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Wat is de werld toch groet, als ik mien oege sloet

Jack Poels

It is quite conceivable that the whole universe may constitute one great linkage, …
If the Cosmic linkage is of the kind I have called complete, then determinism is the law
of Nature; but, if there be more than one of liberty in the system, there will be room for

the play of free-will.

J.J. Sylvester
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Summary
Most materials around us have properties that are determined at extremely
small scales. Often the atoms and molecules that make up these materials
determine how they behave under load. While this already leads to a great
variety of material properties, a lot more is possible.

Mechanical metamaterials use structure to extend the available range of
material properties. In this way, we can design material properties that are not
found in nature. An example of this is materials with a negative Poisson’s ratio.
When these materials are compressed, they will not expand in the direction
perpendicular to the applied deformation, as we would expect from natural
materials. Rather, they will contract.

In general, mechanicalmetamaterials allowus to designmaterialswith prop-
erties that are tailored to their intended solution. This provides more design
freedom; instead of choosing from a list of available materials, the material
properties themselves now become variables that can be designed. Addition-
ally, this makes it possible to integrate multiple functions within a material. In
this way, thematerial is no longer passive but can react based on applied forces,
deformations, or changes in the environment.

In practice, designing mechanical metamaterials has turned out to be dif-
ficult. While there are many examples of mechanical metamaterials with ex-
ceptional properties, their discovery has rarely been based on a rational and
structured design process. The lack of such a design strategy makes the design
of metamaterials with exactly the desired properties, at least for now, difficult
and unreliable.

This dissertation explores this design problem and presents a method to
aid in the structured and rational design of mechanical metamaterials. This
method is based on a pseudo-rigid body approach, borrowed from the field of
compliant mechanisms. Following this approach, the metamaterial is modeled
as a collection of rigid parts, which are connected by joints to which we assign
a stiffness. This allows us to model both the deformation and the stiffness of
the material while keeping the complexity of the models as low as possible.

Because of the limited complexity of the models, this approach allows the
designer to understand the effects of design decisions and adaptations. This en-
ables directed and conscious changes to the design, of which the consequences
are known beforehand. This is different from alternativemethods where highly
complex and time-consuming computer models are used to calculate the ef-
fects of changes. By using less complex models and making directed choices,
new design iterations can be generated more quickly. Especially at the start of
a design process, this is expected to quickly lead to new insights. These can
then at a later stadium be refined using more detailed methods.
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2 Summary

Outline of this Dissertation
After the introduction in Chapter 1, Chapter 2 presents themost important defi-
nitions for this dissertation. In Chapter 3, a cylindricalmechanicalmetamaterial
is analyzed using a pseudo-rigid body model. We see that a relatively simple
model with only one degree of freedom is sufficient for describing the force-
deflection behavior, but that more degrees of freedom are necessary in order
to include the experimental boundary conditions.

Chapters 4 and 5 investigate the synthesis problem in the plane: how can a
periodic structure be designed to have exactly the desired constant Poisson’s
ratio? As a basis for this design, we use well-known linkages. In this way, we
use the vast field of research into curve-generating mechanisms. By choosing
the right mechanism and adapting it to a periodic lattice, the desired constant
Poisson’s ratio can be achieved.

Chapter 6 Further investigates the relation between linkages and Poisson’s
ratio, this time in three dimensions. Using microscale experiments, it is shown
that models that only regard rigid links connected by ball joints give a good
indication of the range of motion for which auxetic behavior can be observed.

Chapters 7 and 8 finally investigate the synthesis of mechanical metama-
terials on curved surfaces. In chapter 3, we have seen that mechanisms on
such surfaces often behave differently than we are used to in the plane. That
poses extra challenges to the design of metamaterials that follow these curved
surfaces. Here, we approach this problem by subdividing the surfaces intomul-
tiple flat facets. By doing this, planar mechanisms can be used as the basis of
the curved structures. These two chapters show two distinct methods in which
curved surfaces are enabled to dilate; they can change their size without chang-
ing their shape.



Samenvatting

De meeste materialen om ons heen hebben eigenschappen die bepaald wor-
den op een heel klein niveau. Vaak zijn het de atomen en moleculen waarvan
ze gemaakt zijn die bepalen hoe ze zich gedragen wanneer ze aan krachten
blootgesteld worden. Dit zorgt al voor een enorme verscheidenheid aan mate-
riaaleigenschappen, maar er is nog veel meer mogelijk.

Mechanische metamaterialen gebruiken structuur om het beschikbare pa-
let aan materiaaleigenschappen uit te breiden. Zo kunnen we materiaaleigen-
schappen ontwerpen die niet in de natuur te vinden zijn. Een voorbeeld hiervan
zijn materialen met een negative dwarscontractiecoefficient. Wanneer deze
materialen ingedrukt worden zullen ze in de richting loodrecht op de toege-
paste indrukking niet uitzetten, zoalswe van natuurlijkematerialen verwachten,
maar juist samentrekken.

Meer algemeen geven mechanische metamaterialen ons de mogelijkheid
ommaterialen te ontwerpenmet eigenschappen die aansluiten op de beoogde
toepassing. Zo ontstaat er meer ontwerpvrijheid; in plaats van het kiezen uit
een lijst met materialen kan je nu het materiaal met precies de juiste eigen-
schappen ontwerpen. Daarnaast geeft het ook mogelijkheden voor het inte-
greren van verschillende functies in een materiaal. Het materiaal is niet langer
een passief onderdeel, maar kan zelf ook functies uitvoeren in reactie op opge-
legde krachten, vervormingen of omgevingsveranderingen.

In de praktijk blijkt het ontwerpen van deze materialen ingewikkeld te zijn.
Er zijn al verschillende voorbeelden van metamaterialen met bijzondere eigen-
schappen, maar vaak zijn deze ontdekt zonder dat daar een bewust en gestruc-
tureerd ontwerpproces aan ten grondslag lag. Het ontbreken van een derge-
lijke ontwerpstrategie maakt het ontwerpen van materialen met precies de ge-
wenste eigenschappen op dit moment nog lastig en onbetrouwbaar.

Deze dissertatie bekijkt dit ontwerpvraagstuk en biedt eenmethode aan om
het gestructureerd en bewust ontwerp van mechanische metamaterialen te
vergemakkelijken. Deze is gebaseerd op een pseudo-starre lichamen aanpak,
geleend uit het veld van de buigende mechanismen. Volgens deze aanpak kun-
nen wij het metamateriaal modelleren als een verzameling starre onderdelen,
verbonden met scharnieren die een stijfheid meekrijgen. Hierdoor kan zowel
de beweging als de effectieve stijfheid van het materiaal gemodeleerd worden
terwijl de modellen zo eenvoudig mogelijk blijven.

Doordat de modellen relatief eenvoudig blijven geeft deze aanpak de ont-
werper de mogelijkheid om het effect van aanpassingen te overzien. Dit maakt
het mogelijk om gericht aanpassingen aan het ontwerp te doen waarvan je van
tevoren al een goede inschatting kan maken wat daar het effect van gaat zijn.
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4 Samenvatting

Dit in tegenstelling tot andere methoden waarbij vaak ingewikkelde computer-
modellen nodig zijn om te berekenen wat het effect van een verandering is.
Hierdoor kunnen nieuwe ontwerpiteraties sneller gegenereerdworden. De ver-
wachting is dat dit zeker in het begin van het ontwerpproces snel tot nieuwe
inzichten kan leiden. Deze kunnen dan in een later stadium met langzamere
en meer gedetailleerde methoden verfijnd worden.

Opzet van dit Proefschrift
Na de introductie in Hoofdstuk 1 worden in Hoofdstuk 2 de belangrijkste defi-
nities voor dit proefschrift gegeven. In hoofdstuk 3 wordt een cylindrisch me-
chanisch metamateriaal geanalyseerd aan de hand van een pseudo-starre li-
chamen model. Hierin zien we dat een eenvoudig model met één graad van
vrijheid al voldoende is voor het beschrijven van het kracht-weg gedrag, maar
dat meerdere graden van vrijheid nodig zijn om de experimentele randvoor-
waarden mee te nemen.

Hoofdstukken 4 en 5 bekijken het synthese probleem in het platte vlak: hoe
kan je een periodieke structuur maken met precies de gewenste, constante,
dwarscontractiecoefficient? Als basis hiervoor worden bekende stangenme-
chanismen gebruikt. Zo maken we gebruik van de het enorme onderzoeksveld
naar mechanismen die gebruikt worden om krommen te tekenen. Door het
juiste mechanisme te kiezen en dit aan te passen naar een herhalend rooster
kan de gewenste, constante, dwarscontractiecoefficient bereikt worden.

Hoofdstuk 6 gaat verder in op de relatie tussen stangenmechanismen en
dwarscontractiecoefficient, dit keer in drie dimensies. Door middel van experi-
menten opmicroschaal wordt aangetoond dat modellen die uitgaan van onein-
dig stijve stangendie roteren in perfecte bolscharnieren een goede voorspelling
geven van het vervormingsbereik waarvoor auxetisch gedrag optreedt.

Hoofdstukken 7 en 8 bekijken tenslotte de synthese van metamaterialen in
gekromde vlakken. In het hoofdstuk 3 zagen we ook al dat mechanismen op
deze oppervlakken vaak niet werken zoals we gewend zijn. Dat kan het ontwer-
pen van metamaterialen die deze vlakken volgen lastig maken. Dit probleem
wordt hier aangepakt door het beoogde oppervlak op te delen in verschillende,
vlakke, facetten. Hierdoor kunnen vlakke mechanismen gebruikt worden als
de basis voor gekromde structuren. De twee hoofdstukken laten twee manie-
ren zien waarop we gekromde oppervlakken de mogelijkheid geven om van
groottte te veranderen zonder dat hun vorm verandert.



1
Introduction

Why is it that we can compress a block of rubber by hand, but have a substan-
tially harder time compressing a block of steel? How come a piece of glass
shatters when impacted, but a rubber ball deforms and returns to its original
state? When we consider these material properties, we naturally assume that
they originate in the chemical properties of the materials. For most materials
we find in nature, their chemical composition is indeed the most prominent
factor determining their material properties. Rubber is relatively soft and can
regain its shape from large deformations because it consists of long polymers
that can slide past each other, while the bonds between the atoms in steel are
stronger, which causes objects made from steel to have a higher stiffness.

However, these atomic and molecular bonds can not explain the complete
variety of properties we see in natural materials. The bones of birds, for exam-
ple, are substantially lighter by volume than those of an elephant [1], even
though they aremade of the samematerial. The difference here is structure, by
changing the structure of a material at length scales substantially longer than
those of atoms and molecules, the properties of bulk materials can be signifi-
cantly altered. This concept, of structure altering the properties of materials, is
what lies at the basis of metamaterials.

Metamaterials have first been introduced with respect to optical properties,
but quickly spread to other fields, such as acoustics andmechanics [2]. This dis-
sertation deals with the latter type of metamaterials. In mechanical metama-
terials, the mechanical properties, such as stiffness or deformations resulting
from an external force are significantly altered by structure. This has resulted
inmetamaterials with a density so low that a centimeter-sized block can be sup-
ported by the seedhead of a dandelion [3], but alsometamaterials that shrink in
all directions when compressed [4] or multistable structures that can be stable
in a large number of states [5].

Among the most illustrative examples are those metamaterials that have
been designed to have a negative Poisson’s ratio [4]. When we stretch a rub-
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6 1. Introduction

ber band, it will become thinner in the lateral direction. This is what we see in
almost all natural materials and therefore also what we intuitively feel should
happen. When structure is added to suchmaterials, however, this behavior can
be changed. A natural example of this is cork, which does not change its width
at all when stretched along certain directions [6]. In artificial metamaterials,
this behavior can be taken even further to materials that expand in the direc-
tions perpendicular to an applied stretch. These metamaterials are characteri-
zed by a negative Poisson’s ratio and are often called auxetics, after the Greek
“αύξησις”: that which may be increased [7].

The material properties that can be designed in mechanical metamaterials
are not limited to Poisson’s ratio. Mechanical metamaterials possess the pro-
mise of being able to tailor mechanical properties to the requirements of any
given application. Already in 1995, Milton and Cherkaev proved that any elas-
ticity tensor can be synthesized in a structured composite of two materials [8],
or as they put it:

“Thus, if in the beginning, God gaveman just twomaterials, one suffi-
ciently soft and the other sufficiently rigid (plus some glue and some
cutting tools) then man could make everything!”

However, while many examples of structures with exotic properties have
been presented since their paper appeared, the design methods for these
structures remain elusive, as was pointed out by Bertoldi et al. in 2017:

“...the rational design of metamaterials with a target property or
functionality remains fiendishly difficult, and many designs so far
have relied on luck and intuition.” [9]

The work in this dissertation is aimed towards making this promise reality:
the design of mechanical metamaterials to have exactly the properties that we
desire. For this, a kinematic approach to the problem has been chosen.

Many mechanical metamaterials rely on the bending of internal slender
parts for their function [10, 11]. By modeling the slender elements as revolute
jointswith a representative stiffness and the rest of the structure as rigid bodies,
accurate descriptions of the metamaterial behavior can be obtained [12]. This
approach is commonly used in the analysis of compliant mechanisms, where it
is known as Pseudo-Rigid Body modeling [13].

To design new mechanical metamaterials, we reverse this process. Instead
of analyzing the metamaterial using a rigid body analog, we design a mecha-
nismwith the desired properties and later convert it into amonolithic mechani-
cal metamaterial. The advantage of this approach is that we are able to use our
pre-existing knowledge of kinematics to design new materials. Furthermore,
the kinematic theories behind the designs are inherently non-linear and are
therefore suitable for large deformations. Finally, because the kinematic for-
mulations used in this design process are analytic, faster design iterations are
possible than with computational methods such as the commonly used Finite
Element Method.



1.1. Objectives and Contributions of this Thesis
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1.1. Objectives and Contributions of this Thesis
This thesis aims to further the understanding of mechanical metamaterial
design by developing rational synthesis methods based on Pseudo-Rigid Body
Models (PRBMs). These models are well-known as design and modeling me-
thods for compliant mechanisms [13]. Since these mechanisms rely on the
bending of slender parts of their structure for their function, just as bending-
dominated mechanical metamaterials do, it is assumed that these models will
be useful.

Compared to compliantmechanisms, Pseudo-Rigid BodyModels formecha-
nical metamaterials do come with additional challenges. In general, metamate-
rial designs will be periodic. That means that they consist of identical unit cells
which fill the space. In designing the kinematics of these structures, one has to
take the connections between the individual unit cells into account to ensure
that the neighboring unit cells fit together. Additionally, analyzing just the sin-
gle unit cell can prove insufficient because the coupling between unit cells can
increase or decrease the total number of degrees of freedom of the material
as a whole.

Using PRBMs for the design ofmechanicalmetamaterials allows us to design
periodic structures using the available toolboxes for mechanism design. In this
way, the mechanical properties of a metamaterial are designed as a kinematic
transmission with appropriate joint stiffness.

Additionally, this kinematic design method is used to add functionality to
curved surfaces. For this, the regular method of creating periodic structures is
no longer applicable since the Bravais lattices that underlie this periodicity can
not generally be transmitted to curved surfaces. For this, alternative methods
are developed and applied.

1.2. Structure of this Thesis
This thesis demonstrates how pseudo-rigid body models can be used for the
modeling and design of mechanical metamaterials.

In Chapter 3, a cylindrical mechanical metamaterial is modeled as a mecha-
nism consisting of rigid plates connected by hinges with stiffness. This way, the
behavior of themetamaterial is closely approximated, with only a fraction of the
computational expense associated with conventional finite element methods.

In Chapter 4, we investigate how to design a given value of Poisson’s ratio
in periodic linkages. For this, we define Poisson’s ratio as a geometrical trans-
mission between two orthogonal directions and find linkages that match the
prescribed transmission ratio. For this, we take inspiration from the large body
of mechanism and linkage research that exists.

In Chapter 5, one of these linkages is further developed into a compliant
mechanical metamaterial. We explore different ways to create a compliant unit
cell out of an inversor linkage and compare three possible designs using expe-
rimental tests.

Chapter 6 investigates the concept of the auxetic interval. Not every auxe-
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tic structure remains auxetic for large deformations. Most will have regions
in their deformation path where they exhibit auxetic behavior, but outside of
which they demonstrate a positive Poisson’s ratio for certain directions. Here,
we take an existing design of an auxetic framework, manufacture it on the mi-
croscale, and compare their theoretical and experimentally determined auxetic
intervals

Chapters 7 and 8 investigate mechanical metamaterials on curved surfaces.
On curved surfaces, periodicity as we know it no longer applies since it beco-
mes impossible to copy and translate a unit cell over them without deforming
it. In Chapter 7, we investigate the case of a spherical surface and create an
origami-inspired structure based on the symmetries of the sphere. In Chap-
ter 8, we expand this even further and investigate arbitrarily curved surfaces.
We propose a design based on the pantograph that allows for dilation of the
surface and proves that this designmethod can be applied to surfaces with any
curvature.

Finally, Chapter 9 discusses the overall design methodology presented in
this thesis. We assess the usefulness of PRB modeling for mechanical meta-
materials as well as its limitations and look forward to future challenges and
possible applications.
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2
Definitions

Mechanical Metamaterials is a relatively young and very active field of research.
In the past years, many terms have been used to describe these structures,
among which Mechanical Metamaterials and Architected Materials are the most
prominent. Similarly, the terms to describe the behavior of these structures
also differ between works and terms used in literature can have different mea-
nings depending on the author or context.

In order to explain the concepts ofmetamaterial research accurately, a com-
mon set of definitions needs to be established. Therefore, we will use this sec-
tion to give explanations and definitions for the most important terms and con-
cepts in this thesis. These definitions have come both from literature and my
own experiences and should in no way be assumed to be valid for all literature
on this topic. They do, however, apply to the entirety of this thesis.

2.1. Mechanical Metamaterial
The term metamaterial was originally used to refer to periodic structures with
unusual bulk optical properties [1]. In optics, and similarly in acoustics, there
seems to be a general consensus that ametamaterial should have the following
properties:

• Structure-dominated optical or acoustical properties, different from the
properties of the constituent materials

• Periodic structure with a period shorter than the wavelength of the light
or sound for which it was designed

For mechanical metamaterials, however, the relevant material properties
are usually bulk properties and therefore have an infinite wavelength. There-
fore, there is no inherent length scale to these structures and the second pro-
perty described above becomes irrelevant. There are also many examples of

11



2

12 2. Definitions

mechanical metamaterials with an aperiodic structure that still have properties
different from their constituent materials. The foams with a negative Poisson’s
ratio created by Roderic Lakes in 1987 [2] are a good example of this. Therefore,
since there is no defined length scale and periodicity is not required, onemight
wonder whether even a chair could be classified as a mechanical metamaterial
since its mechanical properties are different from the wood from which it was
made.

In order to get to a more useful definition, let us focus on the material part
of the metamaterial. Merriam-Webster dictionary defines a material as:

“The elements, constituents, or substances of which something is
composed or can be made”. [3]

Based on this definition of a material, we can define mechanical metamate-
rials similarly:

A structure with mechanical properties that are different from those
of its constituent materials due to an internal structure, from which
something is composed or can be made.

From this definition, we can see that a mechanical metamaterial should be
divisible; if we have a block of it, we should be able to split it without changing
its bulk properties. This rules out the example of the chair discussed above,
since a chair split in half will have different properties and functionality from
the complete chair.

With this definition comes a new length scale. Since mechanical metamate-
rials are often periodic or are foams with an average cell size as a characteristic
length scale, it becomes evident that one can not create arbitrarily thin slices
of these materials without changing their bulk properties. When the slices be-
come thinner than the characteristic length of thematerial, the structurewill no
longer behave as the designed collective structure. This new length scale is the-
refore application driven; it is determined by the smallest feature size that one
would want to make out of the metamaterial. As long as this smallest feature
size is sufficiently larger than the characteristic length scale of the metamate-
rial structure, the designed bulk properties should hold and we can speak of a
mechanical metamaterial.

2.2. Auxetic
One of the most studied properties in mechanical metamaterials research is
Poisson’s ratio. This quantity describes the ratio between a resulting transverse
strain inducedby an applied longitudinal strain. For almost all naturalmaterials,
this ratio is positive; this means that when we stretch these materials along
one direction, they contract in perpendicular directions. This is the behavior
we expect from material and can be observed when we, for example, stretch a
rubber band.
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By creating clever internal structures, it is possible to create mechanical me-
tamaterials with negative Poisson’s ratios. These structures will expand in per-
pendicular directions when stretched. One of the first examples of this beha-
vior is pre-compressed foams [2], but later many more examples have been
created [4–6].

To give a complete characterization of the strains in a material resulting
from a uniaxial compression, at least two Poisson’s ratios need to be defined.
Typically, these are 𝜈𝑥𝑦 and 𝜈𝑥𝑧, where the 𝑥, 𝑦 and 𝑧 directions are perpendicu-
lar. These two Poisson’s ratios can (and often will be) different.

Materials with negative Poisson’s ratios are rarely found in nature, which is
why this property is perceived as counterintuitive. The Holey Sheet, a prototy-
pical mechanical metamaterial consisting of a rubber sheet perforated with a
square array of round holes [4], possesses this property. When this structure
is compressed uniaxially in the plane, it will also contract in the perpendicular
in-plane direction. In the direction out of plane, however, the strains are small
but positive, since they are dominated by the material from which the meta-
material is constructed. Therefore, when we would calculate Poisson’s ratio for
this structure using an in-plane axis and the out of plane axis, we will find a
small but positive Poisson’s ratio.

To give a complete characterization of the strains in a material resulting
from a uniaxial compression, at least two Poisson’s ratios need to be defined:
𝜈𝑥𝑦 and 𝜈𝑥𝑧, where the 𝑥, 𝑦 and 𝑧 directions are perpendicular. These two Pois-
son’s ratios can (and often will be) different, as we have seen in the example of
the Holey Sheet.

In his paper from 1991 [7], Ken E. Evans introduced the term Auxetic for
material with a negative Poisson’s ratio. This term comes from the Greek word
auxetos, which means “that may be increased”. With this term, he refers to
the fact that materials with a negative Poisson’s ratio increase their size in all
directions, and therefore increase their volume, when stretched.

Following the paper by Evans, many mechanical metamaterials with nega-
tive Poisson’s ratios havebeen groupedunder the termauxetic. However, when
we consider three-dimensional structures, multiple Poisson’s ratios need to be
taken into account, and it can be possible for a structure to have a negative
Poisson’s ratio for one set of axes, but a positive one for another. Therefore,
when stretched only two dimensions of the structurewould increase, when one
decreases. This behavior is not consistent with auxeticity as described above.

A more exact definition for periodic frameworks is given by Ciprian S. Bor-
cea and Ileana Streinu [5]. For their definition, they use the generators of the
periodic lattice. These generators are the vectors along which we translate the
unit cell to build up the periodic structure. According to their definition, auxe-
tic motion for a periodic framework is a kinematically allowed periodic motion
for which these generators either all simultaneously increase in length or stay
the same, or they all simultaneously decrease in length or stay the same. The-
refore, if we have a general periodic framework with a parallelepiped unit cell,
and this framework has an allowable periodic motion for which none of its bars
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changes in length, it is only auxetic when all sides of the parallelepiped (these
constitute the generators) increase in length or stay the same, or when they all
decrease in length or stay the same.

Following this definition of auxeticity, we see that the direction of the defor-
mations of the metamaterial should be equal or zero for all global dimensions
of the structure. None of its global dimensions can decrease when another in-
creases or vice-versa. Therefore, the Holey Sheet we discussed before, when
considered in three dimensions, is only auxetic when there is no global change
in the thickness of the sheet when it is deformed in-plane.

2.3. Pseudo-Rigid Body Models
The basis for much of the work in this thesis is Pseudo-Rigid Body Modeling
(PRBM). This technique originates in compliant mechanism design and is de-
scribed in detail in the books by Larry L. Howell [8, 9].

Figuur 2.1: Pseudo-Rigid Body Models approximate the behavior of a bending beam by modeling
it as rigid bars connected by revolute joints with a corresponding torsional stiffness.

At the basis of this modeling technique lies the idea that, up to remarkably
large deformations, the movement of a bending beam can be approximated
by a system of rigid bars and joints, and that the corresponding stiffness can
be modeled as a linear torsional stiffness in these joints. By investigating the
bar-and-joint system, instead of the continuous beam, a good approximation
of the behavior can be obtained with a significantly simpler model. For more
complex compliant structures, such as themetamaterials in this thesis, it allows
us to study their kinematics without having to consider the compliance of the
structure at every point. In this way, it becomes easier and more intuitive to
visualize the allowed motions and yet obtain an accurate description.

Similarly, this PRBM can also be used as a design methodology by reversing
the above process. It can be used to convert a linkage into a compliant mecha-
nism by designing slender parts into a continuous structure that corresponds
to the joints in the linkage. The stiffness of the resulting compliantmechanisms
can then be designed by choosing the dimensions, and therefore stiffness, of
these slender elements.
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2.4. Periodicity
In order for linkages or compliant mechanisms to be applied as mechanical
metamaterials, their properties need to be distributed over large areas. A com-
mon method to achieve this is through periodicity. Periodic structures consist
of many identical basic elements, called unit cells. A unit cell typically has a pa-
rallelogram or parallelepiped shape, for the 2D and 3D cases respectively, such
that the complete space can be filled by stacking these unit cells, see Fig. 2.2.
The resulting periodic lattice is also called a Bravais lattice, after Auguste Bra-
vais, and is often used in crystallography to describe the arrangements of atoms
and molecules in a crystalline material.

Figuur 2.2: A periodic lattice consists of unit cells that are copied and translated along the lattice
generators to fill space. Here, the unit cells are indicated by a black grid. The generators of the
lattice are labeled 𝑎1 and 𝑎2. In green, it is illustrated that any integer sum of generators will bring
you to a similar point of the lattice.

In order to fill space, the unit cells are translated along a set of two or three
independent vectors for the planar and spatial case, respectively. These vectors
are called the generators of the periodicity lattice. Starting from a point on the
periodic structure, a translation by any integer sum of generators will always
result in an equivalent point on the lattice.

When designing a unit cell, care must be taken to ensure that the mecha-
nism in the unit cell correctly matches with the neighboring unit cells. For this,
periodic boundary conditions are often used. These boundary conditions simu-
late the existence of all neighboring unit cells. For the planar case, this effecti-
vely transforms the unit cell into the surface of the torus. This connects each set
of opposite edges of the unit cell. When using these boundary conditions only
a single unit cell needs to be analyzed. If motion can exist within this unit cell,
it is ensured that a periodic degree of freedom exists in the complete infinitely
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large periodic lattice.
A unit cell with one degree of freedom does not, however, ensure that only

one degree of freedom exists in the lattice. The Kagome lattice, for example,
can be constructed out of rhombic unit cells, each containing two triangular
bodies, as has been done in Fig. 2.2. These two bodies are coupled by a sin-
gle revolute joint and the unit cell will therefore have one degree of freedom.
However, when a larger patch of the periodic lattice is investigated, we see that
it has more degrees of freedom. These other degrees of freedom could not
be observed from the single unit cell since they break the symmetry of the ori-
ginal lattice. Only when we expand the unit cell beyond the original rhombus
(this is also known as relaxing the periodicity), do we find these degrees of free-
dom [10].
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3
Spatial Pseudo-Rigid Body Model for
the Analysis of a Tubular Mechanical

Metamaterial

Freek G.J. Broeren, Volkert van der Wijk, Just L.
Herder

This paper proposes a Pseudo-Rigid BodyModel for the analysis of a spatial mechanical
metamaterial and demonstrates its application. Using this model, the post-buckling be-
havior of the mechanical metamaterial can be determined without the need to consider
the whole elastic structure, e.g. using finite element procedures. We do this by analyzing
a porous cylindrical mechanical metamaterial using a rigid body mechanism, consis-
ting of rigid squares that are connected at their corners. Stiffness in this model comes
from torsion springs placed at the connections between the rigid parts. The theory of
the model is presented and we compare the results of two versions of this model with
experiments. One version describes the metamaterial in the free state, while the other,
more extended, version includes clamped boundaries, matching the conditions of the
experimental set-up. We show that the mechanical behavior of the spatial metamate-
rial is captured by the models and that the shape of the metamaterial in the deformed
state can be obtained from the more extended model.

The contents of this chapter have been published in Mathematics and Mechanics of Solids
(2019) [1].
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3.1. Introduction
Mechanical metamaterials are artificially designed materials of which the me-
chanical properties are dominated by their structure, rather than by the che-
mical composition of the constituent materials. In this way, materials can be
designed with novel properties, such as a negative Poisson’s ratio, vanishing
elastic moduli and extreme stiffness to weight ratios [2, 3].

These material structures have potential applications in a variety of fields.
Mechanical metamaterials with negative Poisson’s ratios are applied in a di-
verse range of industries [4]. In medicine, such structures have been proposed
as stents [5, 6] and in sporting equipment, structures with negative Poisson’s
ratios have been used in the soles of running shoes for their shock absorbing
properties [7] or in textiles for better shape-fitting to the wearer [8].

Material structures with vanishing elastic moduli could find applications in
impact protection and seismic isolation [9]. Materials with extreme stiffness
to weight ratios could be used in automotive or aerospace applications to re-
duce weight without reducing the strength of the parts fabricated from these
structured materials [10, 11].

Mechanicalmetamaterials can be split up in two classes: bending-, and stret-
ching dominated structures [12, 13], named after the most dominant deforma-
tion of the slender parts of their structures. Stretching dominated structures
are generally designed to be stiff and light [14]. Bending dominated structures
on the other hand have been designed to have a broader range of properties
like a negative Poisson’s ratio [15–17] and multiple stable states [18–21]. This
paper is focused on the modeling of bending dominated structures.

Because of the elastic deformations of the structure, bending dominated
mechanical metamaterials require extensive computational effort for analysis,
since the complete elastomeric structure needs to be considered at once. Ge-
nerally, this is done by finite element methods [21–23].

As an alternative to the computationally intensive finite element methods,
pseudo-rigid body models (PRBM) [24] can be used for the analysis of these
structures. With this method, the elastomeric structure is approximated by a
rigid body mechanism with torsion springs at the hinges to model the elastic
forces. Using this method, the calculations for analysis become significantly
simpler and analytical solutions of the material properties can be obtained. Si-
milar methods have been used by Florijn et al. [18] to model a planar bistable
mechanical metamaterial and by Turco et al. [25] tomodel planar pantographic
lattices.

Current examples of rigid body mechanisms used to model mechanical me-
tamaterials are either solely kinematic [26–28] or only consider planar struc-
tures [18, 29–31]. However, for spatial mechanical metamaterials pseudo-rigid
bodymodels have not been applied yet, while for thesemore complicated struc-
tures the resulting computational efficiency will be of significant benefit.

In this paper, we present a pseudo-rigid body model for the analysis of the
kinematics as well as the force-displacement characteristic of a spatial mecha-
nical metamaterial. We investigate a known spatial tubular mechanical meta-
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(a) (b) (c)

Figuur 3.1: The tubular mechanical metamaterial under study in this paper. Shown are a front-
view (a), top-view (b) and a section containing a single hole (c). This structure has 7 holes along the
height and 16 holes around the circumference. The holes are tapered such that they are round
at the outer perimeter and elliptical at the inner perimeter with a constant thickness of the most
slender parts between the holes.

material [32–34]. This tubular structure has a negative Poisson’s ratio due to
a square array of round holes which is patterned around the circumference of
the cylinder. The PRBM we present in this paper is able to replicate this pro-
perty, as well as capturing the force-displacement behavior of the structure.

By including fixed boundary conditions, matching the clamping in the experi-
mental setup in one of the models, we are able to model the inhomogeneously
deformed shape of the elastomeric structure. This is an advantage over com-
mon unit-cell based models, where the deformations of the structure are as-
sumed to be periodic and therefore only homogeneous deformations of the
metamaterial are considered [35].

We will first describe how the tubular mechanical metamaterial deforms un-
der uniaxial compression and indicate the geometrical features that give rise to
the negative Poisson’s ratio. Secondly, we present and discuss two represen-
tative spatial PRBMs for the analysis of the metamaterial, both of which share
the same geometrical structure. One model describes the metamaterial un-
der idealized conditions, while the other also considers boundary effects due
to clamping. Finally, we will validate the two implemented models with experi-
mental data.

3.2. The Elastomeric Tubular Strucutre
The tubular mechanical metamaterial under study in this paper consists of a
hollow cylinder with a square array of pores around the circumference, as is
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(a) 𝑑𝑦 =0mm (b) 𝑑𝑦 =1mm (c) 𝑑𝑦 =2mm (d) 𝑑𝑦 =4mm (e) 𝑑𝑦 =6mm (f) 𝑑𝑦 =8mm

Figuur 3.2: The elastomeric, porous cylinder at various stages of vertical compression 𝑑𝑦. The
height of the undeformed cylinder in these pictures is 70 mm, indicated by two white lines on the
left in each picture. The arrow indicates the compressed height of the cylinder. (a) shows the
undeformed structure. At low compressions (b), the whole structure undergoes a vertical strain.
At higher compressions, however (c,d,e,f), a buckling transition has occurred and the holes have
deformed into alternatingly oriented ellipses.

shown in Fig.3.1. Fig. 3.1a shows a front-view of the structure and Fig. 3.1b
shows a top-view. Fig.3.1c shows a section of a single pore of the structure,
which is circular at the outer perimeter of the cylinder and elliptical at the inner
perimeter. It was made such that the holes follow the curvature of the cylinder
with the wall thickness between the holes remaining constant throughout the
radius of the cylinder.

Figure 3.2 shows snapshots taken during compression of the tubular me-
chanical metamaterial along the cylinder’s central axis. Two distinct stages can
be identified in the compression characteristics:

• Pre-buckling: the whole structure undergoes a uniform vertical strain, the
holes deform into ellipses with their largest principal axis oriented hori-
zontally, as shown in fig. 3.2b.

• Post-buckling: the slender parts between the holes buckle and the pattern
of holes deforms into alternatingly oriented ellipses, as shown in fig. 3.2c,
d, e.

During the first stage of the compression, the slender parts between the
holes undergo uniform vertical compression. The Poisson’s ratio of the struc-
ture is therefore determined by the Poisson’s ratio of the material. However,
because the deformation is mostly localized in the slender parts, the overall
structure has a Poisson’s ratio close to zero.

In the second stage of the deformation, the slender parts between the ho-
les have buckled and the holes form a checkerboard pattern of horizontally and
vertically elongated ellipses. This pattern transformation causes a new defor-
mation mode, in which the structure has a negative Poisson’s ratio; the radius
of the structure decreases with increasing compression along the cylinder axis.
It is in this stage that the deformation of the metamaterial becomes bending-
dominated.



3.3. Two Pseudo-Rigid Body Models for the Post-Buckling Behavior

3

21

Figuur 3.3: In the post-buckling stage of the deformation, the solid parts between the holes behave
approximately as rigid square plates, and rotate in an alternating pattern. These squares are indi-
cated with dashed lines and the direction of rotation for each of the plates is indicated by arrows.

In the post-buckling stage of the deformation, the majority of the deforma-
tion of the structure is localized in the slender parts between the holes. There-
fore, the solid square parts between the holes behave approximately as rigid
parts. These square parts rotate alternatingly clockwise and counter-clockwise,
deforming the holes into the alternatingly oriented ellipses. This is illustrated
in Fig. 3.3.

In both stages of the deformation, the overall structure of the tube remains
approximately cylindrical. In previous studies of this structure, it was shown
that this is the case whenever the beams between the holes are sufficiently
slender with respect to the size of the holes [34].

3.3. Two Pseudo-Rigid Body Models for the Post-Buckling Beha-
vior

In this section we introduce the spatial pseudo-rigid body models used to ana-
lyze the elastomeric tubular structure, one including the clamping of the ends,
and one without clamping. Both models are based on the same mechanical
structure, illustrated in Fig. 3.4a, where the clamping has been included. The
structure consists of 𝑁ℎ layers of rigid squares. In each layer, there are 𝑁𝑐 squa-
res, where 𝑁𝑐 is an even number. Within a layer, the squares are joined at
their corners by spherical joints, shown in green. The centers of all squares in a
layer are at a distance 𝑟𝑖 from the central axis of the modeled cylinder and each
square occupies a constant sector angle 𝛼 = 2𝜋

𝑁𝑐
. These values are indicated in

Fig. 3.4b.
Each square in a layer can rotate about an axis normal to its surface and

crossing its center. We call this rotation angle 𝜃𝑖. All squares in a layer rotate
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simultaneously about their respective normals by an angle ±𝜃𝑖 , alternating in
sign around the circumference of the cylinder. When they rotate, they move
radially with respect to the cylinder axis in order tomaintain the constant sector
angle 𝛼. Additionally, the squares are allowed to rotate about a horizontal axis
tangent to the cylinder surface and crossing the midpoint of the square by an
angle 𝜓𝑖. This angle is the same for all squares in a layer. These rotation angles
are illustrated in Fig. 3.4c, 3.4d. Rotations about the 𝑧̂-axis and translations
within the 𝑥̂𝑦̂-plane tangent to the cylinder are fixed.

The radius 𝑟𝑖 of a layer is

𝑟𝑖 =
𝑙 cos(𝜃𝑖)
2 sin ( 𝜋𝑁𝑐 )

, (3.1)

where 𝑙 is the length of the diagonal of the squares. The height of a layer,
measured along the 𝑧̂-axis is

ℎ𝑖 = 𝑙 cos(𝜃𝑖) cos(𝜓𝑖). (3.2)

The squares in consecutive layers are coupled at their corners such that
these corners share their radial and 𝑧̂ coordinates. These connections are in-
dicated in red in Fig. 3.4. At these connections, relative displacements of the
two connected corners in the 𝑥̂𝑦̂-plane, tangent to the cylindrical surface are
allowed, just as relative rotations of the squares. These connections place con-
straints on the angles 𝜓𝑖:

𝑟𝑖 − 𝑟𝑖+1 =
𝑙
2 (cos(𝜃𝑖) sin(𝜓𝑖) − cos(𝜃𝑖+1) sin(𝜓𝑖+1)) ,

∀𝑖 ∈ [1, 𝑁ℎ − 1]. (3.3)

The total height of the modeled structure is

𝐻 =
ℎ0 + ℎ𝑁ℎ

2 +
𝑁ℎ−1

∑
𝑖=2

ℎ𝑖 , (3.4)

where the height of the top- and bottom layers have been halved to reflect
the flat top and bottom surfaces of the elastomeric structure.

We add stiffness to the model by adding torsion springs to the connections
between the squares, as illustrated in Fig. 3.5. Within a layer, we place torsion
springs at each connection, oriented radially (Fig. 3.5a). For this, we define the
rotation angle 𝜙𝑖 of a square, as projected along the radial line through the
connection:

𝜙𝑖 = arctan( tan(𝜃𝑖)
cos ( 𝜋𝑁𝑐 )

) . (3.5)
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The energy in these torsion springs is then

𝐸ℎ =
1
2𝑁𝑐𝑘𝑅

𝑁ℎ
∑
𝑖=1
(2𝜙𝑖)2, (3.6)

where 𝑘𝑅 is the stiffness of the radially oriented torsion springs.
Between the layers, we place two springs at each connection, one oriented

radially and one tangent to the cylindrical surface. The stiffness of the radi-
ally oriented springs is equal to that of the previously described radial springs
within a layer. The radial springs are illustrated in Fig. 3.5b. The energy in these
springs is

𝐸𝑣 =
1
2𝑁𝑐𝑘𝑅

𝑁ℎ−1

∑
𝑖=1

(𝜃𝑖 + 𝜃𝑖+1)2. (3.7)

The energy in the torsion springs placed tangent to the cylinder is

𝐸𝑠 =
1
2𝑁𝑐𝑘𝑆

𝑁ℎ−1

∑
𝑖=1

(𝜓𝑖 − 𝜓𝑖+1)
2 , (3.8)

where 𝑘𝑆 is the stiffness of the tangent springs. These springs are illustrated
in 3.5c.

We implement the above described model in two distinct ways: a simplified
1-DOF model with free boundaries, and one with 𝑁ℎ − 2 degrees of freedom,
where the boundaries are fixed. The 1-DOF model can be solved analytically
and can therefore be used to obtain a quick estimate of the properties of the
spatial metamaterial under idealized conditions. The second model allows us
to match the boundary conditions observed in experiments and therefore re-
presents the measurements better, at the expense of requiring numerical me-
thods for its evaluation.

3.3.1. 1-DOF Model
In the simplified model, we take all 𝜃𝑖 to be equal. Therefore, the radius will be
constant along the height of the modeled structure and the Poisson’s ratio can
then be calculated analytically:

𝜈 = −𝐻𝑟
𝜕𝑟
𝜕𝐻 = −1. (3.9)

Because the radius is constant along the height of the cylinder, we have𝜓𝑖 =
0 for all layers and the torsion springs tangent to the cylinder do not contribute
to the total energy; 𝐸𝑠 = 0. The energy for a state of the structure can be
expressed as a function of the single variable 𝜃:
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𝐸 = 𝐸ℎ + 𝐸𝑣 + 𝐸𝑠

= 1
2𝑁𝑐𝑘𝑅 (𝑁ℎ (2𝜙(𝜃))

2 + (𝑁ℎ − 1)(2𝜃)2) ,
(3.10)

where the sums over the layers have been evaluated.

3.3.2. 𝑁ℎ-DOF Model
In the second model, we constrain the top and bottom boundary of the struc-
ture in the radial direction by setting 𝜃0 = 𝜃𝑁ℎ = 0. This matches the boundary
conditions observed in compression experiments of the elastomeric structure.

This model is evaluated numerically for a range of vertical strains 𝜖𝑦. This
is done by minimizing the total energy 𝐸 = 𝐸ℎ + 𝐸𝑣 + 𝐸𝑠 under the constraint
𝐻 = 𝐻0(1 + 𝜖𝑦), where 𝐻0 is the maximum height of the structure, obtained
when 𝜃𝑖 = 0 for all layers.

3.4. Pre-buckling estimation
To estimate the stiffness of the structure in the pre-buckling regime, as well
as the buckling threshold, we model the structure as 𝑁𝑐 parallel columns with
each 𝑁ℎ serial linear springs. Therefore, if one such spring has a stiffness 𝑘𝐿,
the total pre-buckling stiffness of the structure will be estimated as

𝑘𝑃𝐵 = 𝑁𝑐
𝑘𝐿
𝑁ℎ
. (3.11)

The reaction force of the structure in the pre-buckling stage is then

𝐹𝑃𝐵 = 𝑘𝑃𝐵(𝐻 − 𝐻0), (3.12)

where 𝐻 is the current height of the structure and 𝐻0 the original height.
The buckling transition is then assumed to occur at the point where the

force-displacement graphs of the pre-buckling and the post-buckling model in-
tersect.

3.5. Experimental Validaton
3.5.1. Methods
For the experimental validation of the Pseudo-Rigid Body Model, we construc-
ted a porous cylinder with 𝑁ℎ = 8,𝑁𝑐 = 16, an outer radius of 25𝑚𝑚, an inner
radius of 16.7𝑚𝑚 and a total height of 70𝑚𝑚. The elastomeric structure is flat
on the top and bottom. A mold was 3D printed on a Prusa i3 MK2 3D printer in
PLA. The structure was then molded in a single piece using a two-part silicone
rubber with a Shore-Hardness of A10 (Poly-Sil PS8510 by Poly-service BV). Du-
ring the curing of the silicone rubber, it was placed under vacuum to reduce
the occurence of air bubbles in the structure.
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Tabel 3.1: Parameters of the PRBM for validation

Symbol Description Value Unit
𝑙 Diagonal length of the squares 9.8 mm
𝑘𝑅 Stiffness of the radially oriented torsion springs 0.24e-3 𝑁𝑚

𝑟𝑎𝑑
𝑘𝑆 Stiffness of the tangentially oriented torsion springs 5.7e-3 𝑁𝑚

𝑟𝑎𝑑
𝑘𝐿 Linear stiffness of the pre-buckling springs 9.6e2 𝑁

𝑚
𝑁ℎ Number of squares along the height 8
𝑁𝑐 Number of squares along the circumference 16

The structure was compressed by a universal testing machine (Zwick/Roell
AG, Ulm, Germany). The cylinder was placed between two acrylic plates, which
were covered in masking tape to reduce reflections. The cylinder was compres-
sed by 8𝑚𝑚, at a rate of 5𝑚𝑚/𝑚𝑖𝑛, during which a digital camera (Canon EOS
70D) was used to acquire image data. Using the image data and image recog-
nition software (Python3 with the OpenCV2 module), the width of the central
10% of the cylinder was determined during compression.

The experimental data was compared to both models. The stiffness of the
torsion springs and the pre-buckling linear springs were calculated for notch
hinges with radii of 9mm, a minimum thickness of 1.13mm and a height of
8.45mm [36]. The Young’s modulus of the material was taken to be 0.67𝑀𝑃𝑎.
These, and other parameters for the model were measured on the silicone
structure. The used values are presented in table 3.1.

3.5.2. Poisson’s ratio
Figure 3.6 shows the observed radial strain 𝜖𝑟 (a) and the Poisson’s ratio 𝜈 (b)
plotted against the applied vertical strain 𝜖𝑦 for the experiment and the two
PRBMs. In 3.6a, we see that there is an offset between themodeled and experi-
mental strain curves. This is causedby the pre-buckling stage of the elastomeric
structure, which was not taken into account in the PRBMs. Therefore, we com-
pare the slope of the experimental curve after buckling to the modeled curves.
This is best reflected by the Poisson’s ratio, shown in Fig. 3.6b. To obtain the
Poisson’s ratio of the elastomeric structure, we fitted the radial strain with the
following function:

𝑓(𝜖𝑦) = {
𝑎 + 𝑏𝜖𝑦 + 𝑐𝜖2𝑦 , 𝜖𝑦 < 𝜖0
𝑎 + 𝑏𝜖0 + 𝑐𝜖20 + 𝑑(𝜖𝑦 − 𝜖0), 𝜖𝑦 ≥ 𝜖0 . (3.13)

We fit a linear function to deformation in the pre-buckling behavior and a
quadratic function to the post-buckling behavior. The Poisson’s ratio is then de-
termined as the negative derivative of this function with respect to the applied
strain 𝜖𝑦. By applying this fit, we remove the noise from the determined Pois-
son’s ratio. The chosen function fits the experimental data with a RMS error of
6 ⋅ 10−14.

In Fig. 3.6b, we see that the 1-DOF model predicts a Poisson’s ratio of -1,
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higher than the experimentally observed value. The 𝑁ℎ-DOF model matches
the observed Poisson’s ratio more closely, also showing an increase in its value
for larger applied strains.

Figure 3.7 shows the shapes predicted by the 𝑁ℎ-DOF model drawn over
pictures of the elastomeric structure at matching vertical strains. The model
captures the hourglass-like shape observed in the deformed elastomeric struc-
ture.

3.5.3. Force-Displacement
Figure 3.8 shows the force-displacement behavior measured on the elastomer-
ic structure and predicted by the two PRBMs. In the experiment, we observe
a steep increase of the reaction force up to the buckling point, after which the
force is close to constant around 3𝑁. Both models predict close to constant
force-displacement behavior, but overestimate the total force by approxima-
tely 0.43𝑁 and 0.14𝑁, respectively. The N-DOF model predicts a lower total
force because the square plates in the top and bottom layer do not rotate and
therefore the torsion springs in these layers are not loaded, which is closer to
reality.

In the experimental results, we observe a buckling transition at a strain
of -0.03. Using the pre-buckling estimation based on linear springs, the pre-
buckling stiffness of the structure is higher, leading to an estimated buckling
strain of -0.01.

3.6. Discussion
The experimentally determined Poisson’s ratio is lower than the value of −1
predicted in the 1-DOF model, while the 𝑁ℎ-DOF model matches it substanti-
ally better. Since the only difference between the two models is the inclusion
of fixed boundaries in the 𝑁ℎ-DOF model, this suggests that the experimental
boundary conditions, where the top and bottom surface of the cylinder are
fixed radially due to friction, affect the Poisson’s ratio significantly, decreasing
its value below -1. This is confirmed by Fig. 3.7, where we see the elastomeric
cylinder deform into an hourglass-like shape when compressed. In the 1-DOF
model, the structure remains cylindrical, while the 𝑁ℎ-DOF model matches the
experimental shape.

The force-displacement data of Fig. 3.8 also shows a better match between
the experimental post-buckling behavior and the 𝑁ℎ-DOF model than it does
for the 1-DOF model. Both models predict a low stiffness of the structure in
the post-buckling regime, which is also observed in the elastomeric structure.
The difference between the two models lies mainly in the magnitude of the
force, where the 𝑁ℎ-DOF model predicts a lower force, which is closer to the
experimentally observed values.

The observed difference between the reaction force of the elastomeric struc-
ture and that predicted by the PRBMs could also be attributable to imperfecti-
ons in the elastomeric structure. The Young’s modulus used to calculate the
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stiffness of the joints was converted from the Shore hardness provided by the
supplier of the silicone rubber and was not tested experimentally. Therefore,
the elastomeric structure could have a Young’s modulus different from the
0.667𝑀𝑃𝑎 used in the models. Furthermore, left-over air bubbles or an imper-
fect mixing of the two silicone components would also have an effect on the
stiffness. A higher Young’s modulus would increase the reaction forces of the
elastomeric structure, while air bubbles would decrease the stiffness of thema-
terial and therefore result in lower forces.

The buckling strain is substantially overestimated by the intersection of the
force-strain curves from the pre-buckling analysis and the post-buckling mo-
dels. This is due to a calculated pre-buckling stiffness that is higher than the
experimental values. In the calculations, it is assumed that all deformation is
localized in the notch joints, just as was done for the post-buckling analysis.
From the experiments, we observe that this assumption might not be valid. If
there is also deformation in the square parts of the structure, the total stiff-
ness of the structure will be lower since the deformation is more evenly spread
throughout the structure. This would result in a buckling transition at lower
values of the strain.

The 1-DOF PRBM presented in this paper can be solved analytically and is
therefore useful to calculate a quick estimate of the properties of the metama-
terial under ideal compression conditions. However, as we see in the experi-
mental validation, it is unable to replicate the significant effects of the boundary
conditions. The 𝑁ℎ-DOF PRBM is able to predict the post-buckling behavior of
these porous elastomeric metamaterials more accurately, taking into account
the fixed boundaries in our experiments. However, because of the greater com-
plexity of this model, numerical methods were needed to obtain the shown
results.

3.7. Conclusion
In this paper, we have demonstrated the application of two Pseudo-Rigid Body
Models to a spatial mechanical metamaterial structure. This was done by analy-
zing a cylindrical mechanical metamaterial with a negative Poisson’s ratio. The
PRBMs used for this analysis consist of rigid squares that rotate about their nor-
mals as well as around a horizontal axis tangent to the cylindrical surface. Two
PRBMs were presented, one simplified version with a single variable and one
with one variable per layer of rigid squares along the height of the cylinder.

We have validated PRBMs by measuring the Poisson’s ratio and force-dis-
placement characteristic of the tubularmechanical metamaterial, molded from
silicone rubber. The 1-DOFmodel captured themain features of themetamate-
rial in the post-buckling regime, predicting a negative Poisson’s ratio and giving
a reasonable estimate for the reaction force. However, this model was unable
to include the boundary conditions introduced by clamping of the specimen in
the experimental setup, causing it to underestimate the Poisson’s ratio.

The secondmodel, with𝑁ℎ degrees of freedom, proved to be able to capture
the experimental boundary conditions and therefore matches the observed
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Poisson’s ratio and force-displacement behavior of the elastomeric structure
more accurately. This model was also able to match the hourglass-like shape
of the deformed cylinder.

To obtain an estimation for the buckling strain of the structure, a simple
model based on linear springs was used. This model overestimates the pre-
buckling stiffness of the structure and therefore predicted a lower buckling
strain than was observed in the experiment.

By analyzing spatial mechanical metamaterials using PRBMs, analytical
equations for the effective material properties of these structures can be obtai-
ned. This greatly reduces the computational effort necessary to analyze these
structures and can lead to a more intuitive evaluation of the complex deforma-
tion patterns that occur in these novel materials.

As the field of mechanical metamaterials grows towards the design of ma-
terials with tailored mechanical properties, fast evaluation of design iterations
will become crucial. PRBMs, such as those shown in this paper, can greatly re-
duce the computational effort involved in these iterations, allowing for a more
efficient design process.
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(a) (b)

(c) (d)

Figuur 3.4: The PRBMof the elastomeric cylindricalmetamaterial structure consists of rigid squares,
coupled at their corners (a). Each square occupies a fixed sector angle 𝛼 around the circumference
of the cylinder and is placed at a radius 𝑟𝑖 from the cylinders central axis (b). The squares rotate
by an angle 𝜃𝑖 around their respective normals (c). (d) shows a single column of squares from the
side, indicating that the squares also rotate around a tangential axis by an angle 𝜓𝑖.
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(a) (b) (c)

Figuur 3.5: Three types of torsion springs are used to model the stiffness of the elastomeric struc-
ture in the PRBM. In the horizontal connections (green), there are radially oriented torsion springs
(a). In the vertical connections (red), there are both radially oriented (b) and tangentially oriented
(c) torsion springs.

Figuur 3.6: Plots of the radial strain (left) and Poisson’s ratio (right) versus the applied vertical strain
on the structures. Shown are the data from the experiment (green), and the calculated values for
the 1-DOF PRBM (blue) and 𝑁ℎ-DOF PRBM (orange).
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Figuur 3.7: Three snapshots of the elastomeric structure during the compression test, with the
shape calculated by the 𝑁ℎ-DOF model overlaid in green. The values of the applied vertical strain
for each snapshot are indicated at the top of each frame.

Figuur 3.8: Plots of the force-displacement behavior of the cylindrical structure. The green line
shows the experimental data. The blue and orange lines show the calculated post-buckling beha-
vior of the structure as calculated using the 1-DOF and𝑁ℎ-DOF PRBMs respectively. The red dashed
line shows an approximation of the pre-buckling behavior.
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On the Synthesis of Periodic Linkages

with a Specific Constant Poisson’s
Ratio

Freek G.J. Broeren, Just L. Herder, Volkert van der
Wijk

Poisson’s ratio is one of themost studiedmaterial properties that can be designed inme-
chanical metamaterials. However, in most studies so far, Poisson’s ratio is not constant
for larger compressions. Only for structures in which ν = -1, structures with a constant
Poisson’s ratio have been demonstrated. This paper studies the design of planar mecha-
nical metamaterials with a constant Poisson’s ratio based on the pantograph, inversor,
straight-line and parabolograph mechanisms. Using these classical mechanisms as
building blocks, periodic mechanisms with ν =-1, -½, 0 and 1 are proposed.

The contents of this chapter have been published in Advances inMechanisms andMachine Science,
vol 73. (2019)[1]
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4.1. Introduction
Poisson’s ratio describes the deformation of a material in the directions per-
pendicular to a uniaxially applied load. This ratio is the subject of a large body
of research into artificially designed material structures called mechanical me-
tamaterials [2, 3]. Especially, material structures with a negative Poisson’s ratio,
also namedauxetics [4–6], are of interest lately, because of the counter-intuitive
property that they contract in the direction perpendicular to an applied uniaxial
compression. This property leads to an increased shear modulus and impact
resistance of these material structures [5].

One category of auxetic structures consists of periodic linkages. These built
up from unit cells consisting of rigid bars or bodies, connected by hinges [7–
9]. In these structures, the periodic degrees of freedom have been designed
such that when one of the dimensions of the unit cell decreases, the others
also decrease and vice-versa. This effect has been demonstrated for planar
periodic linkages [10–12] as well as for spatial structures [13].

Poisson’s ratio is an infinitesimal property; its value is defined at a state of
the structure based on small deformations around that state. Inmostmechani-
cal meta-materials found in literature this value is not constant for larger defor-
mations. A noteable exception to this are structures with a constant Poisson’s
ratio of -1 based on rotating squares [10] or triangles [14].

Periodic linkages could be used as a starting point for the design of elastic
mechanical metamaterials. When a linkage has been designed with the desi-
red kinematic properties, i.e. desired Poisson’s ratio, then, as a next step, an
elastic structure could be derived from it, obtaining ametamaterial with similar
kinematic properties.

In this paper, we will show that planar periodic linkages with various con-
stant Poisson’s ratios can be created based on classical linkages, specifically,
the pantograph, the inversor, the straight-line mechanism, and the parabolo-
graph. We first determine the necessary transmission function between a ver-
tical input and a horizontal output of a unit cell. Then, we present four periodic
new linkages with constant Poisson’s ratios of −1,−12 , 0 and 1 and illustrate the
connection of these periodic linkages to their classical counterparts.

4.2. Planar Periodic Linkages
Periodic linkages consist of a basic mechanism, the unit cell, which is copied
along two non-parallel vectors to fill the whole plane [15, 16]. This is illustrated
in figure 4.1. The unit cell of such a linkage is always a parallelogram, such that
the tiling corresponds to a Bravais lattice [17].

We study a single unit cell of this structure and impose periodic boundary
conditions to it to maintain connectivity between neighboring unit cells. In this
paper, we only study mechanisms with a single degree of freedom, and there-
fore all unit cells deform in the same way. An other study [8] has investigated
structures with more than one degree of freedom using Bloch-wave analysis,
where the deformation patterns are still periodic, but possibly with a larger pe-
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Figuur 4.1: A periodic linkage consists of a unit cell (highlighted in cyan) which is copied along two
non-parallel vectors (red arrows) to fill the plane. Within this unit cell, a linkage is constructed with
periodic boundary conditions, maintaining connectivity between neighboring unit cells.

riod than the constructed lattice.

4.3. Poisson’s Ratio in Periodic Linkages
For materials, Poisson’s ratio is defined by:

𝜈𝑖𝑗 = −
𝑑𝜖𝑗
𝑑𝜖𝑖

, (4.1)

where the labels 𝑖, 𝑗 denote perpendicular directions and 𝑑𝜖𝑖 is an infinites-
simal strain in the 𝑖th direction [10]. For planar periodic mechanisms, we can
use the width and height of the unit cell to express a similar ratio. We follow
Grima and Evans (2000) [10], and express the effective Poisson’s ratio in terms
of these dimensions:

𝜈𝐻𝑊 = −
𝐻
𝑊
𝜕𝑊
𝜕𝐻 , (4.2)

where 𝑊 and 𝐻 are respectively the width and height of a unit cell. Using
this equation, we can express the width of a unit cell as a function of its height:

𝑊(𝐻) = 𝐶𝐻−𝜈𝐻𝑊 , (4.3)

where 𝐶 is an arbitrary constant. When designing a periodic linkage with a
certain Poisson’s ratio, we look for a linkage with this transmission between the
two perpendicular directions. A useful observation here is that 𝜈𝑊𝐻 = (𝜈𝐻𝑊)

−1,
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Figuur 4.2: Four pantographs can be combined to form a unit cell with 𝜈 = −1. The grey plates are
rigid and allowed to hinge at their corners. The unit cell is indicated by a dashed line. This structure
is adapted from [12].

so that when a periodic linkage is obtained for a specific Poisson’s ratio, we
automatically also obtain a linkage for the inverse Poisson’s ratio by rotating
the linkage by 90 degrees.

In the following, we will show how periodic linkages with a constant Pois-
son’s ratio can be obtained from well-known planar linkages for the cases of
𝜈 = −1,−12 , 0 and 1.

4.3.1. ν = -1: Pantograph linkages
In the field of auxetics, the case of 𝜈 = −1 has been widely studied because this
is the limiting case for isotropic materials due to thermodynamic considerati-
ons. For these structures, the change in the width of the structure is directly
proportional to the change in the height of the structure:

𝑊(𝐻) = 𝐶𝐻, (4.4)

where 𝐶 depends on the geometry of the structure.
The shape of the unit cell does not change, but it does change in size. The-

refore, the degree of freedom of such a linkage corresponds to dilation. One
of the best known linkages that has this property is the pantograph [18]. Four
pantograph linkages can be coupled together to form a unit cell of the struc-
ture, as is shown in figure 4.2. This structure has been described previously by
Attard et al. [12]. For the drawn structure, 𝐶 = 𝑎

𝑏 .
The structure in Fig. 4.2 can be generalized further to the pantographs pre-

sented in Fig. 4.3. Here, we take a parallelogram and construct a pantograph
from it by following the construction described in [18]. This pantograph is then
mirrored along both edges of the parallelogram to obtain a unit cell consisting
of four copies of the pantograph. The rigid triangles of these pantographs are
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Figuur 4.3: Proposed design of a planar parallelogram-shaped unit cell, we can construct a set
of four pantograph linkages, merged together such that there is one degree of freedom for the
mechanism which corresponds to 𝜈 = −1. The gray faces in this drawing are rigid elements and
connected by revolute joints at their corners. The pantograph in the upper left corner is highlighted.

coupled to their neighbours such that they form rigid quadrilaterals, each of
them shared between four separate pantograph mechanisms. For this struc-
ture, 𝐶 = 𝑏

𝑎 sin𝛼.

4.3.2. ν = 1: Inversor linkages
For Poisson’s ratio 1, the unit cell must have a constant area for the full range
of motion. Then, the width of the structure can be written as:

𝑊(𝐻) = 𝐶
𝐻 . (4.5)

This means that the width of the structure is inversely proportional to its
height,. This behavior can be achieved by using an inversor linkage [19]. Figure
4.4 presents a design of such a periodic linkage that was derived from Fig. 49
of Artobolevskii’s book [19]. For this structure, 𝐶 = 4𝑎2 − 𝑏2. When the rigid
squares rotate, the sliders on the edges of the indicated unit cell move such
that the area of the unit cell remains constant. Therefore, the Poisson’s ratio of
this linkage is 1.

4.3.3. ν = 0: Straight-line mechanisms
For a Poisson’s ratio of zero, there should be no dependence between thewidth
and height of the unit cell. This can be formulated as:

𝑊(𝐻) = 𝐶. (4.6)

For 1-DoF linkages this property is found in straight-line mechanisms. In
principle, any straight line mechanisms could be used to achieve a periodic 𝜈 =
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Figuur 4.4: Proposed design of a periodic linkage with a Poisson’s ratio of 1 based on inversor linka-
ges. Red dashed lines indicate the slider paths. The central unit cell of the linkage is indicated with
a dashed black line. The gray squares indicate rigid bodies which have a pivot at the intersection
of the horizontal and vertical slider paths. The diagonals of the grey squares have length 𝑏 and the
four bars have length 𝑎.

0 linkage. In Fig. 4.5, we present a periodic linkage that is based on Hart’s A
frame. Hart’s A-frame has two stationary points at the base of the A, and draws
a straight line, perpendicular to the base, with its top point. We couple two of
these linkages together, one rotated by 180 degrees, to form a parallelogram-
shaped unit cell. When it is actuated, the corners of the unit cell will move along
straight, parallel lines, thus changing the height of the unit cell while preserving
its width. For the drawn structure, 𝐶 = 𝑎.

4.3.4. ν = −1
2 : Parabolograph linkages

For a Poisson’s ratio of −12 the width of the unit cell should be given by

𝑊(𝐻) = 𝐶√𝐻. (4.7)

To achieve such behavior, we can use linkages from the class of Parabolo-
graphs. These are planar linkages designed to draw parabolas in the plane.
Here, we will use Antonov’s parabolograph (see p. 132 of Artobolevskii’s book
[19] for more information on this mechanism).

Antonov’s parabolograph consists of three moving links, connected by re-
volute and prismatic joints to form a one-degree of freedom mechanism. This
mechanism is shown in Fig. 4.6. When the angular link in this mechanism rota-
tes around point 𝑂, point 𝐴moves along the vertical guide and point 𝐵 follows
the parabolic curve indicated by the green dotted line.
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Figuur 4.5: Proposed design of a periodic linkage with 𝜈 = 0, based on Hart’s A-frame. Shown are
two configurations within its range of motion. The unit cell is indicated by the red dotted line and
drawn with black lines, The rest of the lattice is drawn in gray. When this linkage moves, the height
of the unit cell decreases, but its width remains the constant distance 𝑎.

Figuur 4.6: Antonov’s Parabolograph in two different configurations. Point O is fixed to the ground,
point A is fixed to a vertical line. When actuated, Point B moves along a parabolic path, indicated
by the green dotted line. Figure adapted from Fig. 215 in Artobolevskii’s book [19]

If we take the distance 𝐴𝐵 of this mechanism to be proportional the width
of the unit cell and vertical distance between points 𝑂 and 𝐴 to be proportional
to the height of the unit cell, we obtain a unit cell with a Poisson’s ratio equal to

−12 . In this case, 𝐶 = √ 𝑐
2 , where 𝑐 is the distance between lines 𝑎 and 𝑏.

We can mirror this linkage along both the vertical and horizontal axes to ob-
tain the tileable version presented in Fig. 4.7. Here, the horizontal lines labeled
𝑎 and 𝑏 indicate guides for the sliding connections and the central unit cell is
indicated by a dashed red line. This linkage has been rotated by 90 degrees
with respect to Fig. 4.6 to achieve 𝜈𝐻𝑊 = −

1
2 .

When actuated, the four corners of the unit cell followparabolic curves, such
that 𝐻 ∝ 𝑊2.
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Figuur 4.7: Proposed design of a periodic linkage based on Antonov’s Parabolograph with a con-
stant Poisson’s ratio of − 12 . Two different configurations are shown. The unit cell is indicated by a
dashed red line, the corners of this unit cell follow the green dashed parabolic paths. The points
𝐴, 𝐵, 𝐶 and 𝐷 slide over lines 𝑎 and 𝑏. Point 𝑂 is situated at the center of the unit cell. The two
crossed bars pivot around this point.

4.4. Discussion
In this paper, we have shownhow classical linkages, specifically the pantograph,
inversor, straight-line mechanisms and the parabolograph, can be used to cre-
ate periodic linkages with various constant effective Poisson’s ratios. We have
presented designs for a constant Poisson’s ratio of −1,−12 , 0 and 1. We are,
however not limited to these examples. The curves required to obtain these
values of 𝜈 can be generated by a number of different linkages, which then can
be converted into a variety of periodic counterparts.

It is interesting to note from equation 4.3 that all negative integer Poisson’s
ratios can be achieved by linkages drawing mononomial curves, the existence
of which have been proven generally by Kempe in 1875[20]. Consequently, link-
ages with 𝜈 = − 1

𝑛 also exist for every positive integer 𝑛 and can be obtained by
rotating the linkage with 𝜈 = −𝑛 by 90 degrees. Versions of these periodic link-
ages with positive Poisson’s ratio could be obtained by integrating an inversor
within the design.

For pantograph-based linkages with 𝜈 = −1, it has been shown that the ki-
nematics can be matched by an elastic structure with a square array of round
holes[21, 22]. This could significantly simplify the manufacturing for these me-
tamaterials. Similarly, elastic structures could be designed to match the kine-
matics of the linkages shown in this paper. If the designs in this paper are best
suitable for this and how sliders could be desgigned elastically was not yet in-
vestigated.
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4.5. Conclusion
In this paper, we have presented 4 designs of periodic mechanisms with a con-
stant effective Poisson’s ratio of −1,−12 , 0 and 1. These mechanisms were con-
structed based on the pantograph, inversor, straight-line and parabolograph
linkage, respectively, which were adapted and tiled in a periodic grid. In this
way, infinitely large linkages are constructed with a specified expansion or con-
traction in the horizontal direction as a response to a vertical actuation.

Wehave shown that it is possible to create periodicmechanisms for a variety
of constant Poisson’s ratios, where, in current literature, this has only been de-
monstrated for 𝜈 = −1. In the discussion, we have indicated how linkages with
other constant Poisson’s ratios can be constructed using a similar approach to
the one presented in this paper.

Thesemechanisms could, in futurework, be implemented inmonolytic, elas-
tic structures with the specified Poisson’s ratio that remains constant for large
deformations. In this way, artificial materials can be constructed with pre-
dictable and tailored material properties that stay constant for large deforma-
tions.
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5
Mechanical Metamaterial With

Poisson’s Ratio Close to 1 Based on
the Inversor Linkage

Freek G.J. Broeren, Just L. Herder, Volkert van der
Wijk

Numerous mechanical metamaterials are designed to have a specific Poisson’s ratio.
Only a few of them, however, can maintain a constant Poisson’s ratio for a large range
of motion. In this paper, we present 3 designs of a mechanical metamaterial based
on the inversor linkage. These have a near-constant Poisson’s ratio of 1 for a large
range of motion. This is mainly attributed to the constant transmission between the
perpendicularly oriented input and output points of the inversor linkage.
Of the 3 designs, there is one with a single layer, one with two layers and one with four
layers. With an increase in layers, the complexity of the design increases. The three
designs were 3D printed and experimentally verified. This shows that, for this design,
with increasing complexity the range in which its Poisson’s ratio remains constant also
increases.

The contents of this chapter have been submitted to Mechanism and Machine Theory
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5.1. Introduction
Mechanical metamaterials are mechanical structures with have effective bulk
material properties that are different from their constituent materials due to
their geometry. By using structural design, the effective Young’s modulus and
Poisson’s ratio of these metamaterials can be designed to be significantly dif-
ferent from the materials they are made of, even extending beyond the values
found in nature [1–3].

Howmechanicalmetamaterials obtain their distinctive properties oftenblurs
the lines between mechanisms and materials. A large class of metamaterials
are the bending-dominated mechanical metamaterials[4, 5], which rely on the
bending of internal slender elements for their function. By designing the inter-
nal structure of the material carefully and changing the thickness of the inter-
nal elements, bending can be localized. These metamaterials are very similar
to compliant mechanisms [6]. Designmethods from this field, like pseudo-rigid
body modeling [7] and rigid-body replacement [8] can therefore be used in the
design of bending-dominated metamaterials.

In order to be used as a material, it is necessary that a mechanical metama-
terial can be shaped and divided without losing its bulk mechanical properties.
To achieve this, their structure is often periodic. They consist of multiple identi-
cal elements, called unit cells, which are copied and translated to fill space. This
method has the advantage that only the single unit cell, with periodic boundary
conditions to account for interactions, is of concern. Because of the periodicity
of the lattice, the bulk properties are ensured to be equal to those of the single
unit cell[9].

Within mechanical metamaterial research, especially Poisson’s ratio has re-
ceived considerable interest [10–13]. This ratio determines the strain of the
material in the direction perpendicular to an applied uniaxial strain. Almost all
natural materials have a positive Poisson’s ratio, meaning that they contract in
the direction perpendicular to an applied strain. Steel and rubber, for example,
have Poisson’s ratios around 0.3 and 0.5, respectively.

In a previous paper[14], we have shown that the effective Poisson’s ratio of
a periodic linkage can be designed based on classical linkages. The kinematics
of these linkages directly dictate the effective Poisson’s ratio. By choosing a
linkage that describes a mononomial curve of the form 𝑦 = 𝑥−𝜈, and using that
linkage as the unit cell of a periodic mechanism, space-filling structures can
be created that have a constant Poisson’s ratio 𝜈 for their complete range of
motion.

In this paper, we will look at the case where 𝜈 = 1. The corresponding curve
𝑦 = 1

𝑥 is described by an inversor linkage. We will show how this linkage can be
converted into a periodic mechanism and how this periodic mechanism can in
turn be used to create a monolithic compliant metamaterial.

We present three iterations of monolithic designs based on the inversor
linkage. Each of these designs relies on the bending of internal elements to
produce a designed Poisson’s ratio. The first design is fully planar, but only ap-
proximates the kinematics of the inversor linkage. Therefore, Poisson’s ratio
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Figuur 5.1: The inversor linkage consists of a single triangular body and two moving links. When
actuated, the area of the rectangle spanned by points 𝑂, 𝐶 and 𝐷 remains constant. This rectangle
is indicated in light grey.

for this structure deviates from the desired value of 1 for larger deformations.
The other designs consist of multiple layers, which opens up space for designs
that maintain their Poisson’s ratio for a larger range of motion.

The designs have been 3D printed and tested under compression to verify
the resulting effective Poisson’s ratio. We show that, while all three have a Pois-
son’s ratio equal to the designed value of 1 at the construction position, only
one design maintains this ratio for larger deformations. This design has the
highest degree of symmetry of the three presented designs and maintains its
Poisson’s ratio up to applied compressive strains of 8%.

5.2. The inversor linkage
Themetamaterial lattices developed in this paper are basedon the inversor link-
age shown in Figure 5.1. This linkage has been adapted from the inversor pre-
sented in Artobolevskii (1964 p.24, Fig.49)[15]. It consists of one right-
triangular rigid body 𝑂𝐴𝐵 and two moving links 𝐴𝐷 and 𝐵𝐶. Point 𝑂 is con-
nected to the ground by a revolute joint and points 𝐶 and 𝐷 are attached to the
ground by perpendicularly oriented sliders with a revolute joint. Links 𝐴𝐷 and
𝐵𝐶 are connected to the triangular body with revolute joints in 𝐴 and 𝐵. We will
call the distance 𝑂𝐷 the width𝑊 of this linkage and the distance 𝑂𝐶 the height
𝐻 of the linkage.

Characteristic for this inversor is that for the complete range of motion of
this linkage, the product 𝒫 of the height (𝑂𝐶) and width (𝑂𝐷) remains constant.
Therefore, the width of the linkage can be written as:
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𝑊 = 𝒫
𝐻 , (5.1)

Hence, if we consider 𝑊 and 𝐻 as the respective width and height of a
unit cell of a periodic linkage, we can calculate the effective Poisson’s ratio as
follows[14]:

𝜈 = − 𝐻𝑊
𝜕𝑊
𝜕𝐻 (5.2)

= 1. (5.3)

5.3. Periodic linkage design
In order to transfer the behavior of the previously described linkage to a me-
chanical metamaterial, additional changes to the linkage are needed. These
additional changes serve two purposes:

1. They allow the linkage to be tiled in the plane such that the resulting peri-
odic linkage has a single degree of freedom

2. They remove the sliders from the linkage, as these are more difficult to
replicate in a compliant structure.

There is no unique approach to satisfy these two requirements. Therefore,
we present three distinct adaptations of the linkage presented in Section 5.2.
These adaptations are shown in Figure 5.2 andwill be discussed in the following
subsections. Each of these adaptations satisfies both requirements.

5.3.1. Design 1: Single layer
In the first design, we have prioritized a planar resulting linkage. This design is
shown in Figure 5.2a.

In this design, a large body 𝑂𝐸𝐹 has been added which acts as the ground of
the linkage. This body has been designed to provide support for the hinges at
𝑂, 𝐸 and 𝐹, while providing as much open space as possible for the rest of the
moving links. The right triangular body 𝑂𝐴𝐵 has been adapted to completely
lie within the open space left by the ground body. The moving links 𝐴𝐷 and 𝐵𝐶
have not been changed and fit within the open space. The two sliders connec-
ting points 𝐶 and 𝐷 to the ground have been replaced by the links 𝐶𝐸 and 𝐷𝐹,
respectively. These links approximate the straight-line motion of the points 𝐶
and 𝐷 for small displacements around the position shown in Figure 5.2a.

The resulting linkage forms a square unit cell which can be tiled in space by
connecting the joint 𝐶 to the top edge of the neighbouring ground body and the
joint 𝐷 to the left edge of its neighbouring ground body. A vertical translation
of the point 𝐶 with respect to the origin 𝑂 will therefore be transferred to the
unit cell below it and a horizontal translation of the point 𝐷 with respect to 𝑂
will be transferred to the unit cell to its right.
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(a) (b)

(c) (d)

Figuur 5.2: Three adaptations of the original linkage design in Figure 5.1 from Section 5.2. Each
adaptation can be tiled in the plane and has a single degree of freedom when tiled. Panels (a) and
(b) show a single-layer and double-layer design, respectively. Panels (c) and (d) show a four-layer
design in two states within its range of motion. Grey dashed lines have been used to indicate the
unit cell for each linkage.
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With this design, an offset has been introduced between the central rotation
point 𝑂 and the left and top sides of the unit cell. This will affect the effective
Poisson’s ratio of the periodic lattice. In Figure 5.2a, the offset has been indica-
ted in the vertical direction and labelled as 𝑑. When we assume that this offset
is equal for both the vertical and horizontal directions, the Poisson’s ratio of
this design becomes:

𝐻′ = 𝐻 + 𝑑 (5.4)
𝑊′ = 𝑊 + 𝑑 (5.5)

= 𝒫
𝐻 + 𝑑 (5.6)

𝜈 = − 𝐻
′

𝑊′
𝜕𝑊′

𝜕𝐻′ (5.7)

= 𝐻 + 𝑑
𝐻 + 𝑑

𝒫𝐻
2

(5.8)

Therefore, Poisson’s ratio for this periodic linkage will no longer be constant
and will only be equal to 1 for small displacements around the construction
position.

5.3.2. Design 2: Two layers
A second design, which can be constructed in two layers, is shown in Figure 5.2b.
In this design, the original inversor has beenmodified bymirroring the links 𝑂𝐴
and 𝐴𝐷 along the vertical axis and the links 𝑂𝐵 and 𝐵𝐷 along the horizontal axis.
This creates the new points 𝐴′ and 𝐵′. By connecting these points, a new right-
triangular rigid body 𝑂𝐴′𝐵′ is formed. This coupling ensures that the resulting
linkage again has a single degree of freedom.

The resulting linkage consists of two coupled four-bar linkages. The sym-
metry in the linkage ensures that the lines 𝑂𝐶 and 𝑂𝐷 remain perpendicular
throughout its range of motion. A periodic linkage can be obtained by coupling
the point 𝐷 to the origin of the unit cell to the right and coupling point 𝐶 to the
origin of the unit cell below it. This has been indicated in Figure 5.2b, where
the neighbouring unit cells have been greyed-out. This coupling does not intro-
duce an offset between the unit cells, so this design is expected to perform as
in Equation (5.2).

5.3.3. Design 3: Four layers
In the final design, we aimed to simplify the coupling between the unit cells.
This was done in a design that can be constructed in four layers, as is shown in
Figures 5.2c and 5.2d.

In this design, additional symmetry with respect to the second design is in-
troduced by mirroring the design along the horizontal and vertical axes. The
resulting consists of two square plates which are connected by a hinge at their
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(a) (b)

Figuur 5.3: A compliant mechanical metamaterial based on the inversor linkage. (a) shows a single
unit cell. (b) shows this unit cell tiled in a 3 × 3 grid.

centres (indicated by a circle with a cross in Figure 5.2c) and eight moving links.
The components form four coupled four-bar linkages with a single degree of
freedom. Throughout its motion, the linkage maintains a left-right and an up-
down symmetry.

The unit cell of this design is described by the rectangle passing through
points 𝐶, 𝐷, 𝐶′ and𝐷′. The tiling of these unit cells can be performed by coupling
point 𝐷 of the unit cell to point 𝐷′ of its neighbour to the right and by coupling
point 𝐶 of the unit cell to point 𝐶′ of its bottom neighbour.

Comparing this design to the original inversor from Figure 5.1, we see that
both the width and the height of the unit cell have doubled. This does not affect
Poisson’s ratio so this design is expected to behave as in Equation (5.2).

5.4. Compliant Designs
In each case, the monolithic compliant designs are created using a Rigid Body
Replacement method[8]. Using this method, the joints are replaced by slender
beams while the rigid links become thicker elements.

5.4.1. Compliant Design 1: Single Layer
For the single-layer design, the compliant embodiment is shown in Figure 5.3a.
In this embodiment, the hinges at the points 𝑂, 𝐴, 𝐵 have been replaced with
relatively short thin beams. Because of their short length, the possible defor-
mations in these beams will closely resemble the hinge rotations of the original
linkage. The links 𝐶𝐸 and 𝐷𝐹 have been completely replaced by long slender
beams.

Figure 5.3b shows a tiling of 9 compliant unit cells. The rigid ground body at
the left and upper boundary of each unit cell has been shaped to give the long
slender beams sufficient space to bend.
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(a) (b) (c)

Figuur 5.4: A compliant mechanical metamaterial based on the inversor linkage built up in two
layers. (a) shows a single unit cell. (b) shows this unit cell tiled in a 3 × 3 grid. (c) shows a 3D
view of the structure, further highlighting the layers. The two layers are colored different light- and
medium-grey. The parts in a dark-grey cross between the two layers.

5.4.2. Compliant Design 2: Two Layers
The design with two layers is shown in Figure 5.4. The hinges at 𝐴, 𝐵, 𝐴′ and 𝐵′
have been replaced by short slender beams, similar to the single-layer design.
At point 𝑂, however, a total of six beams come together in two separate layers.
To accommodate this within the available space, the top-left triangular body
has been reshaped. It now consists of one part in the top layer and a second
part in the bottom layer. These parts are connected by a body in the top-left of
the unit cell which spans both layers.

The tiling of this unit cell into a grid of 9 unit cells is shown in Figure 5.4b.

5.4.3. Compliant Design 3: Four Layers
The compliant embodiment of the four-layer design is shown in Figure 5.5. At
the points𝐴, 𝐵, 𝐴′ and𝐵′, the hinges have been replaced by short slender beams
as before. At the four sides of the unit cell, points 𝐶, 𝐷, 𝐶′ and 𝐷′ the hinge is
replaced by a thin cylinder between the layers for torsional deflection. At the
centre of the unit cell, point 𝑂 of the linkage, the two square rotating bodies
have been replaced by cylinders. These cylinders are connected at their centres
by a set of three leaf flexures, which replace the revolute joint connecting the
square bodies and allow rotational motion. These connections are shown in
Figure 5.5c.

The unit cells of this design combine into a periodic metamaterial as shown
in Figure 5.5b. At the sides of the connecting unit cells, the rigid bars of the
neighbouring unit cells are joined rigidly and form a kind of scissor mechanism.
This enhances the coupling of the motion of one unit cell to the next.

5.5. Experimental Verification
In order to test the performance of the metamaterial designs, they have been
manufactured and their Poisson’s ratio has been measured experimentally. In
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(a) (b) (c)

Figuur 5.5: A compliant mechanical metamaterial based on the inversor linkage built up in four
layers. (a) shows a single unit cell. (b) shows this unit cell tiled in a 3 × 3 grid. (c) shows a 3D view
of the structure, where the connections between the layers have been highlighted in red. The four
layers have been drawn in different shades of grey.

this section, we detail the experimental methods used and share the results.

5.5.1. Methods
The three mechanical metamaterials described in the previous sections were
3D printed in Ultrasinth TPU-90A using Multi-jet fusion by Materialise[16]. For
each of the three designs, a 5×5 grid of unit cells was printed, with a unit cell size
of 35mm square. The thickness of each printed sheet was 10mm. Protruding
cylinders were added to the top surfaces of the metamaterials. These were
colored yellow using acrylic paint in order to be used as markers for the image
processing of the measurements.

The structures were compressed in a Zwick-Roell universal test bench up to
a strain of 10%. During compression, the structures were filmed using a digital
camera (Canon EOS 70D). The recorded movies were processed using Python
and OpenCV[17]. In order to prevent out-of-plane buckling of the structures
and to study their planar behavior, they were placed between two sheets of
transparent acrylic during the experiments.

The colored markers were used to track the unit cell deformations of the
structure throughout the experiments. By calculating the distance between
the markers, the height and width of the unit cells was determined. To mini-
mize the effect of the boundaries, only the positions of the central markers
were used to determine the deformations of the metamaterials. Deformations
are presented as logarithmic (Hencky) strains, as the natural extension to large
deformations of the infinitesimal strains used in Section 5.2.

The Poisson’s ratio was determined from the measured data by first apply-
ing a Savistky-Golay filter to the raw data. The Poisson’s ratio was then calcula-
ted as minus the derivative of this smoothed curve.
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Figuur 5.6: Logarithmic strains (top) and effective Poisson’s ratio (bottom) for each of the three
compliant metamaterial designs. The data is plotted with the applied logarithmic strain ln𝜆𝐻 on
the horizontal axis. The orange line in the strain plots has been obtained by applying a Savitsky-
Golay filter on the raw data. This filtered data has been used to obtain the effective Poisson’s ratio
in the bottom panes. Red dotted lines indicate the desired 𝜈 = 1 behavior, the green dotted lines
indicate the expected behavior from the designwith an offset. Parts of the graphswhere undesired
behavior is caused by self-collision or shearing are indicated by grey shading.

5.5.2. Results
Figure 5.6 shows the resulting strains and effective Poisson’s ratios from the
measurements on the three different designs. In these figures, the red dashed
lines correspond to a Poisson’s ratio of 1, the blue dots are themeasured values,
and the orange line indicates the smoothed data that was used to determine
Poisson’s ratio.

The results from the single-layer design quickly deviate from the 𝜈 = 1 line.
We see a significant deviation in the measured strain for most of the measured
range. The effective Poisson’s ratio lies around 0.75 for most of the measured
range and shows only slight fluctuations around this value. This deviation can
not be explained by the offset 𝑑 of 15mm, as we observe by comparing the
experimental results with the green dotted line in Figure 5.6. We also see a
steep increase in Poisson’s ratio around 9% compressive strain. This is likely
caused by internal collisions within the structure, as can be seen in Figure 5.7.

For the two-layer structure, the initial Poisson’s ratio is close to 1, but it
quickly deviates from this value. Additionally, around an applied strain of 5.5%,
a discontinuity is observed in the effective Poisson’s ratio. The observed devia-
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(a) (b)

Figuur 5.7: The measured sample of the single layer design. (a) shows the structure before com-
pression. (b) shows a state where the applied strain is around 9% and internal collisions occur.
Four points of internal collision have been indicated with red circles.

tions are likely caused by shearing of the sample for larger deformations. This
effect can be observed in the photo’s from the experiments shown in Figure 5.8.
In the ideal lattice, all yellow dots would form vertical lines. In the compressed
state of Figure 5.8, the top and bottom layers have visibly shifted.

The third structure has an effective Poisson’s ratio close to 1 up to an ap-
plied strain of 5%, at which point internal collisions occur and the measured
strains start to deviate from the expected line. These internal collisions can be
observed in the photo’s from the experiments shown in Figure 5.9

5.6. Discussion
When designing a mechanical metamaterial to have a specific Poisson’s ratio,
linkages can be used as a starting point. In these linkages, Poisson’s ratio can
be designed as a geometric transmission ratio between two perpendicular mo-
tions [14].

Starting from a single linkage design, we have demonstrated three possible
monolithic designs. All three designs were based on the inversor linkage and
were thereby designed to have a Poisson’s ratio of 1 up to large deformations.

The first design was completely planar and thereby the easiest to manufac-
ture. For consistency with the other samples, additivemanufacturing was used,
but more conventional 2D manufacturing techniques like laser cutting or CNC
would also have been suitable. However, this design introduced an offset 𝑑
between the unit cells that led to a deviation from the designed Poisson’s ratio
for finite deformations. At the construction position, the metamaterial had a
Poisson’s ratio close to 1, but it quickly deviates from the designed value for lar-
ger deformations. However, we do see a near-constant Poisson’s ratio of 0.75
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(a) (b)

Figuur 5.8: The two-layer design in the initial (a) and compressed (b) state. Shearing can be obser-
ved in the top and bottom layers of the deformed state, causing the columns of yellow dots to no
longer form vertical lines.

(a) (b)

Figuur 5.9: The four-layer second design in the initial (a) and compressed (b) state. In the compres-
sed state, internal collisions can be observed. Two points of internal collision have been indicated
with red circles.
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for this design up to a strain of 9%, where self-collision occurs. The observed
deviation between the designed Poisson’s ratio of 1 and the actual ratio of 0.75
can not be explained by the offset 𝑑, as we see in Figure 5.6. This suggests that
this planar design introduces additional deviations from the kinematic model
which have not been taken into account.

The second design consists of twomoving layers and thereby eliminated the
offset between the unit cells. However, during the compression, the structure
deformed by shearing rather than uniform compression, leading to a lower-
than-designed Poisson’s ratio.

The last design consists of four moving layers, allowing for a four-fold sym-
metry of the unit cell. Due to this symmetry, the metamaterial deformed more
uniformly during compression and the effective Poisson’s ratio was close to 1
up to 5% compressive strains, after which internal collisions caused deviations
from the predicted behavior.

The differences between the second and third compliant designs show the
importance of symmetry when designing periodic mechanical materials. Both
kinematic structures have a single degree of freedom and are expected to per-
form equally well. However, the experiments show that in the second design
a shearing deformation occurred, making the measured properties of the me-
tamaterial deviate from the designed values. In the third design, this behavior
was not observed, likely due to the four-fold symmetry in the unit cells of the
structure distributing the actuation forces equally in all directions.

Additionally, we have seen that, while the inversor linkage can achieve the
desired Poisson’s ratio of 1 up to 100% compression, the physical embodiments
can not due to intersections between their components. With the structures
demonstrated in this paper, Poisson’s ratio was shown to be constant up to 5%
for the four-layer sample. Further optimization is likely to further increase this
allowable compression range.

5.7. Conclusion
In this paper, we have developed three monolithic and compliant realizations
of a periodic mechanical metamaterial with a Poisson’s ratio of 1, based on the
inversor linkage. While all three realizations originated from the same linkage,
both their shapes and their performance has been shown to differ significantly.
We have shown how the linkage can be converted to form the unit cell of a pe-
riodic linkage and have demonstrated different approaches to converting the
linkage into a monolithic compliant mechanism. This has resulted in three de-
signs. The first consists of a single layer, but includes an offset that changes the
effective Poisson’s ratio. The second consist of two layers of overlapping parts
and the third design consists of four layers of overlapping parts.

The three distinct realizations differed in complexity and performance. For
small deformations, all three mechanical metamaterials demonstrated a Pois-
son’s ratio close to 1. However, large differences were observed for increasing
deformations. Of the three tested designs, only the design with a four-fold
symmetric unit cell demonstrated the desired Poisson’s ratio over large defor-
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mations up to 5% compressive strain.
With this paper, we have demonstrated how classical linkages and transmis-

sions can be used to create monolithic metamaterials with a specifically desig-
ned Poisson’s ratio. While this paper has focused on the inversor linkage and,
therefore, a Poisson’s ratio of 1, a similar approach could be used to create me-
tamaterials with different Poisson’s ratios. The unique aspect of metamaterials
designed in this way is that they can have a constant value of Poisson’s ratio for
large deformations, something that is not often seen in the existing literature.
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Auxetic interval determination and

experimental validation for a
three-dimensional periodic

framework

Ciprian S. Borcea, Freek G.J. Broeren, Just L.
Herder, Ileana Streinu, Volkert van der Wijk

Auxetic behavior refers to lateral widening upon stretching or, in reverse, lateral shrin-
king upon compression. When an initially auxetic structure is actuated by compression
or extension, it will not necessarily remain auxetic for larger deformations. In this paper,
we investigate the auxetic range in the deformation of a periodic framework with one
degree of freedom. We use geometric criteria to identify the interval where the deforma-
tion is auxetic and validate these theoretical findings with compression experiments on
sample structures with 10 × 10 × 10 unit cells.

The contents of this chapter have been published inMathematics andMechanics of Solids (2022) [1]
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6.1. Introduction
Auxetic structures have the curious property that they shrink in all directions
under uniaxial compression and widen in all directions under stretching. Early
considerations on this type of behavior appeared in [2–5]. Foam structures
reported by Lakes [6] kindled wider interests in cellular and periodic designs
which exhibit auxetic deformations [7, 8]. The scope of investigations and pro-
posed applications can be gleaned from a string of reviews [9–16]. Advances in
additive manufacturing have permitted the fabrication of increasingly complex
and intricate structures [17–21], leading to a renewed emphasis on rational de-
sign. As observed in [22], “the rational design of metamaterials with a target
property or functionality remains fiendishly difficult, and many designs so far
have relied on luck and intuition”.

In this paper, we focus on periodic bar-and-joint frameworks with auxetic
behavior. Structures of this type, also referred to as a “rods and hinges latti-
ces”, “metamaterials of rigid bars and pivots”, or simply “trusses”, have been
frequently used in investigations concerned with the geometric underpinnings
of auxetic deformations [23–27]. We note, in this context, that crystalline ma-
terials provide a vast array of periodic bar-and-joint frameworks, also called
“crystal structures” or “crystal nets” [28–31]. Displacive phase transitions, occur-
ring under variations of temperature or pressure, can oftentimes be modeled
as periodic framework deformations [32–34] and inquiries about auxetic beha-
vior have been conducted for various structures [35–38].

Materials which can be modeled as periodic bar-and-joint frameworks al-
low a direct comparison of theoretical predictions with experimental results,
thereby offering a more precise understanding of the fundamental role of ge-
ometry in functional responses. For auxetic behavior, there is a strictly ma-
thematical theory, developed in [39–41], which gives necessary and sufficient
conditions for the existence of auxetic infinitesimal deformations and leads to
a comprehensive design methodology. Since auxetic behavior is necessarily
confined to a limited range, these results bring to the fore the problem of iden-
tifying, in the global deformation space of a periodic framework, all regions
where auxetic deformations are possible [42].

Figuur 6.1: The framework used in compression experiments. Description and dimensions are
given in the text. See also Fig. 6.6
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In the present study, we explore the long-range behavior of a three-
dimensional periodic framework with one degree of freedom, introduced in
[43]. Figure 6.1 illustrates the sample structure produced for experiments and
an actual response recorded for compression. We determine the entire defor-
mation path of the framework and recognize auxeticity along a limited arc of
this trajectory. The auxetic interval of the framework is obtained through ri-
gorous geometric calculations. The existence of this interval is then validated
through experiments on 3D printed structures with 10 × 10 × 10 unit cells me-
asuring 200𝜇𝑚 in total side length. These structures are compressed and the
lateral deformation is measured through computer vision.

In our concluding section, we elaborate on the significance of one degree of
freedom framework designs and the importance of the notion of auxetic inter-
val, which allows a numerical comparison of auxetic performance for different
frameworks in this class via the volume increase factor for the unit cells at the
endpoints of the interval.

6.2. The Periodic Framework
The specific periodic framework considered here belongs to a family of designs
presented in [43]. It is obtained from the diagram shown in Fig. 6.2. On the left,
we see a fragment of a cubic lattice consisting of seven cubes inside a sphere
passing through the twenty-four outlying corners. In the middle, the image
shows an octet of lattice points chosen from these corners and connected by
edges to an additional vertex placed on the sphere. This common vertex of the
eight edges is chosen along the axis running through the center of the sphere
and the centers of the two squares determined by the octet of lattice points.
This gives a rotational symmetry of order four to the generating configuration
and we use the expression ‘four-fold symmetry’ to refer to the resulting crystal-
lographic symmetry of the periodic framework.

Figuur 6.2: Design diagram of the periodic framework. The unit vectors 𝑒1 , 𝑒2 and 𝑒3, forming an
orthonormal basis, as well as the distances 𝑎, 𝑏, 𝐵, 𝑐, ℎ and 𝐻 are indicated.

The periodicity lattice is 2ℤ3, consisting of all vectors in Euclidean three-
dimensional space with even integers as coordinates. Thus, the side length of
the cubes depicted in the sphere is 2 and the radius of the sphere is √11. The
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four short edges have squared length 𝑏2 = 22 − 6√11 and the four long edges
have squared length 𝐵2 = 22 − 2√11.

6.2.1. The global deformation space
The geometric model assumes all edges of the framework to be rigid bars and
all joints to allow free relative rotation of the incident bars. The initial confi-
guration of this periodic framework then has one degree of freedom and the
deformationmechanism can be visualized and described by taking into account
the preservation of the four-fold rotational symmetry. The vectors 𝑒1, 𝑒2, 𝑒3 de-
note the standard orthonormal basis of our Euclidean three-dimensional space.
The symmetry axis remains fixed along the 𝑒3 direction and the one-parameter
deformation is obtained by the variation of the periodicity lattice which keeps
the direction of the initial periodicity generators 2𝑒1, 2𝑒2, 2𝑒3 and keeps the first
two generators of equal length. In other words, the initial cubic cell determined
by the generators evolves into an orthogonal box whichmaintains square faces
normal to the symmetry axis direction (𝑒3). We let 𝑎 denote half the edge length
of the square face and let 𝑐 denote half the edge length of the third periodicity
generator (with direction 𝑒3). Thus, the initial configuration has 𝑎 = 𝑐 = 1.

When the framework moves along its deformation path, it suffices to de-
scribe what happens to the eight-bar configuration depicted in Fig. 6.2. We ob-
serve that the common vertex remains along the fixed axis and the four ends
of the short bars form a square of edge length 2𝑎 with center on the axis and
normal to the axis. The four ends of the long bars are the vertices of a square
with center on the axis, normal to the axis and the distance between the planes
of these two squares is 2𝑐.

If we denote by ℎ the distance of the common vertex to the center of the
first square and by 𝐻 the distance to the center of the second square, we have:

ℎ2 = 𝑏2 − 2𝑎2 (6.1)
𝐻2 = 𝐵2 − 10𝑎2 (6.2)

We note that 𝑎 is constrained to remain in the interval (0, 𝑏/√2], since 0 ≤
ℎ2 < 𝑏2. The relation between 𝑎 and 𝑐 depends on whether the common vertex
is between the two squares or not (as in the initial configuration). Thus

𝑐 = 1
2(𝐻 ± ℎ) =

1
2[
√𝐵2 − 10𝑎2 ±√𝑏2 − 2𝑎2] (6.3)

which implies the algebraic relation:

(4𝑐2 − 8𝑎2 + 𝐵2 − 𝑏2)2 − 16𝑐2(𝐵2 − 10𝑎2) = 0 (6.4)

Considering that the Gram matrix 𝜔 for the periodicity generators is diago-
nal, with entries 𝜔11 = 𝜔22 = 4𝑎2 and 𝜔33 = 4𝑐2, we see via (6.4) that the Gram
matrix trajectory is the arc of the conic

𝑄(𝜔22, 𝜔33) = (𝜔33 − 2𝜔22 + 𝐵2 − 𝑏2)2 − 2𝜔33(2𝐵2 − 5𝜔22) = 0 (6.5)
where 𝜔22, 𝜔33 > 0. This arc of a hyperbola is shown in Fig. 6.4(a).
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6.2.2. Geometrical determination of the auxetic interval
The detection of the precise interval where the deformation is auxetic will illu-
strate the geometric criteria established in [39, 40]. In particular, auxetic beha-
vior requires, for all pairs of orthogonal directions, simultaneous elongation, or,
under compression, simultaneous shrinking. Computationally, we have to see
where 𝑎 and 𝑐 increase or decrease at the same time. Since the derivative of
𝑐(𝑎) is negative when the common vertex is between the two squares, we are
left with the alternative

𝑐(𝑎) = 1
2(𝐻 − ℎ) =

1
2[
√𝐵2 − 10𝑎2 −√𝑏2 − 2𝑎2] (6.6)

Figure 6.3 shows the graph of this function. We have

𝑐′(𝑎) = −5𝑎(𝐵2 − 10𝑎2)−1/2 + 𝑎(𝑏2 − 2𝑎2)−1/2 = − 5𝑎
𝐻(𝑎) +

𝑎
ℎ(𝑎) (6.7)

There is one critical point in (0, 𝑏/√2), namely

𝑎0 = √
1
10(132 − 37√11) ≈ 0.963581 (6.8)

and (6.7) is negative to the left and positive to the right of 𝑎0.

Figuur 6.3: The graph of 𝑐(𝑎) in (6.6), for 𝑎 ∈ (0, 1.02476).

The auxetic interval is where 𝑎 ∈ [𝑎0, 𝑏/√2] ≈ [0.963581, 1.02476] and 𝑐 is
given by (6.6). The (𝑎, 𝑐) pairs at the endpoints are:

(√ 1
10(132 − 37√11), 2

√1
5(7√11 − 22)) ≈ (0.963581, 0.986458) (6.9)

(√11 − 3√11,√7√11 − 22) ≈ (1.02476, 1.10289) (6.10)

The auxetic interval can be retrieved based on the directions of the tangents to
the Gram matrix trajectory given above in (6.5) and shown in Figure 6.4. By [39],
the auxetic locus is where the tangents have directions belonging to the positive
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semidefinite cone of 3 × 3 symmetric matrices. Our trajectory lies in the plane
𝜔11 = 𝜔22, 𝜔𝑖𝑗 = 0, for 𝑖 ≠ 𝑗, whose intersection with the positive semidefinite
cone corresponds with 𝜔22, 𝜔33 ≥ 0.

(a) (b)

Figuur 6.4: Gram matrix trajectory in (𝜔22 , 𝜔33) coordinates, with auxetic interval between points
with horizontal and vertical tangent.

Thus, in Fig. 6.4, the auxetic interval can be visualized as the arc between the
points of the trajectory where the tangent is horizontal and then vertical. These
points correspond to

𝜕𝑄
𝜕𝜔22

= 0, respectively 𝜕𝑄
𝜕𝜔33

= 0 (6.11)

We find

3𝜔33 = 2(𝐵2 − 𝑏2) − 4𝜔22, respectively 𝜔33 = 𝐵2 + 𝑏2 − 3𝜔22 (6.12)

and this determines the endpoints of the auxetic interval on the Grammatrix
trajectory as

(𝜔22, 𝜔33) = (
2
5(132 − 37√11),

16
5 (7√11 − 22)) ≈ (3.71395, 3.8924) (6.13)

(𝜔22, 𝜔33) = (44 − 12√11, 28√11 − 88) ≈ (4.2005, 4.86549) (6.14)

Fig. 6.4 shows the auxetic arc of the trajectory between these two endpoints.
The relation (𝜔22, 𝜔33) = (4𝑎2, 4𝑐2) allows an easy comparison with the (𝑎, 𝑐)
points in (6.9) and (6.10) and we conclude that our two descriptions of the auxe-
tic window agree.
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6.3. Experimental Methods
6.3.1. Structure Design
From the framework blueprint described above, a monolithic design was crea-
ted. The design process is illustrated in Fig. 6.5.

To create a monolithic sample of the framework, each of the edges in the
blueprint shown in Fig. 6.2 is replaced by a bicone, as shown in Fig. 6.5a. By
doing this, we obtain a fundamental unit consisting of eight bicones connected
in a single point. We can then replicate this fundamental unit and translate it
along the vectors of the periodicity lattice, as illustrated in Fig. 6.5b, to obtain
the complete monolithic structure.

(a) (b)

Figuur 6.5: The monolithic implementation of the periodic framework is developed in two steps.
First, the edges in the blueprint of Fig. 6.2 are replaced by bicones (a). Secondly, the eight bicones
that make up a fundamental unit are copied and translated along the vectors of the periodicity
lattice to generate the periodic structure (b).

The monolithic structure was realized with edge lengths of 𝑏 = 14.5𝜇𝑚 for
the short edges and 𝐵 = 39.2𝜇𝑚 for the long edges, resulting in 𝑎 = 𝑐 = 20𝜇𝑚
in the initial configuration. The bicones that replace each of the edges have a
small diameter of 0.5𝜇𝑚 at their ends and a large diameter in themiddle of 4𝜇𝑚.
The unit cell of the periodic framework was repeated 10 times along each of the
periodicity generators to create a structure with 1000 unit cells in total, arran-
ged into a cube. On the bottom of this cube, a plate with a thickness of 5𝜇𝑚
was placed to ensure a level surface, and on the top a flattened pyramid was
placed. The resulting unit cell and the complete sample structure are shown in
Fig. 6.6.

6.3.2. Sample Creation
All sample structures were manufactured using 2-photon lithography on a Na-
noscribe Photonic Professional GT (Nanoscribe GmbH, Eggenstein-Leopoldsha-
fen, Germany), using IP-Dip photoresin on a silicon substrate. This machine
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(a) (b)

Figuur 6.6: The designed periodic framework. (a) shows a single unit cell, with the unit cell volume
outlined by grey lines. The dimensions 𝑎 and 𝑐 are indicated along the corresponding sides of
the cubic unit cell and the corresponding unit vectors 𝑒𝑖 are indicated separately. (b) shows the
complete 1000-unit cell structure, with a plate on the bottom for adhesion and a shallow pyramid
on the top for probe alignment.

is capable of a lateral resolution of 200𝑛𝑚 and can create structures up to
400𝜇𝑚 high. The printed structures were sputter-coated with approximately
4𝑛𝑚 of gold-palladium in order to image them in a Scanning Electron Micro-
scope (SEM).

After creating and testing the structures, it was observed that the plates on
the top and botom of the structures appear slightly curved and the central part
of the structure is already slightly less wide than the top and bottom parts. This
is likely an effect of the shrinkage of the used resin, which is reported to be up
to 10% [44]. As we describe in subsection 6.3.4, a central region of the structure
is measured to decrease the effect of these boundaries.

6.3.3. Sample Testing
Two uniaxial load cases are considered. One where a uniaxial deformation is
applied along the four-fold symmetry axis i.e. along direction 𝑒3. In this case, 𝑐
is the driving parameter. For this load case, the four viewing directions normal
to the faces are equivalent and the lateral deformation of 𝑎 can be measured
as a response to a deformation in 𝑐.

In the other load case, the structure is uniaxially deformed along direction
𝑒2, perpendicular to the symmetry axis and 𝑎 is the driving parameter. There
are two distinct side-views for this case, one along 𝑒3, where we view the de-
formation of the second side marked 𝑎 under compression and one along 𝑒1,
where the deformation in 𝑐 is visible.

Three structures were constructed, one for each testing orientation. The
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two structures to be compressed along 𝑒2 were constructed identically, with the
only difference being a 90 degree rotation of the complete structure (including
plates) along the axis normal to the substrate.

The structures were compressed using a Femtotools FT-NMT03 nanomecha-
nical testing system inside of a Jeol JSM-6010LA Scanning Electron Microscope.
For the compression tests, a silicon microforce sensing probe with a tip width
of 50𝜇𝑚was used. The probe was centered on the structures by aligning it with
the flattened pyramid. The structures were compressed at a rate of 0.1𝜇𝑚𝑠−1.
Every 0.2𝜇𝑚 of travel, the probe was stopped and the SEMwas used to record a
high-resolution (5120x3840px) image. Each compression step corresponds to
0.1% of applied strain to the structure.

6.3.4. Experimental probing of the auxetic interval
Because of the four-fold rotational symmetry described in section 2, the auxetic
interval can be determined by measuring the effects of applied deformations
on the distances 𝑎 and 𝑐. For each compression test, the structure is imaged
from the side, allowing twodimensions to bemeasuredduring the deformation,
one of which is always the driving parameter.

Fig. 6.7 shows a unit cell of the framework under the three different viewing
directions. The distance labels 𝑎 and 𝑐 can be seen next to the respective sides
of the frames.

We observe that, according to Fig. 6.3, when 𝑎 is actuated, the allowed com-
pression is relatively large, while when 𝑐 is actuated, the allowed compression
of the sample is limited to about 1.35%. Up to this limit, a point on the motion
path corresponding to this compression can be found. Beyond this limit, no
such point can be found and the framework can therefore no longer respect
the intended structural design. In experiments, this will result in deformati-
ons which significantly or severely violate the rigid-bar assumption. Therefore,
when probing the auxetic interval experimentally, applied strains larger than
1.35% along 𝑐 do not reflect the theoretical structure in a meaningful way. In
our test, we have compressed the structure slightly further to ensure that the
full range of motion was measured in the selected region, considering that the
deformations are not distributed equally throughout the structure.

6.3.5. Data Processing
The recorded images were used to obtain quantitative data on the strains in
the compressed structures. First, the images were rotated and straightened to
correct for perspective. To do this, four points on the structure were selected
and transformed to span a square.

The images were then processed using digital image correlation. The defor-
mations were tracked in a central region of the structure, consisting of 6x4 unit
cells, to mitigate the effects of the boundaries. This region was tracked using
Gunnar Farneback’s algorithm, as implemented in OpenCV 3.2.0 [45, 46]. Using
this algorithm, the displacements of each pixel in the region are calculated. We
use these displacements to calculate the local strains in the tracked region and
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Figuur 6.7: Schematics of the three distinct viewing directions of the structure that are used in this
study. The images show an orthographic view of a single unit cell of structure and the relevant
dimensions 𝑎 and 𝑐 are marked on the sides of the images.

average this over the region to obtain the horizontal and vertical strains.

6.4. Results
Compression tests were performed on the structures for each of the three
distinct viewing directions. For each test, the resulting horizontal and verti-
cal strains were recorded. In the following figures, we report the engineering
strains:

𝜖𝑥 =
𝑥 − 𝑥0
𝑥0

, (6.15)

where 𝑥 is the dimension under study and 𝑥0 is its initial length. Note that
we can obtain these strains from the distances 𝑎 and 𝑐 from section 6.2.2 by
subtracting 1, since these distances have an original size of 1. We discuss each
viewing direction separately. We present these strains from both experiment
and theory. Next to the plots, we show the state of the structure at the initial
position and at the theoretical end of the auxetic interval. These positions are
labelled (a) and respectively (b) in the figures.

The results of the first experiment are shown in Fig. 6.8. Here, the structure
was compressed along the 𝑒2 direction, with 𝑎 as the driving parameter and
the perpendicular 𝑎 direction (denoted by 𝑎�) as the orthogonal direction un-
der study. The plot in the figure shows the strains observed in the experiment
as well as the strains determined from theory. In the calculated and the experi-
mentally obtained curve, both strains are continuously decreasing throughout
the experiment. However, in the experiment, we see that the orthogonal strain
lags behind the theoretical value.

Fig. 6.9 shows the results of the experiment where the structure was com-
pressed along the 𝑒2 direction, making 𝑎 the driving parameter, and 𝑐 the ortho-
gonal direction under study. In both the theoretical strains and the experimen-
tal strains, we see that there is a minimum for 𝜖𝑐, after which this orthogonal
strain increases again for continuing compression. In the theoretical curve, this
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Figuur 6.8: Strains and images from a compression test along the 𝑒2 direction, measuring the or-
thogonal strain along 𝑎�, with vertical dimension 𝑎 as the driving parameter. (a) shows the unde-
formed state of the structure. The analyzed region is highlighted in green and the directions 𝑎 and
𝑎� are indicated. (b) shows the deformed state at the end of the calculated auxetic interval.

minimum occurs at 𝜖𝑎 = −3.7%, 𝜖𝑐 = −1.35%. In the experiment, we saw that
this minimum occurred at a larger compressive strain of around -7%.

Fig. 6.10 shows the results from the final viewing direction, where the struc-
ture was compressed along the 𝑒3 direction, with 𝑐 as the driving parameter
and 𝑎 as the orthogonal dimension. For this viewing direction, we present ap-
plied strains up to 𝜖𝑐 = −1.35%, since compressions beyond that are impossible
in theory and might include breaking of the structure in the experimental tests.
We see that the theoretical curve flattens off at 𝜖𝑐 = −1.35%, with an orthogonal
strain of 𝜖𝑎 = −3.7%. In the experiment, we did not see this lateral contraction.
Rather, there was little to no lateral deformation observed.

In the images for all three measurements, we can see that the strains in the
structures are not evenly distributed. Especially in the images of Fig. 6.8, we see
that the center of the structure contracts substantially more than the regions
at the top and bottom of the structure.

6.5. Discussion
When the structure is compressed along the 𝑒2 direction, with 𝑎 as the driving
parameter, the structure shrinks laterally under increasing compression in both
perpendicular directions for the complete calculated auxetic interval. In the
measurements, the calculated auxetic interval lies between the points (a) and
(b).

Outside of the calculated auxetic interval, we see that the orthogonal 𝑎 direc-
tion keeps shrinking with increasing load, while the 𝑐 direction starts to expand
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Figuur 6.9: Strains and images from a compression test along the 𝑒2 direction, measuring the or-
thogonal strain along 𝑐 with 𝑎 is the driving parameter. (a) shows the undeformed state of the
structure. The analyzed region is highlighted in green and the directions 𝑎 and 𝑐 are indicated. (b)
shows the deformed state at the end of the calculated auxetic interval.

Figuur 6.10: Strains and images from a compression test along the 𝑒3 direction, measuring the
orthogonal strain along 𝑎 with 𝑐 as driving parameter. (a) shows the undeformed state of the
structure. The analyzed region is highlighted in green and the directions 𝑎 and 𝑐 are indicated. (b)
shows the deformed state at the end of the calculated auxetic interval.
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again after an applied strain of -7%. This transition indicates the end of the
auxetic interval and occurs later than was calculated from the theoretical mo-
del. For both directions, the orthogonal deformations are smaller than those
resulting from theory. However, one must take into consideration that the the-
oretical model assumes unrestricted relative rotations at all joints while mono-
lithic samples have limitations in this respect and introduce boundary conditi-
ons. Especially the horzontal constraints introduced by the plates at the top
and the bottom of the structure has had a visible effect on the deformation.
This can be observed in Fig. 6.8, where the center part of the structure contract
substantially more than the sides.

Overall, we observe that the nature of the deformation agrees with the geo-
metric model. Since the structure demonstrated no lateral expansion for each
of the three orthogonal views of the structure, we have validated auxetic beha-
vior over the calculated interval admitting compression.

6.6. Conclusion
In this study, we have shown that a framework design based on a geometric
theory of periodic auxetics allows for a very explicit and precise description of
its global periodic deformation. Furthermore, we have shown that such a fra-
mework can be produced using existing additive manufacturing technology at
the micrometer scale. Compression tests have been performed on the manu-
factured frameworks and measurements confirm the auxetic behavior in the
interval calculated using the theoretical model.

We emphasize the distinctive role of periodic framework designs with one
degree of freedom. In the presence of several degrees of freedom, additional
controls or constraints would be needed for selecting an auxetic deformation
trajectory from response possibilities which definitely include non-auxetic de-
formations. Thus, the existence of a general methodology for one degree of
freedom auxetic design is particularly relevant [41, 43]. The framework design
considered here is of the simplest kind, in view of the fact that it has just two
orbits of vertices under periodicity. Moreover, the presence and preservation
of the fourfold symmetry allows explicit and precise computations.

Our investigation highlights the importance of predicting and recognizing
the interval where auxetic behavior occurs. Within the class of one degree of
freedom periodic designs, the volume increase factor for the unit cell at the end-
points of the auxetic interval, provides a comparison criterion for auxetic per-
formance.
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7
An Origami-Inspired Spherical

Transformable Metamaterial Based
on Symmetry Groups

Ivar R. Nuijts, Freek G.J. Broeren, Volkert van der
Wijk, Just L. Herder

Most currently existing mechanical metamaterial designs are based on Bravais lattices.
These consist of paralellogram or parallellepiped unit cells, which are respectively trans-
lated along two or three independent vectors to fill the complete space. This approach is
inherently unable to match curved surfaces like spheres, since these cannot be construc-
ted only from parallel and perpendicular lines. In this paper, we introduce a generalized
unit cell, based on the symmetry groups of the sphere. We use this approach to develop
a spherical transformable origami-inspired metamaterial. We describe the motions of
this new metamaterial, as well as experimental observations on a physical, 3D printed
model.

The contents of this chapter have been published in the proceedings of the 7th International Con-
ference on Control, Mechatronics and Automation (ICCMA)[1]
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7.1. Introduction
Mechanicalmetamaterials are an emerging class ofmaterials where an internal
structure, rather than the chemical structure of the material they are made
of, dominates the bulk material properties [2, 3]. Generally, when designing
these mechanical structures, a unit cell (UC) is designed, of which many copies
are repeatedly placed along two or three lattice vectors, for planar and spatial
metamaterials respectively, to fill all of space according to a Bravais lattice[4].
This approach greatly simplifies the design process, since it is assumed that the
internal deformations of the material structure follow the same periodicity. In
general, the mechanical behavior of the metamaterial is fully determined by
the behavior of the single unig cell. Therefore, the mechanical behavior that is
designed in a single unit cell determines the mechanical properties of the bulk.

While this approach lends itself well to create infinite areas or volumes, not
all finite shapes can be created in this way. Specifically, when we consider cur-
ved surfaces, we are able to approximate their shape by a stacking of parallel-
lepipeds, but will, in general, never be able to exactly match all curvatures. To
illustrate this, consider building a sphere of LEGO bricks. With increasing num-
bers of available bricks, the sphere can be better approximated, but an exact
matching will never be achieved, as illustrated in Fig. 7.1

Figuur 7.1: When creating a sphere out of LEGO bricks (or other parallellepipeds), only an approxi-
mation of the sphere can be achieved. Source: LEGO Ideas - LEGO Globe (Lowell sphere method)
https://ideas.lego.com/projects/d287ef4e-cd1c-491d-8491-dca7de3204c5

In this paper, we present a generalized way of constructing a unit cell, ba-
sed on the symmetry groups of the desired shape, which is a sphere in our case.
Using this method, the unit cell is not copied and translated along generators
of a Bravais lattice, but the copies of the unit cell are rotated and mirrored ac-
cording the chosen symmetry groups of the sphere. Because of this it will be
shown that the whole sphere can be exactly matched by the designed mecha-
nical structure.

We employ this method to design a transformable origami-inspired sphere,
consisting of 60 generalized unit cells. These unit cells have a single degree

https://ideas.lego.com/projects/d287ef4e-cd1c-491d-8491-dca7de3204c5
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of freedom, allowing the sphere to change in size, enabling a reduction of the
inscribed volume of 76.3%.

We present a kinematic analysis of this mechanical structure as well as ex-
perimental validation of a 3D-printed prototype. We discuss the performance
of the design as well as the number of degrees of freedom when periodicity is
relaxed to the whole sphere.

7.2. Spherical Symmetry Groups
For spheres, there are exactly 14 possible symmetry groups [5, 6]. These groups
can be further split into two categories: platonic and parametric symmetries.
Seven platonic symmetry groups exist, corresponding to the Platonic solids.
There are seven parametric groups, for which the number of fundamental do-
mains that are needed to span the whole sphere depends on a parameter.

In this study, we chose to focus on the Platonic groups, since for these
groups the fundamental domains are more evenly distributed over the sphere
due to their correspondence to regular polyhedra. For the parametric groups,
there are two sets of fundamental domains, one on the “north-side” of the sp-
here, and one on the “south-side”, leading to a less evenly distributed set of do-
mains. Since, as we describe in the next section, a polyhedral approximation of
the sphere will be used in our design, the even distribution of the fundamental
domains leads to a better correspondence between the mechanism and the
orinial sphere.

Within the Platonic groups, the *532 symmetry group (using the notation
from [5]) was chosen, as it leads to the largest number of fundamental domains
on the sphere. This group corresponds to the dodecahedron and its dual, the
icosahedron. The fundamental domains of this symmetry group correspond to
the faces of a Dysdiakis Triacontahedron7.2. This polygon has 120 faces and is
the largest Catalan solid.

Figuur 7.2: The fundamental domains of the spherical *532 symmetry group correspond to the
faces of a Dysdiakis Triacontahedron. Source: Wikimedia Commons.
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7.3. Unit Cell Design
We design the origami-inspired spherical mechanism based on a unit cell con-
sisting of rigid faces and folds. In general, the folding of curved surfaces is not
possible without tearing or buckling. Therefore, to create a folding mechanism,
we need to approximate the sphere with a polyhedron. The choice for *532
symmetry in the previous section leads to the Dysdiakis Triacontahedron.

For our origami-inspired mechanism, we take all these faces to be rigid and
design the connections between the faces such that a dilational motion is ob-
tained. For this, we consider a Unit Cell consisting of two faces, connected by
a fold. Five of these unit cells can be coupled, again with folds, to form a pen-
tagonal unit. The connections between the pentagonal units are realized by
spherical joints at the corners of the base pentagon. This structure, for three
of such pentagonal units, is shown in Fig. 7.3.

Figuur 7.3: The origami-inspired structure consists of rigid triangular faces, which are connected
by folds into pentagonal units (shown with red, blue and green outlines). These units are subse-
quently coupled by spherical joints, allowing for open spaces (shown in yellow) when the structure
is deformed.

When the unit cells are repaeated all over the sphere in this way,

Twelve of these pentagonal units can be used to span the sphere, preser-
ving the single degree of freecom of the unit cell. At the construction position,
without open spaces between the pentagonal units, it is a dysdiakis triaconta-
hedron, and when actuated, the sides of the pentagonal units move inwards,
shrinking the side-lengths of the regular pentagon they describe. This creates
open spaces between these pentagonal units, leaving only point contacts bet-
ween them. In the physicalmodel, these connections are realized by adding two
plates to the unit cell, which are folded into the polyhedron in the construction
position. In this way, the whole mechanism consists of rigid plates, connected
only by fold lines.
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7.4. Fabrication Methods
Of the model shown in Fig. 7.3 a prototype was designed and 3D printed in
parts from PLA, using a Prusa i3mk2 3D printer. The 12 printed parts were alig-
ned using notched connectors at their sides and cyanoacrilate glue was used
to fix these connections. The design of one such part is shown in Fig. 7.4

Figuur 7.4: A top view of the pentagonal unit design. These structures were 3D printed in the shown
flat state. Netting was used to create fold lines between the grey rigid plates and twelve of these
units were assembled into a Dysdiakis Triacontahedron by matching and gluing the notched parts.

The parts were 3D printed in a flat state. Each part consisted of a single pen-
tagonal pyramid, opened up at one of the fold lines to fold it flat. The total thick-
ness of the plates is 3mm. For the fold lines, two layers of netting were included
within the 3D print, one at a height of 0.5mm and one at a height of 2.75mm.
These layers were included during printing and the following layers of PLA flows
between the netting, securing it within the rigid plats. After 3D printing, the top-
and bottom layers of netting were cut selectively to assignmountain- and valley
folds to the mechanism. This resulted in an origami mechanism consisting of
rigid plates, connected by fold lines with very little stiffness.

7.5. Results
7.5.1. Degrees of Freedom
The generalized unit cell we designed has a single degree of freedom. Howe-
ver, when the whole sphere is considered, instead of just the periodic motions
based on a single unit cell, There are 33 degrees of freedom. This number was
calculated using counting-arguments, and verified bymodeling thewhole struc-
ture as a pin-jointed framework and calculating the nullspace of the Jacobian[7].

In the physical model, these extra degrees of freedom made it difficult to
uniquely control the mechanical structure. A balloon was inserted into the en-
closed volume such that by inflating the balloon, the prototype expands sym-
metrically, as if it has a single degree of freedom. To investigate the practical
volume decrease, the balloon was deflated and the structure was collapsedma-
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nually.

7.5.2. Volume Change
When the mechanism is contracted, the pentagonal units deform such that
their base pentagon remains regular and the side-lengths decrease. Simulta-
neously, the pentagonal units become more pointed, creating a shape similar
to a stellated dodecahedron. This state is shown, next to the fully expanded
state, in Fig. 7.5.

Figuur 7.5: The expanded (left) and contracted (right) state of the origami-inspired mechanism.

To determine the volume decrease of the kinematic model under actuation,
the inscribed dodecahedron, defined by the connection points of the pentago-
nal units was used. This is illustrated in Fig. 7.6. This volume was calculated in
the kinematic model to undergo a decrease of 76.3%.

Figuur 7.6: The volume change of the mechanism is determined based on the inscribed dodecahe-
dron, defined by the connection points of the pentagonal units. This dodecahedron is shown here
in red.
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Images of the physical model in both the expanded and contracted state
are shown in Fig. 7.7. In this case, the volume decrease achieved was less than
the calculated value. This is clearly shown in Fig. 7.8, where the two states
are superimposed in one figure. The enveloping sphere of the model hardly
changes in size.

Figuur 7.7: The physical model in the expanded state (left) and in the contracted state (right).

Figuur 7.8: Comparison of the expanded and contracted state of the physical model. The contrac-
ted state is shown, with the contours of both the contracted and the expanded state drawn in red.

7.6. Discussion
While the volume decrease of the kinematic model is not matched by the phy-
sical model, the deformed shapes match. The differences between the two are
likely caused by the thickness of the plates in the physical model. This was as-
sumed to be zero in the kinematic model, while they physically limit the motion
of the prototype. Also, because the physical model had 33 degrees of freedom
andwas actuated by hand, it is likely that the extremal states of themechanism
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were not reached. For example, the expanded state shown in Fig. 7.7 shows
small indentations on the edges of the pentagonal units, indicating that the fully
expanded state was not reached.

A balloon was used to expand the structure, but the contraction was done
donemanually in this study. As an improvement, the balloon could be attached
to the inside of themechanism, also allowing control of themechanism contrac-
tion through deflation of the balloon. Alternatively, a different assignment of
fold lines might help to reduce the degrees of freedom.

Finally, the mechanism presented in this paper deforms from a Dysdiakis
Triacontahedron into a stellated dodecahedron. If the largest diameter of the
structure is considered, the resulting scaling is minimal. An alternative design
could have the pentagonal units pointed into the enclosed volume, creating an
approximate dodecahedron with dimples in the faces, as illustrated in Fig. 7.9.
This design would have a greater volume change of the circumscribed dodeca-
hedron, but the internal collisons would not allow the neigboring faces to fold
completely flat.

Figuur 7.9: An alternative design, where the pentagonal units are inverted to point into the enclosed
volume, for improved scaling of the circumscribed volume. Shown are both the expanded (left) and
the contracted state (right).

7.7. Conclusions
In this paper, we have presented an origami-inspired transformable mecha-
nism whose construction was based on the spherical *532 symmetry group.
The sphere is designed to perform a dilational motion, which results in a de-
crease of the inscribed dodecahedron volume of 76.3%.

In order to construct this spherical structure, we developed a generalization
of the periodic lattices regularly used for the design of mechanical metamate-
rials. The generalized unit cell consists of a fundamental domain of the chosen
spherical symmetry group, and instead of building the lattice by discrete trans-
lation, the corresponding symmetry operations are used. The resulting design
was constructed using additive manufacturing, with netting used to obtain low
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stiffness fold lines between the rigid plates.
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8
A General Method for the Creation of

Dilational Surfaces

Freek G.J. Broeren, Werner W.P.J. van de Sande,
Volkert van der Wijk, Just L. Herder

Dilational structures can change in size without changing their shape. Current dilatio-
nal designs are only suitable for specific shapes or curvatures and often require parts of
the structure to move perpendicular to the dilational surface, thereby occupying part of
the enclosed volume. Here, we present a general method for creating dilational structu-
res from arbitrary surfaces (2-manifolds with or without boundary), where all motions
are tangent to the described surface. The method consists of triangulating the target
curved surface and replacing each of the triangular faces by pantograph mechanisms
according to a tiling algorithm that avoids collisions between neighboring pantographs.
Following this algorithm, any surface can be made to mechanically dilate and could,
theoretically, scale from the fully expanded configuration down to a single point. We il-
lustrate the method with three examples of increasing complexity and varying Gaussian
curvature.

The contents of this chapter have been published in Nature Communications (2019) [1]
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8.1. Introduction
Expandable structures are of significant relevance in nature and engineering
and come in a variety of forms. Natural examples include the stowing of the
precious wings of beetles [2] or the fitting of young leaves into buds [3]. Nu-
merous engineering examples can be found as well, including satellite anten-
nas and solar panels that need to be compact for launch and expand for ope-
ration [4–7], and medical stents that need to be moved through arteries [8] or
the esophagus [9] in compacted form and deploy at the target position.

Most expandable structures rely on an underlyingmechanism to allow them
to be reversibly compacted. One well-known example of an expandable struc-
ture in which the mechanism is clearly visible is the Hoberman Sphere [10,
11]. This mechanism dilates, i.e. its envelope changes in size without chan-
ging its shape [12, 13]. We define dilational structures as structures composed
of mechanisms whose only degree of freedom corresponds to dilation. Other
examples of dilational structures are dilational polyhedral linkages [14, 15].

Dilational structures have also been studied in the field of mechanical meta-
materials [16, 17], particularly for auxetic behavior where the Poisson’s ratio is
negative [18–20]. A Poisson’s ratio of exactly -1 corresponds to dilation.

Currently, several limitations in dilational structures exist. Firstly, most dila-
tional structures have been designed for a specific shape or curvature, making
these mechanisms applicable to a very limited set of shapes; for example, the
buckliball [21], which is based on a polyhedral linkage that resembles a sphere.
Secondly, linkages such as the Hoberman Sphere use mechanisms that move
perpendicular to the described surface, making them protrude into the enclo-
sed volume, which, for instance, could be a problem in stent design. Thirdly,
to the authors knowledge, no examples of spatial mechanical metamaterials
exist that can be sculpted to thin, curved surfaces. The unit cell that governs
the behavior of such structures inherently has a finite volume, making the con-
struction of thin dilational surfaces with only motion tangent to the plane im-
possible. Also, the current planar auxetic metamaterials can not, in general, be
used, since the underlying kinematics are not valid for arbitrarily curved surfa-
ces.

In this paper, we present a general method to create mechanism-based di-
lational structures fitting to any spatially curved surface, by which we mean
2-manifolds with or without boundary. Our method improves on existing work
on two key points. Firstly, the resulting mechanism structure is placed on the
surface, with no parts of the mechanismmoving into the enclosed volume and
normal to the surface, unlike for instance the Hobermanmechanism. Secondly,
themethod is applicable to surfaceswith any curvature and can evenbe applied
to non-closed surfaces, i.e. surfaces containing holes or cuts. Enabling these
properties in dilational structuresmakes themof use in, for instance, structures
that grow with a person such as medical braces for children and expandable
furniture, medical devices that require stowability or compression but need to
be stiff otherwise, or implants that need to accommodate some motion but
maintain their shape, such as aortic stents.



8.2. Results

8

89

Figuur 8.1: Under dilation, a structure scales with respect to a homothetic center (point H in this
figure), preserving its size and orientation.

In the following, we describe the method, where we first triangulate the
surface and then place pantograph mechanisms on each of the faces of the
triangulation. We prove that this method can be used for any spatially curved
surface and comment on the maximum scaling factor possible for these struc-
tures. Finally, we apply our method to three surfaces of increasing complexity,
illustrating its versatility.

8.2. Results
8.2.1. Dilation
Dilation is a homothetic transformation that relates two similar shapes with
respect to a homothetic center [22]. Any two figures related by a dilation are
similar and have the same orientation (see Fig. 8.1). This transformation pre-
serves the shape and orientation of the figure, but changes the size of each
of the elements of the structure by the same factor. In a dilational structure
the distances between a representative set of points on the structure, typically
corner joints, all scale by the same factor during actuation.

8.2.2. Triangulation
The first step of the presented design method is to triangulate the curved sur-
face fromwhich wewant to create a dilational structure. Triangulation is a com-
mon strategy to approximate curved surfaces by amesh of triangular faces and
lies at the basis of the STL file format used in 3D printing [23, 24]. Triangulation
is illustrated in Fig. 8.2 for a sphere. It is observed that the accuracy of the
approximation increases with the number of triangular faces in the resulting
mesh.

The triangulation results in a polyhedral surface with only triangular faces.
It can be shown that every surface (by which we mean a 2-manifold with or wit-
hout boundary) can be triangulated such that atmost two triangular faces share
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Figuur 8.2: Any curved surface, in this case a sphere, can be approximated by a mesh of triangles
in a process called triangulation. A larger mesh of triangular faces gives a better approximation of
the original surface. Shown are polyhedral triangulations of a sphere with 𝑛 triangular faces.

Figuur 8.3: The skew pantograph is a one-degree-of-freedom mechanism that scales the spanned
triangle (i.e. the red-striped area) determined by three of its joints; the similarity points, indicated
𝐴, 𝐵 and 𝐶. This mechanism has revolute joints at points 𝑝, 𝑞, 𝐶, 𝑎𝑛𝑑𝑟. For the neutral position,
shown in the middle, the spanned triangle equals the triangular shape of the pantograph, this is a
useful pose for constructing dilational surfaces.

an edge. [25] If the resulting polyhedron undergoes dilation, the number of tri-
angles, their shapes and their respective relationsmust stay constant. Only the
size of the triangles is allowed to change, their aspect ratio and orientation are
preserved.

8.2.3. Pantograph linkage
To transform the polyhedral surface into a movable linkage with dilational mo-
tion, we employ the skew, or Sylvester’s, pantograph mechanism [26–28].

The skew pantograph is a four-bar mechanism of which two adjacent links
are extended into triangles. The mechanism has revolute joints at 𝑝, 𝑞, 𝐶 and
𝑟, as illustrated in Fig. 8.3. The link 𝐶𝑞 is equal in length to side 𝑟𝑝, as are 𝐶𝑟
and 𝑞𝑝, which makes 𝑝𝑞𝐶𝑟 a parallelogram. Also, the triangles 𝐴𝑝𝑞 and 𝑝𝐵𝑟
are similar. A resulting feature from these properties is that in any pose of the
mechanism the triangle 𝐴𝐵𝐶 is similar to triangles 𝐴𝑝𝑞 and 𝑝𝐵𝑟. The proof can
be found in Hall (1986) [29]. When themechanismmoves, the distances 𝐴𝐶, 𝐴𝐵
and 𝐵𝐶 become smaller as the parallelogram decreases in area. As a result, the
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Figuur 8.4: The relative orientation of adjacent pantograph mechanisms is maintained by com-
pound universal joints. This figure shows part of a dilational surface, the triangular faces are shown
in grey, and the rigid parts of the pantograph mechanisms are shown in blue. At each of the cor-
ners of the pantographs, they are coupled to their neighbors by universal joints. A universal joint
consists of two revolute joints (shown as white cylinders) in series. A compound universal joint is
created at an intersection with three (or more) triangular faces.

mechanism has a single degree of freedom and during motion the striped red
triangle described by its three similarity points (indicated 𝐴, 𝐵 and 𝐶) changes in
size but remains similar of shape, as is illustrated for three poses. These three
joints will be referred to as the similarity points of the pantograph linkage.

The maximum scaling that can be achieved with a skew pantograph de-
pends on the placement of the joints on the edges of the spanned triangle in
the neutral position. We place the joint in the middle of the sides of the span-
ned triangle in the neutral position, such that 𝐴𝑞 = 𝑞𝐶. In this way, the rigid
triangles are sized down by a factor 2 relative to the spanned triangle, which
allows the spanned triangle to scale down to a single point.

8.2.4. Coupling the pantographs
Each of the faces obtained by triangulating the curved surface is replaced by a
skew pantograph mechanism. In this way, we ensure that each individual face
can only deform by scaling, keeping its original shape.

The pantograph mechanisms ensures the proper scaling of each individual
face. However, in order for the whole structure to dilate, it is also required
that each face simultaneously scales by the same factor and that the faces do
not rotate with respect to each other. We achieve this by connecting neighbo-
ring pantograph mechanisms by means of compound universal joints, whose
description follows.

Two adjacent faces of the triangulated surface share a single edge and two
vertices. In order to maintain the mobility of the neighboring pantograph me-
chanisms, they can only be connected at the vertices. At these points, we con-
nect the pantograph mechanisms with universal joints (two consecutive revo-
lute pairs), of which the axes are parallel to the normals of the respective faces,
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as is illustrated in Fig. 8.4. This configuration constrains the rotation about the
shared edge of the faces and therefore preserves the relative orientation of the
two faces.

Because the two neighboring pantograph mechanisms are now connected
along the shared edge, their degrees of freedomare also coupled. When one of
the pantograph mechanisms moves, the length of the shared edge will change,
causing a movement in the other pantograph. In this way, it is ensured that
both pantographs are scaled simultaneously by the same factor and maintain
their relative orientation.

Each set of neighboring pantograph mechanisms is connected in this way,
creating compound universal joints at the corners of the faces. This preserves
the relative angles of all faces and ensures the same scale factor for each of the
faces. Therefore, the total resulting motion will be dilation.

8.2.5. Range of Motion of the pantograph
Kinematically, a structure constructed from the proposed pantograph mecha-
nisms can scale down to a point. In reality, the range of motion of the planar
pantographs is limited because of collisions among the rigid bodies that make
up the pantographs. In this section, we highlight the factors limiting the range
of motion of the dilational mechanisms constructed from pantographs and dis-
cuss how to minimize their effects.

We have described the pantographmechanism used tomake the triangular
faces of the polygons dilational. Themotion of themechanism canbedescribed
by a single parameter 𝜃 and the sides of the spanned triangle are scaled by
a factor 𝜆 = cos(𝜃) when the mechanism is actuated [30]. The area of the
spanned triangle is then scaled by a factor of 𝜆2 = cos2(𝜃), see Fig. 8.5.

Starting at the neutral position, where 𝜃 = 0, the mechanism can move in
two directions: 𝜃 can increase or decrease, corresponding to a counter-clock-
wise or clockwise rotation of the lower left rigid triangle. In both cases, the
effect on the scaling of the spanned triangle will be the same, since cos(𝜃) is
symmetric around 𝜃 = 0.

In the case where 𝜃 increases, the mechanism will protrude out of the
spanned triangle at two edges, while it will open up free space at the third edge.
Conversely, when 𝜃 decreases, the mechanism protrudes out of the spanned
triangle at one edge, and opens up space at the other two edges.

When the rigid bodies of the pantographmechanism are allowed to overlap
and cross each other, the minimum area of the spanned triangle is obtained
at 𝜃 = ±𝜋2 for the two different cases, both resulting in a scaling factor 𝜆 = 0.
When collisions are considered, these values of 𝜃 can no longer be reached and
often, the scaling factor 𝜆 differs between the two motion directions.

If the pantographs are designed to be planar and therefore move within a
single plane, the range of motion is limited by internal collisions of the links.
All pantograph mechanisms in the dilational surface are linked to have a sin-
gle degree of freedom. Therefore, when one pantograph is actuated such that,
for that mechanism, we obtain a rotation 𝜃 in its triangular faces, all other pan-
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Figuur 8.5: The limits of scaling of a skew pantograph. The area of the spanned triangle (shown
as a red-striped area) scales with cos2(𝜃). The red dots illustrate the values of 𝜃 in each of the
drawings. The end of motion is reached when the bars of the linkage become collinear (left and
right drawings). Between these states, the rotation angle of 𝜃 is always 𝜋

2 . The distribution of this
range over the left and right motion directions depends on the top angle 𝛼.

tograph mechanisms in the dilational surface will have a rotation of ±𝜃. This
causes the complete mechanism to reach the end of its motion as soon as self-
collision occurs in any pantograph of the structure. Therefore, this is the main
limiting factor on the maximum scaling factor of the assembled dilational me-
chanism.

Looking at Fig. 8.5, we can see that the pantograph mechanism reaches the
end of its range of motion when 𝜃 = −𝛼2 for one direction of motion, or when
𝜃 = 𝜋−𝛼

2 for the other direction, where 𝛼 is the top angle of the spanned tri-
angle. At these points, the binary links of the pantograph mechanism become
collinear. In this calculation, we have considered the links as lines of zero width.
In reality, the links and joints from which the pantograph mechanisms are con-
structed will have finite width. This will cause collisions to happen earlier and
limits the range of motion further.

The total range of 𝜃 is 𝜋
2 radians, because the internal angles between the

links at two adjacent corners of a parallelogram four-bar linkage always add up
to 𝜋. For the case where the links have zero width, the optimal scaling factor
would be found when 𝛼 = 0 or when 𝛼 = 𝜋, allowing only for motion in one
direction.

However, in both of these cases, the pantograph degenerates to a line, in
which case no feasiblemechanismwould be possible. For simplicity and ease of
tiling, it is beneficial when both motions directions have the same range from
the neutral position. This is the case for 𝛼 = 𝜋

2 ; i.e. when the pantograph
mechanisms are right-angled. In this case, the maximal scaling factor is 𝜆 =
cos (𝜋4 ) =

√2
2 ≈ 0.71. So, when self-collisions are considered, the distances

between points on the dilational surface can be scaled down by at most 29%
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(a) (b)

(c) (d)

Figuur 8.6: Steps in obtaining a correct tiling pattern of pantographs: (a) dual graph of the net,
where the vertices are the faces of the triangulated surface, (b) directed dual graph with correct
orientation, (c) correct tiling pattern, (d) correct tiling pattern with 𝜃 = 20∘

relative to the neutral position.

8.2.6. Placement of the pantographs
When the pantograph mechanism moves, some parts of the mechanism pro-
trude out of the spanned triangle, while other parts move into the spanned
triangle. When all the faces of a triangulated surface are replaced by panto-
graphmechanisms, two neighboring pantographs could have partsmoving out
of the respective spanned triangles at their shared edge. This will cause neigh-
boring pantographs to collide, locking the motion of the structure and thereby
no longer allowing the scaling of the structure. To remedy this, we have created
an algorithm that places the pantographs on a triangulated surface such that
neighboring pantographs move along with each other, i.e. when one side of
a pantograph has parts that move out of the spanned triangle, the correspon-
ding side of the neighboring pantographs will have parts moving inwards. The
algorithm consists of the following procedure.

We first construct the dual graph to the triangulated surface. In this graph,
there is one node for each triangular face and two nodes are connected if the
two corresponding faces share an edge. Such a graph is shown in Fig. 8.6a
for the octahedron. Note that, as was mentioned in Section 8.2.2, at most two
faces share an edge since the original surface is a 2-manifold. The dual graph
to an octahedron is shown in Fig 8.6a. For closed surfaces, this creates a simple,
connected, 3-regular graph. We assign a direction to each of the edges in the
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(a) (b) (c)

Figuur 8.7: Eight pantograph linkages are placed on the octahedron. (a) shows the wireframe of
an octahedron. (b) shows the dilational structure in the neutral position, (𝜃 = 0) and (c) shows a
compacted position (𝜃 = 25∘).

graph to represent the motions of the pantograph mechanisms placed on the
triangulated surface. A directed dual graph for an octahedron is shown in Fig.
8.6b. Since each edge in the dual graph can only have a single direction, the
sides of the triangles are enforced to move along with each other.

The movement of the pantograph mechanisms is such that either the links
on two sides move out of the spanned triangle and the links on the other into it
or vice-versa, as shown in Fig. 8.3. Therefore, we require for each vertex of the
graph that its indegree and outdegree are larger than zero. In Supplementary
Note 1, we show that for each simple connected graph where every node has a
degree of at least 2, it is always possible to find an orientation of the graph such
that both the indegree and outdegree of every node are larger than zero. The
dual graph to every feasible triangulated surface always has nodes of degree at
least 3; nodes with degree larger than three correspond to holes in the surface.
Therefore, there must exist an orientation of the pantographs on each surface
such that movement without collisions between the pantograph mechanisms
is possible.

To find a suitable orientation, we use an algorithm that searches for flows
through the representing graphs. A flow through a vertex ensures that the dif-
ference between the indegree and outdegree is one. This algorithm is further
discussed in Supplementary Note 2. Once this orientation is found, the panto-
graphs can be placed accordingly, see Figs. 8.6c,c for an example.

8.2.7. Examples
In this section, we will show the application of ourmethod to three surfaces: an
octahedron as a simple example [30], a cardioidwith both positive and negative
Gaussian curvature, and the Stanford Bunny as an advanced example. For all
three examples, the reported maximum scaling is based on the pantographs
in the resulting structure with the largest and smallest top angle, as described
in subsection 8.2.5.



8

96 8. A General Method for the Creation of Dilational Surfaces

(a) (b)

Figuur 8.8: The cardioid surface is constructed by revolving the planar cardioid curve. (a) shows
the curve, (b) shows the complete revolved cardioid.

We start with the octahedron. This polygonal surface can be viewed as a
very rough triangulation of a sphere, comprised of only 8 triangular faces. The
eight faces of the octahedron are replaced by pantograph mechanisms, see
Fig. 8.7 and Supplementary Movie 1. In this way, a dilational surface with only
equilateral faces is obtained (𝛼 = 60∘);this gives them a range of [−30∘, 60∘]. Any
placement of the pantograph linkages will include pantographs with opposite
motion directions, the maximum scaling can therefore be calculated to be 𝜆 =
cos(30∘) = 0.866.

As a second example. we look at the cardioid. The cardioid is a planar curve
obtained by tracing a point on a circle, which is rolled around a second circle
with equal radius. This curve can be parameterized as follows:

𝑥(𝑡) = 𝑎(2 cos(𝑡) − cos(2𝑡)) (8.1)
𝑦(𝑡) = 𝑎(2 sin(𝑡) − sin(2𝑡)). (8.2)

By revolving this curve around the x-axis, we obtain a spatial surface, as is
shown in Fig. 8.8.

We have triangulated this shape by taking a planar map of the surface and
performing a Delaunay triangulation [31, 32] on this map. The points of the
triangulation have been chosen to minimize the number of sharp angles in the
triangulation. This triangulation is shown in Fig. 8.9a.

On this triangulated surface, we apply our method. First, the dual graph of
this surface is determined and we apply the placement algorithm on that graph
to determine a suitable placement of the pantograph mechanisms. When the
mechanisms are placed on the surface according to this placement, we obtain
the shape shown in Fig. 8.9b and Supplementary Movie 2.

For the cardioid we have constructed here, the rotation angle 𝜃 can lie in
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(a) (b)

Figuur 8.9: The surface of the cardioid is first triangulated (a), after which each triangular face is
replaced by a skew pantograph (b) to obtain a dilational surface. A movie of the final mechanism
is included in the supplementary material.

the range [−20.5∘, 20.3∘], resulting in a maximum scaling factor of 𝜆 = 0.937. A
movie of the resulting dilational surface moving between its extremal points is
included in the supplementary materials.

As a final example, we have taken the Stanford Bunny [33], shown in
Fig. 8.10a. For the bunny, we took an available triangulation [34], and edited
the triangulation manually to remove the triangles with the sharpest angles in
order to increase the maximum scaling factor. The resulting model is shown
in Fig. 8.10b. This mesh was then fed into our algorithm, which computed a
suitable placement of the pantograph mechanisms. The resulting dilational
mechanism is shown in Fig. 8.10c and Supplementary Movie 3.

For this mechanism, the rotation angle 𝜃 can lie in the range [−15.0∘, 13.1∘],
resulting in a maximum scaling factor 𝜆 = 0.966. This scaling factor is not limi-
ted by the shape of the Stanford Bunny, but rather by the specific triangulation
used to approximate it and the placement of the pantographs on the triangu-
lation. The maximum scaling factor could be increased further by triangula-
ting the Stanford bunny such that the triangles are close to equilateral, thereby
removing even more sharp angles from the polyhedron. Even so, the linear
scaling of 3.4% obtained here is already similar to the diametric expansion of
human arteries during the cardiac cycle [35]

8.3. Discussion
In this work we introduce a comprehensive strategy to achieve dilation of any
surface. We do this by triangulating the surface and replacing the triangular
faces with Sylvester’s pantographs. The similarity points of this pantograph
always span a similar triangle. We constrain these triangles in such a way that
their orientation is preserved, this preserves the shapeof the triangulated surface
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(a) (b) (c)

Figuur 8.10: (a) shows the original Stanford bunny [33]. (b) shows our adaptation of the triangulated
version by Thingiverse user johnny6 [34], which was used to create the dilational surface shown in
(c) by replacing each triangular face with skew pantograph mechanisms. The resulting surface has
a scaling factor of 𝜆 = 0.966. A movie of the final mechanism is included in the supplementary
material.

while allowing it to scale.
Kinematically, a structure constructed using this strategy can be scaled to a

single point from its original size. In practice, however, the range of motion of
the pantographs is limited by both collisions between links within a pantograph,
and collisions between neighboring pantograph mechanisms.

Collisions within the pantograph linkage cause the pantograph with the
smallest range of motion to limit the motion of the whole structure, since all
pantographs share a single degree of freedom. This could be improved by
changing the triangulation strategy and optimizing the placement of the pan-
tographs such that the top-angle of the triangles comes out more favorable
(possibly favoring one motion direction over the other). Better pantograph pla-
cementsmight be found, since our pantograph placement algorithm yields non-
unique solutions to the pantograph placement problem.

We avoid collisons between neighboring pantograph mechanisms by tiling
them in a specific manner. We used a graph-based approach to generate suit-
able placemements of mechanisms and showed that this approach works for
any triangulated surface.

We have illustrated our method with three examples: an octahedron, a car-
dioid and the Stanford bunny. These surfaces increase in complexity and have
varying Gaussian curvature. For the octahedron, the maximal scaling and suit-
able tiling can be determined by hand. For the cardioid and the Stanford bunny,
there are many more triangular faces and the faces are more irregular, for
which we present computational methods to generate dilational structures for
these surfaces.

The planar kinematics of the pantographs ensure that the resulting dilatio-
nal mechanism stays close to the described surface throughout the range of
motion. This leaves the encompassed interior entirely empty.

A interesting side-effect is that our implementation of themethod is directly
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compatible with the often used STL file format for 3D objects. As such, our stra-
tegy could be implemented as a one-click solution to create dilational models.
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9
Discussion

In this dissertation, we have explored how elastic mechanical metamaterials
can be represented by rigid body mechanisms and how, when treating the re-
verse problem, rigid body mechanisms can be a design tool for elastic mecha-
nical metamaterials. In this chapter, we will place these results into a broader
context. What have we learned from this work and how could it be applied in
the future? Also, and equally importantly, when do the methods described in
this dissertation not work and what are their limitations?

This dissertation started with a set of definitions and explanations of the
terms regularly used in metamaterial and mechanism research. In that chap-
ter, we introduced a definition of a metamaterial that is close to how we use
regular materials. The metamaterial is not the finished product, rather it is the
building material from which other components can be made. In this light, the
applications mentioned in Chapter 3, for a tubular auxetic structure, are ap-
plications of a metamaterial. It is investigated how a planar ‘Holey Sheet’ type
metamaterial can be used tomake a tubular stentwhile preserving the effective
material properties of the original metamaterial.

Chapter 3 also serves to illustrate the usefulness of a rigid body approach
to mechanical metamaterial analysis and design. It shows how the complex
spatial motion of the elastic metamaterial can be accurately captured by a rigid
body mechanism. We see that, by augmenting the mechanisms with springs to
create a Pseudo-Rigid Body Model, the stiffness of the structure, as well as the
effects of the boundary conditions, can be taken into account. The resulting
model is analytic, and therefore substantially simpler and quicker to evaluate
than commonly used finite element models.

In Chapters 4 and 5, the synthesis problem was addressed. We investiga-
ted how Poisson’s ratio can be designed in a planar periodic mechanism and
how such a mechanism can then be transformed into an elastic metamaterial.
In Chapter 4, we show that Poisson’s ratio is effectively a transmission ratio
between two orthogonal periodicity generators and that literature on linkages

103
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serves as a great starting point for finding mechanisms with the desired trans-
fer function. In that chapter, we show examples for Poisson’s ratios of -1, 12 ,
0 and 1, but any fractional Poisson’s ratio can be achieved using this method,
provided that we can find a linkage that draws the corresponding polynomial
curve. A well-known result by Kempe[1], tells us that for any polynomial func-
tion such linkages exist, although the construction in that paper almost invaria-
bly yields linkages that are too complex for application in metamaterials. Later
adaptations of his method[2, 3] do yield simpler mechanisms but often involve
higher kinematic pairs such as cams and cable transmissions which are not rea-
dily suitable to convert into a compliant structure. The open challenge here lies
therefore in the design of linkages that follow or approximate the desired curve
while being simple enough to allow for the construction of a compliant version.

Chapter 5 shows that, even when we have found a suitably simple linkage,
there can be multiple ways to design a periodic adaptation from it. We see that
the choices made here affect the performance of the resulting mechanical me-
tamaterial. Depending on the requirements of the part which is to be made
from the metamaterial, a single-layer design with less accurate long-range per-
formance could be preferable over a more complex design with multiple layers
that more accurately captures the designed Poisson’s ratio for large deformati-
ons.

In Chapter 6, we have investigated how to construct mechanical metamate-
rials at the microscale and we have introduced the concept of an auxetic inter-
val. Auxeticity, which is taken here as a non-expansion of the material in any
direction when it is compressed, is a widely studied property of mechanical me-
tamaterials. Previous work by C. Borcea and I. Streinu[4–6] has yielded a design
methodology that generates frameworks that are guaranteed to be auxetic, al-
beit mostly for deformations from the fabrication position. By constructing one
of these frameworks in a monolithic form, we have experimentally demonstra-
ted the existence of the auxetic interval in these frameworks. Additionally, the
results in this chapter serve to illustrate the importance of considering defor-
mations of thematerial along all orthogonal directions. When the studied struc-
ture would only be viewed along a single direction (along the axis of four-fold
rotational symmetry), one could be made to believe that it is auxetic up to very
large deformations. The other directions, however, show a much more limited
auxetic interval, after which the structure expands in certain directions under
increasing compression. This ties into the definition of auxeticity given at the
start of this work and shows that a single Poisson’s ratio is insufficient for de-
termining auxeticity in spatial structures.

Finally, in Chapters 7 and 8, we have investigated metamaterial design for
non-flat surfaces. Periodicity, such as it has been introduced in the Chapter 2,
inherently only applies to surfaces that can be divided into equal parts by sets
of straight lines or planes. When looking at surfaces, this limits us to the plane.
Therefore, we have explored alternative ways to define a unit cell. We keep
the concept of a tiling, where only a small part of the structure needs to be
designed and can then be copied all over the desired surface, but we change
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the way in which these cells are copied. In Chapter 7, this is done according
to spherical symmetry groups, resulting in unit cells that are exactly equal but
are copied over a sphere using mirroring and rotation operators. In Chapter 8,
we consider more general curved surfaces and allow the unit cell to change its
shape while keeping its mechanical properties.

These two chapters have shown that, by using a generalized definition of
the unit cell, curved surfaces can be created with custom properties. The work
in this dissertation has only considered scaling of the resulting surface, but the
same technique can also be used to add different mechanical properties to
these surfaces, such as multiple stable states or completely different transfor-
mations.

Looking at this dissertation as a whole, we see that, for bending-dominated
mechanical metamaterials, a Pseudo-Rigid Body approach is a viable techni-
que both for the analysis and design of these novel structures. We also see,
however, that the conversion of a kinematic design to a compliant mechanical
metamaterial is not always straightforward and that care must be taken to en-
sure that the designed properties are expressed in the final structures. This
was clearly observed in the experiments in Chapter 5.

In this dissertation, only bending-dominated mechanical metamaterials
have been considered. This was a conscious choice since the kinematic tech-
niques we present are most suitable for this class of metamaterial. Stretching-
dominated structures could also be studied using a Pseudo-Rigid Body ap-
proach. In this case, we would allow stretching of the members and model
them as prismatic joints with an appropriate stiffness. However, because these
structures are usually designed to be as stiff as possiblewhileminimizingweight
[7–9], no substantial kinematic behavior is expected. For these structures, PRB
methods could be used to estimate and/or design the resulting stiffness of the
metamaterial.

We have seen that PRB models are useful in the approximation of the effec-
tive material properties of mechanical metamaterials, but that they are rarely
exact. This is inherent to the simplification of the problem when converting
an elastic structure to a linkage. Therefore, when designing mechanical meta-
materials to exact specifications further refinement and optimization steps are
necessary. Most structural optimization steps are very sensitive to their initial
conditions, and a good initial guess can greatly improve both the convergence
and the optimality of the final result. This is where an initial PRB design could be
valuable, allowing for a quick and intuitive method for establishing a structure
that performs close to specification.

The promise of metamaterials is that we can design materials to specifica-
tion. By cleverly designing the material architecture, it is possible to create ma-
terial with completely new and not naturally occurring sets of material proper-
ties. This design process is, as of yet, complicated because of the multitude of
factors involved. We envision PRBmethods as a first step in the design of tailor-
made mechanical metamaterials. Given a set of material properties, a linkage,
augmented with springs at its joints, can be created to match this behavior.
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From this linkage, an initial compliant design can be constructed by replacing
the joints with slender elements. When these rational design steps are execu-
ted carefully, they will yield a mechanical metamaterial with properties close to
the desired values. When greater accuracy is required, further refinements can
be applied, either by redesigning the kinematic structure or by optimizing the
shape of the resulting compliant structure.

Mechanical metamaterials also allow for a greater degree of function inte-
gration in machines. Instead of adding sensors and actuators onto a manu-
factured object, these could be integrated into the material from which the
objects are made. This would allow for a distribution of functionality and in-
creased adaptability of the created objects. Clamps and brackets in machine
parts could be created to sense and dampen vibrations autonomously or fa-
cades of buildings could be made of materials that open or close to regulate
the inside climate. Each level of functionality that is added to these mechanical
metamaterials also comes with increased complexity. This further increases
the need for accurate and intuitive design tools such that ideas and concepts
can be quickly evaluated and iterated. The methods shown in this dissertation,
and possible extensions thereof, will be exceptionally suited for this stage of
the design process, allowing for fast development of the conceptual design.
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Conclusion

In this dissertation, we have demonstrated how kinematic methods can be
used to design mechanical metamaterials. By approaching metamaterial de-
sign from a mechanism perspective, Poisson’s ratio becomes a transmission,
and Young’s modulus becomes a function of the joint stiffnesses. This transla-
tion between the field of materials science and mechanism science allows us
to take inspiration from the vast body of literature on linkages and kinematics.

Furthermore, the toolbox of kinematic design allows us to rationalize and
simplify the design process, allowing us to tackle the problem piece by piece.
First, Poisson’s ratio can be designed as a transmission between two orthogo-
nal directions, after which Young’s modulus can be designed by adding springs
to the mechanism, and finally these stiffnesses can be used to dimension the
final compliant structure. This piecewise method transforms a complicated
problem, where the whole continuum mechanics of the structure needs to be
evaluated into a more familiar design problem. In this way, a designer can ra-
tionally design new mechanical metamaterials, instead of having to rely on a
computer to generate and optimize the solutions from the start.

The contributions of this thesis lie in furthering the understanding of the
principles behind bending-dominated mechanical metamaterials and applying
Pseudo-Rigid Body Models to this class of materials. It introduces the concept
of Poisson’s ratio as a transmission and illustrates how this can guide the de-
sign process. Furthermore, it expands the realm of metamaterials to curved
surfaces. It is shown how periodic tilings of mechanical systems can be exten-
ded to non-flat surfaces and how this can be used to create shell-based auxetic
mechanisms. Throughout thework, theoretical findings are supported by expe-
rimental results. This indicates that the contributions of this thesis do not only
serve to further the academic study of metamaterials but that they can also be
applied in practice.
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