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 a b s t r a c t

Physics-Informed Neural Networks (PINNs) have emerged as a tool for approximating the solution 
of Partial Differential Equations (PDEs) in both forward and inverse problems. PINNs minimize a 
loss function which includes the PDE residual determined for a set of collocation points. Previous 
work has shown that the number and distribution of these collocation points have a significant 
influence on the accuracy of the PINN solution. Therefore, the effective placement of these collo-
cation points is an active area of research. Specifically, available adaptive collocation point sam-
pling methods have been reported to scale poorly in terms of computational cost when applied to 
high-dimensional problems. In this work, we address this issue and present the Point Adaptive Col-
location Method for Artificial Neural Networks (PACMANN). PACMANN incrementally moves col-
location points toward regions of higher residuals using gradient-based optimization algorithms 
guided by the gradient of the PINN loss function, that is, the squared PDE residual. We apply 
PACMANN to several forward and inverse problems, including one with a low-regularity solution 
and 3D Navier Stokes, and demonstrate that this method matches the performance of state-of-the-
art methods in terms of the accuracy/efficiency tradeoff for the low-dimensional problems, while 
outperforming available approaches for high-dimensional problems. Key features of the method 
include its low computational cost and simplicity of integration into existing physics-informed 
neural network pipelines. The code is available at https://github.com/CoenVisser/PACMANN.

1.  Introduction

Physics-Informed Neural Networks (PINNs) build upon the ability of deep neural networks to serve as universal function approx-
imators, as established by Cybenko [1] and Hornik et al. [2] in 1989. Based on these findings, several methods were developed to 
solve Ordinary Differential Equations (ODEs) and Partial Differential Equations (PDEs) using neural networks, originally proposed by 
[3,4]. Supported by these developments and recent advances in computational tools, notably automatic differentiation in 2015 [5], 
Raissi et al. [6] proposed the name and framework of Physics-Informed Neural Networks and their use to approximate the solution of 
PDEs in both forward and inverse problems; their work was published in 2019. Since then, PINNs have been applied in a variety of 
fields [7,8], such as fluid dynamics [9–11], heat transfer [12,13], material sciences [14,15], and electromagnetism [16,17].
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$L^{\infty }$


$\boldsymbol {u}$


\begin {equation}\boldsymbol {u_t} + \mathcal {N}[\boldsymbol {u}] = 0, \quad \boldsymbol {x} \in \boldsymbol {\Omega }, \quad t \in [0,T], \label {eq:General_PDE_form}\end {equation}


\begin {equation*}\begin {aligned} \boldsymbol {u} \left ( \boldsymbol {x}, 0 \right ) & = h \left ( \boldsymbol {x} \right ), & \quad & \boldsymbol {x} \in \boldsymbol {\Omega },\\ \mathcal {B}[\boldsymbol {u}]\left ( \boldsymbol {x},t \right ) & = 0, & & \boldsymbol {x} \in \partial \boldsymbol {\Omega }, \quad t \in [0,T], \end {aligned}\end {equation*}


$\mathcal {N}[\cdot ]$


$\mathcal {B}[\cdot ]$


$\boldsymbol {x} \in \boldsymbol {\Omega } \subset \mathbb {R}^{d}$


$t \in [0,T]$


$\partial \boldsymbol {\Omega }$


$\boldsymbol {\Omega }$


$\mathcal {D} := \overline {\boldsymbol {\Omega }} \times [0,T]$


$(\boldsymbol {x}, t)$


$\hat {\boldsymbol {u}}(\boldsymbol {x}, t, \boldsymbol {\theta })$


$\boldsymbol {u}(\boldsymbol {x}, t)$


$\boldsymbol {\theta }$


$\mathcal {L}(\boldsymbol {\theta })$


\begin {equation}\label {eq:minimization_problem} \boldsymbol {\theta }^* = {\rm argmin}_{\boldsymbol {\theta }} \mathcal {L}\left (\boldsymbol {\theta }\right ).\end {equation}


\begin {equation}\mathcal {L} \left ( \boldsymbol {\theta } \right ) = \lambda _{r} \mathcal {L}_{r} \left ( \boldsymbol {\theta } \right ) + \lambda _{ic} \mathcal {L}_{ic} \left ( \boldsymbol {\theta } \right ) + \lambda _{bc} \mathcal {L}_{bc} \left ( \boldsymbol {\theta } \right ), \label {eq:General-loss-function}\end {equation}


\begin {align}& \mathcal {L}_r \left ( \boldsymbol {\theta } \right ) = \frac {1}{N_r} \sum _{i=1}^{N_r} \left ( \hat {\boldsymbol {u_t}} \left ( \boldsymbol {x}_{r}^i, t_{r}^i, \boldsymbol {\theta } \right ) + \mathcal {N}[\hat {\boldsymbol {u}}] \left ( \boldsymbol {x}_{r}^i, t_{r}^i, \boldsymbol {\theta } \right ) \right )^2, \label {eq:Physics-loss-function} \\ & \mathcal {L}_{ic} \left ( \boldsymbol {\theta } \right ) = \frac {1}{N_{ic}} \sum _{i=1}^{N_{ic}} \left ( \hat {\boldsymbol {u}} \left ( \boldsymbol {x}_{ic}^i, 0, \boldsymbol {\theta } \right ) - h \left ( \boldsymbol {x}_{ic}^i \right ) \right )^2, \label {eq:Initial_loss_function} \\ & \mathcal {L}_{bc} \left ( \boldsymbol {\theta } \right ) = \frac {1}{N_{bc}} \sum _{i=1}^{N_{bc}} \left ( \mathcal {B}[\hat {\boldsymbol {u}}] \left ( \boldsymbol {x}_{bc}^i, t_{bc}^i, \boldsymbol {\theta } \right ) \right )^2 \label {eq:Boundary_loss_function}\end {align}
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$\{ (\boldsymbol {x}_{ic}^i,0) \}_{i=1}^{N_{ic}}$


$\{ (\boldsymbol {x}_{bc}^i, t_{bc}^i) \}_{i=1}^{N_{bc}}$
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$\hat {\boldsymbol {u}} \left ( \boldsymbol {x}, t, \boldsymbol {\theta } \right )$


$\left ( \boldsymbol {x}, t \right )$


$\mathcal {N}[\cdot ]$


$\mathcal {B}[\cdot ]$


$\hat {\boldsymbol {u}}$


$\mathcal {L}_{ref}$


\begin {equation}\mathcal {L}_{ref} \left ( \boldsymbol {\theta } \right ) = \frac {1}{N_{ref}} \sum _{i=1}^{N_{ref}} \left ( \hat {\boldsymbol {u}} \left ( \boldsymbol {x}^i, t^i, \boldsymbol {\theta } \right ) - \boldsymbol {u}_{ref} \left ( \boldsymbol {x}^i, t^i \right ) \right ) ^2. \nonumber \end {equation}


$\boldsymbol {u}_{ref}$


$\{ (\boldsymbol {x}^i, t^i) \}_{i=1}^{N_{ref}}$


$\hat {\boldsymbol {u}} \left ( \boldsymbol {x}^i, t^i, \boldsymbol {\theta } \right )$


\begin {equation}\mathcal {L} \left ( \boldsymbol {\theta } \right ) = \lambda _{r} \mathcal {L}_{r} \left ( \boldsymbol {\theta } \right ) + \lambda _{ic} \mathcal {L}_{ic} \left ( \boldsymbol {\theta } \right ) + \lambda _{bc} \mathcal {L}_{bc} \left ( \boldsymbol {\theta } \right ) + \lambda _{ref} \mathcal {L}_{ref} \left ( \boldsymbol {\theta } \right ), \nonumber \label {eq:General-loss-function_ref_data_problem}\end {equation}


$\lambda _{ref}$


$P$


$s$


$T$


$\boldsymbol {X_r}$


$N_r$


$\{ \boldsymbol {x}_{r}^i, t_{r}^i \}_{i=1}^{N_{r}}$


$P$


$r^2(\boldsymbol {x},t) = \left ( \boldsymbol {u_t} ( \boldsymbol {x}_{r}^i, t_{r}^i, \boldsymbol {\theta } ) + \mathcal {N}[\boldsymbol {u}] ( \boldsymbol {x}_{r}^i, t_{r}^i, \boldsymbol {\theta } ) \right )^2$
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$\frac {\partial }{\partial t} r^2(\boldsymbol {x}, t)$


$\boldsymbol {X}_r$


$\boldsymbol {X}_r$
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$\boldsymbol {X}_r$


$\boldsymbol {\theta }$


\begin {equation}\label {eq:min_max} \boldsymbol {\theta }^* = {\rm argmin}_{\boldsymbol {\theta }} \left [ \lambda _{ic} \mathcal {L}_{ic} \left ( \boldsymbol {\theta } \right ) + \lambda _{bc} \mathcal {L}_{bc} \left ( \boldsymbol {\theta } \right ) + \lambda _{ref} \mathcal {L}_{ref} \left ( \boldsymbol {\theta } \right ) + \lambda _{r} \max _{\boldsymbol {X_r} \subset \mathcal {D}} \mathcal {L}_{r} \left ( \boldsymbol {X_r}, \boldsymbol {\theta } \right ) \right ].\end {equation}


$X_r = \{ (\boldsymbol {x}_{r}^i, t_{r}^i) \}_{i=1}^{N_{r}}$


$\mathcal {L}_{r}$


$\mathcal {D}$


$\mathcal {D}$


\begin {equation*}\begin {aligned} \left \| \hat {\boldsymbol {u_t}} + \mathcal {N}[\hat {\boldsymbol {u}}] \right \|_{L^\infty (\mathcal {D})}^2 & = \max _{ \left ( \boldsymbol {x}_r, t_r \right ) \in \mathcal {D}} \left ( \hat {\boldsymbol {u_t}} \left ( \boldsymbol {x}_r, t_r \right ) + \mathcal {N}[\hat {\boldsymbol {u}}] \left ( \boldsymbol {x}_r, t_r \right ) \right )^2 = \frac {1}{N_r} \sum _{i=1}^{N_r} \max _{ \left ( \boldsymbol {x}_r, t_r \right ) \in \mathcal {D}} \left ( \hat {\boldsymbol {u_t}} \left ( \boldsymbol {x}_r, t_r \right ) + \mathcal {N}[\hat {\boldsymbol {u}}] \left ( \boldsymbol {x}_r, t_r \right ) \right )^2 \\ & = \max _{ \boldsymbol {X}_r \subset \mathcal {D} } \left [ \frac {1}{N_r} \sum _{i=1}^{N_r} \left ( \hat {\boldsymbol {u_t}} \left ( \boldsymbol {x}_r^i, t_r^i \right ) + \mathcal {N}[\hat {\boldsymbol {u}}] \left ( \boldsymbol {x}_r^i, t_r^i \right ) \right )^2 \right ] = \max _{\boldsymbol {X}_r \subset \mathcal {D}} \mathcal {L}_{r} \left ( \boldsymbol {X_r}, \boldsymbol {\theta } \right ), \end {aligned}\end {equation*}
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$\nabla _{\boldsymbol {x}} r^2(\boldsymbol {x},t)$


$\frac {\partial }{\partial t} r^2(\boldsymbol {x}, t)$


$\left ( \boldsymbol {x}, t \right ) \in \boldsymbol {X}_r$


\begin {equation}\label {eq:Gradient_ascent_equations} \left \{ \begin {aligned} \boldsymbol {x}_r^{i+1} & = \boldsymbol {x}_r^i + s \nabla _{\boldsymbol {x}} r^2(\boldsymbol {x}_r^i,t_r^i), \\ t_r^{i+1} & = t_r^i + s \frac {\partial }{\partial t} r^2(\boldsymbol {x}_r^i,t_r^i). \\ \end {aligned} \right .\end {equation}
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$T$


$x$


$f(x)$


\begin {equation}x_{i+1} = x_i + s f'(x_i). \nonumber \end {equation}


\begin {equation}x_{i+1} = x_i + s \tanh { \left (f'(x_i) \right )}. \nonumber \end {equation}


$S$


\begin {equation}S_{i+1} = \beta S_i + (1 - \beta ) \left (f'(x_i) \right )^2. \nonumber \end {equation}


$x$


\begin {equation}x_{i+1} = x_i + s \frac {f'(x_i) }{\sqrt {S_{i+1} + \epsilon }}. \nonumber \end {equation}


$S$


$\epsilon $


$V$


\begin {equation}V_{i+1} = \beta V_{i} + (1-\beta ) \left (f'(x_i) \right ). \nonumber \end {equation}


$V$


$x$


\begin {equation}x_{i+1} = x_i + s V_{i+1}. \nonumber \end {equation}


$V$


\begin {equation}V_{i+1} = \beta _1 V_{i} + (1-\beta _1) f'(x_i). \nonumber \end {equation}


$S$


\begin {equation}S_{i+1} = \beta _2 S_i + (1-\beta _2) \left (f'(x_i) \right )^2. \nonumber \end {equation}


$V_{i+1}$


$S_{i+1}$


\begin {equation}\hat {V}_{i+1} = \frac {V_{i+1}}{1 - \beta _{1}^{i+1}}, \quad \hat {S}_{i+1} = \frac {S_{i+1}}{1 - \beta _{2}^{i+1}}. \nonumber \end {equation}


$x$


\begin {equation}x_{i+1} = x_i + s \frac {\hat {V}_{i+1}}{\sqrt {\hat {S}_{i+1} + \epsilon }} \nonumber \end {equation}


$\epsilon $


$\hat {S}_{i+1}$


$[a_i, b_i]$


$a_0$


$x_0$
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\begin {equation}b_0 = a_0 + s f'(x_0). \nonumber \end {equation}


$f(x)$


$x_{l,i}$


$x_{r,i}$


\begin {equation}x_{l,i} = a_i + \alpha (b_i - a_i), \quad x_{r,i} = a_i + \beta (b_i - a_i). \nonumber \end {equation}


$\phi = \frac {1 + \sqrt {5}}{2}$


$\alpha $


$\beta $


\begin {equation}\alpha = 1 - \phi ^{-1}, \quad \beta = \phi ^{-1} \nonumber \end {equation}


$f(x_{l,i}) > f(x_{r,i})$


\begin {equation}a_{i+1} = a_i, \quad b_{i+1} = x_{r,i}, \quad x_{r,i+1} = x_{l,i}. \nonumber \end {equation}


$f(x_{l,i}) < f(x_{r,i})$


\begin {equation}a_{i+1} = x_{l,i}, \quad b_{i+1} = b_i, \quad x_{l,i+1} = x_{r,i}. \nonumber \end {equation}


$[a_{i+1}, b_{i+1}]$


$x$


$[a_N, b_N]$


\begin {equation}x_N = \frac {a_N + b_N}{2}. \nonumber \end {equation}
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$x_{r,i}$


$x_{r,i+1}$
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$f(x)$
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$f(x)$


$L_2$


$L_2$


\begin {equation}\label {eq:L2_error} \varepsilon _{L_2} := \frac {\| \boldsymbol {u}_{ref} - \boldsymbol {u}_{pred} \|_2}{\| \boldsymbol {u}_{ref} \|_2},\end {equation}


$\boldsymbol {u}_{ref}$


$\boldsymbol {u}_{pred}$


$H^1$


\begin {equation}\label {eq:H1_error} \varepsilon _{H^1} := \frac {| \boldsymbol {u}_{ref} - \boldsymbol {u}_{pred} |_1}{| \boldsymbol {u}_{ref} |_1}, \quad \text {where} \quad | v |_1 := \| \nabla v \|_2,\end {equation}
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$\boldsymbol {u}_{pred}$


$10^{-3}$


$P$


$\lambda _i$


\begin {equation}\label {eq:Burgers_equation_problem_statement} \left \{ \begin {aligned} u_t + u u_x & = \nu u_{xx}, & \quad & x \in [-1, 1], \quad t \in [0,1], \\ u(x,0) & = -\sin (\pi x), & \\ u(-1,t) & = u(1,t) = 0. & \\ \end {aligned} \right .\end {equation}
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\begin {equation}\label {eq:Allen_Cahn_equation_problem_statement} \left \{ \begin {aligned} u_t & = d u_{xx} + 5(u-u^3), \quad x \in [-1,1], \quad t \in [0,1], \\ u(x,0) & = x^2\cos (\pi x), \\ u(-1,t) & = u(1,t) = -1. \\ \end {aligned} \right .\end {equation}
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$10^{-5}$


$0.42\% \pm 0.28\%$


\begin {equation}\label {eq:Navier_Stokes_equation_problem_statement} \left \{ \begin {aligned} \frac {\partial \boldsymbol {v}}{\partial t} + \lambda _1 \boldsymbol {v} \cdot \nabla \boldsymbol {v} &= -\nabla p + \lambda _2 \nabla ^{2} \boldsymbol {v}, \quad (x,y) \in [1,8] \times [-2,2], \quad t \in [0,7], \\ \nabla \cdot \boldsymbol {v} &= 0. \end {aligned} \right .\end {equation}
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\begin {equation}\label {eq:Poissons_equation_problem_statement} \left \{ \begin {aligned} -\Delta v \left ( \boldsymbol {x} \right ) & = f \left ( \boldsymbol {x} \right ), & \quad & \boldsymbol {x} \in [-1,1]^5, \\ v \left ( \boldsymbol {x} \right ) & = 0, & & \boldsymbol {x} \in \partial \boldsymbol {\Omega }.\\ \end {aligned} \right .\end {equation}


$f$


\begin {equation}\label {eq:Solution_Poissons_equation} v \left ( \boldsymbol {x} \right ) = \prod _{i=1}^5 \sin (\pi x_i),\end {equation}
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\begin {equation}\label {eq:Navier_Stokes_equation_cube_problem_statement} \left \{ \begin {aligned} \frac {\partial \boldsymbol {v}}{\partial t} + {Re} \: \boldsymbol {v} \cdot \nabla \boldsymbol {v} +Re \: \nabla p - \nabla ^{2} \boldsymbol {v} &= f(\boldsymbol {x}, t), \quad \boldsymbol {x} \in [-1,1]^3, \quad t \in [0,1], \\ \nabla \cdot \boldsymbol {v} &= 0, \\ \boldsymbol {v}(\boldsymbol {x,t}) = \boldsymbol {v}_{ref}(\boldsymbol {x},t), \quad & p(\boldsymbol {x}, t) = p_{ref}(\boldsymbol {x}, t), \quad \boldsymbol {x} \in \partial \boldsymbol {\Omega },\\ \boldsymbol {v}(\boldsymbol {x},0) = \boldsymbol {v}_{ref}(\boldsymbol {x},0), \quad & p(\boldsymbol {x}, 0) = p_{ref}(\boldsymbol {x}, 0), \quad t=0. \end {aligned} \right .\end {equation}
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$\boldsymbol {v}_{ref}(\boldsymbol {x}, t)$


\begin {equation}\label {eq:Navier_Stokes_equation_cube_manufactured_solution_velocities} \left \{ \begin {aligned} u_{ref}(\boldsymbol {x},t) &= \cos (x) \sin (y) \sin (z) \ e^{-t},\\ v_{ref}(\boldsymbol {x},t) &= \sin (x) \cos (y) \sin (z) \ e^{-t},\\ w_{ref}(\boldsymbol {x},t) &= -2 \cos (x) \cos (y) \cos (z) \ e^{-t},\\ \end {aligned} \right .\end {equation}


$p_{ref}(\boldsymbol {x},t)$


\begin {equation}\label {eq:Navier_Stokes_equation_cube_manufactured_solution_pressure} p_{ref}(\boldsymbol {x},t) = \cos (x)\cos (y)\cos (z) \ e^{-t}.\end {equation}
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\begin {equation}\label {eq:Laplace_disk_problem_statement} \left \{ \begin {aligned} u_{rr} + \frac {1}{r}u_{r} + \frac {1}{r^2} u_{\theta \theta } &= 0, & \quad & r \in [0, 1], \quad \theta \in \left [0, \frac {5\pi }{3}\right ], \\ u(r, \theta ) & = h(r, \theta ), & & (r,\theta ) \in \partial \boldsymbol {\Omega }. \end {aligned} \right .\end {equation}


$h(r,\theta )$


\begin {equation*}h(r,\theta ) = r^{\frac {3}{5}}\sin \left (\frac {3}{5}\theta \right ),\end {equation*}
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\begin {equation}\label {eq:Linear_Elasticity_problem_statement_1} \nabla \cdot \boldsymbol {\sigma } = \boldsymbol {0},\end {equation}
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\begin {equation}\boldsymbol {\sigma } = \lambda \, \mathrm {tr}(\boldsymbol {\varepsilon })\, \mathbf {I} + 2\mu \, \boldsymbol {\varepsilon }, \label {Xeqn36-21}\end {equation}
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$\boldsymbol {u}$


\begin {equation}\boldsymbol {\varepsilon } = \frac {1}{2}\bigl (\nabla \mathbf {u} + (\nabla \mathbf {u})^{T}\bigr ). \label {Xeqn37-22}\end {equation}
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\begin {equation}\label {eq:Linear_Elasticity_problem_statement_edge_bcs} \begin {aligned} u_x = 0, \quad &\sigma _{xx} = 0 \qquad &\text {on}& \quad \partial \Omega _{\text {left}} \\ u_y = 0, \quad &\sigma _{yy} = 0 \qquad &\text {on}& \quad \partial \Omega _{\text {bottom}} \\ \sigma _{xx} = 0, \quad &\sigma _{xy} = 0 \qquad &\text {on}& \quad \partial \Omega _{\text {right}} \\ \sigma _{xy} = 0, \quad &\sigma _{yy} = 8 \sin ( \pi x) \qquad &\text {on}& \quad \partial \Omega _{\text {top}}. \end {aligned}\end {equation}


$\boldsymbol {\sigma } \boldsymbol {n} = \boldsymbol {0}$


$\boldsymbol {n}$


$\lambda = \mu = 1$


$10^{-6}$


$\| \boldsymbol {u} \|$


$\| u \|$


$10^{-6}$

https://orcid.org/0000-0003-1578-8104
https://orcid.org/0000-0001-7768-8542
https://github.com/CoenVisser/PACMANN
mailto:A.Heinlein@tudelft.nl
https://doi.org/10.1016/j.cma.2025.118723
https://doi.org/10.1016/j.cma.2025.118723
http://creativecommons.org/licenses/by/4.0/


C. Visser et al.

In their classic form, PINNs approximate the solution of differential equations by minimizing a loss function incorporating bound-
ary conditions, initial conditions, and the PDE residual sampled over a set of collocation points. In 2020, Mao et al. [9] explored 
the impact of collocation point placement on prediction accuracy for solutions exhibiting discontinuities. They demonstrated that, 
when discontinuities are known a priori, manually increasing the density of points near these regions improves prediction accuracy. 
To address scenarios where solution features are unknown before training, adaptive algorithms for collocation point selection were 
developed. For instance, Lu et al. [18] introduced Residual-based Adaptive Refinement (RAR) in 2021, the first adaptive sampling 
algorithm, which places additional points in regions with the largest PDE residuals. RAR improves prediction accuracy, capturing 
features such as a discontinuity better than a static grid for the Burgers’ equation. Instead of sampling points only where the residual is 
the largest, Nabian et al. [19] proposed to randomly resample all points in the domain based on a Probability Density Function (PDF) 
proportional to the loss function. This approach samples a higher density of points in high residual areas, resulting in accelerated 
convergence of the PINN. Based upon these studies, Wu et al. [20] presented two additional sampling algorithms, Residual-based 
Adaptive Distribution (RAD) and Residual-based Adaptive Refinement with Distribution (RAR-D). In RAD, all collocation points are 
resampled using a PDF defined by a nonlinear function of the PDE residual. RAR-D is a combination of RAR and RAD, where col-
location points are sampled in addition to the existing ones according to the same probability density function used by RAD. Both 
approaches lead to a higher prediction accuracy, specifically for PDEs with complex solutions due to, for example, steep gradients. 
Moreover, RAD was found to outperform the method proposed by Nabian et al. [19].

Several adaptations to the aforementioned PDF-based sampling algorithms have been proposed. Guo et al. [21], for example, 
propose an adaptive causal sampling method, which decomposes the domain into subdomains where the ratio of points sampled in 
each subdomain is based on the PDE residual and a temporal weight, ensuring temporal causality. This approach was found to enhance 
the prediction accuracy and computational efficiency of PINNs in problems with nonlinear PDEs containing higher-order derivatives. 
Hou et al. [22] propose an adaptive collocation method that samples points according to a PDF proportional to the PDE residual 
or gradient of the solution and further combine this with an adaptive loss weighting strategy. Numerical experiments demonstrate 
that the resulting method improves prediction accuracy and generalization ability over vanilla PINNs. Furthermore, Mao et al. [23] 
consider the gradient of the solution by sampling additional points in subdomains with large residuals and large solution gradients. 
Liu et al. [24] propose to add points with large residual gradients to the set of collocation points used for training. Both Mao et al. 
and Liu et al. report an improvement in accuracy for problems with solutions exhibiting steep gradients.

While the aforementioned collocation point sampling methods have proven effective in low-dimensional problems, these ap-
proaches to resampling are computationally expensive for high-dimensional problems, as reported by Wu et al. [20]. Specifically, 
RAD or RAR are computationally expensive for these problems due to the cost of evaluating the residual at a sufficiently large number 
of points, either to construct the probability density function or to identify additional points for inclusion in the training process. 
Other approaches have been proposed to sample collocation points in high-dimensional problems. For instance, Tang et al. [25] 
propose the DAS-PINNs approach, which samples according to a Deep Adaptive Sampling (DAS) method and uses KRnet [26], a deep 
generative model, to approximate the PDF proportional to the residual. Similarly, Gao et al. [27] also use a dual-network approach in 
their EEMS-PINNs (Energy-Equidistributed Moving Sampling-PINNs) framework. This adaptive method relocates collocation points 
in conservative PDE problems by training a second neural network to solve a moving-mesh PDE where the energy density serves as 
the monitor function. They report that this method improves solution accuracy and stability in long-time simulations. However, these 
approaches are not straightforward to integrate into existing PINNs pipelines due to their dual-network frameworks.

In this work, we present a collocation point resampling method that scales to higher dimensions more efficiently without in-
troducing significant computational overhead while maintaining the accuracy improvements achieved by previous approaches. We 
propose the Point Adaptive Collocation Method for Artificial Neural Networks (PACMANN), which uses the gradient of the squared 
residual to move collocation points toward areas with a large residual. In this approach, collocation point resampling is formulated 
as a maximization problem of the squared residual. First, the PINN is trained on a static grid of collocation points. After a certain 
number of iterations, this process is paused and the gradient of the squared residual is determined for the input coordinates of each 
collocation point. Based on the magnitude and direction provided by these gradients, points are moved to maximize the squared 
residual using established optimization methods. Since the residual landscape is static while training is paused, the process of moving 
points may be repeated iteratively. PACMANN includes four main hyperparameters: the resampling period, the optimizer for moving 
the collocation points, the stepsize, and the number of steps taken by the optimization algorithm. Key features of the method include 
its low computational cost and simplicity of integration in existing physics-informed neural network pipelines. Our approach builds 
on the work of Wang et al. [28], who, independently of the aforementioned developments, found that iteratively updating the place-
ment of collocation points by applying gradient ascent over the 𝐿∞ physics-informed loss results in a greater prediction accuracy for 
the Hamilton-Jacobi-Bellman equation.

First, we investigate the performance of PACMANN in combination with a variety of optimization algorithms for two low-
dimensional problems: the one-dimensional Burgers’ and Allen-Cahn equations. We then perform sensitivity studies on the number of 
collocation points and the method’s hyperparameters. In addition, we demonstrate the suitability of PACMANN for high-dimensional 
and inverse problems. As test cases, we consider an inverse problem based on the 2D Navier-Stokes equations, the Poisson’s equation 
in five dimensions, and the 3D Navier-Stokes equations. Finally, we apply PACMANN to two geometrically challenging problems 
involving a re-entrant corner in a disk and a plate with holes, showing the effectiveness of our approach for problems with low-
regularity solutions and non-convex domains. For all problems under consideration, we compare the performance of our method in 
terms of prediction accuracy and computational cost to state-of-the-art adaptive and non-adaptive sampling methods. Notably, our 
results show that our method matches the performance of state-of-the-art methods in terms of the accuracy/efficiency tradeoff for 
low-dimensional problems while efficiently scaling to high-dimensional problems, where it outperforms state-of-the-art methods.
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This paper is organized as follows: In Section 2, we briefly review the PINNs framework, followed by a description of PACMANN. 
Next, in experimental studies in Section 3, we compare the accuracy and computational cost of PACMANN to other state-of-the-art 
sampling methods for five forward problems and an inverse problem. Finally, in Section 4, we summarize our findings.

2.  Methodology

This section begins with a brief review of PINNs based on the framework presented by Raissi et al. [6] in 2019. Next, we propose 
the novel PACMANN.

2.1.  Physics-informed neural networks (PINNs)

PINNs approximate the solution of PDEs using neural networks. Generally, we consider PDEs of the form: find 𝒖 such that
𝒖𝒕 + [𝒖] = 0, 𝒙 ∈ 𝛀, 𝑡 ∈ [0, 𝑇 ], (1)

with the initial and boundary conditions
𝒖(𝒙, 0) = ℎ(𝒙), 𝒙 ∈ 𝛀,

[𝒖](𝒙, 𝑡) = 0, 𝒙 ∈ 𝜕𝛀, 𝑡 ∈ [0, 𝑇 ],

where  [⋅] is a linear or nonlinear differential operator, and [⋅] is a boundary operator corresponding to a set of boundary conditions. 
In addition, 𝒙 ∈ 𝛀 ⊂ ℝ𝑑 and 𝑡 ∈ [0, 𝑇 ] denote the spatial and temporal coordinates, respectively, and we write 𝜕𝛀 for the boundary 
of 𝛀. We denote the space-time domain by  ∶= 𝛀 × [0, 𝑇 ].

The PINN consists of a (deep) neural network with the coordinates (𝒙, 𝑡) as inputs and 𝒖̂(𝒙, 𝑡,𝜽) as output, approximating 𝒖(𝒙, 𝑡). 
The trainable parameters 𝜽 of this neural network are trained by minimizing a specific loss function (𝜽):

𝜽∗ = argmin𝜽(𝜽). (2)

The loss function is defined as
(𝜽) = 𝜆𝑟𝑟(𝜽) + 𝜆𝑖𝑐𝑖𝑐 (𝜽) + 𝜆𝑏𝑐𝑏𝑐 (𝜽), (3)

where

𝑟(𝜽) =
1
𝑁𝑟

𝑁𝑟
∑

𝑖=1

(

𝒖𝒕
(

𝒙𝑖𝑟, 𝑡
𝑖
𝑟,𝜽

)

+ [𝒖̂]
(

𝒙𝑖𝑟, 𝑡
𝑖
𝑟,𝜽

))2, (4)

𝑖𝑐 (𝜽) =
1
𝑁𝑖𝑐

𝑁𝑖𝑐
∑

𝑖=1

(

𝒖̂
(

𝒙𝑖𝑖𝑐 , 0,𝜽
)

− ℎ
(

𝒙𝑖𝑖𝑐
))2, (5)

𝑏𝑐 (𝜽) =
1

𝑁𝑏𝑐

𝑁𝑏𝑐
∑

𝑖=1

(

[𝒖̂]
(

𝒙𝑖𝑏𝑐 , 𝑡
𝑖
𝑏𝑐 ,𝜽

))2 (6)

represent the loss terms for the PDE residual, initial conditions, and the boundary conditions, respectively. Furthermore, 𝑁𝑟, 𝑁𝑖𝑐 , and 
𝑁𝑏𝑐 denote the numbers of collocation points of the aforementioned terms. The hyperparameters 𝜆𝑟, 𝜆𝑖𝑐 , and 𝜆𝑏𝑐 are scalar weights 
used to balance the loss function. Each loss term is evaluated over a set of data points, where {(𝒙𝑖𝑟, 𝑡𝑖𝑟)}

𝑁𝑟
𝑖=1 is a set of collocation points 

located in the interior of the domain, {(𝒙𝑖𝑖𝑐 , 0)}
𝑁𝑖𝑐
𝑖=1  is a set of points sampled at the initial time, and {(𝒙𝑖𝑏𝑐 , 𝑡𝑖𝑏𝑐 )}

𝑁𝑏𝑐
𝑖=1  is a set sampled along 

the boundary. These points may be fixed during training [20], resampled through periodic random resampling [20], or resampled 
using adaptive sampling methods based on guiding information, such as the PDE residual [18–20]. Note that we assume sufficient 
regularity, existence of a strong-form solution of Eq. (1), for the PINN loss function to be meaningful.

To train the model parameters 𝜽, the gradient of the loss function with respect to the parameters is determined using back-
propagation [29]. Next, the model parameters are updated with an optimization algorithm, often based on the gradient descent 
method, such as the Adam optimizer [30]. Similarly, the derivatives of 𝒖̂(𝒙, 𝑡,𝜽) with respect to the input coordinates (𝒙, 𝑡) as re-
quired by  [⋅] and potentially [⋅] in Eqs. (4) and (6) are computed using automatic differentiation; the initial conditions and the 
corresponding loss function Eq. (5) may also depend on the temporal derivative of 𝒖̂, but we omit these cases for simplicity.

For problems that incorporate reference data during training, such as inverse problems, an additional loss term 𝑟𝑒𝑓  is added to 
the loss function described by Eq. (3), where

𝑟𝑒𝑓 (𝜽) =
1

𝑁𝑟𝑒𝑓

𝑁𝑟𝑒𝑓
∑

𝑖=1

(

𝒖̂
(

𝒙𝑖, 𝑡𝑖,𝜽
)

− 𝒖𝑟𝑒𝑓
(

𝒙𝑖, 𝑡𝑖
))2.

This term corresponds to the mean squared error between the (noisy) observed data 𝒖𝑟𝑒𝑓  at the set of data points {(𝒙𝑖, 𝑡𝑖)}
𝑁𝑟𝑒𝑓
𝑖=1  and the 

approximation 𝒖̂(𝒙𝑖, 𝑡𝑖,𝜽) given by the neural network. Adding this term leads to the following loss function
(𝜽) = 𝜆𝑟𝑟(𝜽) + 𝜆𝑖𝑐𝑖𝑐 (𝜽) + 𝜆𝑏𝑐𝑏𝑐 (𝜽) + 𝜆𝑟𝑒𝑓𝑟𝑒𝑓 (𝜽),

where 𝜆𝑟𝑒𝑓  is the additional scalar weight assigned to the reference data loss term.
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Algorithm 1: PACMANN with a given optimization algorithm, 𝑃 , 𝑠, and 𝑇 .
1 Sample a set 𝑿𝒓 of 𝑁𝑟 collocation points {𝒙𝑖𝑟, 𝑡𝑖𝑟}

𝑁𝑟
𝑖=1 using a uniform sampling method;

2 repeat
3 Train the PINN for 𝑃  iterations;
4 Determine 𝑟2(𝒙, 𝑡) = (

𝒖𝒕(𝒙𝑖𝑟, 𝑡
𝑖
𝑟,𝜽) + [𝒖](𝒙𝑖𝑟, 𝑡

𝑖
𝑟,𝜽)

)2, the squared PDE residual over 𝑿𝒓;
5 Find ∇𝒙𝑟2(𝒙, 𝑡) and 𝜕𝜕𝑡 𝑟2(𝒙, 𝑡), the gradients of the squared PDE residual with respect to the input coordinates of the 

points in 𝑿𝑟;
6 Iteratively move the points in 𝑿𝑟 according to the chosen optimization algorithm with stepsize 𝑠 and number of steps 𝑇 ;
7 Replace points in 𝑿𝑟 outside the domain with points sampled according to a uniform probability distribution;
8 until the total number of iterations reaches the limit;

Fig. 1. A schematic of PACMANN with four steps of gradient ascent on a contour plot of the squared residual.

2.2.  Point adaptive collocation method for artificial neural networks (PACMANN)

In this work, we propose the Point Adaptive Collocation Method for Artificial Neural Networks, which uses the gradient of the squared 
residual as guiding information to gradually move collocation points toward areas of high residuals; see Algorithm 1 and Fig. 1. In 
particular, instead of the minimization problem in Eq. (2), we consider the following min-max problem for training the model 
parameters 𝜽:

𝜽∗ = argmin𝜽

[

𝜆𝑖𝑐𝑖𝑐 (𝜽) + 𝜆𝑏𝑐𝑏𝑐 (𝜽) + 𝜆𝑟𝑒𝑓𝑟𝑒𝑓 (𝜽) + 𝜆𝑟 max
𝑿𝒓⊂

𝑟
(

𝑿𝒓,𝜽
)

]

. (7)

Here, only the collocation points 𝑋𝑟 = {(𝒙𝑖𝑟, 𝑡
𝑖
𝑟)}

𝑁𝑟
𝑖=1 are moved, while points such as those sampled along the boundary are fixed in place 

throughout training. This approach ensures that a sufficient number of points are placed along the initial and boundary conditions 
to accurately compute the respective loss terms.
Remark 1.  The min-max formulation for the residual loss 𝑟 in Eq. (7) can also be interpreted as optimizing the supremum norm 
in . In our numerical experiments, the neural network function will be smooth, due to the use of the hyperbolic activation function, 
such that the maximum exists in . Then, we obviously have that

‖

‖

𝒖𝒕 + [𝒖̂]‖
‖

2
𝐿∞() = max

(

𝒙𝑟 ,𝑡𝑟
)

∈

(

𝒖𝒕
(

𝒙𝑟, 𝑡𝑟
)

+ [𝒖̂]
(

𝒙𝑟, 𝑡𝑟
))2 = 1

𝑁𝑟

𝑁𝑟
∑

𝑖=1
max

(

𝒙𝑟 ,𝑡𝑟
)

∈

(

𝒖𝒕
(

𝒙𝑟, 𝑡𝑟
)

+ [𝒖̂]
(

𝒙𝑟, 𝑡𝑟
))2

= max
𝑿𝑟⊂

[

1
𝑁𝑟

𝑁𝑟
∑

𝑖=1

(

𝒖𝒕
(

𝒙𝑖𝑟, 𝑡
𝑖
𝑟
)

+ [𝒖̂]
(

𝒙𝑖𝑟, 𝑡
𝑖
𝑟
))2

]

= max
𝑿𝑟⊂

𝑟
(

𝑿𝒓,𝜽
)

,

where we have omitted the dependence on the neural network parameters 𝜃 for the sake of brevity. In practice, since we never 
actually attain the maximum, the loss will be significantly lower than the supremum norm, due to the averaging across . 
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In the PACMANN algorithm, 𝑁𝑟 collocation points are first sampled using a uniform sampling method, such as an equispaced 
uniform grid or the Hammersley sequence [31, pp. 31–36]. The PINN is then trained on this set of collocation points for a number of 
𝑃  iterations. The number 𝑃  is a hyperparameter of the method determining the resampling period, that is, the period after which the 
collocation points are resampled. Next, the training iteration is paused and the gradients of the squared residual 𝑟2(𝒙, 𝑡) with respect 
to the input coordinates, given by ∇𝒙𝑟2(𝒙, 𝑡) and 𝜕𝜕𝑡 𝑟2(𝒙, 𝑡), are determined for each collocation point (𝒙, 𝑡) ∈ 𝑿𝑟. The collocation points 
are subsequently moved in the direction of increasing residual based on

⎧

⎪

⎨

⎪

⎩

𝒙𝑖+1𝑟 = 𝒙𝑖𝑟 + 𝑠∇𝒙𝑟
2(𝒙𝑖𝑟, 𝑡

𝑖
𝑟),

𝑡𝑖+1𝑟 = 𝑡𝑖𝑟 + 𝑠 𝜕
𝜕𝑡
𝑟2(𝒙𝑖𝑟, 𝑡

𝑖
𝑟).

(8)

Here, 𝑠 is a hyperparameter that determines the stepsize of each move; in the machine learning community, this parameter is also 
often called a learning rate. Since the neural network parameters 𝜃 are kept constant during the iteration in Eq. (8), the residual 
landscape is static and the residual gradient can be determined again for the new location of the collocation point, allowing the 
process to be repeated. Therefore, collocation points can be moved several times, given by the hyperparameter number of steps 𝑇 . If a 
point moves outside the domain, it is removed from the set 𝑿𝑟 and a replacement point is sampled in the domain based on a uniform 
probability distribution. Next, the neural network is trained for another 𝑃  iterations, after which the process of moving collocation 
points for 𝑇  iterations is repeated.

In Eq. (8), points are moved directly based on the gradient vector. This approach is essentially equal to applying gradient ascent. 
However, other gradient-based optimization algorithms can be applied. The optimization algorithms considered for PACMANN in 
Section 3 are listed as follows. We also provide the iteration rule for an arbitrary variable 𝑥 and a function 𝑓 (𝑥) to be maximized. Other 
optimization algorithms are also applicable, but we focus on the following algorithms in our numerical experiments in Section 3.

1. Gradient ascent: The collocation points are directly moved in the direction of steepest ascent, that is, in the direction of the 
gradient. This algorithm updates variables using the formula:

𝑥𝑖+1 = 𝑥𝑖 + 𝑠𝑓 ′(𝑥𝑖).

2. Nonlinear gradient ascent: In this algorithm, we apply a nonlinear function to the gradient ascent algorithm to scale down large 
gradients, preventing points from taking large steps directly out of the domain. We refer to the algorithm as nonlinear gradient 
ascent. In this work, we use the hyperbolic tangent function, as follows:

𝑥𝑖+1 = 𝑥𝑖 + 𝑠 tanh
(

𝑓 ′(𝑥𝑖)
)

.

3. RMSprop: Root Mean Square Propagation (RMSprop) [32] adapts the stepsize by dividing the gradient by a weighted average of 
previous gradients; this serves to stabilize convergence. The algorithm consists of two steps. First, a parameter 𝑆 is updated. This 
parameter consists of a weighted average of previous gradients:

𝑆𝑖+1 = 𝛽𝑆𝑖 + (1 − 𝛽)
(

𝑓 ′(𝑥𝑖)
)2.

Next, the variable 𝑥 is updated using:

𝑥𝑖+1 = 𝑥𝑖 + 𝑠
𝑓 ′(𝑥𝑖)

√

𝑆𝑖+1 + 𝜖
.

To prevent large steps due to small values of 𝑆, a small value is added, represented by 𝜖.
4. Momentum: The momentum optimizer [33] considers a weighted average of previous gradients at each iteration to prevent 
converging to local minima. First, the weighted average, 𝑉 , is computed:

𝑉𝑖+1 = 𝛽𝑉𝑖 + (1 − 𝛽)
(

𝑓 ′(𝑥𝑖)
)

.

After updating 𝑉 , the variable 𝑥 is updated:
𝑥𝑖+1 = 𝑥𝑖 + 𝑠𝑉𝑖+1.

5. Adam: The Adaptive moments (Adam) [30] optimizer combines the concepts behind RMSprop and momentum. First, the value 
of 𝑉  is updated:

𝑉𝑖+1 = 𝛽1𝑉𝑖 + (1 − 𝛽1)𝑓 ′(𝑥𝑖).

Next, the parameter 𝑆 is updated:

𝑆𝑖+1 = 𝛽2𝑆𝑖 + (1 − 𝛽2)
(

𝑓 ′(𝑥𝑖)
)2.

Afterwards, an initialization bias correction is applied to 𝑉𝑖+1 and 𝑆𝑖+1:

𝑉𝑖+1 =
𝑉𝑖+1

1 − 𝛽𝑖+11

, 𝑆̂𝑖+1 =
𝑆𝑖+1

1 − 𝛽𝑖+12

.
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Finally, the variable 𝑥 is updated as follows:

𝑥𝑖+1 = 𝑥𝑖 + 𝑠
𝑉𝑖+1

√

𝑆̂𝑖+1 + 𝜖

Here, a small regularization parameter 𝜖 is included to prevent large steps when 𝑆̂𝑖+1 is small.
6. Golden section search: Golden section search [34, pp. 39–42] is a line search method that narrows down the search interval 
each iteration. By searching along the direction of steepest ascent, the multidimensional optimization problem is reduced to a 
one-dimensional problem. In this direction, the algorithm searches in an interval [𝑎𝑖, 𝑏𝑖]. In the initial interval, 𝑎0 is equal to the 
value 𝑥0, for example. We determine 𝑏0 using the stepsize and the gradient:

𝑏0 = 𝑎0 + 𝑠𝑓 ′(𝑥0).

Next, 𝑓 (𝑥) is evaluated at two points, 𝑥𝑙,𝑖 and 𝑥𝑟,𝑖, determined using
𝑥𝑙,𝑖 = 𝑎𝑖 + 𝛼(𝑏𝑖 − 𝑎𝑖), 𝑥𝑟,𝑖 = 𝑎𝑖 + 𝛽(𝑏𝑖 − 𝑎𝑖).

The name “golden section search” refers to the golden ratio, defined as 𝜙 = 1+
√

5
2 , which is incorporated in the values of 𝛼 and 𝛽:

𝛼 = 1 − 𝜙−1, 𝛽 = 𝜙−1

If 𝑓 (𝑥𝑙,𝑖) > 𝑓 (𝑥𝑟,𝑖), then the interval is shortened and shifted to the left:
𝑎𝑖+1 = 𝑎𝑖, 𝑏𝑖+1 = 𝑥𝑟,𝑖, 𝑥𝑟,𝑖+1 = 𝑥𝑙,𝑖.

Otherwise, if 𝑓 (𝑥𝑙,𝑖) < 𝑓 (𝑥𝑟,𝑖), then the interval is shortened and shifted to the right:
𝑎𝑖+1 = 𝑥𝑙,𝑖, 𝑏𝑖+1 = 𝑏𝑖, 𝑥𝑙,𝑖+1 = 𝑥𝑟,𝑖.

After updating the interval to [𝑎𝑖+1, 𝑏𝑖+1], the algorithm is repeated again. After the final iteration, the value of the variable 𝑥 is 
found by taking the middle point of the interval [𝑎𝑁 , 𝑏𝑁 ]:

𝑥𝑁 =
𝑎𝑁 + 𝑏𝑁

2
.

The golden ratio ensures that either 𝑥𝑙,𝑖+1 ends up on 𝑥𝑟,𝑖 or 𝑥𝑟,𝑖+1 on 𝑥𝑙,𝑖, depending on the direction of the interval shift. Since 
𝑓 (𝑥) has already been determined for 𝑥𝑙,𝑖 and 𝑥𝑟,𝑖 in the previous iteration, 𝑓 (𝑥) does not have to be evaluated again for these 
variable values. As a result, for each iteration, the value of 𝑓 (𝑥) only has to be evaluated once, which is beneficial in terms of the 
computational cost.

3.  Results

In this section, we evaluate the performance of PACMANN in terms of accuracy and computational cost across various PDE 
examples, including simple model problems, an inverse problem, a problem defined on a re-entrant corner domain, and two high-
dimensional problems. Furthermore, we vary the hyperparameters of PACMANN to showcase its behavior and compare our method 
with other collocation point sampling methods proposed in the related works [18,20].

To gather data on the prediction accuracy and computational cost, each method and set of hyperparameters is run ten times with 
varying random seeds. The prediction accuracy is compared based on the mean and standard deviation across the ten runs of the test 
error, measured using the 𝐿2 relative error. The 𝐿2 relative error is determined as follows:

𝜀𝐿2
∶=

‖𝒖𝑟𝑒𝑓 − 𝒖𝑝𝑟𝑒𝑑‖2
‖𝒖𝑟𝑒𝑓‖2

, (9)

where 𝒖𝑟𝑒𝑓  is the reference solution, which is either an analytical or numerical solution depending on the problem, and 𝒖𝑝𝑟𝑒𝑑 is the 
predicted solution. When an analytical solution is available, we additionally consider the prediction accuracy using the 𝐻1 semi-norm

𝜀𝐻1 ∶=
|𝒖𝑟𝑒𝑓 − 𝒖𝑝𝑟𝑒𝑑 |1

|𝒖𝑟𝑒𝑓 |1
, where |𝑣|1 ∶= ‖∇𝑣‖2, (10)

to measure errors in the first derivatives of the solution. To compare 𝒖𝑟𝑒𝑓  and 𝒖𝑝𝑟𝑒𝑑 we employ an equispaced uniform grid of 10000 
collocation points. The mean runtime of training over the ten runs serves as an indication of the computational cost of a particular 
sampling method. Our code is based on the PINNs library DeepXDE [18] using PyTorch [35] version 1.12.1 as the backend. It is 
publicly available on GitHub at https://github.com/CoenVisser/PACMANN. The models were trained using NVIDIA Tesla V100S 
GPUs on TU Delft’s high-performance computer DelftBlue [36].

For all experiments, the training is split into five phases of 10000 iterations, consisting of 7000 iterations of Adam with a learning 
rate of 10−3 followed by 3000 iterations of the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [37], totaling 
50000 iterations. Throughout training, a resampling period 𝑃  of 50 iterations is maintained. Furthermore, we only resample the 
collocation points when training the neural network parameters with Adam. Resampling while training with the L-BFGS optimizer 
would disrupt the convergence of the algorithm due to the change in loss landscape by evaluating the PDE loss term at different 
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Table 1 
Hyperparameter settings for the RMSprop, momen-
tum, and Adam optimizers.
 Optimizer 𝛽 𝑉0 𝑆0 𝜖

 RMSprop  0.999 −  0 10−8

 Momentum  0.9  0 − 10−8

 Adam 𝛽1 = 0.9, 𝛽2 = 0.999  0  0 10−8

Table 2 
Overview of the mean and standard deviation of the test 
error and the mean runtime for each sampling method 
for the Burgers’ equation. The best result in each column 
is marked in boldface.
 Sampling method 𝐿2 relative error  Mean runtime [s]

 Mean  1 SD
 Uniform grid  25.9%  14.2%  425
 Hammersley grid  0.61%  0.53%  443
 Random resampling  0.40%  0.35%  423
 RAR  0.11%  0.05%  450
 RAD  0.16%  0.10%  463
 RAR-D  0.24%  0.21%  503
 PACMANN-Adam  0.07%  0.05%  461

Table 3 
Overview of the mean and standard deviation of the test error and the mean runtime 
achieved by PACMANN for the Burgers’ equation with the optimization methods listed 
in Section 2. The best result in each column is marked in boldface. For each optimization 
method, we report the stepsize and number of steps that achieve the lowest test error.
 PACMANN optimizer 𝐿2 relative error  Mean runtime [s]  Hyperparameters

 Mean  1 SD  Stepsize 𝑠  No. of steps 𝑇
 Gradient ascent  0.30%  0.17%  436 10−6  1
 Nonlinear gradient ascent  0.10%  0.06%  453 10−4  5
 RMSprop  0.10%  0.03%  442 10−6  10
 Momentum  0.18%  0.24%  448 10−6  5
 Adam  0.07%  0.05%  461 10−5  15
 Golden section search  0.34%  0.17%  460 10−7  5

collocation points. In this work, in all experiments, the hyperbolic tangent is used as the activation function, and all weights 𝜆𝑖
of the individual loss terms are set to 1. In addition, the hyperparameter settings used for RMSprop, momentum, and Adam with 
PACMANN are given in Table 1. Note that we have not conducted an extensive study varying the neural network architecture. Instead, 
we have used the architectures provided in the corresponding test cases of DeepXDE, assuming that these were already optimized 
appropriately.

In the numerical experiments, PACMANN with Adam consistently achieves the lowest error compared to the other optimization 
algorithms considered. Therefore, to preserve clarity, figures and tables which compare the various sampling methods only contain 
the results for Adam with our method.

Infrequently, the random neural network weight initialization prevents the PINN from learning the solution, which results in a 
test error several orders of magnitude larger than the test error obtained with other weight initializations. This has been observed 
for all sampling methods considered in this study and is characterized by volatile loss behavior or large static loss terms. When this 
occurs, the corresponding training run is repeated with a different random seed.

3.1.  1D Burgers’ equation

We first consider the one-dimensional Burgers’ equation:

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 + 𝑢𝑢𝑥 = 𝜈𝑢𝑥𝑥, 𝑥 ∈ [−1, 1], 𝑡 ∈ [0, 1],

𝑢(𝑥, 0) = − sin(𝜋𝑥),

𝑢(−1, 𝑡) = 𝑢(1, 𝑡) = 0.

(11)
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Fig. 2. Mean of the test error for each of the sampling methods for a varying (a) number of collocation points and (b) resampling period for the 
Burgers’ equation example.

Fig. 3. Mean of the test error for PACMANN with the different optimization algorithms listed in Section 2 for a varying (a) stepsize and (b) number 
of steps for the Burgers’ equation example.

Here, 𝜈 is the diffusion coefficient or kinematic viscosity, set at 𝜈 = 0.01∕𝜋. For this problem, we employ 2500 collocation points, 
80 boundary points, and 160 initial condition points. The neural network architecture used for this example consists of four hidden 
layers of 64 neurons. To compute the 𝐿2 relative error, we compare the network prediction to a numerical solution generated using 
a spectral solver by Raissi et al. [6].

The mean and standard deviation of the test error and the mean runtime for each sampling method are given in Table 2. Out 
of the non-adaptive sampling methods tested, only the static uniform grid is unable to capture the solution satisfactorily, result-
ing in a high test error of 25.9%. The other non-adaptive methods, the static Hammersley grid and random resampling, attain 
a significantly lower test error. Overall, our method, in combination with the Adam optimizer and a stepsize of 10−5, achieves 
the lowest test error. It achieves a lower error than the next-best sampling method, RAR, at a slightly higher computational
cost.

Table 3 compares the performance of the various optimization algorithms for PACMANN in terms of accuracy and efficiency. We 
note that the nonlinear gradient ascent and the RMSprop optimizers with our proposed method both achieve a competitive test error 
and computational cost compared to the second best approach in Table 2, that is, RAR.

Next, we test the behavior of the different sampling methods by varying the number of collocation points from 500 to 20000; 
see Fig. 2(a). We observe that RAR initially reduces the test error the fastest, but plateaus at a higher error than the other methods 
under consideration. PACMANN in combination with the Adam optimizer significantly improves the prediction accuracy as the 
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Fig. 4. Mean of the test error and the runtime for PACMANN with Adam for a varying (a) number of collocation points and (b) number of steps for 
the Burgers’ equation example.

number of collocation points is increased from 1500 to 2000, after which it slowly increases the prediction accuracy. Only at a 
large number of collocation points (10 000) are the adaptive sampling methods slightly outperformed by the static Hammersley
grid.

Fig. 2(b) depicts the behavior of the various sampling methods as the resampling period is increased from 25 to 1000. Generally, 
most sampling methods lose accuracy as the period is increased. Notably, RAR-D performs significantly better at a period of 50 
iterations compared to other resampling periods. PACMANN performs best for all resampling periods considered, losing accuracy 
slower than the other sampling methods.

In the following, we compare the behavior of the optimizers listed in Section 2 when varying the hyperparameters stepsize 𝑠 and 
number of steps 𝑇 . First, in Fig. 3(a), we test the accuracy of the optimizers for different stepsizes 𝑠 ranging from 1 to 10−9. This figure 
demonstrates that the stepsize has a significant influence on the prediction accuracy achieved by PACMANN. We note that, depending 
on the optimizer used, a different stepsize is optimal, such as 10−6 for momentum or 10−5 for Adam. Furthermore, the behavior of the 
optimizers at stepsizes near 1 is split into two groups, with Adam and RMSprop gaining accuracy as the stepsize is increased, while 
others continue to lose accuracy. This phenomenon is explained by the number of collocation points that leave the domain while points 
are moved by PACMANN. At these large stepsizes, all 2500 collocation points exit the domain when using Adam or RMSprop. Since 
PACMANN uses a uniform probability distribution to determine the location of the replacement collocation points, the test error ap-
proaches the accuracy of random resampling (0.40% ± 0.35%); cf. Table 2. In contrast, when applying the other optimization algorithms 
with these stepsizes, only a small portion of the collocation points exit the domain, of order (10). These few points are not sufficient for 
the random resampling to significantly affect the test error achieved. The difference in the number of points that exit the domain may 
be explained by the relatively large optimal stepsize and number of steps for RMSprop and Adam compared to the other optimization
algorithms.

Importantly, in Fig. 7 we show that the loss during training serves as an indicator for selecting an appropriate stepsize. PACMANN 
with Adam and a stepsize of 10−5 achieves the lowest loss during training, followed by the uniform grid baseline, whereas a stepsize 
of 10−3 exhibits the highest loss. This ranking follows the corresponding 𝐿2 relative error reported for these stepsizes in Fig. 3(a).

We test the influence of the number of steps 𝑇  by ranging it from 1 to 25. Fig. 3(b) shows that certain optimizers benefit from 
more steps, such as nonlinear gradient ascent and Adam. Others remain at a near-constant accuracy or lose accuracy with additional 
steps. Based on Fig. 3(b), we note that the number of steps generally has a smaller impact on the test error achieved compared to the 
stepsize.

Furthermore, Fig. 4(a) and (b) depict the prediction accuracy and computational cost of PACMANN with the Adam opti-
mizer for varying numbers of collocation points and steps. Fig. 4(a) demonstrates that increasing the number of collocation 
points reduces the 𝐿2 relative error before reaching a plateau, beyond which the computational cost rises steeply without a fur-
ther increase in accuracy. Importantly, we point out that the accuracy of Adam with five steps is nearly the same as its ac-
curacy at 15 steps, see  Fig. 4(b). Thus, we recommend taking fewer steps to save on computational cost in more complex
problems.

Next, we compare visually the distribution of collocation points after training. Fig. 5(a) shows the locations before training when 
the collocation points are laid out based on the Hammersley sequence. Fig. 5(b) to (d) show the locations of the collocation points 
after training for RAR, RAD, and PACMANN with Adam, respectively. While RAR clusters the points at the steepest region of the 
solution, RAD and our method tend to create several smaller clusters. In contrast to RAD, our method also forms clusters of points in 
regions with typically lower residuals, see  Fig. 6(a), indicative of local maxima of the squared residual. Fig. 6(b) shows that, after 
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Fig. 5. Location of the 2500 collocation points (a) before training, and after training with (b) RAR, (c) RAD, and (d) PACMANN with Adam for the 
Burgers’ equation example. The color indicates the values of the predicted solution.

Table 4 
Overview of the mean and standard deviation of the test 
error and the mean runtime for each sampling method for 
the Allen-Cahn equation example. The best result in each 
column is marked in boldface.
 Sampling method 𝐿2 relative error  Mean runtime [s]

 Mean  1 SD
 Uniform grid  44.34%  18.58%  634
 Hammersley grid  0.47%  0.26%  591
 Random resampling  0.42%  0.28%  592
 RAR  0.44%  0.27%  576
 RAD  0.93%  0.69%  655
 RAR-D  0.28%  0.13%  632
 PACMANN-Adam  0.16%  0.07%  632

training the PINN, these previously observed local maxima have reduced. For our approach, we note the similarity between the shape 
of the clusters and the solution itself.
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Fig. 6. Location of the collocation points (a) mid-training at 25000 iterations, and (b) after training using PACMANN with Adam for the Burgers’ 
equation example. The color indicates the values of the squared residual.

Fig. 7. Mean training loss over ten runs for the Burgers’ equation example, comparing a uniform grid and PACMANN using Adam. For PACMANN, 
we report the mean loss for stepsizes 10−3 and 10−5, which correspond to the least and most accurate stepsize choices, respectively, in terms of the 
𝐿2 relative error.

Table 5 
Overview of the mean and standard deviation of the test error and the mean runtime 
achieved by PACMANN for each optimization algorithm listed in Section 2. The best result 
in each column is marked in boldface. We also include the optimal values for the stepsize 
and the number of steps, for the Allen-Cahn equation example.
 PACMANN optimizer 𝐿2 relative error  Mean runtime [s]  Hyperparameters

 Mean  1 SD  Stepsize 𝑠  No. of steps 𝑇
 Gradient ascent  0.46%  0.24%  574 10−8  5
 Nonlinear gradient ascent  0.42%  0.24%  602 10−7  5
 RMSprop  0.29%  0.20%  595 10−6  5
 Momentum  0.36%  0.17%  567 10−7  5
 Adam  0.16%  0.07%  632 10−5  5
 Golden section search  0.37%  0.29%  635 10−7  15

3.2.  1D Allen-Cahn equation

In the following example, we consider the one-dimensional Allen-Cahn equation:

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 = 𝑑𝑢𝑥𝑥 + 5(𝑢 − 𝑢3), 𝑥 ∈ [−1, 1], 𝑡 ∈ [0, 1],

𝑢(𝑥, 0) = 𝑥2 cos(𝜋𝑥),

𝑢(−1, 𝑡) = 𝑢(1, 𝑡) = −1.

(12)
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Fig. 8. Mean of the test error for each of the sampling methods for a varying (a) number of collocation points and (b) resampling period for the 
Allen-Cahn equation example.

Fig. 9. Mean of the test error for PACMANN with the different optimization algorithms listed in Section 2 for a varying (a) stepsize and (b) number 
of steps for the Allen-Cahn equation example.

We choose a diffusion coefficient of 𝑑 = 0.001. Similar to the Burgers’ equation problem in the previous section, the number of 
collocation points is set to 2500, the number of boundary points to 80, and the number of initial condition points to 160. The network 
architecture used for this example consists of four hidden layers of 64 neurons. To compute the 𝐿2 relative error, we compare the 
network prediction to a numerical solution generated using a spectral solver and made available via the DeepXDE library [18].

The mean and standard deviation of the test error and the mean runtime for each sampling method are given in Table 4. As for 
the Burgers’ equation example, the static uniform grid fails to learn the solution satisfactorily, and the static Hammersley grid and 
random resampling offer a significant improvement in accuracy. Out of all sampling methods considered, PACMANN in combination 
with the Adam optimizer and a stepsize of 10−5 achieves the lowest test error. The next-best method, RAR-D, attains a lower prediction 
accuracy at the same computational cost. Table 5 demonstrates that Adam results in the lowest mean and standard deviation of the 
test error for our method in comparison to the other optimization algorithms considered.

Fig. 8(a) shows the behavior of the different sampling methods when varying the number of collocation points. We find that 
PACMANN with the Adam optimizer converges the fastest and outperforms the other sampling methods for nearly all numbers of 
collocation points considered. Most sampling methods stagnate above 2500 collocation points, except for the static uniform grid, 
which requires up to 10000 collocation points to compete with the accuracy of the other sampling methods.

Moreover, Fig. 8(b) depicts the accuracy of the sampling methods considered for a range of resampling periods. In contrast to our 
findings in the previous Burgers’ equation example, the resampling period has a reduced influence on the test error in this example. 
Notably, most sampling methods plateau with an increasing resampling period.
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Table 6 
Overview of the mean and standard deviation of the test error for 𝜆1 and 
𝜆2 and the mean runtime for each sampling method for the inverse Navier-
Stokes equations example. The best result in each column is marked in bold-
face.

 Sampling method 𝐿2 relative error  Mean runtime [s]
𝜆1 𝜆2

 Mean  1 SD  Mean  1 SD
 Uniform grid  0.05%  0.01%  0.72%  0.43%  1506
 Hammersley grid  0.08%  0.04%  0.89%  0.52%  1492
 Random resampling  0.12%  0.05%  0.65%  0.46%  1514
 RAR  0.30%  0.06%  1.44%  0.90%  1520
 RAD  0.23%  0.06%  1.38%  0.79%  1583
 RAR-D  0.08%  0.05%  0.84%  0.57%  1525
 PACMANN-Adam  0.03%  0.03%  0.53%  0.19%  1559

Furthermore, we test the behavior of PACMANN with the different optimization algorithms listed in Section 2 by varying the 
stepsize and the number of steps hyperparameters. Similarly to the results in Section 3.1 for the Burgers’ equation, the stepsize 
hyperparameter has a significant influence on the test error, as demonstrated by Fig. 9(a). We note, again, the formation of two 
groups, which occurs due to the random resampling of points that have been moved outside the domain. When using RMSprop and 
Adam combined with large stepsizes, all 2500 collocation points leave the domain. As a result, the test error converges toward the 
error of 0.42% ± 0.28% found when using random resampling; cf. Table 4.

Finally, we also vary the number of optimization steps for resampling. Fig. 9(b) illustrates that the test error of most optimization 
algorithms is not significantly impacted by changing the number of steps. Fig. 9(a) and (b) support our earlier finding that the stepsize 
plays a dominant role in the test error obtained compared to the limited influence of the number of steps.

Based on the observations made in the Burgers’ and Allen-Cahn equation examples, we recommend fixing the number of steps to 
five, which removes a hyperparameter from PACMANN. Furthermore, we recommend five steps as it takes advantage of the increased 
accuracy achieved by our method with the Adam optimizer at multiple steps (see Figs. 3(b) and 9(b)), while keeping the computational 
cost low; see Fig. 4(b).

3.3.  2D Navier-Stokes equations (inverse)

Next, we consider an inverse problem based on the two-dimensional Navier-Stokes equations describing the flow of an incom-
pressible fluid past a cylinder discussed by Raissi et al. in [6], given by:

⎧

⎪

⎨

⎪

⎩

𝜕𝒗
𝜕𝑡

+ 𝜆1𝒗 ⋅ ∇𝒗 = −∇𝑝 + 𝜆2∇2𝒗, (𝑥, 𝑦) ∈ [1, 8] × [−2, 2], 𝑡 ∈ [0, 7],

∇ ⋅ 𝒗 = 0.
(13)

Here, 𝑢 and 𝑣 are the 𝑥- and 𝑦-components of the velocity field, and 𝑝 denotes the pressure. The scalar parameter 𝜆1 scales the 
convective term, and 𝜆2 represents the dynamic (shear) viscosity. In this example, we are interested in learning the values of 𝜆1 and 
𝜆2 based on a data set created by Raissi et al. [6] using a spectral solver. The data set contains the values of 𝑢, 𝑣, and 𝑝 determined 
for a large set of points (𝑥, 𝑦, 𝑡). The true values of 𝜆1 and 𝜆2 are 1 and 0.01, respectively. For this inverse problem, we train the PINN 
on 7000 randomly selected points from this data set. In addition, we sample 700 collocation points, 200 points on the boundary 
condition, and 100 points on the initial condition. The network architecture consists of six hidden layers containing 50 neurons each.

The mean and standard deviation of the test error for both 𝜆1 and 𝜆2 and the mean runtime for each of the sampling methods are 
given in Table 6. In this inverse problem, PACMANN in combination with Adam at a stepsize of 10−2 achieves the lowest test error 
for 𝜆1 and 𝜆2 at a slightly higher computational cost compared to the second best adaptive method, RAR-D. Furthermore, we note 
that the non-adaptive sampling methods generally outperform the other adaptive methods considered in this study, both in the mean 
and standard deviation of the test error.

Qualitatively, we observe similar behavior of the different sampling methods when varying the number of collocation points 
and the resampling period for the 2D Navier-Stokes equations example and the following examples, as observed in the Burgers’ 
equation example. This observation also applies to the behavior of PACMANN when changing the stepsize and the number of steps 
hyperparameters, namely, that the number of steps generally has a smaller impact on the prediction accuracy than the stepsize. 
Therefore, for the sake of conciseness, we do not repeat the analysis of the behavior of the different sampling methods for this 
two-dimensional Navier-Stokes equations example and the following examples.
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Table 7 
Overview of the mean and standard deviation of the 𝐿2 relative error and the 
𝐻1 semi-norm, and the mean runtime for each sampling method for the Pois-
son’s equation example. The best result in each column is marked in boldface.
 Sampling method 𝐿2 relative error 𝐻1 semi-norm  Mean runtime [s]

 Mean  1 SD  Mean  1 SD
 Uniform grid  40.32%  1.18%  62.58%  1.74%  744
 Hammersley grid  82.64%  2.95%  90.48%  2.20%  752
 Random resampling  11.47%  1.13%  13.36%  1.66%  751
 RAR  62.00%  7.13%  69.97%  6.62%  773
 RAD  11.69%  1.78%  13.19%  1.31%  841
 RAR-D  89.31%  1.98%  93.83%  2.05%  784
 PACMANN-Adam  8.35%  0.54%  10.32%  0.43%  786

Table 8 
Overview of the mean and standard deviation of the 𝐿2 relative error for 𝑢, 𝑣, and 𝑤 and the 
mean runtime for each sampling method for the 3D Navier-Stokes equations example. The best 
result in each column is marked in boldface.
 Sampling method 𝐿2 relative error  Mean runtime [s]

𝑢 𝑣 𝑤

 Mean  1 SD  Mean  1 SD  Mean  1 SD
 Uniform grid  4.89%  2.47%  5.82%  4.10%  4.24%  3.03%  1458
 Hammersley grid  3.14%  0.27%  2.99%  0.28%  2.97%  0.24%  1482
 Random resampling  3.97%  0.31%  3.71%  0.42%  3.37%  0.28%  1478
 RAR  4.86%  0.54%  4.63%  0.37%  4.12%  0.29%  1496
 RAD  3.56%  0.33%  3.63%  0.33%  3.03%  0.21%  1591
 RAR-D  3.48%  0.53%  3.38%  0.49%  3.17%  0.39%  1500
 PACMANN-Adam  3.01%  0.25%  3.09%  0.28%  2.50%  0.21%  1559

3.4.  5D Poisson’s equation

In the following problem, we apply PACMANN to the Poisson equation in five dimensions:
{

−Δ𝑣(𝒙) = 𝑓 (𝒙), 𝒙 ∈ [−1, 1]5,

𝑣(𝒙) = 0, 𝒙 ∈ 𝜕𝛀.
(14)

We choose the right-hand side function 𝑓 based on the manufactured solution

𝑣(𝒙) =
5
∏

𝑖=1
sin(𝜋𝑥𝑖), (15)

where 𝑥𝑖 is the 𝑖th component of 𝒙. For this example, we sample 750 collocation points and 750 points for the boundary condition. 
Moreover, the network architecture consists of four hidden layers of 64 neurons each.

The mean and standard deviation of the 𝐿2 relative error and the 𝐻1 semi-norm, and the mean runtime for each of the sampling 
methods are given in Table 7. In contrast to the previous examples, the adaptive methods RAR and RAR-D fail to improve the prediction 
accuracy. PACMANN in combination with the Adam optimizer and a stepsize of 10−2 achieves the lowest mean and standard deviation 
of the 𝐿2 relative error and the 𝐻1 semi-norm. Moreover, we point out the ability of this method to efficiently scale to high-dimensional 
problems. We find that our method with the Adam optimizer is cheaper at a mean runtime of 786 s compared to RAD, the next-best 
adaptive sampling method, at 841 s.

3.5.  3D Navier-Stokes equations

We next apply PACMANN to the incompressible Navier-Stokes equations in a cube:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝒗
𝜕𝑡

+ 𝑅𝑒 𝒗 ⋅ ∇𝒗 + 𝑅𝑒 ∇𝑝 − ∇2𝒗 = 𝑓 (𝒙, 𝑡), 𝒙 ∈ [−1, 1]3, 𝑡 ∈ [0, 1],

∇ ⋅ 𝒗 = 0,

𝒗(𝒙, 𝒕) = 𝒗𝑟𝑒𝑓 (𝒙, 𝑡), 𝑝(𝒙, 𝑡) = 𝑝𝑟𝑒𝑓 (𝒙, 𝑡), 𝒙 ∈ 𝜕𝛀,

𝒗(𝒙, 0) = 𝒗𝑟𝑒𝑓 (𝒙, 0), 𝑝(𝒙, 0) = 𝑝𝑟𝑒𝑓 (𝒙, 0), 𝑡 = 0.

(16)
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Table 9 
Overview of the mean and standard deviation of the 𝐻1 semi-norm for 𝑢, 𝑣, and 𝑤 and the mean 
runtime for each sampling method for the 3D Navier-Stokes equations example. The best result in 
each column is marked in boldface.
 Sampling method 𝐻1 semi-norm  Mean runtime [s]

𝑢 𝑣 𝑤

 Mean  1 SD  Mean  1 SD  Mean  1 SD
 Uniform grid  26.22%  18.11%  34.25%  28.57%  17.17%  12.32%  1458
 Hammersley grid  10.89%  1.38%  10.62%  1.10%  10.95%  0.90%  1482
 Random resampling  10.24%  0.81%  9.48%  1.17%  10.36%  0.99%  1478
 RAR  15.97%  1.34%  15.84%  1.54%  15.21%  1.27%  1496
 RAD  7.78%  1.57%  7.71%  1.32%  7.66%  1.41%  1591
 RAR-D  12.50%  2.21%  11.94%  2.23%  11.78%  1.65%  1500
 PACMANN-Adam  8.26%  0.59%  8.19%  0.48%  7.70%  0.68%  1559

Table 10 
Overview of the mean and standard deviation of the 𝐿2
relative error for 𝑝 and the mean runtime for each sampling 
method for the 3D Navier-Stokes equations example. The 
best result in each column is marked in boldface.
 Sampling method 𝐿2 relative error  Mean runtime [s]

 Mean  1 SD
 Uniform grid  10.77%  2.64%  1458
 Hammersley grid  24.25%  0.77%  1482
 Random resampling  28.19%  1.67%  1478
 RAR  29.02%  2.94%  1496
 RAD  29.23%  0.57%  1591
 RAR-D  24.61%  0.62%  1500
 PACMANN-Adam  31.48%  4.07%  1559

Here, we set the Reynolds number to 𝑅𝑒 = 103. Furthermore, we set initial conditions, Dirichlet boundary conditions, and right-hand 
side based on the manufactured solutions 𝒗𝑟𝑒𝑓 (𝒙, 𝑡):

⎧

⎪

⎨

⎪

⎩

𝑢𝑟𝑒𝑓 (𝒙, 𝑡) = cos(𝑥) sin(𝑦) sin(𝑧) 𝑒−𝑡,

𝑣𝑟𝑒𝑓 (𝒙, 𝑡) = sin(𝑥) cos(𝑦) sin(𝑧) 𝑒−𝑡,

𝑤𝑟𝑒𝑓 (𝒙, 𝑡) = −2 cos(𝑥) cos(𝑦) cos(𝑧) 𝑒−𝑡,

(17)

and 𝑝𝑟𝑒𝑓 (𝒙, 𝑡):
𝑝𝑟𝑒𝑓 (𝒙, 𝑡) = cos(𝑥) cos(𝑦) cos(𝑧) 𝑒−𝑡. (18)

For this problem, we sample 250 collocation points, and we employ 1000 points for the boundary conditions and 250 points for 
the initial conditions. The network architecture used for this problem consists of four hidden layers of 64 neurons.

The mean and standard deviation of the 𝐿2 relative error and the 𝐻1 semi-norm for 𝑢, 𝑣, and 𝑤, and the mean runtime for each 
of the sampling methods are given in Tables 8 and 9. In this problem, PACMANN in combination with Adam at a stepsize of 10−4
achieves the lowest 𝐿2 relative error for 𝑢, 𝑣, and 𝑤 while maintaining a computational cost comparable to that of other adaptive 
sampling methods. RAD achieves the lowest 𝐻1 semi-norm, closely followed by PACMANN. The mean and standard deviation of the 
𝐿2 relative error for 𝑝 for each sampling method are given in Table 10, where the uniform grid achieves the lowest error.

3.6.  Re-entrant corner in a disk

In the following problem, we consider a problem involving a domain with a re-entrant corner, where the solution is expected to 
be less regular. Specifically, we consider the Laplace equation in polar coordinates over a sector:

⎧

⎪

⎨

⎪

⎩

𝑢𝑟𝑟 +
1
𝑟
𝑢𝑟 +

1
𝑟2
𝑢𝜃𝜃 = 0, 𝑟 ∈ [0, 1], 𝜃 ∈

[

0, 5𝜋
3

]

,

𝑢(𝑟, 𝜃) = ℎ(𝑟, 𝜃), (𝑟, 𝜃) ∈ 𝜕𝛀.
(19)

The exact solution is used for the boundary condition ℎ(𝑟, 𝜃) and is given by

ℎ(𝑟, 𝜃) = 𝑟
3
5 sin

( 3
5
𝜃
)

,
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Fig. 10. Location of the collocation points (a) before training, (b) mid-training at 25000 iterations, and (c) after training using PACMANN with 
Adam for the Laplace equation over a re-entrant corner in a disk example. The color indicates the values of the squared residual.

Table 11 
Overview of the mean and standard deviation of the 𝐿2 relative error and 
the 𝐻1 semi-norm, and the mean runtime for each sampling method for the 
Laplace equation over a re-entrant corner in a disk example. The best result 
in each column is marked in boldface.
 Sampling method 𝐿2 relative error 𝐻1 semi-norm  Mean runtime [s]

 Mean  1 SD  Mean  1 SD
 Uniform grid  6.32%  1.46%  32.36%  6.50%  514
 Hammersley grid  0.47%  0.17%  5.90%  0.91%  539
 Random resampling  0.49%  0.18%  5.45%  0.82%  536
 RAR  0.58%  0.17%  6.12%  1.00%  538
 RAD  0.48%  0.25%  4.46%  1.31%  594
 RAR-D  0.96%  0.74%  9.39%  6.27%  543
 PACMANN-Adam  0.43%  0.17%  5.00%  1.03%  544

which has an algebraic singularity at the origin; cf. [38, pp. 110–116]. In this example, we sample 75 collocation points and we set 
the number of points for the boundary condition to 75. The network architecture used for this problem consists of four hidden layers 
of 64 neurons.

The mean and standard deviation of the 𝐿2 relative error and the 𝐻1 semi-norm, and the mean runtime for each of the sampling 
methods are given in Table 11. In this example, PACMANN in combination with the Adam optimizer at a stepsize of 10−2 achieves the 
lowest 𝐿2 relative error at a computational cost comparable to that of the adaptive sampling methods RAR and RAR-D, while RAD 
achieves the lowest 𝐻1 semi-norm. Furthermore, we observe a collective movement of points toward the origin, where the algebraic 
singularity is located; see Fig. 10.

3.7.  Two-hole perforated plate

Finally, we demonstrate PACMANN with Adam for a linear elasticity problem. The governing equation is the momentum balance 
equation:

∇ ⋅ 𝝈 = 𝟎, (20)

where 𝜎 denotes the Cauchy stress tensor. For infinitesimal deformations, the stress tensor is related to the linear strain tensor 𝜺
through Hooke’s law:

𝝈 = 𝜆 tr(𝜺) 𝐈 + 2𝜇 𝜺, (21)

with 𝜆 and 𝜇 the Lamé parameters. In turn, the linear strain is defined in terms of the displacement field 𝒖 as:

𝜺 = 1
2
(

∇𝐮 + (∇𝐮)𝑇
)

. (22)

We consider the unit square domain Ω = [0, 1]2 containing two holes of radius 0.15 centered at (0.25, 0.25) and (0.75, 0.75). Roller 
boundary conditions are applied at the left and bottom edges, traction-free conditions on the right edge, and a prescribed vertical 
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Fig. 11. Plots of the (a) predicted displacement ‖𝑢‖ of the linear elasticity problem for the two-hole perforated plate and (b) the squared residual 
alongside the location of the collocation points after training with PACMANN and Adam at a stepsize of 10−6. The color indicates the values of the 
(a) displacement and (b) squared residual.

traction on the top edge, namely:
𝑢𝑥 = 0, 𝜎𝑥𝑥 = 0 on 𝜕Ωleft
𝑢𝑦 = 0, 𝜎𝑦𝑦 = 0 on 𝜕Ωbottom

𝜎𝑥𝑥 = 0, 𝜎𝑥𝑦 = 0 on 𝜕Ωright
𝜎𝑥𝑦 = 0, 𝜎𝑦𝑦 = 8 sin(𝜋𝑥) on 𝜕Ωtop.

(23)

On the boundaries of both holes, we impose traction-free conditions 𝝈𝒏 = 𝟎, where 𝒏 the outward unit normal vector.
For this test case, we set 𝜆 = 𝜇 = 1. We solve this problem with PACMANN and Adam with 5000 collocation points in-

ternal to the domain, 2000 points on the boundaries, and a stepsize 10−6. The network architecture consists of six hid-
den layers of 64 neurons. The predicted displacement magnitude ‖𝒖‖ and the squared residual are shown in Fig. 11(a) and
(b).

4.  Conclusions

In this work, we presented the Point Adaptive Collocation Method for Artificial Neural Networks (PACMANN), a novel 
adaptive collocation point sampling method for physics-informed neural networks. This approach uses the gradient of the 
physics-informed loss terms, that is, of the squared residual, as guiding information to move collocation points toward ar-
eas of large residuals. The problem of moving points is formulated as a maximization problem, which can be approached 
using an optimization algorithm of choice, such as gradient ascent or Adam. Points are moved several times while train-
ing is halted. Our approach can be tuned using three additional hyperparameters, namely the resampling period, the size 
of the step used to move the collocation points, and the number of times that points are moved while training is halted. 
While this work demonstrates PACMANN for PINNs, we note that the method can also be applied to other collocation-based
approaches.

We studied the sensitivity of our method to these hyperparameters, and we observed that the stepsize has a particularly large 
impact on the solution accuracy. Conversely, we found that five iteration steps are sufficient to achieve a good balance between 
accuracy and efficiency. We then investigated the accuracy and efficiency of PACMANN in combination with various optimization 
algorithms and concluded that the Adam optimizer performs the best.

Furthermore, we compared the performance of PACMANN to existing state-of-the-art adaptive and non-adaptive collocation ap-
proaches, including random resampling, RAR, and RAD, and demonstrated that our method achieves state-of-the-art performance 
in terms of the accuracy/efficiency tradeoff for lower-dimensional benchmarks, while outperforming the state-of-the-art for high-
dimensional problems and the case of a solution with algebraic singularity. In addition, we showed the effectiveness of our approach 
in solving inverse problems and problems with non-convex domains.

In particular, the results of our numerical experiments demonstrate that PACMANN achieves high prediction accu-
racy and scales efficiently to higher dimensions without introducing significant computational overhead across a variety 
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of problems. At the same time, several directions for future work emerge. One concerns problems that exhibit bound-
ary layers, where pronounced gradients near the domain boundary may drive collocation points outside the domain dur-
ing the point-update step, leading to reduced point density in boundary regions after resampling. Developing mecha-
nisms to retain points near the boundary without increasing algorithmic complexity is a promising extension of this work. 
Another direction involves the potential influence of the PDE’s structural properties, for example whether it is elliptic, 
parabolic, or hyperbolic, on the tuning and performance of the resampling procedure, an aspect not explored in the present
study.
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