
 
 

Delft University of Technology

Battling the CPU Bottleneck in Apache Parquet to Arrow Conversion Using FPGA

Peltenburg, Johan; Van Leeuwen, Lars T.J.; Hoozemans, Joost; Fang, Jian; Al-Ars, Zaid; Hofstee, H.Peter

DOI
10.1109/ICFPT51103.2020.00048
Publication date
2021
Document Version
Accepted author manuscript
Published in
2020 International Conference on Field-Programmable Technology (ICFPT)

Citation (APA)
Peltenburg, J., Van Leeuwen, L. T. J., Hoozemans, J., Fang, J., Al-Ars, Z., & Hofstee, H. P. (2021). Battling
the CPU Bottleneck in Apache Parquet to Arrow Conversion Using FPGA. In 2020 International Conference
on Field-Programmable Technology (ICFPT) (pp. 281-286). Article 9415570 IEEE.
https://doi.org/10.1109/ICFPT51103.2020.00048
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICFPT51103.2020.00048
https://doi.org/10.1109/ICFPT51103.2020.00048


Battling the CPU Bottleneck in Apache Parquet to
Arrow Conversion Using FPGA

Johan Peltenburg∗, Lars T.J. van Leeuwen∗, Joost Hoozemans∗, Jian Fang∗†, Zaid Al-Ars∗, H. Peter Hofstee∗‡
∗Accelerated Big Data Systems, Delft University of Technology, Netherlands, Contact: j.w.peltenburg@tudelft.nl

†National Innovation Institute of Defense Technology, China
‡IBM, USA, Contact: hofstee@us.ibm.com

Abstract—In the domain of big data analytics, the bottle-
neck of converting storage-focused file formats to in-memory
data structures has shifted from the bandwidth of storage
to the performance of decoding and decompression software.
Two widely used formats for big data storage and in-memory
data are Apache Parquet and Apache Arrow, respectively. In
order to improve the speed at which data can be loaded from
disk to memory, we propose an FPGA accelerator design that
converts Parquet files to Arrow in-memory data structures. We
describe an extensible, publicly available, free and open-source
implementation of the proposed converter that supports various
Parquet file configurations. The performance of the converter is
measured on an AWS EC2 F1 system and on a POWER9 system
using the recently released OpenCAPI interface. A single instance
of the converter can reach between 6 and 12 GB/s of end-to-end
throughput, and shows up to a threefold improvement over the
fastest single-thread CPU implementation. It has a low resource
utilization (less than 5% for all types of FPGA resources). This
allows scaling out the design to match the bandwidth of the
coming generation of accelerator interfaces. The proposed design
and implementation can be extended to support more of the many
possible Parquet file configurations.

Index Terms—FPGA, Accelerator, Apache Parquet, Apache
Arrow

I. INTRODUCTION

In the context of big data analytics, the bandwidth associated
with reading data from persistent storage is increasing rapidly
due to the availability of non-volatile memory solid-state
drives (e.g. NVMe SSDs). In the past, database system were
often designed with the assumption that CPUs are fast and
I/O is slow. However, this relationship is turning around over
recent years. CPUs are no longer able to parse, decompress,
and deserialize files at data rates close to I/O bandwidth,
sometimes lacking over an order of magnitude in performance.

To improve the performance of analytics systems, we pro-
pose performing part of the decompression and deserialization
of files to in-memory data structures with an FPGA accelerator
(as shown in a contextual overview of this work in Figure 1).
FPGA accelerators provide the following benefits within this
context.

First, it is possible to place the FPGA on the data path from
storage to memory. Commercial FPGA accelerator cards with
interfaces to SSDs are readily available today from various
vendors. Second, FPGA systems can implement specialized
data-flow designs with deeply pipelined datapaths. This allows
FPGAs to provide high performance and energy-efficiency [1].

(a) Because I/O bandwidth has drastically increased, ingesting Par-
quet files causes the CPU to be the new bottleneck in big data
processing pipelines.

(b) To alleviate the bottleneck, a heterogeneous system with an FPGA
accelerator is proposed, where the FPGA accelerator performs an
ingress transform of the stored file.

Fig. 1: FPGA acceleration of the Parquet-To-Arrow converter

In this paper, we contribute an open source design of
an FPGA accelerator that takes files with large tabular data
structures encoded in the Apache Parquet file format as
input. It provides a streaming interface to optionally insert
a decompression engine such as a Snappy or GZip IP core [2]
[3]. The accelerator converts these files into tables according
to the Apache Arrow format in memory.

II. BACKGROUND

A. Related Work

Previous research has acknowledged CPU processes to
become the new bottleneck in big data processing pipelines,
because I/O bandwidth is increasing [4][5][6][7][8]. An analy-
sis of this problem specific to Parquet and ORC, and a proposal
of an improved format is presented in [9]. The format results
in a lower compression rate, but the implementation is not
freely available or widely used at the time of writing. In more
recent work [10], the bottleneck is acknowledged, and FPGA-
based solutions are provided at the level of the file system
itself. The limitation also holds for network I/O, relevant to
this paper in case distributed file chunks are shuffled, which is
discussed in [11]. Previous work on reducing data duplication
explored a specific combination of FPGA accelerators and
Apache Parquet files [12].



B. Apache Parquet

Parquet [13] is a storage format intended to store large
tabular data structures in a column-oriented format, often used
in distributed environments. Each Parquet file has a complex
hierarchical structure described by metadata in the footer of
the Parquet file. This metadata describes the data types of the
columns, and what compression and encoding schemes are
used. The data itself is divided over row groups, containing
one chunk of each column in the table, useful for distributed
storage systems. The size of these row groups can be set
when writing the Parquet file to allow for longer sequential
reads in the same column chunk. The columnar format can
be advantageous, e.g. only the relevant columns required by
some computational transformation need be accessed without
having to decode irrelevant columns. Column chunks are in
turn divided into pages. Each page is compressed according
to a specific compression codec, and its values are encoded
using a specific encoding scheme. The locations of the pages
and column chunks are found in the file footer. Every page can
be independently decompressed and decoded, such that every
page can be randomly accessed and processed in parallel.

C. Apache Arrow

Typical to the big data framework ecosystem, Parquet is
used in the context of a wide variety of software languages
and run-times. When implementing a fast converter from
Parquet files to in-memory data structures, it must be decided
what (software) language and run-time engine will be at the
consuming end of the data. The choice for a specific language,
e.g. C++, rules out immediate use in another language, e.g.
Python, unless one would perform the tedious work of imple-
menting wrappers and/or serializers/deserializers. Fortunately,
the Apache Arrow project provides a common data layer,
where the common in-memory representation of large tabular
data structures is the same for any of the 11 supported
languages [14]. The project furthermore provides language-
specific APIs to access the data [14]. Applications in any
programming language supported by Arrow may immediately
benefit from an accelerated implementation of the conversion.

Furthermore, an FPGA accelerator framework built on top
of Arrow exists, called Fletcher [15][16], and is used in
this work. Fletcher generates DMA engines with streaming
dataflow interfaces to and from Arrow RecordBatches in
memory. In Arrow, RecordBatches are column-oriented tabular
data structures, typically containing a large amount of data
records. The interfaces are generated based on Arrow schemas
— descriptions of the data types of the values in the columns
of the RecordBatches.

III. DESIGN AND IMPLEMENTATION

A. Input Data Structure

Because the typical size of row groups is in the order of
hundreds of MBs to multiple GBs, the overhead of parsing
row group or even column metadata on a CPU and performing
host-to-accelerator communication is relatively small. Pages,
however, are in the order of megabytes (the default is one MiB,

Fig. 2: Architectural overview of the proposed accelerator.
Control flow is omitted for clarity.

although they can be chosen to be much larger). Therefore,
we chose to implement page processing fully in hardware.
This includes metadata parsing as well as decompressing and
decoding the actual data.

A Parquet page itself consists of four variable-length sec-
tions. First, a header with page metadata, serialized according
to Apache Thrift’s Compact Protocol. Second and third, blocks
containing the so called repetition and definition levels, used
for nested data types (e.g. lists of lists) and/or nullable types.
The last block contains the actual values. Because values of
columns are stored contiguously and have the same data type,
encoding techniques such as (among others) delta encoding
with binary packing are used. They can also be compressed
with codecs such as Snappy [17] and gzip.

B. Architecture

We propose the top-level architecture of the Parquet-to-
Arrow converter as shown in Figure 2. The converter should
perform its function in a streaming fashion, at a throughput
close to the I/O bandwidth on either side of the accelerator.
That is, either the SSD interface or accelerator to host memory
interface. For contemporary and near-future systems, this is in
the order of tens of GB/s.

The design consists of the following components. The
Ingester, Aligner and Metadata Intepreter are always the same
and required to convert any Parquet file. The implementation
of the Values Decoder, Repetition Level Decoder and the
Definition Level Decoder depend on the compression and
encoding scheme used by the file.

Ingester: The Ingester initiates the loading of pages from
memory or storage in large bursts. It produces two streams
with raw bytes, and initial alignment information within the
raw byte stream.These streams are fed into the Aligner com-
ponent.

Aligner: The Aligner implements a pipelined barrel shifter
to align the raw bytes for the next stages. Because one of
the three variable-length blocks within a page may be aligned
differently, but could start within a streamed word of the
previous block, the Aligner holds the unaligned words in a
history buffer to be able to immediately restart the pipeline
for the next page, without having to request the data again
from memory or storage. The downstream components report
back the amount of used bytes to provide the necessary control
information for this functionality.



Metadata Interpreter: Parsing the metadata involves a
complex state machine, because it must implement the used
features of the Apache Thrift serialization protocol. This pro-
tocol uses dynamic features, such as variable-length integers,
causing the metadata interpreter to absorb one byte per cycle.
Because the page metadata is only a fraction of the total page
data, the overhead of this relatively low-throughput process is
negligible. After interpreting the header, the compressed and
uncompressed size of the page and the number of values are
known and streamed to the appropriate parts of the design.

Fletcher ArrayWriter: The Fletcher ArrayWriter is a
component generated by the Fletcher framework, serving as
a DMA engine that can write from hardware streams to in-
memory arrays of complex data structures (e.g. nested lists)
formatted by the Apache Arrow format specification. It must
be noted that in this context, Arrow arrays are not C-like
arrays, but can consist of multiple buffers holding data with
specific relations expressed through the Arrow type. We feed
the various streams emerging from the decoding of the values,
and the repetition and definition levels, into the ArrayWriter.
In turn, it will write the data into memory in the Arrow format.

Values Decoder: The internals of the Values Decoder de-
pend on the data types used in the column, since that influences
what encoding schemes can be used. Furthermore, the values
can be compressed, and therefore must be decompressed for
reading.

Decompressor: When compression is used, the Values
Converter should contain a decompressor component.with a
streaming interface, such as e.g. can be found in an open-
source implementation of Snappy [18] (performing up to ≈ 8
GB/s) or GZip [19]. For files that are uncompressed, the
decompressor may simply pass through the data stream.

Decoders: The presented prototype supports the following
datatypes:
(A) Plain encoding of fixed-size primitives.
(B) Bit-packed delta encoding of fixed-size primitives.
(C) Mixed encoding of UTF8 strings.

In case A, the raw byte representation of the mentioned data
types is used.

In case B, an initial value is given and then for each value
only the difference (delta) with respect to the previous value
is stored in bit-packed encoding. When the deviation between
values is low, the deltas can be encoded with a small number
of bits.

In case C, Parquet supports a string format that stores
sequences of strings as (bit-packed, delta encoded) lengths and
(plain) characters separately within a page.

Delta Decoder: To decode bit-packed delta-encoded values
to raw values (used in aforementioned cases B and C), we
implement the Delta Decoder component, also shown in
Figure 3, to be used within the Values Decoder.

It consists of a Delta Header Reader, responsible to read
metadata related to the delta encoded values, such as the
initial value. After parsing, the Delta Header Reader aligns
the input stream to the start of a block of values. Each block
contains more metadata that is parsed by the Block Header

Fig. 3: Delta decoder

Reader.After parsing the Header of such a block, the stream
is again aligned to the first delta encoded value. Through
a component called Bit Unpacker, delta values are finally
fed into the Delta Accumulator. This unit performs the final
parallel prefix sum on the initial value, minimum delta and
unpacked deltas to obtain the actual values.

IV. RESULTS

A. Experiment setup

104 105 106 107 108 109

Output size (B)

0.0

2.5

5.0

7.5

10.0

T
hr

ou
gh

pu
t

(G
B

/s
)

(a) int64 (plain)

104 105 106 107 108 109

Output size (B)

(b) int64 (delta)

104 105 106 107 108 109

Output size (B)

(c) strings
S-CPU
L-CPU
S-CPUPRE
L-CPUPRE

S-FPGA
L-FPGA
S-FPGANC
L-FPGANC

Fig. 4: AWS EC2 F1 throughput versus Arrow RecordBatch
output size

103 104 105 106 107

Page size (B)

0.0

2.5

5.0

7.5

T
hr

ou
gh

pu
t

(G
B

/s
)

(a) int64 (plain), 1 GB

103 104 105 106 107

Page size (B)

(b) int64 (delta), 1 GB

103 104 105 106 107

Page size (B)

(c) strings, 1 GB
CPU
CPUPRE

FPGA
FPGANC

Fig. 5: AWS EC2 F1 throughput versus Parquet page size

The Parquet-To-Arrow converter is implemented on two
platforms; the Amazon EC2 F1 platform using an Intel Xeon
E5-2686 v4 CPU and a Xilinx XCVU9P FPGA (hereafter
F1), and an Inspur FP5290G2 with a dual-socket POWER9
Lagrange 22-core CPU and OpenCAPI interface to an ADM-
PCIE-9H7 with a Xilinx XCVU37P (hereafter OpenCAPI).
The FPGA implementation of the F1 system runs at 250 MHz,
while the FPGA implementation of the OpenCAPI system
runs at 200 MHz. The implementation is publicly available,
free, and open-sourced, including all benchmarks performed
to reproduce the result in this section [20].



The FPGA implementation in the F1 system requires the
Parquet file to be copied from host memory to on-board mem-
ory, because it can only access the on-board DDR memories
of the accelerator card. During this transfer, the system may
perform other tasks, if they can be overlapped. We therefore
present two flavors of measurements for the F1 system. In the
first, denoted by FPGA, we measure the end-to-end solution,
where the Parquet file starts in host memory and ends up
decoded as an Arrow RecordBatch in host memory again (i.e.
a full round-trip). In the second, we measure no copy time,
denoted by FPGANC . Here, we measure only the FPGA
processing time with the Parquet file already in the on-board
DDR memory and the Arrow RecordBatch ending up in the
on-board DDR memory as well.

The OpenCAPI system allows to access host memory di-
rectly. This transparency closely mimics the operation of a
storage-attached FPGA (which would be an ideal candidate
for this design).

To obtain the absolute best result on CPU, it was necessary
to re-implement the Parquet subset supported by the FPGA im-
plementation in C++ and compile it using GCC with -Ofast.
Our C++ implementation outperformed the existing software
implementations for this subset, providing us with the fastest
CPU implementation.

We create a second C++ implementation where the virtual
memory pages1 of the Arrow buffers are touched, to make sure
the TLB is ‘warm’, consequently removing the overhead of a
‘cold’ TLB from the measurements. These measurements are
denoted as CPUPRE . For both the CPU implementation and
for the FPGA implementation, we measure the performance
of one thread and one kernel, respectively.

We measure three combinations of data type and encoding,
from the cases described in the previous section: int64 (plain),
int64 (delta), and strings. Data for int64 (plain) was randomly
generated. Data for int64 (delta) was randomly generated,
but with a random modulo that changes every 256 elements.
This modulo creates a mix of data requiring different packing
lengths, instead of almost always requiring the full width as
is expected for fully random data. The strings were randomly
generated with random lengths between 1 and 12 characters.
Note that the length of the strings determines the mix between
delta-packed and plain data, and very long strings will result
in behavior more similar to that of int (plain).

B. Performance

1) Throughput vs. RecordBatch size: We first measure the
throughput versus the size of the resulting Arrow RecordBatch,
shown in Figure 4. The figures display two Parquet page
sizes; small pages, prefixed with “S-”, where the pages are
approximately 1 kB in size, and large pages, prefixed with
“L-”, where the pages sizes are approximately 10 MB in size.

Since plain encoded 64-bit integers require no further de-
coding, they correspond to performing a plain copy. Figure 4a
therefore gives a good indication of the overhead associated

1Not to be confused with Parquet pages.

104 105 106 107 108 109

Output size (B)

0

5

10

15

20

T
hr

ou
gh

pu
t

(G
B

/s
)

(a) int64 (plain)

104 105 106 107 108 109

Output size (B)

(b) int64 (delta)

104 105 106 107 108 109

Output size (B)

(c) strings
S-CPU
L-CPU
S-CPUPRE

L-CPUPRE
S-FPGA
L-FPGA

Fig. 6: POWER9/OpenCAPI/9H7 throughput versus Arrow
RecordBatch output size

103 104 105 106 107

Page size (B)

0

5

10

15

T
hr

ou
gh

pu
t

(G
B

/s
)

(a) int64 (plain), 1 GB

103 104 105 106 107

Page size (B)

(b) int64 (delta), 1 GB

103 104 105 106 107

Page size (B)

(c) strings, 1 GB
CPU
CPUPRE

FPGA

Fig. 7: POWER9/OpenCAPI/9H7 throughput versus Parquet
page size

with processing the Parquet files on FPGA. When the output
size is very small (i.e. small Arrow RecordBatches), the
overhead of initializing the FPGA to start operating becomes
evident. As the output size grows, we see that the FPGA
accelerated solution increases in bandwidth, since it has to
spend relatively less time on initialization. The CPU solutions
initially increase in throughput, but later decrease around the
tens of megabytes range, most likely due to running out of
cache space.

In the delta-encoded and bit-packed integer case, shown
in Figure 4b, the integers also need to be unpacked, better
revealing the value of the proposed system. Now that calcula-
tions have to be performed, we quickly find the FPGANC to
outperform the CPU implementation. However, the end-to-end
measurement (FPGA) reveals that the overhead associated
with making copies from and to the on-board DDR memory
still prevents the FPGA accelerated solution from achieving
better performance. Finally, in the strings case, shown in
Figure 4c, the same conclusions as for the int64 (delta) case
can be drawn.

On the OpenCAPI system, the FPGA implementation is
able to outperform the CPU implementation for all data types
and encodings, as long as the page and total output sizes are
sufficiently large. For the plain encoded integers, the benefit is
rather small, but for configurations where actual work has to
be performed to decode the data, the FPGA implementation
shows its value, resulting in a speedup of around 3×. For the
delta encoded integers and the strings, the throughput of the
FPGA implementation levels off at around 6 GB/s. This is due
to the parallel prefix sum component, for which it is difficult
to achieve timing closure at wide configurations.

2) Throughput vs. Parquet page size: We measure the
throughput for a 1 GB RecordBatch at various Parquet page



Data
type

Enco-
ding

Input stream
width (bits)

LUTs
(%)

Regis-
ters (%)

BRAM
(%)

Int64 Plain 512 1.18 1.27 2.13
Int32 Delta 64 1.46 1.50 2.85
Int32 Delta 128 1.55 1.61 2.99
Int64 Delta 64 1.68 1.64 2.66
Int64 Delta 128 1.76 1.76 2.99
Int64 Delta 256 1.90 1.99 3.24
UTF8 Mixed 128 2.79 2.92 4.47

TABLE I: Resource utilization. Device: Xilinx XCVU9P.

sizes, shown in Figure 5.
For all data types, we observe that interface bandwidth can

already be saturated around the default Parquet page size of
1 MiB. When the page sizes are set to be much smaller,
we observe that the overhead of decoding headers becomes
a bottleneck. However, even for non-realistic page sizes of
around one kB, the FPGANC measurement throughput is
better for delta and string data.

C. Resource utilization
In Table I, we find the resource utilization statistics of a

single Parquet-to-Arrow converter for the Xilinx XCVU9P.
For clarity, this excludes the F1 platform-specific resources.
The area utilization is modest, with most resources staying
under 5%. This allows for multiple converter cores to be
implemented in contemporary FPGAs, that could work on
converting the Parquet file in parallel, leveraging its parallel-
friendly format. Timing closure for all designs was reached
for a 250 MHz clock rate.

D. Discussion
From the results presented, we find the Parquet-to-Arrow

converter accelerator to be an interesting alternative to a CPU-
only solution. We stipulate the following general observations.

First, our measurements indicate that CPUs will become the
bottleneck when loading data from the Parquet file format,
rather than I/O bandwidth, for modern storage systems with
increased I/O bandwidth. This is most pronounced by first
looking at the difference between the CPU measurements
of plain encoded integers in Figures 4a and 6a. Since the
operation to decode the Parquet file only requires parsing
page headers and otherwise only performing memcpy, the
CPUs are bottlenecked by memory I/O bandwidth, achieving
close to 7 GB/s and 12 GB/s when the output size is larger
than the caches. However, continuing to look at Figures 4b,4c
and Figures 6b,6c, where actual work on decoding has to
take place, the CPU performance never reaches above 3 GB/s
anymore. The CPU has become the bottleneck. In server-
grade systems equipped with many NVMe drives operating
in parallel, the available storage bandwidth is much higher
than what all CPU cores working in parallel would be able to
process.

Second, the main figure of merit being throughput, the
FPGA accelerator always outperforms the CPU implementa-
tions in terms of processing throughput. To increase the end-
to-end bandwidth of the F1 system, it would be interesting to
explore overlapping data copy and FPGA computation, where
a single instance of our proposed architecture is already able
to saturate a PCIe interface.

The OpenCAPI interface provides up to 25 GB/s of full-
duplex bandwidth. Reaching this bandwidth is not easy to
achieve with a single kernel, since closing timing for the delta
decoding step is too hard when the interface is very wide.
However, since various parts of a Parquet file may be decoded
in parallel, multiple instances of our proposed design would
be able to saturate the interface bandwidth with ease. Such
a design is very feasible since the area footprint is relatively
small and could by estimation fit more than sixteen times in the
VU37P, where four instances should saturate the bandwidth
in practice. As such, our design should be able to saturate
interface bandwidths of current and upcoming storage-attached
FPGA accelerator platforms.

Finally, as the Parquet format is of a very dynamic nature, it
is challenging to support all possible potential configurations.
A Parquet file can only be converted by the accelerator if
the facilitated configurations of data type, decompressor and
decoder match the columns of interest in the file. If switching
between different configurations is required, it is required to
extend the decoding components in such a way that the area
overhead may be rather large. It would be more beneficial to
maintain a library of pre-synthesized configurations that can
be (partially) reconfigured into the converter depending on the
file. This would leverage the reconfigurability advantage of
the FPGA while allowing a Parquet-To-Arrow converter to
maintain a relatively small footprint.

V. CONCLUSION

As I/O bandwidth of storage and network continues to
increase, the use of traditional exchange formats for large
data structures leaning on the premise of fast CPUs and slow
I/O will begin to see CPU bottlenecks. We observed that this
bottleneck is also present when loading data from Apache
Parquet files into Apache Arrow in-memory data structures
at I/O bandwidths of modern storage and network solutions,
where the CPUs of our systems are only able to support a
throughput in the order of several GB/s.

We proposed an FPGA accelerator design, in which the
Parquet files are converted to Apache in-memory data struc-
tures, only using the CPU to parse high-level metadata that
does not impact performance. We provide a modular and
extensible architecture that is able to parse lower-level but
more performance-critical Parquet page metadata, in addition
to being able to decompress and further decode stored values.
The architecture allows users to insert their own decompres-
sors and decoders, based on the many possible encodings
that Parquet files may employ. We present an implementation
for three data types and encodings in this paper, for plain
encoding, and for bit-packed delta-encoded values for both
integers and UTF8 strings.

When using encoding schemes more complex than plain,
results clearly show the merit of using FPGAs. For a POWER9
system with an FPGA connected via OpenCAPI, a single
instance of the proposed architecture is able to process re-
alistically configured Parquet files at up to 6 GB/s versus just
over 2 GB/s for an optimized CPU implementation. On an



Amazon EC2 F1 system, similar advantages are measured
for cases where data transfer between host and FPGA can
be overlapped. Otherwise, interface bandwidth becomes a
bottleneck and performance does not surpass the CPU. The
implementations use a small amount of resources (below
5%), which allows multiple instance of the Parquet-To-Arrow
converter to be instantiated. This will allow processing Parquet
pages in parallel, increasing throughput as long as there are
resources and I/O bandwidth available.

In addition to the encodings, Parquet supports compression
standards such as GZip, Snappy or Brotli. Decompression
of these algorithms on FPGA is beyond the scope of this
paper and has been discussed by various literature. However,
if compression would be applied on top of the presented
encodings, the FPGA accelerator benefits are expected to
become more pronounced. The reason is that decompression
will only decrease throughput on the CPU, while there are
high-throughput, fully streamable implementations with low
resource utilization available for decompression of various
algorithms on FPGA. The design includes support for adding
a decompression component and integration and evaluation of
such designs are envisioned for future work.

In conclusion, the Parquet-To-Arrow converter is a promis-
ing heterogeneous alternative to CPU-only based processing
of Parquet files into Arrow in-memory data structures. Based
on our measurements, saturating the bandwidth provided by
current and upcoming storage-attached FPGA acceleration
platforms using our proposed design seems feasible.

ACKNOWLEDGMENTS

This work is part of the FitOptiVis project [21] funded by
the ECSEL Joint Undertaking under grant number H2020-
ECSEL-2017-2-783162. The authors thank Xilinx for their
additional support.

REFERENCES

[1] K. Neshatpour, M. Malik, M. A. Ghodrat, A. Sasan, and H. Homayoun,
“Energy-efficient acceleration of big data analytics applications using
FPGAs,” in 2015 IEEE International Conference on Big Data (Big
Data), 2015, pp. 115–123.

[2] J. Fang, J. Chen, J. Lee, Z. Al-Ars, and H. P. Hofstee, “Refine and
recycle: A method to increase decompression parallelism,” in 2019
IEEE 30th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), vol. 2160-052X, 2019, pp. 272–
280.

[3] Xilinx. Vitis snappy implementation. [Online]. Avail-
able: https://xilinx.github.io/Vitis Libraries/data compression/2020.1/
source/L2/snappy.html

[4] M. Nanavati, M. Schwarzkopf, J. Wires, and A. Warfield, “Non-volatile
storage,” Queue, vol. 13, no. 9, pp. 20:33–20:56, Nov. 2015. [Online].
Available: http://doi.acm.org/10.1145/2857274.2874238

[5] F. Kruger, “Cpu bandwidth – the worrisome 2020 trend,”
Mar. 2016. [Online]. Available: https://blog.westerndigital.com/
cpu-bandwidth-the-worrisome-2020-trend/

[6] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance Analysis of NVMe
SSDs and Their Implication on Real World Databases,” in Proceedings
of the 8th ACM International Systems and Storage Conference, ser.
SYSTOR ’15. New York, NY, USA: Association for Computing
Machinery, 2015. [Online]. Available: https://doi.org/10.1145/2757667.
2757684

[7] B. Kim, J. Kim, and S. H. Noh, “Managing Array of SSDs When
the Storage Device Is No Longer the Performance Bottleneck,” in
9th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 17). Santa Clara, CA: USENIX Association, Jul. 2017.
[Online]. Available: https://www.usenix.org/conference/hotstorage17/
program/presentation/kim

[8] J. Peltenburg, A. Hesam, and Z. Al-Ars, “Pushing Big Data into Accel-
erators: Can the JVM Saturate Our Hardware?” in High Performance
Computing, J. M. Kunkel, R. Yokota, M. Taufer, and J. Shalf, Eds.
Cham: Springer International Publishing, 2017, pp. 220–236.

[9] A. Trivedi, P. Stuedi, J. Pfefferle, A. Schuepbach, and B. Metzler,
“Albis: High-performance file format for big data systems,” in 2018
USENIX Annual Technical Conference (USENIX ATC 18). Boston,
MA: USENIX Association, 2018, pp. 615–630. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/trivedi

[10] M. Ajdari, P. Park, J. Kim, D. Kwon, and J. Kim, “CIDR: A Cost-
Effective In-Line Data Reduction System for Terabit-Per-Second Scale
SSD Arrays,” in 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), Feb 2019, pp. 28–41.

[11] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian,
“The end of slow networks: It’s time for a redesign,” Proc. VLDB
Endow., vol. 9, no. 7, p. 528–539, Mar. 2016. [Online]. Available:
https://doi.org/10.14778/2904483.2904485

[12] L. Kuhring, E. Garcia, and Z. István, “Specialize in Moderation
– Building Application-aware Storage Services using FPGAs in
the Datacenter,” in 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 19). Renton, WA: USENIX
Association, Jul. 2019. [Online]. Available: https://www.usenix.org/
conference/hotstorage19/presentation/kuhring

[13] Apache Software Foundation. Apache Parquet. [Online]. Available:
https://parquet.apache.org/

[14] ——. Apache Arrow. [Online]. Available: https://arrow.apache.org/
[15] J. Peltenburg, J. van Straten, L. Wijtemans, L. van Leeuwen, Z. Al-

Ars, and P. Hofstee, “Fletcher: A Framework to Efficiently Integrate
FPGA Accelerators with Apache Arrow,” in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), Sep.
2019, pp. 270–277.

[16] J. Peltenburg, J. van Straten, M. Brobbel, H. P. Hofstee, and Z. Al-Ars,
“Supporting Columnar In-memory Formats on FPGA: The Hardware
Design of Fletcher for Apache Arrow,” in Applied Reconfigurable
Computing, C. Hochberger, B. Nelson, A. Koch, R. Woods, and P. Diniz,
Eds. Cham: Springer International Publishing, 2019, pp. 32–47.

[17] Google. Snappy. [Online]. Available: http://google.github.io/snappy/
[18] Accelerated Big Data Systems, Delft University of Technology.

Hardware snappy decompressor. [Online]. Available: https://github.com/
abs-tudelft/vhsnunzip

[19] Xilinx. Vitis gzip implementation. [Online]. Available: https://github.
com/Xilinx/Applications/tree/master/GZip

[20] L. van Leeuwen and Delft University of Technology. fast-p2a. [Online].
Available: https://github.com/abs-tudelft/fast-p2a

[21] Z. Al-Ars, T. Basten, A. de Beer, M. Geilen, D. Goswami,
P. Jääskeläinen, J. Kadlec, M. M. de Alejandro, F. Palumbo,
G. Peeren, L. Pomante, F. van der Linden, J. Saarinen, T. Säntti,
C. Sau, and M. K. Zedda, “The fitoptivis ecsel project: Highly
efficient distributed embedded image/video processing in cyber-physical
systems,” in Proceedings of the 16th ACM International Conference on
Computing Frontiers, ser. CF ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 333–338. [Online]. Available:
https://doi.org/10.1145/3310273.3323437

https://xilinx.github.io/Vitis_Libraries/data_compression/2020.1/source/L2/snappy.html
https://xilinx.github.io/Vitis_Libraries/data_compression/2020.1/source/L2/snappy.html
http://doi.acm.org/10.1145/2857274.2874238
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://doi.org/10.1145/2757667.2757684
https://doi.org/10.1145/2757667.2757684
https://www.usenix.org/conference/hotstorage17/program/presentation/kim
https://www.usenix.org/conference/hotstorage17/program/presentation/kim
https://www.usenix.org/conference/atc18/presentation/trivedi
https://doi.org/10.14778/2904483.2904485
https://www.usenix.org/conference/hotstorage19/presentation/kuhring
https://www.usenix.org/conference/hotstorage19/presentation/kuhring
https://parquet.apache.org/
https://arrow.apache.org/
http://google.github.io/snappy/
https://github.com/abs-tudelft/vhsnunzip
https://github.com/abs-tudelft/vhsnunzip
https://github.com/Xilinx/Applications/tree/master/GZip
https://github.com/Xilinx/Applications/tree/master/GZip
https://github.com/abs-tudelft/fast-p2a
https://doi.org/10.1145/3310273.3323437

	Introduction
	Background
	Related Work
	Apache Parquet
	Apache Arrow

	Design and implementation
	Input Data Structure
	Architecture

	Results
	Experiment setup
	Performance
	Throughput vs. RecordBatch size
	Throughput vs. Parquet page size

	Resource utilization
	Discussion

	Conclusion
	References

