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ABSTRACT 

Electrical faults in the distribution system can lead to 
interruptions in customer power supply resulting in 
penalties that are borne by the distribution system 
operator. Accurate fault classification is an important step 
in locating the fault to achieve faster network restoration 
times. This paper presents a classification model in two 
parts: one determines the degree of stability in the fault 
waveforms and the second uses a machine learning model 
to classify real-world faults based on the number of fault 
phases. A set of business rules are developed to 
characterise instability by performing a windowed Fourier 
analysis and studying the strength of the fundamental 
frequency component of fault waveforms. Results show 
that the developed SVM model can differentiate between 
real-world instances of single-phase, two-phase and three-
phase stable faults with a classification accuracy of 95%. 
Additionally, we show that adding a small subset of 
synthetically developed faults to the training data 
improves classification accuracy.  

INTRODUCTION 

A responsibility of DSOs (Distribution System Operators) 

is to find the location of electrical faults in the network and 

restore the disrupted network. Identification of the fault 

type (between single-phase, two-phase, and three-phase 

faults) is necessary for finding its location as it determines 

the how the fault-loop impedance is calculated. This fault-

loop impedance is then used in localisation calculations by 

network analysis tools. Misclassification of faults results 

in the calculation of the wrong loop impedance which 

adversely affects the fault localisation, thereby making 

fault classification an important aspect of a DSO’s 

activities [1].  

Modern research on fault analysis involves studying fault 

waveforms. This is primarily done through the lens of 

Fourier and wavelet transforms [2]. The Fourier Transform 

details which frequencies constitute the original fault 

signal, however, it does not localise this formation in time, 

unlike the wavelet transform [3]. The wavelet can capture 

both short high-frequency components and longer low-

frequency components using a filter called the ”mother 

wavelet” [2][4]. 

In addition, machine learning (ML) has been emerging as 

a popular method to classify fault signals. Among different 

ML-based fault classification methods like decision trees,

k-nearest neighbour, support vector machines (SVM), and

artificial neural networks, SVMs were found to be the most 

accepted technique. This is because SVMs strike a balance

between the high interpretability of decision trees, and the

superior processing power of neural networks [5].

A general challenge for waveform-based fault 

classification is encountered when the measured 

waveforms are not sufficiently sinusoidal. Such faults are 

designated as unstable and carry a higher risk of 

misclassification. Identifying unstable faults before 

attempting classification can reduce the risk of incorrect 

fault localisation and switching off the wrong network 

section [6].  

This paper presents a two-step methodology combining 

the use of Fourier and wavelet transforms for signal 

processing, and SVM for classification, with the following 

specific contributions: 

1. A method based on windowed Fourier transforms

is introduced to identify unstable faults.

2. An SVM-based ML model is shown to classify

(stable) real world faults with an accuracy of

95%.

3. It is shown that the classification performance

improves when a small number of synthetically

developed single-phase, two-phase and three-

phase faults were added to the sample space of

recorded faults.

PROPOSED APPROACH
Faults can be categorised on the basis of the number of 

faulted phases, and the stability of the waveforms. This 

study uses digital fault recordings (DFRs) from the 

SASensor, a substation automation tool deployed by the 

Dutch DSO Alliander. The SASensor records fault 

waveforms at a rate of 4 kHz, starting from 1s before the

fault incidence up to a few seconds after the fault 

extinguishes. Accurately labelled DFRs were used as one 

of the data sources for this study 

There are two underlying steps to the fault classification 

procedure -- the determination of the degree of stability 

with the use of Fourier transforms, and the determination 

of the type of fault (single-/two-/three-phase). An 

overview of the developed two-step methodology for fault 

signal classification can be seen in Figure 1. 
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Figure 1. Framework for electrical fault classification. 

 

The two classification blocks represent the stability 

analysis and the subsequent test for the number of involved 

phases in the fault. For classification purposes, stable 

faults are permanent faults that can automatically be 

classified correctly based on the number of phases. We use 

the degree of the presence of the 50 Hz frequency (or the 

lack thereof) in fault waveforms to classify them as stable 

or unstable using a stability classification model. The 

output of the first step is a set of stable (and hence 

permanent) faults. In the second block, the faults are 

classified based on the number of fault phases using an 

SVM model that performs a classification based on 

features extracted from the DFRs. Both models are 

described in detail in the following sections.  

 

The fault classification model is trained on features that are 

extracted from manually labelled fault recordings 

(supervised learning). This set of real fault recordings is of 

limited size, but accurately represents the diversity of 

faults encountered. In addition, we investigated the value 

of enriching the data set with synthetic DFRs that 

accurately characterise textbook single-/two-/three-phase 

permanent faults. The fault data for the synthetic faults 

were created in the same format as the SASensor fault 

recordings. Doing so enlarges the size of the training data 

set and accuracy for textbook faults, but may come at the 

expense of accuracy for real world faults. Results from a 

quantitative comparison are presented below. 

STABILITY CLASSIFICATION MODEL 
An unstable fault, as defined by Gu et al. in [6], is a fault 

whose current/voltage is not sufficiently close to a 

sinusoidal waveform. An example of an unstable fault can 

be seen in Figure 2. 

 

 
Figure 2. Current (top) and voltage (bottom) waveforms for a 

single-phase unstable fault. 

Features and threshold values to identify unstable faults 

were proposed by Gu et al in [6]. From practical 

experience, it has emerged that these thresholds are too 

strict: faults that can be classified as stable permanent or 

self-extinguishing, are sometimes identified as unstable. 

When faults are classified as unstable, their locations are 

not automatically calculated to avoid the risk of sending a 

wrong location to the control centre for isolation. 

Improving the criteria for stability can therefore increase 

the number of correct fault locations sent to the control 

centre.  

 

The objective is hence to enable the automatic 

classification of these unstable permanent faults and to add 

more certainty to what makes a fault (un)stable. While it is 

important to ensure stable faults are not classified as 

unstable, it is also vital to ensure that the definition does 

not leave room for additional misclassifications.  

Windowed Fourier Analysis for Detecting 
Instability 
 

The Fourier transform was used to analyse and select 

features in the frequency spectrum of the faults that were 

classified as unstable. This method connects the notion of 

“insufficiently" sinusoidal behaviour with unstable faults 

using a windowed analysis of the fault waveforms. The 

stability of a fault waveform was studied by identifying 

sinusoidal periods. For a signal to be considered stable, and 
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for accurate fault localisation, practical experience 

suggests that at least two consecutive stable periods must 

be present [6]. The stability was hence studied period-by-

period with a moving window of one cycle (80 samples). 

The zero-sequence component of the fault waveform was 

used to highlight the fault periods. 

 

The derivative (two-sample difference) of the zero-

sequence current was calculated for each fault to 

accentuate distortions and transients. A metric Fratio is 

defined to quantify this degree of instability for each 

window: 

 

Fratio   = Afault  / Aref                           (1) 

 

Where Afault is the strength of the 50 Hz component of the 

derivative of the zero-sequence current for a cycle of the 

fault current, scaled to have a unit RMS (root mean square) 

value. Reference metric Aref is set to the 50Hz component 

of a reference sinusoidal signal with unit RMS value. For 

two signals with equal RMS value, the amplitude of the 50 

Hz Fourier component of the fault waveform will always 

be less than or equal to that of the reference sinusoidal 

waveform due to the presence of distortions. Therefore, 

Fratio   ≤ 1, with equality holding only for a perfectly 

sinusoidal waveform. Hence, this developed metric Fratio 

can be used for assessing the relative sinusoidal nature of 

the fault waveform. Fratio is calculated for each period of 

the fault current waveform, enabling a period-wise 

analysis of stability. 

 

Development of the Stability Classification Model 
 

The results of this moving window analysis of the 50 Hz 

component for a sample permanent and extinguishing fault 

can be seen in Figure 3. In the case of the permanent fault, 

it can be observed that, at the initiation of the fault, the 

distortions in the waveform reflect in the magnitude Fratio. 

In the case of the self-extinguishing fault, it can be 

observed that the values of Fratio are significantly lower 

than that of the permanent fault for all periods of the fault. 

 

A set of features from the Fratio series for each fault were 

identified: the maximum value (fmax), the mean (fmean), the 

standard deviation (fstdev), and the number of cycles for 

which the Fourier comparison waveform is greater than a 

threshold (fperiods). A scoring system was developed to 

assess how many counts the fault features comply with the 

criteria for stability. The criteria for stability were the 

values that resulted in the highest accuracy scores on the 

training set, determined for each criterion separately using 

5-fold cross validation. The threshold values are as 

follows: fmax > 0.8, fstdev > 0.123, fperiods > 2.5, fmean > 0.011. 

Faults are scored for stability according each criterion, and 

the total score can give can be used to assess the overall 

stability of the fault. 

 

FAULT TYPE CLASSIFICATION MODEL 
 
The second step of the classification process is the 

development of a model that can distinguish between 1-

phase, 2-phase and 3-phase faults. The support vector 

machine (SVM) model with a radial basis function was 

chosen as the classifier due to its ability to classify non-

linearly separable classes [7]. The model hyperparameters 

for an SVM are C and ɣ.  The hyper-parameters that were 

selected from the results of performing a 5-fold validation 

process on the SVM are C = 100 and ɣ = 1. 

An initial set of 36 features was extracted from the 3-phase 

fault voltage and current waveforms. Discrete wavelet 

transforms (DWT) using the Daubechies-4 filter were used 

to decompose the signals into smaller frequency bands. 

Since the sampling frequency is 4kHz, the highest 

frequency that can be captured is 2 kHz. Therefore, detail 

 

Figure 3. Comparison of the 50 Hz Fourier component of unstable single-phase permanent (left) 
and single-phase self-extinguishing (right) faults. 
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coefficients from the first two levels of decomposition, in 

1 kHz - 2 kHz and 500 Hz - 1 kHz bands were considered 

to be the most pertinent for the study based on expert 

knowledge of which frequency bands carry the transient 

frequencies.  In addition to these features, a set of features 

extracted from the signal in time, such as the peak and 

standard deviation were considered. 

To narrow down on the most pertinent features from the 

initial 36, the ANOVA technique was used for ranking the 

features in order of their importance and the selection of 

the number of features was done using 5-fold cross-

validation. The final 8 features include metrics that 

compare the RMS values of the phase currents, standard 

deviation of the zero-sequence voltage and current, and the 

energies of the detail coefficients of the fault current 

waveform at the two aforementioned frequency bands. The 

optimal feature count was the one with the best average of 

the cross-validation accuracy score of each fold. 

 

RESULTS AND DISCUSSION 
Fault Stability Analysis 
 
This section discusses the results of applying the 

developed rules to the test set. The test set consists of 51 

faults that were labelled as unstable faults by the stability 

rules in [6], currently in use at Alliander. Since the older 

method of fault detection sometimes classified stable 

faults as unstable, the business rules defined in this chapter 

attempt to improve the definition of (in)stability, by 

increasing the rate of identification of faults that are stable, 

i.e., to increase the number of ‘true positives’ of stable 

faults so they can be correctly isolated from the rest of the 

network. 

 

The rules classify faults based on their stability as being 

either definitively stable, definitely unstable, or “requiring 

manual inspection”. This final class consists of faults that 

have the possibility of being stable through expert 

inspection. The rules were applied to classify the test set at 

hand and the results are presented in Table 1. It can be 

observed that 10 faults have been classified as being 

definitively stable. 

 

This implies that within the subset of faults classified as 

unstable, there are characteristics from the moving-

window Fourier analysis that can indicate that these faults 

are actually stable. Additionally, by indicating which 

faults do and do not need manual inspection (and to what 

degree of certainty), this model can also help prioritise the 

manual inspection efforts. 

 
Table 1. Results of the classification of unstable faults based on 
their stability. 

 

Fault Classifier Analysis 
 
The performance of the classifier was evaluated using 

different data sets for training and testing. The input data 

for the model consists of "real" faults that were recorded 

in the distribution network, and synthetic faults that were 

generated to represent ideal faults. By training and testing 

on different subsets of the real and synthetic faults, it is 

possible to determine the extent to which the ability of the 

classifier to generalise from the training set. The test cases 

used to assess the performance of the classifier are 

presented in Table 2. In view of the real-world application, 

real-world data was always used for testing. 

 

In the first test case, the SVM classifier is trained on all the 

synthetically created faults and tested on the real-world 

single-phase, two-phase and three-phase faults. It is 

expected that the performance of the classifier in this test 

would depend on the extent of dissimilarity between 

practical fault instances in the distribution network and the 

synthetic faults. This test case is useful for understanding 

how much can be learnt by the classifier from the synthetic 

faults, and how relevant these features are to actual faults 

in the distribution network.  

Stability Decision 
Number of 
 Faults 

Stable Inspect Manually Unstable 

10 23 18 

    

Figure 4. Block diagram showing the working of the ML fault classification model. 
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Table 2. Description of the test cases used to assess classifier 
performance. 

 

In the second test case, the classifier is trained and tested 

on the real-world faults. The data set is split in a ratio of 

85:15 for training and testing respectively. The results of 

the performance of the classifier in this test case provides 

information on whether the model learnt discriminating 

information from the current set of real faults to accurately 

classify future real faults.  

 

In the third test case, the synthetic singe-phase, two-phase 

and three-phase faults are added to the real-world training 

data. This is done to add stronger reference waveforms for 

the practical faults to improve the ability of the classifier 

to generalise.  

 
Table 3. Comparison of the performance of the SVM fault type 
classifier in different test cases. 

Case Precision (%) Recall (%) F1-Score (%) 
I 86 84 84 

II 91 90 90 

III 95 95 95 

 

The performance results are summarised in Table 3. While 

training on the synthetic faults alone (in case I) provides 

understandably less than desired results, as the synthetic 

faults do not have the distortions that occur in actual faults 

in the network. The performance improves significantly 

when the model is trained on real-world data (case II), and 

further improves when synthetic fault data is added to the 

training set. The latter is perhaps surprising, as the 

distribution of features of real-world and synthetic faults 

differs (covariate shift), which generally reduces classifier 

performance. However, the synthetic data also increases 

the training data set and the additional reference values 

ultimately improve the model’s performance substantially. 

This has useful practical applications in situations where 

synthetically developed signals can be used to enrich 

training data sets to improve classifier performance.   

 

CONCLUSION 
 
In this paper, two classification models were developed – 

one to classify faults based on their stability, and the other 

to classify faults based on the number of fault phases. It 

was found that the relative strength of the fundamental 

frequency component is useful in characterising the 

stability of fault signals by highlighting the disturbances in 

the signal. An SVM was developed to classify faults 

according to the number of participant phases. With the 

addition of synthetic faults to the real-world training data 

set, the classification accuracy improved substantially. 

This shows the significant potential value of even simple 

synthetic training data when used to train ML models in 

environments with limited real-world training data.  

 

Currently, the analysis of stability was restricted to the 

classification of single-phase unstable faults due to the 

limited dataset for multi-phase instable faults. In order to 

diagnose instances of multi-phase instability, a future 

direction could be to extend the scope of the classifier. 
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