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Abstract
Moral values are abstract ideas that ground our
judgements towards what is right or wrong. How-
ever, with the rapid unfold of moral rhetoric on so-
cial media, it becomes increasingly important to
place these ideas in a moral frame, contain their
harmful effects, and recognise their positive ones.
So far, estimating values from opinionated text has
posed a challenge due to values’ abstract and sub-
jective nature. However, with the latest devel-
opments in Natural Language Processing (NLP),
we foresee an opportunity to align the study of
morality in text with state-of-the-art NLP architec-
tures. Recently published, the Moral Foundations
Tweeter Corpus is a milestone in moral classifica-
tion tasks by offering a dataset that allows for a
closer look into how people express moral narra-
tives in social media. In the downstream process
of a text classifier, embeddings convert words and
sentences into meaningful vectors. Pre-trained on
large corpora, they can be fine-tuned, and domain
adapted. This study proposes a refinement model,
starting from the available dataset, that learns to
capture moral information in Sentence-BERT em-
beddings by applying a state-of-the-art supervised
method (triplet loss). We further demonstrate how
the refined embeddings improve the accuracy of
moral classifiers. Finally, with an improvement of
5% F1-score over models that use pre-trained em-
beddings, we pave the way towards a generalisable
and transferable set of moral embeddings.

Keywords: Morality, Natural Language Process-
ing, Embeddings, Generalizability, Transferability,
Sentence-BERT

1 Introduction
Personal values are the abstract motivations that drive our
opinions and actions. Shaped by culture and personal experi-
ence, they now travel freely in the digital space. For example,
studies reveal that moral rhetoric expressed on social media
embeds different values depending on the political orienta-
tion [1] and can even anticipate violent protests [2]. A better

understanding of how we express these moral perspectives
and how they vary across groups (e.g. political, cultural, re-
ligious) would enable us to take action on harmful ideas and
eventually design Artificial Intelligence (AI) aligned with our
virtues. The recent improvements of Natural Language Pro-
cessing (NLP) techniques allow us to design models that ac-
curately estimate individual values from the opinionated text.
However, not performed with the (current) state-of-the-art
models (e.g. BERT [3], MPNet [4]) and heavily reliant on
feature engineering [5], existing work reveals the challenges
posed by the subjective nature of the task: agreement on a
universal set of values, data annotator’s subjectivity.

Moral Foundations Theory [6] is a widely adopted theory
in social psychological studies. It proposes five innate and
universally available moral foundations: care, authority, fair-
ness, loyalty and purity. To hold explainable and compara-
ble findings, we frame our research in the terms proposed by
MFT. In support of this choice, we use the Moral Founda-
tions Twitter Corpus [7], a sizeable and adequately annotated
dataset. Its richness in topics allows for an extensive analy-
sis of state-of-the-art architectures in the multi-label moral
classification task. Widely adopted ([8], [5]), it offers the
premises of an in-depth understanding of morality expressed
in social media.

Embeddings are mappings of words (or sentences) to
numeric representation that feed machine learning models.
They are trained on large corpora and learn to project text
onto a low dimensional continuous space. The resulting vec-
torial representations are meaningful as words (or sentences)
with similar meaning are close (e.g. Euclidean distance, co-
sine similarity) to one another in the embedding space. Dif-
ferent techniques are used to re-train these embeddings to
capture domain or task-specific information. Thus, their qual-
ity has a tangible impact on the model’s performance. How-
ever, their computation is often not explicit (e.g. BERT), or
they are not domain adapted, making the learning process
more complex for the model on top. Furthermore, past moral
classifiers have either not used stat-of-the-art embeddings [7]
or did not train them to learn moral foundations [8], mov-
ing the pressure on the model’s learning capabilities. Sig-
nificantly, fine-tuned embeddings’ usage is not limited to the
model and task they are designed for in the first place. For
example, they can reveal hidden social biases [9], and more
generally, reveal domain-specific particularities. Our work
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successfully embeds morality into these vector representa-
tions and studies their direct impact on the moral classifier
and ability to transfer learning and generalize across different
discourse domains.

To achieve their moralization, state-of-the-art embeddings
(SBERT [10]) are fine-tuned using a supervised method
called triplet loss [11]. For a complete classification model
architecture, on top of these vector representations, two dense
layers are added. While fine-tuning proves an expensive
operation (≈4min per epoch, entire dataset1), training the
moral classifier will take few seconds (≈2s per epoch, entire
dataset).

This work proposes three multi-stage embeddings fine-
tuning methodologies to overcome the identified limitations
of related research and obtain a complete technical overview
of the proposed work. It successfully leverages the avail-
ability of an adequately annotated dataset (MFT labels), pre-
trained language models’ transferability [12] and supervised
tuning methods (triplet loss [11]). Nonetheless, we imple-
ment a set of models (LSTM and Bi-LSTM) for an objective
comparison with past papers that serve as baseline models for
our analysis.

We identify the main contributions of this paper as follows:

• A lightweight method for effectively optimizing the em-
bedding itself, rather than increasing the complexity of
the classification model.

• Demonstrate the potential and limitations of transfer
learning and generalizability in moral embeddings.

• Proposes a highly accurate alternative to the current
state-of-the-art models in moral classification.

The paper is structured in the following way: In section
2 we make an analysis of related work. Section 3 presents
the dataset and the proposed embedding fine-tuning methods.
Section 4 takes three perspectives on moral embeddings and
proposes relevant experiments. In section 5, we reflect on the
experiments’ results. In section 6, we perform responsible
research. Section 7 concludes the work and proposes future
improvements.

2 Related work
Moral values are personal and abstract drives that push us
to action. The implied degree of subjectivity makes their
study virtually impossible without an agreement on a moral
framework. Moral Foundations Theory [6] is the common
ground for past attempts ([13],[7],[8],[5]) in moral classifica-
tion. Hoover et al. (2012) define five “irreducible basic ele-
ments” (care, authority, fairness, purity, loyalty) of morality
and describe their theory as one ”to be expanded” and that
gives researchers ”a common language for talking about the
moral domain”.

Early related work, The Morality Machine [14], proposes
a suitably annotated dataset (Moral Foundations Theory [6])
but its size (N = 8,292) and narrow topic (”Grexit”) are lim-
iting the potential of this work. More recently, a leap for-
ward was made in moral classification with the release of the

1Using the computation recources presented in Section 6.2

Moral Foundations Twitter Corpus, our choice . Hoover et
al. [7] published the Moral Foundations Twitter Corpus, a
dataset of 35 thousand tweets annotated with the same anno-
tation schema and sub-divided into seven smaller sub-datasets
with topics ranging from the 2016 US presidential elections
to Hurricane Sandy. The Twitter Corpus paper, however, does
not explore, in the proposed classification models, state of the
art embeddings (GloVe [15], SBERT [10]) and NLP archi-
tectures (e.g. BERT, Bi-LSTM). Further, Araque et al. [5]
achieve state-of-the-art results on the proposed dataset and
demonstrates how a moral lexicon (MoralStrength, 1000 lem-
mas) can be exploited at the document level using complex
feature engineering techniques. However, while demonstrat-
ing the potential of morality as a dimension in sentence vector
representations, the experiments were limited in complexity
and only differentiated between moral foundations and non-
morality (binary classification) and not between foundations
or even further, between vices and virtues. Moreover, feature
engineering limits the models’ performances to the quality
of the lexicon and it cannot transfer learning to other lan-
guages when compared to the state-of-the-art architectures
[16]. Luenen [8] attempts to overcome these limitations and
successfully proposes two Bi-LSTM models that differentiate
between vices and virtues within the moral foundations and
rely on pre-trained embeddings (word2vec and BERT). De-
spite a thorough analysis of the generalizability of such mod-
els, fine-tuning sentence or word representations is not ex-
plored and achieved results (60% weighted average F1-score,
on MFTC dataset, 11 labels) are lower than ours (72%).

Domain adaptation embedding methods as those presented
in this papers have made the subject of papers focusing on
sentiment analysis and serve as a basis [17]. However, they
have not explored the potential of such techniques in moral
foundation classification, and none has used the potential of
pre-trained SBERT (Semantic Textual Similarity) in conjunc-
tion with fine-tuning and lightweight architectures but have
rather relied on complex models or feature engineering.

3 Methodology
We aim to recognise moral foundations (Table 1) in opinion-
ated text and distinguish between their vices and virtues. To
achieve this, we define our problem as a multi-label classi-
fier with 11 classes. For each moral foundation, we have two
distinct classes (e.g. care/harm). Those texts that express
no foundation belong to the non-moral class. Compared to a
multi-class model, ours allows for data entries to have multi-
ple labels at a time.

In the downstream process of moral classification, we fo-
cus our attention on word and sentence embeddings. Moral-
ity is encapsulated in these representations using fine-tuning
techniques, and the model’s efficiency increases. Aside, we
implement two simpler architectures: LSTM and Bi-LSTM
to reproduce and compare our work to past moral classifiers.

Formally, we can define our goal as follows: given a set
of texts T = {t1, t2, . . . , tn}, an embedding space E and a
classification modelM : E 7→ C, we wish to learn a mapping
f : T 7→ E , for whichM performs best (refer to section 3.5
for a definition of performance metrics).



Throughout the paper, we analyse the effectiveness of the
proposed moral embeddings from multiple technical perspec-
tives (refer to section 4):

• Performance: how much do fine-tuning embeddings
(triplet loss) increase the performance metrics of the
moral classifier (compared to pre-trained embeddings)

• Generalizability: are fine-tuned embeddings suitable
for moral classification on a different dataset (than the
one used to train the embeddings)

• Transferability: can fine-tuned embeddings replace
pre-trained embeddings in moral classification

Next, we present the critical components of the methodol-
ogy. The order follows a bottom-up approach, similar to a
complete classification pipeline, starting with data, followed
by its numerical representation (embeddings) and eventually
discussing the models and their evaluation.

3.1 Moral Foundations Theory
First proposed by Haidt et al. (2004), The Moral Founda-
tion Theory serves as a common ground for analysing peo-
ple’s morality. In its earliest development, it focused on the
study of moral values within political ideologies. Later, it be-
came a universal moral frame that offered people a common
”language” to analyse morality. The theory defines a set of
5 foundations (Table 1) that stay at the base of our choices
and actions and that we all hold to a degree. These foun-
dations have manifestations that individuals can perceive as
positive (virtue) or negative (vice). However, most attempts
in moral foundations classification are not differentiating be-
tween the vice and virtue of a foundation. Increasingly often,
ethical dilemmas arise, and polarisation takes various shapes
in social media. In this context, it is especially relevant to un-
derstand better what people perceive as praiseworthy (virtue)
or blameworthy (vice). Despite the additional technical chal-
lenges (11 classes), we consider this insight relevant to un-
derstanding moral narratives.

3.2 Dataset
Structured into seven subsets (Table 2), the Twitter Corpus
benefits from many annotators (up to 8 per tweet), a consid-
erable size (more than 35 thousand tweets) and the diversity
of ideas in social movements (e.g. politics, human rights,
natural disaster). Together they form a complete view of how
morality takes shape in social media, and this has transformed
it into a benchmark for multi-label moral value classification.

Data aquisition
Data acquisition was initially challenged by the low availabil-
ity of the original tweets, fetched using the Twitter API. Only
49,9% of the total data was publicly available at the time, and
two datasets were entirely unavailable (MeToo and David-
son). Consequently, we requested the dataset from the au-
thors of the Moral Foundation Twitter Corpus paper. Kindly,
they offered us the whole dataset. Experiments to follow were
all conducted using the dataset in its entirety. With that, we
hope to achieve an objective comparison to past work.

Foundation Definition

Care
Harm

This foundation is related to our long evolution as mammals
with attachment systems and an ability to feel (and dislike)
the pain of others. It underlies virtues of kindness, gentleness,
and nurturance.

Fairness
Cheating

This foundation is related to the evolutionary process of re-
ciprocal altruism. It generates ideas of justice, rights, and
autonomy

Loyalty
Betrayal

This foundation is related to our long history as tribal crea-
tures able to form shifting coalitions. It underlies virtues of
patriotism and self-sacrifice for the group. It is active anytime
people feel that it’s “one for all, and all for one.”

Authority
Subversion

This foundation was shaped by our long primate history of
hierarchical social interactions. It underlies virtues of leader-
ship and followership, including deference to legitimate au-
thority and respect for traditions.

Purity
Degradation

This foundation was shaped by the psychology of disgust and
contamination. It underlies religious notions of striving to
live in an elevated, less carnal, more noble way. It underlies
the widespread idea that the body is a temple which can be
desecrated by immoral activities and contaminants (an idea
not unique to religious traditions).

Table 1: Definitions of moral foundations proposed in MFTC [6]

Corpus Description

All Lives Matter Tweets related to the All Lives Matter movement

Black Lives Matter Tweets related to the Black Lives Matter Movement

Baltimore Protests Tweets posted during the Baltimore protests against the death
of Freddie Gray

2016 U.S. Presidential
Election

Tweets posted during the 2016 U.S. Presidential Election

Hurricane Sandy Tweets related to Hurricane Sandy, a hurricane that caused
record damage in the United States

#MeToo Tweets related to the #MeToo movement

Davidson Hate Speech Tweets collected by Davidson et al. (2017) for hate speech
and offensive language research

Table 2: Moral Foundations Twitter Corpus (MFTC) Discourse
Domains [7]

Preprocessing
We closely analysed the raw data and designed six pre-
processing pipelines adequately adapted to different embed-
dings. Notably, most Tweets include ’#’ symbols, usernames,
URLs, concatenated words, abbreviations and spelling mis-
takes. To fix spelling mistakes, remove unnecessary tokens
(e.g. URLs, numbers, dates) and split merged words, we use
the ekphrasis2 library [18], a collection of lightweight text
tools geared towards text from Twitter.

Different models and embeddings are expected to behave
more efficiently with different forms of preprocessing. There-
fore, we introduce a set of methods common to all models:

• Lowercase

• Remove usernames, URLs and numbers

• Remove # symbols

• Remove punctuation

• Remove emojis

• Remove stopwords

2https://github.com/cbaziotis/ekphrasis



Further, we differentiate between context-dependent and
context-independent embeddings. While articulated words
can change the semantic meaning of context-dependent sen-
tence representation, for context-independent word represen-
tations, empirically (Figure 1 and 2), the model performs bet-
ter when words are lemmatised and stop words are removed
(the vocabulary is reduced).

We extend the list of preprocessing methods with more
complex operations:

• Lemmatization
• Word segmentation
• Spell correction
• Translate emojis to words
We crafted six strategies (Table 3), using the introduced

methods. However, it proved infeasible to perform com-
plex experiments with six different processing strategies. To
overcome this, we run the baseline models with pre-trained
embeddings for all strategies (Figure 1 and 2) on the en-
tire MFTC dataset. We then analysed for which one does
the model have the highest F1-score. Finally, two choices
were made, each supporting a different architecture. Strat-
egy 3 is the choice for LSTM and Bi-LSTM and Strategy 5
for SBERT. For SBERT, four strategies are performing very
similarly, and we choose the most complex and technically
adequate for context-dependent embeddings.

Strategy S0 S1 S2 S3 S4 S5

Lowercase 7 3 3 3 3 3

No usernames, urls and numbers 7 3 3 3 3 3

No # symbol 7 3 3 3 3 3

No punctuation 7 3 3 3 3 3

No emojis 7 3 3 7 3 7

No stopwords 7 7 3 3 7 7

Lemmatization 7 3 3 3 7 7

Word segmentation 7 7 7 3 3 3

Spell correction 7 7 7 3 3 3

Emoji to words 7 7 7 7 7 3

Table 3: The six pre-processing strategies, varying in complexity.
Strategies in bold are the final choices for the experiments. 3rd is
the choice for word-embedding models and 5th is the choice for

sentence-embedding models

Annotations
At least three annotators annotate each tweet with one of the
ten moral sentiments (or non-moral). For consistency rea-
sons, we apply a majority vote on the annotations. This pro-
cess is followed by labelling as non-moral those sentences
for which no majority vote exists. After applying these oper-
ations, some tweets are labelled both as non-moral and moral.
Our option is to prefer false positives to false negatives con-
cerning moral labels. Therefore, the heuristic choice is to
remove the non-moral label for those tweets (around 3% of
the total) and consider them moral. Table 4 shows the final
distribution of labels.

An immediate concern is a sheer imbalance towards the
non-moral class, present across all datasets. The models’

Figure 1: RNN with SBERT. Moral values
classification on entire dataset. 1st, 2nd and 5th

strategy perform best

Figure 2: LSTM with GloVe. Moral values
classification on entire dataset. 3rd strategy

performs best

ALM Baltimore BLM Davidson Election MeToo Sandy

subversion 91 257 303 7 165 874 451

authority 244 17 276 20 169 415 443

cheating 505 519 876 62 620 685 459

fairness 515 133 522 4 560 391 179

harm 735 244 1037 138 588 433 793

care 456 171 321 9 398 206 992

betrayal 40 621 169 41 128 366 146

loyalty 244 373 523 41 207 322 415

degradation 122 28 186 67 138 941 91

purity 81 40 108 5 409 173 56

non-moral 1744 3848 1583 4509 2502 1618 1313

Table 4: Number of labels per dataset. Majority vote (>= 50%)
annotation strategy. Note: this is calculated for the raw data. For

some pre-processing strategies, few tweets are dropped.

learning process may be harmed by this bias and lead to over-
fitting. To mitigate these risks, we propose a balancing strat-
egy: the non-moral class is randomly downsampled in train
data until it reaches a cardinality equal to the second-most



often class. In contrast, the test data is not downsampled.
To quantify the unbalancedness of each dataset and the ex-
pected impact of the strategy mentioned above, we calculate
the Shannon Entropy (normalised):

Entropy = −

∑k
i=1

ci∑k
i=1 ci

∗ log( ci∑k
i=1 ci

)

log(k)

k = number of classes

ci = cardinality of ith class

Entropy

Dataset Balanced Unbalanced

ALM 0.88 0.80

Baltimore 0.85 0.59

BLM 0.90 0.88

Davidson 0.80 0.17

Election 0.93 0.80

MeToo 0.94 0.91

Sandy 0.89 0.87

All 0.96 0.80

Table 5: Entropy of label distributions for balanced and unbalanced
datasets. Closer to one means balanced

Table 5 shows how class entropy considerably reduces
when balancing the dataset. However, Davidson and Balti-
more are particularly imbalanced and the non-moral label ac-
counts for more than 90% of the total. For these datasets, we
consider that the proposed balancing strategy might not suf-
fice. After an empirical analysis, we concluded that the cause
for the extreme imbalance is the lack of majority vote agree-
ment and a small number of annotators (three or four). We
will consider these aspects when reflecting on the results.

A showcase of how the proposed balancing strategy can
affect the model’s performances is showed in Figure 1 and 2.
As it consistently achieves better F1 scores across the prepro-
cessing strategies, we carry the experiments to follow using
the balancing method.

3.3 Embeddings
GloVe
GloVe [15] is an unsupervised learning algorithm for obtain-
ing vector representations for words by leveraging a word-
word-co-occurrence matrix. The resulting representations
achieve better results compared to word2vec embeddings
(used in [8]) on a number of benchmark tasks (e.g. word anal-
ogy). With similar results on a sentiment analysis task [19]
and yet not explored in moral classification, our choice for
GloVe is also motivated by the availability of a flexible fine-
tuning library (unsupervised): Mittens. Mittens is ”a simple
extension of the GloVe representation learning model” [20]
that updates pre-trained embeddings with domain-specific
data.

Fine-tuning with Mittens is an expensive operation for a
dataset (MFTC) with a vocabulary size of more than 20.000

tokens. However, many words (≈ 5900) in the dataset are
out-of-vocabulary (pre-trained GloVe has no mapping to a
numeric representation). Using Mittens, we trained embed-
dings only for the OOVs and run the baseline models with the
updated GloVe embeddings. Model performance decreased
and, in consequence, for the baseline models, we will use pre-
trained embeddings, and OOVs will be mapped to a special
token (zero valued vector).

SBERT
A standard critique of state-of-the-art Language Models (e.g.
BERT, RoBERTa, MPNet) is that sentence embeddings are
not explicitly computed ([10], [12]). Nonetheless, the aver-
aged output layer of these models produces sentence repre-
sentations, but this technique yields rather bad results [10]
and is limited in utility.

Sentence-BERT [10] is a modified Transformer Network
[21] that produces semantically meaningful embeddings and
addresses the presented drawback. SBERT adds a pooling op-
eration to the output of (BERT / RoBERTa / MPNet) to derive
a fixed-sized sentence embedding. In order to fine-tune these
Language Models, siamese and triplet networks are used to
update the models’ weights such that the produced sentence
embeddings are semantically meaningful and can have op-
erations applied on them (e.g. cosine similarity). This ar-
chitecture (Appendix C, Figure 5) allows efficient semantic
similarity search as well as clustering.

Not explored in moral classifiers before, we use embed-
dings designed for STS (Semantic Text Similarity) tasks,
where embeddings of sentences are used to lookup for seman-
tically similar text. This choice allows for the fine-tuned em-
beddings to be suitable not only for the classification task they
are trained for but for further use in STS on moral topics. We
continue our experiments using the pre-trained SBERT that
achieves highest results in benchmarks: stsb-mpnet-base-v2 3

Triplet loss is the loss function that our SBERT embed-
dings use to learn moral values. It builds triplets out of the
training data, consisting of an anchor sentence, a positive
sentence (which has a moral value in common), and a neg-
ative sentence (which is not labelled with the shared value).
The cost function is computed for each triplet, and the model
weights are adjusted to minimise it. This loss function learns
the embedding model to cluster together (in the vectorial
space) sentence representations that share moral values and
separates those that do not:

Loss = max(0, Dist(a, p)−Dist(a, n) +margin)

a = anchor, p = positive, n =negative

3.4 Classification Models
Embeddings produce vector representations of the input text.
On top, a classification model is used to learn how these rep-
resentations correspond to certain classes (MFT).

3https://huggingface.co/sentence-transformers/stsb-mpnet-base-
v2



NN
Neural networks are a class of machine learning algorithms
[22]. Architecturally, they are organised in layers, comprised
of artificial neurons that mimic the biology of the brain. To-
gether these neurons form a connected graph with weighted
edges. While learning, data travels through the graph in
a single direction (”feed-forward”) and produce an output.
The weights are then adjusted, so the output is closer to the
ground truth. A simple NN architecture, composed of two
Dense Layers and two Dropout Layers (Appendix C), is used
on top of the SBERT embeddings. Its simplicity allows for
short training times and proves sufficient to learn morality,
given the complex and already semantically meaningful em-
beddings that feed the model.

LSTM Bi-LSTM
Long short-term memory (LSTM) [23] represents a type of
recurrent neural network (RNN), that is, a kind of recursive
NNs. LSTM architectures are suitable for sequences of data
and learn potential dependencies in the sequence. Bidirec-
tional Long short-term memory (Bi-LSTM) apply the same
learning process as LSTMs but in both directions through the
input sequence. In our experiments, these architectures fit
with word-level embeddings that, for a sentence, produce a
sequence of numeric vectors. In contrast, LSTMs/Bi-LSTMs
are unsuitable for sentence embeddings (SBERT), which pro-
duce a single vector representation with word dependencies
already embedded.

Not current state-of-the-art, both models (Appendix C) us-
ing LSTM and Bi-LSTM respectively will be used in con-
junction with GloVe embeddings. The choice to include them
in this paper is rooted in the pursuit of an objective compari-
son with [7] and [8].

3.5 Metrics
A suitable choice of an evaluation metric was subject to em-
pirical analysis. Most importantly, we reflected on class im-
balance, metrics used by other papers, and how the used mod-
els vary to this choice. To correctly reflect the value and po-
tential of the work, we decided upon two metrics:

Generic F1-score:

F1 = 2× Precision× Recall
Precision + Recall

Micro Averaged F1-Score
This f1-score metric will account for the unbalancedness of
the dataset, present even after the balancing strategy has been
applied (Figure 5). More interestingly, some experiments (Ta-
ble 7) show improvements for this metric, leaving the Macro
F1-score unchanged. This proves the relevance of the Mi-
cro F1-score in better understanding fine-tuned embeddings
in the model’s learning process.

Macro Averaged F1-Score
This metric will offer a perspective unaffected by the class
imbalance (same weight to all classes). However, it is difficult
to anticipate the distribution with which moral foundations
occur, and to extrapolate on the available dataset could be
misleading (e.g. small size, cultural differences). For that,

we add the Macro F1-score to our analysis to eliminate part
of the bias brought by the class distribution. Additionally,
the Moral Foundations Twitter Corpus paper [7] opts for this
metric.

4 Experiments
The three proposed experimental setups will cover three key
aspects of the moral embeddings:

• Performance: to gather insight into the performance of
embeddings, we narrow the focus to a dataset and mea-
sure the impact fine-tuning has on the classifier.

• Generalizability: we measure how does fine-tuning em-
beddings on a different dataset than the one they are used
in the classification task impact their performance.

• Transferability: transferability study adds an additional
layer to generalizability: fine-tuning happens twice, first
cross-domain, followed by domain-specific training.

Throughout the series of experiments, hyperparameters
(Appendix B), the models’ architectures (Appendix C) and
splits in train and test data (random seeds), remain the same.
Thus, the first experiment will be done on LSTM, Bi-LSTM
with GloVe and NN with SBERT. The subsequent two exper-
iments will only test for models with the latter architecture.
All models will use the balanced dataset and trained to per-
form multi-label text classification on 11 labels.

4.1 Experiment 1: Models Performance
LSTM and Bi-LSTM

• A target dataset is chosen and 10 folds are created.

• Pre-trained GloVe4 embeddings are used to train and test
the models (refer to 3.4).

SBERT
• A target dataset is chosen and 5 folds are created.

• For each fold (80% train data and 20% test data), em-
beddings are fine-tuned on train data.

• Fine-tuned embeddings are used to train (on the same
80%) the model (refer to 3.4). It is then tested on the
remaining 20%.

• An additional model is trained likewise, using pre-
trained embeddings 5, to obtain a baseline for SBERT.

4.2 Experiment 2: Embeddings Generalizability
• A target dataset is chosen and using the proposed fine-

tuning method, embeddings are trained on the remaining
six datasets.

• The resulting embeddings are used to train and test a
model on the target dataset. The model is tested and
trained using ten-fold validation.

4Wikipedia 2014 + Gigaword 5, 6B tokens, 300 dimensions
5stsb-mpnet-base-v2, 728 dimensions



4.3 Experiment 3: Embeddings Transferability
• A target dataset is chosen and using the proposed fine-

tuning method, pre-trained embeddings are trained on
the remaining six datasets.

• Resulting embeddings are fine-tuned a second time, on
80% of the target dataset.

• Twice fine-tuned embeddings are used to train the clas-
sifier(on the same 80%). The model is tested on the re-
maining 20%.

5 Results and Discussion
GloVe embeddings used with LSTM and Bi-LSTM have of-
fered strong baseline results, but their context-independent
nature makes encapsulating morality only possible using fea-
ture engineering. Nonetheless, the results remain below the
current state-of-the-art, and the embeddings’ transferability
potential is limited to the model used on top.

SBERT proves to be a robust embedding for all addressed
experiment setups. Compared to BERT, it offers similar re-
sults [24] but allows for usage in tasks like Semantic Tex-
tual Similarity, operations between embeddings (cosine sim-
ilarity), and clustering [10]. The achieved results present an
excellent moral classifier and reveal the potential of the pro-
posed techniques to produce embeddings that could become
the standard in moral classification. Nonetheless, the limi-
tations (e.g. class imbalance, annotator’s inconsistency) of
MFTC reflect in the results.

We present the results and draw the conclusion for all the
researched aspects of moral embeddings.

5.1 Performance
Baseline models, LSTM and Bi-LSM, set a high bar in moral
classification. They achieve, on the 11 classes multi-label
classifier, a Macro F1-score of 53% and 55%, respectively
(Figure 6). According to Constantinescu [25], training for
moral foundations (6 labels, not differentiating between vice
and virtue) achieves similar results as training for all moral
values (11 labels) and when testing, ignoring the model’s
misclassifications within a foundation ( e.g. mistake care for
harm). Therefore, we only perform our research with 11 la-
bel models as this can be easily transformed into a six-label
model with no performance loss.

Our baseline SBERT model, a set of pre-trained embed-
dings (stsb-mpnet-base-v2) with a simple neural network on
top, achieves astonishing results. With a 58% Macro F1-
score, it shows how a moral classifier can be trained in less
than a minute (≈1s per epoch) and have consistent results us-
ing SBERT’s transferability. We continue our performance
analysis and fine-tune the pre-trained embeddings on each
dataset (and once on the entire MFTC). Triplet Loss tuning
significantly improves the model’s F1-scores and achieves a
Macro F1-score of 63% next to a Micro F1-score of 72% for
the entire MFTC. Performance improvements are consistent
across all datasets, and Figure 6 reveals how fine-tuning in-
creases scores by up to 11% (Election and ALM).

5.2 Generalizability
The underlying challenge of this experiment is that the model
learns from embeddings that have been fine-tuned on other
datasets and implicitly on other moral narratives. By com-
paring to pre-trained embeddings, for few datasets (ALM,
BLM), the fine-tuned embeddings generalize well (Table 7),
while for others, pre-trained embeddings achieve better re-
sults. The three improved datasets have in common the social
polarization (two opposing and extremist ideas) and the val-
ues the models learn with the highest accuracy (Table 8) in
the Performance setup. This experimental setup, put in per-
spective of the previous experiment, demonstrate that, on av-
erage, fine-tuning embeddings on the target dataset is needed
as it leverages the full potential of SBERT.

5.3 Transferability
This experiment produces nearly identical results to the
first experiment, with slight improvements for Election and
MeToo and a slight decrease (maximum 2%) for the rest. As
fine-tuning happens twice, this experiment showcases how
SBERT embeddings can be affected by repeated training.
Overall, these results are encouraging as second fine-tuning
requires a sixth of the time needed by the first, and it offers
embeddings suitable for all seven topics. Further experiments
should be carried out to understand the catastrophic forget-
ting [26] these embeddings could suffer after consequent fine-
tuning. Nonetheless, the results offer a partial image of how
moral embeddings could replace pre-trained ones.

5.4 Discussion
Baseline results (58% Macro F1-score) for SBERT architec-
ture show how these embeddings are suitable for moral clas-
sification even when no fine-tuning is applied. Further, the
improvement (5%) brought by triplet loss tuning validates its
technical adequacy for the studied classifiers. It is particularly
interesting to note that the used SBERT embeddings were de-
signed and pre-trained with a different task in mind: Semantic
Text Similarity6 (STS) [27]. Given the evidence that SBERT
transfers knowledge from STS to the moral classifier, we pos-
tulate a hypothesis: semantically similar text expresses sim-
ilar moral values. We propose an experimental setup to test
this, in Section 7.1.

The Generalizability experiment falls short and provides
scores below what SBERT embeddings can achieve with no
fine-tuning. Therefore, for fine-tuning to improve the model’s
performance, embeddings’ train data must share the same do-
main of discourse with the test data. Embeddings produced
by this experiment (second experiment) are further fine-tuned
within the study of transferability (third experiment). Ob-
tained results are close to those produced by the first ex-
periment’s methodology. Therefore, two consequent fine-
tunings do not affect the quality of the embeddings, and for
the presented setup, fine-tuned embeddings could replace the
pre-trained ones with no decrease in performance. Nonethe-
less, to confirm such a hypothesis: fine-tuned embeddings on

6https://paperswithcode.com/sota/semantic-textual-similarity-
on-sts-benchmark



Model F1-score All ALM Baltimore BLM Davidson Election MeToo Sandy

LSTM
(GloVe Wiki)

Micro 0.61 0.55 0.59 0.76 0.00 0.58 0.51 0.56

Macro 0.53 0.47 0.22 0.73 0.00 0.46 0.35 0.32

Bi-LSTM
(GloVe Wiki)

Micro 0.60 0.53 0.59 0.78 0.13 0.58 0.53 0.57

Macro 0.55 0.58 0.29 0.77 0.02 0.50 0.50 0.40

SBERT
(pre-trained)

Micro 0.63 0.58 0.63 0.76 0.06 0.61 0.57 0.63

Macro 0.58 0.52 0.34 0.76 0.02 0.55 0.55 0.48

SBERT
(experiment 1)

Micro 0.72 0.69 0.70 0.84 0.93 0.72 0.60 0.65

Macro 0.63 0.59 0.34 0.83 0.08 0.56 0.56 0.45

Table 6: Baseline models and Performance of fine-tuned embeddings for moral values classification.

Model F1-score ALM Baltimore BLM Davidson Election MeToo Sandy

SBERT
(experiment 2)

Micro 0.63 0.62 0.78 0.01 0.62 0.57 0.60

Macro 0.57 0.30 0.76 0.01 0.52 0.54 0.46

SBERT
(experiment 3)

Micro 0.66 0.68 0.83 0.91 0.70 0.59 0.64

Macro 0.57 0.33 0.82 0.01 0.58 0.57 0.45

Table 7: Generalizability and Transferability of embeddings for moral values classification.

Moral Value MFTC ALM BLM

subversion 0.44 0.22 0.81

authority 0.62 0.79 0.91

cheating 0.69 0.67 0.87

fairness 0.72 0.81 0.91

harm 0.68 0.63 0.79

care 0.75 0.67 0.77

betrayal 0.44 0.00 0.88

loyalty 0.66 0.78 0.94

degradation 0.55 0.67 0.73

purity 0.53 0.57 0.76

non-moral 0.82 0.81 0.82

Table 8: F1-score per moral value for MFTC (all datasets), ALM and BLM. Performance setup.

MFTC can replace pre-trained embeddings in moral classifi-
cation more properly annotated data is needed.

Out of the three experiments, the one testing for Perfor-
mance validates its hypothesis with the most convincing re-
sults: morality can be learned more efficiently when SBERT
[10] embeddings are fine-tuned with triplet loss [11]. Hav-
ing achieved a 72% Micro F1-score, we can conclude that
SBERT has its place in moral classifiers and its state-of-the-
art results in STS can be laveraged succesfully.

6 Responsible Research
In emerging AI technologies, recent history has proved that
new and unexpected ethical dilemmas arise. This research not
only falls within reach of the AI field but is also preoccupied
itself with seeking people’s morality, embedded in the written
text travelling across digital platforms.

In the realm of highly complex AI architectures that could
potentially learn to accurately recognize people’s values, we
identify a list of points of attention:

• Ethical Considerations

• Reproducibility

These topics are discussed with the purpose of contain-
ing the negative social impact of the research and support
academia in pursuing further research of the proposed clas-
sification task.

6.1 Ethical considerations
”Engineering ethics is professional ethics, as opposed to per-
sonal morality. It sets the standards for professional practice”
[28]. To ensure ethical engineering, we reflect on the impact
of the developed software.



The limited availability of suitably annotated datasets re-
stricts our work. The reported results reveal the potential of
NLP (Natural Language Processing) models to learn moral-
ity in the text but have only exploited a small collection of
Tweets. In the future, we expect more datasets to become
available as a public or private resource. Therefore, we are in
the early stages of understanding whether our techniques ex-
tend to more contexts (e.g. politics, public debates, school,
other social media platforms). Achieving universality for
moral NLP models would be both a breakthrough and a social
responsibility. It is early to predict how one would use such a
tool, but we can reflect on a twin domain (Computer Vision)
and the ethical challenges it faces.

For example, facial recognition technology (Computer Vi-
sion) can expose individuals’ political [29] or sexual orienta-
tion [30]. These technologies raise a concern about a possible
decline of privacy. Similarly, moral values can predict polit-
ical orientation [1] and there is only one step left to bridge
the gap: identify values in text. To reduce risks, we recom-
mend the implementation of an ethical framework in future
academic work. In a product or application using the moral
classifier, such a framework could be insufficient [31], and
an adequate ethics risk assessment metric system can be used
[32] in addition.

Nonetheless, we should raise awareness of the possible
hidden bias of the data (Moral Foundations Twitter Corpus)
as it lacks demographics information such as age, sex or eth-
nic group [33]. This is a barrier in understanding whether
the used models have developed worrying biases. In con-
trast, data protection is no concern yet for this work. No trace
of identification was left after pre-processing (removed user-
name).

6.2 Reproducibility
We define reproducibility in empirical AI research as ”the
ability of an independent research team to produce the same
results using the same AI method based on the documentation
made by the original research team” [34]. Achieving it has
become a pillar for scientific progress and increases the cred-
ibility of the obtained results. While conducting this research,
several relevant challenges were identified: a large number of
hyperparameters, pseudo-randomness, complex experiment
setups and models’ sensitivity to changes in dataset. To ad-
dress these and ensure reproducibility to the best extent pos-
sible, we follow the steps outlined in [34]:

The methodology section of the paper focuses on captur-
ing clearly and concisely the steps that were followed through
the study. We present every critical aspect and challenges en-
countered and support the solutions with suggestive visuals.
Moreover, this work has been peer-reviewed two times. All
together create the premise of reproducible experiments.

Notably, an extension to the written work is the open-
sourced codebase7. This repository offers the immediate pos-
sibility of reproducing the work. Moreover, it allows for con-
tinuing the work immediately.

Furthermore, the complete dataset was acquired from the
original authors of [7] while Twitter has granted the rights to

7https://github.com/enricoliscio/nlp-for-values-CSE3000

fetch partially the dataset. We recommend those who would
want to conduct their research with the complete dataset con-
tact the authors of Moral Foundations Twitter Corpus paper8

[7].
Lastly, computationally intensive operations were run on

TU Delft HPC (High-Performance Computing). We present
the environment and Python9 libraries in Appendix A

7 Conclusion and Future Work
Understanding the moral drives behind sociocultural effer-
vescence could unlock better policy-making, virtue-aligned
AI and control of harmful movements. Such a moral pro-
file, extracted from opinionated text, has made the subject
of our work and is increasingly relevant to our society. Re-
sults, 72% Micro F1-score alongside 63% Macro F1-score
(MFTC, multi-label classifier, 11 classes) are encouraging.
We have tackled the problem from several technical angles:
performance, generalizability and transferability. For each,
we designed an adequate methodology.

Our study demonstrates that SBERT[10] and triplet loss
[11] have a place in the study of moral rhetoric. With
no related prior studies focusing on fine-tuning embeddings
(meaningful vector representation of words and sentences),
we developed a method to train them. Together with a simple
Neural Network on top, they produce results that are above
those achieved in [7] (53% averaged F1-score across foun-
dations10) and in [8] (60% weighted average F1-score). Re-
sults vary across methodology, and we can conclude that we
should train and test embeddings on the same domain of dis-
course for the most accurate results. Nonetheless, imbalanced
datasets like Davidson provide little to no insight into the po-
tential of our model with disappointing results of less than
10% F1-score. Once again, this suggests the urgent need
for the expansion of MFTC with more adequate data. We
also learned that values’ recognisability varies across domain
and that ALM and BLM datasets benefit the most from the
fine-tuning methodologies. Sentence-BERT is a suitable ar-
chitecture for this study, and triplet-loss can successfully em-
bed morality in vectorial sentence representations. Once fine-
tuned, our moral embeddings can serve more purposes such
as question answering or clustering and are not limited to text
classification.

7.1 Future Work
With only one rich dataset available (MFTC [7]), moral clas-
sifiers would benefit from more diverse and recent training
data. For data collection, we identified a flexible methodol-
ogy in [14] that filters tweets from a continuous stream (Twit-
ter API) based on their hashtag (identifies the topic). How-
ever, after data is collected, its annotation can prove chal-
lenging, subjective and labour intensive. To partially mit-
igate these drawbacks, we recommend experimenting with
semi-supervised annotating methods (e.g. [35]). Together,

8mdehghan@usc.edu
9https://www.python.org/

10F1-scores are reported for 5 binary classifiers, one per founda-
tion. To compare, we averaged these scores.



they create a pipeline for extending the current state of Moral
Foundations Twitter Corpus.

A proper understanding of why embeddings pre-trained for
STS (Semantic Text Similarity) are suitable for moral classi-
fication would enable us to enhance the fine-tuning method-
ology. However, such a study falls within the subject of Ex-
plainability, ”a critical problem in the field of Natural Lan-
guage Processing” that focuses on ”interpreting the outputs
or the connections between inputs and outputs” [36] of a ma-
chine learning model. For this, we propose an experiment in
which tweets’ embeddings are clustered based on their cosine
similarity. Then, for each resulting partition, we measure how
similar are the foundations expressed in the tweets within it.
A high overlap would confirm the hypothesis semantically
similar text expresses similar moral values.

Lastly, the limited hyper-parameters exploration for fine-
tuning and usage of only a set of SBERT pre-trained embed-
dings (out of many available11) leaves room for marginal per-
formance increases. Therefore, the 72% Micro F1-Score is a
low threshold for the true potential of the presented method-
ology.

8 Acknowledgements
I want to express gratitude to Professors Pradeep
Murukannaiah and Enrico Liscio, my research supervi-
sors, for their constructive feedback and great support in
the development of this work. Thanks also extend to my
colleagues Florentin Arsene, Ionut Constantinescu, Alin
Dondera and Andrei Geadau, with whom I share part of the
project’s codebase12.

References
[1] Jesse Graham, Jonathan Haidt, and Brian Nosek. Lib-

erals and conservatives rely on different sets of moral
foundations. Journal of personality and social psychol-
ogy, 96:1029–46, 06 2009.

[2] Marlon Mooijman, Joe Hoover, Ying Lin, Heng Ji, and
Morteza Dehghani. Moralization in social networks and
the emergence of violence during protests. Nature Hu-
man Behaviour, 2(6):389–396, 2018.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[4] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. Mpnet: Masked and permuted pre-training for
language understanding, 2020.

[5] Oscar Araque, Lorenzo Gatti, and Kyriaki Kalimeri.
Moralstrength: Exploiting a moral lexicon and em-
bedding similarity for moral foundations prediction.
Knowledge-Based Systems, 191:105184, Mar 2020.

[6] Jesse Graham, Jonathan Haidt, Sena Koleva, Matt
Motyl, Ravi Iyer, Sean Wojcik, and Peter Ditto. Moral

11https://www.sbert.net/docs/pretrained models.html
12https://github.com/enricoliscio/nlp-for-values-CSE3000

Foundations Theory, volume 47, pages 55–130. 12
2013.

[7] Joe Hoover, Gwenyth Portillo-Wightman, Leigh Yeh,
Shreya Havaldar, Aida Mostafazadeh Davani, Ying Lin,
Brendan Kennedy, Mohammad Atari, Zahra Kamel,
Madelyn Mendlen, et al. Moral foundations twitter cor-
pus: A collection of 35k tweets annotated for moral sen-
timent. Social Psychological and Personality Science,
11(8):1057–1071, 2020.

[8] Anne Fleur van Luenen. Recognising moral foundations
in online extremist discourse : A cross-domain classifi-
cation study. Master’s thesis, Uppsala University, De-
partment of Linguistics and Philology, 2020.

[9] Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. Word embeddings quantify 100 years of
gender and ethnic stereotypes. Proceedings of the
National Academy of Sciences, 115(16):E3635–E3644,
Apr 2018.

[10] Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks, 2019.

[11] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. Facenet: A unified embedding for face recog-
nition and clustering. 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Jun 2015.

[12] Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. Linguistic
knowledge and transferability of contextual representa-
tions, 2019.

[13] Marlon Mooijman, Joe Hoover, Ying Lin, Heng Ji, and
Morteza Dehghani. Moralization in social networks and
the emergence of violence during protests. Nature hu-
man behaviour, 2(6):389–396, 2018.

[14] Livia Teernstra, Peter van der Putten, Liesbeth
Noordegraaf-Eelens, and Fons Verbeek. The morality
machine: Tracking moral values in tweets. In Henrik
Boström, Arno Knobbe, Carlos Soares, and Panagiotis
Papapetrou, editors, Advances in Intelligent Data Anal-
ysis XV, pages 26–37, Cham, 2016. Springer Interna-
tional Publishing.

[15] Jeffrey Pennington, Richard Socher, and Christopher D
Manning. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empiri-
cal methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[16] Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. MAD-X: An Adapter-Based Framework for
Multi-Task Cross-Lingual Transfer. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 7654–7673,
Online, November 2020. Association for Computational
Linguistics.

[17] Seyed Mahdi Rezaeinia, Rouhollah Rahmani, Ali Gh-
odsi, and Hadi Veisi. Sentiment analysis based on im-
proved pre-trained word embeddings. Expert Systems
with Applications, 117:139–147, 2019.



[18] Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. Datastories at semeval-2017 task 4: Deep lstm
with attention for message-level and topic-based sen-
timent analysis. In Proceedings of the 11th Inter-
national Workshop on Semantic Evaluation (SemEval-
2017), pages 747–754, Vancouver, Canada, August
2017. Association for Computational Linguistics.

[19] Seyed Mahdi Rezaeinia, Rouhollah Rahmani, Ali Gh-
odsi, and Hadi Veisi. Sentiment analysis based on im-
proved pre-trained word embeddings. Expert Systems
with Applications, 117:139–147, 2019.

[20] Nicholas Dingwall and Christopher Potts. Mittens: An
extension of glove for learning domain-specialized rep-
resentations, 2018.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
CoRR, abs/1706.03762, 2017.

[22] Sonali B Maind, Priyanka Wankar, et al. Research pa-
per on basic of artificial neural network. International
Journal on Recent and Innovation Trends in Computing
and Communication, 2(1):96–100, 2014.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[24] Andrei Geadau. Performance analysis of the state-of-
the-art nlp models for predicting moralvalues, 06 2021.

[25] Ionut Laurentiu Constantinescu. Evaluating inter-
pretability of state-of-the-art nlp models for predicting
moral values, 06 2021.

[26] Florentin-Ionut Arsene. Evaluating catastrophic forget-
ting of state-of-the-art nlp models for predicting moral
values, 06 2021.

[27] Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. SemEval-2012 task 6: A pilot on
semantic textual similarity. In *SEM 2012: The First
Joint Conference on Lexical and Computational Seman-
tics – Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of the
Sixth International Workshop on Semantic Evaluation
(SemEval 2012), pages 385–393, Montréal, Canada, 7-8
June 2012. Association for Computational Linguistics.

[28] Charles Edwin Harris Jr., Michael Davis, Michael S.
Pritchard, and Michael J. Rabins. Engineering ethics:
What? why? how? and when? Journal of Engineering
Education, 85(2):93–96, 1996.

[29] Michal Kosinski. Facial recognition technology can
expose political orientation from naturalistic facial im-
ages. Scientific Reports, 11(1):100, 2021.

[30] Yilun Wang and M. Kosinski. Deep neural networks
are more accurate than humans at detecting sexual ori-
entation from facial images. Journal of Personality and
Social Psychology, 114:246–257, 2018.

[31] Andrew Burt. Ethical Frameworks for AI Aren’t
Enough, 11 2020.

[32] Isabel Wagner and Eerke Boiten. Privacy risk as-
sessment: From art to science, by metrics. In
Joaquin Garcia-Alfaro, Jordi Herrera-Joancomartı́, Gio-
vanni Livraga, and Ruben Rios, editors, Data Privacy
Management, Cryptocurrencies and Blockchain Tech-
nology, pages 225–241, Cham, 2018. Springer Interna-
tional Publishing.

[33] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena,
Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. CoRR,
abs/1908.09635, 2019.

[34] Odd Erik Gundersen and Sigbjørn Kjensmo. State of the
art: Reproducibility in artificial intelligence. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
32(1), Apr. 2018.

[35] Burr Settles. Closing the loop: Fast, interactive semi-
supervised annotation with queries on features and in-
stances. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’11,
page 1467–1478, USA, 2011. Association for Compu-
tational Linguistics.

[36] Hui Liu, Qingyu Yin, and William Yang Wang. Towards
explainable NLP: A generative explanation framework
for text classification. In Proceedings of the 57th An-
nual Meeting of the Association for Computational Lin-
guistics, pages 5570–5581, Florence, Italy, July 2019.
Association for Computational Linguistics.



A Environment
• GPU: GeForce RTX 2080 Ti
• Torch: 1.6.0
• TensorFlow: 2.2.0
• Sentence-Transformers: 1.1.1
• CUDA: 11.2
• cuDNN: 8.1.1.33

B Hyperparameters

Hyper-Parameters Values

Epochs [5, 10, 15]

Activation [sigmoid , relu]

Batch size [16, 32, 64]

Optimizer [Adam]

Learning rate [0.1, 0.01, 0.05]

Threshold [0.3, 0.4, 0.5]

Table 9: Hyper-parameters, LSTM and Bi-LSTM

Hyper-Parameters Values

Epochs [3, 5, 10]

Activation [sigmoid , relu]

Batch size [16, 32, 64]

Optimizer [Adam, AdamX]

Learning rate [0.0005, 0.001]

Threshold [0.3, 0.4, 0.5]

Table 10: Hyper-parameters, NN on top of SBERT

Hyper-Parameters Values

Epochs [2, 5, 10]

Batch size [16, 32]

Loss function [BatchAllTripletLoss]

Cost function [Euclidian]

Margin [5]

Table 11: Hyper-parameters, fine-tune SBERT

C Architectures



Figure 3: LSTM/Bi-LSTM with GloVe. Model architecture

Figure 4: Simple NN with SBERT. Model architecture



Figure 5: SBERT siamese triplet networks
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