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Abstract

Ambiguities are an often encountered nuisance in signal processing and are the source of some of the
fundamental trade-offs encountered in radar systems. The goal of this thesis is to extract unambiguous
information about targets by combining a limited amount of measurements on a video integration level.
A novel framework is proposed to reach this goal. At the heart of the framework lives a relevance
vector machine which is extended to process the ambiguities on a video integration level and to work
off-grid. The relevance vector machine is then extended to become the ambiguity aware relevance
vector machine. This extension is either performed by a frequentist test or by estimating a posterior
distribution. The frequentist test is used to test whether we can statistically significantly discern the
returned output from ambiguities. The posterior is estimated according to Bayes’ theorem and thus
allows for the incorporation of prior information. In this thesis, the framework is specifically applied
to Doppler processing of a pulse-Doppler radar system. Compared to existing methods for estimating
unambiguous Doppler velocity in amulti-target environment, the framework provides a general increase
in performance, allows for the incorporation of prior information, and is able to give a measure of
confidence in the estimates. A simulation study is set up to show the performance increase. This
simulation study also highlights the utility of incorporating prior information and the quantification of
uncertainty.
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1
Introduction

Ambiguities are an often encountered nuisance in signal processing. In pulse-Doppler radars, we
have the trade-off between unambiguous range and unambiguous Doppler. This trade-off is seen as
a fundamental trade-off in the design of a pulse Doppler radar system [1, 2, 3]. In the estimation of
direction of arrival (DOA) in a linear array, it is possible to encounter ambiguities as well. When the
spacing between the sensors in the array is greater than half a wavelength, ambiguities will appear in
the DOA estimation [4].

The principal motivation for a framework that is able to resolve ambiguities in a multi-target environ-
ment is to increase the performance of signal-processing algorithms. Especially in tracking algorithms,
incorrect detections caused by ambiguities can easily lead to unreliable, missed, or late tracks.

1.1. Problem
Theoretically, we can resolve ambiguities by changing the ambiguity fold in each measurement or set
of measurements. This shift of the ambiguity fold causes the ambiguities to shift as well, only the
real target will stay in the same place across all the measurements [1, 5]. However, in practice, we
often have a limited number of measurements. This limited number of measurements implies a limited
amount of shifts of the ambiguity fold. Thus, we cannot resolve the ambiguity completely. We can
however increase the unambiguous domain, except for the special case where the ambiguity folds are
co-primes of each other.

Some factors make this theoretical solution more difficult. An example is target fluctuation from mea-
surement to measurement. Target fluctuation implies that the received amplitude will vary from mea-
surement to measurement, which makes it harder to match targets across multiple bursts with each
other to resolve the ambiguities. Another factor complicating the solution is an unknown number of tar-
gets. When dealing with a single target, we can use standard techniques such as a Neyman-Pearson
detector. In the case of multiple targets, especially when the exact number of targets is unknown, the
problem becomes more complicated. The combination of an unknown amount of targets and target
fluctuation makes the problem even more difficult to solve, and classical techniques do not provide us
with a measure of how certain a given estimate is.

The specific problem is to accurately obtain information about the actual targets from the combination
of a limited amount of measurements.

1.2. Prior art
There exists a selection of research articles concerning methods to resolve ambiguities. Most of the
articles are specifically written with the application of radar in mind, as ambiguities in radar are inherent
to pulse Doppler radar systems [3]. The existing methods can roughly be separated into two main
classes: the hit-based coincidence methods and the particle-based methods. There are somemethods
that fall outside of these two classes.
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2 1. Introduction

The first class of algorithms are the hit-based coincidence type of algorithm. One of the earliest methods
to resolve ambiguities is described in the first edition of the book of Skolnik [6]. The method of Skolnik
is designed for a single target and based on pre-detected hits. The method is based on the Chinese
remainder theorem. The Chinese remainder theorem provides a solution to two modular arithmetics
with coprime moduli. The ambiguity folds thus need to be coprime of each other. Hovanessian [5]
proposed a different method, claiming the method to be simpler to interpret and easier to implement
compared to the method of Skolnik. The Hovanessian method does, however, suffer from the same
drawbacks as the method of Skolnik. I.e., the ambiguity folds need to be coprimes of each other, the
method is hit based, and assumes a single target. Reddy and Swamy [7] propose a coincidence type of
algorithm that tackles some of the drawbacks of the methods of Skolnik and Hovanessian. The method
no longer requires the ambiguity folds to be coprime with each other. The method of Reddy and Swamy
also allows for multiple targets. The method is however still based on pre-detected hits and requires a
minimum of four measurements with different ambiguity folds. The last method in the class of hit-based
coincidence algorithms is the clustering algorithm of Trunk and Kim [8]. This method allows for more
flexibility as it heuristically searches for clusters of hits, allowing for greater measurement errors.

The second class of algorithms is the set of particle-based algorithms. E.g., Cai et al. [9] and Bocquel
et al. [10] propose tracking methods based on sequential Monte Carlo implementations that are able to
resolve ambiguities. Due to the fact that these methods are tracking methods, they are designed to take
information from past scans into account. Within the class of particle-based methods, there also exists
a selection of research articles describing a method to retrieve unambiguous Doppler velocity estimates
within a single burst by exploiting the range migration phenomenon [11, 12, 13, 14, 15]. These methods
use Markov chain Monte Carlo (MCMC) samplers which are generally known to take a very long time
to converge and do not have clear convergence measures. These drawbacks are addressed by [16]
and [17] by using variational Bayesian inference instead of Markov chain Monte Carlo samplers. These
methods are still only applicable when using a wideband radar that is able to observe range migration
within a single burst.

An interesting approach that does not fit into one of the aforementioned classes, is the method of
Shaban and Richards [18]. This method tries to reconstruct the scene of pre-processed hits. To prevent
a lot of spurious components, Shaban and Richards suggest using ℒ1 regularisation methods such as
basis pursuit [19] or lasso [20].

Finally, we have the Feedback N-signal Orthogonal Matching Pursuit (FN-OMP) of Aouchiche et al.
[21]. The FN-OMP method is the only method that provides a solution to the multi-target ambiguity
problem on a video integration level. This method is chosen as a benchmark because this is the only
method that works on a video integration level and is not a particle-based algorithm. The drawbacks of
this specific method are that it cannot take into account prior information, it does not give a measure of
confidence in the output, and it is based on OMP which is a greedy algorithm. Greedy algorithms tend
to get stuck in local optima.

1.3. Research scope
The high-level goal is to formulate a framework that is able to resolve ambiguities in a multi-target en-
vironment. The framework should be able to incorporate prior information and quantify the uncertainty
in estimates. In addition to that, it would be desirable that the framework has a clear convergence cri-
terion. It would also be nice to have a framework that works on a video integration level, as processing
on video integration level is known to increase detection performance as shown by, e.g., van Genderen
and Meijer [22].

For feasibility, the goal of the research is restricted in three ways: the framework is formulated for
white Gaussian noise environments, the tests of the framework are restricted to simulated data, and
we specifically apply the framework to Doppler ambiguities. However, we stress that the framework is
written down in probabilistic form and can thus be altered to accommodate other types of noise as well.
The framework can also be applied to resolve ambiguities in other areas, such as DOA or range, with
slight modifications.
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We accomplish the goal of the research by answering the following research question, alongside three
sub-questions:

• How can we formulate a framework that improves the state-of-the-art when it comes to resolving
ambiguities in a multi-target environment when processing on a video level?

– What model or statistical technique should drive the framework?

– How can we incorporate a priori information?

– How can we quantify the uncertainty in the estimates of the framework?

1.4. Main results and outline
In this thesis, we present a framework to resolve ambiguities in a multi-target environment. The frame-
work is built up and analysed in five steps. Each of these steps corresponds to one of the chapters
of the thesis. The five individual steps are written down below together with the main results of each
chapter.

Introducing Doppler ambiguities and modelling with multiple measurement vectors is the first
chapter. In this chapter, we introduce Doppler ambiguities in pulse Doppler radars systems. An intro-
duction to Doppler ambiguities is desired, as we apply the framework to resolve Doppler ambiguities
throughout the thesis. Next, we introduce the general form of signal processing problems with multiple
measurement vectors. As mentioned in section 1.1, the problem is to obtain information on the ac-
tual targets by exploiting the coaction between multiple measurement vectors. This chapter provides
insight into the assumptions that should be made to obtain this information when combining multiple
measurement vectors. The chapter highlights the differences in assumptions that should be made
when processing coherently compared to processing on a non-coherent video integration level.

An introduction to the relevance vector machine is the second step. In this chapter, we argue that
the relevance vector machine is highly suitable to drive the framework. The relevance vector machine
has strong parallels to the Swerling fluctuation model. The relevance vector machine also has highly
desirable statistical properties, such as a global optimum at the maximally sparse solution and fewer
local optima compared to competing methods. We then go on to derive the relevance vector machine
for complex numbered problems and extend it to multiple measurement vectors, for both the coherent
case as well as the non-coherent video integration level case.

Addressing the off-grid problem of the relevance vector machine is the third step. The relevance
vector machine is an on-the-grid method, meaning that it is assumed that targets are located on pre-
defined gridpoints. This assumption cannot hold in practice and leads to unsatisfactory performance.
This chapter proposes two solutions to this problem. The first proposed solution is to extend the method
of Dai et al. [23] to multiple measurement vectors. This extension is proposed in accordance with
the assumptions made that are necessary to perform video-level processing. The second proposed
solution is to use the VALSE algorithm of Badiu et al. [24] and pre-determine points of interest on the
grid.

Extension to ambiguity aware relevance vector machine and incorporation of prior information
is the final step to build the framework. In this chapter we explore methods to extend the relevance
vector machine to the ambiguity aware relevance vector machine. We propose a frequentist test to test
whether we can statistically significantly discern the returned relevance vector from possible ambigui-
ties. We then take a Bayesian perspective and propose a way to generate a posterior distribution on
each of the relevance vectors returned by the relevance vector machine. Since we handle the problem
from a Bayesian point of view, we can take prior information into account. As this method provides a
posterior, we get access to a measure to evaluate the confidence of the estimates of the framework.

The simulation study is the final chapter. A simulation study is performed to test the framework and
compare it with existing methods. The framework tends to outperform the existing methods in general.
We go on to show that the framework is more robust compared to the existing methods when it comes
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to performance in particularly difficult cases. We then show that taking prior information into account
increases the performance of the framework. Finally, we show that we can quantify the confidence in
the estimates. By means of a qualitative comparison, we show that the framework comes close to an
optimal MCMC sampler with respect to the quantification of confidence in the estimates.



2
Background on Doppler ambiguities and

modelling with multiple measurement
vectors

This chapter provides background information on Doppler ambiguities in pulsed Doppler radar systems
and problems with multiple measurement vectors. Background information on Doppler ambiguities in
pulsed Doppler radar systems is needed since the framework is specifically applied to Doppler process-
ing in pulsed Doppler radar systems in this thesis. An introduction to problems with multiple measure-
ment vectors is needed, as the problem statement of section 1.1 implies that the problem will become
a multiple measurement vectors problem. This chapter specifically highlights the different assumptions
that can be made concerning the measurement equations when working with multiple measurement
vector problems.

2.1. Pulse Doppler radar basics
A radar system transmits electromagnetic waves toward some region of interest and then tries to detect
reflections from objects in the region of interest.

The framework proposed in this thesis is specifically applied to pulsed Doppler radars. Doppler radar
is a general term used to refer to any radar that uses the Doppler effect in any form. Pulsed refers to
the practice of sending electromagnetic waves in specific short time windows. There are generally two
types of Doppler radars, i.e., continuous wave and pulsed radars. Continuous wave radars continually
transmit a signal, while the receiver is continuously receiving at the same time.

Continuous wave radars measure range with some sort of modulation on the signal. The modulation
could be, e.g., frequency modulation. In frequency modulation we change the transmit frequency over
time, essentially putting a timestamp on the transmitted signal. Continuous wave radars then measure
Doppler by measuring phase change in outgoing and received signals. Due to the fact that continuous
wave radars send and receive at the same time, there is a significant amount of transmitter leakage
into the receiver. This transmitter leakage generally causes continuous wave radars to be restricted
to the use of low transmit powers and therefore restricting the continuous wave radars to short-range
applications. Due to the limitations of continuous wave radar systems, applications of such systems
are usually simple, such as speed timing radars and altimeters [1]. As pulsed radar systems are ca-
pable of transmitting high signal power for a short amount of time and then switch off the transmitter
to enable the receiver, they are more suitable for long-range applications. This causes pulsed Doppler
radars to be most suitable for applications such as threat detection, ground-based, airborne and space-
borne surveillance, as well as meteorological applications. Such applications do however require more
complex systems compared to the usual applications of continuous wave radars [3].

As mentioned above, pulsed Doppler radars work by transmitting electromagnetic waves in short time
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6 2. Background on Doppler ambiguities and modelling with multiple measurement vectors

intervals. During the transmit time, the receiver is switched off to protect the receiver from the powerful
signal of the transmitter. One of the key parameters to set here is the pulse repetition time (PRT).

2.1.1. Doppler ambiguities
The Doppler effect describes the changes of the electromagnetic waves when reflected off an object
that is moving relative to the radar. The Doppler frequency 𝑓𝑑 denotes the difference in frequency of
the received and transmitted electromagnetic waves. The Doppler frequency 𝑓𝑑 is given by

𝑓𝑑 =
2𝑣𝑟
𝜆 , (2.1)

where 𝑣𝑟 and 𝜆 are the radial component of the velocity of the object relative to the radar and the
wavelength of the transmitted signal, respectively. As the Doppler frequency is defined as the received
frequencyminus the transmitted frequency, we expect a positive shift when the object is moving towards
the radar. The radial velocity is thus defined to be positive for objects moving towards the radar and
negative for objects moving away from the radar.

Choosing a higher PRT will result in a higher unambiguous range. However, by increasing the PRT,
the effective sample rate of the Doppler frequency is decreased. When using a pulsed radar, the
Doppler frequency is sampled at each pulse. If we want to avoid aliasing, we should adhere to the
Nyquist-Shannon sampling criterion. The Nyquist-Shannon sampling criterion states that the maximum
frequency that can unambiguously be measured is half the sampling rate. Since the radar is sampling
at a rate of 1

PRT
, we can write the maximum unambiguous Doppler shift as

𝑓𝑑,Unambiguous = ±
1

2PRT . (2.2)

Resulting in an ambiguity fold of

𝑣𝑟,Fold =
𝜆

2PRT . (2.3)

2.2. Modelling with multiple measurement vectors
As mentioned in the problem statement of section 1.1, the problem is to get the information about
the actual targets by exploiting the coaction between multiple measurement vectors. The problem will
therefore become a multiple measurement vectors problem. In problems with multiple measurements,
there are four main ways to jointly process the information gathered in the multiple vectors.

With the goal of processing on a video integration level in mind, we consider the following set of 𝐵
measurement equations

𝐭1 = 𝚽1𝐰1 + 𝜺1
𝐭2 = 𝚽2𝐰2 + 𝜺2
⋮

𝐭𝐵 = 𝚽𝐵𝐰𝐵 + 𝜺𝐵 ,

(2.4)

where 𝐭𝑏 ∈ ℂ𝑁, 𝚽𝑏 ∈ ℂ𝑁×𝑀 and 𝐰𝑏 ∈ ℂ𝑀 , ∀𝑏 ∈ {1, 2, … , 𝐵} . The error term is denoted by 𝜺𝑏 , 𝑏 ∈
{1, 2, … , 𝐵}. There are typically four assumptions we can make on the structure of the problem and how
to process all the measurement vectors jointly. An overview of these assumptions with the correspond-
ing implications for Doppler processing is given in Table 2.1. The cases are worked out in more detail
below.
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Table 2.1: Tabular representation of the assumptions and their implications when applied to Doppler processing.

𝐰𝑖 = 𝐰𝑗 𝐰𝑖 ≠ 𝐰𝑗

𝚽𝑖 = 𝚽𝑗

Coherent processing.
Do not expect changes in design matrix.
Is unable to resolve ambiguities.
I.e., constant carrier frequency and PRT.

Non-coherent processing.
Do not expect changes in design matrix.
Is unable to resolve ambiguities.
E.g., varying carrier frequency in
the exact proportion as PRT.

𝚽𝑖 ≠ 𝚽𝑗

Coherent processing.
Do expect changes in design matrix.
Is able to resolve ambiguities.
E.g., constant carrier frequency, varying PRT

Non-coherent processing.
Do expect changes in design matrix.
Is able to resolve ambiguities.
E.g., varying carrier frequency and
PRT independently of each other.

1. 𝚽𝑖 = 𝚽𝑗 and 𝐰𝑖 = 𝐰𝑗 ∀𝑖, 𝑗 ∈ {1, 2, … , 𝐵}. The joint measurement equation then becomes

⎡
⎢
⎢
⎢
⎣

𝐭1
𝐭2
⋮
𝐭𝐵

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝚽 𝟎 … 𝟎
𝟎 𝚽 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝚽

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝐰
𝐰
⋮
𝐰

⎤
⎥
⎥
⎥
⎦

+ 𝜺 (2.5)

such an approach is only useful in the case that 𝔼[𝐭𝑖] = 𝔼[𝐭𝑗], ∀𝑖, 𝑗 ∈ {1, 2, … , 𝐵} and we thus have
multiple realisations that are, apart from the noise, exactly the same.

In radar terms, this way of processing corresponds to an uneventful case. When using such a mea-
surement model, the assumption is made that the situation being measured is exactly the same across
all measurements. We thus do not expect any change in waveform, or target responses.

2. 𝚽𝑖 = 𝚽𝑗 and 𝐰𝑖 ≠ 𝐰𝑗 ∀𝑖, 𝑗 ∈ {1, 2, … , 𝐵}. The joint measurement equation then becomes

⎡
⎢
⎢
⎢
⎣

𝐭1
𝐭2
⋮
𝐭𝐵

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝚽 𝟎 … 𝟎
𝟎 𝚽 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝚽

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝐰1
𝐰2
⋮
𝐰𝐵

⎤
⎥
⎥
⎥
⎦

+ 𝜺, (2.6)

or
[𝐭1, 𝐭2, … , 𝐭𝐵] = 𝚽 [𝐰1, 𝐰2, … ,𝐰𝐵] + 𝜺. (2.7)

This means that we have different realisations of the same process. This is the approach that is most
often used in literature to process multiple measurement vectors, e.g., in [25, 26, 27]. This however
will not be able to resolve ambiguities. To resolve ambiguities, we need to measure with a varying
ambiguity fold. Therefore, we need to take into account that the matrix 𝚽 is different across different
measurement vectors.

This type of processing is used in multi-input and multi-output (MIMO) communication systems and
biomedical signal processing. These assumptions can be used to model fixed capacity regions of
MIMO communication channels with varying demand [26]. The assumptions are used in biomedical
signal processing when modelling the brain. E.g., when the assumption is made that the variation in
brain activity is such that while the activation magnitudes change, the activation sites themselves do
not [25].

The combination of these assumptions is uncommon in Doppler processing. One example where this
combination will occur is when the carrier frequency is changed from burst to burst and the PRT is also
changed from burst to burst with the same ratio. The design matrices 𝚽𝑏 will then look exactly the
same over the different bursts. The amplitudes will however vary as, except for a perfect sphere, the
radar cross section of an object is dependent on the wavelength of the incidence waves [28, 29].
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3. 𝚽𝑖 ≠ 𝚽𝑗 and 𝐰𝑖 = 𝐰𝑗 ∀𝑖, 𝑗 ∈ {1, 2, … , 𝐵}. The joint measurement equation then becomes

⎡
⎢
⎢
⎢
⎣

𝐭1
𝐭2
⋮
𝐭𝐵

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝚽1
𝚽2
⋮
𝚽𝐵

⎤
⎥
⎥
⎥
⎦

𝐰 + 𝜺 (2.8)

Here, we essentially model that we have consistent realisation over different processes. This cor-
responds to coherent processing, we assume that the coefficients stay the same over the individual
bursts, but we allow the process itself to vary over the individual bursts.

This situation is encountered in Doppler processing when the PRT is changed from burst-to-burst, but
the carrier frequency stays the same. Additionally, the assumption should hold that the objects do not
rotate with respect to the radar between the bursts. The design matrices 𝚽𝑏 will then vary from burst
to burst, but the target response amplitudes should be constant.

4. 𝚽𝑖 ≠ 𝚽𝑗 and 𝐰𝑖 ≠ 𝐰𝑗 ∀𝑖, 𝑗 ∈ {1, 2, … , 𝐵}. The joint measurement equation then becomes

⎡
⎢
⎢
⎢
⎣

𝐭1
𝐭2
⋮
𝐭𝐵

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝚽1 𝟎 … 𝟎
𝟎 𝚽2 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝚽𝐵

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝐰1
𝐰2
⋮
𝐰𝐵

⎤
⎥
⎥
⎥
⎦

+ 𝜺, (2.9)

Assuming independent error terms, this formulation will result in processing all measurements inde-
pendently. To actually process the information jointly, we impose a joint prior on the weights of each
individual measurement vector, e.g.

𝐰1 ∼ 𝒞𝒩 (𝟎, 𝚺)
𝐰2 ∼ 𝒞𝒩 (𝟎, 𝚺)

⋮
𝐰𝐵 ∼ 𝒞𝒩 (𝟎, 𝚺) ,

(2.10)

where the dependence is thus imposed by the prior on the weights, 𝐰. Specifically, by the joint covari-
ance matrix 𝚺.
This set of assumptions corresponds to incoherent processing and is the most comprehensive for
Doppler processing. This combination of assumptions allows for both the variation in the design ma-
trices 𝚽𝑏, as well as variation in target response amplitudes. Allowing for changes in design matrices
is necessary when changing, e.g., the carrier frequency and the PRT across bursts. The assumptions
now give freedom to the response amplitudes of the targets. This freedom is necessary when, e.g., the
carrier frequency is varied across bursts or when the objects rotate with respect to the radar in between
bursts.



3
The relevance vector machine

The relevance vector machine will be themain driver of the framework. In this chapter, we arguewhy the
relevance vector machine is suitable to drive the framework, show how the relevance vector machine
can be derived for complex-valued problems, and introduce multiple measurement vector relevance
vector machines.

The relevance vector machine is first introduced by Tipping [30] as a Bayesian treatment to solve
generalised linear models of the functional form given by

𝑦(𝐱;𝐰) =
𝑀−1

∑
𝑖=1

𝑤𝑖𝐾 (𝐱, 𝐱𝑖) + 𝑤0, (3.1)

where 𝐾 (𝐱, 𝐱𝑖) is a kernel function, in the context of relevance vector machines treated as a set of basis
functions. This treatment of the kernel function as basis functions makes the extension from the kernel
function to general basis functions straightforward. The weight of each basis function is denoted by 𝑤𝑖,
𝑖 ∈ {0, 1, 2, 3, … ,𝑀 − 1}.
Tipping proposes a method to solve the form based on the work in automatic relevance determination
of MacKay [31] and Neal [32]. The solution is derived to exhibit a couple of desirable characteristics.
First of all, the relevance vector machine is derived to be a fully Bayesian solution for (3.1). Second,
the Bayesian treatment of the problem allows us to estimate the parameters and hyperparameters
directly from the data without some form of hyperparameter tuning. Third, the Bayesian treatment of
the problem results in many of the posterior distributions for the weights spiked at zero. The weights
that do not have a posterior distribution spiked at zero are called relevance vectors as an homage to
automatic relevance determination.

In the relevance vector machine, we pose a parameterised Gaussian distributed prior on the weights.
A Parameterised Gaussian is not known to lead to sparse solutions. However, in the relevance vector
machine this parameterised Gaussian prior does, surprisingly, lead to sparse solutions. In [33], Tipping
shows that by posing a gamma hyperprior and integrating out the hyperparameter from the conditional
prior on the weights, the prior on the weights becomes a multivariate Student’s-t distribution. The
multivariate Student’s-t distribution is a heavy-tailed distribution with a sharp peak on zero, such prior
distributions are generally known to induce sparsity. By casting the relevance vector machine in a
variational framework, Wipf and Rao [34] provide a rigorous proof that the complete data likelihood in
combination with the shape of the heavy-tailed prior distribution of the weights induce solutions with
minimum variance along most weights. These weights are the weights that are pruned by the relevance
vector machine, causing the sparse solution.

The parameterised Gaussian distributed prior posed on the weights causes the relevance vector ma-
chine to have strong parallels to cases one and two of the Swerling fluctuation model. These parallels
are especially desirable, as the application of the framework within this thesis is in Doppler processing

9



10 3. The relevance vector machine

of pulsed Doppler radars. The exact connection between the Swerling cases and a complex Gaussian
distribution on the weights is worked out in Appendix D.

Wipf and Rao [34] also show that the relevance vector machine has the same global minimum as an
𝓁0-norm optimisation problem, formulated as

min ‖𝐱‖0 s.t. 𝚽𝐱 = 𝐲. (3.2)

This global minimum being equal to the 𝓁0-norm problem is in contrast to the popular basis pursuit
framework of Chen et al. [19], which solves the following problem

min ‖𝐱‖1 s.t. 𝚽𝐱 = 𝐲. (3.3)

The basis pursuit algorithm only has the same global optimum as the 𝓁0-norm problem under certain
assumptions on the sparsity level ‖𝐱‖0 and the basis vector matrix 𝚽 [35].

Wipf and Rao [34] also show that the relevance vector machine suffers from fewer local minima com-
pared to some widely used non-convex relaxations. These non-convex relaxations include the iterative
least-squares scheme known as focal underdetermined system solver as described by [36], [37] and
the reweighted 𝓁0 minimisation approach of Candes et al. [38].

3.1. The complex-valued relevance vector machine
In radar problems, we work with complex-valued data. The relevance vector machine in our framework
should therefore be able to process complex-valued data. For a given input-target pair {𝐱𝑛 , 𝑡𝑛}, 𝑛 ∈
{1, 2, 3, … , 𝑁}, the relevance vector machine of Tipping [30, 33] has a model specification given by

𝑡𝑛 = 𝑦(𝐱𝑛; 𝐰) + 𝜀𝑛 . (3.4)

Which we rewrite to the following canonical form

𝐭 = 𝚽𝐰+ 𝜺, (3.5)

where 𝐭 is the target vector, 𝚽 is the matrix containing the basis functions, 𝐰 is a vector containing
weights and 𝜺 is a vector containing real-valued independent zero mean noise variables. I.e., 𝜺 ∼
𝒩(𝟎, 𝜎2𝐈), where 𝟎 is a zero vector and 𝐈 is the identity matrix. The solution is derived based under the
assumptions that in the canonical form of the problem, all values are real, i.e 𝐭 ∈ ℝ𝑁, 𝚽 ∈ ℝ𝑁×𝑀, and
𝐰 ∈ ℝ𝑀.
Here we give a version of the relevance vector machine that drops the assumption of all values being
real and assumes 𝐭 ∈ ℂ𝑁,𝚽 ∈ ℂ𝑁×𝑀, and𝐰 ∈ ℂ𝑀. The noise term 𝜺 is also modelled as an independent
zero-mean complex Gaussian random variable. I.e., 𝜺 ∼ 𝒞𝒩(𝟎, 𝜎2𝐈). Whenever we refer to complex
Gaussian random variables in this thesis, we implicitly refer to circularly symmetric complex Gaussian
random variables. The definition of the circularly symmetric complex Gaussian random variable and
the corresponding properties and theorems are given in Kay [39, Ch. 15]. Taking the complex Gaussian
noise term into account, we write

𝑝(𝑡𝑛|𝑦(𝐱𝑛; 𝐰), 𝜎2) = 𝒞𝒩(𝑡𝑛|𝑦(𝐱𝑛; 𝐰), 𝜎2) (3.6)

Hence, the complete data likelihood is written as

𝑝 (𝐭 ∣ 𝐰, 𝜎2) = 𝒞𝒩 (𝐭|𝚽𝐰, 𝜎2𝐈) = 1
𝜋𝑁 |𝜎2𝐈| exp {−

1
𝜎2 ‖𝐭 − 𝚽𝐰‖

2
2} . (3.7)

We define a zero-mean complex Gaussian prior on the weights 𝐰. The prior is given as

𝑝 (𝐰|𝜶) =
𝑀−1

∏
𝑖=0

𝒞𝒩(𝑤𝑖|0, 𝛼−1𝑖 ), (3.8)
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where 𝜶 is an M-length vector with hyperparameters. By defining the matrix 𝐀 = diag(𝛼0, … , 𝑎𝑀−1), we
can rewrite the prior distribution on the weights as

𝑝 (𝐰|𝜶) = 𝒞𝒩 (𝐰|𝟎, 𝐀−1) = 1
𝜋𝑀 |𝐀−1| exp {−𝐰

𝐻𝐀𝐰} . (3.9)

The marginal likelihood is then given by

𝑝 (𝐭|𝜶, 𝜎2) = 𝒞𝒩 (𝐭|𝟎, 𝐁 + 𝚽𝐀−1𝚽𝐻) , (3.10)

where 𝐁 is defined as 𝜎2𝐈 . Maximising the marginal likelihood 𝑝 (𝐭|𝜶, 𝜎2) over each individual 𝛼𝑖 and
𝜎2 gives the update equations for the individual 𝛼𝑖 ’s and 𝜎2, respectively. The update for the individual
𝛼𝑖 ’s is given by

𝛼𝑖 =
𝛾𝑖
𝝁2𝑖
, (3.11)

where
𝛾𝑖 = 1 − 𝛼𝑖𝚺𝑖𝑖 (3.12)

and 𝝁𝑖 is defined as the expectation of the posterior distribution on the weight 𝐰𝑖. The update equation
for 𝜎2 is given by

𝜎2 =
‖𝐭 − 𝚽𝝁‖22
𝑁 − ∑𝑀−1𝑖=0 𝛾𝑖

. (3.13)

The posterior on the weights 𝑝 (𝐰|𝐭, 𝜶, 𝜎2) is given by

𝑝 (𝐰|𝐭, 𝜶, 𝜎2) = 𝒞𝒩 (𝐰|𝚺𝚽𝐻𝐁−1𝐭, 𝚺) , (3.14)

where 𝚺 = (𝐀 +𝚽𝐻𝐁−1𝚽)−1.
A complete derivation of themarginal likelihood, the posterior distribution on the weights, and the update
equations is given in Appendix A.

The relevance vector machine algorithm is given by iterating over the update equations of 𝛼𝑖 , 𝑖 ∈
{0, 1, … ,𝑀−1} and 𝜎2 given in (3.11) and (3.13) together with both the first and second order moments of
the posterior distribution of the weights (3.14), denoted by 𝝁 and 𝚺, respectively. The iteration continues
until a convergence criterion is met. In practice, we see that most of the values of 𝛼𝑖 , 𝑖 ∈ {0, 1, … ,𝑀−1}
tend to infinity. When the value of 𝛼𝑖 tends to infinity, it implies that the posterior distribution of the
weight (3.14) becomes a Dirac delta distribution centred on zero. This posterior distribution implies
that the corresponding weight will be equal to zero almost surely and can thus be removed from the
model.

3.2. Extension to multiple measurement vectors
Having the complex-valued relevance vector machine, we would like a relevance vector machine that
is able to use the information obtained across multiple bursts for our framework. By combining the
information contained in multiple bursts with different PRTs, the framework should be able to resolve
ambiguities, or at least increase the unambiguous domain significantly. For both the coherent and
incoherent case, we consider a collection of 𝐵 measurement equations as given in (2.4).

3.2.1. Coherent case
We first consider the case of coherent processing, i.e., we assume that 𝐰𝑖 = 𝐰𝑗 ∀𝑖, 𝑗 ∈ {1, 2, … , 𝐵},
where 𝐵 is the total amount of bursts. In this case, we can write the joint measurement equation as case
3 of section 2.2. This approach directly translates to the relevance vector machine. We can just ”stack”
the measured data and the matrices of basis vectors for each individual burst to get the formulation as
in (2.8). By defining

𝚽 =
⎡
⎢
⎢
⎢
⎣

𝚽1
𝚽2
⋮
𝚽𝐵

⎤
⎥
⎥
⎥
⎦

and 𝐭 =
⎡
⎢
⎢
⎢
⎣

𝐭1
𝐭2
⋮
𝐭𝐵

⎤
⎥
⎥
⎥
⎦

, (3.15)

we can use the relevance vector machine to solve for 𝐰.
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3.2.2. Non-coherent case
For the non-coherent case, we have 𝚽𝑖 ≠ 𝚽𝑗 and 𝐰𝑖 ≠ 𝐰𝑗 ∀𝑖, 𝑗 ∈ {1, 2, … , 𝐵}. This corresponds
to case four of section 2.2. Like in case four of section 2.2, we write the joint measurement vectors
equation as

⎡
⎢
⎢
⎢
⎣

𝐭1
𝐭2
⋮
𝐭𝐵

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝚽1 𝟎 … 𝟎
𝟎 𝚽2 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝚽𝐵

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝐰1
𝐰2
⋮
𝐰𝐵

⎤
⎥
⎥
⎥
⎦

+ 𝜺, (3.16)

where we define a joint prior on the weights of each individual measurement vector.

𝐰1 ∼ 𝒞𝒩 (𝟎, 𝐀−1)
𝐰2 ∼ 𝒞𝒩 (𝟎, 𝐀−1)

⋮
𝐰𝐵 ∼ 𝒞𝒩 (𝟎, 𝐀−1) ,

(3.17)

where𝐀 is a diagonal matrix, like in the regular relevance vectormachine, defined as𝐀 = diag(𝛼0, … , 𝛼𝑀−1).
This is the formulation of the multitask relevance vector machine (MRVM) of Ji et al. [40]. In the mul-
titask relevance vector machine, we see the processing of the 𝐵 bursts as individual tasks that are
connected via the prior on the weights. We can update the estimates for the weights 𝝁𝑏 , 𝑏 ∈ {1, 2, … , 𝐵}
and the covariance matrix 𝚺𝑏 , 𝑏 ∈ {1, 2, … , 𝐵} for each individual burst with the regular update equations

𝝁𝑏 = 𝚺𝑏𝚽𝐻𝑏 𝐁−1𝐭𝑏 and 𝚺𝑏 = (𝐀 +𝚽𝐻𝑏 𝐁−1𝚽𝑏)
−1 , (3.18)

respectively. 𝐁 is still defined as 𝐁 = 𝜎2𝐈. If we then define

𝝁 =
⎡
⎢
⎢
⎢
⎣

𝝁1
𝝁2
⋮
𝝁𝐵

⎤
⎥
⎥
⎥
⎦

, 𝚺 =
⎡
⎢
⎢
⎢
⎣

𝚺1 𝟎 … 𝟎
𝟎 𝚺2 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝚺𝐵

⎤
⎥
⎥
⎥
⎦

, 𝚽 =
⎡
⎢
⎢
⎢
⎣

𝚽1 𝟎 … 𝟎
𝟎 𝚽2 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝚽𝐵

⎤
⎥
⎥
⎥
⎦

,

𝐭 =
⎡
⎢
⎢
⎢
⎣

𝐭1
𝐭2
⋮
𝐭𝐵

⎤
⎥
⎥
⎥
⎦

, 𝐀𝐵 =
⎡
⎢
⎢
⎢
⎣

𝐀 𝟎 … 𝟎
𝟎 𝐀 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝐀

⎤
⎥
⎥
⎥
⎦

, and 𝐁𝐵 =
⎡
⎢
⎢
⎢
⎣

𝐁 𝟎 … 𝟎
𝟎 𝐁 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝐁

⎤
⎥
⎥
⎥
⎦

,

(3.19)

we can follow the same manipulations of the logarithm of the marginal likelihood of 𝐭 as done in the
single measurement vector case. Doing so results in

𝛼𝑖 =
𝛾𝑖

∑𝐵𝑏=1 𝝁2𝑏;𝑖
, (3.20)

where

𝛾𝑖 = 𝐵 − 𝛼𝑖
𝐵

∑
𝑏=1

𝚺𝑏;𝑖,𝑖 (3.21)

and

𝜎2 =
∑𝐵𝑏=1 ‖𝐭𝑏 −𝚽𝑏𝝁𝑏‖

2
2

∑𝐵𝑏=1 (𝑁 −𝑀 + ∑
𝑀−1
𝑖=0 𝚺𝑏;𝑖,𝑖)

. (3.22)

𝚺𝑏;𝑖,𝑖 and 𝝁𝑏,𝑖 denote the (𝑖, 𝑖)’th and 𝑖’th element of 𝚺𝑏 and 𝝁𝑏, respectively. The complete derivation of
the update equations is given in Appendix B. We have now specified the full multitask relevance vector
machine. The algorithm is given by first iterating over the update equations for the first and second
order moments of the posterior of the weights for each individual task, as given in (3.18). We then
update the joint variables 𝛼𝑖 , 𝑖 ∈ {0, 1, … ,𝑀 − 1} and 𝜎2 by (3.20) and (3.22), respectively. As in the
case of the regular relevance machine, the iteration continues until a convergence criterion is met. We
also see that most of the values of 𝛼𝑖 , 𝑖 ∈ {0, 1, … ,𝑀 − 1} tend to infinity. When the value of 𝛼𝑖 tends to
infinity, it still implies that the posterior distributions of the weights 𝐰𝑏;𝑖 ∀𝑏 ∈ {1, 2, … , 𝐵} become Dirac
delta distributions centred on zero. This distribution implies that these weights will be equal to zero
almost surely and can thus be removed from the model.



4
Addressing the off-grid problem

In practice, the targets will never lie exactly on one of the gridpoints of a relevance vector machine.
When not accounted for, the mismatch between the gridpoints and the actual target will lead to poor
performance of the relevance vector machine. To mitigate the mismatch problem, we introduce two
methods that can be applied within the framework. The first method iteratively updates the gridpoints,
while the second method pre-processes the grid.

4.1. Off-grid relevance vector machines
To iteratively update the gridpoints used in the relevance vector machine, we turn to off-grid relevance
vector machines. The most used off-grid relevance vector machine is proposed by Yang et al. [41]
and is based on the method described in the earlier paper of Zhu et al. [42]. The paper of Zhu et al.
[42] proposes to extend the measurement vector with a Gaussian variable that models the mismatch
between the grid and the target and solves the problem using the sparse total least squares framework.
Yang et al. [41] argue that the variable modelling the mismatch between girdpoint and actual target
should be modelled as a uniform random variable. Yang et al. [41] then propose a solution within the
relevance vector machine framework that relies on a linearisation of the measurement vector obtained
by taking the first order Taylor expansion. The solution relies on a constrained optimisation problem
that needs to be performed in each iteration. This optimisation problem proves to be non-trivial. Yang
et al. [41] provide an implementation to solve the problem in a single step. However, we found that
this solution often diverges and gets stuck at one of its constraints and thus leads to poor performance.
The polynomial-root based method of Dai et al. [23] provides an update equation for the grid points
themselves instead of a variable that models the distance between gridpoint and the actual target.
Here, we introduce the polynomial-root based method of Dai et al. [23] and extend it to accommodate
for multiple measurement vectors.

4.1.1. Polynomial-root based off-grid relevance vector machine
The polynomial-root based method exploits the structure of the collection of basis functions used in
the relevance vector machine when estimating, e.g., Doppler frequency or direction of arrival. In the
relevance vector machine, we work with the matrix consisting of basis vectors 𝚽. Writing the matrix in
terms of its basis vectors gives

𝚽 = [𝝓(𝜃1) , 𝝓 (𝜃2) , … ,𝝓 (𝜃𝑀)] , (4.1)

where the individual basis vectors can be written as

𝝓(𝜃𝑚) = [𝑣 (𝜃𝑚)
0 , 𝑣 (𝜃𝑚)

1 , … , 𝑣 (𝜃𝑚)
𝑁−1]

𝑇
. (4.2)

In the case of Doppler, 𝑣 (𝜃𝑚) is given by

𝑣 (𝜃𝑚) = exp {𝑗2𝜋2𝑇0𝜃𝑚𝑓𝑐𝑐 } , (4.3)

13
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where 𝑇0, 𝑓𝑐 and 𝑐 are the pulse repetition time, the carrier frequency and the speed of light, respectively.
Dai et al. [23] propose an expectation-maximisation step to update the gridpoints 𝜽. The updated
estimate of �̂� is given by maximising

𝔼𝑝(𝐰∣𝐭,𝜎2 ,𝜶;�̂�) [ln𝑝 (𝐭 ∣ 𝐰, 𝜎
2; �̂�)]

= − 𝜎−2𝔼𝑝(𝐰∣𝐭,𝜎2 ,𝜶;�̂�) [‖𝐭 − 𝚽�̂�𝐰‖
2
2]

= − 𝜎−2‖𝐭 − 𝚽�̂�𝝁‖
2
2 − 𝜎

−2 tr {𝚽�̂�𝚺𝚽𝐻�̂� } .

(4.4)

where we ignored the terms independent of �̂�. To get an update equation for a gridpoint �̂�𝑚 , 𝑚 ∈
{1, 2, … ,𝑀} , we first take the derivative of (4.4) with respect to 𝑣 (�̂�𝑚), equate the expression to 0 and
solve it for 𝑣 (�̂�𝑚).

𝜕 (−𝜎−2‖𝐭 − 𝚽�̂�𝝁‖
2
2 − 𝜎

−2 tr {𝚽�̂�𝚺𝚽𝐻�̂� })

𝜕𝑣 (�̂�𝑚)

= −𝜎−2
𝜕‖𝐭 − 𝚽�̂�𝝁‖

2
2

𝜕𝑣 (�̂�𝑚)
− 𝜎−2

𝜕 tr {𝚽�̂�𝚺𝚽𝐻�̂� }

𝜕𝑣 (�̂�𝑚)

= −𝜎−2 (
𝜕𝝓(�̂�𝑚)

𝜕𝑣 (�̂�𝑚)
)

𝐻

(𝝓(�̂�𝑚) |𝝁𝑚|2 − 𝝁∗𝑚𝜺−𝑚) − 𝜎−2 (
𝜕𝝓(�̂�𝑚)

𝜕𝑣 (�̂�𝑚)
)

𝐻

𝚽�̂�𝚺𝑚

= −𝜎−2 (
𝜕𝝓(�̂�𝑚)

𝜕𝑣 (�̂�𝑚)
)

𝐻

(𝝓(�̂�𝑚) |𝝁𝑚|2 − 𝝁∗𝑚𝜺−𝑚) − 𝜎−2 (
𝜕𝝓(�̂�𝑚)

𝜕𝑣 (�̂�𝑚)
)

𝐻

(𝚺𝑚,𝑚𝝓(�̂�𝑚) + ∑
𝑖≠𝑚

𝚺𝑖,𝑚𝝓(�̂�𝑖))

= −𝜎−2 (
𝜕𝝓(�̂�𝑚)

𝜕𝑣 (�̂�𝑚)
)

𝐻

(𝝓(�̂�𝑚) (|𝝁𝑚|2 + 𝚺𝑚,𝑚) + ∑
𝑖≠𝑚

𝚺𝑖,𝑚𝝓(�̂�𝑖) − 𝝁∗𝑚𝜺−𝑚) = 0,

(4.5)
where 𝝁𝑚, 𝚺𝑚 and 𝚺𝑚,𝑖 denote the 𝑚’th element, the 𝑚’th column and the (𝑚, 𝑖)’th element of 𝝁 and 𝚺,
respectively. 𝜺−𝑚 is defined as 𝐭−∑𝑖≠𝑚 𝝁𝑖𝝓(𝜃𝑖). I.e., it is the residual between the observed signal and
the reconstructed signal with the𝑚’th basis function removed. The steps in (4.5) are not explicitly shown
in [23], but are shown here as they are instrumental in extending this method to multiple measurement
vectors.

If we define
𝜁(𝑚) = (|𝝁𝑚|2 + 𝚺𝑚,𝑚) (4.6)

and
𝝋(𝑚) = ∑

𝑖≠𝑚
𝚺𝑖,𝑚𝝓(𝜃𝑖) − 𝝁∗𝑚𝜺−𝑚 , (4.7)

we can write (4.5) as

[𝑣 (�̂�𝑚) , 1, 𝑣 (�̂�𝑚)
−1
, … , 𝑣 (�̂�𝑚)

−(𝑁−2)
]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑁(𝑁−1)
2 𝜁(𝑚)
𝝋(𝑚)2
2𝝋(𝑚)3
⋮

(𝑁 − 1)𝝋(𝑚)𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0, (4.8)

where 𝝋𝑖 denotes the 𝑖’th element of 𝝋. Giving us the polynomial we need to solve for its roots. A
method to solve a polynomial for its root is given in Appendix C. As the polynomial is of order 𝑁 − 1,
the polynomial will have 𝑁−1 roots. By definition, the root to be chosen should have an absolute value
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of one. However, due to noise the root might not exactly lie on the unit circle and therefore we choose
the root with the absolute value closest to one. This root is denoted as 𝑣 (�̂�∗𝑚). The updated gridpoint
is then calculated by

�̂�∗𝑚 =
𝑎𝑛𝑔𝑙𝑒 (𝑣 (�̂�∗𝑚)) 𝑐

2𝜋𝑇0𝑓𝑐
. (4.9)

We accept this updated gridpoint when the proposed �̂�∗𝑚 lies within the set of [𝜃𝑚−1+𝜃𝑚2 , 𝜃𝑚+𝜃𝑚+12 ].

4.1.2. Multiple measurement vectors
We now extend the polynomial-root based method to multiple measurement vectors. Let 𝑇1, 𝑇2, … , 𝑇𝐵
be the pulse repetition times of all the individual bursts. If 𝑇𝑖𝑇𝑗 ∈ ℚ, ∀ {𝑇𝑖 , 𝑇𝑗} , where 𝑖, 𝑗 ∈ {1, 2, … , 𝐵},
then ∀𝑏 ∈ {1, 2, … , 𝐵}, ∃𝑐𝑏 ∈ ℕ such that we can write 𝑇𝑏 = 𝑐𝑏 ∗ 𝑇0, where 𝑇0 is the greatest common
divisor of 𝑇1, 𝑇2, … , 𝑇𝐵. So, we can write

𝚽1 = [𝝓1 (𝜃1) , 𝝓1 (𝜃2) , … ,𝝓1 (𝜃𝑀)]
𝝓2 = [𝝓2 (𝜃1) , 𝝓2 (𝜃2) , … ,𝝓2 (𝜃𝑀)]

⋮
𝚽𝐵 = [𝝓𝐵 (𝜃1) , 𝝓𝐵 (𝜃2) , … ,𝝓𝐵 (𝜃𝑀)] ,

(4.10)

where the individual basis vectors can be written as

𝝓𝑏 (𝜃𝑚) = [𝑣𝑏 (𝜃𝑚)
0 , 𝑣𝑏 (𝜃𝑚)

1 , … , 𝑣𝑏 (𝜃𝑚)
𝑁−1]

𝑇
. (4.11)

𝑣𝑏 (𝜃𝑚) is given by

𝑣𝑏 (𝜃𝑚) = exp {𝑗2𝜋2𝑇𝑏𝜃𝑚𝑓𝑐𝑐 } = exp {𝑗2𝜋2𝑐𝑏𝑇0𝜃𝑚𝑓𝑐𝑐 } . (4.12)

We can thus write
𝝓𝑏 (𝜃𝑚) = [𝑣0 (𝜃𝑚)

0 , 𝑣0 (𝜃𝑚)
𝑐𝑏 , … , 𝑣0 (𝜃𝑚)

𝑐𝑏(𝑁−1)]
𝑇
, (4.13)

where
𝑣0 = exp {𝑗2𝜋2𝑇0𝜃𝑚𝑓𝑐𝑐 } . (4.14)

In the case of multiple measurement vectors, the expectation-maximisation step is given by maximising

𝔼𝑝(𝐰∣𝐭,𝜎2 ,𝜶;�̂�) [ln𝑝 (𝐭 ∣ 𝐰, 𝜎
2; �̂�)]

= − 𝜎−2
𝐵

∑
𝑏=1

𝔼𝑝(𝐰∣𝐭,𝜎2 ,𝜶;�̂�) [‖𝐭𝐛 −𝚽𝑏,�̂�𝐰𝐛‖
2

2
]

= − 𝜎−2
𝐵

∑
𝑏=1

(‖𝐭𝐛 −𝚽𝑏,�̂�𝝁𝑏‖
2

2
− 𝜎−2 tr {𝚽𝑏,�̂�𝚺𝑏𝚽𝐻𝑏,�̂�}) .

(4.15)

As in the case of a single measurement vector, we again take the derivative of (4.15), but now with
respect to 𝑣0 (�̂�𝑚), equate the expression to 0 and solve it for 𝑣0 (�̂�𝑚). Following the same steps as in
(4.5) results in

𝜕 (−𝜎−2 ∑𝐵𝑏=1 (‖𝐭𝐛 −𝚽𝑏,�̂�𝝁𝑏‖
2

2
− 𝜎−2 tr {𝚽𝑏,�̂�𝚺𝑏𝚽𝐻𝑏,�̂�}))

𝜕𝑣0 (�̂�𝑚)

= −𝜎−2
𝐵

∑
𝑏=1

(
𝜕𝝓𝑏 (�̂�𝑚)

𝜕𝑣0 (�̂�𝑚)
)

𝐻

(𝝓𝑏 (�̂�𝑚) (|𝝁𝑏;𝑚|2 + 𝚺𝑏;𝑚,𝑚) + ∑
𝑖≠𝑚

𝚺𝑏;𝑖,𝑚𝝓𝑏 (�̂�𝑖) − 𝝁∗𝑏;𝑚𝜺𝑏;−𝑚) = 0,

(4.16)
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where 𝝁𝑏;𝑚 and 𝚺𝑏;𝑚,𝑖 denote the 𝑚’th element and the (𝑚, 𝑖)’th element of 𝝁𝑏 and 𝚺𝑏, respectively.
𝜺𝑏;−𝑚 is defined as 𝐭𝑏 − ∑𝑖≠𝑚 𝝁𝑏;𝑖𝝓𝑏 (𝜃𝑖). I.e., it is the residual between the observed in the 𝑏’th burst
and the reconstructed signal with the 𝑚’th basis function removed.

Using (4.13) and

(
𝜕𝝓𝑏 (�̂�𝑚)

𝜕𝑣0 (�̂�𝑚)
) = [0, 𝑐𝑏𝑣0 (�̂�𝑘)

0
, 2𝑐𝑏𝑣0 (�̂�𝑘)

1
, 3𝑐𝑏𝑣0 (�̂�𝑘)

2
, … , (𝑁 − 1)𝑐𝑏𝑣0 (�̂�𝑘)

(𝑁−1)𝑐𝑏−1
] , (4.17)

we write the polynomial for multiple bursts as

𝐵

∑
𝑏=1

[𝑣0 (�̂�𝑚)
𝑐𝑏
, 1, 𝑣0 (�̂�𝑚)

−𝑐𝑏
, … , 𝑣0 (�̂�𝑚)

−(𝑁−1)𝑐𝑏−1
]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑁(𝑁−1)𝑐𝑏
2 𝜁(𝑚)𝑏
𝑐𝑏𝝋(𝑚)𝑏;2
2𝑐𝑏𝝋(𝑚)𝑏;3

⋮
(𝑁 − 1)𝑐𝑏𝝋(𝑚)𝑏;𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0, (4.18)

where 𝜁(𝑚)𝑏 and 𝝋(𝑚)𝑏 are defined as

𝜁(𝑚)𝑏 = (|𝝁𝐛;𝐦|2 + 𝚺𝑏;𝑚,𝑚) (4.19)

and
𝝋(𝑚)𝑏 = ∑

𝑖≠𝑚
𝚺𝑏;𝑖,𝑚𝝓𝑏 (𝜃𝑖) − 𝝁∗𝑏;𝑚𝜺𝑏;−𝑚 , (4.20)

respectively. This new polynomial is a sum of 𝐵 polynomials. Each individual polynomial corresponds
to a single measurement vector. The order of the new polynomial is max𝑏{𝑐𝑏}(𝑁 − 1), 𝑏 ∈ 1, 2, … , 𝐵.
Again, as is the case with a single measurement vector, the root to be chosen should have an absolute
value of one. However, due to noise the root might not exactly lie on the unit circle and therefore we
choose the root with the absolute value closest to one. This root is denoted as 𝑣 (�̂�∗𝑚). The updated
gridpoint is then calculated by (4.9). We accept this updated gridpoint when the proposed �̂�∗𝑚 lies within
the set of [𝜃𝑚−1+𝜃𝑚2 , 𝜃𝑚+𝜃𝑚+12 ].

4.2. Pre-processing of grid points
Instead of using the proposed method to iteratively update the gridpoints of the relevance vector ma-
chine of subsection 4.1.2, we can pre-determine points of interest on the grid. Such a scheme is more
heuristic than iteratively searching for the optimal positions of gridpoints, but does significantly lower
the computational cost as we have to compute the points of interest once, compared to updating each
individual gridpoint in every iteration for the proposed method in subsection 4.1.2. To determine points
of interest on the grid, we propose to use the variational Bayesian line spectral estimation algorithm of
Badiu et al. [24], also known as VALSE.

4.2.1. Variational Bayesian inference
Before deriving VALSE, we introduce Variational Bayesian inference. Variational Bayesian inference
is a method used to approximate posterior distributions. In Bayesian statistics, we often encounter
models for which the posterior distribution is not straightforward to compute or characterise due to the
fact that we encounter intractable integrals. These situations drive us towards alternative strategies
such as MCMC sampling or the use of variational Bayesian inference.

MCMC techniques are a class of algorithms in which we construct a Markov chain on the set of latent
variables of a given statistical model that has the posterior of those latent variables as stationary dis-
tribution. By sampling long enough, we will thus sample from the true posterior distribution. We then
make an empirical estimate of the posterior distribution from the collected samples of that Markov chain.
MCMC techniques thus guarantee to sample exactly from the target distribution in its limit, variational
Bayesian inference methods cannot make such a guarantee as we rely on approximations. However,
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an MCMC sampler takes a long time to converge and does not scale well with increasing data. There
also do not exist clear convergence measures to know whether we are actually sampling from the lim-
iting distribution. Variational Bayesian inference does not suffer from those drawbacks as it generally
converges quicker compared to MCMC samplers, scales better with increasing data, and clearly shows
convergence.

The name variational Bayesian inference is derived from calculus of variations. In calculus of variations,
we work with functionals. A functional is a mapping that takes in a function as input and then returns
an output corresponding to the functional. A typical example of a functional is the entropy of a random
variable. The entropy takes in a probability density function and gives a scalar as output value. For a
detailed description of calculus of variations, corresponding definitions, theorems and rules, the reader
is referred to the book of Sagan [43].

In variational Bayesian inference, we rewrite the problem to an optimisation problem in which we try
to optimise a similarity measure, such as the Kullback–Leibler divergence, over a restricted set of
functions. As this similarity measure takes in a function and returns a value, it is a functional, which we
try to optimise over a restricted set of functions. The most commonly used restriction is the factorisation
assumption, or mean field approximation [44]. We thus search for the function within the restricted set
of functions that is most similar to the exact density.

Now consider a model in which we have a set of observations 𝐱 = {𝑥1, … , 𝑥𝑁} and a set of latent
variables and parameters 𝐳 = {𝑧1, … , 𝑧𝑀}. We have a model that specifies the joint distribution on
𝑝 (𝐱, 𝐲). We would now like to find approximations for the posterior distribution of the latent variables
𝑝(𝐳|𝐱) as well as for the model evidence 𝑝(𝐱). Let us first rewrite the log marginal probability as

ln𝑝(𝐱) =∫𝑞(𝐳)d𝐳 ln {𝑝(𝐱)}

=∫𝑞(𝐳) ln {𝑝(𝐱)}d𝐳

=∫𝑞(𝐳) ln {𝑝(𝐱, 𝐳)𝑝(𝐱|𝐳) }d𝐳

=∫𝑞(𝐳) (ln {𝑝(𝐱, 𝐳)} − ln {𝑝(𝐱|𝐳)})d𝐳

=∫𝑞(𝐳) (ln {𝑝(𝐱, 𝐳)𝑞(𝐳) } − ln {𝑝(𝐱|𝐳)𝑞(𝐳) })d𝐳

=∫𝑞(𝐳) ln {𝑝(𝐱, 𝐳)𝑞(𝐳) }d𝐳 − ∫𝑞(𝐳) ln {
𝑝(𝐱|𝐳)
𝑞(𝐳) }d𝐳

=ℒ(𝑞) + KL(𝑞, 𝑝),

(4.21)

where 𝑞(𝐳) is an arbitrary probability density and we have defined the evidence lower bound ℒ(𝑞) and
the Kullback-Leibler divergence KL(𝑞, 𝑝) as

ℒ(𝑞) = ∫𝑞(𝐳) ln {𝑝(𝐱, 𝐳)𝑞(𝐳) }d𝐳 (4.22)

and

KL(𝑞, 𝑝) = −∫𝑞(𝐳) ln {𝑝(𝐱|𝐳)𝑞(𝐳) }d𝐳 (4.23)

respectively. The Kullback-Leibler divergence has as property that KL(𝑞, 𝑝) ≥ 0, with KL(𝑞, 𝑝) = 0 if
and only if 𝑞(𝐱) = 𝑝(𝐱|𝐳) [45]. Given this property and the equality in (4.21) it is implied that ℒ(𝑞) ≤
ln𝑝 (𝐱). So ℒ(𝑞) is thus a lower bound on the log model evidence ln𝑝 (𝐱) and therefore called the
evidence lower bound. We thus would like to maximise the evidence lower bound ℒ(𝑞) with respect to
𝑞(𝐳), which is equivalent to minimising the Kullack-Leibler divergence. If we do not restrict the set of
distributions over which we maximise the evidence lower bound, we would find the optimal solution at
𝑞(𝐳) = 𝑝(𝐳|𝐱). Implying that we again find the true posterior which we wanted to avoid due to the fact
that it is intractable.
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To avoid the same intractable solution, we consider a restricted set of distributions 𝑞(𝐳). Within this set,
we look for the distribution that minimises the Kullback-Leibler divergence. Generally, when restricting
the set of distributions over which we minimise the Kullback-Leibler divergence, we want to make the
restriction as moderate as possible. The only purpose served by the restriction is to retain tractability,
a light restriction can not cause over-fitting as the unrestricted optimum is the true posterior distribution
𝑝(𝐱|𝐲). The specific restriction we will consider is the mean field approximation [44]. In the mean field
approximation, we partition the set of latent variables and parameters 𝐳 into 𝐾 pairwise disjoint sets,
𝐳𝑖 , 𝑖 ∈ {1, … , 𝐾}. We then make the assumption that 𝑞(𝐳) factorises over the defined pairwise disjoint
sets, i.e.,

𝑞(𝐳) =
𝐾

∏
𝑖=1

𝑞𝑖(𝐳𝑖). (4.24)

This factorisation approach results in a trade-off. The lower the number of pairwise disjoint sets, the
better the factorisation will approximate the true posterior. However, by using few sets, the problem
remains intractable.

Given the factorised form of 𝑞(𝐳), we would like to optimise the evidence lower bound ℒ(𝑞) with respect
to all factors of the factorisation 𝑞𝑖(𝐳𝑖). This optimisation is carried out sequentially by optimising over
each individual factor. To do this, we first isolate the dependence, specifically on the factor concerning
the 𝑗’th set, 𝑞𝑗(𝐳𝑗). By plugging the factorised form of 𝑞(𝐳) into the evidence lower bound, we write

ℒ(𝑞) = ∫
𝐾

∏
𝑖=1

𝑞𝑖(𝐳𝑖) (ln {𝑝(𝐱, 𝐳)} −
𝐾

∑
𝑖=1

ln {𝑞𝑖(𝐳𝑖)})d𝐳. (4.25)

We then collect all terms depending on the 𝑗’th factor. Resulting in

ℒ(𝑞) =∫𝑞𝑗(𝐳𝑗)(∫ ln {𝑝(𝐱, 𝐳)}∏
𝑖≠𝑗

𝑞𝑖(𝐳𝑖)d𝐳𝑖)d𝐳𝑗 −∫𝑞𝑗(𝐳𝑗) ln {𝑞𝑗(𝐳𝑗)}d𝐳𝑗 + Const

=∫𝑞𝑗(𝐳𝑗)𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]d𝐳𝑗 −∫𝑞𝑗(𝐳𝑗) ln {𝑞𝑗(𝐳𝑗)}d𝐳𝑗 + Const,

(4.26)

where Const encompasses all terms independent of the 𝑗’th factor and 𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐲)] denotes the
expectation of ln𝑝(𝐱, 𝐲) with respect to 𝑞𝑖(𝐳𝑖), ∀𝑖 ≠ 𝑗, given by

𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)] = ∫ ln {𝑝(𝐱, 𝐳)}∏
𝑖≠𝑗

𝑞𝑖(𝐳𝑖)d𝐳𝑖 . (4.27)

Having the expression where we have isolated the factor corresponding to the 𝑗’th set 𝑞𝑗(𝐳𝑗), we now
keep all other factors fixed andmaximise ℒ(𝑞)with respect to 𝑞𝑗(𝐳𝑗). We do this by making the observa-
tion that ℒ(𝑞) can be written as the negative Kullback-Leibler divergence between exp {𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]}
and 𝑞𝑗(𝐳𝑗). I.e.,

ℒ(𝑞) =∫𝑞𝑗(𝐳𝑗)𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]d𝐳𝑗 −∫𝑞𝑗(𝐳𝑗) ln {𝑞𝑗(𝐳𝑗)}d𝐳𝑗 + Const

=∫𝑞𝑗(𝐳𝑗) ln {exp {𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]}}d𝐳𝑗 −∫𝑞𝑗(𝐳𝑗) ln {𝑞𝑗(𝐳𝑗)}d𝐳𝑗 + Const

=∫𝑞𝑗(𝐳𝑗) ln{
exp {𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]}

𝑞𝑗(𝐳𝑗)
}d𝐳𝑗 + Const

=− KL (𝑞𝑗(𝐳𝑗), exp {𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]}) + Const.

(4.28)

Optimising ℒ(𝑞) is thus equivalent tominimising the Kullback Leibler divergence between exp {𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]}
and 𝑞𝑗(𝐳𝑗). As the Kullback Leibler divergence isminimised for an equality between exp {𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]}
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and 𝑞𝑗(𝐳𝑗), we arrive at the following solution for the optimisation of ℒ(𝑞)

𝑞𝑗(𝐳𝑗) = exp {𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]} + Const, (4.29)

where the constant should be set by normalising the distribution [46]. Resulting in

𝑞𝑗(𝐳𝑗) =
exp {𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]}

∫ exp {𝔼𝑖≠𝑗 [ln𝑝(𝐱, 𝐳)]}d𝐳
. (4.30)

Giving us an update expression for 𝑞𝑗(𝐳𝑗) in terms of all other factors 𝑞𝑖(𝐳𝑖), 𝑖 ≠ 𝑗. Such an optimisation
scheme ensures convergence [47].

4.2.2. VALSE
VALSE is proposed by Badiu et al. [24] and provides us with the perfect tool to make estimates of the
components to add to the grid of the relevance vector machine.

VALSE is given by the following model specification

𝐭 =
𝑀

∑
𝑖=1
𝑤𝑖𝝓𝑖 , (4.31)

where 𝐭 is the vector of observations, 𝑤𝑖 is the weight corresponding to the 𝑖’th component, and 𝝓𝑖 is
the the 𝑖’th vector of some function mapping its argument [−𝜋, 𝜋) → ℂ𝑁. In our case, 𝝓𝑖 will correspond
to the 𝑖’th relevance vector.

We model the weights as complex Gaussians that are activated by Bernoulli variables 𝑠𝑖. The total set
of indicators resulting from the Bernoulli variables represents the support of the model and is denoted
by 𝐬. (𝑠𝑖 , 𝑤𝑖) thus follows a Bernoulli-Gaussian process. I.e.,

𝑝𝑤𝑖∣𝑠𝑖 (𝑤𝑖 ∣ 𝑠𝑖; 𝜏) = (1 − 𝑠𝑖) 𝛿 (𝑤𝑖) + 𝑠𝑖𝒞𝒩 (𝑤𝑖; 0, 𝜏) , (4.32)

with
𝑝𝑠𝑖 (𝑠𝑖) = 𝜌𝑠𝑖(1 − 𝜌)(1−𝑠𝑖). (4.33)

The parameter 𝜌 governs how likely any component is present. The set of frequencies, in our case
Doppler frequencies, is denoted by 𝜽. The prior on the frequencies is given by

𝑝𝜽(𝜽) =
𝑀

∏
𝑖=1

𝑝𝜃𝑖 (𝜃𝑖) , (4.34)

where each 𝑝𝜃𝑖 (𝜃𝑖) is a von Mises pdf. For more details of the von Mises distribution, its properties
and other types of wrapped and directional distributions, the reader is referred to [48]. For a completely
uninformative prior on the Doppler velocity, we initialise the concentration parameters of the von Mises
distributions as zero. The error term 𝜺 is assumed to be zero mean complex Gaussian noise with
variance 𝜈. This noise term results in the model likelihood

𝑝𝐭|𝜽,𝐰 (𝐭|𝜽,𝐰; 𝜈) = 𝒞𝒩(𝐭|
𝑀

∑
𝑖=1
𝑤𝑖𝝓(𝜃𝑖) , 𝜈𝐈) . (4.35)

We now have three parameters: 𝜈, 𝜌 and 𝜏. We denote these parameters collectively as 𝜷 = {𝜈, 𝜌, 𝜏}.
In the end, we want to get a posterior on the weights, the support and the frequencies

𝑝𝜽,𝐰,𝐬|𝐭 (𝜽,𝐰, 𝐬|𝐭; 𝜷) =
𝑝𝐭,𝜽,𝐰,𝐬 (𝐭, 𝜽,𝐰, 𝐬; 𝜷)

𝑝𝐭 (𝐭; 𝜷)
, (4.36)
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where the joint pdf is given by the model likelihood multiplied with the defined priors. I.e.,

𝑝𝐭,𝜽,𝐰,𝐬 (𝐭, 𝜽,𝐰, 𝐬; 𝜷) = 𝑝𝐭|𝜽,𝐰 (𝐭|𝜽,𝐰; 𝜈)
𝑀

∏
𝑖=1

𝑝𝜃𝑖 (𝜃𝑖) 𝑝𝑤𝑖∣𝑠𝑖 (𝑤𝑖 ∣ 𝑠𝑖) 𝑝𝑠𝑖 (𝑠𝑖) . (4.37)

Since (4.36) is not tractable, we turn to variational inference. We specifically use the naive mean field
approximation as described in subsection 4.2.1. We thus assume all frequencies to be a posteriori
independent, Mutually and of other variables

𝑞𝜽,𝐰,𝐬|𝐭 (𝜽,𝐰, 𝐬|𝐭; 𝜷) =
𝑀

∏
𝑖=1

𝑞𝜃𝑖|𝐭 (𝜃𝑖|𝐭) 𝑞𝐰|𝐭,𝐰 (𝐰|𝐭,𝐰) 𝑞𝐬|𝐭 (𝐬|𝐭) . (4.38)

We then make the assumption that the factors for the support have all their probability mass at the
estimator of the support �̂�. I.e., 𝑞𝐬|𝐭 (𝐬|𝐭) = 𝛿 (𝐬 − �̂�). When using this factorisation, the estimate of the
frequency 𝜃𝑖 is then given by

�̂�𝑖 = arg (𝔼𝑞𝜃𝑖,𝐭 [exp {𝑗𝜃𝑖}]) (4.39)

as shown in [48]. The variational estimates for the mean and the covariance of the weights are

�̂� = 𝔼𝑞𝐰|𝐭 [𝐰] (4.40)

and
�̂� = 𝔼𝑞𝐰|𝐭 [𝐰𝐰𝐻] − �̂��̂�𝐻 , (4.41)

respectively.

We now show how to infer the frequencies in the VALSE model. As shown in subsection 4.2.1, the
solution for the variational approximation with respect to the factor 𝑞𝜃𝑖|𝐭(𝜃𝑖|𝐭) is given by (4.29). Filling
in, we get

ln 𝑞𝜃𝑖|𝐭(𝜃𝑖|𝐭) = 𝔼∼𝜃𝑖 [𝑝𝐭,𝜽,𝐰,𝐬 (𝐭, 𝜃𝑖 , 𝜽∼𝑖 , 𝐰, 𝐬; 𝜷)] + Const

= 𝔼∼𝜃𝑖 [𝑝𝐭|𝜽,𝐰 (𝐭|𝜃𝑖 , 𝜽∼𝑖 , 𝐰; 𝜷)] + ln𝑝𝜃𝑖 (𝜃𝑖) + Const.
(4.42)

Filling in the model likelihood (4.35) gives

𝑞𝜃𝑖|𝐭(𝜃𝑖|𝐭) ∝ 𝑝𝜃𝑖 (𝜃𝑖) exp {ℛ {𝜼𝐻𝑖 𝝓(𝜃𝑖)}} , (4.43)

where the vector 𝜼𝑖 is

𝜼𝑖 =
2
𝜈 (𝐭 − ∑

𝑙∈�̂�\𝑖
�̂�𝑙𝝓(�̂�𝑙)) �̂�∗𝑖 −

2
𝜈 ∑
𝑙∈�̂�\𝑖

�̂�𝑙,𝑖𝝓(�̂�𝑙) . (4.44)

From examining (4.43), we see that (4.43) is an m-fold wrapped von Mises distribution. Such a distri-
bution is a strongly multimodal function and does not lead to an analytic expression for 𝐸𝑞𝜃𝑖|𝐭[𝝓(𝜃𝑖)].
[24] provides a method to approximate such an m-fold wrapped von Mises distribution with a mixture
of von Mises distributions by matching their characteristic functions. By using the mixture of von Mises
approximation, we get a closed form expression for 𝔼𝑞𝜃𝑖|𝐭[𝝓(𝜃𝑖)].

For the inference of the weights and support in the VALSE model, we solve the variational problem
for 𝑞𝐰,𝐬|𝐭(𝐰, 𝐬|𝐭) when keeping 𝑞𝜃𝑖|𝐭 fixed. Since we restrict 𝑞𝐰,𝐬|𝐭(𝐰, 𝐬|𝐭) in (4.38) to get the marginal
probability mass function 𝑞𝐬|𝐭(𝐬|𝐭) = 𝛿(𝐬 − �̂�), we cannot use the regular solution to the variational
approximation problem. We therefore plug (4.38) directly into (4.28) to get

ℒ (𝑞𝐰|𝐭,𝐬, �̂�) = Const− 𝔼 [ln 𝑞𝐰|𝐭,𝐬 (𝐰|𝐭, �̂�) − 𝔼 [ln𝑝𝐭,𝜽,𝐰,𝐬 (𝐭, 𝜽,𝐰, �̂�; 𝜷)]] . (4.45)

Introducing the probability density function

𝑔(𝐰; �̂�) = 1
𝑍 (�̂�) exp {𝔼 [ln𝑝𝐭,𝜽,𝐰,𝐬 (𝐭, 𝜽,𝐰, �̂�; 𝜷)]} , (4.46)
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where 𝑝𝐭,𝜽,𝐰,𝐬 is given in (4.37) and 𝑍(�̂�) is the normalising constant resulting from integrating over 𝐰.
We then write

ℒ (𝑞𝐰|𝐭,𝐬, �̂�) = −KL (𝑞𝐰|𝐭,𝐬, 𝑔) + ln𝑍 (�̂�) + Const. (4.47)

For an arbitrary �̂�, ℒ (𝑞𝐰|𝐭,𝐬, �̂�) reaches its maximum when the Kullback–Leibler divergence reaches

zero. ℒ (𝑞𝐰|𝐭,𝐬, �̂�) is thus maximised when

𝑞𝐰|𝐭,𝐬 (𝐰|𝐭, �̂�) = 𝑔(𝐰; �̂�) and �̂� = argmax
𝑠

ln𝑍 (𝐬) . (4.48)

Working out the solution (4.48) by plugging in the joint likelihood (4.37) together with themodel likelihood
(4.35) and the Bernoulli-Gaussian process (4.32), we get an expression for 𝑞𝐰|𝐭,𝐬 (𝐰|𝐭, �̂�)

𝑞𝐰|𝐭,𝐬 (𝐰|𝐭, �̂�) = 𝒞𝒩 (𝐰�̂�|�̂��̂�, �̂��̂�)∏
𝑖∉�̂�
𝛿 (𝑤𝑖) , (4.49)

where the mean and covariance matrix are given as

�̂��̂� = 𝜈−1�̂��̂�𝐡�̂� and �̂��̂� = 𝜈 (𝐉�̂� +
𝜈
𝜏 𝐈)

−1
, (4.50)

respectively. The vector 𝐡 is defined as [𝝓 (�̂�1)
𝐻
𝐭, ..., 𝝓 (�̂�𝑀)

𝐻
𝐭]
𝑇
and the matrix 𝐉 is defined to have di-

agonal elements 𝐽𝑖,𝑖 = 𝑁 and off-diagonal elements 𝐽𝑖,𝑗 = 𝝓(�̂�𝑖)
𝐻
𝝓(�̂�𝑗) , 𝑖, 𝑗 = 1, ..., 𝑀, 𝑖 ≠ 𝑗. Recalling

that we have assumed that the factors for the support have all their probability mass at the estimator
of the support �̂�. I.e., 𝑞𝐬|𝐭 (𝐬|𝐭) = 𝛿 (𝐬 − �̂�).We can thus write the posterior on the weights as

𝑞𝐰|𝐭 (𝐰|𝐭) = 𝑞𝐰|𝐭,𝐬 (𝐰|𝐭, �̂�) = 𝒞𝒩 (𝐰�̂�|�̂��̂�, �̂��̂�)∏
𝑖∉�̂�
𝛿 (𝑤𝑖) , (4.51)

The expression for �̂��̂� in (4.50) therefore denotes the estimate of the mean of the posterior distribution
of the weights. To get the estimate for the support, we need to solve �̂� = argmax𝑠 ln𝑍 (𝐬). This problem
is known to be NP-hard [49], in VALSE we therefore use a single most likely replacement heuristic to
find an approximate solution. This heuristic is also proposed in [49].

Finally, we turn to the inference of the parameters in the parameter vector 𝜷. The evidence lower bound
of the variational Bayesian approximation is given by

ℒ (𝜷) = 𝔼𝑞𝜽,𝐰,𝐬,|𝐭 [ln𝑝𝐭,𝜽,𝐰,𝐬 (𝐭, 𝜃𝑖 , 𝜽∼𝑖 , 𝐰, 𝐬; 𝜷)] + Const. (4.52)

Filling in the joint pdf (4.37), the variational Bayesian factorisation (4.38) and using the model likelihood
(4.35) together with the defined priors (4.32) and (4.34), we get

ℒ (𝜷) =1𝜈 [2ℛ {�̂�
𝐻
�̂� 𝐡�̂�} − �̂�𝐻�̂� 𝐉�̂��̂��̂� − 𝐭𝐻𝐭 − tr {𝐉�̂��̂��̂�}] − 𝑁 ln 𝜈 − 1𝜏 [�̂�

𝐻
�̂� �̂��̂� + tr {�̂��̂�}]

−‖�̂�‖0 ln 𝜏 +‖�̂�‖0 ln𝜌 + (𝑀 −‖�̂�‖0) ln {1 − 𝜌} + Const.
(4.53)

To get the estimates for the parameters, we take the derivative of ℒ (𝜷) with respect to each individual
parameter in the parameter vector and solve for zero. The estimates �̂�, �̂�, and �̂� are then given by

�̂� = 1
𝑁‖𝐭 −∑

𝑖∈�̂�
�̂�𝑖𝝓(𝜃𝑖)‖

2

2

+ 1
𝑁 tr {𝐉�̂��̂��̂�} +∑

𝑖∈�̂�
|�̂�𝑖|

2(1 −
‖𝝓(�̂�𝑖)‖

𝑁 ) , (4.54)

�̂� =
‖�̂�‖0
𝑀 , and �̂� =

�̂�𝐻�̂� �̂��̂� + tr {�̂��̂�}
‖�̂�‖0

, (4.55)
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respectively.

We now have all steps required for the iterative scheme of the VALSE algorithms. The VALSE algo-
rithm iteratively updates all estimates. First, we update the estimates of the frequencies by using the
heuristic of [24] to approximate (4.43). The heuristic matches the characteristic function of (4.43) with
the characteristic function of a mixture of von Mises distributions. We then turn to the weights and the
support of the model used in the VALSE algorithm and update the weights and the covariance matrix
of the weights using (4.50). The support is updated with the single most likely replacement algorithm of
[49]. Finally, we update the estimates of the parameters using (4.54) and (4.55). We keep iterating until
some convergence criterion is met. E.g., we could stop iterating when the changes in the reconstructed
signal are below some threshold.



5
Extension to ambiguity aware relevance

vector machine and incorporation of
prior information

After having addressed the off-grid problem, we will now build out the framework to the ambiguity aware
relevance vector machine. for the extension to the ambiguity aware relevance vector machine, we first
propose a frequentist test that tests whether a target returned by the relevance vector machine can
be statistically significantly discerned from ambiguities or noise. We then take a Bayesian view and
incorporate prior information, first by designing a Bayesian likelihood ratio test and then by computing
a fully Bayesian posterior.

5.1. Frequentist test
To test whether a given target can be statistically significantly separated from ambiguities or noise, we
design a generalised likelihood ratio test (GLRT). In a generalised likelihood ratio test, we decide for
the alternative hypothesis, ℋ1, if the likelihood ratio, 𝐿(𝐱), exceeds a threshold 𝜆.
As shown in the Neyman-Pearson lemma [50], the likelihood ratio test is the most powerful test for a
given false alarm probability. I.e., the test has the highest probability of detection for a given probability
of a false alarm.

For our test, we look at the output of a relevance vector machine and for each component, we test
whether we can reject the null hypothesis which states that the component under test is still ambigu-
ous. As the relevance vector machine returns all relevance vectors in a matrix 𝚽, the corresponding
relevance vector under test is denoted by 𝝓𝑡.
𝚯0 is the vector space containing vectors that could possibly be ambiguities of the relevance vector
under test.

𝚯𝑡𝑜𝑡 is then defined as the vector space that contains all possible ambiguities as well as the relevance
vector under test. I.e., 𝚯𝑡𝑜𝑡 = 𝚯0 ∪ 𝝓𝑡.
We write the likelihood ratio test as

𝐿 (𝐭) =
max𝝓∈𝚯𝑡𝑜𝑡 𝑝 (𝐭 ∣ 𝐰, 𝜎2)
max𝝓∈𝚯0 𝑝 (𝐭 ∣ 𝐰, 𝜎2)

> 𝜆, (5.1)

where 𝑝 (𝐭 ∣ 𝐰, 𝜎2) is the total data likelihood given in (3.7), as used in the relevance vector machine.

We essentially test whether there is a statistically significant difference in likelihoods when we include
the relevance vector under test. I.e., the relevance vector under test can be distinguished from its
possible ambiguities.

23
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Considering the event that the relevance vector under test does not represent a target, but only noise.
Then the test will test this spurious relevance vector against other realisations of the same noise. This
implies that the test is still useful even if we are testing a spurious relevance vector.

To get a decision rule, we write out the likelihood ratio, 𝐿 (𝐭), by filling in 𝑝 (𝐭 ∣ 𝐰, 𝜎2) as

𝐿 (𝐭) =
max𝝓∈𝚯𝑡𝑜𝑡

1
𝜋𝑁|𝜎2𝐈| exp {−

1
𝜎2 ‖𝐭 − 𝚽𝐰‖

2
2}

max𝝓∈𝚯0
1

𝜋𝑁|𝜎2𝐈| exp {−
1
𝜎2 ‖𝐭 − 𝚽𝐰‖

2
2}

> 𝜆. (5.2)

We define �̂�𝑡𝑜𝑡 and �̂�0 as the matrix of relevance vectors that gives the maximum likelihood when
optimised within 𝚯𝑡𝑜𝑡 and 𝚯0, respectively. The likelihood ratio can then be written as

𝐿 (𝐭) =

1
𝜋𝑁|𝜎2𝐈| exp {−

1
𝜎2‖𝐭 − �̂�𝑡𝑜𝑡𝐰‖

2

2
}

1
𝜋𝑁|𝜎2𝐈| exp {−

1
𝜎2‖𝐭 − �̂�0𝐰‖

2

2
}
> 𝜆

⇒ 𝐿 (𝐭) = exp {− 1
𝜎2 (‖𝐭 − �̂�𝑡𝑜𝑡𝐰‖

2

2
−‖𝐭 − �̂�0𝐰‖

2

2
)} > 𝜆

⇒ 𝐿 (𝐭) = exp {− 1
𝜎2 ((𝐭 − �̂�𝑡𝑜𝑡𝐰)

𝐻
(𝐭 − �̂�𝑡𝑜𝑡𝐰) − (𝐭 − �̂�0𝐰)

𝐻
(𝐭 − �̂�0𝐰))} > 𝜆

⇒ 𝐿 (𝐭) = exp {− 1
𝜎2 (‖𝐭‖

2
2 +‖�̂�𝑡𝑜𝑡𝐰‖

2

2
− 2ℜ{𝐭𝐻�̂�𝑡𝑜𝑡𝐰} −‖𝐭‖

2
2 −‖�̂�0𝐰‖

2

2
+ 2ℜ{𝐭𝐻�̂�0𝐰})} > 𝜆

⇒ 𝐿 (𝐭) = exp {− 1
𝜎2 (‖�̂�𝑡𝑜𝑡𝐰‖

2

2
−‖�̂�0𝐰‖

2

2
− 2ℜ {𝐭𝐻 (�̂�𝑡𝑜𝑡 − �̂�0)𝐰})} > 𝜆.

(5.3)

We then take the logarithm of the likelihood ratio, which we can do as the logarithm is a monotonically
increasing function.

𝑙 (𝐭) = log {𝐿 (𝐭)} = −‖�̂�𝑡𝑜𝑡𝐰‖
2

2
+‖�̂�0𝐰‖

2

2
+ 2ℜ {𝐭𝐻 (�̂�𝑡𝑜𝑡 − �̂�0)𝐰} > 𝜎2 log {𝜆}

⇒ 𝑙 (𝐭) = ℜ {𝐭𝐻 (�̂�𝑡𝑜𝑡 − �̂�0)𝐰} >
1
2𝜎

2 log {𝜆} + 12‖�̂�𝑡𝑜𝑡𝐰‖
2

2
− 12‖�̂�0𝐰‖

2

2

⇒ 𝑙 (𝐭) = ℜ {𝐭𝐻 (�̂�𝑡𝑜𝑡 − �̂�0)𝐰} > 𝜆′,

(5.4)

where we have defined 𝜆′ = 1
2𝜎

2 log {𝜆} + 1
2‖�̂�𝑡𝑜𝑡𝐰‖

2

2
− 1
2‖�̂�0𝐰‖

2

2
.

As �̂�𝑡𝑜𝑡 and �̂�0 have identical columns except for the column under test, we can write

𝑙 (𝐭) = ℜ {𝐭 (�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡} > 𝜆′, (5.5)

where the subscript 𝑡 corresponds to the relevance vector that is under test and the vectors �̂�𝑡𝑜𝑡 and
�̂�0 are the vectors that give the maximum likelihood when optimised within 𝚯𝑡𝑜𝑡 and 𝚯0, respectively.
To set the threshold for a given false alarm rate, we need to characterise the distribution of 𝑙 (𝐭) under
ℋ0. We note that 𝑙 (𝐭) is the real part of a complex Gaussian random variable, which is by definition a
Gaussian random variable [39]. A Gaussian random variable is completely characterised by its mean
and variance. Underℋ0, we express the expectation of 𝑙 (𝐭) as

𝔼 [𝑙 (𝐭) ;ℋ0] = 𝔼 [ℜ {𝐭𝐻 (�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡}]

= 𝔼
⎡
⎢
⎢
⎣
ℜ{

𝑁

∑
𝑗=1
𝐭𝐻𝑗 (�̂�𝑡𝑜𝑡 − �̂�0)𝑗𝐰𝑡}

⎤
⎥
⎥
⎦
.

(5.6)
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We then use the fact that the expectation of the real part of a complex Gaussian random variable is
equal to the real part of the expectation.

𝔼 [𝑙 (𝐭) ;ℋ0] = ℜ{𝔼 [
𝑁

∑
𝑗=1
𝐭𝐻𝑗 (�̂�𝑡𝑜𝑡 − �̂�0)𝑗𝐰𝑡]}

= ℜ{
𝑁

∑
𝑗=1
𝔼 [𝐭𝐻𝑗 ] (�̂�𝑡𝑜𝑡 − �̂�0)𝑗𝐰𝑡} .

(5.7)

Underℋ0, the expectation of 𝐭𝑗 is the 𝑗’th row of �̂�0 multiplied with 𝐰. So,

𝔼 [𝑙 (𝐭) ;ℋ0] = ℜ{
𝑁

∑
𝑗=1
(�̂�0𝑗𝐰)

𝐻
(�̂�𝑡𝑜𝑡 − �̂�0)𝑗𝐰𝑡}

= ℜ{(�̂�0𝐰)
𝐻
(�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡} .

(5.8)

For the variance of 𝑙 (𝐭) underℋ0, we write

var (𝑙 (𝐭) ;ℋ0) = var(ℜ {𝐭𝐻 (�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡}) . (5.9)

Using that the variance of the real part of a complex normal random variable is half of the real part of
the variance of the complex normal random variable [39], we write

var (𝑙 (𝐭) ;ℋ0) =
1
2ℜ {var (𝐭

𝐻 (�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡)}

= 1
2ℜ

⎧

⎨
⎩
var(

𝑁

∑
𝑗=1
𝐭𝐻𝑗 (�̂�𝑡𝑜𝑡 − �̂�0)𝑗𝐰𝑡)

⎫

⎬
⎭

= 1
2ℜ{

𝑁

∑
𝑗=1

var (𝐭𝐻𝑗 ) ((�̂�𝑡𝑜𝑡 − �̂�0)𝑗𝐰𝑡)
𝐻
((�̂�𝑡𝑜𝑡 − �̂�0)𝑗𝐰𝑡)}

= 1
2ℜ{

𝑁

∑
𝑗=1
𝜎2 ((�̂�𝑡𝑜𝑡 − �̂�0)𝑗𝐰𝑡)

𝐻
((�̂�𝑡𝑜𝑡 − �̂�0)𝑗𝐰𝑡)}

= 1
2ℜ{𝜎

2 ((�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡)
𝐻
((�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡)} .

(5.10)

We have now fully characterised the distribution of 𝑙 (𝐭) underℋ0 as

𝑙 (𝐭) ℋ0∼ 𝒩(ℜ{(�̂�0𝐰)
𝐻
(�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡} ,

1
2ℜ{𝜎

2 ((�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡)
𝐻
((�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡)}) . (5.11)

The probability of false alarms is then given by

𝑃𝐹𝐴 = 𝑃𝑟{𝑙 (𝐭) > 𝜆′;ℋ0} = 𝑄
⎛
⎜

⎝

𝜆′ −ℜ{(�̂�0𝐰)
𝐻
(�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡}

ℜ{𝜎2 ((�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡)
𝐻
((�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡)}

⎞
⎟

⎠

, (5.12)

where 𝑄(⋅) = 1 − 𝐹(⋅) and 𝐹(𝑥) is the CDF of a standard normal random variable. Rewriting to get an
expression for our threshold, given a certain 𝑃𝐹𝐴 gives

𝜆′ = ℜ{𝜎2 ((�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡)
𝐻
((�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡)}𝑄−1 (𝑃𝐹𝐴) + ℜ{(�̂�0𝐰)

𝐻
(�̂�𝑡𝑜𝑡 − �̂�0)𝐰𝑡} . (5.13)
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5.2. Bayesian likelihood ratio
In the case that we have prior information on the velocity of the target, we would ideally be able to
incorporate that information into our framework. This guides us towards a Bayesian approach to the
classification problem. Extending the constant false alarm rate detector of section 5.1 to a Bayesian
likelihood ratio is quite straightforward. Instead of maximising over the unknown variable as in the
generalised likelihood ratio test, we integrate the unknown variable out of the expression. Given some
prior on the velocities, denoted by 𝑝(𝜃), We can integrate out the velocity in a Bayesian likelihood ratio
test as

𝑝 (𝐭;ℋ1)
𝑝 (𝐭;ℋ0)

=
∫𝝓∈𝚯𝑡𝑜𝑡 𝑝 (𝐱 ∣ 𝝓;ℋ1) 𝑝 (𝝓)d𝝓
∫𝝓∈𝚯0 𝑝 (𝐱 ∣ 𝝓;ℋ0) 𝑝 (𝝓)d𝝓

> 𝜆. (5.14)

To make this applicable to our problem, we design a test similar to the test of section 5.1. Like in sec-
tion 5.1, we look at the output of the relevance vector machine and set up a test whether we can reject
the null hypothesis which states that the component under test is still ambiguous. As the relevance
vector machine returns all relevance vectors in a matrix 𝚽, the corresponding relevance vector under
test is denoted by 𝝓𝑡.

𝚯0 is the vector space containing vectors that could possibly be ambiguities of the relevance vector
under test.

𝚯𝑡𝑜𝑡 is then defined as the vector space containing all possible ambiguities as well as the relevance
vector under test. I.e., 𝚯𝑡𝑜𝑡 = 𝚯0 ∪ 𝝓𝑡.

We then generate the probability mass function 𝑝𝜃0(𝝓) by plugging all possible ambiguities into 𝑝(𝜃0)
and normalising. Then, 𝑝𝜃𝑡𝑜𝑡(𝝓) is generated by plugging all possible ambiguities as well as 𝝓𝑡 into
𝑝(𝜃0) and normalising.

The Bayesian likelihood ratio that can be applied to the outputs of a relevance vector machine is then
given by

∑𝝓∈𝚯𝑡𝑜𝑡 𝑝 (𝐱 ∣ 𝝓;𝐰, 𝜎
2) 𝑃𝜃𝑡𝑜𝑡(𝜙)

∑𝝓∈𝚯0 𝑝 (𝐱 ∣ 𝝓;𝐰, 𝜎2) 𝑃𝜃0(𝜙)
> 𝜆. (5.15)

This Bayesian likelihood ratio is easy to implement and allows us to incorporate prior information. How-
ever, the result is not easily interpretable. We cannot find a clear distribution of the ratio. Jeffreys [51]
provides a table to interpret such a ratio. This table is however based on experience/expert knowledge
and is not rigorously derived.

5.3. Estimation of a posterior distribution
Since we are taking a Bayesian perspective to the problem, we will work towards a posterior on the
relevance vector machine components. Let us consider the case where we have a collection of classes
𝐶. We then define a prior on the probability of each type of class 𝑐 ∈ 𝐶, denoted by 𝑝(𝑐)

We now define 𝚯 as the collection of relevance vectors that could possibly be ambiguities of the rel-
evance vector under test, as well as the relevance vector itself. The probability of distribution for the
velocity of a certain class is then modelled by 𝑝(𝝓|𝑐), where 𝝓 ∈ 𝚯.

By applying Bayes rule, we can rewrite the joint probability as

𝑝 (𝑐, 𝝓, 𝐭, 𝐰, 𝜎2) = 𝑝 (𝑐,𝝓|𝐭,𝐰, 𝜎2) 𝑝 (𝐭,𝐰, 𝜎2) . (5.16)

We then also write
𝑝 (𝑐, 𝝓, 𝐭, 𝐰, 𝜎2) = 𝑝 (𝐭|𝑐, 𝝓,𝐰, 𝜎2) 𝑝 (𝑐, 𝝓,𝐰, 𝜎2) . (5.17)

By equating the right hand side of (5.16) to (5.17), we can write

𝑝 (𝑐, 𝝓|𝐭,𝐰, 𝜎2) = 𝑝 (𝐭|𝑐, 𝝓,𝐰, 𝜎2) 𝑝 (𝑐, 𝝓,𝐰, 𝜎2)
𝑝 (𝐭,𝐰, 𝜎2) . (5.18)
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In our current model, the data 𝐭 conditioned on𝝓,𝐰 and 𝜎2 will not look different coming from a different
class 𝑐. I.e., 𝑝 (𝐭|𝑐, 𝝓,𝐰, 𝜎2) = 𝑝 (𝐭|𝝓,𝐰, 𝜎2). We thus write

𝑝 (𝑐, 𝝓|𝐭,𝐰, 𝜎2) = 𝑝 (𝐭|𝝓,𝐰, 𝜎2) 𝑝 (𝑐, 𝝓,𝐰, 𝜎2)
𝑝 (𝐭,𝐰, 𝜎2)

= 𝑝 (𝐭|𝝓,𝐰, 𝜎2) 𝑝 (𝝓|𝑐,𝐰, 𝜎2) 𝑝 (𝑐,𝐰, 𝜎2)
𝑝 (𝐭|𝐰, 𝜎2) 𝑝 (𝐰, 𝜎2)

= 𝑝 (𝐭|𝝓,𝐰, 𝜎2) 𝑝 (𝝓|𝑐,𝐰, 𝜎2) 𝑝 (𝑐|𝐰, 𝜎2) 𝑝 (𝐰, 𝜎2)
𝑝 (𝐭|𝐰, 𝜎2) 𝑝 (𝐰, 𝜎2)

= 𝑝 (𝐭|𝝓,𝐰, 𝜎2) 𝑝 (𝝓|𝑐,𝐰, 𝜎2) 𝑝 (𝑐|𝐰, 𝜎2)
𝑝 (𝐭|𝐰, 𝜎2) .

(5.19)

Assuming that we have specified 𝑝 (𝝓|𝑐) and 𝑝 (𝑐) to both be independent of 𝐰 and 𝜎2, we write

𝑝 (𝑐, 𝝓|𝐭,𝐰, 𝜎2) = 𝑝 (𝐭|𝝓,𝐰, 𝜎2) 𝑝 (𝝓|𝑐) 𝑝 (𝑐)
𝑝 (𝐭|𝐰, 𝜎2) . (5.20)

If we also take into account the probability that the vector under test is no target at all and thus spuriously
given by the relevance vector machine, we should include that probability in the prior as well. We can
model this with a null vector, 𝟎, for 𝝓. If we define a Bernoulli random variable with probability 𝜌 of a
target being anywhere, we can then write a new 𝑝 (𝝓|𝑐) as.

𝑝𝑛𝑒𝑤 (𝝓|𝑐) = {
𝜌𝑝 (𝝓|𝑐) for𝝓 ∈ 𝚯
(1 − 𝜌) for𝝓 = 𝟎 (5.21)

Leading to the new posterior

𝑝 (𝑐, 𝝓|𝐭,𝐰, 𝜎2) = {
𝑝(𝐭|𝝓,𝐰,𝜎2)𝜌𝑝(𝝓|𝑐)𝑝(𝑐)

𝑝(𝐭|𝐰,𝜎2) for𝝓 ∈ 𝚯
𝑝(𝐭|𝝓,𝐰,𝜎2)(1−𝜌)𝑝(𝑐)

𝑝(𝐭|𝐰,𝜎2) for𝝓 = 𝟎
(5.22)

In the case of no target, it does not make sense to consider the class of target. Therefore, we
marginalise over the class for the case where 𝝓 = 𝟎 to get the posterior probability of no target

𝑝 (𝟎|𝐭,𝐰, 𝜎2) =∑
𝑐∈𝐶

𝑝 (𝐭|𝟎,𝐰, 𝜎2) (1 − 𝜌) 𝑝 (𝑐)
𝑝 (𝐭|𝐰, 𝜎2) = 𝑝 (𝐭|𝟎,𝐰, 𝜎2) (1 − 𝜌)

𝑝 (𝐭|𝐰, 𝜎2) . (5.23)

Allowing us to express the posterior as

𝑝 (𝑐, 𝝓|𝐭,𝐰, 𝜎2) = {
𝑝(𝐭|𝝓,𝐰,𝜎2)𝜌𝑝(𝝓|𝑐)𝑝(𝑐)

𝑝(𝐭|𝐰,𝜎2) for𝝓 ∈ 𝚯, 𝑐 ∈ 𝐶
𝑝(𝐭|𝟎,𝐰,𝜎2)(1−𝜌)

𝑝(𝐭|𝐰,𝜎2) for𝝓 = 𝟎
(5.24)

Giving us the posterior of the relevance vector under test that includes the probability of the target being
spurious. Note that the outcome space of the posterior is quite unusual as it contains all combinations
of 𝝓 ∈ 𝚯 and 𝑐 ∈ 𝐶 as well as the class independent outcome of 𝝓 = 𝟎. If we are only interested in the
posterior of the velocity or the posterior of the class, we can marginalise over the other variable to get
the posterior of the variable of interest.





6
Simulation study

We set up four simulation studies to evaluate the performance of the proposed framework. The first
simulation study compares the general performance of the framework with two benchmark algorithms.
In the second simulation study, we simulate particularly difficult cases to solve and compare the per-
formance of the framework with the performance of the benchmarks. In the third simulation study, we
evaluate the performance of the framework when prior information is available. Finally, in the fourth
simulation study, we consider a simple single target case and solve the problem by using an MCMC
sampler, then compare the MCMC output with the output of the framework.

6.1. Data generating process
For all simulations, we use the same data-generating process. The data-generating process mod-
els observation data containing the Doppler response of 𝑀 targets for 𝐵 bursts with 𝑁𝑝 pulses. The
observed data will thus result in a total amount of 𝐵 time-series of length 𝑁𝑝, written as

𝑡𝑏[𝑖] =
𝑀

∑
𝑚=1

𝛼𝑚 exp {𝑗2𝜋2𝑇𝑏𝑖𝜃𝑚𝑓𝑐𝑐 } + 𝜀, (6.1)

where 𝑖 denotes the time index, 𝑖 ∈ {1, 2, … , 𝑁𝑝}. The pulse repetition time corresponding to burst 𝑏
is denoted by 𝑇𝑏. the amplitude of the received reflection and the velocity corresponding to the 𝑚’th
target are denoted by 𝛼𝑚 and 𝜃𝑚, respectively. The carrier frequency of the radar is denoted by 𝑓𝑐 and
𝑐 denotes the speed of light. The noise term is denoted by 𝜀.

6.2. Benchmarks
We introduce two methods in this section to compare the performance of the framework with existing
methods.

6.2.1. Matched filter
We implement a coincidence-based algorithm based on matched filter detections. Such a coincidence-
based algorithm is essentially what a lot of the hit-based methods implement in different techniques
[3], [5], [7]. In these coincidence types of algorithms, we run a matched filter on each individual burst.
Implementation details of a matched filter detector are found in, e.g., [52]. If there are any hits that
occur in all matched filters for the individual bursts at the same Doppler velocity, we choose those hits
as final hits.

6.2.2. Feedback N-signal Orthogonal Matching Pursuit
The Feedback N-signal Orthogonal Matching Pursuit (FN-OMP) algorithm of Aouchiche et al. [21] is
an OMP algorithm that uses a Levenberg Marquardt algorithm in each iteration to refine the estimates
and allow for non-coherent processing. The algorithm is given in pseudocode in Algorithm 1.

29
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Algorithm 1 Feedback N-signal Orthogonal Matching Pursuit
Require:
Observed data for the 𝐵 individual bursts 𝐭𝐛 ∀𝑏 ∈ {1, ..., 𝐵}
Dictionaries with relevance vectors 𝚽𝑏 = [𝝓𝐛 (𝜃1) , 𝝓𝐛 (𝜃2) , … ,𝝓𝐛 (𝜃𝑀)] ∀𝑏 ∈ {1, ..., 𝐵}
Threshold 𝜏

Ensure:
Estimated Doppler velocities �̂�
Estimated weights �̂�𝑏 ∀𝑏 ∈ {1, ..., 𝐵}

Initialise:
Residuals 𝝐𝑏 = 𝐭𝐵 ∀𝑏 ∈ {1, ..., 𝐵}
Set of Doppler velocities �̂� ← ∅
Sets of weights �̂�𝑏 ← ∅∀𝑏 ∈ {1, ..., 𝐵}

whilemax𝜃1≤𝜃≤𝜃𝑀 ∑
𝐵
𝑏=1

|𝝓𝐛(𝜃)𝐻𝝐𝑏|

√𝝓𝐛(𝜃)𝐻𝝓𝐛(𝜃)
≥ 𝜏 do

1. Add new Doppler velocity to set �̂� ← �̂� ∪ argmax𝜃1≤𝜃≤𝜃𝑀 ∑
𝐵
𝑏=1

|𝝓𝐛(𝜃)𝐻𝝐𝑏|

√𝝓𝐛(𝜃)𝐻𝝓𝐛(𝜃)
2. Initialise 𝐵 new weights �̂� ← �̂�𝑏 ∪ 𝑤𝑛𝑒𝑤𝑏 ∀𝑏 ∈ {1, ..., 𝐵}
3. Refine all estimates for the Doppler frequencies and weights using a Levenberg–Marquardt

algorithm, using the old estimates as starting points [�̂�, �̂�] = argmin𝜽,�̂� ∑
𝐵
𝑏=1|𝐭𝑏 −𝚽𝑏 (�̂�) �̂�𝑏|

2

4. Calculate new residuals 𝝐𝑏 = 𝚽𝑏 (�̂�) �̂�𝑏 ∀𝑏 ∈ {1, ..., 𝐵}
end while

6.3. Simulation of general cases
To compare general performance, we perform a Monte Carlo simulation of general cases. In each run,
we simulate two targets at random positions and give the data to six different algorithms. Four of the
algorithms are formed by the framework and the other two are the benchmarks. We then generate a
false alarm rate against probability of detection curve of each individual algorithm for different SNRs.

To generate the observed data, we simulate the Doppler responses of two targets for two individual
bursts of length 12. This results in two time-series of observed data, as specified by our data generating
process (6.1). We draw the amplitudes 𝛼𝑚 according to a Swerling 2 fluctuation model. I.e., 𝛼𝑚 ∼
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝜄𝑚), where we choose 𝜄𝑚 = 0.6 ∀𝑚 ∈ {1, 2}. We set the carrier frequency 𝑓𝑐 = 3 ⋅ 108 Hz.
The PRT of the first burst is 0.5⋅10−3 s, resulting in a Doppler fold of 30m/s according to (2.3). The PRT
of the second burst is 0.4 ⋅ 10−3 s, resulting in a Doppler fold of 37.5 m/s according to (2.3). Combining
those folds, we should theoretically be able to achieve a newDoppler fold equal to the smallest common
multiple of the two individual folds. I.e., we get a total Doppler fold of 150 m/s. The two targets are
generated randomly according to a uniform distribution. I.e., 𝜃𝑚 ∼ 𝑈(−75, 75). For the noise term, we
generate i.i.d. complex Gaussian noise with a standard deviation, 𝜎, of 1.04, 0.585, 0.329, or 0.185 to
get a signal-to-noise ratio (SNR) of 15, 20, 25, or 30 dB, respectively.
The SNR of a single pulse is defined as the ratio between the expected value of the squared signal
and the expected value of the noise squared. I.e.,

𝑆𝑁𝑅 =
𝔼 [‖∑𝑀𝑚=1 𝛼𝑚 exp { 𝑗2𝜋2𝑇𝑏𝑖𝜃𝑚𝑓𝑐𝑐 }‖

2
]

𝔼 [𝜀2] . (6.2)

Due to the fact that the noise is zero mean Gaussian, the expected value squared is equal to the
variance of the noise. I.e., 𝔼 [𝜀2] = 𝜎2. The absolute value of the exponent is equal to 1, so for a single
pulse we can thus write

𝑆𝑁𝑅 =
∑𝑀𝑚=1 𝔼 [‖𝛼2𝑚‖]

𝜎2 . (6.3)

As shown in Appendix D, the non-central second order moment of a Rayleigh distribution is equal to
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2𝜄2𝑚. We can thus express the single pulse SNR in dB as

𝑆𝑁𝑅 = 10 log10 {2
𝑀

∑
𝑚=1

𝜄2𝑚} − 10 log10 {𝜎2} . (6.4)

By taking into account the integration gain from the two bursts of twelve pulses, we get a total SNR in
dB of

𝑆𝑁𝑅𝑡𝑜𝑡 = 10 log10 {2
𝑀

∑
𝑚=1

𝜄2𝑚} − 10 log10 {𝜎2} + 10 log10 {24} . (6.5)

We give the data to the root-based MRVM and the VALSE-based MRVM, as well as to the two bench-
marks. For all algorithms, we define a grid from−75 to 75, with a resolution of one. The first benchmark
is a regular matched filter with a coincidence algorithm, where we decide that there is a target when the
same gridpoint exceeds the threshold in both bursts. The second benchmark is the FN-OMP algorithm
of [21].

In the MRVM based methods, we prune the component from the model when the specific 𝛼 becomes
greater than 106. We stop iterating when the sum of the absolute difference between the alphas of the
current iteration and the previous iteration is smaller than 10−10, or when we exceed 2000 iterations.
We apply both the GLRT and Bayesian ambiguity awareness extension to the root-based MRVM and
the VALSE-based MRVM methods, resulting in four different methods. For the GLRT ambiguity aware
relevance vector machines, we set the threshold using (5.13). For the Bayesian ambiguity aware
relevance vector machines, we decide that the relevance vector under test is not a target if the posterior
probability of no target exceeds the threshold. If the probability of no target is below threshold, we
choose the maximum a posteriori (MAP) estimate.

For the matched filter method, the thresholds are set by evaluating the inverse cumulative distribution
of a standard normal random variable between 0 and 1 in 1000 steps. To set the thresholds for the FN-
OMPmethod, we evaluate the quantiles of the empirical distribution of the maximum of 150 realisations
of the sum of two standard normal distributions. We evaluate these quantiles from 0 to 1 in 1000 steps.
When using the extension to GLRT ambiguity awareness, we set the thresholds based on (5.13) with 𝜆
ranging from 0 to 1 in 1000 steps. For the Bayesian ambiguity awareness, we again range the threshold
from 0 to 1 in 1000 steps.
We run the experiment 1000 times, each time with independently generated data. We gather all the
detections produced by themethods and compare themwith the generated Doppler velocities. For each
iteration, we look at every individual element in the set of generated Doppler velocities and search for a
detection that lies within one resolution of the generated Doppler velocities. If we find such a detection,
we remove both the Doppler velocity and the detection. Repeating for all generated Doppler velocities,
the final elements left in the set of generated Doppler velocities is the collection of missed detections.
Similarly, the elements left in the set of detections is the set of false alarms. Using the sets of missed
detections and false alarms, we calculate the probability of detection, 𝑝𝑑, and the false alarm rate 𝑟𝑓𝑎.
The probability of detection is defined as the ratio between the detected targets and the total number of
targets. The false alarm rate is the average number of false alarms in a simulation run. This procedure
results in 1000 pairs of 𝑝𝑑 and 𝑟𝑓𝑎 that form approximate receiver operating characteristic (ROC) curves.
Note that this 𝑝𝑑 is not exactly the same as the probability of detection used in most literature. Here,
we specifically require the detections to be unambiguous.

Figure 6.1 shows the results of the experiment. For an SNR of 15, 20, 25 and 30 dB, we get six ap-
proximations of ROC curves. I.e., for the root-based MRVM methods with GLRT as well as Bayesian
ambiguity awareness, the VALSE-based MRVM methods with GLRT and Bayesian ambiguity aware-
ness, the FN-OMP method and, the matched filter method.

From a performance point of view, the VALSE-based MRVM methods tend to perform best. Especially
when a high probability of detection is required, the VALSE-based MRVM methods tend to achieve
higher probabilities of detection for the lowest false alarm rate.
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Figure 6.1: Plots of the estimated ROC curves for all methods that have a threshold. Each simulation run has two targets with
a Doppler velocity uniformly generated between −75 and 75. The amplitudes of the reflection of the targets follow a Swerling 2
fluctuation model. The legend is shared across all subfigures. The scatterplots corresponds to the following SNR: (a) 15 dB, (b)
20 dB, (c) 25 dB, (d) 30 dB.

For the MRVM-based methods, we generally see that the GLRT ambiguity awareness is preferred
when a low false alarm rate is desired. When a high probability of detection is required, the Bayesian
ambiguity awareness seems to be more favourable. This effect is visible across all SNRs, but does not
seem to hold for the VALSE-MRVM based at an SNR of 15 dB

The general performance of the FN-OMP method tends to be good, but the FN-OMP method is outper-
formed by the VALSE-MRVM based methods at most points in the ROC curve for the different SNRs.
An exception of this trend in performance is in the case of an SNR of 15 dB when a low false alarm rate
is required. The FN-OMP method can provide us with the highest probability of detection when such
a low false alarm rate is required. We do, however, also see that the Root-based method with GLRT
ambiguity awareness outperforms the FN-OMP method when we want to go even lower in terms of
false alarm rate.

The matched filter method seems to perform worst in all scenarios. One advantage of the matched filter
method is that it can reach higher probabilities of detection, albeit for extremely high false alarm rates.
Zoomed-out plots of the estimated ROC curves of the matched filter method are depicted in Figure E.1
of the additional figures given in Appendix E.

When looking at Figure 6.1 from a sensitivity analysis point of view, we notice that there is an obvious
limit For the MRVM-based methods. we cannot get a significantly greater probability of detection than
the MRVM methods themselves, as the main task of the ambiguity awareness is to reject components.
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The Bayesian ambiguity awareness is theoretically able to increase this probability of detection, but this
happens only so often in practice. We show an example of this increase in the simulation experiment
with prior information below. In the simulation of a general case, there is however no increase in
probability of detection achieved across all SNRs, only a significant decrease in false alarm rate.

The FN-OMP does not have such an inherent limit, we do however see that the ROC curve seems to
converge towards a similar asymptote in terms of probability of detection.

To compare the plain MRVM methods with the ambiguity aware methods, we repeat the simulation
experiment for the plain MRVM methods. As there is no threshold like in the ambiguity awareness to
be set in the plain MRVM methods, we only generate one point and not a complete curve.

Table 6.1: Average false alarm rate and probability of detection across SNRs for the plain MRVM methods. Each simulation run
has two targets with a Doppler velocity uniformly generated between −75 and 75. The amplitudes of the reflection of the targets
follow a Swerling 2 fluctuation model. The simulation is repeated 1000 times.

Model R-MRVM V-MRVM
SNR 𝑟𝑓𝑎 𝑝𝑑 𝑟𝑓𝑎 𝑝𝑑
15 dB 1.5457 0.6554 1.6463 0.7281
20 dB 0.8180 0.6120 0.7500 0.7285
25 dB 0.696 0.6295 0.664 0.73
30 dB 0.686 0.62 0.839 0.7385

Table 6.1 shows the results for the two plain MRVM methods. The table reveals the inherent limit in
terms of probability of detection for the ambiguity aware methods. Another notable result is that in the
VALSE-based plain MRVM, we clearly see a jump in false alarm rate when going from 25 dB to 30
dB. Upon closer inspection of the results, we see that for higher SNRs, the VALSE-based plain MRVM
tends to return multiple detections in a single place when only one target is present. We also see that a
lot of these double detections get rejected when using an ambiguity aware relevance vector machine.

6.4. Simulation of a difficult case
We perform a Monte Carlo simulation of a particularly difficult case to assess the performance of the
methods in difficult situations and thus assess the robustness of the methods when the methods have
to deal with difficult scenarios. This simulation study also highlights the drawback of greedy algorithms.
The difficulty in the simulated scenario is caused by simulating two targets that both have a specific
ambiguity that coincides. This coincidence causes a sharp peak in the matched filter response, making
that specific Doppler velocity a strong local optimum.

To generate the observed data, we simulate data similar to the data of the simulation of a general case.
We again simulate the Doppler responses of two targets for two individual bursts of length 12 from the
data generating process (6.1). We draw the two amplitudes from a Swerling 2 fluctuation model. I.e.,
𝛼𝑚 ∼ 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝜄𝑚), where we now choose 𝜄𝑚 = 1.075 ∀𝑚 ∈ {1, 2}. We choose a higher 𝜄𝑚 in this
study to increase the SNR by 5 dB compared to the general case in order to make the difficult problem
more manageable for the methods used.

The two targets are now generated at fixed points. For each simulation run, we choose 𝜃1 = 40 m/s
and 𝜃2 = −27.5m/s. These Doppler velocities together with the ambiguity folds of 30m/s and 37.5m/s
will cause two ambiguities to overlap at a Doppler velocity of 10 m/s.

For the noise term, we generate i.i.d. complex Gaussian noise with a standard deviation, 𝜎, of 1.04,
0.585, 0.329, or 0.185 to get a signal-to-noise ratio of 20, 25, 30, or 35 dB, respectively. The SNR is
calculated according to (6.5).

All thresholds are varied in the same way as in the simulation study for the general case. We then run
the experiment 1000 times, each time with independently generated data and determine the average
probability of detection 𝑝𝑑 and false alarm rate 𝑟𝑓𝑎. This procedure again results in 1000 pairs of 𝑝𝑑
and 𝑟𝑓𝑎, forming approximate ROC curves.
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Figure 6.2: Plots of the estimated ROC curves for all methods that have a threshold. Each simulation run has two targets with
a Doppler velocity of 40 and −27.5, respectively. The amplitudes of the reflection of the targets follow a Swerling 2 fluctuation
model. The legend is shared across all subfigures. The scatterplots corresponds to the following SNR: (a) 20 dB, (b) 25 dB, (c)
30 dB, (d) 35 dB.

Figure 6.2 shows the results of the experiment. For an SNR of 20, 25, 30 and 35 dB, we get six ap-
proximations of ROC curves. I.e., for the root-based MRVM methods with GLRT as well as Bayesian
ambiguity awareness, the VALSE-based MRVM methods with GLRT and Bayesian ambiguity aware-
ness, the FN-OMP method, and the matched filter method.

Where in the first simulation, the FN-OMP method came close to the framework, it now clearly shows
a shortcoming in performance. Every method that is extended to have ambiguity awareness tends
to outperform the FN-OMP method across all SNRs. This lack of performance of FN-OMP is caused
by the greedy nature of the FN-OMP algorithm. The greedy nature of the FN-OMP method causes
the method to quickly select the spurious peak in the matched filter response and does not allow for
updating that component later on. The MRVM-based methods also have a tendency to select such a
strong peak, but are more flexible and allow for updates of that component later on.

Comparing the matched filter method to the other methods shows that the matched filter method is able
to achieve a good probability of detection, but suffers from high false alarm rates.

6.5. Incorporation of prior information
We now set up a simulation study to show the impact on detection performance of the methods that
have Bayesian ambiguity awareness when we have a priori information on the Doppler velocity of the
targets.
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Apart from the generation of the Doppler velocities, the setup is exactly the same as in the simulation
study for general cases. We now generate the Doppler velocities according to a Gaussian mixture
distribution instead of a uniform distribution. The Gaussian mixture consists of two Gaussians, both
having a probability of 0.5 to be drawn from. The first Gaussian has a mean of −8 and a standard
deviation of 10, the second Gaussian has a mean of 40 and a standard deviation of 5. The pdf of the
resulting Gaussian mixture distribution is shown in Figure 6.3.
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Figure 6.3: Distribution of the Doppler velocities used in the simulation study with prior information.

All thresholds are varied in the same way as in the simulation study for the general case. We then run
the experiment 1000 times, each time with independently generated data and determine the average
probability of detection 𝑝𝑑 and false alarm rate 𝑟𝑓𝑎. This procedure again results in 1000 pairs of 𝑝𝑑
and 𝑟𝑓𝑎, forming approximate ROC curves.

Figure 6.4 shows the results of the experiment. For an SNR of 15, 20, 25 and 30 dB, we get eight ap-
proximations of ROC curves. I.e., for the root-based MRVM methods with GLRT as well as Bayesian
ambiguity awareness, the VALSE-based MRVM methods with GLRT and Bayesian ambiguity aware-
ness, the FN-OMP method, and the matched filter method. For completeness, the figure also depicts
the results for the methods that are extended with Bayesian ambiguity awareness when using a flat
prior.

The results are similar to the simulation of a general case. As could be expected due to the fact that
the simulation set-up is very similar. The only difference is that the target velocities are now generated
according to a Gaussian mixture instead of a uniform distribution.

There is a clear advantage when using prior information. The methods with Bayesian ambiguity aware-
ness perform significantly better when using the correct prior, compared to when these methods use a
flat prior. Across all SNRs, the methods that use the correct prior achieve a lower false alarm rate as
well as a higher probability of detection.

To compare the plain MRVM methods with the ambiguity aware methods, we repeat the simulation
experiment for the plain MRVM methods. As there is no threshold like in the ambiguity awareness to
be set in the plain MRVM methods, we only generate one point and not a complete curve.

Table 6.2: Average false alarm rate and probability of detection across SNRs for plain MRVM-based methods. Each simulation
run has two targets with a Doppler velocity generated according to theGaussianmixture as depicted in Figure 6.3. The amplitudes
of the reflection of the targets follow a Swerling 2 fluctuation model. The simulation is repeated 1000 times.

Model R-MRVM V-MRVM
SNR 𝑟𝑓𝑎 𝑝𝑑 𝑟𝑓𝑎 𝑝𝑑
15 dB 1.4510 0.6905 1.5920 0.7285
20 dB 0.7930 0.6320 0.6970 0.7290
25 dB 0.6390 0.6340 0.7200 0.7255
30 dB 0.6860 0.6230 0.8480 0.7340
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Figure 6.4: Plots of the estimated ROC curves for all methods that have a threshold. Each simulation run has two targets with a
Doppler velocity generated according to the Gaussian mixture as depicted in Figure 6.3. The amplitudes of the reflection of the
targets follow a Swerling 2 fluctuation model. The legend is shared across all subfigures. The scatterplots corresponds to the
following SNR: (a) 15 dB, (b) 20 dB, (c) 25 dB, (d) 30 dB.

Table 6.2 shows the results for the two plain MRVM methods. A notable result is that the Bayesian
ambiguity awareness with correct prior is actually able to increase the probability of detection com-
pared with the plain MRVM-based methods. This is an especially interesting result as the simulation of
general cases revealed that, when no prior information is available, the plain MRVM-based methods
indicated a limit in terms of probability of detection for the ambiguity aware methods. This increase can
be attributed to the fact that we choose the MAP estimate when using the Bayesian ambiguity aware-
ness. When the MRVM returns an incorrect relevance vector that is actually an ambiguity of the actual
target, the Bayesian ambiguity awareness is sometimes able to see that the posterior probability of the
target selected by the MRVM is lower than the posterior probability of another position. The Bayesian
ambiguity awareness will then select the Doppler velocity with the highest posterior probability.

6.6. Comparison with MCMC
To evaluate the estimated posterior of the framework with Bayesian ambiguity awareness, we design
an MCMC filter. We specifically use a Metropolis-Hastings algorithm to search the sample space and
estimate the true posterior. This comparison is of a qualitative nature as we cannot easily givemeasures
to the differences of outputs and will therefore mostly rely on visual inspection.

We simulate a simple case for the comparison. We simulate the Doppler response of a single target
with a Doppler velocity of 45 m/s three times with varying amplitudes. Each time, we simulate two
individual bursts of length 12. We simulate the data according to the data generating process (6.1).
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We consider three cases. In all cases we get a strong reflection in the first burst. In the first case, we
get no reflection in the second burst. In the second case, we get a weak reflection in the second burst.
In the third case, we also get a strong reflection in the second burst. We thus set the amplitude of the
target from the first burst fixed at 𝛼1 = 1. We use a varied second amplitude to examine the effect on
the posterior distribution. So, for the second burst, we vary the amplitude 𝛼1 ∈ {0.0, 0.3, 0.7}. We set
the carrier frequency 𝑓𝑐 = 3 ⋅ 108 Hz. The PRT of the first burst is 0.5 ⋅ 10−3 s, resulting in a Doppler
fold of 30 m/s according to (2.3). The PRT of the second burst is 0.4 ⋅ 10−3 s, resulting in a Doppler
fold of 37.5 m/s according to (2.3). For the noise term, we generate i.i.d. complex Gaussian noise with
a standard deviation of 1.
We give the simulated data to the VALSE based MRVM with Bayesian ambiguity awareness as well as
a Metropolis–Hastings algorithm.

We design the Metropolis–Hastings algorithm by using the likelihood that results from the data gen-
erating process (6.1). We search the parameter space for four variables: the Doppler velocity of the
target, the amplitude of the target in the first burst, the amplitude of the target in the second burst and
the standard deviation of the noise. We use uniform priors for all these variables. We fix the model
order at one, as we are mainly interested in the posterior distribution of the Doppler velocity.

Note that the design of a Metropolis–Hastings algorithm is far from trivial for a sample space that forms
from a problem with ambiguities. As there exists a large amount of strong local optima, a Metropolis–
Hastings algorithm has the tendency to get stuck in one of the local optima and not search the complete
sample space. This is especially the case when generating candidate states for the velocity according
to a distribution with low kurtosis, such as a normal distribution. Therefore, we opt for a Student’s-t
distribution with two degrees of freedom for the candidate states of the velocity. A heavy-tailed distri-
bution, such as the Student’s-t distribution with two degrees of freedom, has a chance to generate a
candidate state according to the tails of the distribution. Such a candidate state has the possibility to
”escape” a local optimum in which candidate states generated according to a normal distribution are
likely to get stuck.

For the Metropolis-Hastings algorithm, we initialise 128 independent chains. Each chain produces
100, 000 proposals, bringing the total amount of samples to 12, 800, 000. We initialise the weights at
0. The velocity is initialised according to a uniform distribution on the interval from −75 to 75. The
variance is initialised at the sample variance of the generated data. We generate the proposals of the
weights by generating zero-mean complex Gaussian updates with a standard deviation of 0.05. The
proposals for the variance are also generating zero-mean complex Gaussian updates with a standard
deviation of 0.05. The update proposals for the Doppler velocity are, as described above, generated by
a complex Student’s-t distribution with two degrees of freedom. We multiply the proposed innovation
by 3.5 to allow the proposals to jump between local optima more easily. To reduce finite sample bias,
we define a burn-in period of the first 10000 samples of each MCMC chain.

For the VALSE-based MRVM with Bayesian ambiguity awareness, we use the same setup as in the
earlier simulation studies. I.e., we define a grid from −75 to 75, with a resolution of one. We prune the
component from the model when the specific 𝛼 becomes greater than 106. We stop iterating when the
summed absolute difference between the alphas of the current iteration and the previous iteration is
smaller than 10−10, or when we exceed 2000 iterations. In the ambiguity awareness, we decide that
the relevance vector under test is not a target if the posterior probability of no target exceeds 0.05. If
the probability of no target is below 0.05, we choose the (MAP) estimate.

Figure 6.5 shows the collection of samples for the posterior of the Doppler velocity of the Metropolis-
Hastings algorithm together with the output of the VALSE-basedMRVMwith Bayesian ambiguity aware-
ness for the three cases.

Comparing the results of the VALSE-basedMRVMwith Bayesian ambiguity awareness to theMetropolis-
Hastings algorithm for the case of a non-existent second reflection, we see that both outputs are similar.
The peaks are in both outputs almost uniformly distributed over the possible ambiguities, as we would
expect in the case where we only have a reflection in one burst.

In the case of a weak reflection in the second burst, we would expect one high peak at 45m/s and small,
but significant, peaks at the places of the possible ambiguities. We see this pattern in both outputs.
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We also see that the difference between the peak at 45 m/s and the possible ambiguities is greater
in the output of the Metropolis-Hastings algorithm compared to the output of the VALSE-based MRVM
with Bayesian ambiguity awareness. This observation leads to the conclusion that the VALSE-based
MRVM with Bayesian ambiguity awareness is slightly less capable of accessing all useful information
received in the second burst.

Comparing the VALSE-based MRVM with Bayesian ambiguity awareness with the Metropolis-Hastings
algorithm for the case of a strong second reflection, we again see similar results. We do however see
that the Metropolis-Hastings algorithm shows small peaks at the possible ambiguities. The VALSE-
based MRVM with Bayesian ambiguity awareness estimates the probability that there is a target at any
of the ambiguities to be zero, while the Metropolis-Hastings algorithm indicates that there still is a low
probability.
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(f) V-MRVM Bayes, strong reflection in the first burst, strong reflection
in the second burst

Figure 6.5: Estimated posterior distributions for theMetropolis-Hastings algorithm in the left column and the VALSE-basedMRVM
with Bayesian ambiguity awareness in the right column. The simulations are for a simple case with two bursts of a scenario of
only one target with a Doppler velocity of 45 m/s. The reflection in the first burst is strong in every simulation. The reflection of
the target in the second burst is non-existent in (a) and (b), weak in (c) and (d), and strong in (e) and (f).





7
Conclusion and recommendations

7.1. Conclusion
This thesis has worked towards a framework that can be used to resolve ambiguities in a multi-target
environment. The framework works on a video integration level, is able to take prior information into
account, can quantify the uncertainty of the estimates, and has a clear convergence criterion. Thus
meeting the goal set in the research scope described in section 1.3. The conclusion is given through
the answering of the research questions.

How can we formulate a framework that improves the state-of-the-art when it comes to resolv-
ing ambiguities in a multi-target environment when processing on a video level?
This thesis proposes a novel framework to improve the state-of-the-art when it comes to resolving am-
biguities in a multi-target environment when processing on a video level. The framework is essentially
formulated in two steps. The first step uses a variant of the multitask relevance vector machine adjusted
to work off-grid on the complete domain. In the second step, the framework takes possible ambiguities
into account. In the ambiguity awareness step, the framework has two options. The framework either
performs a frequentist test to test whether a relevance vector can statistically significantly be discerned
from ambiguities, or the framework estimates a posterior distribution of the individual relevance vectors.

What model or statistical technique should drive the framework?
The framework is driven by a relevance vector machine adjusted to work off-grid. The relevance vec-
tor machine is highly suitable to drive the framework. Specifically due to the fact that the relevance
vector machine, when adjusted for complex numbered problems, assumes a complex Gaussian dis-
tribution as a prior on the weights. This complex Gaussian coincides with cases one and two of the
Swerling fluctuation models. The relevance vector machine is also extendable to multiple measure-
ment vectors under both the assumptions for coherent processing, as well as the assumptions needed
for non-coherent video-level processing. The relevance vector machine has some desirable statistical
properties. I.e., the global optimum is the maximally sparse solution and the relevance vector machine
suffers from fewer local optima compared with competing models. Additionally, the relevance vector
machine has a clear converge criterion.

How can we incorporate a priori information?
By taking a Bayesian view in the extension towards an ambiguity aware relevance vector machine, we
are able to take prior information into account. In a Bayesian treatment of the ambiguity awareness,
we take the total data likelihood of the relevance vector machine model specification as conditional
probability. The framework then estimates a posterior distribution for each relevance vector by using
Bayes’ theorem, taking prior distributions into account.

How can we quantify the uncertainty in the estimates of the framework?
The framework quantifies the uncertainty in the estimates in two possible ways. Both of the techniques
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are executed in the extension towards ambiguity awareness. The first procedure is a frequentist test.
This frequentist test is used to test whether we can statistically significantly discern the estimate of
the relevance vector machine from its possible ambiguities. This test provides a test statistic with the
corresponding distribution. The combination of test statistics and corresponding distribution allows
for 𝑝-values to be calculated. 𝑝-values represent the probability of obtaining test results at least as
extreme as the observed result, under the assumption that the null hypothesis is correct. 𝑝-values,
therefore, provide a measure of confidence. The second way is via the Bayesian ambiguiy awareness.
the Bayesian ambiguity awareness provides a posterior distribution of the returned relevance vectors.
This posterior distribution makes it possible to perform a qualitative assessment of the confidence of
the estimate. There is a low amount of confidence in the estimate if the posterior distribution has a lot
of probability mass on the possible ambiguities or on the ’no target’ outcome. There is high confidence
in an estimate when all probability mass is located at the returned estimate.

7.2. Future work
There are three main restrictions to the approach in this thesis as defined in the research scope. The
first three candidates for future work directly result from lifting the restrictions defined in the research
scope. Besides lifting the restrictions, one additional suggestion for future research is made below.

The first restriction concerns the noise term. The framework assumes white Gaussian noise. The white
Gaussian noise assumption is realistic in some situations, but is frequently violated in real scenarios.
Especially when working with radars, clutter can easily cause the noise to be coloured, non-Gaussian,
or both. The first suggestion for future research is therefore to drop this assumption and write out
the framework for other types of noise terms. E.g., allowing for heterogeneity or serial correlation in
the covariance matrix. Or even opting for a completely different distribution, such as a Student’s t-
distribution. When adjusting the noise terms, the derivations will become more challenging. Some of
the steps in the current derivations are only allowed when working with complex Gaussian distributions.
When these steps are not applicable, the derivations will become more challenging.

The second restriction is that the framework is only tested on simulated data. Future work is thus to
take real data to the framework. When using real data there are a lot of caveats, such as coloured noise
and clutter types that are not accounted for. It would therefore be interesting to see how the framework
would fare when handling real data.

The third restriction is the restriction of applying the framework to Doppler processing. Future work
is to apply the framework to other types of ambiguities as well. Candidate problems with ambiguities
are estimating range or DOA in radar systems. The framework should be adjusted when applying the
framework to other types of ambiguities. When applying the framework to DOA estimation, the modi-
fications are small. In DOA estimation, the same structure can be exploited as in Doppler processing.
The main difference will be the choice of design matrices. When applying the framework to range es-
timation, the assumptions made to take the relevance vector machine off-grid no longer hold. In that
case we should turn towards other off-grid methods. Required methods will then lie more in the class
of optimisation methods such as the Taylor expansion method of Yang et al. [41].

The final suggestion for future work is to extend the framework beyond the first two Swerling fluctuation
models. The framework currently has strong parallels specifically to Swerling cases one and two. An
abstract goal is to work towards one model that encompasses all four Swerling cases. Ideally, the
model then even encompasses every case in between the specific Swerling cases as well. To extend
the framework beyond these Swerling cases, the prior on the weights of the relevance vector machine
needs to be adjusted. The adjusted distribution can no longer be a complex Gaussian distribution. This
distribution no longer being Gaussian will cause the derivations to be more difficult due to the same
reason as with lifting the restriction of the noise term being complex Gaussian. A couple of steps in the
derivations can no longer be performed, giving rise to the need of an alternative derivation.
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A
Derivation of the complex-valued

relevance vector machine

Repeating the model specification of the complex-valued relevance vector machine, we have the fol-
lowing canonical form

𝐭 = 𝚽𝐰+ 𝜺, (A.1)

where 𝐭 ∈ ℂ𝑁 𝚽 ∈ ℂ𝑁×𝑀 and 𝐰 ∈ ℂ𝑀. The noise term 𝜺 is also modelled as an independent zero-mean
complex Gaussian random variable. I.e., 𝜺 ∼ 𝒞𝒩(𝟎, 𝜎2𝐈). Due to the complex Gaussian noise term,
we have

𝑝(𝑡𝑛|𝑦(𝐱𝑛; 𝐰), 𝜎2) = 𝒞𝒩(𝑡𝑛|𝑦(𝐱𝑛; 𝐰), 𝜎2) (A.2)

Allowing us to write the complete data likelihood as

𝑝 (𝐭 ∣ 𝐰, 𝜎2) = 𝒞𝒩 (𝐭|𝚽𝐰, 𝜎2𝐈) = 1
𝜋𝑁 |𝜎2𝐈| exp {−

1
𝜎2 ‖𝐭 − 𝚽𝐰‖

2
2} . (A.3)

We define a zero-mean complex Gaussian prior on the weights 𝐰. The prior is given as

𝑝 (𝐰|𝜶) =
𝑀−1

∏
𝑖=0

𝒞𝒩(𝑤𝑖|0, 𝛼−1𝑖 ), (A.4)

where 𝜶 is an M-length vector with hyperparameters. By defining the matrix 𝐀 = diag(𝛼0, … , 𝑎𝑀−1), we
can rewrite the prior distribution on the weights as

𝑝 (𝐰|𝜶) = 𝒞𝒩 (𝐰|𝟎, 𝐀−1) = 1
𝜋𝑀 |𝐀−1| exp {−𝐰

𝐻𝐀𝐰} . (A.5)

We first write out the joint distribution of 𝐭 and 𝐰. The logarithm of the joint distribution is given by

ln𝑝(𝐭,𝐰|𝜶, 𝜎2) = ln𝑝(𝐰|𝜶) + ln𝑝(𝐭|𝐰; 𝜎2). (A.6)

We write out the logarithm of the joint distribution as

ln𝑝(𝐭,𝐰|𝜶, 𝜎2) = −𝐰𝐻𝐀𝐰− (𝐭 − 𝚽𝐰)𝐻 𝐁−1 (𝐭 − 𝚽𝐰) + Const, (A.7)

where 𝐁 is defined as 𝜎2𝐈 and Const denotes the terms that are independent from both 𝐭 and 𝐰.
We rewrite the expression of ln𝑝(𝐭,𝐰|𝜶, 𝜎2) using a commonly used technique called completing the
square as described in, e.g., [46, Ch. 2]. When completing the square, we look at the terms in the
exponent of a (complex) Gaussian distribution and determine the mean and covariance characterising
that distribution. Considering a general complex Gaussian 𝑝(𝐱|𝝁, 𝚺), we write the exponent as

−(𝐱 − 𝝁)𝐻 𝚺−1 (𝐱 − 𝝁) = −𝐱𝐻𝚺−1𝐱 + 2𝐱𝐻𝚺−1𝝁 + Const, (A.8)
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where Const is again the term independent of 𝐱. By writing any exponent of a (complex) Gaussian in
this form, we can immediately equate the second order terms in 𝐱 to 𝚺−1 and the linear terms in 𝐱 to
𝚺−1𝝁, allowing us to find 𝝁.
Turning back to (A.7), we collect the quadratic terms, resulting in

−𝐰𝐻 (𝐀 +𝚽𝐻𝐁−1𝚽)𝐰 − 𝐭𝐻𝐁−1𝐭 + 𝐭𝐻𝐁−1𝚽𝐰+𝐰𝐻𝚽𝐻𝐁−1𝐭

= [ 𝐰𝐭 ]
𝐻
[ 𝐀 +𝚽

𝐻𝐁−1𝚽 −𝚽𝐻𝐁−1
−𝐁−1𝚽 𝐁−1 ]

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝚺−1𝐰,𝐭

[ 𝐰𝐭 ] . (A.9)

So, the precision matrix of the joint distribution of 𝐰 and 𝐭 is given by

𝚲𝐰,𝐭 = 𝚺−1𝐰,𝐭 = [
𝐀 +𝚽𝐻𝐁−1𝚽 −𝚽𝐻𝐁−1
−𝐁−1𝚽 𝐁−1 ] . (A.10)

We will now write out the covariance of the joint distribution of 𝐰 and 𝐭 by using the general identity that
the inverse of a partitioned matrix is given by

[ 𝐀 𝐁
𝐂 𝐃 ]

−1
= [ 𝐌 −𝐌𝐁𝐃−1

−𝐃−1𝐂𝐌 𝐃−1 + 𝐃−1𝐂𝐌𝐁𝐃−1 ] , (A.11)

where
𝐌 = (𝐀 − 𝐁𝐃−1𝐂)−1. (A.12)

𝐌−1 is the so called Schur complement. So, we rewrite (A.10) by first writing out the inverse of the
Schur complement as

𝐌 = (𝐀 +𝚽𝐻𝐁−1𝚽− 𝐁−1𝚽(𝐁−1)−1 𝐁−1𝚽)
−1
= 𝐀−1. (A.13)

So, the covariance matrix of the joint distribution of 𝐰 and 𝐭 is

𝚺𝐰,𝐭 = [
𝐀−1 𝐀−1𝚽𝐁−1𝐁

𝐁𝐁−1𝚽𝐀−1 𝐁 +𝚽𝐀−1𝚽𝐻 ] = [ 𝐀−1 𝐀−1𝚽
𝚽𝐀−1 𝐁 +𝚽𝐀−1𝚽𝐻 ] . (A.14)

By noting that there are no linear terms in either 𝐰 or 𝐭 in (A.7), we conclude that the mean of the joint
distribution of 𝐰 and 𝐭 is equal to zero, i.e.,

𝝁𝐰,𝐭 = [
𝟎
𝟎 ] . (A.15)

Having both the mean and covariance matrix, we have fully characterised the joint distribution of𝐰 and
𝐭 as

𝑝 (𝐭,𝐰|𝜶, 𝜎2) = 𝒞𝒩 ([ 𝐰𝐭 ] | [
𝟎
𝟎 ] , [

𝐀−1 𝐀−1𝚽
𝚽𝐀−1 𝐁 +𝚽𝐀−1𝚽𝐻 ]) . (A.16)

From the joint distribution, we express the marginal distribution of 𝐭 as
𝑝 (𝐭|𝜶, 𝜎2) = 𝒞𝒩 (𝐭|𝟎, 𝐁 + 𝚽𝐀−1𝚽𝐻) . (A.17)

We now turn to the posterior on the weights, 𝑝 (𝐰|𝐭, 𝜶, 𝜎2). We first consider a general case, where
we have a joint complex Gaussian distribution on 𝐱 with mean 𝝁 and covariance matrix 𝚺. We assume
that we can make the following partition

𝐱 = [ 𝐱𝑎𝐱𝑏 ] ,

𝝁 = [ 𝝁𝑎𝝁𝑏 ] ,

𝚺 = [ 𝚺𝑎𝑎 𝚺𝑎𝑏
𝚺𝑏𝑎 𝚺𝑏𝑏 ] ,

𝚲 = 𝚺−1 =[ 𝚲𝑎𝑎 𝚲𝑎𝑏
𝚲𝑏𝑎 𝚲𝑏𝑏 ] .

(A.18)
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We then write out the exponent of the complex Gaussian distribution as

− (𝐱 − 𝝁)𝐻 𝚺−1 (𝐱 − 𝝁)

= − (𝐱𝑎 − 𝝁𝑎)
𝐻 𝚲𝑎𝑎 (𝐱𝑎 − 𝝁𝑎) − (𝐱𝑎 − 𝝁𝑎)

𝐻 𝚲𝑎𝑏 (𝐱𝑏 − 𝝁𝑏)

− (𝐱𝑏 − 𝝁𝑏)
𝐻 𝚲𝑏𝑎 (𝐱𝑎 − 𝝁𝑎) − (𝐱𝑏 − 𝝁𝑏)

𝐻 𝚲𝑏𝑏 (𝐱𝑏 − 𝝁𝑏) .

(A.19)

To get the conditional distribution, we assume 𝐱𝑏 to be given, i.e., we treat it as a constant. We then
complete the square over 𝐱𝑎. Collecting the terms quadratic in 𝐱𝑎 gives

−𝐱𝐻𝑎𝝀𝑎𝑎𝐱𝑎 . (A.20)

By completing the square, we can write the inverse of the conditional precision matrix as

𝚺−1𝑎|𝑏 = 𝚲𝑎𝑎 . (A.21)

So, the conditional covariance matrix is given as

𝚺𝑎|𝑏 = 𝚲−1𝑎𝑎 . (A.22)

collecting linear terms in 𝐱𝑎 gives us

𝐱𝐻𝑎 (𝚲𝑎𝑎𝝁𝑎 − 𝚲𝑎𝑏 (𝐱𝑏 − 𝝁𝑏)) . (A.23)

From completing the square, we know that

𝚺−1𝑎|𝑏𝝁𝑎|𝑏 = (𝚲𝑎𝑎𝝁𝑎 − 𝚲𝑎𝑏 (𝐱𝑏 − 𝝁𝑏)) . (A.24)

We now have an expression for the mean of the conditional distribution

𝝁𝑎|𝑏 = 𝚺𝑎|𝑏 (𝚲𝑎𝑎𝝁𝑎 − 𝚲𝑎𝑏 (𝐱𝑏 − 𝝁𝑏))
= 𝝁𝑎 − 𝚺𝑎|𝑏𝚲𝑎𝑏 (𝐱𝑏 − 𝝁𝑏) ,

(A.25)

where we use (A.22). Using (A.22) and (A.25) and filling in the values from (A.10) and (A.15), we can
fully characterise the posterior on the weights as

𝑝 (𝐰|𝐭, 𝜶, 𝜎2) = 𝒞𝒩 (𝐰|𝚺𝚽𝐻𝐁−1𝐭, 𝚺) , (A.26)

where 𝚺 = (𝐀 +𝚽𝐻𝐁−1𝚽)−1.
We now turn to the Bayesian update equations of 𝜶 and 𝜎. We derive the update equations by max-
imising the marginal distribution of 𝐭, as expressed in Equation A.17. Since maximising the logarithm
of the marginal distribution of 𝐭 is equivalent to maximising the marginal distribution of 𝐭, we write the
logarithm of the marginal distribution of 𝐭 as

ℒ (𝐭|𝜶, 𝜎) = − ln |𝐁 + 𝚽𝐀−1𝚽𝐻| − 𝐭𝐻 (𝐁 +𝚽𝐀−1𝚽𝐻)−1 𝐭, (A.27)

where we have only kept the terms depending on 𝜶 and 𝜎. We rewrite the first term as

− ln |𝐁 + 𝚽𝐀−1𝚽𝐻|
= − ln |𝐀−𝟏| − ln |𝐁| − ln |𝐀 − 𝚽𝐻𝐁𝚽|

=
𝑀−1

∑
𝑖=0

ln𝛼𝑖 − 𝑁 ln𝜎2 + ln |𝚺|,
(A.28)

where we use the matrix determinant lemma found in, e.g., Harville [53] stating

|𝐀 + 𝐔𝐖𝐕𝐻| = |𝐖| |𝐀| |𝐖−1 + 𝐕𝐻𝐀−1𝐔| . (A.29)
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Using the matrix inversion lemma [54], we rewrite the second term of (A.27) as

− 𝐭𝐻 (𝐁 +𝚽𝐀−1𝚽𝐻)−1 𝐭

= − 𝐭𝐻 (𝐁−1 − 𝐁−1𝚽(𝐀 +𝚽𝐻𝐁−1𝚽)−1𝚽𝐻𝐁−1) 𝐭

= − 𝜎−2 (𝐭𝐻𝐭 − 𝜎−2𝐭𝐻𝚽𝚺𝚽𝐻𝐭)
= − 𝜎−2 (𝐭𝐻𝐭 − 𝐭𝐻𝚽𝝁)

= − 𝜎−2 (‖𝐭 − 𝚽𝝁‖22 + 𝐭
𝐻𝚽𝝁− 𝝁𝐻𝚽𝐻𝚽𝝁)

= − 𝜎−2 ‖𝐭 − 𝚽𝝁‖22 − 𝜎
−2𝐭𝐻𝚽𝝁+ 𝜎−2𝝁𝐻𝚽𝐻𝚽𝝁

=− 𝜎−2 ‖𝐭 − 𝚽𝝁‖22 − 𝝁
𝐻𝚺−1𝝁 + 𝜎2𝝁𝐻𝚽𝐻𝚽𝝁

=− 𝜎−2 ‖𝐭 − 𝚽𝝁‖22 − 𝝁
𝐻𝐀𝝁,

(A.30)

where 𝝁 is defined as the expectation of the posterior distribution on the weights, i.e., 𝝁 = 𝚺𝚽𝐻𝐁−1𝐭.
Combining the terms allows us to write the log marginal distribution of 𝐭 as

ℒ (𝐭|𝜶, 𝜎) =
𝑀−1

∑
𝑖=0

ln𝛼𝑖 − 𝑁 ln𝜎2 + ln |𝚺| − 𝜎−2 ‖𝐭 − 𝚽𝝁‖22 − 𝝁
𝐻𝐀𝝁. (A.31)

To get the update for 𝛼𝑖, we take the derivative of the log marginal distribution with respect to 𝛼𝑖 and
set it equal to zero.

𝜕ℒ (𝐭|𝜶, 𝜎)
𝜕𝛼𝑖

= 1
𝛼𝑖
− 𝚺𝑖𝑖 − 𝝁2𝑖 = 0. (A.32)

We define
𝛾𝑖 =1 − 𝛼𝑖𝚺𝑖𝑖

⇒ 𝚺𝑖𝑖 =
1 − 𝛾𝑖
𝛼𝑖

(A.33)

and write (A.32) as

0 = 1𝛼𝑖
− 𝚺𝑖𝑖 − 𝝁2𝑖

0 = 1𝛼𝑖
− 1 − 𝛾𝑖𝛼𝑖

− 𝝁2𝑖
0 =𝛾𝑖 − 𝛼𝑖𝝁2𝑖
𝛼𝑖 =

𝛾𝑖
𝝁2𝑖
,

(A.34)

which gives the update equation for 𝛼𝑖. For the update of 𝜎2 we take the derivative of the log marginal
distribution of 𝐭 with respect to 𝜎−2 and again set it equal to zero

𝜕ℒ (𝐭|𝜶, 𝜎)
𝜕𝜎−2 =𝜎

2

𝑁 − tr {𝚺𝜕𝚺
−1

𝜕𝜎−2 } − ‖𝐭 − 𝚽𝝁‖
2
2

=𝜎2𝑁 − tr {𝚺𝚽𝐻𝚽} − ‖𝐭 − 𝚽𝝁‖22
=𝜎2𝑁 − tr {𝚺𝚽𝐻𝚽+ 𝜎2𝚺𝐀 − 𝜎2𝚺𝐀} − ‖𝐭 − 𝚽𝝁‖22
=𝜎2𝑁 − tr {𝚺 (𝚽𝐻𝚽𝜎−2 + 𝐀)𝜎2 − 𝜎2𝚺𝐀} − ‖𝐭 − 𝚽𝝁‖22
=𝜎2𝑁 − tr {(𝐀 + 𝜎−2𝚽𝐻𝚽)−1 (𝚽𝐻𝚽𝜎−2 + 𝐀)𝜎2 − 𝜎2𝚺𝐀} − ‖𝐭 − 𝚽𝝁‖22
=𝜎2𝑁 − tr {(𝐈 − 𝐀𝚺) 𝜎2} − ‖𝐭 − 𝚽𝝁‖22

=𝜎2𝑁 − 𝜎2
𝑀−1

∑
𝑖=0

𝛾𝑖 − ‖𝐭 − 𝚽𝝁‖
2
2 = 0,

(A.35)
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where we use Jacobi’s formula for the derivative of the determinant of a matrix in the first step [55]. We
can now write the update equation for 𝜎2 as

𝜎2 =
‖𝐭 − 𝚽𝝁‖22
𝑁 − ∑𝑀−1𝑖=0 𝛾𝑖

. (A.36)





B
Derrivation of the complex multitask

relevance vector machine

Repeating the model specification, we have 𝚽𝑖 ≠ 𝚽𝑗 and 𝐰𝑖 ≠ 𝐰𝑗 ∀𝑖, 𝑗 ∈ {1, 2, … , 𝐵}. Allowing the
joint measurement vectors equation to be written as

⎡
⎢
⎢
⎢
⎣

𝐭1
𝐭2
⋮
𝐭𝐵

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝚽1 𝟎 … 𝟎
𝟎 𝚽2 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝚽𝐵

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝐰1
𝐰2
⋮
𝐰𝐵

⎤
⎥
⎥
⎥
⎦

+ 𝜺, (B.1)

where we define a joint prior on the weights of each individual measurement vector.

𝐰1 ∼ 𝒞𝒩 (𝟎, 𝐀−1)
𝐰2 ∼ 𝒞𝒩 (𝟎, 𝐀−1)

⋮
𝐰𝐵 ∼ 𝒞𝒩 (𝟎, 𝐀−1) ,

(B.2)

where𝐀 is a diagonal matrix, like in the regular relevance vectormachine, defined as𝐀 = diag(𝛼0, … , 𝛼𝑀−1).
This is the formulation of the multitask relevance vector machine of Ji et al. [40]. In the multitask rel-
evance vector machine, we see the processing of the 𝐵 bursts as individual tasks that are connected
via the prior on the weights. We can update the estimates for weights 𝝁𝑏 , 𝑏 ∈ {1, 2, … , 𝐵} and the
covariance matrix 𝚺𝑏 , 𝑏 ∈ {1, 2, … , 𝐵} for each individual bursts with the regular update equations

𝐰𝑏 = 𝚺𝑏𝚽𝐻𝑏 𝐁−1𝐭𝑏 and 𝚺𝑏 = (𝐀 +𝚽𝐻𝑏 𝐁−1𝚽𝑏)
−1 , (B.3)

respectively. 𝐁 is still defined as 𝐁 = 𝜎2𝐈. If we then define

𝝁 =
⎡
⎢
⎢
⎢
⎣

𝝁1
𝝁2
⋮
𝝁𝐵

⎤
⎥
⎥
⎥
⎦

, 𝚺 =
⎡
⎢
⎢
⎢
⎣

𝚺1 𝟎 … 𝟎
𝟎 𝚺2 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝚺𝐵

⎤
⎥
⎥
⎥
⎦

, 𝚽 =
⎡
⎢
⎢
⎢
⎣

𝚽1 𝟎 … 𝟎
𝟎 𝚽2 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝚽𝐵

⎤
⎥
⎥
⎥
⎦

,

𝐭 =
⎡
⎢
⎢
⎢
⎣

𝐭1
𝐭2
⋮
𝐭𝐵

⎤
⎥
⎥
⎥
⎦

, 𝐀𝐵 =
⎡
⎢
⎢
⎢
⎣

𝐀 𝟎 … 𝟎
𝟎 𝐀 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝐀

⎤
⎥
⎥
⎥
⎦

, and 𝐁𝐵 =
⎡
⎢
⎢
⎢
⎣

𝐁 𝟎 … 𝟎
𝟎 𝐁 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝐁

⎤
⎥
⎥
⎥
⎦

,

(B.4)
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we can follow the same manipulations of the logarithm of the marginal distribution of 𝐭 as in Appendix A.
Resulting in

ℒ (𝐭|𝜶, 𝜎) =
𝐵

∑
𝑏=1

𝑀−1

∑
𝑖=0

ln𝛼𝑖 − ln |𝐁𝐵| + ln |𝚺| − 𝜎−2 ‖𝐭 − 𝚽𝝁‖22 − 𝝁
𝐻𝐀𝐵𝝁.

= 𝐵
𝑀−1

∑
𝑖=0

ln𝛼𝑖 −
𝐵

∑
𝑏=1

𝑁 ln𝜎2 + ln |𝚺| − 𝜎−2 ‖𝐭 − 𝚽𝝁‖22 − 𝝁
𝐻𝐀𝐵𝝁.

(B.5)

To then get the update for 𝛼𝑖, we take the derivative of the log marginal distribution of 𝐭 with respect to
𝛼𝑖 and set it equal to zero.

𝜕ℒ (𝐭|𝜶, 𝜎)
𝜕𝛼𝑖

= 𝐵
𝛼𝑖
−

𝐵

∑
𝑏=1

𝚺𝑏;𝑖,𝑖 −
𝐵

∑
𝑏=1

𝝁2𝑏;𝑖 = 0, (B.6)

where 𝚺𝑏;𝑖,𝑖 and 𝝁𝑏,𝑖 denote the (𝑖, 𝑖)’th and 𝑖’th element of 𝚺𝑏 and 𝝁𝑏, respectively. By defining

𝛾𝑖 = 𝐵 − 𝛼𝑖
𝐵

∑
𝑏=1

𝚺𝑏;𝑖,𝑖 , (B.7)

we can write

𝐵

∑
𝑏=1

𝚺𝑏;𝑖,𝑖 =
𝐵 − 𝛾𝑖
𝛼𝑖

(B.8)

and rewrite (B.6) as

0 = 𝐵𝛼𝑖
−

𝐵

∑
𝑏=1

𝚺𝑏;𝑖,𝑖 −
𝐵

∑
𝑏=1

𝝁2𝑏;𝑖

0 = 𝐵𝛼𝑖
− 𝐵 − 𝛾𝑖𝛼𝑖

−
𝐵

∑
𝑏=1

𝝁2𝑏;𝑖

0 =𝛾𝑖 − 𝛼𝑖
𝐵

∑
𝑏=1

𝝁2𝑏;𝑖

𝛼𝑖 =
𝛾𝑖

∑𝐵𝑏=1 𝝁2𝑏;𝑖
.

(B.9)
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leading to the update equation for 𝛼𝑖. Similarly, for the update of 𝜎2, we take the derivative of the log
marginal distribution of 𝐭 with respect to 𝜎−2 and again set it equal to zero.

𝜕ℒ (𝐭|𝜶, 𝜎)
𝜕𝜎−2 =

𝐵

∑
𝑏=1

𝜎2
𝑁 − tr {𝚺𝜕𝚺

−1

𝜕𝜎−2 } − ‖𝐭 − 𝚽𝝁‖
2
2

=
𝐵

∑
𝑏=1

𝜎2𝑁 − tr {𝚺𝚽𝐻𝚽} − ‖𝐭 − 𝚽𝝁‖22

=
𝐵

∑
𝑏=1

𝜎2𝑁 − tr {𝚺𝚽𝐻𝚽+ 𝜎2𝚺𝐀 − 𝜎2𝚺𝐀} − ‖𝐭 − 𝚽𝝁‖22

=
𝐵

∑
𝑏=1

𝜎2𝑁 − tr {𝚺 (𝚽𝐻𝚽𝜎−2 + 𝐀)𝜎2 − 𝜎2𝚺𝐀} − ‖𝐭 − 𝚽𝝁‖22

=
𝐵

∑
𝑏=1

𝜎2𝑁 − tr {(𝐀 + 𝜎−2𝚽𝐻𝚽)−1 (𝚽𝐻𝚽𝜎−2 + 𝐀)𝜎2 − 𝜎2𝚺𝐀} − ‖𝐭 − 𝚽𝝁‖22

=
𝐵

∑
𝑏=1

𝜎2𝑁 − tr {(𝐈 − 𝐀𝚺) 𝜎2} − ‖𝐭 − 𝚽𝝁‖22

=
𝐵

∑
𝑏=1

𝜎2𝑁 − 𝜎2
𝐵

∑
𝑏=1

𝑀−1

∑
𝑖=0

(1 − 𝛼𝑖𝚺𝑏;𝑖,𝑖) − ‖𝐭 − 𝚽𝝁‖
2
2 ,

=
𝐵

∑
𝑏=1

(𝜎2𝑁 − 𝜎2𝑀 + 𝜎2
𝑀−1

∑
𝑖=0

𝚺𝑏;𝑖,𝑖) − ‖𝐭 − 𝚽𝝁‖
2
2

=𝜎2
𝐵

∑
𝑏=1

(𝑁 −𝑀 +
𝑀−1

∑
𝑖=0

𝚺𝑏;𝑖,𝑖) −
𝐵

∑
𝑏=1

‖𝐭𝑏 −𝚽𝑏𝝁𝑏‖
2
2 = 0,

(B.10)

where we again use Jacobi’s formula for the derivative of the determinant of a matrix in the first step
[55]. We can now write the update equation for 𝜎2as

𝜎2 =
∑𝐵𝑏=1 ‖𝐭𝑏 −𝚽𝑏𝝁𝑏‖

2
2

∑𝐵𝑏=1 (𝑁 −𝑀 + ∑
𝑀−1
𝑖=0 𝚺𝑏;𝑖,𝑖)

. (B.11)





C
Roots of a polynomial

Here, we describe a method to get the roots of a polynomial of order 𝑁. Let 𝑓 (𝑥) be a polynomial of
order 𝑁, given by

𝑓 (𝑥) = 𝑎𝑁𝑥𝑁 + 𝑎𝑁−1𝑥𝑁−1 +…𝑎1𝑥 + 𝑎0. (C.1)

We then normalise the polynomial by dividing by 𝑎𝑁, to get

𝑓𝑛 (𝑥) = 𝑥𝑁 + 𝑏𝑁−1𝑥𝑁−1 +…𝑏1𝑥 + 𝑏0, (C.2)

where 𝑏𝑖 is then given as
𝑏𝑖 =

𝑎𝑖
𝑎𝑁

∀𝑖 ∈ {1, 2, … , 𝑁 − 1} . (C.3)

We then write the 𝑁 × 𝑁 Frobenius companion matrix, 𝐂 , of the polynomial 𝑓 (𝑥) as

𝐂 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑏𝑁−1 𝑏𝑁−2 … 𝑏2 𝑏1 𝑏0
1 0 … 0 0 0
0 1 … 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 … 1 0 0
0 0 … 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (C.4)

The roots of the polynomial 𝑓 (𝑥) are then given by the eigenvalues of the Frobenius companion matrix
𝐂.
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D
Swerling fluctuation and the Rayleigh

distribution

D.1. Swerling cases
The four Swerling cases, introduced by Swerling [56], describe how the returned signal power per pulse
fluctuates. Swerling describes these fluctuations in four cases.

The first two cases represent targets that can be modelled by several independently fluctuating reflec-
tors of approximately equal scattering area. This fluctuation in received signal power is modelled by
drawing from a chi-squared distribution with two degrees of freedom.

The third and fourth cases represent targets that can be modelled by one large reflector with other small
reflectors, or as a single large reflector, subject to relatively small changes in its orientation. Swerling
models this type of fluctuation in received signal power with a chi-squared distribution with four degrees
of freedom

In cases one and three, amplitudes are assumed to vary from scan to scan, but the amplitudes stay
constant from burst to burst. In cases two and four, amplitudes are assumed to vary from burst to burst.

D.2. Link to the Rayleigh and complex Gaussian distributions
A Rayleigh distribution is defined by a random variable that follows the distribution of the square root
of two independent zero-mean normal random variables with equal variance. I.e., if

𝑅 = √𝑋2 + 𝑌2, (D.1)

where
𝑋 ∼ 𝑁 (0, 𝜄) , 𝑌 ∼ 𝑁 (0, 𝜄) . (D.2)

Then
𝑅 ∼ 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ (𝜄) , (D.3)

where 𝜄 is the scale parameter of the distribution. The pdf of the Rayleigh distribution is given by

𝑓 (𝑥, 𝜄) = 𝑥
𝜄2 exp {−

𝑥2
2𝜄2 } , 𝑥 ∈ [0,∞) (D.4)

In the case of Swerling one or two fluctuation, the received signal power follows a chi-squared distribu-
tion with two degrees of freedom. A chi-squared distribution with two degrees of freedom is distributed
according to the sum of squares of two independent standard normal distributions. I.e., if

𝑄 =
2

∑
𝑖=1
𝑍2𝑖 , (D.5)
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where 𝑍𝑖 are i.i.d. standard normal random variables. Then,

𝑄 ∼ 𝜒22 . (D.6)

In the case of Swerling one or two fluctuation, the absolute value of the amplitude of the received signal
will be distributed according to a distribution that follows from taking the square root of a random variable
that follows a chi-squared distribution with two degrees of freedom. By comparing the definitions of a
chi-squared distribution with two degrees of freedom in (D.5) and the Rayleigh distribution in (D.1),
we can see that the square root of a random variable that is distributed according to a chi-squared
distribution with two degrees of freedom follows a Rayleigh distribution with a scale parameter equal
to one.

Additionally, the absolute value of complex normally disturbed random variables also follows a Rayleigh
distribution, as both the real and imaginary parts of a complex normally distributed random variable
follow a normal random variable themselves.

D.3. Second moment of the Rayleigh distribution
The second moment of the Rayleigh distribution is given by

𝔼 [𝑥2] = ∫
∞

0

𝑥3
𝜄2 exp {− 𝑥

2

2𝜄2 }d𝑥. (D.7)

Performing a change of variables on 𝑡 = 𝑥2
2𝜄2 results in

𝔼 [𝑥2] = 𝜄2∫
∞

0
𝑡 exp {−𝑡}d𝑡. (D.8)

By using integration by parts, we write

𝜄2∫
∞

0
𝑡 exp {−𝑡}d𝑡 = 𝜄2∫

∞

0
𝑢d𝑣 = 𝜄2 ([𝑢𝑣]∞0 −∫

∞

0
𝑣d𝑢) , (D.9)

where
𝑢 = 𝑡, d𝑢 = 1, d𝑣 = exp {−𝑡} , 𝑣 = − exp {−𝑡} . (D.10)

So,

𝔼 [𝑥2] = 𝜄2 ([− exp {−𝑡}]∞0 +∫
∞

0
exp {−𝑡}d𝑡)

= 𝜄2 ([− exp {−𝑡}]∞0 + [− exp {−𝑡}]∞0 )
= 2𝜄2.

(D.11)
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(a) 15𝑑𝐵
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(b) 20𝑑𝐵
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(c) 25𝑑𝐵
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(d) 30𝑑𝐵

Figure E.1: Plots of the estimated ROC curves for the matched filter method. The simulation setup is as specified in the simulation
of a general case. Each scatterplot corresponds to the following SNR: (a) 15 𝑑𝐵, (b) 20 𝑑𝐵, (c) 25 𝑑𝐵, (d) 30 𝑑𝐵.
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