dataleveringen. A plot of the data is presented in Figure 5.1. The water level is sampled with
a sampling interval of 15 minutes.

F.1.2. WL657585e
This measurement is conducted in the Scheldt flume at the Deltares facilities. The mean water level of this
144 minutes experiment is raised by 20 cm and lowered again, to mimic tidal behaviour. The three water
level measurement points are set up at distances of 35.92, 36.47 and 36.69 meter from the wave maker, sam-
pling with a frequency of 25 Hz. The wave conditions imposed by the wave maker are based on a JONSWAP
spectrum, with a peak at about 0.5 Hz. The signal and the mean water level are shown in Figure F.1.

Figure F.1: Water level measurement from data set WL657585e

F.1.3. A3W1T304
This measurement is conducted in the Scheldt flume as well. The deviation of the mean water level (70 cm)
is measured at a number of gauges in the flume, set up at distances as presented in Table 3.2, forces and
pressures at the structure of the end of the channel are measured as well. The sampling frequency is 3 kHz.
Both time and frequency content of a force and a pressure signal are depicted in Figure F.2.
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(a) Force measurement (b) Zoom of force measurement

(c) Pressure measurement (d) Zoom of pressure measurement

(e) Variance density spectrum force measurement (f ) Variance density spectrum pressure measurement

Figure F.2: Signals from data set A3W1T304
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F.2. Figures
F.2.1. Separating Waves

Signal WL657585e
Wavelet Morlet Parameter 60
Sampling freq 20.0 Duration 8699.95 sec = 144.999166667 min
Determined at gauge 35.92
Using gauges [ 35.92  36.47  36.69]
Wavenumber dispersion with water depth [ 0.6602  0.6618  0.6616 ...,  0.6572  0.6558  0.6556]
No of steps CWT 150
Determinant limit 0.1
p_min 1E-01 p_max 3.220643E+02
  
RMSE Fourier Wavelet
reconstruction 2.676379E-16 1.200836E-01
sum 1.201751E-01 1.292706E-02
  
 Fourier Wavelet
Ref.cff. 2.553696E-01 2.562337E-01
m0_in. 2.883003E-03 3.009569E-03
m0_ref 1.880111E-04 1.975953E-04

Figure F.3: Separating waves for non-stationary signal from coastal engineering, determinant limiter 0.1 (Morlet 60
wavelet)
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Signal WL657585e_250steps
Wavelet Morlet Parameter 60
Sampling freq 20.0 Duration 8699.95 sec = 144.999166667 min
Determined at gauge 35.92
Using gauges [ 35.92  36.47  36.69]
Wavenumber dispersion with water depth [ 0.6602  0.6618  0.6616 ...,  0.6572  0.6558  0.6556]
No of steps CWT 300
Determinant limit 0
p_min 1E-01 p_max 3.220643E+02
  
RMSE Fourier Wavelet
reconstruction 2.676379E-16 1.19493E-01
sum 5.083595E-03 5.025583E-03
  
 Fourier Wavelet
Ref.cff. 9.991147E-01 4.26688E-01
m0_in. 2.789107E+01 3.348221E-03
m0_ref 2.784171E+01 6.09586E-04

Figure F.4: Separating waves for non-stationary signal from coastal engineering, without determinant limiter. (Morlet 60
wavelet)
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Signal WL657585e_250steps
Wavelet Morlet Parameter 60
Sampling freq 20.0 Duration 8699.95 sec = 144.999166667 min
Determined at gauge 35.92
Using gauges [ 35.92  36.47  36.69]
Wavenumber dispersion with water depth [ 0.6602  0.6618  0.6616 ...,  0.6572  0.6558  0.6556]
No of steps CWT 300
Determinant limit 0
p_min 1E-01 p_max 1E+01
  
RMSE Fourier Wavelet
reconstruction 2.676379E-16 1.200272E-01
sum 1.201393E-01 5.084425E-03
  
 Fourier Wavelet
Ref.cff. 4.962071E-01 2.627414E-01
m0_in. 3.579397E-03 2.973176E-03
m0_ref 8.813242E-04 2.052475E-04

Figure F.5: Separating waves for non-stationary signal from coastal engineering, without determinant limiter. Maximum
period of 10 seconds imposed. (Morlet 60 wavelet)
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Figure F.6: The almost 4000 waves and the corresponding residuals sorted on wave height

F.2.2. Filters

Figure F.7: The approximation and detail levels transformed to signals for force measurement. Note that the resonance
frequency on the peak is mostly contained in detail level 6 and 7. (Discrete Wavelet Decomposition using the
Symmlets 8 wavelet, upto level 8)
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Figure F.8: Discrete wavelet filter based on noise in first 10 seconds of signal. (Discrete Wavelet Decomposition using the
Symmlets 8 wavelet, upto level 11)

Figure F.9: Discrete wavelet filter based on noise in first 10 seconds of signal. Detail level 6 and 7 are filtered out (see
Figure F.7). (Discrete Wavelet Decomposition using the Symmlets 8 wavelet, upto level 11)
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Figure F.10: Discrete wavelet filter to filter transient for signal presented in Figure 5.7a. (Discrete Wavelet Decomposition
using the Symmlets 8 wavelet, upto level 9)
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G
Fourier Transforms

G.1. Continuous Fourier Transforms

Property Time signal f (t ) Fourier transform F{ f }(ω) = F (ω)

Linearity c1 f1(t )+ c2 f2(t ) c1F1(ω)+ c2F2(ω) (G.1)

Translation f (t −h) e−iωhF (ω) (G.2)

Modulation e iξt f (t ) F (ω−ξ) (G.3)

Scaling f

(
t

a

)
|a|F (aω) (G.4)

Convolution f1 ∗ f2(t ) F1(ω)F2(ω) (G.5)

Multiplication f1 f2(t )
1

2π
F1 ∗F2(ω) (G.6)

Inversion F (t ) f (−ω) (G.7)

Time differentiation
d f (t )

dt
iωF (ω) (G.8)

G.1.1. Functions

Time signal f (t ) Fourier transform F{ f }(ω)

δ(t −τ) e−iτω (G.9)

H(t )
1

2

(
δ(ω)− i

πω

)
(G.10)

147



H
MSc Thesis Assignment

MSc-thesis assignment

Wavelets

The FBI uses wavelet techniques for image compression
of digital fingerprints to save storage space. In geophysics
wavelets are being used to analyse seismic signals for
detecting e.g. earthquakes and oil layers. In finance the
wavelet is used to analyse stock markets due to their
dynamic and non-linear nature. These are just a few
examples to highlight the applicability of the wavelet
techniques.

The same techniques are potentially very interesting for Deltares
as coastal engineers have to deal with complex time dependent
physical processes as for example illustrated in the figures
included.
To improve the understanding of these physical processes
associated with waves, wave structure interaction, stability of
structures or the influence on morphology various measurements

techniques like time sampling, lasers scanning, photography are
employed to capture instant information on wave conditions, forces, currents, erosion and accretion
for further detailed analysis.

This assignment is related to the part of detailed analysis of time
series containing the time evolution of wave heights, forces, etc.
Currently, the analysis is performed through Fourier analysis
combined with filtering techniques to remove e.g. noise. However, the
Fourier analysis has its limitations.

The purpose of this assignment is to look into the added value of
applying existing wavelets and the related techniques compared to
Fourier type of
analysis.

The question is: can we improve our analysis by
employing wavelet instead of Fourier technique? To
answer this question, the following tasks have been
defined for this assignment.

Tasks

1. Provide a summary/overview on how wavelets are being used in other fields of expertise,
including background information on the mathematical aspects of wavelets.

2. Verify the added value of wavelets by comparing results obtained through wavelet techniques
with Fourier analysis by using different type of measured of time series (e.g. pressure due to
wave impact, wave height, etc.) which representative for Deltares. Important aspects related
to this task are:

a. Use wavelets to detect and filter different components (e.g. noise) from the signal by
using for example thresholding methods.

b. Use wavelets to detect, if possible, the influence of wave basin characteristics on
measured signals.

Figure 2 Example of measuring wave field

Figure 1 Example of obtaining ware field information
near trunk of a breakwater

Figure 3 Example
Stereophotography

Figure 4 Example wave impact on a pile and
measured pressure

c. Use wavelets to detect non-stationary properties in a signal, which is not possible by
using standard Fourier analysis.

3. Research the sensitivity of wavelet specific parameters, e.g. type of wavelet, on the output of
a wavelet analysis, including using statistical techniques to be able to interpret results.

4. Make wavelet analysis accessible in projects through scripts on top of an existing wavelet
toolbox (yet to be selected). One important aspect for this task is the presentation of results.

Requirements

Ø Programming skills in either Matlab and/or Python.

This assignment is your chance to start a new era in coastal engineering with respect to time series
analysis and also create added value to your own skills as wavelets are used in various fields of
expertise. The only difference is jargon as the mathematics stays the same! If you are interested,
please contact me.

Indication start date: After August 2016

Company: Deltares

Name : Jan Kramer

Email address: jan.kramer@deltares.nl

Figure H.1: The MSc thesis proposal as subjected by Deltares via http://ta.twi.tudelft.nl/nw/users/vuik/numanal/rooij.
html.
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