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A near-linear transect sampling method for validation of 
SMAP surface soil moisture in non-complex terrains
Elijah Cheruiyot a, Collins Mitoa and Massimo Menentib

aDepartment of Physics, University of Nairobi, Nairobi, Kenya; bDepartment of Geoscience and Remote 
Sensing, Delft University of Technology, Delft, The Netherlands

ABSTRACT
The global validation for SMAP (Soil Moisture Active Passive) Level- 
4 surface soil moisture using well-established core validation sites 
does not comprehensively account for all landscapes on earth’s 
surface due to the diverse nature of their intrinsic characteristics. 
Due to the inhibitive cost of implementing a standard validation 
site, this study presents an alternative sampling approach suitable 
for localized validation of SMAP data in non-complex terrains. It 
involves clustering a large heterogeneous study area to smaller 
units of non-complex terrains where landscape-defining character-
istics are largely homogeneous, thus permitting the computation of 
areal soil moisture as a simple arithmetic mean of near-linear point 
measurements. This allows optimization of limited resources (a 
hand-held moisture sensor with site-specific calibrations) to bal-
ance the need for spatial representativeness of samples in the 
sampling unit and the need for temporal proximity of sampled 
measurements to the aggregation time of the satellite product 
being validated. For ease of movement, transect sampling is imple-
mented along access roads that run across the sampling units to 
allow sufficient measurement replications within a reasonably short 
time. Validations with four different landscapes in Kenya show 
a good agreement between in situ measurements and SMAP with 
R2 of 0.76, 0.72, 0.80, and 0.82, and biases of −0.0246, +0.0113, 
0.0004, and + 0.0035 m3 m−3, respectively for Mawego, Kuresoi, 
Sotik and Kapsuser sites. These results only marginally differ from 
those obtained with a spatially distributed sampling method, indi-
cating the potential of the proposed sampling design for time and 
cost effectiveness in validations at non-complex terrains. An analy-
sis of the temporal variability of SMAP soil moisture in the 
watershed is also presented, with an assessment of its significance 
in the selection of sampling sites for validation. Particularly, the 
concept of temporal stability of soil moisture as a basis for cluster-
ing validation sites is evaluated.
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1. Introduction

Soil moisture is a state variable that is highly dynamic both in space and time (Narasimhan 
et al. 2005), so that the most practical way to measure it on a large scale is by satellite 
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remote sensing. To this end, significant technological progress has been made to provide 
such satellite-based data, albeit at coarse spatial resolutions, and have found relevance in 
a wide range of applications. Remotely sensed soil moisture has found particular interest 
in hydrological modelling since soil water controls many water balance variables such as 
surface runoff, deep drainage and the rate of evapotranspiration (Melesse et al. 2007; 
Wang and Qu 2009). Many open access satellite-based soil moisture products are cur-
rently available, and they present a vital resource that allows operationalization of 
systems such as hydrological, agricultural, drought or flood monitoring, etc., at a large 
scale.

But because of heterogeneous land surfaces, remotely sensed soil moisture estimates 
suffer inevitable biases. Land surface-related factors affecting satellite remote sensing 
retrieval of soil moisture include soil texture, vegetation density and topography 
(Choudhury et al. 1979; Jackson, Schmugge, and Wang 1982; Konings et al. 2017; 
Mohanty 2013; Ulaby, Bradley, and Dobson 1979; Wang et al. 1983). Thus, satellite- 
based soil moisture data must be validated at regional and local level to account for 
surface heterogeneity. The estimation error induced by surface heterogeneity on 
retrieved soil moisture is a bulk behaviour resulting from a complex combination of 
these factors, so that the most practical way to correct for them is to make a synoptic 
evaluation of the biases at a landscape scale rather than a small-scale parametrization of 
each factor.

Colliander et al. (2017) report a comprehensive campaign to validate SMAP surface soil 
moisture products, in which several landscapes featuring different land cover types, 
climatic regimes, etc., were considered. The report describes an effort undertaken to 
ensure geographic distribution and diversity of site conditions. However, it is not realis-
tically feasible to account for all possible landscape scenarios on earth’s land surface. 
Owing to the diverse nature of the salient features that define landscapes, each landscape 
is unique so that the generic landscapes sampled for large-scale (global) validation of 
satellite products are only representative of the world’s major landscapes but are neither 
exhaustive nor can precisely match any other landscape outside of the specific ones that 
were sampled. Kolassa et al. (2017) note that global validation and bias correction 
approaches may be more robust compared to those at local scales, but they are more 
vulnerable to retrieval errors due to uncertainties in the retrieval inputs. The quality of soil 
moisture satellite products validated in such a generic manner suffices for most applica-
tions, but in some applications such as surface runoff modelling where soil moisture is 
a key initialization variable (Shahrban et al. 2018), a more precise landscape-adapted 
validation may be required. Antecedent soil moisture has a direct influence on quantifica-
tion of surface runoff, as it determines whether or not precipitation is sufficient to trigger 
a surface runoff (Meißl, Zieher, and Geitner 2020; Song and Wang 2019), and remotely 
sensed soil moisture has proved the feasibility and rationality to provide this information 
(Crow and Ryu 2009; Jiang and Wang 2019; Kofidou and Gemitzi 2023; Minet et al. 2011; 
Yu et al. 2018).

While landscape-specific validation of satellite soil moisture products is desirable, the 
elaborate infrastructure for collecting ground measurements required to implement it can 
be a major impediment. The SMAP validation campaign employed a broad network of 
core validation sites (CVS), which meet certain requirements in terms of sensor calibra-
tions and representativeness of sample locations within the pixel (Colliander et al. 2017). 
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Few regions in the world, however, have sampling sites that meet the requirements for 
a CVS; it is costly to establish and maintain them (Lakshmi 2013). Myeni, Moeletsi, and 
Clulow (2019) highlighted a mismatch between the highly diverse climatological, biogeo-
graphical, pedological and lithological characteristics of landscapes over the African 
continent, and the disproportionately poor soil moisture ground sampling infrastructure 
that precludes any comprehensive validation of satellite-based soil moisture data in the 
region. This limits the operational application of SMAP, as many regions are forced to rely 
on validations carried out in unmatching environments. Despite the efforts made to instal 
soil moisture monitoring networks in Africa in the past two decades (Myeni, Moeletsi, and 
Clulow 2019), there remains a data gap that can only be filled by less conventional 
sampling approaches.

This study proposes an alternative sampling approach that optimizes limited resources 
(a single sensor) to collect the required in situ soil moisture data in order to fill the data 
gap left by the standard validation method for SMAP, without significant compromise on 
the need for spatial representativeness of samples in the sampling site and the need for 
temporal proximity of sampled measurements to the satellite product being validated.

2. Materials and method

2.1. Study area

The validation of SMAP surface soil moisture product presented in this study was carried 
out in four sites within Sondu-Miriu watershed in Western Kenya, shown in Figure 1. The 
watershed was defined using the Hydrology tool of ArcGIS 10.3 to generate flow channels 
and define watershed boundaries, with SRTM digital elevation model as input parameter.

Sondu-Miriu watershed extends over an area of about 3500 square kilometres, and 
together with Lake Victoria, the watershed forms a complex ecosystem. It is one of the 
major watersheds feeding the Kenyan side of the trinational fresh water lake. Growth in 

Figure 1. Map showing the geographic location of Sondu-Miriu watershed in Western Kenya (a), and 
the four soil moisture sampling sites within the watershed (b). The grid of SMAP soil moisture pixels 
that overlap the watershed is shown.
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the riparian population has led to an increase in anthropogenic activities such as agri-
culture (Olokotum et al. 2020), and surface runoff has the potential to sweep nutrients 
into the lake, exacerbating the periodic occurrences of explosive growth of invasive 
aquatic plants (Cheruiyot et al. 2014). Hypothetically, a hydrological simulation of surface 
runoff in the watershed could help link the extraordinary phenomena of periodic explo-
sions of invasive aquatic weed in the lake to its apparent triggers, and remotely sensed 
soil moisture measurements would be a valuable resource for this purpose.

2.2. SMAP soil moisture

SMAP is a set of earth observation products derived from NASA’s (National Aeronautics 
and Space Administration) environmental monitoring satellite (SMAP), that was launched 
in January 2015. SMAP’s instruments operate in the L-band (1.26 GHz and 1.41 GHz 
respectively for radar and radiometer), which permits observations of soil moisture 
through clouds and moderate vegetation cover, as these layers are nearly transparent 
at the microwave frequencies (Monerris et al. 2009). SMAP soil moisture product was 
originally planned to be a combined product of SMAP’s radar (3 km) and radiometric (36  
km) measurements to produce an intermediate resolution (9 km) product (Colliander et al.  
2017), but the radar component failed in July 2015, barely three months into operation. 
SMAP mission objective is to retrieve surface soil moisture for the top 5 cm of the soil 
profile with estimation errors no larger than 0.04 cm3 cm−3 (Colliander et al. 2017).

SMAP Level-4 Surface Soil Moisture (Reichle et al. 2022) is an open access soil moisture 
simulated product available on a 9 km grid and simulation intervals of 3 hours, making it 
an important resource for near-real time study of hydrological processes at a regional 
scale. It is a value-added product generated by a land data assimilation system that 
utilizes L-band brightness temperature observations from SMAP satellite, precipitation 
observations, and land surface modelling (Reichle et al. 2017); production of SMAP soil 
moisture is therefore not limited by the radar data availability (Colliander et al. 2017). The 
land model is based on conservation principles of water and energy, which together with 
realistic forcing data ensures reliability of the simulated product that is further refined by 
satellite observations to provide fairly reliable moisture estimates compared to other 
space-borne moisture products (Duygu and Akyürek 2019; Reichle et al. 2017).

The current study targets validation of SMAP Level-4 ‘SPL4SMGP sm_surface’ product 
at two simulation time intervals: 09:00–12:00 hours (average-centred at 10:30 hours) and 
15:00–18:00 hours (average-centred at 16:30 hours).

2.3. Sampling design and measurement

According to Colliander et al. (2017), the basic requirements for ground soil moisture 
point measurements averaged to obtain an areal estimate value of a SMAP grid pixel 
are (1) the ground sensor must be location-specific calibrated, and (2) there is an 
adequate number of ground measurement replications with a representative distribu-
tion within the pixel grid. Meeting the latter requirement would conventionally require 
simultaneous point measurements from an extensive network of sensors representa-
tively distributed within the pixel grid as depicted in Figure 2(a). These sensors are 
normally installed on the ground for extended periods of time and continuously 
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collect data at regular intervals, with or without automated data transmission capabil-
ities. The distribution of sensors is designed to capture the spatial heterogeneity of the 
sampling unit, and therefore enhance their representativeness. The point measure-
ments can be averaged to obtain an area representative soil moisture value of the 
sampling unit, or interpolated to obtain a spatially continuous distribution of the state 
variable. But this infrastructure does not presently exist in the study area and it is 
costly to instal one.

In the absence of the conventional sampling design for validation of SMAP, the idea 
is to implement an alternative sampling strategy, shown in Figure 2(b), that allows 
gathering of quality ground truth soil moisture data at low cost. To attain sufficient 
measurement replications using a single sensor, measurements are collected along 
access roads that allow ease of movements. But the resultant sample points may 
follow a near-linear pattern, that is known to be less representative of the sampling 
unit. This is mitigated by identifying close to homogeneous pixels, within which near- 
linear sample points may be representative enough. To achieve this, the following 
procedure was followed: 1) Evaluate the spatial variability of soil moisture in the study 
area with respect to the spatial scale of the remotely sensed soil moisture data; 2) 
Identify the key driving factors of the soil moisture spatial heterogeneity, and use that 
information to cluster pixels with similar characteristics to form regions within which 
validation is to be carried out; 3) From each cluster, select a representative pixel with 
an access road that cuts across a substantial pixel area, from which sampling data is to 
be collected; 4) Perform site-specific soil moisture meter calibration for each cluster; 
and 5) Implement a near-linear transect sampling approach to collect soil moisture 
data along the access roads within the sampling pixels.

Figure 2. A comparison of two sampling designs: a conventional sampling design (a) with installed 
sensors that simultaneously take measurements at spatially distributed sample points to enhance 
spatial representativeness, and the near-linear transect sampling design (b) that allows low-cost 
sampling of soil moisture through the use of a single sensor along access roads to achieve multiple 
replications in a short time.
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2.3.1. Spatial variability of SMAP surface soil moisture
Spatial variability was evaluated by defining a linear transect featuring 13 SMAP pixels 
that cut across the study area from downstream where the Sondu-Miriu River drains to 
Lake Victoria, to upstream which is the main source of the river’s water, as shown in 
Figure 3(a). For a specific SMAP dataset, the change of soil moisture across space was 
determined as the difference between the moisture values of adjacent pixels. This 
resulted in 12 pixel-to-pixel transitions per dataset, and was repeated for 23,376 SMAP 
datasets representing a period covering the first eight complete years of the product from 
31 March 2015 01:30:00 to 30 March 2023 22:30:00, at three hours intervals, as presented 
in Figure 3(b).

There is a pixel-to-pixel variation of SMAP soil moisture that range from −0.05 to +0.15  
m3 m−3. This highlights the sharp change in soil moisture values between adjacent SMAP 
pixels, which is an indication that the pixel-to-pixel landscape-defining characteristics vary 
so significantly across the study area that they cannot be validated as a block. The study 
area must therefore be broken down to sub-regions with similar characteristics.

2.3.2. Clustering of SMAP pixels
Soil texture, vegetation density and topography, which are the land surface factors with 
greater influence on satellite remote sensing retrieval of soil moisture (Mohanty 2013), 
were considered in characterizing pixels. Soil texture information presented in Figure 4(a), 
obtained from World Soil Information (ISRIC)’s SoilGrids (Hengl et al. 2017), shows four 
texture types: coarse, medium, fine, and very fine, and was considered the primary factor 
in characterizing pixels. Four clusters were created, and a pixel was assigned to a cluster if 
one of the four soil types covered at least half its area: Cluster 1 (coarse), Cluster 2 
(medium), Cluster 3 (fine) and Cluster 4 (very fine). Vegetation density implied from an 
Earth Resources Observation and Science (EROS) Center Visible Infrared Imaging 
Radiometer Suite (eVIIRS) Global Normalized Difference Vegetation Index (NDVI) image 
shown in Figure 4(b), was used to assign the pixels that remained unclassified by soil 
texture criterion. Pixels with low vegetation density were assigned to Cluster 1, and those 
with high vegetation density to Cluster 4. Finally, topography implied from ASTER digital 
elevation model shown in Figure 4(c) was used to assign the pixels that remained 

Figure 3. A linear transect across Sondu-Miriu watershed from downstream to upstream showing 12 
pixel-to-pixel transitions (a), and the spatial variability of SMAP surface soil moisture depicted as the 
difference in moisture values of adjacent SMAP pixels (b).
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unclassified by soil texture and vegetation density criteria. Downstream pixels were 
assigned to Cluster 1, upstream pixels to Cluster 2, and midstream pixels to Cluster 3 
(lower midstream) or Cluster 4 (upper midstream). This led to grouping of pixels to four 
clusters as shown in Figure 4(d).

2.3.3. Selection of validation sites
Constrained further by the need to make rapid successive measurements so that the 
ground measurements generally fall within a reasonable temporal proximity to SMAP 
simulation time, the final step in selection of sampling sites was dictated by accessibility. 
From each cluster, a pixel with an access road cutting across it was selected as 
a representative sampling site. The selected validation sites, each approximately 9 km ×  
9 km corresponding to SMAP grid pixel, are shown in Figure 1(b) and summarized in 
Table 1. Each of the four sites represents one of the major soil texture types in the 
watershed: coarse (Mawego), medium (Kuresoi), fine (Sotik), and very fine (Kapsuser). 
The sites represent four different land use types: predominantly sparsely vegetated 
shrublands with low vegetation density (Mawego), predominantly small-scale annual 
croplands with medium vegetation density (Sotik), predominantly large-scale perennial 

Figure 4. Characterization of SMAP pixels in Sondu-Miriu watershed based on soil texture (a), 
vegetation density implied from NDVI (b), and topography implied from digital elevation model (c), 
resulted in clustering of the pixels into four regions of similar landscape-defining characteristics (d).

Table 1. Characteristics of SMAP validation sites in Sondu-Miriu watershed.
Site Name Soil Texture Type Vegetation Density Stream Flow Stage

Mawego Coarse Low Downstream
Kuresoi Medium Medium Upstream
Sotik Fine Medium Midstream
Kapsuser Very fine High Midstream
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croplands with high vegetation density (Kapsuser), and predominatly annual croplands 
with patches of forest cover and overall medium vegetation density (Kuresoi). The sites 
represent different stages of stream flow, upstream (Kuresoi), midstream (Kapsuser and 
Sotik), and downstream (Mawego).

2.3.4. Moisture meter calibration
Soil moisture ground measurements were collected using a portable soil moisture meter, 
Lutron PMS-714 (Master Instruments Pty Ltd, Australia). The moisture meter was cali-
brated to obtain soil-specific calibration equations suitable for the soil type in each of the 
four sampling sites. This was achieved through a laboratory process in which soil samples 
from the validation sites were saturated and allowed to naturally dry out, allowing multi-
ple simultaneous measurements of soil moisture by both the moisture meter and the 
reference gravimetric method. The two sets of data were fitted to a linear model to 
produce a calibration equation for each soil type.

In addition to the calibration equations, the calibration procedure produced for each 
soil type two moisture parameters, one on each end of the calibration curve: on the upper 
end the soil saturation value, which is the maximum possible moisture content of the soil, 
and on the lower end the minimum moisture value, which is the lowest water content the 
soil retains when it reaches its driest level under natural conditions. This yielded saturation 
values of 0.34, 0.55, 0.45, 0.58 m3 m−3 and minimum moisture values of 0.08, 0.24, 0.22, 
0.21 m3 m−3, respectively for Mawego, Kuresoi, Sotik and Kapsuser sampling sites. 
A detailed description of the calibration is available at Cheruiyot, Mito, and Menenti 
(2024).

2.3.5. Data collection
The requirement for spatial representativeness was met by collecting ground data along 
near-linear transects of about 8–12 km across the SMAP pixel grid, as shown in 
Figure 5(a)–(d). Measurements were taken at about 400–600 m lateral intervals along 
the transect, resulting in about 10–20 sampling points across the sampling site, providing 
sufficient replications over the spatial domain that exceed the SMAP recommended 
number of at least five for a 9 × 9 km square grid size (Colliander et al. 2017).

Measurements were taken from naturally occurring soils about 50–100 m off the 
access roads. For each sampling site, soil moisture measurements were taken twice 

Figure 5. Picture showing a near-linear transect sampling of soil moisture, indicating sampling points 
along access roads in each of the four sampling sites: Mawego (a), Kuresoi (b), Sotik (c), and Kapsuser 
(d). The background image is a satellite imagery of the sites obtained from ArcMap basemaps.
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a day for seven consecutive days; the first run between 10:00–11:00 hours and 
the second run between 16:00–17:00 hours, respectively designed to coincide with 
SMAP soil moisture simulated products for the time ranges 09:00–12:00 hours 
(average-centred at 10:30 hours) and 15:00–18:00 hours (average-centred at 16:30  
hours). The second objective of completing each run of measurements within 
an hour is to minimize the effect of diurnal soil temperature variations between 
measurements on the sensor consistency.

While the sampling design adopted in this study results in almost linearly distributed 
sampling points that are known to be less representative of the sampling area com-
pared to scattered sampling points (Oliver and Webster 1986), it is a low-cost alternative 
to a well distributed sensor network infrastructure. Transects as a spatial sampling 
technique for soil characteristics is not a new concept (Famiglietti, Rudnicki, and 
Rodell 1998; Wang et al. 2012), though most of the applications are at a much smaller 
spatial scale. In essence, the objective of a sampling design is to capture the spatial 
heterogeneity of soil moisture in the pixel grid, which is influenced by precipitation 
distribution, soil texture, land cover and topography (Colliander et al. 2017). The 
sampling sites in this study have almost homogenous soil texture within the pixel grid 
(less so in Mawego site), with generally the same land cover type (less so in Kuresoi site), 
and topography, and the 9 km × 9 km grid size is less than about 10–100 km spatial- 
temporal variability scale for precipitation, where a uniform rainfall distribution in 
one hour can be assumed (Cristiano, ten Veldhuis, and van de Giesen 2017). 
Therefore, considering the non-complex terrains of the sampling sites, the sampling 
design adopted provides to a reasonable extent a good representation of the sampled 
area.

Microwave remote sensing is generally limited to a soil sensing depth of 
approximately five centimetres (Mohanty 2013); variations depend on the soil 
moisture content and its distribution (Escorihuela et al. 2010). Based on 
a relationship between soil effective temperature and the sensing depth of micro-
wave soil moisture radiometry, Lv et al. (2018) recommend 5 cm depth of soil 
moisture measurement as a ground reference to calibrate and validate satellite- 
based soil moisture products, as this depth captures the main signal source on 
average. Therefore, soil moisture ground measurements were collected from the 
top 5 cm of soil surface using a portable soil moisture meter with suitable site- 
specific calibrations.

2.4. Validation analysis

For each transect run of ground measurements, the measured meter values were 
averaged to obtain a single moisture value representing the soil moisture state of the 
grid at the field time. This value was compared with the corresponding SMAP value for 
the same grid over the same period. Linear correlation of the two sets of soil moisture 
values was performed to generate correlation statistics (R, RMSE). Statistical biases were 
also calculated to determine over- or under-estimation of SMAP simulations as com-
pared to the reference ground measurements.
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3. Results and discussion

3.1. SMAP validation results

Figure 6 is a graphical presentation of validation results for SMAP surface soil moisture at the 
four validation sites in Sondu-Miriu watershed. Figure 6(a)–(d) shows a comparison between 
calibrated soil moisture ground measurements and SMAP soil moisture, while Figure 6(e)–(h) 
shows a time series comparison of the same moisture data over the field period, respectively 
for Mawego, Kuresoi, Sotik and Kapsuser sampling sites. The two datasets compare well with 
R2 of 0.76, 0.72, 0.78, 0.82 and RMSE of 0.009, 0.010, 0.009, 0.008 m3 m−3, respectively.

The validation results presented in this work only differ marginally with those of 
Cheruiyot, Mito, and Menenti (2024), which produced RMSE in the range 0.007– 
0.010 m3 m−3 and bias in the range −0.002–0.030 m3 m−3 using spatially distributed 
sample points over the same study area (see Table 2). By contrast, Zhang, He, and 
Zhang (2017) obtained comparatively larger validation errors (RMSE of 0.074–0.077  
m3 m−3 and bias of 0.024–0.028 m3 m−3) from a complex mountainous terrain. This 
shows that for a non-complex terrain, the sampling design presented in this work 
where areal values are obtained by a simple arithmetic mean of near-linear point 
measurements may suffice. This is consistent with the findings of Wu et al. (2020), 
which showed lower representativeness of in situ measurements in regions with 
higher topographic complexity.

Figure 6. Graphical presentation of validation results for SMAP soil moisture at four validation sites. 
(a)–(d) show a comparison of SMAP and calibrated in situ soil moisture measurements, while (e)–(h) 
show a time series of the same moisture data over the field period, respectively for Mawego, Kuresoi, 
Sotik and Kapsuser sampling sites.

Table 2. Comparison of validation errors obtained with near-linear transect sampling design proposed 
in this study, and those obtained from a spatially distributed sampling approach in Cheruiyot, Mito, 
and Menenti (2024).

Site

Near-linear transect sampling 
(present study)

Spatially distributed sampling (Cheruiyot, Mito, and Menenti 
(2024))

R2 RMSE (m3 m−3) Bias (m3 m−3) R2 RMSE (m3 m−3) Bias (m3 m−3)

Mawego 0.76 0.009 −0.0246 0.79* 0.009* −0.007*
Kuresoi 0.72 0.010 +0.0113 0.81 0.010 +0.030
Sotik 0.78 0.009 −0.0004 0.83 0.007 −0.014
Kapsuser 0.82 0.008 +0.0035 0.88 0.008 −0.002

*Not included in Cheruiyot, Mito, and Menenti (2024), but produced in a similar manner.

6294 E. CHERUIYOT ET AL.



3.2. Impact of surface heterogeneity on accuracy of soil moisture sampling 
methods

With a bias of −0.0004 m3 m−3 and +0.0035 m3 m−3 respectively for Sotik and 
Kapsuser, SMAP soil moisture is insignificantly biased at these sites. These midstream 
sites have moderate vegetation cover and fine to very fine soil texture. This is 
consistent with findings of Mousa and Shu (2020), that SMAP shows best performance 
over moderate vegetation cover. SMAP soil moisture is however underestimated at 
Mawego site by 0.0246 m3 m−3 and is overestimated at Kuresoi site by 0.0113 m3 m−3. 
These results are in agreement with the findings of Zhang, He, and Zhang (2017), that 
SMAP posts largest errors in shrublands compared to other vegetation landscapes, 
where it underestimates soil moisture with the largest negative bias. Mawego is 
a downstream site characterized by the presence of uniformly sparse vegetation 
cover and a soil texture that is predominantly coarse but features patches of medium 
and fine textured soils. Kuresoi is an upstream site characterized by a predominantly 
medium textured soil and a medium density vegetation cover that is predominantly 
croplands with a small section of forest cover. These factors may have contributed to 
the reduced validation accuracy for the Mawego and Kuresoi sites, compared to Sotik 
and Kapsuser sites where all the three landscape-defining characteristics considered in 
this study are largely homogeneous. While the validation errors in the two less 
homogeneous sites are only marginally elevated, it is evident that a linear sampling 
method does not capture the spatial heterogeneity of the sampling area. It can be 
surmised from these results that the errors will increase with increase in the spatial 
heterogeneity, so that a spatially balanced sampling method is ideal for such complex 
terrains.

3.3. Temporal variability of SMAP surface soil moisture

Temporal variability of SMAP was evaluated for a period covering the first eight complete 
years of the product from 31 March 2015 01:30:00 to 30 March 2023 22:30:00, featuring 
23,376 datasets at three hours intervals. A time series plot depicting the surface soil 
moisture variation of each sampling site over a selected representative period, the 2017 
calendar year, is presented in Figure 7(a)–(d), respectively for Mawego, Kuresoi, Sotik and 
Kapsuser sampling sites, featuring SMAP soil moisture (black) and the bias-corrected 
SMAP moisture values (blue). Cyan circles indicate instances when the land surface was 
saturated, and the magenta circles indicate instances when the land surface attained 
minimum moisture content under natural conditions. The soil saturation value and the 
minimum moisture value of each site were determined through a soil meter calibration 
process described in the ‘Moisture Meter Calibration’ section. These results show that the 
fine and very fine texture soils of Sotik and Kapsuser sites have a notably higher water 
holding capacity compared to coarse texture soils of Mawego site. The medium textured 
soils showed a water holding capacity that is higher than would relatively compare with 
other texture types. Kuresoi site features a forested or recently deforested landscape 
whose soils have a high organic matter content, which together with clay have 
a combined effect of enhancing its water holding capacity (Kirkham 2005) and signifi-
cantly influencing its wilting point (Bouyoucos 1939; Garg et al. 2017).
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Of the 23,376 SMAP datasets analysed, the downstream site of Mawego and that of Sotik 
respectively experienced 60 and 159 occurrences of soil saturation during the eight-year 
period, in comparison to 13 and 153 occurrences during the same period before the datasets 
were corrected for biases. The upstream site of Kuresoi and that of Kapsuser experienced no 
saturation events during the period, with and without bias correction of the datasets. All sites 
experienced instances of extremely dry soil over the same period, with 365, 410, 113, and 216 
occurrences respectively for Mawego, Kuresoi, Sotik and Kapsuser sites, in comparison to 
1738, 268, 114, and 184 before the datasets were bias-corrected. These results demonstrate 
the possibility to utilize SMAP soil moisture data to detect episodes of flooding and drought at 
a landscape scale, but that the accuracy of these detections can change significantly with 
marginal adjustments to the estimated values of soil moisture.

Crow and Ryu (2009) developed a surface runoff prediction model that is based on 
three ideal observation characteristics of the input remotely sensed soil moisture data: 
a retrieval RMSE accuracy of 0.03 m3 m−3, a soil sensing depth of 10 cm, and an observa-
tion frequency of a day. SMAP has an excellent product simulation frequency of 3 hours, 
and can meet the RMSE accuracy of 0.03 m3 m−3 with a proper validation and bias 
correction, as presented in this work. SMAP surface soil moisture product with a sensing 

Figure 7. Time series plots showing temporal variation of SMAP soil moisture and the bias-corrected 
SMAP moisture values for Mawego (a), Kuresoi (b), Sotik (c), and Kapsuser (d) sites for the 
calendar year 2017. Instances when the bias-corrected SMAP soil moisture reached the minimum 
and maximum values for the soil types of the respective sites are indicated, showing periods when the 
soil was dry or saturated.
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depth of 5 cm is inadequate for this application, though a root zone product with a depth 
of 1 m is also available. Therefore, the retrieval accuracy and the temporal resolution of 
SMAP data seem suitable for hydrological applications. Assimilation of remotely sensed 
soil moisture in hydrological models has been shown to improve simulations of stream-
flow (López López et al. 2016; Wakigari and Leconte 2023).

Temporal stability is the concept that the spatial patterns of soil moisture are stable 
over time (Vanderlinden et al. 2012), so that while the areal soil moisture varies over time, 
there is a consistency in the geographic locations of relatively wetter and drier areas 
(Brocca et al. 2017). Temporal stability of SMAP data was evaluated by plotting the 
monthly moving average values of SMAP soil moisture for all pixels within the watershed 
over the eight-year period, as presented in Figure 8(a). This produced identifiable patterns 
of wetter and drier pixels, which were further verified by obtaining the mean soil moisture 
value for each pixel over the eight-year period. This led to the clustering of the watershed 
into four representative classes A, B, C and D, in terms of wetness as presented in 
Figure 8(b), with the soil moisture ranges: less than 0.20 m3 m−3, 0.20–0.30 m3 m−3, 
0.30–0.35 m3 m−3, and more than 0.35 m3 m−3, respectively. This allows for a time- and 
cost-efficient monitoring of soil moisture in the watershed in a long-term basis by 
focusing only on four representative pixels, as proposed by Brocca et al. (2017).

Figure 8. (a) Shows the temporal stability of SMAP surface soil moisture at Sondu-Miriu watershed 
over the period 31 March 2015 to 30 March 2023, obtained using monthly moving average soil 
moisture values. Each line represents a SMAP pixel, and is represented in a colour that indicates the 
range of its mean soil moisture value over the period. (b) shows the wetness clustering of SMAP pixels 
in the watershed based on their eight-year mean SMAP moisture values. A1, B1, C1, and D1 are 
randomly selected representative pixels for each cluster, while A2, B2, C2, and D2 are pixels with 
median moisture values for each cluster.
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In order to test the concept of using temporal stability as a basis for selecting 
sampling areas, four SMAP pixels marked A1, B1, C1, and D1 in Figure 8(b) were 
randomly selected as the representative pixels for their respective classes. If the soil 
moisture values of these pixels were applied to unsampled areas, the magnitude of 
error in the estimation of soil moisture of each pixel in the watershed was computed 
as the difference between the actual SMAP soil moisture value of that pixel and that of 
the representative pixel in the respective class. The resultant errors presented in 
Figure 9(a) show values ranging from −0.2354 to +0.1818 m3 m−3, which average to 
a range of −0.0736 to +0.0325 m3 m−3 over an eight-year period. The relative errors 
shown in Figure 9(b) range from −0.8267 to 1.9000, and average to a range of −0.2525 
to 0.0978, while standard deviation of the relative errors are 0.0124, 0.0893, 0.0318, 
and 0.0332, respectively for classes A, B, C, and D. When a SMAP pixel with the median 
soil moisture value of each class was selected as the representative pixel of the 
respective class, marked with A2, B2, C2, and D2 in Figure 8(b), the resulting errors 
presented in Figure 9(c) reduced to values ranging from −0.2264 to +0.1706 m3 m−3, 

Figure 9. Magnitude of errors in the estimation of soil moisture of unsampled pixels when temporal 
stability wetness clustering is applied to the selection of sampling areas using randomly selected 
representative pixels within a class (a), and using pixels of median soil moisture values as representa-
tive pixels for the class (c). Each line represents a SMAP pixel in the watershed, and is represented in 
a unique random colour for visualization purposes only. (b) and (d) are the relative errors for the 
former and latter methods, respectively.
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and averaging to a range of −0.0450 to +0.0318 m3 m−3 over the eight-year period. 
The relative errors shown in Figure 9(d) range from −0.7891 to 1.3772, and average to 
a range of −0.1812 to 0.1215, while the standard deviation of the relative errors are 
0.0150, 0.0987, 0.0335, and 0.0326, respectively for classes A, B, C, and D. The average 
errors from this latter method are closer to the SMAP target value of 0.04 m3 m−3 

(Colliander et al. 2017). These results show that this method results in large approx-
imation errors in the short-term, but produce reasonable errors in the long-term.

4. Conclusions

While SMAP (Soil Moisture Active Passive) Level-4 surface soil moisture has been validated 
for select representative landscapes using well established core validation sites, these 
landscapes are not nearly as exhaustive since each landscape exhibits unique salient 
features determined largely by terrain, vegetation cover, soils, climate, etc. Localized 
validation of SMAP could enhance its reliability, but it is impractical to implement for 
every landscape the elaborate ground sampling infrastructure that meets the require-
ments of a standard SMAP core validation site in terms of spatial representativeness of 
sampling points within the sampling unit and the frequency of measurements. This study 
proposes a sampling approach that utilizes limited resources (a single sensor) to balance 
the need for spatial distribution of samples across the sampling site and the need for 
temporal proximity of the sampled measurements to the aggregation time of the satellite 
product being validated. It involves transect sampling along access roads that run across 
the sampling sites, with measurements taken at about 400–600 m lateral intervals and 
within ±30 minutes of the SMAP product simulation time. The proposed sampling 
approach is suitable for validation of SMAP in non-complex terrains where the land-
scape-defining characteristics do not substantially change within the SMAP grid, permit-
ting the computation of areal soil moisture as simple arithmetic means of near-linear 
point measurements. Therefore, large and inhomogeneous landscapes must first be 
clustered to smaller near homogeneous units before application of the proposed method.

This sampling approach was applied to the validation of SMAP data at Sondu-Miriu 
watershed in Western Kenya. A spatial variability of SMAP soil moisture data revealed 
sharp changes between soil moisture values of adjacent SMAP pixels, indicating that the 
watershed could not be validated as a single unit, therefore it was clustered to four 
different landscapes. Sampled soil moisture measurements were corrected with soil- 
specific calibration equations, and averaged to obtain a single moisture value for the 
site that corresponds to SMAP product for that specific time. Validation analysis show 
a good agreement between in situ measurements and SMAP with R2 of 0.76, 0.72, 0.80, 
and 0.82, respectively for Mawego, Kuresoi, Sotik and Kapsuser sites. With biases of 
−0.0246, +0.0113, 0.0004, and +0.0035 m3 m−3, it shows that SMAP is significantly under-
estimated at Mawego site, marginally overestimated at Kuresoi site, and insignificantly 
biased at Sotik and Kapsuser sites. These results are not significantly different from those 
obtained for the same sites using the standard sampling approach of spatially distributed 
sample points across the sampling site, indicating that the proposed simple sampling 
approach suffices in non-complex terrains.

An analysis of the temporal variability of SMAP soil moisture revealed the potential of 
the data as a resource to map flooding and drought events particularly because of its high 
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repeat frequency of three hours, but a proper validation is required to remove marginal 
biases that can cause significant interpretation errors. An analysis of the temporal stability 
of SMAP data in the watershed showed the possibility to cluster the watershed to a few 
wetness classes, permitting time- and cost-efficient monitoring of soil moisture in a long- 
term basis by focusing on a few representative areas.
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