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Abstract 
 
Within the Dow Chemical Company the strategy is to centre process flowsheet design 
activities around the simulation tool Aspen Plus (from Aspen Tech Inc.). However, the 
model library of Aspen Plus is limited in type and number of models of process unit 
operations. Equation oriented modelling tools, such as gPROMS (from Process Systems 
Enterprise Ltd.) or Aspen Custom Modeler – ACM (from Aspen Tech Inc.), can be used 
to develop custom models of process unit operations which are not available in the Aspen 
Plus model library. For consistent flowsheet simulation and optimization it is required 
that these custom models can be exported to and used within Aspen Plus, just like any 
other model already available in the Aspen Plus model library.  
Recently, interfaces – based on the CAPE-OPEN standards - have been implemented in 
the latest releases of the above mentioned process simulation tools. To test the status and 
performance of the software interoperability, as well as to examine the custom model 
performance in Aspen Plus, a model of a gas separation membrane unit is developed in 
gPROMS and in ACM and exported for use in Aspen Plus.  
This thesis describes the achievements made in the development of the custom membrane 
model and its interfacing with Aspen Plus. Also, an improved method for model 
initialisation is presented. Model initialisation is one of the principal obstacles for the 
development of generic custom models, i.e. models which can run successfully 
irrespective of the set of components, physical property method, or range of operating 
conditions. 
The main conclusions from this study are that several software features enhance the 
development of generic and robust custom models in equation oriented modelling tools, 
such as a hierarchical model structure, the usage of an external physical property package, 
as well as the incorporation of a model initialisation structure (e.g. like the one proposed 
in this thesis). Moreover, the current functionality and performance of the interfaces for 
custom models between gPROMS and ACM on one side – and Aspen Plus on the other 
side – are not sufficient to be used for industrial practice. They need to be improved 
significantly by the software vendors. 
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1 Introduction 
 
This chapter gives a general introduction to the research performed in this thesis. After 
presenting background information which led to the initialisation of this project, the 
objectives are described. Next, the scope of this thesis is elaborated by describing the 
research done.  

1.1 Background and objectives 
Higher safety standards, more stringent environmental regulations, better management of 
energy and raw materials, and increased product quality requirements have caused the 
structure of chemical processes to become increasingly complex and has tightened the 
process operating limits. To satisfy this complex set of requirements, the designer of a 
chemical plant needs to have a proper understanding of the physical and chemical 
phenomena, as well as the behaviour of the process equipment involved. Process 
simulation (and optimization) has become a powerful tool to support the process design 
work processes and is now a critical skill for every process design engineer. 
Simulation tools for chemical design processes, which are relevant for this study, can be 
divided into two categories, namely sequential modular (or block oriented) flowsheet 
simulators and equation oriented process modelling tools. 
 
Sequential modular flowsheet simulators 
The most well known simulation tools in this category are Aspen Plus (from Aspen Tech 
Inc.) and PRO/II (from Simulation Science Inc.). The basic idea behind these simulators 
is that the user selects from a model library the models which represent the unit 
operations (a so-called block) in the process at study. The process flowsheet is developed 
by (graphically) connecting the blocks. The connections represent the process material 
and/or energy streams. The user also needs to specify the parameters to be used by the 
block models (e.g. like the number of stages in a distillation column, feed stage location, 
etc.), as well as the thermodynamic property methods, feed stream data, and operating 
conditions. The user does not need to provide any mathematical equations to describe the 
behaviour of the process flowsheet and its unit operations. When the process flowsheet is 
completed, the user can run the flowsheet model, and mass and energy balance data, as 
well as some equipment specifications, are returned by the program to the user. This type 
of process simulation is applied for continuous, steady-state simulations.  
 
Equation oriented process modelling tools 
The most well-known equation oriented process modelling tools are gPROMS (from 
Process Systems Enterprise Ltd.) and Aspen Custom Modeler (from Aspen Tech Inc.). 
The idea behind this class of tools is to provide a generic process modelling environment 
in which the user (model developer) can focus on the mathematical equations required to 
describe the process (unit) at study. The numerical solution of the resulting set of 
equations is taken care of by the modelling tool and is transparent to the user.  
This equation oriented environment can be used for steady-state and dynamic process 
simulation and optimization, as well as for parameter estimation and experimental design. 
The use in industry is however limited compared to sequential modular flowsheet 
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simulations, due to the effort and engineering skills required to develop custom process 
models. Also, equation oriented process modelling is a much more recent development 
(last decade) than sequential modular flowsheet simulation, which has been in place now 
for more than 20 years. 
 
Sequential modular flowsheet simulator environments are widely used by many process 
engineers, because of its ease of use and robustness to handle large scale process 
simulation problems (large number of unit operations, process streams and chemical 
components). However, sequential modular flowsheet simulators have its limitations as 
well. One of the important limitations is the type and number of models of process unit 
operations available in the model libraries. Most models in these libraries are models of 
process unit operations using idealized hydrodynamics (like well-mixed) and 
thermodynamic equilibrium between the fluid phases present in the process unit. Rate-
based models, like multi-phase reactor models, membrane models, crystallizer models, 
etc. are often lacking.  
On the other hand, equation oriented process modelling tools offer the opportunity to 
develop custom models of process unit operations, without the burden of putting an effort 
on the numerical solution methods for the model equations. Therefore, it would be a good 
idea to combine these two simulation environments. Equation oriented process modelling 
tools can be used excellently to develop models of process unit operations which do not 
exist or do not exist in the preferred level of detail in the model libraries of sequential 
modular flowsheet simulators. After development, the custom model can then be used as 
a user model block inside a sequential modular flowsheet simulator.  
 
Besides the limitation of the type and number of models available in the model libraries 
of sequential modular flowsheet simulators, several other reasons can be adduced for the 
usage of custom models of process unit operations in flowsheet simulators.  
Embedding of custom models in a sequential modular flowsheet simulator enhances 
consistent process simulation. The current practice for simulating a unit operation present 
in a process flowsheet, whose model do not exists in the model library is to use a shortcut 
method to be able to mimic the mass and energy balances for this unit. In a complete 
other software package the unit operation is simulated in more detail on basis of the 
stream information obtained from the sequential modular flowsheet simulator. The 
simulation of the process flowsheet and the unit operation in different software tools have 
to run parallel and errors can easily be made. Not to mention the difference in calculation 
of thermodynamic and physical properties in these tools.  
Furthermore, during process development alternatives can quickly and precisely be 
evaluated and optimized, if unit models with relevant level of detail are available in 
sequential modular flowsheet simulators. Especially for new technology detailed unit 
models are required to predict the process performance. (Academic) research groups can 
often provide detailed models of process unit operations, which are developed in equation 
oriented modelling tools. 
 
The use of a custom model of process unit operation, developed in equation oriented 
modelling tools, within a sequential modular flowsheet simulator, requires interfacing 
between the different software programs. In the early nineties the idea was created by 
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academic institutions as well as by industry that an open interface for transferring data 
between process simulation software of various origins would be favourable in order to 
improve consistent modelling. Several CAPE-OPEN (Computer Aided Process 
Engineering) projects were initiated to develop standards and prove the possibilities for 
open interfaces to transfer models of process unit operations, thermodynamic and 
physical property packages, and even numerical solvers, between the various process 
simulation tools. This results finally in the establishment of CO-LaN. The CAPE-OPEN 
Laboratories Network, CO-LaN, is a neutral and academic association supporting and 
promoting the use of CAPE-OPEN standards [1]. As the major process simulation 
software suppliers were involved in the CAPE-OPEN projects, implementation of CAPE-
OPEN standards in commercial software was straightforward. Presently, CAPE-OPEN 
compliant versions of process simulation software are released. The first applications of 
interfacing in process simulation are appearing. 
 
The recent development and implementation of open interfaces for process simulation 
tools resulted in the main objective of this thesis. The main objective is to: 

Improve the ability to use custom models of process unit operations, 
developed in equation oriented modelling tools, within a sequential 
modular flowsheet simulator.   

The focus is on rate-based distributed parameter custom models. The majority of process 
unit operations not available in the model libraries of sequential modular flowsheet 
simulators can be described more precisely by mathematical models containing variables 
which are a function of the spatial position in the unit. As mentioned before, almost all 
models in the sequential modular flowsheet simulators are thermodynamic equilibrium 
based models. The combination of distributed parameter and rate-based characteristics is 
expected to add (numerical) complexity to the custom model and its interfacing. 
 
The existence of open interfaces for software interoperability is not the only criteria for 
using a custom model within a sequential modular flowsheet simulation. For successful 
implementation, the custom model also has to be applied just like any other model of a 
process unit operation available in the libraries of sequential modular flowsheet 
simulators. As like these models, the custom model needs to be able to handle:  

• any list and number of components, 
• any physical property method,  
• a large range of operation conditions, and 
• various equipment or design specifications. 

 
As a consequence, a custom model of a process unit operation developed in equation 
oriented modelling tools needs to be generic and robust. The interface functionalities 
should also offer the possibility to future users to call this model from a library. 
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To refine the main objective several sub-objectives are defined, which are: 
 

 The development of a generic distributed parameter model of a gas 
separation membrane unit: 

 
 to examine the current status of software interoperability, 

 
 to investigate the key requirements for custom model 

performance within a sequential modular flowsheet 
simulator. 

 
 The development of work processes for future users by supporting them 

in using the open interfaces between process simulation software related 
to physical property packages and custom models of process unit 
operations. 

1.2 Scope of this thesis 
The use of a custom model in a sequential modular flowsheet simulator requires 
interfacing with equation oriented modelling tools. In equation oriented modelling tools 
no physical property methods and databanks are standard available for the calculation of 
thermodynamic and physical properties. Therefore, during the development of a custom 
model, assumptions should be made in order to calculate the properties or ideally for 
consistent modelling a physical property package from the sequential modular simulator 
has to be used. The latter one requires the interface of a physical property package 
between the sequential modular flowsheet simulator and the equation oriented modelling 
tool (the physical property interface). Moreover, when the development of the custom 
model is finished, the model itself should be placed in the sequential modular flowsheet 
simulator. This requires an interface of the custom model between the equation oriented 
modelling tool and the sequential modular flowsheet simulator (the unit model interface). 
A schematic picture of the physical property interface and the unit model interface is 
shown in Figure 1.1. 
 
The research, described in this thesis is carried out at Dow Benelux B.V.. The Dow 
Chemical Company has standardized its process simulation environment based on the 
Aspen Engineering Suite (from Aspen Tech Inc.). This Suite includes the sequential 
modular simulator Aspen Plus and the equation oriented modelling tool Aspen Custom 
Modeler (ACM). Also, gPROMS (from Process Systems Enterprise Ltd.) is available 
within Dow and used for equation oriented modelling. 
Hence, this research is concentrated on these three simulation tools: Aspen Plus, ACM 
and gPROMS. The following versions of the software packages have been used:  

• Aspen PLUS :  version 12.1 
   version 2004.1 

• ACM  :  version 12.1 
   version 2004.1 

• gPROMS :  version 2.3 
   version 3.0 (alpha test version) 
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To interface gPROMS and Aspen Plus, the CAPE-OPEN standards have been utilized. 
For interfacing ACM and Aspen Plus, default Aspen Tech interfaces have been used.  
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flowsheet simulator

Custom model 
block       
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equation oriented 
modelling tools 

Physical 
property 
package

2

3
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B2

5

6

7

8

B3 B4

Physical property 
interface 

Unit 
model 

interface

Unit 
model 

interface

Figure 1.1: Custom model block of a process unit operation in a sequential modular flowsheet 
simulator 

 
To study the main objective described above, a model of a gas separation membrane unit 
has been developed in both gPROMS and ACM. A membrane unit has several modelling 
characteristics (rate-based and distributed parameter), which makes it attractive to use as 
a case study. Moreover, a model of a membrane module does not (yet) exists in the 
Aspen Plus model library. Given the continuously increasing cost of oil and gas, the 
separation / purification of gases at low capital and energy cost is becoming a major issue. 
The same is valid for the increasing treatment requirements of process vent streams 
before emitting them into the air. A membrane gas separation unit is a potential 
technology for these applications. The availability of rigorous process models inside a 
sequential modular flowsheet simulator will help to study the applicability of this 
technology in certain cases. 
 
After presenting in Chapter 2 the most important theory of gas separation membrane 
processes, the development of the custom membrane model is described in detail in 
Chapter 3. The developed custom model is also compared with experimental data and 
existing simulations from literature. 
 
Chapter 4 reported the current status of software interoperability obtained from 
interfacing the developed custom membrane model with Aspen Plus. In this chapter also 
work processes are developed to guide future users on interfacing:  

• a physical property package from Aspen Plus with gPROMS/ACM 
• a custom model of a process unit operation, developed in gPROMS/ACM, with 

Aspen Plus 
 
In Chapter 5 the key requirements for custom model performance in sequential modular 
flowsheet simulations are further explained. Based on the current functionalities available 
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for unit model interfacing a new approach for custom model initialisation is proposed. A 
potential solution on basis of the developed custom membrane model is presented. 
 
Finally, in Chapter 6 conclusions are given for the research results obtained and possible 
directions for future work are discussed. 
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2 Theory of gas separation membrane processes 
 
The aim of this chapter is to familiarise the reader with membranes processes for gas 
separation. First, a general introduction to membrane processes is given. In the next 
section an overview is given of commercial available membrane modules used for gas 
separation. Thereafter different transport mechanisms which describe the flux of 
components through the membrane are discussed. In the last section a review of existing 
simulations of gas separation membrane units in literature is presented.  

2.1 Membrane processes 
There are many membrane processes, based on different separation mechanisms and they 
can cover the broad size range from particles to molecules. In spite of these various 
differences, all membrane processes have one thing in common, i.e., the membrane. The 
membrane is at the heart of every membrane process and can be considered as a perm-
selective barrier between two phases. The feed enters on one side of the membrane and is 
divided into two streams; the retentate and permeate stream, as shown in Figure 2.1. The 
sweep stream, a liquid or gas, is sometimes used to improve the removal of components 
from the feed stream. 
 
Feed

Sweep 
(optional)

Retentate

Permeate

Membrane

Feed

Sweep 
(optional)

Retentate

Permeate

Membrane

 
Figure 2.1: General membrane process 

The membrane has the ability to transport one component more readily than others. The 
transport rate of a component through a membrane is determined by its permeability in 
the membrane and by the driving force across the membrane. The general relation for the 
transport rate of component i trough a membrane is therefore given by:  
 

( ) ( )im
ii

ii forcedriving
Q

dz
forcedrivingd

QJ _
_

Δ⋅⎟
⎠
⎞

⎜
⎝
⎛==
δ

  

( ii forcedrivingQ _Δ⋅= )        (2.1) 

 
where iQ is the permeance, which is defined as the ratio of , the permeability, to , the 
membrane thickness [2]. The driving force is a chemical or an electrical potential 
difference across the membrane [3]. 

mδiQ
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Large scale membrane gas separation processes emerged during the 1980s by the 
development of synthetic polymeric membranes [4]. Gas separation is the separation of 
gaseous fluids by using a pressure difference. Usually a sweep gas is not used, but the 
permeate side of the membrane is maintained at a much lower pressure than the retentate 
side. Membrane gas separation is an area in which currently considerable research is done, 
and the number of applications is expanding rapidly. Major current applications of gas 
separation membranes are the separation of hydrogen from nitrogen, argon and methane 
in ammonia plants; the production of nitrogen from air; and the separation of carbon 
dioxide from methane in natural gas operations [4]. Gas permeation must still compete 
with classical separation operations like distillation at cryogenic conditions, absorption 
and pressure-swing adsorption. 
 
For process design of membrane gas separation units, there are three factors that 
determine the performance of the system [5]: 

• The pressure ratio between the retentate and permeate side of the membrane. This 
ratio is dependent on the operation conditions and on the configuration of the 
retentate and permeate stream around the membrane. Section 2.2 describes the 
different membrane modules used for gas separation. 

• The membrane selectivity, which is the ratio of the permeabilities of the different 
components in the feed mixture. The membrane selectivity is determined by the 
choice of the membrane material. In Section 2.3 an overview is given of the 
various models used to estimate permeabilities from experimental data and to 
describe the transport of components through the membrane.  

• The stage cut, a trade off between recovery and purity. The stage cut is defined by 
the ratio of the permeate flowrate and the feed flowrate. At low stage cuts a 
concentrated permeate stream is obtained, but the key component is only modest 
removed from the feed stream. At high stage cuts almost complete removal of the 
key component from the feed stream is obtained. However the permeate stream is 
only slightly more enriched than the original feed stream, because the 
concentration of the less permeable components increases. The stage cut can be 
adapted during the design of a membrane system by varying the membrane area 
or during its operation by changing the flowrate of the feed stream. 

2.2 Membrane modules 
For commercial applications the membrane has to be suitably housed in a unit. As many 
different membrane processes exists, also a large number of membrane modules are 
available commercially. Gas separation membranes are typically formed into spiral-
wound or hollow fibre modules, because of their high packing density (membrane surface 
area per unit volume) compared to other modules [4].  
 
Spiral wound membrane module 
Spiral wound membrane modules are produced from flat sheets. A laminate, consisting of 
two membrane sheets separated by spacers for the flow of the feed and permeate, is 
wound around a central collection tube to form a module that is inserted into a pressure 
vessel. The feed flows axial through the cylindrical module parallel along the central pipe 
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whereas the permeate flows radial toward the central collection pipe, see Figure 2.2. A 
typical spiral-wound module is 0.1 to 0.3 meter in diameter and 3 meter long [2].  
 

 
Figure 2.2: Spiral wound membrane module [6] 

 
Hollow fibre membrane module 
Hollow-fibre membranes consist of a large number of hollow, hair-like fibres bundled 
together either a U-shape or straight-forward configuration and housed in a vessel. Feed 
gas may be introduced on the fibre side or on the shell side of the module. Usually the 
high-pressure feed gas is directed through the shell side, and the permeate stream which 
is enriched with the more permeable components is withdrawn from the inside of the 
fibres through the openings on the fibre tube sheet.  It is also possible that the permeate 
material is collected in the shell side of the hollow fibre module, see figure 2.3. A 
commercial module might be 1 meter long and 0.1 to 0.25 meter in diameter and contain 
more than one million hollow fibres [2]. The idealized flow patterns in a hollow fibre 
module can be co-current as well as counter-current. 

 
Figure 2.3: Hollow fibre membrane module where the feed is flowing through the fibres [4] 

 
The packing density of a hollow fibre membrane module (500 – 9,000 m2/m3) is much 
larger than of a spiral wound membrane module (200-800 m2/m3) [2]. As a consequence 
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the production costs of a hollow fibre membrane module is much less than the production 
costs of an equivalent spiral wound module [4]. 
However, the hollow fibre membrane module also has several disadvantages [5]. The 
membrane permeability in hollow fibre modules is often lower than in spiral wound 
design. A reason is the difference in thickness of the active membrane layer (in spiral 
wound modules 500 – 5000 Å and in hollow fibre design 0.1 – 1 μm [2]). The transport 
rate (Equation 2.1) is reverse proportional to the membrane thickness. This off-sets some 
of the advantage that derives from the high packing density for hollow fibre design.  
Besides, the pressure drop in the fibres can become seriously and the hollow fibre module 
is more severe for plugging and fouling than the spiral wound module. The latter 
disadvantage can be rejected, since for gaseous feed stream particulates and other 
potential fouling materials can be completely and economically removed before it enters 
the membrane module [4].  
 
Today most of the gas separation membranes are formed into hollow fibre modules, with 
perhaps fewer than 20% being formed into spiral wound modules [4]. Based on the need 
to minimize production costs and thus also minimize the membrane area, it appears that 
hollow fibre membrane modules will eventually dominate the gas separation field 
completely. As a result, the model of a gas separation membrane unit, which has been 
developed in this thesis, is a model of a hollow fibre membrane unit.  

2.3 Overview of membrane transport mechanisms 
The separative character of a membrane is determined by the difference in transport rate 
of the components through the membrane. Therefore, the transport through the membrane 
is one of the fundamental aspects to understand and to improve the process performance. 
Various models are developed over the years to describe the transport rate. The choice of 
a transport model depends greatly on the separation under consideration, the membrane 
used and the purpose of the transport model.  
 
The structure of a membrane can be macro-porous, micro-porous, or dense (non-porous). 
Only micro-porous or dense membranes are selective. However, macro-porous 
membranes are widely used to support thin micro-porous and dense membranes when 
significant pressure differences across the membrane exist. Although micro-porous 
membranes are topics of considerable research interest, all current commercial gas 
separations are based on dense polymer membranes, sometimes supported by a macro-
porous layer (which is then called an asymmetric membrane) [5]. 
 
The various models, which do exist in literature to describe the transport of components 
through a membrane, are based on theoretical or phenomenological fundamentals. 
Theoretical models make use of molecular parameters, derived from thermodynamic and 
physical relations. Phenomenological models are based upon a theoretical background, 
but their parameters have no fundamental meaning anymore. It is possible to divide the 
most relevant models to describe the transport of components through a dense membrane 
into solution-diffusion models, thermodynamics of irreversible processes and the 
Maxwell-Stefan theory. In Table 2.1 a short overview is given of these models. 
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Table 2.1: Overview models to describe transport of components through a dense membrane 
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Transport model Characteristics Derivation and equation for gas separation 
Solution-diffusion model [7] 

 
• Phenomenological 
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Permeability: product of sorption coefficient (Henry’s law) and diffusion coefficient 
(Fick’s law). Permeability coefficient is function of temperature given by Arrhenius 
expression: 
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Thermodynamics of irreversible 
processes (TIP) [8] 

 

• Phenomenological 
model 

• Multi-component 
system 

Permeability: matrix with on the diagonal the permeability coefficients and on the 
off-diagonal the cross term coefficients. 
Driving force: gradient in chemical potential (or for gas separation gradient in 
partial pressure). A flux of a component can be caused by any other driving force 
in addition to its own conjugated force. 

( )( )∑ ⋅=
j

jiji forcedrivingQJ _  

Driving force: The driving force on a component is equal to the friction with other 
components and expressed as a linear function of the velocities (or fluxes): 

( ) ( )∑ +−=
As a result the fluxes are given implicitly. The component fraction is the fraction in 
the membrane. Therefore also a correct solution model has to be used. 

 iMijiijjii uuxuxforcedriving ,,_ ξξ

ξ  Permeability: incorporated in the friction coefficient,Maxwell-Stefan theory [9] 
 

• Theoretical model 
• Ternary system 
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In literature there is not a clear consensus which is the best transport model to be used for 
gas separation through dense membranes. For engineering science and process design, 
phenomenological models are usually used to describe the transport of components 
through the membrane. Theoretical models often require complex experiments to 
determine the fundamental parameters, such as the friction coefficients in the Maxwell-
Stefan equation. As a result, the Maxwell-Stefan equations are only used for binary or 
ternary systems. The model of the membrane unit developed in this thesis has to be 
applicable for multi-component systems. Since existing literature hardly provides cross 
term coefficients for the TIP-equations, the solution-diffusion model has been applied to 
describe the transport of components through the membrane. Besides, the solution-
diffusion model is widely accepted to predict transport of components through dense 
membranes. 
 
The transport rate of components through the membrane can also be influenced by other 
effects, such as concentration polarisation. Concentration polarisation is the build-up or 
depletion of species in the boundary layer or film close to the membrane due to mass 
transfer resistance. However, for gas separation membrane processes concentration 
polarisation is usually neglected. In Section 3.1 an explanation is given for this 
assumption. 

2.4 Literature review of existing membrane unit simulations  
In literature a limited number of rigorous mathematical models are published for gas 
separation membrane units. J.I. Marriott [13] and M.H.M. Chowdhury [18] give an 
extensive review of mathematical models available in literature. Most of the models deal 
with binary systems and a few of them deal with ternary or multi-component gas 
separation systems. Also different solution methods for the model equations have been 
used [18]. Marriott concluded that a rigorous general approach to membrane unit 
simulations has not yet been published. Most of the existing work has limited 
applications due to simplifying assumptions [13]. Besides the various simplifications and 
solution methods, also several attempts have been made to implement a custom model of 
a membrane gas separation unit into a sequential modular flowsheet simulator. In Table 
2.2 a summary is given of the most recent publications concerning the development of a 
custom model for a multi-component gas separation membrane unit and its interfacing 
with flowsheet simulators.   
Table 2.2 starts with the description of the research performed by C.Y. Pan [10]. 
Although it was published in 1986, it is included in this table, since different 
modifications and approaches based on Pan’s model have been proposed over the years. 
Very recently, M.H.M. Chowdhury [18] stated that Pan’s [10] model is widely accepted 
as the most practical representation of multi-component gas separation in hollow fibre 
asymmetric membranes. For this reason Chowdhury [18] presents a similar model solved 
with a new developed numerical algorithm in FORTRAN. J.I. Marriott [13] [14] [15] 
used the experimental data of Pan’s [10] work to validate the developed model for gas 
separation applications. Marriott [13] considered Pan’s [10] model as too specific, and 
developed more detailed models for hollow fibre as well as for spiral wound membrane 
modules in gPROMS.  



18

Table 2.2: Overview of mathematical models for gas separation membrane units in literature  

Year & Author Description & Solution method Balance equations Membrane characteristics Physical properties Model 
interfacing 

1986  
C.Y. Pan  
[10]  

Model for multi-component gas separation 
by high-flux hollow fibre membranes, 
either co- or counter-current, feed enters 
on shell side. Trial and error shooting 
method is developed to solve the model. 

Differential balance for 
mass, pressure drop is 
described by Hagen-
Poiseuille equation 

Solution-diffusion theory: for asymmetric 
membranes the driving force is defined 
as the difference between partial 
pressure of the feed side and partial 
pressure inside the membrane 
(component fraction in membrane and 
pressure of permeate side). No 
concentration polarisation. 

Viscosity calculation 
is unknown. 

Model is not 
interfaced. 

1996  
R. Rautenbach 
et al. 
[11] 

Cross flow models for multi-component 
gas separation, reverse osmosis and 
pervaporation developed in FORTRAN. 
Solution method is unknown. 
 

Differential balances for 
mass, momentum and 
energy, assuming plug 
flow at the feed side and 
unhindered permeate 
flow. Pressure drop is 
neglected. 

Solution-diffusion theory: driving force is 
the difference between partial pressure 
of the feed and permeate side. 
Concentration polarisation is neglected. 

Utilization of physical 
property models and 
data bases of Aspen 
Plus is possible. 

FORTRAN routine 
incorporated in 
Aspen Plus. 

1999  
S. Tessendorf 
et al. 
[12] 

Models for multi-component gas 
separation in spiral wound (cross-current) 
and hollow fibre (counter-current) 
membrane configuration. An algorithm 
based on the orthogonal collocation 
method to solve the boundary value 
problems is developed. 

Differential balance for 
mass. Pressure drop 
can be described by 
Hagen-Poiseuille 
equation. 

Solution-diffusion theory: driving force is 
difference in partial pressure, 
permeability is the product of Fick’s 
diffusion coefficient and Henry’s law 
solubility coefficient. 

Unknown. Implemented in 
the equation 
oriented 
environment 
OPTISIM. 

2001  
J.I. Marriott 
[13], [14], [15] 

Dynamic models for multi-component gas 
separation, reverse osmosis and 
pervaporation in hollow fibre and spiral 
wound membrane configuration, 
developed in gPROMS. The preferred 
discretisation method for steady state 
calculations is the orthogonal collocation 
method (provided by gPROMS). 

1-D (plug flow) and 2-D 
dynamic differential 
balances for mass, 
momentum and energy. 
Case for gas separation 
process: 1-D models for 
retentate and permeate 
side. 

Emphasis is not on generic model for 
transport. Concentration polarisation for 
1-D flow models is described by mass 
resistance in a film layer. Case for gas 
separation: same transport model as 
C.Y. Pan [10] is used, concentration 
polarisation is not taken into account. 

Multiflash is used to 
calculated the 
properties used in the 
balance equations 

Model is not 
interfaced. 

2002  
R.A. Davis 
[16] 

Model for multi-component gas separation 
and pervaporation in spiral wound and 
hollow fibre membrane configuration 
solved by an iterative, trial and error 
shooting method in HYSYS. 

Differential balance for 
mass; pressure drop is 
neglected. 

Solution-diffusion theory: the driving 
force is described by the logarithmic-
mean average of trans-membrane partial 
pressure. Concentration polarisation is 
neglected. 

No thermodynamic 
and physical 
properties are used in 
the model equations. 

Model developed 
in HYSYS intrinsic 
spreadsheet 
functionality. 

2003  
T. Brinkmann 
et al. 
[17] 

Cross flow model for vapour permeation 
developed in Aspen Custom Modeler 
(ACM). 

Mass balance: cross 
flow model assuming 
plug flow ate feed side 
and unhindered 
permeate flow. Pressure 
drop is neglected.  

Solution-diffusion theory: driving force is 
the difference in partial pressure; free-
volume model to describe diffusion. 
Concentration polarisation is taken into 
account in the boundary layer on the 
feed side of the membrane.  

An Aspen Plus 
physical property 
package is used. 

The ACM model is 
compatible with 
Aspen Plus, but 
not tested. 

FORTRAN routine 
incorporated in 
Aspen Plus.  

The Aspen Plus 
component property 
databank is used to 
calculate the gas 
mixture viscosity with 
the Wilke method. 

Based on C.Y. Pan [10] 2005  
M.H.M. 
Chowdhury et 
al. 
[18] 

Model for multi-component gas separation 
by high-flux hollow fibre membranes, 
either co- or counter-current, developed in 
FORTRAN. Solved as an initial value 
problem, solution algorithm also 
developed in FORTRAN. 

Based on C.Y. Pan [10] 

  



 
In this thesis the custom model of a hollow fibre membrane module developed by 
Marriott [13] is adapted. The model exists of three sub-models, two which describe the 
flow on either side of the membrane and a third model which characterises the separative 
properties of the membrane. For gas separation the flows on both sides of the membrane 
were simulated by one-dimensional mass, momentum and energy balances along the 
axial length of the membrane unit. Marriott used a physical property package from 
Multiflash (from Infochem Computer Services Ltd.) to calculate the thermodynamic and 
physical properties of the membrane unit.  
 
The other models which have been developed for gas separation membrane units (Table 
2.2) include many simplifications, usually in order to solve the model with an own 
developed numerical algorithm. Since numerical methods are included in equations 
oriented modelling tools to solve custom models, these simplifications are not needed 
anymore. Marriott [13] developed the membrane model in gPROMS. The custom 
membrane model described in this thesis has been developed in gPROMS as well as 
ACM.  
 
Other simplifications are made to calculate the thermodynamic and physical properties 
for gas separation membrane units. If an external property package can be used, 
assumptions, such as the ideal gas law, are also not needed anymore. Both Marriott [13] 
and Brinkmann [17] used an external physical property package. For the custom model 
developed in this thesis, a physical property package from Aspen Plus is used.  
 
In addition, the custom membrane model developed in this thesis is exported to be used 
in Aspen Plus. Rautenbach [11] and Chowdhury [18] created a custom membrane model 
for implementation in an Aspen Plus simulation. However, their models are developed in 
FORTRAN and needed a solution algorithm. Brinkmann [17] only mentioned that the 
developed custom model can be exported to Aspen Plus, but it seems that the export 
functionality was not tested.  
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3 Custom model of a gas separation membrane unit  
 
In this chapter the description, implementation and validation of the developed custom 
model for a multi-component gas separation membrane unit is presented. First, the model 
objective is given and its structure and assumptions are discussed. In the next section the 
implementation of the set of model equations in gPROMS and ACM is described; 
including the differences in implementation between both equation oriented modelling 
tools. In the last section the results, calculated by the developed custom model, are 
compared with experimental data and existing models. 

3.1 Model description  
Before giving a comprehensive description of the model developed for a gas separation 
membrane unit, the modelling objective is presented. 

3.1.1 Modelling objective 
The custom model of a gas separation membrane unit, which is developed in gPROMS 
and ACM, serves as a case study to test the current status of software interfaces and 
custom model performance in Aspen Plus. A model of a membrane unit is not (yet) 
available in the Aspen Plus model library and consequently the membrane unit is imitated 
by a separation block, when present in a process flowsheet. For consistent process 
simulation it is required to have a membrane model available in Aspen Plus. Besides, for 
successful implementation of the exported custom membrane model, the model should 
have the ability to be used like any other model of a process unit operation present in the 
library of Aspen Plus, as described in Section 1.1. 
 
As a result, the objective in this chapter is to develop a generic custom model of a gas 
separation membrane unit in gPROMS and ACM, which can later on be exported for use 
in Aspen Plus, as like the other unit models available in the Aspen Plus model library. 
 
In Chapter 2 it is discussed that the model is developed for a hollow fibre membrane 
module for which the transport through the membrane is described by the solution-
diffusion theory. The model Marriott [13] developed recently in gPROMS is adapted.  

3.1.2 Model structure and assumptions 
In Figure 3.1 a schematic picture is given of a hollow fibre membrane module; for which 
the feed stream enters the module on the shell side. It is decided to develop the custom 
model of the gas separation membrane unit in a hierarchical structure using sub-models 
in order to: 

• make a clear distinction between generic and specific (transport of components 
through the membrane) model parts, 

• be able to develop the custom membrane model more easily for various options in 
equipment and design specifications, and 

• enhance the re-usability of (parts of) the custom model for future users. 
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Figure 3.1: Flow pattern in a hollow fibre membrane module (feed flows through the fibre side) [14] 

The natural structure of the membrane unit in Figure 3.1 has been exploited for its 
decomposition into sub-structures. The hollow fibre membrane unit is decomposed into 
three sections; namely the flow through: 

1. (all) fibres 
2. shell side, and  
3. the membrane. 

 
Before developing the mathematical models for each sub-structure, several assumptions 
are made to simplify the behaviour of the membrane unit. The assumptions are: 

 Considering each fibre individually is impossible and therefore the fibre bundle is 
treated as a continuous radial symmetric porous medium. The fluid in the shell 
side of the module flows around each fibre. Each fibre in the module has identical 
specifications and the total flow through the fibres is distributed equally. 

 The flow of gaseous fluid through the shell side of the module is assumed to flow 
parallel to the fibres. Cross current (radial) effects for the flow through the shell 
side are not considered, because this makes the complete model of the gas 
separation membrane unit much more complicated. The transport of components 
through the membrane depends not only on the axial position, but also on the 
radial position, and therefore every fibre must be considered separately depending 
on its radial position in the module shell.  

 The pressure drop occurring at the flow entries and exits are neglected. The 
pressure drops if known can easily be incorporated as parameters in the model. 

 It is assumed that there is no hold-up of gaseous material in the membrane itself; 
the residence time compared to the flow through the fibres and shell side is very 
small. Therefore the membrane can be considered as an interface between the 
flows (permeate and retentate) on either side of the membrane.  
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 Energy (enthalpy) which is carried by the flow of components through the 
membrane is taken into account. The temperature of the membrane is equal to the 
temperature of the retentate side.  

 The flow through the shell side as well as through the fibres is laminar (Reynolds 
number is 0 – 5). However, for both flows plug flow is assumed and temperature 
variations in radial direction are neglected.  

 Back-mixing of mass and heat in axial direction is neglected. The Peclet number 
is large for low Reynolds numbers, as such for the flow through the fibres and 
shell side of the module, and thus little back-mixing will occur. 

 Concentration polarisation for gas separation membranes is neglect. Usually for 
gas separation processes, the transport of components through the membrane is 
slower than the radial diffusion of the gaseous components (determined by the 
molecular diffusion coefficient) in the fluid of the flow through the shell and fibre 
side. As a result, the transport through the membrane is the rate limiting factor.  

 The axial pressure drop inside each fibre is described by a friction factor in the 
momentum balance. The friction factor is derived from the Hagen-Poiseuille 
relation (used for laminar flow through pipes). The axial pressure drop for the 
shell side is also considered by applying a similar relation characterized using a 
friction parameter. 

3.1.3 Model description 
The assumptions made in the previous paragraph for a hollow fibre gas separation 
membrane unit result in a set of model equations which are practically similar as the 
model Marriott’s [13] developed recently (see Section 2.4). The equations used for the 
custom membrane model are presented in Appendix A. 
 
The flows through the shell side and (each) fibre are described by one-dimensional 
balance equations for mass (mole), energy and momentum. Since for the shell side and 
fibres plug flow is assumed, the same set of model equations can be used for both sub-
models. The differential balance equations contain accumulation, convection and 
transport terms. Eventually the custom membrane model will be part of an Aspen Plus 
flowsheet simulation, therefore:  

• The accumulation terms in the balance equations are set to zero (steady state), 
since Aspen Plus simulations are limited to continuous, steady state problems. 

• The boundary conditions of the differential balance equations are given by the 
conditions of the inlet streams to the membrane module (the feed and sweep 
stream).  

 
The sub-model for the flow through the membrane contains a constitutive equation 
relating the difference in partial pressure between the flows on both sides of the 
membrane to a mass and energy flux through the membrane. Furthermore, the Arrhenius 
relation is used to describe the permeability coefficient for the transport of components as 
a function of the temperature. 
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The model also includes variables to calculate or specify the characteristics of a hollow 
fibre membrane unit, such as the stage cut, pressure ratio and packing density.  
Since the custom membrane model has to be fully embedded in an Aspen Plus flowsheet 
simulation, the model makes use of an exported physical property package from Aspen 
Plus to calculate thermodynamic and physical properties. The existence of physical 
property interfaces between Aspen Plus and gPROMS/ACM makes this possible. 
 
The sub-models for the flow through fibre, shell and membrane have to be connected to 
present the complete model of a gas separation membrane unit. The main model contains 
equations to connect the ports, defined within the sub-models, to each other. Via the port 
connections information is passed on from one sub-model to another. The ports of the 
sub-models describing the flow through fibre and shell side pass on the component 
fractions, temperature and pressure (on every discretisation node) to the sub-model which 
describe the transport of components through the membrane. This sub-model on its turn 
calculates on basis of the information it gets the mass and energy fluxes through the 
membrane and returns these values to the two sub-models for flow through fibre and shell 
side, as shown in Figure 3.2.  

Flow  Fibre
side

Flow  Shell 
side

Membrane

Xi, P, T Xi, P, T

Ji, q Ji, q

Feed
Sweep 

(optional)

Retentate Permeate

Feed
Sweep 

(optional)

Membrane

Exported physical 
property package 
from Aspen Plus

Flow  Fibre
side

Flow  Shell 
side

Xi, P, T Xi, P, T

Ji, q Ji, q

Retentate PermeateExported physical 
property package 
from Aspen Plus  

Figure 3.2: The structural description of the developed custom membrane model for gas separation  

One of the criteria for the performance of an exported custom model is that the model has 
to be used for different equipment or design specifications in Aspen Plus. To be able to 
choose an equipment or design specification in Aspen Plus, the option for the 
specification should already be embedded in the custom model during its development in 
the equation oriented modelling tools.  
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The developed custom membrane model includes several options for equipment and 
design specifications; the user is able to make a choice on: 

 Feed side - The feed stream can enter on the shell side or on fibre side of the 
hollow fibre membrane module. This option is embedded in the custom model by 
connecting the feed stream to the port of the correct sub-model. This is schematic 
shown in Figure 3.2, the feed stream can be connected to the port of the sub-
model describing the flow through the fibre side or to the port of the sub-model 
describing the flow through the shell side. The sweep stream is then connected to 
the other sub-model.   

 Mode of operation - The flow pattern in a hollow fibre module can be co-current 
or counter-current. The direction of the sub-model for the flow through the shell 
side can be inverted, as shown also in Figure 3.2. For counter-current operation, 
the feed or sweep stream is connected to the port at the end of the shell sub-model. 
Also the discretisation method for this sub-model has to be changed (see Section 
3.2).  

 Usage of a sweep stream – A sweep stream is usually not used for gas separation 
processes. However, a sweep stream if present can easily be connected to the 
custom model, as like the feed stream. If the sweep stream is not present, the 
boundary conditions for the balance equations, which are otherwise given by the 
sweep stream, have to be specified by the user (see Section 3.3). 

 Method of simulation – To obtain a set of model equations which can be solved 
(not under- or over-specified), values for variables and parameters have to be 
specified. There are several options conceivable for the developed custom 
membrane model. The most straightforward option is to assign values for the 
variables describing the geometry of the unit (rating method). On basis of the 
conditions of the feed (and sweep) stream and the geometry data, the outlet 
conditions for the retentate and permeate stream can be calculated. However, the 
geometry is not always known and for these situations the custom membrane 
model can also be used (design method). A more detailed description of the rating 
and design method is given in Section 3.3. 

 Type of membrane – The type of membrane used in a hollow fibre module can be 
symmetric or asymmetric. For both types the solution-diffusion theory can be 
applied, however the definition of the driving force is a bit different (see Section 
3.4).  

3.2 Model implementation 
The set of model equations for a gas separation membrane unit, presented in the previous 
section, have been implemented in gPROMS version 2.3.6 and Aspen Custom Modeler 
(ACM) 2004.1 version 13.2. Printouts of the model equations written in gPROMS and 
ACM are shown in Appendix B.  

3.2.1 Discretisation method 
Distributed models are usually solved by discretising the spatial domain. In equation 
oriented modelling tools several discretisation methods are available; finite difference 
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methods (backward, forward and centred) and orthogonal collocation on finite elements 
methods. The user has to specify the discretisation method (type, order and number of 
discretisation intervals).  
Marriott [13] preferred using the orthogonal collocation method in gPROMS to solve the 
distributed membrane model. According to Marriott [13] the finite difference method is 
less accurate than the orthogonal collocation on finite elements. However, for the model 
of the gas separation membrane unit developed in this thesis, finite difference methods 
are used to discretise the model variables. The orthogonal collocation method is not 
applicable for solving the custom membrane model at large stage cuts. If more than ± 
50% of the feed stream permeates through the membrane the model does not converge 
anymore. This is not the case if a finite difference method is used. Besides, it is 
recommended [19] to use finite difference methods for purely or strongly convective 
systems. The balance equations for the sub-models describing the flow through the shell 
side and fibres do not contain diffusive or dispersive terms, and can therefore be 
considered as a convective system.   
Generally for finite difference methods, one-sided finite differences should be used taken 
opposite to the direction of the flow. For a set of model equations containing a 
momentum balance, the pressure have to be discretised using one-sided finite differences 
taken in the direction of the flow, while all the other variables are discretised using one-
sided finite differences opposite to the direction of the flow [19].  
The developed custom model is solved for steady state applications and therefore all the 
boundary conditions, including the pressure, can be given at the inlet of the flow model. 
As a result, the pressure is discretised with the same finite difference method as for the 
other variables.   
For co-current operation, the flows through the fibres and shell side are both from left (z 
= 0) to right (z = L), and the backward finite difference method is used. For counter-
current operation, the flow through the fibres is from left to right (backward difference 
method), while the flow through the shell side is from right to left for which a forward 
finite difference method has to be used.  
 
The accuracy of the finite difference method can be enhanced by increasing the number 
of discretisation intervals. To demonstrate this, the number of discretisation intervals for 
the developed custom membrane model is increased. The accuracy can be defined by the 
error in the total molar balance: 
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The model used to calculate the error as a function of the number of discretisation 
intervals is a counter-current membrane system (geometry and permeability data is given 
in Section 3.4). In Table 3.1 the effect of the number of discretisation intervals on the 
total molar balance error is given. As expected, the error is reduced if the number of 
discretisation intervals is increased. However, by increasing the number of discretisation 
intervals the model size is also increased. For a reasonable accuracy of the model, the 
number of discretisation intervals is set to 50. 
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Table 3.1: Molar balance error as function of the number of discretisation intervals 

Number of 
discretisation 
intervals 

Feed stream 
(10

Retentate  
(10

Permeate  
(10

Error (%) 
-5 -5 -5 kmol/hr)  kmol/hr)  kmol/hr)

10 8.00000 3.7272 4.4143 1.738
30 8.00000 3.7089 4.3584 0.834
50 8.00000 3.6918 4.3574 0.610
70 8.00000 3.6822 4.3570 0.488
90 8.00000 3.6761 4.3569 0.411
 

3.2.2 Implementation in gPROMS and ACM 
In Figure 3.3 and Figure 3.4 the graphical user interfaces of gPROMS and ACM together 
with the implemented membrane models are shown. During the development of the 
hierarchical membrane model in gPROMS and ACM small differences has been detected 
between both equation oriented modelling tools. A glance at the printouts in Appendix B 
shows the difference in writing the (distributed) model equations in gPROMS and ACM. 
Some other differences which have been encountered are: 

 Unit of measurement 
ACM uses metric units (base units of measurements) to solve the model equations. 
The user must ensure that the model equations are written consistently in the base 
units of measurements. However, the user can choose the unit of measurements of 
the variables which are displayed in the graphical user interface.  This means that 
values shown on plots and tables are automatically displayed in the current unit of 
measurements and values you enter into the forms are automatically converted to 
the base units of measurement. In gPROMS the user can write the set of model 
equations in an own chosen unit system, but must ensure that the input variables 
and parameters are also in these units. Since later on the custom membrane model 
will be exported, it is recommended to use in gPROMS the same unit system as 
defined by the CAPE-OPEN standards for unit model interfacing (see paragraph 
4.3.2) 

 Connection of sub-models 
For connection of the sub-models, variables (information) have to be passed on 
from one model to the other and visa versa, as explained earlier (see Figure 3.2). 
These variables are dependent on the axial position in the membrane module. 
However in ACM it is not possible to define distributed variables in ports and the 
port is an input port or an output port. This is in contrast to the connection types 
for ports in gPROMS, in which distributed variables can be defined and the 
direction can be chosen as inlet, outlet or bidirectional.  
To connect the sub-models of the custom membrane model in ACM, the variables 
in the ports are defined by an array which is on its turn defined by the number of 
discretisation intervals. Also two ports are defined, one containing the variables 
(information) temperature, pressure and molar fraction and another one containing 
the variables for the molar and energy flux through the membrane. 
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Figure 3.3: Model implementation: user interface of gPROMS 2.3.6 

 Definition of discretisation method of sub-models in main model 
As described in the previous paragraph, for simulating a counter-current flow 
pattern the discretisation (finite difference) methods for the sub-models describing 
the flow through fibre and shell side are not the same. However, the set of 
equations is for both sub-models equal and therefore it is preferred to adapt only 
the discretisation method for the two sub-models in the main model. To switch 
between co-current and counter-current run mode a selector (  case) in gPROMS 
or a selector parameter (  if then else) in ACM is defined. However, in gPROMS 
it is not possible to assign the method for discretisation in a case structure. As a 
result an extra sub-model is created (see Figure 3.3, PlugFlowShellNeg) which 
must be used if the counter-current flow pattern is simulated. This has also 
consequences for the exported custom model from gPROMS. Two custom models 
have to be exported, one for the co-current and another one for the counter-current 
run mode. 

 Definition of the various equipment and design specifications 
For each option of an equipment or design specification created for the membrane 
model, as described in the previous section, a selector (  case) in gPROMS or a 
selector parameter (  if then else) in ACM is defined. Some of these selectors are 
used in different sub-models. For the custom model in gPROMS the selector can 
not be defined globally and therefore the future user cannot simply change the 
value of one selector, but has to take care that the same selectors defined 
separately in the sub-models are also adapted. 
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Figure 3.4: Model implementation: user interface Aspen Custom Modeler 2004.1/13.2 

3.3 Solving the custom model 
In order to solve the custom membrane model developed in gPROMS and ACM values 
of some parameters and variables have to be specified. As described in Section 3.1 two 
types of simulation methods for the developed custom membrane model are defined, 
namely the rating method and the design method. The rating method can be used for 
simulating the membrane unit, for which the geometry is known. On basis of the feed 
conditions and the values specified for the geometry parameters the conditions for the 
permeate and retentate streams are calculated. The design method can be used if the exact 
geometry data (number of fibres, shell diameter, etc.) is not available, but only a 
membrane area is known. The design method can also be used in Aspen Plus for 
problems for which the membrane area has to be determined. Consequently, a design 
specification has to be applied. For example the preferred stage cut or fraction of a 
component in the permeate stream has to specified and the required membrane area will 
be calculated.  
 
In Appendix C a list is given of parameters and variables which have to be specified for 
the rating and design method. Of course it is possible to specify other variables, as long 
as a set of model equations is created, which can be solved. In Table 3.2 a summary of 
Appendix C is given, showing the specified variables which are different for the rating 
and design method.  
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Table 3.2: Different variables specified for rating and design method 

Rating method Design method 
• Inner diameter of a fibre • Packing density of module 
• Outer diameter of a fibre • Ratio of cross sectional area fibre and shell side 
• Shell diameter of module • Membrane thickness 
• Number of fibres • Membrane area 
• Length of module • Constant to specify velocity of the feed stream 

 
Since the membrane model is a rate-based model, the volume of the unit has to be known 
for simulations. For the design method two extra variables are defined to predict the 
volume of the unit, the ratio of cross sectional areas and a constant to specify the velocity 
of the feed stream.  
 
As described also in Appendix C, boundary conditions have to be given to solve the 
custom membrane model. At the inlets of the sub-models describing the flow through 
shell and fibre side the flowrate, pressure, temperature and component fractions have to 
be specified. For the exported custom membrane model in Aspen Plus, these boundary 
conditions are specified by the conditions of the feed and sweep stream connected to the 
model. In equation oriented modelling tools, the Aspen Plus streams are imitated by 
specifying values for the variables in the inlet ports of the custom model. 
Not always a sweep stream is present, and the boundary conditions have to be specified 
by the user. The boundary conditions for the temperature and component fraction of the 
‘fictional’ sweep stream are set equal to the values of these variables in the feed stream. 
The flowrate of the ‘fictional’ sweep stream is set to a very small value, almost zero and 
the pressure is defined by the operating conditions specified for the membrane unit. 
 
After the specification of variables and boundary conditions a set of model equations for 
a gas separation membrane unit is created which can be solved. This set cannot be solved 
directly from the default values defined for the variables used, but several intermediate 
modelling steps are required to approach the final result. This is more clearly described in 
Chapter 5.  

3.4 Model comparison 
In spite of the differences reported in Section 3.2 between gPROMS and ACM, both 
equation oriented modelling tools give exactly the same results for the simulation of the 
gas separation membrane unit.  
The developed model of a gas separation membrane unit has also been compared to the 
simulations executed by Marriott [13] and Chowdhury [18]. Marriott [13] and 
Chowdhury [18] based their model validation on experimental data reported by Pan [10] 
for hydrogen recovery from simulated purge gas of an ammonia plant. Pan [10] 
performed experiments on an asymmetric hollow-fibre membrane module, see Table 3.3 
for the geometric parameters of the module. The high-pressure feed flowed through the 
shell side of the module, and the permeate stream was withdrawn from the fibre openings 
on the tube (fibre) side. For asymmetric membranes the transport of components through 
the membrane is given by [13]: 
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Instead of using the partial pressure of the permeate stream in the fibres, the component 
fraction inside the membrane is multiplied by the pressure of the permeate stream. Pan 
[10] has stated that the porous supporting layer of the membrane prevents mixing of local 
permeate fluxes; the downstream concentration is independent of the bulk concentration 
of the permeate stream. Operation conditions and permeance parameters are given in 
Table 3.4. The Arrhenius equation for the temperature dependence of the permeability 
coefficient presented in the custom model is left out of consideration for this comparison. 
Since the geometry is known for this system, the ‘rating’ method is used. 
Table 3.3: Geometric parameters [10] Table 3.4: Operation conditions and permeance [10] 

Number of fibres 20 Feed temperature (K) 298 
Fibre length (cm) 15 Feed pressure (bar) 69.64 
Inner diameter (μm) 80 Feed molar fraction H  (mol/mol) 0.5178 2

Outer diameter (μm) 200 Feed molar fraction N  (mol/mol) 0.2469 2

Shell diameter (mm) 21 Feed molar fraction CH  (mol/mol) 0.1957 4

 Feed molar fraction Ar (mol/mol) 0.0396 
 Permeate pressure (bar) 11.23 

-10Permeance H2 (10  mol/m2sPa) 284 
-10Permeance N2 (10  mol/m2sPa) 2.95 

-10 2Permeance CH  (10 sPa) 2.84  mol/m4
-10Permeance Ar (10  mol/m2sPa) 7.70  

 
Marriott [13] and Chowdhury [18] reported graphs showing the hydrogen purity in the 
permeate stream as a function of the total product recovery (stage cut). To compare the 
developed model with their graphs, the stage cut has been varied by changing the value of 
the feed flowrate. In Appendix D the results obtained are given for the component 
fractions in the permeate stream at different feed flowrates. Figure 3.5 and Figure 3.6 
shows the stage cut versus the molar fraction of the components in the permeate stream. 
 
There are small differences at large stage cuts between Chowdhury’s [18] simulation and 
the calculated results, see Figure 3.6. A reason for these small differences can be ascribed 
to the accuracy of determining the results of the graphs Chowdhury [18] presented. The 
graphs are scanned and with a software script tables are created from the graphs. 
Summing up the scanned molar fractions of the components in the permeate stream 
reported by Chowdhury gives a total fraction larger than 1. 
Figure 3.5 also shows a small difference between Marriott’s [13] simulation and the 
simulation performed with the developed custom membrane model. This is probably due 
to the difference in discretisation method Marriot [13] used for solving the set of model 
equations, as described already in paragraph 3.2.1. 
Despite the small difference, it can be concluded that the custom model of a gas 
separation membrane unit, developed in this chapter, gives comparable results as the 
custom models created by Marriott [13] and Chowdhury [18]. 
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Figure 3.5: Stage cut versus molar fraction H2 in the permeate stream 
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Figure 3.6: Stage cut versus the molar fraction of the other components in the permeate stream 

In Figure 3.7 also the results for the simulation of a symmetric membrane are shown. For 
an asymmetric membrane there is hardly any difference between co-current and counter-
current operation. For a symmetric membrane there is a difference, since the partial 
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pressure of the retentate side as well as of the permeate side are taken into account for 
calculating the transport of components through the membrane. As expected, the fraction 
of the key component (H2) in the permeate stream is larger for counter-current operation 
mode than for co-current operation.  
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Figure 3.7: Stage cut versus molar fraction H2 in permeate stream for symmetric and asymmetric 
membrane 
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4 Software interoperability: current status 
 
In this chapter the current status of software interoperability for process simulation is 
examined. The first section gives background information for the standards available for 
interfacing. Thereafter a work process for future users is developed to support them on 
interfacing physical property packages and custom models of process unit operations. In 
the last section several issues in the field of software interoperability are reported which 
were encountered during the development and implementation of the custom membrane 
model in Aspen Plus. 

4.1 Background information  
As already discussed in Chapter 1, within the Dow Chemical Company they aim to centre 
their process simulation and design activities around Aspen Plus (from Aspen Tech). For 
models of process unit operations not (yet) available in the Aspen Plus model library, 
user models can be embedded in the simulations. Various software tools can create these 
user models, for example FORTRAN, Microsoft Excel (from Microsoft Corp.) and 
Aspen Custom Modeler (from Aspen Tech Inc.). Equation oriented software tools 
however have the advantage that numerical solvers are already incorporated in the 
program and that the user only needs to concentrate on writing the set of model equations 
to describe the process unit operation. 
The emphasis in this thesis is on the equation oriented software tools gPROMS (from 
Process Systems Enterprise Ltd.) and Aspen Custom Modeler (from Aspen Tech Inc.). 
For exporting physical property packages from Aspen Plus to gPROMS and for 
interfacing  custom models developed in gPROMS with Aspen Plus the CAPE-OPEN 
standards (CAPE = computer-aided process engineering) are recently available. Aspen 
Tech developed for the interfacing of physical property packages and custom models 
between ACM and Aspen Plus its own standards.  
Since Aspen Plus and ACM are both available in the Aspen Engineering Suite (from 
Aspen Tech Inc.) released by the same software vendor, it is expected that a custom 
model of a process unit operation developed in ACM can more readily be implemented in 
Aspen Plus, than a custom model developed in gPROMS and exported as a CAPE-OPEN 
compatible model. 
 
In the next two paragraphs background information is presented of the development and 
current status of CAPE-OPEN standards for interfacing and Aspen Tech interfaces. 

4.1.1 CAPE-OPEN standards (gPROMS – Aspen Plus) 
The tools available for process simulation can be seen as process modelling environments 
which support the construction of a process model and allow the user to perform different 
tasks such as process simulation and optimisation. The process modelling environments 
can make use of various process modelling components, such as thermodynamic and 
physical properties, models of unit operations, numerical solvers and kinetic systems [1]. 
The different tools for process simulation have different strengths and weaknesses in 
software components. To obtain the best simulation and design results more than one 
simulator is usually required. This makes chemical process simulation a slow and costly 
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process. Furthermore, the advances made by research institutes and in-house specialities 
cannot readily be embedded in process modelling environments. 
In the early nineties the idea was created to combine process modelling components of 
various origins in one process modelling environment for faster and consistent process 
simulation. Two projects were initiated, partly funded by the European Community, and 
required the collaboration of users (operating companies), software vendors and 
academic institutions [20]: 

• CAPE-OPEN project (1997 - 1999): Software interoperability requires an agreed 
set of interface standards. As a consequence, the objective of this project was to 
develop open interface specifications enabling interoperability of process 
simulation components, and to demonstrate their viability through working 
prototypes.  

• Global CAPE-OPEN project (1999 - 2002): This project promoted the first 
commercial releases of CAPE-OPEN compliant process modelling environments 
and components. 

 
The outcome of these two projects led among other things in 2001 to the establishment of 
the Co-LaN organisation [21]. The Co-LaN organisation is an internationally recognised 
user-driven organisation for testing and management of the CAPE-OPEN standards. The 
Dow Chemical Company is also one of the members of Co-LaN.  

 
Figure 4.1: CO-LaN Logo [21] 

Also major process simulation software suppliers were involved in the CAPE-OPEN 
projects; therefore CAPE-OPEN (CO) compliant versions of simulation software were 
released recently or will be released in the near future. The versions of Aspen Plus used 
for this project (see section 4.2) are fully CO compliant. The current version of gPROMS 
is CO compliant for thermodynamic and physical properties modelling components. The 
‘Export to CAPE-OPEN’ functionality for developed custom models is not available in 
this version. PSE provided gPROMS alpha version 3.0 for this project, which allows the 
export of gPROMS models to CO compliant packages. In Figure 4.2 the work flow for 
exporting custom models in gPROMS is shown. 
 
Based on the release of CO compliant software packages, the first applications are 
beginning to appear. The article by H. Pingen et al. [1] published earlier this year give a 
short overview of industrial demonstrations on the functionality of the CAPE-OPEN 
standards. An example related to this project is the development of a rate-based absorber 
model by M. Pons in 2004 [23]. The absorber model is developed in gPROMS (alpha 
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version 3.0) using the Aspen Plus physical properties and afterwards it is used an 
integrated unit operation in an Aspen Plus flowsheet.  

 
Figure 4.2: Brochure of gO:CAPE-OPEN functionality in gPROMS [22] 

4.1.2 Aspen Tech interfaces (ACM – Aspen Plus) 
The various simulation software packages available in the Aspen Engineering Suite (from 
Aspen Tech Inc.) are highly integrated with each other. To be brief, this contribution only 
focuses on the integration of Aspen Custom Modeler (ACM) and Aspen Plus.  
In Figure 4.3 a schematic representation is given of the usage of a physical property 
package (property definition file) from Aspen Plus in ACM. Property information saved 
by an Aspen Plus simulation can be used in ACM for property calculations. For further 
explanation the reader is referred to the work process for physical property interfacing 
developed in Section 4.2.  
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Figure 4.3: Integration of physical property package from Aspen Plus in ACM [24] 

 
Two functionalities are available in ACM to export a custom model for implementation 
in Aspen Plus, namely flowsheet export and model export. The option in ACM for 
flowsheet export was created in the past; at the time that the functionality of model export 
didn’t yet exist. An exported flowsheet embedded in Aspen Plus is less flexible than an 
exported model. For an exported flowsheet it is impossible to change the list of 
components, the physical property package and parameters. Therefore it is recommended 
to use the functionality of model export to create an ACM user model in Aspen Plus [25]. 
In Aspen Plus numerical solvers are included to calculate the results of the exported 
ACM model block. This is in contradiction to the gPROMS CAPE-OPEN user block (see 
Figure 4.2), where the solver is included in the exported model package.     
 
Several attempts have been made to use an ACM user block in Aspen Plus. The software 
installation files of ACM contain an example of the VAM reactor. This example 
simulates a gas phase tubular reactor which is part of a process for producing vinyl 
acetate monomer (VAM) and shows the ability to use ACM to create custom models for 
usage in Aspen Plus. Recently J.A. Jara [26] developed a custom model for a multi-
tubular catalytic fixed-bed reactor in ACM and exported it into the flowsheet simulator. 
Possible issues encountered during model interfacing are not reported.   

4.2 Work processes for interfacing 
In this project work processes are developed to support future users on interfacing 
physical property packages and custom models of process unit operations. Together with 
the work processes, a plug flow model of a tube is developed in both gPROMS and ACM 
and interfaced with Aspen Plus, to show the usage of the interfaces. 
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In Appendix E work processes are created for: 
• Physical property interfacing  

 Aspen Plus 12.1   ⇒ gPROMS 2.3 (and 3.0) 
 Aspen Plus 2004.1/13.2 ⇒ Aspen Custom Modeler 2004.1/13.2 

• Unit model interfacing  
 gPROMS 3.0     ⇒ Aspen Plus 12.1 
 Aspen Custom Modeler 2004.1/13.2  ⇒ Aspen Plus 2004.1/13.2 

 
Exporting models from ACM requires a C++ compiler installed on the computer for 
creating *.msi files. However, the installation (creating a *.dll file) and the use of an 
exported custom model in Aspen Plus does not require a compiler. Since Aspen Plus 
version 2004.1/13.2 has the advantage that solvers are included to handle ACM custom 
models which do make use of group decomposition to converge, this version is used to 
develop the work processes. 
 
As already explained in the previous section, Process Systems Enterprise Ltd. provided 
gPROMS alpha version 3.0 for this project, to export gPROMS models to CAPE-OPEN 
packages (create a *.gCO file).  
 
Due to differences in interpretation of the CAPE-OPEN standards, a physical property 
package from Aspen Plus 2004.1 can not (yet) be used inside a gPROMS simulation and 
an exported CO-compliant gPROMS model can not (yet) be embedded in Aspen Plus 
2004.1. Consequently, Aspen Plus 12.1 is used to develop the work processes for the 
gPROMS/Aspen Plus interfaces. 

4.3 Current status  
In this section the work flow and issues for interfacing are reported. They are 
encountered during the development of the custom membrane model and its export to and 
implementation in Aspen Plus. The same versions of process simulation software as for 
the development of the work processes are used. The procedures and issues are divided 
into cases which have to do with physical property interfacing and with unit model 
interfacing.  

4.3.1 Physical property interface 
Work flow and issues encountered during the development of the membrane model in 
equation oriented modelling tools, where property calculations are performed by using an 
Aspen Plus physical property package: 

 Information exchange 
To call a thermodynamic or physical property from the package, information needs to be 
exchanged via the interface. In Figure 4.4 a schematic representation is given of the 
physical property package interface, from a user point of view.  The custom model has to 
give information on the conditions (temperature, pressure and composition) of the phase 
for which the property will be calculated. Together with this information, the user has to 
include the state of the phase (gas, liquid or solid) and have to specify which property (or 
procedure) is needed (see also the work processes for physical property interfacing in 
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Appendix E). As a result the physical property package returns the value of the 
thermodynamic or physical property.  
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Figure 4.4: Physical property package interface information exchange 

 
In Table 4.1 the units are given of the variables which are exchanged between the custom 
model and the physical property package. The property can be calculated on mass or 
molar basis. For the CAPE-OPEN interface the properties are returned on molar basis. In 
ACM the property is calculated on molar - or mass basis depending on the chosen 
procedure name to call the property.  
Table 4.1: Units defined for variables exchanged between model and physical property package 

 CAPE-OPEN interface Aspen Tech interface 
Temperature Kelvin Celsius 
Pressure Pascal Bar 
Component fraction mol/mol kmol/kmol 
Basis of property molar  molar or mass 

 
In both equation oriented modelling tools the component fraction is an array containing 
the number of components. The order of the components in the array is important. The 
CAPE-OPEN compliant physical property package linked to gPROMS expects to get the 
components in the component fraction array in the same order as the order which is 
defined in Aspen Plus when creating the package. In ACM, the order of the components 
is the order of the components defined in the component list (normally alphabetical 
order), which is not necessary the same as in Aspen Plus. The name of the components in 
the component list of ACM is equal to the name entered for the components in Aspen 
Plus when creating the property definition file. 
 

 Reference state enthalpy 
The custom model should use the same reference state for the enthalpy calculations as the 
physical property package. Some physical property packages include the heat of 
formation in the enthalpy values, whereas others don’t. Consistency is required to avoid 
erroneous results. Therefore care should be taken how the enthalpy reference state is 
defined in the physical property package used. The enthalpy values in physical property 
packages created by Aspen Plus do include the heat of formation. As a consequence for 
reacting systems the heat of reaction term do not have to considered explicitly in the 
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energy balance. In ACM the reference state for enthalpy can be adapted (see ACM help 
file on KBASE).  
 

 Incorporation of two or more physical property packages 
The structure of the developed custom membrane model can perfectly be used to define 
two different physical property packages for the flow through the shell and fibre side of 
the module. In gPROMS the second physical property package can be activated as done 
for the first property package (see the work process in Appendix E.1). In ACM a second 
‘Componentlist’ needs to be defined besides the default ‘Componentlist’ containing the 
first property package (see ACM help file for more information). 
 

 Pure component properties 
The calculation of pure component properties besides the calculation of the property of a 
mixture of these components is difficult to perform. For the calculation of the properties 
of pure components, a component fraction array needs to be defined for each component 
separately. For example, if a mixture contains 3 components, a array should be defined 
for the component fractions in the mixture ([0.1,0.4,0.5]), and 3 arrays for each 
component separately ([1,0,0]), [0,1,0], [0,0,1]). 

4.3.2 Unit model interface 
In Figure 4.5 and Figure 4.6 schematic pictures are given from a user point of view, 
showing the connections and exchange of information between the exported custom 
model and Aspen Plus. The work flow and issues encountered when embedding the 
exported custom membrane model in Aspen Plus can be summarized as follows: 

 Port connection 
In Aspen Plus model blocks are connected by streams representing the flow of mass or 
energy. As like the other model blocks, Aspen Plus streams can be connected to the ports 
of the custom model (see Figure 4.5 and Figure 4.6). The variables representing an Aspen 
Plus material stream are in SI units. In Table 4.2 the units of these variables are given. 
The ACM user block in Aspen Plus calculates in metric units (see also paragraph 3.2.2) 
instead of in SI units, therefore the units of the variables in the port have to be converted, 
which is done automatically. Also the CAPE-OPEN standards defined for unit model 
interfacing are different from the base unit of measurements in Aspen Plus. The port 
connection between Aspen Plus and the gPROMS CAPE-OPEN model block also 
automatically converts the units into the units defined by the CAPE-OPEN standards and 
vice versa.  
 
For the custom model developed in gPROMS it is recommended to write the model 
equations in the same units as defined by the CAPE-OPEN standards for unit model 
interfacing. Software developers from Process System Enterprise Ltd. are creating an 
option within the ‘Export to CAPE-OPEN’ functionality, where the user can choose 
between the basis (mass/molar) of the variables in the port of the custom model block 
[27].  
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Figure 4.5: gPROMS CAPE-OPEN user block in Aspen Plus 

 
Aspen Plus, like other sequential modular flowsheet simulators, solves a flowsheet by 
calculating for each model block the outlet conditions on basis of the information in the 
feed stream(s). This applies also for the custom user block. Before exporting the custom 
model, the model of the process unit operation in an equation oriented tool should be able 
to solve with specified values for the variables defined in the input ports representing the 
Aspen Plus stream. If differential balance equations are used in the custom model (as for 
the custom membrane model), the boundary conditions are preferred to be defined by the 
variables in the input ports. 
In ACM it is possible to define a condition statement, which applies if a port is not 
connected with a stream in Aspen Plus. For example, for the developed custom 
membrane model this statement can be used to define the boundary conditions for the 
‘fictional’ sweep stream, if such a stream is not connected to the user block. 
 
Table 4.2: Units of variables in stream of Aspen Plus and port of custom model block 

 Aspen Plus base unit of 
measurement 

CAPE-OPEN interface ACM base unit of 
measurement 

Flowrate kmol/s mol/s kmol/hr 
Temperature Kelvin Kelvin Celsius 
Pressure Pascal Pascal Bar 
Specific volume m3/kmol *** Not exchanged *** m3/kmol 
Specific enthalpy J/kmol J/mol GJ/kmol 
Component fraction kmol/kmol mol/mol kmol/kmol 
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 Link with physical property package 
In Figure 4.5 and Figure 4.6 it is shown that the gPROMS CAPE-OPEN user block and 
the ACM user block have different ways to define the property method used by the 
custom model in Aspen Plus. For a gPROMS CAPE-OPEN block the physical property 
method is defined by the stream connected to one of the input ports. The physical 
property method for an ACM custom model is defined in the user block itself, as for all 
other model blocks in the model library of Aspen Plus.  
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Figure 4.6: ACM user block in Aspen Plus 

 
 Solvers for custom model block in Aspen Plus 

As already reported in Section 4.1 the numerical solvers for an ACM user block are 
embedded in Aspen Plus, in contradiction to the solvers used for a gPROMS CAPE-
OPEN user block, which are solvers of gPROMS included in the model package (see also 
Figure 4.5 and 4.6). When running a simulation containing a gPROMS CAPE-OPEN 
block, gPROMS runs on the background to provide its solver routines to the block.  
In Aspen Plus version 2004.1/13.2 the user can choose between seven different solvers 
for an ACM user block, namely SPARSE, DMO, LSSQP, NSOLVE, DSPARSE, 
DLSSQP and DDMO. For the developed plug flow model and membrane model it is 
arbitrary which solver to choose. The developed custom plug flow model needs the 
DMO-solver to give correct results. For the custom membrane model it is recommended 
to use the DSPARSE-solver [25]. However the results generated in ACM for the 
membrane model are not equal to the results obtained in Aspen Plus (using the same 
design specifications and operating conditions). A reason is that solvers in Aspen Plus for 
an ACM user block are not the same solvers used in ACM. In Aspen Plus, the non-linear 
solver is used for all groups (non-linear, linear and explicit) of equations, regardless of 
their type. Aspen Tech support provided a workaround to force the solver in Aspen Plus 
to take at least one iteration step, which give more accurate results for the exported 
custom membrane model [25].  
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Besides, the solvers used in Aspen Plus to calculate the results for an ACM block (using 
block decomposition) are far from optimal; the time required for the solve the exported 
custom membrane model in Aspen plus is in the order of minutes. 
 

 Initialisation set 
As mentioned in Section 3.3 the set of model equations created for the custom membrane 
model cannot be solved in once, but several intermediate modelling steps are required to 
approach the final results. To make it possible that also the exported model will converge 
in Aspen Plus, an initialisation set is exported from ACM and gPROMS together with the 
custom model. This initialisation set contains the values of all variables near the values of 
the final result for a specific application.  
In gPROMS a ‘saved variable set’ is included in the exported model package as described 
in the work process for unit model interfacing given in Appendix E.3. For the custom 
membrane model developed in ACM a visual basic script (PreSolve) is created. This 
PreSolve script in Aspen Plus runs just before the actual run solving the equations, and 
set the values of all variables to the values defined in the script (see also the work process 
for unit model interfacing in Appendix E.4).  
As a consequence, the exported custom model can only be used for a very specific 
application in Aspen Plus. This means also that the criterion given in Section 1.1, stating 
that the exported custom model should be generic and robust, is not fulfilled. In Section 
5.2 a possible solution for this problem is given.   
 

 Design specification 
Variables and parameters defined in an ACM - or a gPROMS CAPE-OPEN - user block 
can be connected to other parameters or variables of other model of process unit 
operations in a sequential modular flowsheet simulator. A well-known example is the 
design specification in Aspen Plus. For the developed plug flow model, it has been tested 
to vary a variable of the user block by specifying an outlet condition. For an ACM user 
block, all the variables which are originally defined in ACM can be chosen. For a 
gPROMS CAPE-OPEN user block only those variables can be used which are defined as 
a model attribute in the input parameter table. Currently it is only possible to included 
variables in the model attribute table in gPROMS (alpha 3.0). In the final release also 
parameters can be included in the model attribute table [27]. 
 

 Change value for selector parameter 
The custom membrane model is developed in such a way that the model can be used to 
simulate both co-current and counter-current flow patterns. Also other equipment and 
design specification are incorporated in the membrane model, as described in Section 3.1. 
The user can choose the design specification by giving the appropriate value as a 
description to the selector in gPROMS or the selector parameter in ACM. To develop a 
generic custom membrane model which can be used for various applications, it is 
preferred to have this functionality also available in Aspen Plus. 
For an ACM custom model in Aspen Plus it is possible to change the value of a selector 
parameter. For a CAPE-OPEN user block this is not (yet) possible, in spite of the fact that 
the selector is incorporated as a model attribute in the input parameter table of the 
gPROMS CAPE-OPEN user block.  
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 Mass balance check 

For every block in a sequential modular flowsheet simulator a mass balance check is 
executed. Since more complicated models can make use of differential equations and 
numerical techniques are used to solve these equations, a small numerical error can occur 
in the total mass balance of a custom model block. Therefore it should be prevented that 
an error is generated in a sequential modular flowsheet simulator if small errors occur in 
the total mass balance of a custom model.  
 

 Displaying results of user model block in Aspen Plus 
Besides the variables in the output streams of the gPROMS CAPE-OPEN user block, no 
other results of the custom model are displayed in Aspen Plus. Especially for distributed 
parameter models it is useful to show the profiles of some other variables. Therefore it is 
preferred if a functionality is available inside Aspen Plus to display the results of a (ACM 
and gPROMS CAPE-OPEN) user model block in graphs and tables. 
 
Software programme issues for a gPROMS CAPE-OPEN Unit Object block: 

• Only model entity of gPROMS project is exported. Model specifications in the 
process entity have to be moved to the model entity if possible. The variables 
which are assigned in the process entity are recommended to incorporate them in 
the input parameter table. 

• It is possible to incorporate only one gPROMS CAPE-OPEN user model in an 
Aspen Plus flowsheet simulation. This has to do with the fact that the software 
architecture of gPROMS does not allow the run of two projects simultaneously. 

• It is not possible to rename the gPROMS CAPE-OPEN block in the Aspen Plus 
flowsheet.  

• After restarting an Aspen Plus simulation containing a gPROMS CAPE-OPEN 
block, the *.gCO file has to be opened again and the results of the block are not 
restored.  

• If input parameters (in the exported model attribute table) are changed in the 
gPROMS CAPE-OPEN block, Aspen Plus does not consider this as a change in 
the process flowsheet; ‘input changed’ is not displayed. 

• The reconnection of streams to a gPROMS CAPE-OPEN block not possible. 
• Variables defined in the input parameter table of the gPROMS CAPE-OPEN 

model block, which are defined in gPROMS as an array of the number of 
components, are not given as an array in Aspen Plus. 

 
Software programme issues for an ACM user block: 

• Reset of variables in ACM user block not possible 

4.3.3 Conclusion 
In the previous paragraphs several issues are reported, which were detected during the 
development of the custom membrane model in equation oriented modelling tools and its 
implementation as user model block in Aspen Plus. The most important issues 
encountered are: 
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 The exported custom membrane model can only be used for a specific application, 
due to the fact that an initialisation set have to be included in the exported model 
package to be able to converge the custom model in Aspen Plus. 

 Solvers in Aspen Plus for ACM user blocks are far from optimal (slow and not 
robust). Besides it is arbitrary which solver to choose for which application.  

 Aspen Plus 2004.1/13.2 and gPROMS 2.3.6 and alpha 3.0 are not compatible (for 
both physical property package and unit model interfacing). 

 Only one gPROMS CAPE-OPEN user model block can be embedded in an Aspen 
Plus simulation. 

 
Before starting with this project it was expected that a custom model of a process unit 
operation developed in ACM can more readily be implemented in Aspen Plus, than a 
custom model developed in gPROMS and exported as a CAPE-OPEN compatible model. 
However, due to the results obtained in this section, it is difficult to compare the CAPE-
OPEN standards for interfacing with the Aspen Tech interfaces. Both interfaces have its 
advantages and disadvantages, and they aren’t fully developed yet. As many issues for 
software interoperability are encountered, it can be concluded that the software packages 
aren’t ready yet for industrial application of unit model interfacing. The use of a physical 
property packages from Aspen Plus in equation oriented modelling tools is better 
developed and practical applicable.  
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5 Custom model performance in Aspen Plus 
 
In this chapter the requirements are described and examined for custom models 
embedded in a sequential modular flowsheet simulator. In the first section the 
requirements are defined. Based on the implemented functionality for unit model 
interfacing (see Chapter 4) an improved approach for model initialisation was required 
and a potential solution is presented. This approach is tested in equation oriented 
modelling tools for the custom membrane model described before. In the last section 
potential (interface) functionalities are discussed so that the proposed initialisation 
approach can be used for exported custom models in an Aspen Plus flowsheet simulation. 

5.1 Custom model performance 
The recent implementation of interface functionalities in process simulation tools enables 
the usage of a custom model of a process unit operation developed in equation oriented 
modelling tools within a sequential modular flowsheet simulator. Besides the availability 
of open interfaces another criterion is mentioned in Section 1.1 for successful 
implementation of a custom model in a sequential modular flowsheet simulator, namely 
the exported custom model should have the same performance as the models of process 
unit operations available in the model library of these programs.  
 
Custom models of process unit operations are usually developed for a specific application 
and a specific range of operating conditions. The model is often build from scratch and 
extended step by step till the model objective is satisfied and explicable results are 
obtained. Custom models are usually hard to initialise if the set of equations has to 
converge from default values defined for the variables, or in case the system deviates 
from the conditions or application for which the model has been developed originally. 
This leads to a practice that frequently only the person who developed the custom model 
knows how to use and adapt it.  
 
Since it is often not easy to initialise a custom model, the software interface 
functionalities provide the option to include an initialisation set with the model export. As 
described in Section 4.3, this initialisation set contains a set of values for all variables 
which approach the final results for a specific condition. The exact application however is 
not always known if an exported custom model is used for process design in flowsheet 
simulators. It can happen that the exported custom model is used for another application 
than for which it has been developed originally, and has therefore problems to be 
initialised properly. If possible, the custom model and its initialisation set needs to be 
adapted then in the equation oriented modelling tool and exported again. However, it can 
take a lot of time and effort to adapt the custom model for a new application. The users of 
a sequential modular flowsheet simulator do not always have sufficient knowledge of the 
custom model and/or the equation oriented modelling tools to make the required 
modifications themselves.  
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Preferably, the custom models needed in a process flowsheet simulation can be used just 
like the models which are available in the library of sequential modular flowsheet 
simulators. Consequently, the exported custom model should be able to: 

• handle a wide range of process and feed conditions,  
• be used for different equipment and design specifications, 
• handle any number of components as well as different sets of components, and 
• handle any physical property method as available in the physical property 

package used by the sequential modular flowsheet simulation software. 
With other words, the custom model has to be generic, robust and proper initialisation 
should be guaranteed for all cases. The use of an initialisation set – based on a specific 
(different) application - is not sufficient for this purpose. 
 
Initialisation of a custom model over a broad range of operation conditions, as well as for 
different applications, needs a structured approach. However, in open literature hardly 
any information is found about the initialisation of custom models for process unit 
operations. In some articles, issues mentioned are: 

• “At the time of model development it is useful to be able to use parameters and 
results of less detailed models. This will allow the use of consistent parameter 
values and can simplify the initialisation of complex models [28]”. 

• “The different versions of a model being built during a modelling project for 
model initialisation, model refinement, or different application context need to be 
documented together with their interrelationships [29]”. 

• “Reasonable initial values are provided by hand or computed, in order to improve 
initialisation and convergence of later simulation runs [30]”. 

It seems that the initialisation of a custom model is more an engineering practice/art, than 
that a systematic (academic) methodology is available. 
 
A possible approach to initialise a custom model of a process unit operation properly is to 
approach the final model step by step. These initialisation steps (or levels) have to be 
chosen in such a way that the custom model can be applied for a larger range of 
applications. By embedding the initialisation steps in the custom model itself, before 
exporting it to a sequential modular flowsheet simulator, the future user of the exported 
model will not be concerned with model initialisation. All is already taken care of by the 
model developer. To shown this approach, an initialisation structure for the developed 
custom membrane model is proposed and presented in the next section. 

5.2 Application to custom membrane model 
In Chapter 3 a start is already made to develop a generic custom model for a gas 
separation membrane unit in sequential modular flowsheet simulators. The custom model 
developed can be used for different equipment and design specifications, see Section 3.1. 
The proposed initialisation structure should be able to initialise the set of model equations 
properly for all these specifications. Besides also changes in system and process 
conditions have to be intercepted by the initialisation structure. 
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5.2.1 Initialisation structure 
In Table 5.1 a possible initialisation structure for the developed custom membrane model 
is presented. It should be mentioned that the number of variables and equations in each 
step are equal. For each modelling step a short explanation is given:  

 Level 1 
The first level of the initialisation structure is used to set the values of the 
variables equal to the inlet conditions. There is no flow of components through 
the membrane.  

 Level 2 
A pressure and temperature profile along the axial length of the membrane unit 
does not exist in this level. Consequently, the component fractions used in the 
equation to describe the transport of components through the membrane are the 
only variables in this equation which are no constants. 
Especially when the pressure drop for the flows through shell and fibre side is 
large, this level is required to initialise the custom membrane model. The equation 
for the mass transport through asymmetric membranes is equal to the equation for 
symmetric membranes. 

 Level 3 
The pressure drops for the flow through the shell side and fibres are taken into 
account from this level on. The energy balance equation to calculate a 
temperature profile along the axial length is still left out of consideration. The 
equation which describes the transport of components through the membrane is 
for symmetric membranes equal to the equation used in level 2. For asymmetric 
membranes the equation for the transport through the membrane is given as 
function of the component fraction inside the membrane, as explained in Section 
3.4. 

 Level 4 
In level 4 the differential balance equation for energy in the sub-models 
describing the flow through fibre and shell side is added. The energy balance is 
not used in an earlier level, because the custom membrane model has difficulties 
to converge if both pressure and temperature differ too much from the final 
solution.   

 Level 5 
The permeability coefficient used in the equation describing the transport of 
components through the membrane is a function of temperature. 

 
A selector in gPROMS or a selector parameter in ACM is created which contains five 
values defined for level 1 to 5. The results of each level have to be saved and loaded for 
the run of the next level. To go to the next level, the value of the selector can be changed 
manually, however it is also possible to run the 5 levels after each other without the 
intervention of the user. In gPROMS a SCHEDULE in the PROCESS entity is created 
and in ACM a visual basic script is defined. In Appendix F the implementation of these 
automated simulation processes in gPROMS and ACM is given.  
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Table 5.1: Initialisation structure for custom membrane model 
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5.2.2 Case study to test robustness initialisation structure 
The robustness of the initialisation structure developed in the previous paragraph for the 
custom membrane model has been tested. First a base case (counter-current, feed enters 
on shell side and symmetric membrane type) is defined in Appendix G. Variations 
compared to the base case are applied. The tested variations are divided into discrete 
changes, module size changes and operation changes. 
 
Discrete changes 
In Section 3.1 several options are created within the custom model for the variation in 
equipment and design specifications of the gas separation membrane unit. In Table H.1 
and Table H.2 of Appendix H the test results are given for a variation in one of the 
specifications compared to the base case defined. Also the number and set of component 
is changed.  
Table 5.2 shows the initialisation level which is required for a particular simulation. 
Without this level the model will not converge. For all the discrete changes which have 
been tested, level 3 is the critical initialisation level, except if the model is used to 
simulate a system for an asymmetric membrane type than level 2 is required.  
Table 5.2: Initialisation level required for tested simulation (rating or design)  

Variation of the … Change to Rating Design 
Base case  3 3 
Operation mode Co-current 3 3 
Feed side Fibre 3 3 
Sweep stream  With 3 3 
Membrane type Asymmetric 2 2 
Number & set of components 8 3 3 
 
These tests demonstrate that the set of model equations cannot be solved if both pressure 
and temperature profiles along the axial length of the membrane unit are taken into 
account from the first initialisation level on. 
For an asymmetric membrane the driving force for the transport of components through 
the membrane is different than for symmetric membranes (equation 3.2). The fraction of 
components inside the membrane material is included in this equation. The set of model 
equations has difficulties to converge if no initial guess is given for this fraction. It is 
chosen to use the transport equation of a symmetric membrane to initialise the simulation 
of an asymmetric membrane.  
It should be mentioned that for each test the number of discretisation intervals is 
increased to examine if the critical initialisation level is indeed necessary to initialise the 
set of model equation or can be left out due to a better accuracy of the numerical method. 
Nevertheless, all the critical initialisation levels are still required even if the number of 
discretisation intervals is increased. 
 
Module size changes 
For different applications the membrane area has to be adapted often. When the rating 
method for simulation is used, the membrane area is dependent on various equipment 
specifications, but can among other things be changed by adapting the length of the 
module. In Table H.3 of Appendix H the results are given for the simulation (with the 
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rating method) of a membrane unit for which the length varies from very small to larger 
values. If the length of the module is larger than 1.5 meters the model and its 
initialisation structure are not able anymore to converge. Two reasons can be given for 
this observation: 

• For ideal membrane systems, it is expected that the driving force for transport 
through the membrane approaches zero if the length of the membrane area is 
increased to infinity. However, the set of model equations do not reach 
equilibrium for large systems, since a driving force for transport of component 
through the membrane is always presented; the pressure drop of the permeate side 
(inside fibres) decreases more than the pressure drop of the retentate side (shell 
side). Increasing the length (or membrane area) causes that the pressure difference 
between permeate side and retentate side will also increase and equilibrium is 
never reached. Tests performed for a co-current system demonstrate this, see 
Table H.4 in Appendix H. It is important to mention that hollow fibre membrane 
units are commercial available till one meter. 

• However, for the counter-current systems tested (Table H.3 of Appendix H) such 
a large pressure drop is not reached. So, another reason is more likely for the 
failure in simulation of large membrane areas for counter-current systems. It is 
believed that counter-current systems have difficulties to converge due to the way 
of solving the set of model equations. It is tried to approach the final solution of 
the simulation with very small steps for the transport of component through the 
membrane, but even then the set of model equations cannot be solved. Increasing 
the number of discretisation intervals helps, but if the length is increased 
afterwards, the model fails again. An exact reason for this failure cannot be given, 
however this proves that the proposed initialisation structure is not responsible for 
the fact that the set of model equations cannot be solved for large membrane areas. 

 
It seems that the maximum membrane area which can be simulated for the defined base 
case is depended on the flowrate of the feed stream. To examine this dependence the 
maximum membrane area is determined for different flowrates of the feed stream using 
the design method. In Table 5.3 the results are given. It shows that the model is only 
capable to converge if the stage cut is smaller than 70%. Based on the results obtained it 
is recommended to use the developed custom membrane model for simulation of 
membrane systems where the stage cut is smaller than 65 %. 
 
Table 5.3: Maximum membrane area and stage cut for different flowrates of the feed stream 

Max. length 
(m) 

Max. stage 
cut (%)  

Flowrate 
feed (mol/s) 

Max. membrane 
area (m2) 

0.028 2 2.0 67.2 
0.139 10 2.0 67.2 
0.208 15 2.0 67.2 
0.278 21 2.1 68.1 
0.247 26 2.1 67.9 
0.417 31 2.1 67.8 
 
 
Operation changes  
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If an exported custom model is placed in a flowsheet simulation, the conditions of the 
feed stream to the membrane unit often vary. In Table H.5, Table H.6 and Table H.7 of 
Appendix H the results are given if respectively the pressure ratio, the component 
fractions and temperature of feed stream are changed compared to the base case. In Table 
5.4 the results are summarized by giving the lower and upper bound for which the 
operation conditions have been tested and the accompanying required initialisation level. 
 
Table 5.4: Operation changes, lower- and upper bound and critical initialisation level 

Lower bound Critical 
initialisation 
level 

Upper bound Critical  
initialisation 
level 

 

1 (Feed = 70 bar, 
Sweep = 69.5 bar)

35 (Feed = 70 bar, 
Sweep = 2 bar) 3 2 Pressure ratio 

0 3 0.75 3 Component fraction 
275 K 3 400 K 3 Temperature 

 
 Pressure ratio of feed and sweep stream 

Since the driving force for the transport of a component through the membrane is 
determined by the partial pressure difference between shell and fibre side, it has 
been tested if the model and the initialisation structure can handle different 
pressure ratios (defined as the ratio of the pressure of the feed stream to the 
pressure of the sweep stream). The upper bound given in Table 5.4 is imposed by 
the pressure drop inside the fibres. A pressure lower than 2 bar cannot be 
specified, because the pressure of the permeate stream will then be lower than 
zero. It is noticed that because of the relatively large pressure drop, level 2 is 
required to initialise the set of model equations for large pressure ratios. 

 Component fraction in feed stream 
The lower bound of the component fraction in the feed stream is determined 
physically. These tests proved that also trace components can be taken into 
account by the custom membrane model and its initialisation structure. The upper 
bound is restricted by the value for transport of component through the membrane. 
If the component fraction is further increased the flux through the membrane 
becomes larger than the feed stream, resulting in an infeasible system. For as well 
as the lower bound as the upper bound level 3 is the critical initialisation level.  

 Temperature of feed stream 
Due to the Arrhenius relation used to describe the temperature dependence of the 
permeability coefficient, the transport of components through the membrane 
increases if the temperature is risen. The maximum temperature which can be 
solved by the model is bounded by the stage cut. For the membrane system tested 
the temperature of the feed stream can be increased till 400 K. Above this 
temperature the stage cut hits its bound (~70%) and cannot be solve anymore. 

 
It can be concluded from the test performed that the proposed initialisation structure can 
be used to initialise the custom membrane model for a larger variety of specifications and 
operating conditions than if the initialisation structure is not used.  
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Furthermore, it appears that the set of model equation cannot be used to simulate 
membrane processes for which the stage cut is larger than 65%. More tests have to 
determine the exact constraint of the stage cut and its dependence with other variables. 
Also the reason for this constraint must be investigated. 

5.3 Initialisation structure in Aspen Plus  
The custom membrane model including the proposed initialisation structure is exported 
to Aspen Plus. The functionality of running the 5 levels of the initialisation structure after 
each other without the intervention of the user is not available for both an ACM and a 
gPROMS CAPE-OPEN user block in Aspen Plus. The ‘run’ statement in a visual basic 
script cannot be used for a ‘PreSolve’ script in Aspen Plus and the SCHEDULE in the 
PROCESS entity of a gPROMS project cannot be exported together with the custom 
model. 
Consequently, for the exported custom membrane model the selector (parameter) must be 
changed manually. However, for a gPROMS CAPE-OPEN block it is not possible to 
change the value of a selector (see Section 4.3). Thus, only for the ACM user block the 
proposed initialisation structure in Aspen Plus is tested. Together with the provided 
workaround for the solver (also described in Section 4.3) the ACM user block, containing 
the membrane model and its initialisation structure, is able to give the same results as in 
ACM without the need of an exported initialisation set for a specific application. Due to 
the numerical solver used for the ACM custom membrane model in Aspen Plus, which is 
not optimal, it takes more than half an hour to go through the 5 levels of the initialisation 
structure until the complete model is converged (for the membrane model in ACM it 
takes less than one minute). 
 
To be able to use a similar kind of initialisation structure for custom models in Aspen 
Plus, the following functionalities are preferred: 

 Automation of the initialisation structure, in order to run the different levels of the 
structure after each other without the intervention of the user. 

 A ‘smart’ solver for the custom model. Once an exported custom model is 
converged in a flowsheet simulation with the help of the complete initialisation 
structure, possibly not all initialisation levels are needed anymore for a next 
simulation run or during iterations for flowsheet model convergence (recycle 
loops, design specifications, optimization of flowsheet, etc.). To save time for 
flowsheet convergence, the ‘smart solver of the custom model should be able to 
determine the initialisation level to start with and be able to go back one or more 
levels if the initialisation fails.  
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6 Conclusion and recommendations 
 
This chapter concludes the work that has been presented in this thesis. Also 
recommendations for future research are suggested. 

6.1 Conclusion 
Equation oriented process modelling tools (gPROMS and Aspen Custom Modeler) have 
been used in this project to create a custom model of a gas separation membrane unit 
operation. This custom model is exported and interfaced with the Aspen Plus flowsheet 
simulator. The objective is that the custom membrane model can be used just like the 
library models available in Aspen Plus: i..e they can be used for a variety of applications, 
different components sets, any physical property method, and over a broad range of 
operating conditions. Several conclusions can be drawn from the research performed: 
 
Development of generic custom membrane model in gPROMS and ACM 
The custom model for a gas separation membrane unit has been developed for a hollow 
fibre membrane module. In gPROMS as well as in ACM the foundation has been laid for 
a generic and robust custom membrane model in Aspen Plus, due to the following 
software or model features: 

 Hierarchical model structure 
The custom membrane model has been developed by connecting three sub-
models with each other. The sub-models represent the flow through shell side, 
through fibre side and through the membrane. The flow through fibre and shell 
side is assumed to be a plug flow described by one-dimensional balance equations. 
The flow through the membrane is described by a transport equation using the 
solution-diffusion theory.  
This hierarchical model structure enhances the creation of several build-in 
equipment and design specifications for which a user can chose the type of 
application. Due to the hierarchical structure, the options for the flow pattern (co- 
or counter-current), the side where the feed stream enters (shell – or fibre side) 
and the type of membrane (symmetric or asymmetric) are incorporated easily in 
the custom membrane model by making use of selectors.  

 Usage external physical property package from Aspen Plus 
To be able to choose any physical property method in Aspen Plus for the 
calculation of thermodynamic and physical properties of the membrane unit, the 
calls to a physical property package has been incorporated in the custom model 
developed in the equation oriented modelling tools. The interface functionalities 
for physical property packages made it practically possible to develop the custom 
membrane model in gPROMS and ACM with an external package from Aspen 
Plus. 

 Incorporated model initialisation structure 
To be able to use the custom model for a broad range of operation conditions, as 
well as for different applications, proper initialisation should be guaranteed for all 
cases. The custom membrane model should be able to converge from the default 
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values defined for all the variables used. The language of equation oriented 
modelling tools has been used to set up an automated initialisation structure for 
the developed custom membrane model. This structure contains several 
initialisation levels in which the complexity of the model is increased step by step. 
The number of variables and equations however stays the same for each level.  
Tests proved that the proposed initialisation structure for the developed custom 
membrane model enables proper initialisation of the set of model equations for 
different applications and a broad range of process conditions. 

 
Interfacing and embedding of custom membrane model in Aspen Plus 
The developed custom membrane model has been used to examine the software interface 
functionalities and its performance in Aspen Plus.  
Issues concerning the interface functionalities which were encountered during this project 
are: 

 For gPROMS CAPE-OPEN user block 
• It is possible to incorporate only 1 gPROMS CAPE-OPEN user block 

simultaneously in an Aspen Plus simulation, because of a limitation in  the 
software architecture of gPROMS (multiple “processes” can not run at the 
same time) 

• Due to a different interpretation of the CAPE-OPEN standards, Aspen 
Plus version 2004.1 and gPROMS version 2.3.6 or alpha 3.0 are 
incompatible. 

 ACM user block 
• The numerical solver of ACM is not exported together with the set of 

model equations, in contradiction to an exported gPROMS model package. 
The solvers for an ACM user block are embedded in Aspen Plus. However 
these solvers are not optimal; it is arbitrary which solver to choose for a 
particular custom model, the solvers are very slow and not robust. 

The implemented features described above for a generic custom membrane model are not 
completely supported if the model is exported for use in Aspen Plus. The software 
functionalities required to use the automated initialisation structure (Visual Basic script in 
ACM and SCHEDULE section of PROCESS entity in gPROMS) are not supported by 
the exported custom model in Aspen Plus.  Therefore the values defined for the selector 
of the initialisation structure must be adapted manually. Besides, for a gPROMS CAPE-
OPEN user block it is not possible to change values of selectors defined in a gPROMS 
model, therefore the build-in options for equipment and design specification, and the 
initialisation level cannot be changed in Aspen Plus. 
 
Due to the issues encountered, it is clear that the software functionalities for unit model 
interfacing, defined by CAPE-OPEN standards as well as by integrated Aspen Tech 
standards, are still in its infancy. These functionalities are not sufficiently developed yet 
to be used for large scale industrial practice.  
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6.2 Future research 
Related directions for future research in the field of custom (membrane) modelling and 
interface functionalities of process simulation software are now discussed. 
 
Custom model of gas separation membrane unit  

 The custom model of a gas separation membrane unit developed in this project 
has served as a case study to improve the ability for unit model interfacing. 
Nevertheless realistic simulation results are obtained comparable with simulations 
reported in literature. To use this model for process design and simulation 
activities more test needs to be performed to investigate the results given by the 
model. Preferably the simulation results need to be compared with industrial 
operating hollow fibre membrane units.  
Also the exact boundaries for which the custom membrane model is capable to 
give feasible results has to be determined. From the test performed in this project 
it was observed that the custom membrane model can only be used if the stage cut 
is smaller than 65%.  

 Moreover, the developed custom membrane model can be extended. Other 
transport models as well as concentration polarisation can be incorporated in the 
custom model. The model can also be applied to other separations such as 
pervaporation.  
Besides process simulation, the custom membrane model can be adapted to be 
used for process control, parameter estimation and optimization activities. 

 The sub-model developed for the flow of fluid through the fibre and shell side of 
the hollow fibre module (plug flow) can easily be used to develop models for 
other process unit operations, such as adsorption columns and plug flow reactors. 
 

Interface functionalities 
 This project shows the importance of testing new software functionalities as a 

user. Although the functionalities for software interoperability do exist in the 
latest releases of process simulation tools, they are not sufficient to be used on a 
large scale yet. As a result of the issues reported in this thesis, software vendors 
are informed about the defects and shortcomings of the open interface 
functionalities. Continuous testing as a user is required to exert pressure on 
software vendors to improve the open interface functionalities for their products. 

 The development of a generic and robust custom model of a process unit 
operation requires another way of thinking for model developers than the current 
practice of custom modelling. Among other things, initialisation of the custom 
model has to be taken into account during its development. Since a practical 
methodology for initialisation is not found in literature, a potential solution is 
proposed consisting of a step by step initialisation structure. However, more 
research towards a structured methodology for model initialisation is 
recommended to support model developers to set up a generic and robust custom 
model of a process unit operation in equation oriented modelling tools. 
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 Besides a methodology to develop generic custom models with proper 
initialisation, software tools should support the functionalities which are 
necessary to embed such a custom model in sequential modular flowsheet 
simulators. Software vendors, academic institutions and the Co-LaN organisation 
need to continue to work together to find practical solutions.  
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Nomenclature 
 
A m2Cross sectional area cross

A m2Membrane area membrane

c mol/m3Molar concentration of component i i

D m Inner diameter fibre inner

m D Outer diameter fibre outer

m D Inner shell diameter module shell

E J/s Energy flux 

iaE  Activation energy of component i J/mol 
Fi Molar flux of component i mol/m2/s 

mol/s F Molar flowrate feed stream feed

mol/s F Molar flowrate permeate stream permeate

Ftotal Total molar flux mol/m2/s 
fv Friction factor Pa/m = kg/m2s2

H J/mol Specific molar enthalpy 
Ji Molar or mass flux of component i through membrane mol/m2s or kg/m2s
K m2Frictional parameter 
L m Module length 
Mflux Momentum flux kg/m2/s·m/s 

kg/m3·m/s M Momentum holdup holdup

Mweight Molar weight 10-3 kg/mol 
N Number of fibres - 

Partial pressure of component i  Pa or bar pi

Pa or bar P Pressure 
Pa or bar P Pressure feed stream feed

Pa or bar P Pressure sweep stream sweep

q Energy flux through membrane J/m2s 

iQ  Permeability of component i Various 

iQ  Permeance of component i Various 

0iQ  Permeability of component i at standard temperature Various 

jiQ ,  Various Matrix of phenomenological permeabilities 
R J/mol/K Ideal gas constant 
t s Time 
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T K Temperature 
T K Standard temperature 0

K T Temperature retentate stream retentate

 or u Velocity of component i or j u m/s i j

U J/m3Internal energy 
v m/s Velocity 

mol/mol X Molar fraction of component i i

z m Axial distance along module 
 
Greek symbols 

1/m Geometric factor β 
m Membrane thickness mδ  

φ  Pressure ratio - 
ϕ  Stage cut - 
λ  Ratio cross sectional area fibre and shell side - 

Pa·s Viscosity μ 
mol/m3Molar density of mixture ρ 

ρunit Packing density m2/m3

 ji,ξ Friction coefficient  between i and j Ns/mol/m 
 Mi ,ξ Friction coefficient  between i and membrane Ns/mol/m 

 
Subscripts 
F Fibre side - 

Component i i - 
Component j j - 

M Inside membrane - 
S Shell side - 
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Appendix A Mathematical model for gas separation 
membrane unit 

A.1 Equations in main model (for membrane geometry and 
characteristics) 
 
Geometric variables 
 
Volume of fibre and shell side 

 
LAV FcrossF ,=          (A.1) 

 
LAV ScrossS ,=          (A.2) 

 
Geometric parameter for fibre and shell side 
 

F

membrane
F VN

A
⋅

=β         (A.3) 

 

S

membrane
S V

A
=β          (A.4) 

 
Membrane characteristics 
 
Stage-cut 
 

feed

permeate

F
F

=ϕ          (A.5) 

 
Pressure ratio 

 

sweep

feed

P
P

=φ          (A.6) 

 
Packing density  
 

( )LAA
A

FcrossScross

membrane
unit

,, +
=ρ        (A.7) 

 
Ratio cross sectional area fibre and shell side  
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Scross

Fcross

A
NA

.

, ⋅
=λ          (A.8) 

 
Friction factors 
 

F

FF
Fv K

vf μ
=,  with 

32

2
inner

F
D

K =        (A.9) 

 

S

SS
Sv K

v
f

μ
=,  with       (A.10)

  

11101 −⋅=SK

 
For rating method 
 
Cross sectional area 

 
2

, 4
1

innerFcross DA π=         (A.11) 

   
22

, 4
1

4
1

outershellScross DNDA ππ −=       (A.12) 

 
      
Membrane area and thickness 
 

LDNA innermembrane π=         (A.13) 
 

innerouter
m DD −=δ         (A.14) 

 
For design method (fictional) 
 
           (A.15) 1=N
 
         (A.16) 610100 −⋅=innerD
 
 1         (A.17) =outerD
 
 1         (A.18) =shellD
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A.2 Plug flow model for flow through fibre and shell side 
 
Component balance 
 

i
ii J

z
F

Lt
c

β+
∂
∂

−=
∂
∂ 1 ]1,0(∈z )1,0[∈z     or   (A.19)

  
 
where: 
 

∑= itotal FF          (A.20) 
 

ii vcF =          (A.21) 
 

totalii FXF =          (A.22) 
 

∑= icρ          (A.23) 
 

),,( iXPTf=ρ         (A.24) 
 
Momentum balance 
 

v
fluxholdup f
z

M
Lz

P
Lt

M
−

∂

∂
−

∂
∂

−=
∂

∂ 11 ]1,0(∈z )1,0[∈z or   (A.25)    

 
where: 

 
vMM weightholdup ρ=         (A.26) 

 
vMFM weighttotalflux =         (A.27) 

 
),,( iXPTf=μ         (A.28) 

 
Energy balance 

 

q
z
E

Lt
U β+

∂
∂

−=
∂
∂ 1     ]1,0(∈z  or )1,0[∈z   (A.29) 

 
where: 
 

PHU −= ρ          (A.30) 
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HFE total=          (A.31) 

 
),,( iXPTfH =         (A.32) 

 
Boundary conditions 
 

0, =
=

ztotalintotal FF
1, =

=
ztotalintotal FF or       (A.29) 

 

0, =
=

ziini XX
1, =

=
ziini XX  or       (A.30) 

 

0=
=

zin PP
1=

=
zin PP  or      (A.31) 

 

0=
=

zin TT
1=

=
zin TT  or       (A.32) 
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A.3 Flow through membrane (transport model) 
 
Transport of components trough membrane 
 
For symmetric membranes 
 

( )SSiFFim
i

Si PXPX
Q

J ,,, −=
δ

       (A.33) 

 
For asymmetric membranes 
 

Feed = shell: ( )SSiFMim
i

Si PXPXQJ ,,, −=
δ

      (A.34) 

Feed = fibre: ( )SMiFFim
i

Si PXPXQJ ,,, −=
δ

      (A.35)

  
 
where: 
 

SiFi JJ ,, −=          (A.36) 
 

∑
=

i
i

i
Mi J

J
X ,          (A.37) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

= 0

11

0
TTR

E

ii
retentate

ia

eQQ        (A.38) 
 
Energy flux trough membrane
 
         (A.39) 

 

 

 

∑=
i

S HJq

∑−=
i

FSiF HJq ,

,,( ,MiSretentateS XPTfH =

,,( ,MiFretentateF XPTfH = )        (A.42) 

SSi,

 
         (A.40) 

where: 
 
 )        (A.41) 



Appendix B Printout custom membrane model in gPROMS and ACM 

B.1 Model in gPROMS 
 
Main model membrane unit 
 
# *** MAIN MODEL: HOLLOW FIBER MEMBRANE UNIT *** 
#===================================================================================================================================== 
PARAMETER 
# *** Global parameters *** 
    phys_prop             AS FOREIGN_OBJECT "CapeOpenThermo"       # Physical property package 
    no_components        AS INTEGER                                         # Number of components 
    R                     AS REAL     DEFAULT 8.31433                           # Gas constant [8.314 J/mol/K] 
    pi                   AS REAL     DEFAULT 3.14159                           # [3.14159] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Parameters for discretisation method *** 
    no_of_nodes          AS INTEGER  DEFAULT 50                            # Number of nodes 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Scaling factors ***  
    flow_scale            AS REAL     DEFAULT 1e-4 
    pressure_scale        AS REAL     DEFAULT 1e5 
    energy_scale          AS REAL     DEFAULT 1e6 
#===================================================================================================================================== 
DISTRIBUTION_DOMAIN 
    axial                 AS (0:1) 
#===================================================================================================================================== 
UNIT 
    fiber_side            AS PlugFlow 
    shell_side            AS PlugFlowShellNeg 
    membrane              AS Transport 
#===================================================================================================================================== 
PORT 
    feed                  AS CO_Material                             # Inlet stream of membrane module 
    sweep                 AS CO_Material                             # Inlet stream of membrane module 
    retentate             AS CO_Material                             # Outlet stream of membrane module 
    permeate              AS CO_Material                             # Outlet stream of membrane module 
#===================================================================================================================================== 
VARIABLE 
# *** Geometric variables *** 
    length                AS length                                  # Length of fibers [m] 
    inner_diameter        AS length                                  # Inner diameter of 1 fiber [m] 
    outer_diameter        AS length                                  # Outer diameter of 1 fiber [m] 
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    shell_diameter        AS length                                  # (Inner) shell diameter of membrane module [m] 
    no_of_fibers          AS no_type                               # Number of fibers in membrane module [-] 
    membrane_area        AS area                                     # Total membrane area of module [m2] 
    membrane_thickness   AS length                                  # Membrane thickness [m] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Membrane characteristics *** 
    stage_cut         AS no_type    # Stage cut (flowrate permeate / flowrate feed) 
    pressure_ratio        AS no_type    # Pressure ratio (pressure feed / pressure sweep) 
    packing_density       AS no_type    # Packing density (membrane area / total volume) [m2/m3] 
    ratio_cross_area      AS no_type    # Ratio cross area fiber to shell side 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Fricton constants *** 
    shell_fr_constant     AS no_type    # Friction parameter for shell side 
    fiber_fr_constant     AS no_type    # Friction parameter for fiber side 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Auxiliary variable *** 
    feed_rho              AS molar_density    # Molar density of feed stream [mol/m3] 
    constant_velocity     AS no_type    # Constant for velocity of feed stream [m/s] 
#===================================================================================================================================== 
SELECTOR 
    run_mode          AS ( CoCurrent, CounterCurrent ) 
    feed_side         AS ( Shell, Fiber ) 
    sim_mode          AS ( Level_1, Level_2, Level_3, Level_4, Level_5 ) 
    membr_type        AS ( Asymmetric , Symmetric ) 
    method            AS ( Rating, Design ) 
#===================================================================================================================================== 
SET 
    no_components    := phys_prop.NumberOfComponents;    
    axial            := [BFDM, 2, no_of_nodes]; 
#===================================================================================================================================== 
TOPOLOGY 
    CASE feed_side OF 
        WHEN shell: 
            feed                  = shell_side.input; 
            shell_side.output    = retentate; 
            sweep                = fiber_side.input; 
            fiber_side.output    = permeate; 
        WHEN fiber: 
            feed                  = fiber_side.input; 
            fiber_side.output    = retentate; 
            sweep                = shell_side.input; 
            shell_side.output    = permeate; 
    END 
    fiber_side.info_transport    = membrane.fiber_info; 
    membrane.shell_info          = shell_side.info_transport; 
#===================================================================================================================================== 
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EQUATION 
# *** Geometric variables *** 
    # Volume fiber and shell side 
        fiber_side.volume = fiber_side.cross_area * length; 
        shell_side.volume = shell_side.cross_area * length; 
    # Geometric parameter B for fiber and shell side (ratio of membrane surface area to volume) 
        fiber_side.B = membrane_area / no_of_fibers / fiber_side.volume; 
        shell_side.B = membrane_area / shell_side.volume; 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Membrane characteristics *** 
    stage_cut = permeate.mass_flowrate / feed.mass_flowrate; 
    pressure_ratio = feed.pressure / sweep.pressure; 
    (shell_side.cross_area + fiber_side.cross_area) * length * packing_density = membrane_area; 
    fiber_side.cross_area * no_of_fibers = shell_side.cross_area * ratio_cross_area; 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Friction factors *** 
    fiber_fr_constant       = inner_diameter^2/32; 
    shell_fr_constant       = 1e-11; 
    FOR z:=0 TO 1 DO 
        fiber_side.fr_factor(z) * fiber_fr_constant = fiber_side.viscosity(z) * fiber_side.velocity(z); 
        shell_side.fr_factor(z) * shell_fr_constant = shell_side.viscosity(z) * shell_side.velocity(z); 
    END 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Auxiliary equations to specify velocity for feed stream *** 
    feed_rho = phys_prop.VapourDensity(feed.temperature,feed.pressure,feed.mass_fraction); 
    CASE feed_side OF 
        WHEN fiber: 
            feed.mass_flowrate = feed_rho * constant_velocity * no_of_fibers * fiber_side.cross_area; 
        WHEN shell: 
            feed.mass_flowrate = feed_rho * constant_velocity * shell_side.cross_area; 
    END 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Equations for rating or design method *** 
    CASE method OF 
        WHEN rating: 
            fiber_side.cross_area   = 1/4 * pi * inner_diameter^2; 
            shell_side.cross_area   = 1/4 * pi * shell_diameter^2 - no_of_fibers * 1/4 * pi * outer_diameter^2 ; 
            membrane_area           = no_of_fibers * pi * inner_diameter * length; 
            membrane_thickness   = outer_diameter - inner_diameter; 
        WHEN design: 
            no_of_fibers             = 1; 
            inner_diameter         = 100e-6; 
            outer_diameter         = 1; 
            shell_diameter          = 1; 
    END 
#------------------------------------------------------------------------------------------------------------------------------------- 
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# *** Connection between plug flow models and transport model*** 
    # For fiber side: 
        fiber_side.info_transport.flux_mol_membr = fiber_side.flux_mol_membr; 
        fiber_side.info_transport.fraction_mol = fiber_side.fraction_mol; 
        fiber_side.info_transport.energy_flux_membr = fiber_side.energy_flux_membr; 
        fiber_side.info_transport.temperature = fiber_side.temperature; 
        fiber_side.info_transport.pressure = fiber_side.pressure;   
    # For shell side: 
        shell_side.info_transport.flux_mol_membr = shell_side.flux_mol_membr; 
        shell_side.info_transport.fraction_mol = shell_side.fraction_mol; 
        shell_side.info_transport.energy_flux_membr = shell_side.energy_flux_membr; 
        shell_side.info_transport.temperature = shell_side.temperature; 
        shell_side.info_transport.pressure = shell_side.pressure; 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Connection between model ports and plug flow models*** 
    # For fiber side     
        # Port connecntions at z = 0 
            (1/flow_scale) *  fiber_side.flux_mol_total(0) * fiber_side.cross_area * no_of_fibers = (1/flow_scale) * fiber_side.input.mass_flowrate; 
            fiber_side.fraction_mol(,0) = fiber_side.input.mass_fraction; 
            fiber_side.temperature(0) = fiber_side.input.temperature; 
            fiber_side.pressure(0) = fiber_side.input.pressure; 
            fiber_side.spec_enth_mol(0) = fiber_side.input.mass_specific_enthalpy;  
        # Port connections at z = 1 
            fiber_side.output.mass_flowrate = fiber_side.input.mass_flowrate - no_of_fibers * ( fiber_side.flux_mol_total(0) - fiber_side.flux_mol_total(1) ) * fiber_side.cross_area; 
            fiber_side.output.mass_fraction = fiber_side.fraction_mol(,1); 
            fiber_side.output.temperature = fiber_side.temperature(1); 
            fiber_side.output.mass_specific_enthalpy = fiber_side.spec_enth_mol(1);    
            fiber_side.output.pressure = fiber_side.pressure(1); 
     # For shell side 
        CASE run_mode OF 
            WHEN CoCurrent: 
                # Port connections at z = 0 
                    (1/flow_scale) * shell_side.flux_mol_total(0) * shell_side.cross_area = (1/flow_scale) * shell_side.input.mass_flowrate; 
                    shell_side.fraction_mol(,0) = shell_side.input.mass_fraction; 
                    shell_side.temperature(0) = shell_side.input.temperature; 
                    shell_side.pressure(0) = shell_side.input.pressure; 
                    shell_side.spec_enth_mol(0) = shell_side.input.mass_specific_enthalpy; 
                # Port connections at z = 1 
                    shell_side.output.mass_flowrate = shell_side.flux_mol_total(1) * shell_side.cross_area; 
                    shell_side.output.mass_fraction = shell_side.fraction_mol(,1); 
                    shell_side.output.temperature = shell_side.temperature(1); 
                    shell_side.output.mass_specific_enthalpy = shell_side.spec_enth_mol(1);    
                    shell_side.output.pressure = shell_side.pressure(1); 
            WHEN CounterCurrent: 
                # Port connections at z = 1 
                    - (1/flow_scale) * shell_side.flux_mol_total(1) * shell_side.cross_area = (1/flow_scale) * shell_side.input.mass_flowrate; 
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                    shell_side.fraction_mol(,1) = shell_side.input.mass_fraction; 
                    shell_side.temperature(1) = shell_side.input.temperature; 
                    shell_side.pressure(1) = shell_side.input.pressure; 
                    shell_side.spec_enth_mol(1) = shell_side.input.mass_specific_enthalpy; 
                # Port connections at z = 0 
                    shell_side.output.mass_flowrate = - shell_side.flux_mol_total(0) * shell_side.cross_area; 
                    shell_side.output.mass_fraction = shell_side.fraction_mol(,0); 
                    shell_side.output.temperature = shell_side.temperature(0); 
                    shell_side.output.mass_specific_enthalpy = shell_side.spec_enth_mol(0);    
                    shell_side.output.pressure = shell_side.pressure(0); 
            END 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Connection of variables *** 
    shell_side.length           = length; 
    fiber_side.length           = length; 
    membrane.membrane_thickness = membrane_thickness;   
#===================================================================================================================================== 

   70



Sub-model flow through fibre and shell side (for co-current) 
 
# *** PLUG FLOW MODEL *** 
#===================================================================================================================================== 
PARAMETER 
# *** Global parameters *** 
    phys_prop         AS FOREIGN_OBJECT "CapeOpenThermo"       # Physical property package 
    no_components     AS INTEGER                                 # Number of components 
    R                 AS REAL                                    # Gas constant [8.314 J/mol/K] 
    pi               AS REAL                                   # [3.14159] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Parameters for discretisation method *** 
    no_of_nodes       AS INTEGER                                 # Number of nodes 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Scaling factors ***  
    flow_scale       AS REAL      
    pressure_scale    AS REAL      
    energy_scale      AS REAL      
#===================================================================================================================================== 
DISTRIBUTION_DOMAIN 
    axial                 AS (0:1) 
#===================================================================================================================================== 
PORT 
    input                 AS CO_MATERIAL 
    output               AS CO_MATERIAL 
    info_transport        AS INFO_TRANSPORT 
#===================================================================================================================================== 
VARIABLE 
# *** Geometric variables *** 
    length                AS length                                # Length of fibers [m] 
    B                     AS no_type                                 # Geometric fractor [1/m] 
    cross_area            AS area                                    # Total cross sectional area of 1 side [m2] 
    volume                AS volume                                  # Total volume of 1 side [m3]   
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Variables for mass balance *** 
    conc_mol              AS DISTRIBUTION(no_components,axial)     OF molar_concentration      # Molar concentration of component i [mol/m3] 
    flux_mol              AS DISTRIBUTION(no_components,axial)     OF molar_flowrate            # Molar flux of component i [mol/m2/s] 
    flux_mol_total        AS DISTRIBUTION(axial)                    OF molar_flowrate            # Molar flux [mol/m2/s] 
    fraction_mol          AS DISTRIBUTION(no_components,axial)    OF molar_fraction            # Molefraction [mol/mol]     
    flux_mol_membr       AS DISTRIBUTION(no_components,axial)     OF no_type                   # Molar flux component i through membr [mol/m2/s] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Variables for momentum balance *** 
    pressure              AS DISTRIBUTION(axial)                    OF pressure                  # Pressure [N/m2] 
    velocity              AS DISTRIBUTION(axial)                    OF velocity                  # Velocity [m/s] 
    dens_mol              AS DISTRIBUTION(axial)                    OF molar_density             # Molar density [mol/m3] 
    momentum_holdup      AS DISTRIBUTION(axial)                    OF momentum_holdup           # Holdup of momentum [kg/m2/s] 
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    momentum_flux        AS DISTRIBUTION(axial)                    OF momentum_flow             # Momentum flux [kgm/s2] 
    viscosity             AS DISTRIBUTION(axial)                    OF viscosity                 # Viscosity [Pa.s] = [kg/m/s] 
    fr_factor             AS DISTRIBUTION(axial)                    OF no_type                  # Friction factor [Pa/m = kg/m2/s2] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Variables for energy balance *** 
    temperature           AS DISTRIBUTION(axial)                   OF temperature               # Temperature [K] 
    spec_enth_mol         AS DISTRIBUTION(axial)                    OF molar_specific_enthalpy  # Molar specific enthalpy [J/mol] 
    energy_holdup         AS DISTRIBUTION(axial)                    OF volume_energy             # Holdup of energy [J/m3] 
    energy_flux           AS DISTRIBUTION(axial)                    OF energy_rate               # Energy flux [J/s] 
    energy_flux_membr    AS DISTRIBUTION(axial)                    OF heat_flux                 # Energy flux through membr [J/m2/s] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Auxiliary variables *** 
    mol_weight            AS DISTRIBUTION(no_components,axial)     OF molecular_weight          # Molecular weight of component i [kg/kmol] 
    mol_weight_mix       AS DISTRIBUTION(axial)                    OF molecular_weight          # Molecular weight of mixture [kg/kmol]         
#===================================================================================================================================== 
SELECTOR 
    sim_mode              AS ( Level_1, Level_2, Level_3, Level_4, Level_5 ) 
#===================================================================================================================================== 
EQUATION 
# *** Balance equeations *** 
    FOR z:=0|+ TO 1 DO 
        (1/flow_scale) * flux_mol_total(z) = (1/flow_scale) * SIGMA(flux_mol(,z)); 
        CASE sim_mode OF 
            WHEN level_1: 
                 flux_mol(,z) = flux_mol(,0);  
                 pressure(z) = pressure(0); 
                 temperature(z) = temperature(0); 
            WHEN level_2: 
                 0 = - 1/length * PARTIAL(flux_mol(,z),axial) + B * flux_mol_membr(,z);    
                 pressure(z) = pressure(0); 

temperature(z) = temperature(0); 
            WHEN level_3: 
                 0 = - 1/length * PARTIAL(flux_mol(,z),axial) + B * flux_mol_membr(,z);    
                 0 = - 1/length * PARTIAL(pressure(z),axial) - 1/length * PARTIAL(momentum_flux(z),axial) - fr_factor(z); 
                 temperature(z) = temperature(0); 
            WHEN level_4: 
                 0 = - 1/length * PARTIAL(flux_mol(,z),axial) + B * flux_mol_membr(,z);    
                 0 = - 1/length * PARTIAL(pressure(z),axial) - 1/length * PARTIAL(momentum_flux(z),axial) - fr_factor(z); 
                 0 = - 1/length * PARTIAL(energy_flux(z),axial) + B * energy_flux_membr(z); 
            WHEN level_5: 
                 0 = - 1/length * PARTIAL(flux_mol(,z),axial) + B * flux_mol_membr(,z);    
                 0 = - 1/length * PARTIAL(pressure(z),axial) - 1/length * PARTIAL(momentum_flux(z),axial) - fr_factor(z); 
                 0 = - 1/length * PARTIAL(energy_flux(z),axial) + B * energy_flux_membr(z); 
 END 
    END 
# ------------------------------------------------------------------------------------------------------------------------------------ 
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# *** Auxiliary equations *** 
    FOR z:=0| TO 1| DO 
        (1/flow_scale) * flux_mol(,z) = (1/flow_scale) * velocity(z) * conc_mol(,z); 
        (1/flow_scale) * flux_mol(,z) = (1/flow_scale) * fraction_mol(,z) * flux_mol_total(z); 
        dens_mol(z) = SIGMA(conc_mol(,z)); 
        (1/pressure_scale) * momentum_holdup(z) = (1/pressure_scale) * dens_mol(z) * mol_weight_mix(z) * 1e-3 * velocity(z); 
        (1/pressure_scale) * momentum_flux(z) = (1/pressure_scale) * flux_mol_total(z) * mol_weight_mix(z) * 1e-3 * velocity(z); 
        (1/energy_scale) * energy_holdup(z) = (1/energy_scale) * ( dens_mol(z) * spec_enth_mol(z) - pressure(z) ); 
        (1/energy_scale) * energy_flux(z) = (1/energy_scale) * flux_mol_total(z) * spec_enth_mol(z); 
    END 
# ------------------------------------------------------------------------------------------------------------------------------------ 
# *** Call for physical properties *** 
    FOR z:=0 TO 1 DO 
        mol_weight(,z) = phys_prop.MolecularWeight(); 
        mol_weight_mix(z) = SIGMA(mol_weight(,z) * fraction_mol(,z)); 
        dens_mol(z) = phys_prop.VapourDensity(temperature(z),pressure(z),fraction_mol(,z)); 
        viscosity(z) = phys_prop.VapourViscosity(temperature(z),pressure(z),fraction_mol(,z)); 
    END 
    FOR z:=0| TO 1| DO 
 spec_enth_mol(z) = phys_prop.VapourEnthalpy(temperature(z),pressure(z),fraction_mol(,z)); 
    END 
#===================================================================================================================================== 
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Sub-model flow through shell side (for counter-current) 
 
# *** PLUG FLOW MODEL SHELL NEG *** 
#===================================================================================================================================== 
PARAMETER 
# *** Global parameters *** 
    phys_prop         AS FOREIGN_OBJECT "CapeOpenThermo"       # Physical property package 
    no_components     AS INTEGER                                 # Number of components 
    R                 AS REAL                                    # Gas constant [8.314 J/mol/K] 
    pi                AS REAL                                    # [3.14159] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Parameters for discretisation method *** 
    no_of_nodes       AS INTEGER                                 # Number of nodes 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Scaling factors ***  
    flow_scale        AS REAL      
    pressure_scale    AS REAL      
    energy_scale      AS REAL      
#===================================================================================================================================== 
DISTRIBUTION_DOMAIN 
    axial                 AS (0:1) 
#===================================================================================================================================== 
PORT 
    input                 AS CO_MATERIAL 
    output                AS CO_MATERIAL 
    info_transport        AS INFO_TRANSPORT 
#===================================================================================================================================== 
VARIABLE 
# *** Geometric variables *** 
    length                AS length                                  # Length of fibers [m] 
    B                     AS no_type                                # Geometric fractor [1/m] 
    cross_area            AS area                                    # Total cross sectional area of 1 side [m2] 
    volume                AS volume                                  # Total volume of 1 side [m3]   
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Variables for mass balance *** 
    conc_mol              AS DISTRIBUTION(no_components,axial)     OF molar_concentration       # Molar concentration of component i [mol/m3] 
    flux_mol              AS DISTRIBUTION(no_components,axial)     OF molar_flowrate            # Molar flux of component i [mol/m2/s] 
    flux_mol_total        AS DISTRIBUTION(axial)                    OF molar_flowrate            # Molar flux [mol/m2/s] 
    fraction_mol          AS DISTRIBUTION(no_components,axial)     OF molar_fraction            # Molefraction [mol/mol]     
    flux_mol_membr       AS DISTRIBUTION(no_components,axial)     OF no_type                   # Molar flux component i through membr [mol/m2/s] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Variables for momentum balance *** 
    pressure              AS DISTRIBUTION(axial)                    OF pressure                  # Pressure [N/m2] 
    velocity              AS DISTRIBUTION(axial)                    OF velocity                  # Velocity [m/s] 
    dens_mol              AS DISTRIBUTION(axial)                    OF molar_density             # Molar density [mol/m3] 
    momentum_holdup      AS DISTRIBUTION(axial)                    OF momentum_holdup           # Holdup of momentum [kg/m2/s] 
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    momentum_flux        AS DISTRIBUTION(axial)                    OF momentum_flow             # Momentum flux [kgm/s2] 
    viscosity             AS DISTRIBUTION(axial)                    OF viscosity                 # Viscosity [Pa.s] = [kg/m/s] 
    fr_factor             AS DISTRIBUTION(axial)                    OF no_type                   # Friction factor [Pa/m = kg/m2/s2] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Variables for energy balance *** 
    temperature           AS DISTRIBUTION(axial)                    OF temperature               # Temperature [K] 
    spec_enth_mol         AS DISTRIBUTION(axial)                    OF molar_specific_enthalpy   # Molar specific enthalpy [J/mol] 
    energy_holdup         AS DISTRIBUTION(axial)                    OF volume_energy            # Holdup of energy [J/m3] 
    energy_flux           AS DISTRIBUTION(axial)                    OF energy_rate               # Energy flux [J/s] 
    energy_flux_membr    AS DISTRIBUTION(axial)                    OF heat_flux                 # Energy flux through membr [J/m2/s] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Auxiliary variables *** 
    mol_weight            AS DISTRIBUTION(no_components,axial)    OF molecular_weight          # Molecular weight of component i [kg/kmol] 
    mol_weight_mix       AS DISTRIBUTION(axial)                    OF molecular_weight          # Molecular weight of mixture [kg/kmol]         
#===================================================================================================================================== 
SELECTOR 
    sim_mode              AS ( Level_1, Level_2, Level_3, Level_4, Level_5 ) 
#===================================================================================================================================== 
SET 
    axial := [FFDM, 2, no_of_nodes]; 
#===================================================================================================================================== 
EQUATION 
# *** Balance equeations *** 
    FOR z:=0| TO 1|- DO 
        (1/flow_scale) * flux_mol_total(z) = (1/flow_scale) * SIGMA(flux_mol(,z)); 
        CASE sim_mode OF 
            WHEN level_1: 
                flux_mol(,z) = flux_mol(,1);   
                pressure(z) = pressure(1); 
                temperature(z) = temperature(1); 
            WHEN level_2: 
                0 = - 1/length * PARTIAL(flux_mol(,z),axial) + B * flux_mol_membr(,z);    
                pressure(z) = pressure(1); 
                temperature(z) = temperature(1); 
            WHEN level_3: 
                0 = - 1/length * PARTIAL(flux_mol(,z),axial) + B * flux_mol_membr(,z);    
                0 = - 1/length * PARTIAL(pressure(z),axial) - 1/length * PARTIAL(momentum_flux(z),axial) - fr_factor(z); 
                temperature(z) = temperature(1); 
            WHEN level_4: 
                0 = - 1/length * PARTIAL(flux_mol(,z),axial) + B * flux_mol_membr(,z);    
                0 = - 1/length * PARTIAL(pressure(z),axial) - 1/length * PARTIAL(momentum_flux(z),axial) - fr_factor(z); 
                0 = - 1/length * PARTIAL(energy_flux(z),axial) + B * energy_flux_membr(z); 
            WHEN level_5: 
                0 = - 1/length * PARTIAL(flux_mol(,z),axial) + B * flux_mol_membr(,z);    
                0 = - 1/length * PARTIAL(pressure(z),axial) - 1/length * PARTIAL(momentum_flux(z),axial) - fr_factor(z); 
                0 = - 1/length * PARTIAL(energy_flux(z),axial) + B * energy_flux_membr(z); 
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 END 
    END 
# ------------------------------------------------------------------------------------------------------------------------------------ 
# *** Auxiliary equations *** 
    FOR z:=0 TO 1 DO 
        (1/flow_scale) * flux_mol(,z) = (1/flow_scale) * velocity(z) * conc_mol(,z); 
        (1/flow_scale) * flux_mol(,z) = (1/flow_scale) * fraction_mol(,z) * flux_mol_total(z); 
        dens_mol(z) = SIGMA(conc_mol(,z)); 
        (1/pressure_scale) * momentum_holdup(z) = (1/pressure_scale) * dens_mol(z) * mol_weight_mix(z) * 1e-3 * velocity(z); 
        (1/pressure_scale) * momentum_flux(z) = (1/pressure_scale) * flux_mol_total(z) * mol_weight_mix(z) * 1e-3 * velocity(z); 
        (1/energy_scale) * energy_holdup(z) = (1/energy_scale) * ( dens_mol(z) * spec_enth_mol(z) - pressure(z) ); 
        (1/energy_scale) * energy_flux(z) = (1/energy_scale) * flux_mol_total(z) * spec_enth_mol(z); 
    END 
# ------------------------------------------------------------------------------------------------------------------------------------ 
# *** Call for physical properties *** 
    FOR z:=0 TO 1 DO 
        mol_weight(,z) = phys_prop.MolecularWeight(); 
        mol_weight_mix(z) = SIGMA(mol_weight(,z) * fraction_mol(,z)); 
        dens_mol(z) = phys_prop.VapourDensity(temperature(z),pressure(z),fraction_mol(,z)); 
        viscosity(z) = phys_prop.VapourViscosity(temperature(z),pressure(z),fraction_mol(,z)); 
    END 
    FOR z:=0 TO 1 DO 
 spec_enth_mol(z) = phys_prop.VapourEnthalpy(temperature(z),pressure(z),fraction_mol(,z)); 
    END 
#===================================================================================================================================== 
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Sub-model flow/transport of components through the membrane 
 
# *** TRANSPORT MODEL *** 
#===================================================================================================================================== 
PARAMETER 
# *** Global parameters *** 
    phys_prop         AS FOREIGN_OBJECT "CapeOpenThermo"       # Physical property package 
    no_components     AS INTEGER                                 # Number of components 
    R                 AS REAL                                   # Gas constant [8.314 J/mol/K] 
    pi                AS REAL                                    # [3.14159] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Parameters for discretisation method *** 
    no_of_nodes       AS INTEGER                          # Number of nodes 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Scaling factors ***  
    flow_scale        AS REAL          
    pressure_scale    AS REAL      
    energy_scale      AS REAL      
#===================================================================================================================================== 
DISTRIBUTION_DOMAIN 
    axial                 AS (0:1) 
#===================================================================================================================================== 
PORT 
    fiber_info            AS info_transport 
    shell_info            AS info_transport 
#===================================================================================================================================== 
VARIABLE 
# *** Geometric variables *** 
    membrane_thickness   AS length 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Variables for separative character of the membrane *** 
    permeability0         AS ARRAY(no_components)        OF no_type    # Permeability [...] 
    activation_energy     AS ARRAY(no_components)        OF no_type    # Activation energy for permeability 
    temperature0          AS no_type                                    # Standard temperature 
    permeability          AS DISTRIBUTION(no_components,axial)     OF permeability                  # Permeability [...] 
#------------------------------------------------------------------------------------------------------------------------------------- 
# *** Auxiliary variables 
    fraction_mol_membr   AS DISTRIBUTION(no_components,axial)     OF molar_fraction                # Molar fraction of component i in membrane [mol/mol] 
    spec_enth_mol_fiber  AS DISTRIBUTION(axial)                    OF molar_specific_enthalpy       # Specific molar enthalpy of components in membrane [J/mol] 
    spec_enth_mol_shell  AS DISTRIBUTION(axial)                    OF molar_specific_enthalpy       # Specific molar enthalpy 
#===================================================================================================================================== 
SELECTOR 
    feed_side             AS ( Shell, Fiber ) 
    sim_mode              AS ( Level_1, Level_2, Level_3, Level_4, Level_5 ) 
    membr_type            AS ( Asymmetric , Symmetric ) 
#===================================================================================================================================== 
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EQUATION 
    FOR z:= 0 TO 1 DO 
#------------------------------------------------------------------------------------------------------------------------------------- 
        # *** Component fractions in membrane *** 
            fraction_mol_membr(,z) * SIGMA ( ABS(shell_info.flux_mol_membr(,z)) ) = ABS (shell_info.flux_mol_membr(,z)); 
#-------------------------------------------------------------------------------------------------------------------------------------     
        # *** Enthalpy of mass flux through membrane and permeability (Arrhenius funtion) *** 
            CASE feed_side OF 
                WHEN shell: 
                    (1/1e-14) * permeability(,z) = (1/1e-14) * permeability0 * exp( - activation_energy / R * ( 1 / shell_info.temperature(z) - 1 / temperature0 )) ; 
                 spec_enth_mol_fiber(z) = phys_prop.VapourEnthalpy(shell_info.temperature(z),fiber_info.pressure(z),fraction_mol_membr(,z)); 
                 spec_enth_mol_shell(z) = phys_prop.VapourEnthalpy(shell_info.temperature(z),shell_info.pressure(z),fraction_mol_membr(,z)); 
                WHEN fiber: 
                    (1/1e-14) * permeability(,z) = (1/1e-14) * permeability0 * exp( - activation_energy / R * ( 1 / fiber_info.temperature(z) - 1 / temperature0 )) ; 
                 spec_enth_mol_fiber(z) = phys_prop.VapourEnthalpy(fiber_info.temperature(z),fiber_info.pressure(z),fraction_mol_membr(,z)); 
                 spec_enth_mol_shell(z) = phys_prop.VapourEnthalpy(fiber_info.temperature(z),shell_info.pressure(z),fraction_mol_membr(,z)); 
            END 
#-------------------------------------------------------------------------------------------------------------------------------------     
        # *** Molar and energy flux through membrane: connection between two sides *** 
            (1/flow_scale) * fiber_info.flux_mol_membr(,z) = - (1/flow_scale) * shell_info.flux_mol_membr(,z); 
#-------------------------------------------------------------------------------------------------------------------------------------        
        # *** Molar flux through membrane *** 
            CASE sim_mode OF 
                WHEN level_1: 
                    shell_info.flux_mol_membr(,z) = 0; 
                WHEN level_2: 

 (1/flow_scale) * shell_info.flux_mol_membr(,z) = (1/flow_scale) * permeability0 / membrane_thickness * ( fiber_info.fraction_mol(,z) * fiber_info.pressure(z) - shell_info.fraction_mol(,z) 
* shell_info.pressure(z)); 

                WHEN level_3: 
                    CASE membr_type OF 
                        WHEN Symmetric: 

(1/flow_scale) * shell_info.flux_mol_membr(,z) = (1/flow_scale) * permeability0 / membrane_thickness * ( fiber_info.fraction_mol(,z) * fiber_info.pressure(z) - 
shell_info.fraction_mol(,z) * shell_info.pressure(z)); 

                        WHEN Asymmetric: 
                            CASE feed_side OF 
                                WHEN shell: 

(1/flow_scale) * shell_info.flux_mol_membr(,z) = (1/flow_scale) * permeability0 / membrane_thickness * ( fraction_mol_membr(,z) * fiber_info.pressure(z) - 
shell_info.fraction_mol(,z) * shell_info.pressure(z)); 

                                WHEN fiber: 
(1/flow_scale) * shell_info.flux_mol_membr(,z) = (1/flow_scale) * permeability0 / membrane_thickness * ( fiber_info.fraction_mol(,z) * fiber_info.pressure(z) - 
fraction_mol_membr(,z) * shell_info.pressure(z)); 

                            END 
                    END 
                WHEN level_4: 
                    CASE membr_type OF 
                        WHEN Symmetric: 
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(1/flow_scale) * shell_info.flux_mol_membr(,z) = (1/flow_scale) * permeability0 / membrane_thickness * ( fiber_info.fraction_mol(,z) * fiber_info.pressure(z) - 
shell_info.fraction_mol(,z) * shell_info.pressure(z)); 

                        WHEN Asymmetric: 
                            CASE feed_side OF 
                                WHEN shell: 

(1/flow_scale) * shell_info.flux_mol_membr(,z) = (1/flow_scale) * permeability0 / membrane_thickness * ( fraction_mol_membr(,z) * fiber_info.pressure(z) - 
shell_info.fraction_mol(,z) * shell_info.pressure(z)); 

                                WHEN fiber: 
(1/flow_scale) * shell_info.flux_mol_membr(,z) = (1/flow_scale) * permeability0 / membrane_thickness * ( fiber_info.fraction_mol(,z) * fiber_info.pressure(z) - 
fraction_mol_membr(,z) * shell_info.pressure(z)); 

                            END 
                    END 
                WHEN level_5: 
                    CASE membr_type OF 
                        WHEN Symmetric: 

(1/flow_scale) * shell_info.flux_mol_membr(,z) = (1/flow_scale) * permeability(,z) / membrane_thickness * ( fiber_info.fraction_mol(,z) * fiber_info.pressure(z) - 
shell_info.fraction_mol(,z) * shell_info.pressure(z)); 

                        WHEN Asymmetric: 
                            CASE feed_side OF 
                                WHEN shell: 

(1/flow_scale) * shell_info.flux_mol_membr(,z) = (1/flow_scale) * permeability(,z) / membrane_thickness * ( fraction_mol_membr(,z) * fiber_info.pressure(z) - 
shell_info.fraction_mol(,z) * shell_info.pressure(z)); 

                                WHEN fiber: 
(1/flow_scale) * shell_info.flux_mol_membr(,z) = (1/flow_scale) * permeability(,z) / membrane_thickness * ( fiber_info.fraction_mol(,z) * fiber_info.pressure(z) - 
fraction_mol_membr(,z) * shell_info.pressure(z)); 

                            END 
                    END 
            END 
#------------------------------------------------------------------------------------------------------------------------------------- 
    # *** Energy flux through membrane *** 
            shell_info.energy_flux_membr(z) = SIGMA(shell_info.flux_mol_membr(,z)) * spec_enth_mol_shell(z); 
            fiber_info.energy_flux_membr(z) = -SIGMA(shell_info.flux_mol_membr(,z)) * spec_enth_mol_fiber(z);     
    END 
#===================================================================================================================================== 
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PROCESS entity 
 
UNIT 
MembraneUnit      AS MembraneUnit 
 
SET 
MembraneUnit.phys_prop := "CapeOpenThermo::(PS)ATCOProperties.COPropertySystem.1<CompMixt>"; 
 
ASSIGN 
WITHIN MembraneUnit DO 
    Feed.mass_flowrate                := 0.1/3.6; 
    Feed.mass_fraction                := [0.50,0.25,0.20,0.05]; 
    Feed.Temperature                  := 298; 
    Feed.Pressure                     := 70e5; 
 
    Sweep.mass_flowrate               := 1e-10/3.6; 
    Sweep.mass_fraction               := [0.50,0.25,0.20,0.05]; 
    Sweep.Temperature                 := 298; 
    Sweep.Pressure                    := 10e5; 
 
    membrane.permeability0(1)        := 3.408e-12; 
    membrane.permeability0(2)        := 3.54e-14; 
    membrane.permeability0(3)        := 3.408e-14; 
    membrane.permeability0(4)        := 9.24e-14; 
    membrane.activation_energy(1)    := 10000; 
    membrane.activation_energy(2)    := 10000; 
    membrane.activation_energy(3)    := 10000; 
    membrane.activation_energy(4)    := 10000; 
    membrane.temperature0             := 298.15; 
 
# Rating method 
    #inner_diameter                    := 80e-6;        
    #outer_diameter                    := 200e-6;          
    #shell_diameter                    := 0.075;        
    #no_of_fibers                      := 50000;   
    #length                            := 0.5; 
 
# Design method 
    packing_density                   := 4500;              
    ratio_cross_area                  := 0.1;           
    membrane_thickness                := 100e-6; 
    membrane_area                     := 2;  
    constant_velocity       := 0.05; 
END 
 
SELECTOR 
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    MembraneUnit.method                := MembraneUnit.Design; 
    MembraneUnit.run_mode              := MembraneUnit.CounterCurrent; 
    MembraneUnit.feed_side             := MembraneUnit.shell; 
    MembraneUnit.membrane.feed_side    := MembraneUnit.membrane.shell; 
    MembraneUnit.membrane.membr_type   := MembraneUnit.membrane.symmetric; 
    MembraneUnit.shell_side.sim_mode   := MembraneUnit.Shell_side.level_1; 
    MembraneUnit.fiber_side.sim_mode   := MembraneUnit.Fiber_side.level_1; 
    MembraneUnit.membrane.sim_mode     := MembraneUnit.membrane.level_1; 
 
SCHEDULE 
    SEQUENCE 
        SWITCH 
           MembraneUnit.shell_side.sim_mode  := MembraneUnit.shell_side.level_2; 
    MembraneUnit.fiber_side.sim_mode  := MembraneUnit.fiber_side.level_2; 
    MembraneUnit.membrane.sim_mode    := MembraneUnit.membrane.level_2; 
        END 
        SWITCH 
    MembraneUnit.shell_side.sim_mode  := MembraneUnit.shell_side.level_3; 
    MembraneUnit.fiber_side.sim_mode  := MembraneUnit.fiber_side.level_3; 
    MembraneUnit.membrane.sim_mode    := MembraneUnit.membrane.level_3; 
        END 
 SWITCH 
    MembraneUnit.shell_side.sim_mode  := MembraneUnit.shell_side.level_4; 
    MembraneUnit.fiber_side.sim_mode  := MembraneUnit.fiber_side.level_4; 
    MembraneUnit.membrane.sim_mode    := MembraneUnit.membrane.level_4; 
        END 
 SWITCH 
    MembraneUnit.shell_side.sim_mode  := MembraneUnit.shell_side.level_5; 
    MembraneUnit.fiber_side.sim_mode  := MembraneUnit.fiber_side.level_5; 
    MembraneUnit.membrane.sim_mode    := MembraneUnit.membrane.level_5; 
        END 
    END 
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B.2 Model in ACM 
 
Main model membrane unit 
 
Model MembraneUnit 
//============================================================================================================================================== 
// PARAMETER DEFINTION 
// *** Global parameters *** 
 R    as global RealParameter; // Gas constant [8.314 J/mol/K] 
 pi    as global RealParameter; // [3.14159] 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Parameters for discretisation method *** 
 no_of_nodes   as global IntegerParameter; // Number of nodes 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Scaling factors *** 
 flow_scale    as global RealParameter; // Scaling factor 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Unit conversion factors ***  
 hr_to_s    as global RealParameter; // Conversion factor time: hours to seconds 
 bar_to_Pa    as global RealParameter; // Conversion factor pressure: bar to Pascal 
 cP_to_Pas    as global RealParameter; // Conversion factor viscosity: cP to Pa.s 
 GJ_to_J    as global RealParameter; // Conversion factor energy: GJ to J 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Defintion of parameters for run mode, feed side and simulation mode *** 
 run_mode     as global RunMode;  // Parameter to change the operation mode: "CoCurrent" or "CounterCurrent" 
 feed_side     as global FeedSide;  // Parameter to change the feed side: "Shell" or "Fiber" 
 sim_mode     as global SimMode;  // Parameter to change level of model: "Level_1" to "Level_5" 
 membr_type   as global MembrType; // Parameter to change membrane type: "Symmetric" or "Asymmetric" 
 method    as global Meth;  // Parameter to change method: "Rating" or "Design" 
//============================================================================================================================================== 
// PORT DEFINITION 
 feed    as input MoleFractionPort; // Inlet stream of membrane module 
 sweep    as input MoleFractionPort; // Inlet stream of membrane module 
 retentate    as output MoleFractionPort; // Outlet stream of membrane module 
 permeate    as output MoleFractionPort; // Outlet stream of membrane module 
//============================================================================================================================================== 
// DISTRIBUTION DOMAIN DEFINITION 
 axial    as LengthDomain (Length:1, SpacingPreference: 1/no_of_nodes, DiscretizationMethod: "BFD2", HighestOrderDerivative: 1); 
//============================================================================================================================================== 
// DOMAIN SET DEFINITION 
 Nset    as global Integerset; 
//============================================================================================================================================== 
// UNIT DEFINITION 
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 membrane    as Transport; 
 fiber_side    as Plugflow; 
 shell_side     as Plugflow; 
//============================================================================================================================================== 
// VARIABLE DEFINITION 
// *** Geometric variables *** 
 length    as length;   // Length of fibers [m] 
 inner_diameter   as length;   // Inner diameter of 1 fiber [m] 
 outer_diameter   as length;   // Outer diameter of 1 fiber [m] 
 shell_diameter   as length;   // (Inner) shell diameter of membrane module [m] 
 no_of_fibers   as notype;   // Number of fibers in membrane module [-] 
 membrane_area   as area;   // Total membrane area of module [m2] 
 membrane_thickness   as length;   // Membrane thickness [m] 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Membrane characteristics *** 
 stage_cut    as notype;   // Stage cut (flowrate permeate / flowrate feed) 
 pressure_ratio   as notype;   // Pressure ratio (pressure feed / pressure sweep) [m2/m3] 
 packing_density   as notype;   // Packing density (membrane area / total volume) 
 ratio_cross_area   as notype;    // Ratio cross area fiber to shell side 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Friction constants *** 
 shell_fr_constant   as notype;   // Friction parameter for shell side 
 fiber_fr_constant   as notype;   // Friction parameter for fiber side 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Auxiliary variables *** 
 sweep_rho    as dens_mol;  // Molar density of sweep stream [mol/m3] 
 feed_rho    as dens_mol;  // Molar density of feed stream [mol/m3] 
 constant_velocity   as notype;   // Constant for velocity of feed stream [m/s] 
//============================================================================================================================================== 
// EQUATIONS 
// *** Topology: connection of the submodels *** 
 If feed_side == "Shell" then 
  LINK feed    AND shell_side.import; 
  LINK sweep    AND fiber_side.import; 
  LINK retentate    AND shell_side.export; 
  LINK permeate    AND fiber_side.export; 
 elseif feed_side == "Fiber" then 
  LINK feed    AND fiber_side.import; 
  LINK sweep    AND shell_side.import; 
  LINK retentate    AND fiber_side.export; 
  LINK permeate    AND shell_side.export; 
 Endif 
 
 CONNECT fiber_side.info_transport   AND membrane.fiber_info; 
 CONNECT fiber_side.result_transport   AND membrane.fiber_result; 
 CONNECT shell_side.info_transport   AND membrane.shell_info; 
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 CONNECT shell_side.result_transport   AND membrane.shell_result; 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Boundary conditions if sweep stream is not connected to membrane model block *** 
 If not sweep.isconnected then 
  sweep.F.spec    : fixed; 
  sweep.F.value    : 1e-10; 
  sweep.P.spec    : fixed; 
  sweep.P.value    : 11.23; 
  sweep.T.spec    : fixed; 
  sweep.T.value    : feed.T.value;  
  sweep.Z(componentlist).spec   : fixed; 
  sweep.Z(componentlist).value   : feed.F.value; 
  call(sweep.h) = pEnth_Mol_Vap (sweep.T,sweep.P,sweep.Z); 
  call(sweep_rho) = pDens_Mol_Vap (sweep.T,sweep.P,sweep.Z); 
  sweep.V * sweep_rho = 1; 
 Endif 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Equations for geometric variables *** 
 // Volume shell and fibre side 
  fiber_side.volume_ = fiber_side.cross_area * length; 
  shell_side.volume_ = shell_side.cross_area * length; 
 // Geometric parameter B (ratio of membrane surface area to volume) 
  fiber_side.B = membrane_area / no_of_fibers / fiber_side.volume_; 
  shell_side.B = membrane_area / shell_side.volume_; 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Membrane characteristics *** 
 stage_cut = permeate.F / feed.F; 
 pressure_ratio = feed.P / sweep.P; 
 (shell_side.cross_area + fiber_side.cross_area) * length * packing_density = membrane_area; 
 fiber_side.cross_area * no_of_fibers = shell_side.cross_area * ratio_cross_area; 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Fiction factors 
 fiber_fr_constant = inner_diameter^2 / 32; 
 shell_fr_constant = 1e-11; 
 For z in Nset do 
  fiber_side.fr_factor(z) * fiber_fr_constant = fiber_side.viscosity_(z) * cP_to_Pas * fiber_side.velocity_(z); 
  shell_side.fr_factor(z) * shell_fr_constant = shell_side.viscosity_(z) * cP_to_Pas * shell_side.velocity_(z); 
 Endfor 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Auxiliary equations to specify velocity for feed stream *** 
 call(feed_rho) = pDens_Mol_Vap (feed.T,feed.P,feed.Z); 
 If feed_side == "Fiber" then 
  feed.F = feed_rho * constant_velocity * hr_to_s * fiber_side.cross_area; 
 elseif feed_side == "Shell" then 
  feed.F = feed_rho * constant_velocity * hr_to_s * shell_side.cross_area; 
 Endif 
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//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Equations for rating or design method 
 If method == "Rating" then 
  inner_diameter.spec   : fixed; 
  inner_diameter.value   : 80e-6; 
  outer_diameter.spec   : fixed; 
  outer_diameter.value   : 200e-6; 
  shell_diameter.spec   : fixed; 
  shell_diameter.value   : 0.075; 
  no_of_fibers.spec   : fixed; 
  no_of_fibers.value   : 50000; 
  length.spec   : fixed; 
  length.value   : 0.5; 
 
  fiber_side.cross_area = 1/4 * pi * inner_diameter^2; 
  shell_side.cross_area = 1/4 * pi * shell_diameter^2 - no_of_fibers * 1/4 * pi * outer_diameter^2; 
  membrane_area = no_of_fibers * pi * inner_diameter * length; 
  membrane_thickness = outer_diameter - inner_diameter; 
 
 elseif method == "Design" then 
  packing_density.spec  : fixed; 
  packing_density.value  : 4500; 
  ratio_cross_area.spec  : fixed; 
  ratio_cross_area.value  : 0.1; 
  membrane_thickness.spec : fixed; 
  membrane_thickness.value : 100e-6; 
  membrane_area.spec  : fixed; 
  membrane_area.value  : 5; 
  constant_velocity  : fixed; 
  constant_velocity  : 0.05; 
     
  no_of_fibers.spec  : fixed; 
  no_of_fibers.value  : 1; 
  inner_diameter.spec   : fixed; 
  inner_diameter.value   : 100e-6; 
  outer_diameter.spec  : fixed; 
  outer_diameter.value  : 1; 
  shell_diameter.spec  : fixed; 
  shell_diameter.value  : 1; 
 Endif 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Connection between plug flow models and transport model*** 
 For z in Nset do 
  // for fiber side: 
   fiber_side.fraction_mol(componentlist)(z) = fiber_side.info_transport.fraction_mol(componentlist)(z); 
   fiber_side.pressure_(z) = fiber_side.info_transport.pressure_(z); 
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   fiber_side.temperature_(z) = fiber_side.info_transport.temperature_(z); 
   (1/flow_scale) * fiber_side.flux_mol_membr(componentlist)(z) = (1/flow_scale) * fiber_side.result_transport.flux_mol_membr(componentlist)(z); 
   (1/flow_scale) * fiber_side.energy_flux_membr(z) = (1/flow_scale) * fiber_side.result_transport.energy_flux_membr(z); 
  // for shell side: 
   shell_side.fraction_mol(componentlist)(z) = shell_side.info_transport.fraction_mol(componentlist)(z); 
   shell_side.pressure_(z) = shell_side.info_transport.pressure_(z); 
   shell_side.temperature_(z) = shell_side.info_transport.temperature_(z); 
   (1/flow_scale) * shell_side.flux_mol_membr(componentlist)(z) = (1/flow_scale) * shell_side.result_transport.flux_mol_membr(componentlist)(z); 
   (1/flow_scale) * shell_side.energy_flux_membr(z) = (1/flow_scale) * shell_side.result_transport.energy_flux_membr(z); 
 Endfor 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Connection between model ports and plug flow models *** 
 // for fiber side 
  fiber_side.axial.DiscretizationMethod : "BFD2" ; 
  fiber_side.axial.SpacingPreference: 1/no_of_nodes; 
  fiber_side.NsetMod : [axial.interior + axial.endnode]; 
  // Port connections at z = 0 
   (1/flow_scale) * fiber_side.import.F = (1/flow_scale) * fiber_side.flux_mol_total.value(0) * fiber_side.cross_area * no_of_fibers ; 
   fiber_side.import.Z = fiber_side.fraction_mol.value(0); 
   fiber_side.import.T = fiber_side.temperature_.value(0); 
   fiber_side.import.P = fiber_side.pressure_.value(0); 
   fiber_side.import.h = fiber_side.spec_enth_mol.value(0); 
   fiber_side.import.V * fiber_side.dens_mol_.value(0) = 1; 
  // Port connections at z = 1 

(1/flow_scale) * fiber_side.export.F = (1/flow_scale) * (fiber_side.import.F - no_of_fibers * (fiber_side.flux_mol_total.value(0) - 
fiber_side.flux_mol_total.value(axial.endnode)) * fiber_side.cross_area); 

   fiber_side.export.Z = fiber_side.fraction_mol.value(axial.endnode); 
   fiber_side.export.T = fiber_side.temperature_.value(axial.endnode); 
   fiber_side.export.P = fiber_side.pressure_.value(axial.endnode); 
   fiber_side.export.h = fiber_side.spec_enth_mol.value(axial.endnode); 
   fiber_side.export.V * fiber_side.dens_mol_.value(axial.endnode) = 1;  
 // for shell side 
  If run_mode == "CoCurrent" then 
   shell_side.axial.DiscretizationMethod: "BFD2" ; 
   shell_side.axial.SpacingPreference: 1/no_of_nodes; 
   shell_side.NsetMod : [axial.interior + axial.endnode]; 
   // Port connections at z = 0 
    (1/flow_scale) * shell_side.import.F = (1/flow_scale) * shell_side.flux_mol_total.value(0) * shell_side.cross_area; 
    shell_side.import.Z = shell_side.fraction_mol.value(0); 
    shell_side.import.T = shell_side.temperature_.value(0); 
    shell_side.import.P = shell_side.pressure_.value(0); 
    shell_side.import.h = shell_side.spec_enth_mol.value(0); 
    shell_side.import.V * shell_side.dens_mol_.value(0) = 1; 
   // Port connections at z = 1 
    (1/flow_scale) * shell_side.export.F = (1/flow_scale) * shell_side.flux_mol_total.value(axial.endnode) * shell_side.cross_area; 
    shell_side.export.Z = shell_side.fraction_mol.value(axial.endnode); 
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    shell_side.export.T = shell_side.temperature_.value(axial.endnode); 
    shell_side.export.P = shell_side.pressure_.value(axial.endnode); 
    shell_side.export.h = shell_side.spec_enth_mol.value(axial.endnode);  
    shell_side.export.V * shell_side.dens_mol_.value(axial.endnode) = 1; 
  elseif run_mode == "Countercurrent" then 
   shell_side.axial.DiscretizationMethod: "FFD2" ; 
   shell_side.axial.SpacingPreference: 1/no_of_nodes; 
   shell_side.NsetMod : [0 + axial.interior]; 
   // Port connections at z = 1 
    (1/flow_scale) * shell_side.import.F = - (1/flow_scale) * shell_side.flux_mol_total.value(axial.endnode) * shell_side.cross_area; 
    shell_side.import.Z = shell_side.fraction_mol.value(axial.endnode); 
    shell_side.import.T = shell_side.temperature_.value(axial.endnode); 
    shell_side.import.P = shell_side.pressure_.value(axial.endnode); 
    shell_side.import.h = shell_side.spec_enth_mol.value(axial.endnode); 
    shell_side.import.V * shell_side.dens_mol_.value(axial.endnode) = 1; 
   // Port connections at z = 0 
    (1/flow_scale) * shell_side.export.F = - (1/flow_scale) * shell_side.flux_mol_total.value(0) * shell_side.cross_area; 
    shell_side.export.Z = shell_side.fraction_mol.value(0); 
    shell_side.export.T = shell_side.temperature_.value(0); 
    shell_side.export.P = shell_side.pressure_.value(0); 
    shell_side.export.h = shell_side.spec_enth_mol.value(0);  
    shell_side.export.V * shell_side.dens_mol_.value(0) = 1; 
  Endif; 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Connection of variables *** 
 shell_side.length = length; 
 fiber_side.length = length; 
 membrane.membrane_thickness = membrane_thickness; 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
End 
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Sub-model flow through fibre and shell side 
 
Model PlugFlow 
//============================================================================================================================================== 
// PARAMETER DEFINTION 
// *** Global parameters *** 
 R    as global RealParameter;  // Gas constant [8.314 J/mol/K] 
 pi    as global RealParameter;  // [3.14159] 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Parameters for discretisation method *** 
 no_of_nodes   as global IntegerParameter;  // Number of nodes 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Scaling factors *** 
 flow_scale    as global RealParameter;  // Scaling factor 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Unit conversion factors ***  
 hr_to_s    as global RealParameter;  // Conversion factor time: hours to seconds 
 bar_to_Pa    as global RealParameter;  // Conversion factor pressure: bar to Pascal 
 cP_to_Pas    as global RealParameter;  // Conversion factor viscosity: cP to Pa.s 
 GJ_to_J    as global RealParameter;  // Conversion factor energy: GJ to J 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Defintion of simulation mode *** 
 sim_mode     as global SimMode;   // Parameter to change level of model 
//============================================================================================================================================== 
// PORT DEFINITION (cannot define port with bi-direction) 
 import    as input  MoleFractionPort; 
 export    as output MoleFractionPort; 
 info_transport   as output InfoTransport; 
 result_transport   as input  ResultTransport; 
//============================================================================================================================================== 
// DISTRIBUTION DOMAIN DEFINITION 
 axial    as LengthDomain; 
//============================================================================================================================================== 
// DOMAIN SET DEFINITION 
 Nset    as global Integerset; 
 NsetMod    as Integerset; 
//============================================================================================================================================== 
// VARIABLE DEFINITION 
// *** Geometric variables *** 
 length    as length;    // Length of fibers [m] 
 B    as notype;     // Geometric factor [1/m] 
 cross_area    as area;    // Total cross sectional area of 1 side [m2] 
 volume_    as volume;    // Total volume of 1 side [m3] 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Variables for mass balance *** 
 conc_mol(componentlist)  as Distribution1D (XDomain is axial) of conc_mole (initial); // Molar concentration of component i [kmol/m3] 
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 flux_mol(componentlist)  as Distribution1D (XDomain is axial) of notype;   // Molar flux of component i [kmol/m2/hr] 
 flux_mol_total   as Distribution1D (XDomain is axial) of notype;   // Molar flux [kmol/m2/hr] 
 fraction_mol(componentlist)   as Distribution1D (XDomain is axial) of molefraction;  // Molefraction [kmol/kmol] 
 flux_mol_membr(componentlist)  as Distribution1D (XDomain is axial) of notype;   // Molar flux component i through membr [kmol/m2/hr] 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Variables for momentum balance *** 
 pressure_    as Distribution1D (XDomain is axial) of pressure;  // Pressure [bar] 
 velocity_    as Distribution1D (XDomain is axial) of velocity_rev;  // Velocity [m/s] 
 dens_mol_    as Distribution1D (XDomain is axial) of dens_mol;  // Molar density [kmol/m3] 
 momentum_holdup   as Distribution1D (XDomain is axial)  of notype (initial);  // Holdup of momentum [kg/m3*m/s] 
 momentum_flux   as Distribution1D (XDomain is axial) of notype;   // Momentum flux [kg/m2/hr*m/s] 
 viscosity_    as Distribution1D (XDomain is axial) of viscosity;  // Viscosity [0.001 * cP = Pa*s] 
 fr_factor    as Distribution1D (XDomain is axial) of notype;   // Friction factor [Pa/m = kg/m2/s2] 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Variables for energy balance *** 
 temperature_   as Distribution1D (XDomain is axial) of temperature;  // Temperature [C] 
 spec_enth_mol   as Distribution1D (XDomain is axial) of enth_mol;  // Molar specific enthalpy [GJ/kmol] 
 energy_holdup   as Distribution1D (XDomain is axial) of notype (initial);  // Holdup of energy [GJ/m3] 
 energy_flux   as Distribution1D (XDomain is axial) of notype;   // Energy flux [GJ/m2/hr] 
 energy_flux_membr   as Distribution1D (XDomain is axial) of notype;   // Energy flux through membr [GJ/m2/hr] 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Auxiliary variables *** 
 mol_weight_mix   as Distribution1D (XDomain is axial) of molweight;  // Molecular weight of mixture [kg/kmol] 
//============================================================================================================================================== 
// EQUATIONS 
// *** Balance equations *** 
 For z in NsetMod do 
  flux_mol_total(z) = SIGMA(flux_mol(Componentlist)(z));  
  If sim_mode == "level_1" then 
   flux_mol(componentlist)(z).ddx = 0; 
   pressure_(z) = import.P; 
   temperature_(z) = import.T; 
  elseif sim_mode == "level_2" then 
   (1/flow_scale) * $conc_mol(componentlist)(z) = (1/flow_scale) * (- 1/length * flux_mol(componentlist)(z).ddx + B * flux_mol_membr(componentlist)(z)); 
   pressure_(z) = import.P; 
   temperature_(z) = import.T; 
  elseif sim_mode == "level_3" then 
   (1/flow_scale) * $conc_mol(componentlist)(z) = (1/flow_scale) * (- 1/length * flux_mol(componentlist)(z).ddx + B * flux_mol_membr(componentlist)(z)); 
   $momentum_holdup(z) = - bar_to_Pa * hr_to_s * 1/length * pressure_(z).ddx - 1/length * momentum_flux(z).ddx - hr_to_s * fr_factor(z); 
   temperature_(z) = import.T; 
  elseif sim_mode == "level_4" then 
   (1/flow_scale) * $conc_mol(componentlist)(z) = (1/flow_scale) * (- 1/length * flux_mol(componentlist)(z).ddx + B * flux_mol_membr(componentlist)(z)); 
   $momentum_holdup(z) = - bar_to_Pa * hr_to_s * 1/length * pressure_(z).ddx - 1/length * momentum_flux(z).ddx - hr_to_s * fr_factor(z); 
   $energy_holdup(z) = - 1/length * energy_flux(z).ddx + B * energy_flux_membr(z); 
  elseif sim_mode == "level_5" then 
   (1/flow_scale) * $conc_mol(componentlist)(z) = (1/flow_scale) * (- 1/length * flux_mol(componentlist)(z).ddx + B * flux_mol_membr(componentlist)(z)); 
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   $momentum_holdup(z) = - bar_to_Pa * hr_to_s * 1/length * pressure_(z).ddx - 1/length * momentum_flux(z).ddx - hr_to_s * fr_factor(z); 
   $energy_holdup(z) = - 1/length * energy_flux(z).ddx + B * energy_flux_membr(z);  
  Endif 
 Endfor 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Auxilary equations *** 
 For z in Nset do 
  flux_mol(componentlist)(z) = hr_to_s * velocity_(z) * conc_mol(componentlist)(z); 
  flux_mol(componentlist)(z) = fraction_mol(componentlist)(z) * flux_mol_total(z); 
  dens_mol_(z) = SIGMA(conc_mol(componentlist)(z)); 
  momentum_holdup(z) = dens_mol_(z) * mol_weight_mix(z) * velocity_(z); 
  momentum_flux(z) = mol_weight_mix(z) * abs(flux_mol_total(z)) * velocity_(z); 
  energy_holdup(z) = dens_mol_(z) * spec_enth_mol(z) - bar_to_Pa * 1/GJ_to_J * pressure_(z); 
  energy_flux(z) = flux_mol_total(z) * spec_enth_mol(z); 
 Endfor 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Call for physical properties *** 
 For z in Nset do 
  call(mol_weight_mix(z)) = pMolWeight(fraction_mol.value(z)); 
  call(viscosity_(z)) = pVisc_Vap(temperature_.value(z),pressure_.value(z),fraction_mol.value(z)); 
 Endfor 
 For z in Nset do 
  call(spec_enth_mol(z)) = pEnth_Mol_Vap(temperature_.value(z),pressure_.value(z),fraction_mol.value(z)); 
  call(dens_mol_(z)) = pDens_Mol_Vap(temperature_.value(z),pressure_.value(z),fraction_mol.value(z)); 
 Endfor 
//============================================================================================================================================== 
End 
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Sub-model flow/transport of components through the membrane 
 
Model Transport 
//============================================================================================================================================== 
// PARAMETER DEFINTION 
// *** Global parameters *** 
 R    as global RealParameter;  // Gas constant [8.314 J/mol/K] 
 pi    as global RealParameter;  // [3.14159] 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Parameters for discretisation method *** 
 no_of_nodes   as global IntegerParameter;  // Number of nodes 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Scaling factors *** 
 flow_scale    as global RealParameter;  // Scaling factor 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Unit conversion factors ***  
 hr_to_s    as global RealParameter;  // Conversion factor time: hours to seconds 
 bar_to_Pa    as global RealParameter;  // Conversion factor pressure: bar to Pascal 
 cP_to_Pas    as global RealParameter;  // Conversion factor viscosity: cP to Pa.s 
 GJ_to_J    as global RealParameter;  // Conversion factor energy: GJ to J 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Defintion of parameters for feed side and simulation mode *** 
 feed_side     as global FeedSide;   // 
 sim_mode     as global SimMode;   // Parameter to change level of model 
 membr_type   as global MembrType;  // Parameter to change membrane type: "Symmetric" or "Asymmetric" 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Parameters for separative character of the membrane *** 
 permeability0(componentlist)   as RealParameter;   // Permeability at T0 
 permeability0(componentlist)   : 1e-14;  
 activation_energy(componentlist) as RealParameter;   // Activation energy [J/mol] 
 activation_energy(componentlist) : 10000;  
 temperature0   as RealParameter;   // Standard temperature [C] 
 temperature0    : 25; 
//============================================================================================================================================== 
// PORT DEFINITION 
 shell_info    as input  InfoTransport; 
 shell_result   as output ResultTransport; 
 fiber_info    as input  InfoTransport; 
 fiber_result   as output ResultTransport; 
//============================================================================================================================================== 
// DISTRIBUTION DOMAIN DEFINITION 
 axial    as external LengthDomain; 
//============================================================================================================================================== 
// DOMAIN SET DEFINITION 
 Nset    as global Integerset; 
//============================================================================================================================================== 
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// VARIABLE DEFINITION 
// *** Geometric variables 
 membrane_thickness   as area;    // Membrane thickness [m] 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Variable for separative character of the membrane *** 
 permeability(componentlist)  as Distribution1D(XDomain is axial) of notype; // Permeability 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
// *** Auxiliary variables 
 fraction_mol_membr(componentlist) as Distribution1D(XDomain is axial) of molefraction; // Molar fraction of component i in membrane [kmol/kmol] 
 spec_enth_mol_fiber   as Distribution1D(XDomain is axial) of enth_mol; // Specific molar enthalpy of flux trough membr [GJ/mol] 
 spec_enth_mol_shell   as Distribution1D(XDomain is axial) of enth_mol; // Specific molar enthalpy of flux trough membr [GJ/mol] 
//============================================================================================================================================== 
// EQUATIONS 
 For z in 0 + axial.interior + axial.endnode do 
  // *** Component fractions in membrane and enthalpy of mass flux*** 
                 fraction_mol_membr(componentlist)(z) * SIGMA (ABS(shell_result.flux_mol_membr(componentlist)(z)) ) = ABS (shell_result.flux_mol_membr(componentlist)(z)) ; 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  // *** Permeability (Arrhenius funtion) *** 
   If feed_side == "Shell" then 

(1/1e-14) * permeability(componentlist)(z) = (1/1e-14) * permeability0(componentlist) * exp ( - activation_energy(componentlist) / R * ( 1 / 
(shell_info.temperature_(z) + 273.15) - 1 / (temperature0 + 273.15) ) ); 

             call(spec_enth_mol_fiber(z)) = pEnth_Mol_Vap(shell_info.temperature_(z),fiber_info.pressure_(z),fraction_mol_membr(componentlist)(z)); 
    call(spec_enth_mol_shell(z)) = pEnth_Mol_Vap(shell_info.temperature_(z),shell_info.pressure_(z),fraction_mol_membr(componentlist)(z)); 
   elseif feed_side == "Fiber" then 

(1/1e-14) * permeability(componentlist)(z) = (1/1e-14) * permeability0(componentlist) * exp ( - activation_energy(componentlist) / R * ( 1 / 
(fiber_info.temperature_(z) + 273.15) - 1 / (temperature0 + 273.15) ) ); 

             call(spec_enth_mol_fiber(z)) = pEnth_Mol_Vap(fiber_info.temperature_(z),fiber_info.pressure_(z),fraction_mol_membr(componentlist)(z)); 
    call(spec_enth_mol_shell(z)) = pEnth_Mol_Vap(fiber_info.temperature_(z),shell_info.pressure_(z),fraction_mol_membr(componentlist)(z)); 
   Endif 
//--------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  // *** Molar and energy flux through membrane: connection between two sides *** 
   (1/flow_scale) * Fiber_result.Flux_mol_membr(componentlist)(z) = - (1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z); 
//---------------------------------------------------------------------------------------------------------------------------------------------------------------   
  // *** Molar flux through membrane *** 
   If sim_mode == "Level_1" then 
    Shell_result.Flux_mol_membr(componentlist)(z) = 0; 
   elseif sim_mode == "Level_2" then 

(1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z) = (1/flow_scale) * 3600 * 1e-3 * permeability0(componentlist) / membrane_thickness * 
1e5 * (fiber_info.fraction_mol(componentlist)(z) * fiber_info.pressure_(z) - shell_info.fraction_mol(componentlist)(z) * shell_info.pressure_(z)); 

   elseif sim_mode == "Level_3" then 
    If membr_type == "Symmetric" then 

(1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z) = (1/flow_scale) * 3600 * 1e-3 * permeability0(componentlist) / 
membrane_thickness * 1e5 * (fiber_info.fraction_mol(componentlist)(z) * fiber_info.pressure_(z) - shell_info.fraction_mol(componentlist)(z) * 
shell_info.pressure_(z)); 

    elseif membr_type == "Asymmetric" then 
     If feed_side == "Shell" then 
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(1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z) = (1/flow_scale) * 3600 * 1e-3 * permeability0(componentlist) / 
membrane_thickness * 1e5 * (fraction_mol_membr(componentlist)(z) * fiber_info.pressure_(z) - 
shell_info.fraction_mol(componentlist)(z) * shell_info.pressure_(z)); 

     elseif feed_side == "Fiber" then 
(1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z) = (1/flow_scale) * 3600 * 1e-3 * permeability0(componentlist) / 
membrane_thickness * 1e5 * (fiber_info.fraction_mol(componentlist)(z) * fiber_info.pressure_(z) - 
fraction_mol_membr(componentlist)(z) * shell_info.pressure_(z)); 

     Endif 
    Endif 
   elseif sim_mode == "Level_4" then 
    If membr_type == "Symmetric" then 

(1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z) = (1/flow_scale) * 3600 * 1e-3 * permeability0(componentlist) / 
membrane_thickness * 1e5 * (fiber_info.fraction_mol(componentlist)(z) * fiber_info.pressure_(z) - shell_info.fraction_mol(componentlist)(z) * 
shell_info.pressure_(z)); 

    elseif membr_type == "Asymmetric" then 
     If feed_side == "Shell" then 

(1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z) = (1/flow_scale) * 3600 * 1e-3 * permeability0(componentlist) / 
membrane_thickness * 1e5 * (fraction_mol_membr(componentlist)(z) * fiber_info.pressure_(z) - 
shell_info.fraction_mol(componentlist)(z) * shell_info.pressure_(z)); 

     elseif feed_side == "Fiber" then 
(1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z) = (1/flow_scale) * 3600 * 1e-3 * permeability0(componentlist) / 
membrane_thickness * 1e5 * (fiber_info.fraction_mol(componentlist)(z) * fiber_info.pressure_(z) - 
fraction_mol_membr(componentlist)(z) * shell_info.pressure_(z)); 

     Endif 
    Endif 
   elseif sim_mode == "Level_5" then 
    If membr_type == "Symmetric" then 

(1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z) = (1/flow_scale) * 3600 * 1e-3 * permeability(componentlist)(z) / 
membrane_thickness * 1e5 * (fiber_info.fraction_mol(componentlist)(z) * fiber_info.pressure_(z) - shell_info.fraction_mol(componentlist)(z) * 
shell_info.pressure_(z)); 

    elseif membr_type == "Asymmetric" then 
     If feed_side == "Shell" then 

(1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z) = (1/flow_scale) * 3600 * 1e-3 * permeability(componentlist)(z) / 
membrane_thickness * 1e5 * (fraction_mol_membr(componentlist)(z) * fiber_info.pressure_(z) - 
shell_info.fraction_mol(componentlist)(z) * shell_info.pressure_(z)); 

     elseif feed_side == "Fiber" then 
(1/flow_scale) * Shell_result.Flux_mol_membr(componentlist)(z) = (1/flow_scale) * 3600 * 1e-3 * permeability(componentlist)(z) / 
membrane_thickness * 1e5 * (fiber_info.fraction_mol(componentlist)(z) * fiber_info.pressure_(z) - 
fraction_mol_membr(componentlist)(z) * shell_info.pressure_(z)); 

     Endif 
    Endif 
   Endif 
//---------------------------------------------------------------------------------------------------------------------------------------------------------------  
  // *** Energy flux through membrane *** 
   (1/flow_scale) * Shell_result.energy_flux_membr(z) = (1/flow_scale) * SIGMA(shell_result.flux_mol_membr(componentlist)(z)) * spec_enth_mol_shell(z); 
   (1/flow_scale) * Fiber_result.energy_flux_membr(z) = - (1/flow_scale) * SIGMA(shell_result.flux_mol_membr(componentlist)(z)) * spec_enth_mol_fiber(z); 
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 Endfor 
//============================================================================================================================================== 
End 
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Visual Basic Script 
 
  global.sim_mode.value = "level_1"  
  application.simulation.runmode = "steady state"  
  application.simulation.run(true)         
  application.msg "*** Simulation level_1 model completed ***"  
 
  global.sim_mode.value = "level_2"  
  application.simulation.runmode = "steady state"  
  application.simulation.run(true)  
  application.msg "*** Simulation level_2 model completed ***"  
 
  global.sim_mode.value = "level_3"  
  application.simulation.runmode = "steady state"  
  application.simulation.run(true)  
  application.msg "*** Simulation level_3 model completed ***"  
 
  global.sim_mode.value = "level_4"  
  application.simulation.runmode = "steady state"  
  application.simulation.run(true)  
  application.msg "*** Simulation level_4 model completed ***"  
 
  global.sim_mode.value = "level_5"  
  application.simulation.runmode = "steady state"  
  application.simulation.run(true)  
  application.msg "*** Simulation level_5 model completed ***" 
 
 



Appendix C Specification of parameters and variables 
for membrane model 
 
The values of the following parameters should be specified: 

• Physical property package 
• Numerical discretisation methods 
• Number of discretisation intervals 

 
The following variables must be specified 

 • Number of fibres, N • Packing density, ρunit 
 • Fibre inner diameter, Dinner • Ratio cross sectional areas, λ  
or • Fibre outer diameter, D  • Membrane thickness,  mδouter

• Module length, L  • Membrane area, Amembrane 
• Shell diameter, Dshell • Constant for velocity of feed stream 
 
• Permeability at standard temperature, Q  i0

• Standard temperature, T  0

• Activation energy, Eai 
 
The following boundary conditions need to be specified: 

• Feed and sweep flowrate 
• Feed and sweep composition 
• Feed and sweep pressure 
• Feed and sweep temperature 
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Appendix D Results membrane model for comparison 
Table D.1: Results counter-current membrane unit with asymmetric membrane 

Feed Permeate Stage cut Molar fraction of components in permeate (%) 
(kmol/hr) (kmol/hr) (%) H2 Ar CH4 N2

4.00E-05 2.515E-05 62.88 80.74 2.89 7.12 9.26 
5.00E-05 2.991E-05 59.82 83.91 2.52 5.90 7.68 
6.00E-05 3.455E-05 57.58 86.18 2.23 5.03 6.56 
7.00E-05 3.907E-05 55.82 87.88 2.00 4.39 5.73 
8.00E-05 4.350E-05 54.38 89.21 1.81 3.90 5.08 
9.00E-05 4.783E-05 53.15 90.27 1.66 3.50 4.57 
1.00E-04 5.208E-05 52.08 91.15 1.53 3.18 4.15 
1.20E-04 6.030E-05 50.26 92.49 1.32 2.68 3.50 
1.40E-04 6.818E-05 48.70 93.48 1.16 2.32 3.03 
1.60E-04 7.568E-05 47.31 94.24 1.04 2.05 2.68 
1.80E-04 8.280E-05 46.00 94.83 0.94 1.83 2.40 
2.00E-04 8.951E-05 44.76 95.30 0.86 1.66 2.18 
2.40E-04 1.016E-04 42.35 95.99 0.74 1.41 1.85 
2.80E-04 1.120E-04 40.00 96.47 0.66 1.24 1.63 
3.20E-04 1.207E-04 37.74 96.81 0.60 1.12 1.47 
3.60E-04 1.281E-04 35.59 97.06 0.55 1.04 1.36 
4.00E-04 1.343E-04 33.59 97.25 0.52 0.97 1.27 

 
Table D.2: Results counter-current membrane unit with symmetric membrane 

Feed Permeate Stage cut Molar fraction of components in permeate (%) 
(kmol/hr) (kmol/hr) (%) H2 Ar CH4 N2

4.00E-05 2.550E-05 63.74 81.06 2.77 7.03 9.14 
5.00E-05 3.047E-05 60.95 84.28 2.39 5.80 7.54 
6.00E-05 3.528E-05 58.81 86.54 2.11 4.93 6.42 
7.00E-05 3.994E-05 57.06 88.21 1.89 4.30 5.60 
8.00E-05 4.446E-05 55.58 89.50 1.72 3.81 4.97 
9.00E-05 4.886E-05 54.29 90.53 1.57 3.43 4.47 
1.00E-04 5.315E-05 53.15 91.37 1.45 3.11 4.06 
1.20E-04 6.140E-05 51.16 92.67 1.27 2.63 3.44 
1.40E-04 6.924E-05 49.46 93.61 1.12 2.28 2.98 
1.60E-04 7.669E-05 47.93 94.34 1.01 2.02 2.64 
1.80E-04 8.373E-05 46.52 94.90 0.92 1.81 2.37 
2.00E-04 9.037E-05 45.18 95.36 0.84 1.65 2.15 
2.40E-04 1.023E-04 42.64 96.03 0.73 1.40 1.84 
2.80E-04 1.126E-04 40.22 96.50 0.65 1.24 1.62 
3.20E-04 1.213E-04 37.91 96.83 0.59 1.12 1.46 
3.60E-04 1.286E-04 35.73 97.07 0.55 1.03 1.35 
4.00E-04 1.348E-04 33.70 97.26 0.51 0.96 1.26 

 
 



Table D.3: Results co-current membrane unit with symmetric membrane 

Feed Permeate Stage cut Molar fraction of components in permeate (%) 
(kmol/hr) (kmol/hr) (%) H Ar CH N2 4 2

4.00E-05 2.346E-05 58.65 79.14 3.31 7.62 9.93 
5.00E-05 2.774E-05 55.49 82.46 2.90 6.36 8.29 
6.00E-05 3.199E-05 53.32 84.89 2.56 5.44 7.11 
7.00E-05 3.622E-05 51.74 86.76 2.29 4.75 6.20 
8.00E-05 4.043E-05 50.54 88.24 2.06 4.20 5.50 
9.00E-05 4.462E-05 49.58 89.44 1.87 3.77 4.92 
1.00E-04 4.880E-05 48.80 90.43 1.71 3.41 4.45 
1.20E-04 5.708E-05 47.57 91.98 1.45 2.85 3.73 
1.40E-04 6.520E-05 46.57 93.11 1.26 2.44 3.19 
1.60E-04 7.304E-05 45.65 93.97 1.11 2.13 2.79 
1.80E-04 8.051E-05 44.73 94.64 0.99 1.89 2.48 
2.00E-04 8.756E-05 43.78 95.16 0.90 1.71 2.24 
2.40E-04 1.002E-04 41.75 95.91 0.76 1.44 1.88 
2.80E-04 1.109E-04 39.62 96.42 0.67 1.26 1.65 
3.20E-04 1.199E-04 37.48 96.77 0.61 1.13 1.49 
3.60E-04 1.275E-04 35.40 97.03 0.56 1.04 1.37 
4.00E-04 1.338E-04 33.45 97.23 0.52 0.97 1.28 
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Appendix E Work processes interfacing  

E.1 Work process physical property package interfacing Aspen 
Plus  gPROMS 
 

• Aspen Plus 12.1.12 (Sept. 2005: not possible yet to use Aspen Plus version 
12.1.13 and Aspen Plus 2004.1/13.2 because of a bug in software/interfaces) 

• gPROMS version 2.3 or alpha version 3.0 
 
What to do in Aspen Plus? 
 
To use a physical property package from Aspen Plus in gPROMS a *.cota file should be 
created. Steps to take in Aspen Properties or Aspen Plus are: 
 
1.  Open or create an *.bkp file in Aspen Plus (when no *.bkp file exists, the runtype 

of the simulation can be set to Properties Plus in Data Browser / Setup / 
Specifications / Global / Run Type  Properties Plus). 

 
2.  Select Tools → Export CAPE-OPEN Package.  

The following window is displayed:  
 

 
 
3.  Select File → Save as or click on the save button in the toolbar of this window. 
 
4.  Save the *.cota file in the same folder as you are going to store your gPROMS 

project file. 
 
5.  Close Aspen Plus. 
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What to do in gPROMS? 
 
Incorporation of *.cota file in project file: 
 
1.  Enter in MODEL entity – PARAMETER section:  

ParameterName AS FOREIGN_OBJECT  “CapeOpenThermo” 
 

2.  Enter in PROCESS entity – SET section: 
ParameterPath :=  
“CapeOpenThermo::(PS)ATCOProperties.COPropertySystem.1<NamePPfile>”; 

 
For example: 

Model entity 
PARAMETER 
phys_prop AS FOREIGN_OBJECT "CapeOpenThermo" 

 
Process entity 
SET 
unit1.phys_prop := 

 “(PS)ATCOProperties.COPropertySystem.1<PPmixture >” 
 
Calling for a physical property from the package: 
 
In the EQUATION section of the MODEL entity of your gPROMS project you can set 
up an equation to call for a physical property. As input for the physical property 
calculation temperature (in Kelvin), pressure (in Pascal) and molar fraction (mol/mol) of 
a phase have to be given. The property package returns its answer also on molar basis 
(/mol). 
 
For example, if you want to calculate the enthalpy of a liquid phase, in the EQUATION 
section you should write: 
 enthalpy = phys_prop.LiquidEnthalpy (temperature, pressure, fraction_mol); 
 
In Table E.1 a more comprehensive list is given of all the properties which can be called 
using the CAPE-OPEN interface. Before the property name, the state of the system 
should be given with the one of these words: Liquid, Vapour or Overall. 
 
The number of components is not stated in this list but can also be called by using the 
property name “NumberOfComponents”, like: 

no_comp = phys_prop.NumberOfComponents; 
 
The order of the components in the array defined for the molar fraction of the 
system is of importance. The physical property package expects to get the 
component in the molar fraction array in the same order as the order defined in 
Aspen Plus when creating the package. 
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Table E.1: Thermodynamic and physical properties defined in CAPE-OPEN interface  
+++ Properties +++ 
 ACTIVITYCOEFFICIENT 
 DENSITY 
 DIFFUSIONCOEFFICIENT 
 DIFFUSIONCOEFFICIENT.DMOLES 
 DIFFUSIONCOEFFICIENT.DMOLFRACTION 
 DIFFUSIONCOEFFICIENT.DTEMPERATURE 
 ENTHALPY 
 ENTHALPY.DMOLES 
 ENTHALPY.DMOLFRACTION 
 ENTHALPY.DPRESSURE 
 ENTHALPY.DTEMPERATURE 
 ENTROPY 
 ENTROPY.DMOLES 
 ENTROPY.DMOLFRACTION 
 ENTROPY.DPRESSURE 
 ENTROPY.DTEMPERATURE 
 FUGACITYCOEFFICIENT 
 FUGACITYCOEFFICIENT.DMOLES 
 FUGACITYCOEFFICIENT.DMOLFRACTION 
 FUGACITYCOEFFICIENT.DPRESSURE 
 FUGACITYCOEFFICIENT.DTEMPERATURE 
 GIBBSFREEENERGY 
 GIBBSFREEENERGY.DMOLES 
 GIBBSFREEENERGY.DMOLFRACTION 
 GIBBSFREEENERGY.DPRESSURE 
 GIBBSFREEENERGY.DTEMPERATURE 
 HEATCAPACITY 
 MOLECULARWEIGHT 
 NORMALBOILINGPOINT 
 PH 
 SOLUBILITYINDEX 
 SURFACETENSION 
 SURFACETENSION.DMOLES 
 SURFACETENSION.DMOLFRACTION 
 SURFACETENSION.DTEMPERATURE 
 THERMALCONDUCTIVITY 
 THERMALCONDUCTIVITY.DMOLES 
 THERMALCONDUCTIVITY.DMOLFRACTION 
 THERMALCONDUCTIVITY.DTEMPERATURE 
 VAPORPRESSURE 
 VISCOSITY 
 VISCOSITY.DMOLES 
 VISCOSITY.DMOLFRACTION 
 VISCOSITY.DPRESSURE 
 VISCOSITY.DTEMPERATURE 
 VOLUME 
 VOLUME.DMOLES 
 VOLUME.DMOLFRACTION 
 VOLUME.DPRESSURE 
 VOLUME.DTEMPERATURE 
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E.2 Work process physical property package interfacing Aspen 
Plus  ACM 
 

• Aspen Plus 2004.1 version 13.2 (interface also possible with Aspen Plus version 
12.1) 

• ACM 2004.1 version 13.2 (interface also possible with ACM version 12.1) 
 
What to do in Aspen Plus? 
 
To use a physical property package from Aspen Plus in ACM an *.appdf file should be 
created. Steps to take in Aspen Plus are: 
 
1.  Open or create a *.bkp file in Aspen Plus (when no *.bkp file exists, the runtype 

of the simulation can be set to Properties Plus in Data Browser / Setup / 
Specifications / Global / Run Type  Properties Plus). 

 
2.  After running a simulation, save the *.bkp file, automatically is asked if also the 

*.apw file has to be saved. Click ‘Yes’. 
 

 
 
3.  Together with the *.bkp file and the *.apw file, an *.appdf file is saved in the 

same directory. The files created by Aspen Plus should be located in the same 
directory as you are going to save the ACM file. 

 
4. Close Aspen Plus. 
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What to do in ACM? 
 
Incorporation of *.appdf file in ACM model: 
 
1.  Select ‘Component lists’ from the Exploring-Simulation pane ‘All items’. 
 
2.  Double click on ‘Default’ in the Exploring-Simulation pane ‘Contents of 

Component Lists’. 
 

 
 
3.  The next window is displayed. Click ‘Yes’: 
 

 
 
4. The ‘physical property configuration’ window is displayed. Select ‘Use Aspen 

Properties’ and then ‘Use Properties definition file’. 
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5.  The next window is displayed. Browse for the definition file (the *.appdf file) and 

click OK. 
 

 
 
6. The former window appears again, check if the properties status is green. Click 

OK. 
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7.  The next window is displayed. Select the components you want to use in the 
ACM model and bring them to the right pane. 

 

 
 
8.  To see or change the physical properties defined in the Default Component List, 

select ‘Edit Physical Properties’. This window is displayed: 
 

  
 
9.  Click twice OK and the physical property package for the Default Component 

List in ACM is loaded successfully.  
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Calling for a physical property from the package: 
 
You can use procedure calls in models to use an external routine to make calculations. 
The procedure must be defined in a procedure definition. For a lot of thermodynamic and 
physical properties the procedures are already included in the library of Aspen Custom 
Modeler. 
 
1.  Select and expand ‘Libraries’ and then ‘Modeler’ from the Exploring-Simulation 

pane “All items”. 
 
2.  Select Procedures. In the content pane a list of all predefined procedures are given. 
 
3.  By double click on one of the procedures a window will appear in which the 

syntax is written for this particular procedure. 
 

 
 
4.   In the text editor of the model the following line should be added: 

CALL (OutputArgumentList)  =  
ProcedureName( InputArgumentList ) ComponentList; 
 

Where: 
• ProcedureName = Name of the procedure to use 
• InputArgumentList = List of input variables in the same order as the 

procedure definition 
• OutputArgumentList = List of output variables in the same order as the 

procedure definition 
• ComponentList = Optional name of a component list that applies to this 

individual call. The component and thermodynamic properties associated with 
this component list are used in property calculation calls. A value is required 
only when you want to override the default component list. 
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For example 

  Call (enthalpy) = pEnth_Mol_Vap (temperature, pressure, fraction_mol); 
 

As input for the physical property calculation temperature (in Celsius), pressure 
(in bar) and molar fraction (kmol/kmol) of a phase have to be given. The physical 
property is returned on molar basis. 
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E.3 Work process unit model interfacing gPROMS  Aspen Plus 
 

• Aspen Plus 12.1.12 (Sept. 2005: not (yet) possible to use Aspen Plus 2004.1/13.2 
because of a bug in the port connection) 

• gPROMS 3.0 (Sept. 2005: gPROMS 2.3.6 does not have the functionality to 
export CAPE-OPEN models. Version 3.0 is an alpha version of gPROMS, 
therefore the work process can be changed for the final release) 

 
Prerequisite for exporting models from gPROMS: gPROMS version 3.0.0 and higher and 
the licenses gSRE_4 and gSIM_4. 
 
If other versions of gPROMS are installed on the same machine, to be sure that no 
problems will occur: 

• Check if the environment variable GPROMSHOME is set to the installation 
directory of the version you are going to use.  

• Check if the %GPROMSHOME%\bin directory is included in the PATH 
environment variable. 

• Open Windows command prompt (Start  Run  cmd). Go (with cd command) to 
installation directory\gPROMS\bin and type regsvr32 gPROMS_COUnit.dll. The 
message ‘DllRegisterServer in gPROMS_COUnit.dll succeeded’ is displayed. 

Normally during the installation of gPROMS these things are automatically set correct.  
 
 
How to export a model from gPROMS? 
This part of the work process is divided into model requirements and export functionality. 
 
Model requirements 
 
A. Port definition (obligatory) 
In order to link the gPROMS model within an Aspen Plus flowsheet simulation, the 
streams used in the model must conform the standard CAPE-OPEN definition.  
gPROMS is supplied with a “CAPE-OPEN_Unit” library (CAPE-OPEN_Unit.gPJ in the 
directory PSE\gPROMS\ gOCAPEOPEN\examples) that contains a CAPE-OPEN 
material connection type, named “CO_material”, see figure below. To make your model 
CAPE-OPEN compliant, the connection type “CO_material” have to be used for defining 
the input and output ports of the model you want to export. Streams from Aspen Plus can 
be connected to this connection type. 
 
The variables in the “CO_material” connection type/port are: flowrate [mol/s], fraction 
[mol/mol], pressure [Pa], temperature [K], specific enthalpy [J/mol]. The order of the 
variables defined in the connection type is not of importance. Note: the connection 
variables are on molar basis, and not on mass basis, as the CO_material connection type 
indicates! PSE is going to correct this for the final release of gPROMS version 3.0.  
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Variables in the connection type/port with direction input are automatically set as ‘get’ 
when the model is exported. Variables in the connection type/port with direction output 
are automatically set as ‘send’.  
This means that values of the variables in the input port do not have to be calculated by 
the model, the model will receive these values from Aspen Plus. On the other hand the 
values of the variables in the output port have to be calculated by the model. 
 
B. Model specifications declared in PROCESS entity are not exported (obligatory) 
The PROCESS section of the gPROMS project file is not exported; therefore you have to 
write everything what you want to export in the MODEL section. This also counts for the 
INITIALISE section. Initialisation of the model should be done in MODEL section 
instead of in PROCESS section. (This works only for version 3.0.0 or higher.) 
 
C. Table with model attributes for export (optional) 
gPROMS version 3.0 allows to have parameters or variables in its interface with CAPE-
OPEN compliant process modelling environment. These parameters or variables can be 
adapted (manually or with a design specification) within the CAPE-OPEN flowsheet 
package (Aspen Plus). The gPROMS parameters or variables which are not defined in the 
interface as CAPE-OPEN parameters are not accessible in Aspen Plus. Currently, only 
gPROMS variables can be defined as CAPE-OPEN parameters. PSE is working on the 
option to include also gPROMS parameters as CAPE-OPEN parameters in the interface. 
 
The following steps should be taken in order to create a table with model attributes which 
are available as CAPE-OPEN parameters in the interface: 
 
1.  Select the Interface tab at the bottom of your MODEL window. 
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2.  Click ‘Edit specification…’ in the left upper corner. This window is displayed: 
 

 
 
3.  Select the model attributes (variables, parameters, selectors) you want to export as 

a table together with your model. 
 
4.  Enter the lower and upper bound of the model attribute and its unit. 
 
5.  Click ‘Next’ and select the model attributes again to be included in the table. 
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Depending on the definition of the model attribute (parameter/variable), and how 
they should be presented, choose for  

• Section: Assign, Preset or Initial 
• Required: Obligatory, Optional – default on or Optional – default off 

 
6.  Click ‘Finish’. 
 
D. Saved variable set for export – initialisation (Optional) 
The following steps have to be done to create a saved variable (initialisation) set for your 
model: 
 
1.  In the ‘Simulation activity’ window, when starting a run, deselect ‘Release model 

after execution’.  
 
2.  When the simulation is finished right click on the Execution output and select 

‘Create save variable set…’. The variable set is saved in the folder of the case in 
the project tree.  

 
3.  Make a copy of this text file by right clicking on the name and paste it in the 

‘Save variable set’ of the project entity in the project tree. 
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Export functionality 
 
By exporting a model from gPROMS, which is CAPE-OPEN compatible, a *.gCO file is 
created. Steps to take for creating a *.gCO file are: 
 
1.  Select the model entity in the project tree for the model you want to export. For 

models containing sub-models, select the main model entity.  
 
2.  Go to the Tools menu on the task bar of the gPROMS user interface and select 

Export to CAPE-OPEN…. This window is displayed: 
 

 
 

In the export directory field you can change the directory where the *.gCO file 
will be saved.  
In the unit name field the name of the model which is exported is automatically 
displayed. Don’t change this name! 
If there are Saved variable sets created for the model, these can be exported 
together with the model by selecting Include. 
The exported file is encrypted in order to protect the model for unauthorised 
changes being made to it. An encryption password has to be entered. 

  
3.  Clicking on the Ports tap, shows this window below. In this window you can 

choose how the connection is established. For usage in an Aspen Plus simulation 
all the inlet variables have to set as “Get” and the outlet variables as ‘Send”. 
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4.  If you create a table with model attributes for exporting, the Parameter tab is also 

available: 
 

 
 

Don’t enter Fixed values for the variables in this table. However, Default values 
for the variables can be entered here.  

 
5.  Click Export, and a *.gCO file is created containing the model and some 

additional tasks in your project file. 
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How to import an exported gPROMS model (*.gCO) in Aspen Plus? 
 
Steps to follow are: 
 
1.  From the Library menu, click ‘References’. 
 
2.  From the list of available libraries, select ‘CAPE-OPEN’ and click OK. 
 

 
 
3. Select the CAPE-OPEN tab from the Model Library bar and drag the gO_CAPE-

OPEN block (gPROMS based CAPE-OPEN (1-0-0) Unit v.3.0.0) to the flowsheet. 
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4.  The next window will be displayed automatically (maybe hided in the taskbar of 
Windows). Go to the directory containing the *.gCO file, select it, and click OK. 

 

 
 
5. Doubling clicking on the CAPE-OPEN block in the Aspen Plus flowsheet results 

in the display of this window: 
 

 
 

If model attributes (parameters/variables/etc.) are exported together with the 
model, the values of these attributes can be changed in the ‘Input Parameters’ tab: 
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6. As normal, streams have to be connected to the CAPE-OPEN block and the 
property method has to be defined in Aspen Plus. 

 
7. After running the simulation the results of the CAPE-OPEN block are displayed 

among other things in the ‘Ports’ tab of the gPROMS CAPE-OPEN Unit Object 
block: 
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E.4 Work process unit model interfacing ACM  Aspen Plus 
 

• Aspen Plus 2004.1 version 13.2 
• ACM 2004.1 version 13.2 

 
Prerequisite for exporting models from ACM: a C++ compiler has to be installed on your 
computer! (Installation and running an exported model can be done without having a C++ 
compiler installed on your computer.) 
 
In the help content of ACM (“Using Aspen Custom Modeler  Exporting models to 
Aspen Plus and HYSYS”) an extended description is given of how to export models for 
usage in Aspen Plus. In this work process the highlights are summarized.  
 
How to export a model from ACM? 
This part of the work process is divided into model requirements and export functionality. 
 
Model requirements 
 
A. Port definition (obligatory) 
Aspen Plus streams can only be connected to ports on exported models if the port types 
used in the model contain particular variables. For a port to be connected to a material 
stream in Aspen Plus it must contain at least the following variable definitions: 

F as flow_mol (Description: “Molar flow rate”) 
T as temperature (Description: “Temperature”) 
P as pressure (Description: “Pressure”) 
V as vol_mol (Description: “Molar volume”) 
h as enth_mol (Description: “Molar enthalpy”) 
z (componentlist) as molefraction (Description: “Mole fractions”) 

This port type (MoleFractionPort) is already predefined in the Modeler library and it is 
recommended to use this port type.  
Variables in inlet ports are seen as fixed variables in Aspen Plus, whereas the variables in 
the outlet ports are seen as free variables, which need to be calculated by the ACM model. 
 
B. Specification of parameters and variables (optional) 
Only default values and specifications of parameters and variables are exported. Values 
of parameters or specifications (free/fixed/initial) of variables which are modified by the 
user in the AllVariables table are not exported together with the model. By modifying the 
specification and/or default value in the text editor of the model, these specification/ 
values are taken along with the model export to Aspen Plus.  
 
C. Tables with model attributes for export (optional) 
Your model may own tables that you have defined to display particular sets of variables 
and parameters. These tables can be included in the exported model and displayed in 
Aspen Plus. By default ACM will include all tables belonging to a model in the exported 
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package. Use the Model Package Properties dialogs (see Export functionality) to exclude 
tables if necessary. 
Aspen Plus distinguishes between input forms and results forms whereas ACM does not. 
Use the Model Package Properties dialogs (see Export functionality) to specify whether a 
form should be considered as an input form or a results form or both in Aspen Plus. 
For creating new model tables, see the help content of ACM “Create a new model table”. 
 
D. Visual Basic script for export - Initialisation (optional) 
Your model’s Visual Basic scripts will be exported with a model and can be run in Aspen 
Plus. Visual Basic scripts are primarily intended to help with model initialisation. 
Scripts with the standard names: “Presolve”, “Postsolve” and “Init” will be run at specific 
times during process in Aspen Plus. 
The “Presolve” script runs immediately before solving an Aspen Plus flowsheet. In this 
script starting values can be given to variables and parameters defined in the ACM model 
block. An example of a Visual Basic script for initialisation of a custom model is given in 
PlugFlowModel.acmf: 
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Export functionality 
 
A. Setting Model Package Properties 
Before exporting a model its properties can be modified by taking the following steps: 
1.  Right click on the model you want to export in the Explorer window and select 

the Model Package Properties menu item. This window is displayed: 
 

 
 

In the Model Library Category field it is possible to enter the name of the tab 
where you want the model to appear in Aspen Plus Model library (the standard 
category is ‘ACM Models’).  
In the Display name field enter the name of the exported model.  
Select ‘Next’. 

 
2.  In the next window 
 

 
 
you can control whether a port is accessible in the exported model and what its 
prompt should be.  
Select ‘Next’. 

 
3.  In the last window 
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you can control whether a form is included in the Model Package, whether it is an 
input, results or input & results form. 
Click ‘Finish’. 

 
B. Export the model 
1.  Right click on the model you want to export in the Explorer window and select 

the Export menu item.  
 
2. On the Export dialog change the file type to *.msi.  
  

  
 

Navigate to the directory where you want ACM to create the Unit Operation 
Model. Select ‘Save’ to export the model.  
 

3. When the Windows Installer Package for your model is complete Aspen Modeler 
will ask automatically if you want to install the model.  
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 If you select ‘Yes’, follow the install instructions to install the model. If you 

select ‘No’ you can install the model manually later or on a different computer. 
Then, use the Windows Explorer to navigate to the directory where the *.mis is 
saved and double click on it. 

 
C. Installing the model 
1.  The first window of the installation instruction looks as follows: 

 

 
 
Select ‘Next’. 

 
2.  In the next window  
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you can change the directory where the model is installed. The path of the 
directory isn’t of importance.  
Select ‘Next’. 

 
3.  This window is displayed and select ‘Next’ again.  
 

 
 
4.  After the installation is completed, select ‘Close’ in the last window. 
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How to import an exported ACM model in Aspen Plus? 
 
Steps to follow are: 
1. From the Library menu, click ‘References’. 
 
2. From the list of available libraries, select ‘ACM Models’ and click OK. 
 

 
 
3. Select the ACM Models tab in the Model Library bar and drag the exported ACM 

model to the flowsheet. 
As normal, streams can be connected to the ACM model block and parameters, 
property method and other options inside the block can be modified. If you 
exported tables together with the model, these can be displayed. In the block the 
values of defined variables and parameters in ACM can be changed.  
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To solve the ACM block there are various solvers available in Aspen Plus. Select 
in block options the most appropriate solver for the model you developed. The 
letter D at the beginning of the name of the last three solvers stands for the ability 
of the solver to handle models which require block decomposition to converge. 

 

 
 

It is for example also possible to put a design specification on a variable of the 
ACM block. 
 

Note: Before running an existing Aspen Plus simulation containing an ACM model 
block, the *.dll file needs to be installed on the computer running Aspen Plus.  
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Appendix F Automation initialisation structure in 
equation oriented modelling tools 
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Appendix G Definition base case 
 
Equipment & system  
Method Rating 
Run mode Counter-current 
Feed side Shell 
Sweep stream Without 
Membrane type Symmetric 
Number of components 4 
Set of components H2,N2,CH4,Ar 

 
Specifications      
Length [m] 0.5  constant velocity [m/s] 0.05 
Inner diameter [m] 8.00E-05  packing density [m2/m3] 4500 
Outer diameter [m] 2.00E-04 or ratio cross area 0.10 
Shell diameter [m] 0.075  membrane area [m2] 5 
Number of fibres 50000  membrane thickness [m] 1.00E-04 
Physical property method Peng Rob    
Permeability0 [1e-14] 340.8;3.54;3.408;9.24    
Activation energy [J/mol] 1E4;1E4;1E4;1E4    
Standard temperature [K] 298.15    
Number of discr. intervals 50    

 
Operation conditions   
Feed flowrate [mol/s] 0.2083 
Feed composition [mol/mol] 0.50;0.25;0.20;0.05 
Feed pressure [bar] 70 
Feed temperature [K] 298 
Sweep flowrate [mol/s] na 
Sweep composition [mol/mol] idem feed 
Sweep pressure [bar] 10 
Sweep temperature [K] idem feed 
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Appendix H Results case study initialisation structure 
Table H.1: Discrete cases rating method 

Change in Base case Operation mode Feed side Sweep stream Membrane type Components 
Equipment & system             
Method Rating Rating Rating Rating Rating Rating 
Run mode Counter-current Co-current Counter-current Counter-current Counter-current Counter-current 
Feed side Shell Shell Fibre Shell Shell Shell 
Sweep stream Without Without Without With Without Without 
Membrane type Symmetric Symmetric Symmetric Symmetric Asymmetric Symmetric 
Number of components 4 4 4 4 4 8 
Set of components H2,N2,CH4,Ar H2,N2,CH4,Ar H2,N2,CH4,Ar H2,N2,CH4,Ar H2,N2,CH4,Ar H2,N2,CH4,Ar,O2,H2O,CO,CO2 
Specifications         
Length [m] 0.5 0.5 0.5 0.5 0.5 0.5 
Inner diameter [m] 8.00E-05 8.00E-05 8.00E-05 8.00E-05 8.00E-05 8.00E-05 
Outer diameter [m] 2.00E-04 2.00E-04 2.00E-04 2.00E-04 2.00E-04 2.00E-04 
Shell diameter [m] 0.075 0.075 0.075 0.075 0.075 0.075 
Number of fibres 50000 50000 50000 50000 50000 50000 
Physical property method Peng Rob Peng Rob Peng Rob Peng Rob Peng Rob Peng Rob 
Permeability [1e-14] 340.8;3.54;3.408;9.24 340.8;3.54;3.408;9.24 340.8;3.54;3.408;9.24 340.8;3.54;3.408;9.24 340.8;3.54;3.408;9.24 340.8;3.54;3.408;9.24;1;1;1;1 
Number of discr. intervals 50 50 50 50 50 50 
Operation conditions             
Feed flowrate [mol/s] 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083 
Feed composition [mol/mol] 0.50;0.25;0.20;0.05 0.50;0.25;0.20;0.05 0.50;0.25;0.20;0.05 0.50;0.25;0.20;0.05 0.50;0.25;0.20;0.05 0.3;0.25;0.2;0.05;0.05;0.05;0.05;0.05 
Feed pressure [bar] 70 70 70 70 70 70 
Feed temperature [K] 298 298 298 298 298 298 
Sweep flowrate [mol/s] na na na 0.0694 na na 
Sweep composition [mol/mol] idem feed idem feed idem feed 0;0;0;1 idem feed idem feed 
Sweep pressure [bar] 10 10 10 10 10 10 
Sweep temperature [K] Idem feed idem feed idem feed idem feed idem feed idem feed 
Results        
Retentate flowrate [mol/s] 0.0967 0.1056 0.0967 0.0943 0.0989 0.1128 
Retentate composition H2 0.046 0.127 0.046 0.000 0.067 0.015 - 0.083 
                                     N2 0.483 0.443 0.483 0.489 0.473 0.335 - 0.083 
                                     CH4 0.388 0.356 0.388 0.393 0.380 0.271 - 0.083 
                                     Ar 0.083 0.075 0.083 0.117 0.081 0.046 - 0.083 
Retentate pressure [Pa] 6987582 6986983 6992973 6988186 6987276 6950771 
Retentate temperature [K] 300.7 301.7 300.8 296.8 300.9 296.2 
Permeate flowrate [mol/s] 0.1121 0.1028 0.1121 0.1835 0.1098 0.097 
Permeate composition H2 0.894 0.883 0.894 0.568 0.892 0.644 - 0.010 
                                     N2 0.048 0.052 0.048 0.032 0.049 0.147 - 0.010 
                                     CH4 0.037 0.040 0.037 0.025 0.038 0.114 - 0.010 
                                     Ar 0.021 0.025 0.021 0.375 0.022 0.053 - 0.010 
Permeate pressure [Pa] 991716 977965 985340 948347 991397 968238 
Permeate temperature [K] 299.9 299.6 299.9 303.9 299.8 301.1 
Stage cut 53.81 49.33 53.82 54.75 52.70 46.78 
Get stuck on level 3 3 3 3 2 3 
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Table H.2: Discrete cases design method 

Change in Base case Operation mode Feed side Sweep stream Membrane type Components 
Equipment & system             
Method Design Design Design Design Design Design 
Run mode Counter-current Co-current Counter-current Counter-current Counter-current Counter-current 
Feed side Shell Shell Fibre Shell Shell Shell 
Sweep stream Without Without Without With Without Without 
Membrane type Symmetric Symmetric Symmetric Symmetric Asymmetric Symmetric 
Number of components 4 4 4 4 4 8 
Set of components H2,N2,CH4,Ar H2,N2,CH4,Ar H2,N2,CH4,Ar H2,N2,CH4,Ar H2,N2,CH4,Ar H2,N2,CH4,Ar,O2,H2O,CO,CO2 
Specifications         
constant velocity [m/s] 0.05 0.05 0.50 0.05 0.05 0.05 
packing density [m2/m3] 4500 4500 4500 4500 4500 4500 
ratio cross area 0.10 0.10 0.10 0.10 0.10 0.10 
membrane area [m] 5 5 5 5 5 5 
membrane thickness [m] 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E+00 
Physical property method Peng Rob Peng Rob Peng Rob Peng Rob Peng Rob Peng Rob 
Permeability [1e-14] 340.8;3.54;3.408;9.24 340.8;3.54;3.408;9.24 340.8;3.54;3.408;9.24 340.8;3.54;3.408;9.24 340.8;3.54;3.408;9.24 340.8;3.54;3.408;9.24;1;1;1;1 
Number of discr. intervals 50 50 50 50 50 51 
Operation conditions             
Feed flowrate [mol/s] 0.2083 0.2083 0.2083 0.2083 0.2083 0.2083 
Feed composition [mol/mol] 0.50;0.25;0.20;0.05 0.50;0.25;0.20;0.05 0.50;0.25;0.20;0.05 0.50;0.25;0.20;0.05 0.50;0.25;0.20;0.05 0.3;0.25;0.2;0.05;0.05;0.05;0.05;0.05 
Feed pressure [Pa] 70 70 70 70 70 70 
Feed temperature [K] 298 298 298 298 298 298 
Sweep flowrate [mol/s] na na na 0.0694 na na 
Sweep composition [mol/mol] idem feed idem feed idem feed 0;0;0;1 idem feed idem feed 
Sweep pressure [Pa] 10 10 10 10 10 10 
Sweep temperature [K] idem feed idem feed idem feed idem feed idem feed idem feed 
Results         
Retentate flowrate [mol/s] 0.0977 0.1063 0.0976 0.0947 0.0999 0.1464 
Retentate composition H2 0.050 0.127 0.049 8.429E-05 0.071 0.066 - 0.070 
                                     N2 0.481 0.442 0.481 0.490 0.470 0.331 - 0.070 
                                    CH4 0.386 0.355 0.386 0.394 0.378 0.265 - 0.070 
                                    Ar 0.083 0.075 0.084 0.116 0.081 0.060 -0.070 
Retentate pressure [Pa] 6967513 6966058 6989641 6969173 6966760 6951888 
Retentate temperature [K] 300.9 301.6 300.9 297.2 300.8 302.3 
Permeate flowrate [mol/s] 0.1110 0.1021 0.1111 0.1830 0.1087 0.0616 
Permeate composition H2 0.898 0.888 0.898 0.569 0.896 0.853 - 0.004 
                                    N2 0.046 0.050 0.046 0.031 0.047 0.060 - 0.004 
                                    CH4 0.035 0.038 0.036 0.024 0.036 0.046 - 0.004 
                                    Ar 0.020 0.024 0.020 0.376 0.021 0.027 - 0.004 
Permeate pressure [Pa] 987874 968230 961710 923429 987467 990405 
Permeate temperature [K] 299.9 299.6 299.9 303.5 299.8 300.1 
Stage cut 53.28 48.99 53.35 54.52 52.20 29.58 
Required initialisation level 3 3 3 3 2 3 
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Table H.3: Cases change in module length (rating method – counter-current) 

Length 0.01 0.05 0.5 1 1.3 1.5 1.7
Membrane area 0.13 0.63 6.28 12.57 16.34 18.85 21.36
Results          
Retentate flowrate 0.1995 0.1691 0.0967 0.0810 0.0733 0.0683 x 
Retentate composition H2 0.478 0.389 0.046 0.022 0.026 0.029 x 
                                    N2 0.261 0.306 0.483 0.501 0.502 0.503 x 
                                    CH4 0.209 0.245 0.388 0.404 0.406 0.408 x 
                                    Ar 0.052 0.061 0.083 0.073 0.065 0.060 x 
Retentate pressure 6999601.5 6998146 6987582 6978964 6974427 6971642 x 
Retentate temperature 298.176 299.0 300.7 297.6 295.5 294.0 x 
Permeate flowrate 0.009 0.0392 0.1121 0.1289 0.1368 0.1419 x 
Permeate composition H2 0.983 0.979 0.894 0.807 0.761 0.733 x 
                                    N2 0.007 0.009 0.048 0.089 0.112 0.125 x 
                                    CH4 0.006 0.007 0.037 0.069 0.087 0.098 x 
                                     Ar 0.004 0.005 0.021 0.035 0.041 0.045 x 
Permeate pressure 999979 999558 991716 982813 975624 969714 x 
Permeate temperature 298.1 298.4 299.9 300.2 300.3 300.4 x 
Stage cut 4.3 18.8 53.8 61.9 65.7 68.1   
Required initialisation level 3 3 3 3 3 3 2
        

Table H.4: Cases change in module length (rating method – co-current) 

Length 0.01 1.7 2.5 3 3.5 4 4.2 4.4
Membrane area 0.126 21.36 31.42 37.70 43.98 50.27 52.78 55.29
Results           
Retentate flowrate 0.1995 0.0675 0.0446 0.0324 0.0296 0.0256 0.0233 x 
Retentate composition H2 0.479 0.089 0.069 0.058 0.049 0.038 0.032 x 
                                    N2 0.261 0.476 0.493 0.502 0.507 0.514 0.517 x 
                                    CH4 0.209 0.388 0.407 0.418 0.424 0.432 0.436 x 
                                    Ar 0.052 0.047 0.030 0.022 0.020 0.017 0.015 x 
Retentate pressure 6999602 6965780 6956709 6952864 6949423 6946412 6945388 x 
Retentate temperature 298.2 301.8 302.0 300.3 290.2 283.2 281.5 x 
Permeate flowrate 0.009 0.141 0.164 0.176 0.179 0.183 0.185 x 
Permeate composition H2 0.983 0.697 0.617 0.582 0.575 0.565 0.559 x 
                                    N2 0.007 0.141 0.184 0.204 0.207 0.213 0.216 x 
                                    CH4 0.006 0.110 0.144 0.160 0.163 0.168 0.170 x 
                                    Ar 0.004 0.051 0.055 0.055 0.055 0.055 0.054 x 
Permeate pressure 999979 873041 766643 681233 582356 457317 393743 x 
Permeate temperature 298.1 299.9 300.1 300.6 302.9 304.1 304.1 x 
Stage cut 4.3 67.6 78.6 84.4 85.8 87.7 88.8   
Required initialisation level 3 3 3 3 3 3 3   
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Table H.5: Continuous cases pressure ratio (rating method) 

Pressure ratio 1.0 1.0 1.2 3.5 7.0 14.0 23.3 35.0  
Sweep pressure 69.5 69 60 20 10 5 3 2  
Results                  
Retentate flowrate [mol/s] 0.2083 0.2079 0.2027 0.1131 0.0967 0.0921 0.0910 0.0905  
Retentate composition H2 0.500 0.500 0.496 0.164 0.046 0.012 0.005 0.003  
                                    N2 0.250 0.250 0.252 0.422 0.483 0.501 0.505 0.507  
                                    CH4 0.200 0.200 0.202 0.338 0.388 0.403 0.406 0.407  
                                     Ar 0.050 0.050 0.050 0.075 0.083 0.084 0.084 0.083  
Retentate pressure [Pa] 6979689 6979706 6979911 6985803 6987582 6988211 6988403 6988487  
Retentate temperature [K] 298.0 298.0 298.0 301.1 300.7 301.2 301.5 301.9  
Permeate flowrate [mol/s] 0 3.500E-04 0.0046 0.0950 0.1121 0.1166 0.1176 0.1180  
Permeate composition H2 0.501 0.507 0.581 0.898 0.894 0.888 0.884 0.882  
                                    N2 0.250 0.246 0.206 0.046 0.048 0.051 0.052 0.053  
                                    CH4 0.200 0.197 0.163 0.036 0.037 0.039 0.040 0.041  
                                     Ar 0.050 0.050 0.050 0.020 0.021 0.023 0.024 0.024  
Permeate pressure [Pa] 6990001 6899991 5999858 1995750 991716 484244 273877 158969  
Permeate temperature [K] 297.8 298.0 298.0 299.3 299.9 300.2 300.2 300.3  
Stage cut 0.0 0.2 2.2 45.6 53.8 56.0 56.5 56.6  
Required initialisation level 3 3 3 3 3 3 2 2  

Table H.6: Continuous cases composition feed stream (rating method) 

Feed component fraction H2 0 0.001 0.005 0.05 0.2 0.4 0.5 0.75 0.80
                                        N2 0.75 0.749 0.745 0.7 0.55 0.35 0.25 0 0
                                        CH4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.15
                                        Ar 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Results                   
Retentate flowrate [mol/s] 0.1966 0.1965 0.1962 0.1913 0.1639 0.1195 0.0967 0.040 x 
Retentate composition H2 0.000 0.0006 0.003 0.027 0.055 0.053 0.046 0.033 x 
                                    N2 0.752 0.7513 0.748 0.719 0.653 0.557 0.483 0.000 x 
                                    CH4 0.201 0.2010 0.201 0.206 0.238 0.320 0.388 0.818 x 
                                     Ar 0.047 0.0470 0.047 0.048 0.054 0.070 0.083 0.149 x 
Retentate pressure [Pa] 6977829 6977836 6977862 6978244 6980686 6985124 6987582 6994220 x 
Retentate temperature [K] 298.0 298.0 298.0 298.1 299.4 301.0 300.7 296.7 x 
Permeate flowrate [mol/s] 0.0117 0.0118 0.0121 0.0167 0.0441 0.0890 0.1121 0.1692 x 
Permeate composition H2 0.000 0.006 0.032 0.298 0.734 0.867 0.894 0.923 x 
                                     N2 0.716 0.711 0.691 0.491 0.171 0.071 0.048 0.000 x 
                                     CH4 0.185 0.184 0.180 0.136 0.060 0.039 0.037 0.051 x 
                                      Ar 0.099 0.099 0.097 0.076 0.035 0.023 0.021 0.026 x 
Permeate pressure [Pa] 997533 997520 997465 996765 994438 992373 991716 991293 x 
Permeate temperature [K] 298.0 298.0 298.0 298.0 298.7 299.6 299.9 300.5 x 
Stage cut 5.6 5.7 5.8 8.0 21.2 42.7 53.8 81.2   
Required initialisation level 3 3 3 3 3 3 3 3   

Table H.7: Continuous cases temperature (rating method) 

Feed Temperature [K] 275 298 325 350 375 400 425   
Results                 
Retentate flowrate [mol/s] 0.1036 0.0967 0.0898 0.0840 0.0783 0.0724 x   
Retentate composition H2 0.075 0.046 0.028 0.022 0.023 0.027 x   
                                     N2 0.467 0.483 0.494 0.499 0.501 0.502 x   
                                     CH4 0.375 0.388 0.398 0.402 0.405 0.406 x   
                                     Ar 0.084 0.083 0.080 0.076 0.071 0.064 x   
Retentate pressure [Pa] 6988396 6987582 6986600 6985670 6984718 6983760 x   
Retentate temperature [K] 280.1 300.7 325.9 349.1 372.2 395.1 x   
Permeate flowrate [mol/s] 0.1048 0.1121 0.1195 0.1258 0.1317 0.1378 x   
Permeate composition H2 0.921 0.894 0.859 0.825 0.790 0.755 x   
                                     N2 0.035 0.048 0.064 0.081 0.097 0.114 x   
                                     CH4 0.027 0.037 0.050 0.062 0.076 0.089 x   
                                     Ar 0.016 0.021 0.027 0.032 0.037 0.042 x   
Permeate pressure [Pa] 992607 991716 990472 989009 987061 984408 x   
Permeate temperature [K] 277.0 299.9 326.8 351.7 376.6 401.5 x   
Stage cut 50.3 53.8 57.4 60.4 63.2 66.2     
Required initialisation level 3 3 3 3 3 3     
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