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Abstract
As Large Language Models become an ever more integral part of
Software Engineering, often assisting developers on coding tasks,
the need for an unbiased evaluation of their performance on such
tasks grows [1]. Data smells [2] are reported to have an impact
on a Large Language Model’s ability on such tasks [3]. Boilerplate
code is considered to be a subcategory of said smells. In this paper,
we investigate a specific type of this smell, boilerplate API usage
patterns. We analyze their prevalence in The Heap dataset [1] and
examine how they may bias reference-based evaluation of Large
Language Models on code generation tasks. Our findings show
that while this data smell is relatively rare, instances containing
it are significantly easier for LLMs to predict. We attribute this
to partial memorization of common boilerplate patterns, which
inflates perceived model performance.

1 Introduction
Are there biases in the evaluation of Large Language Models (LLMs)
hidden just under our noses? As LLMs are increasingly becoming
an integral part of Software Engineering (SE), among multiple
domains, the need for a clear, unbiased explanation and evaluation
of these models grows. However, their performance, as well as
the performance of AI-based systems they power, is reported to be
impacted from different types of data quality issues, including latent
ones [2, 4]. Data Smells, a term coined to represent indications
of latent data quality issues, has therefore been an active field
of research in recent years, mostly centred around providing a
theoretical and ontological base for the topic [2, 3]. Boilerplate code
(BC), a popular term from the SE domain characterizing repetitive
but necessary code fragments, is identified as a subcategory of the
Irrelevant Code Data Smell [3]. Smells in this category are believed
to be uninformative for an LLM and are commonly removed from
the data for downstream tasks when detected [3, 5].

Nevertheless, the academic literature lacks a quantitative descrip-
tion of the impact of BC presence on the performance of LLMs and
on what biases in their evaluation it may introduce. Our current
paper directly addresses this research gap.

Our approach consists of two main components. The first, a
pipeline based on the MARBLE tool [6], focuses on detecting API-
usage patterns BC for eight popular Java APIs within The Heap,
a dataset deduplicated against popular training datasets, which
is made for evaluation purposes [1]. The second concentrates on
inferencing three open-sourced LLMs for coding and evaluating
their performance on a total of five different tasks. The chosen
models are SmolLM-135M [7], Starcoder-3B [8] and MellumBase-
4B [9].

This approach aims to provide answers to the following Research
questions:

RQ1 How widespread is API usage pattern Boilerplate Code
across The Heap?

RQ2 How does Boilerplate Code affect the code completion per-
formance of an LLM when present in the context window
or the target of an inference?

RQ3 Is Boilerplate Code memorized by LLMs?

We found that while the presence of API usage pattern boiler-
plate code is rare throughout The Heap, it is very common in files
containing any of the eight target APIs. We also show that for code
generation tasks, LLMs perform better when Boilerplate code is
present in the target and worse, when it is present in the context
of an inference. We also present evidence that up to 16% of BC
is partially memorized by the models we run our evaluation on,
a number that we hypothesize would be much higher for bigger
LLMs, citing Scaling Laws [10].

Our additional contributions include 1) a pipeline for the detec-
tion of API usage pattern BC, and 2) a generic pipeline for inferenc-
ing different LLMs and conducting a reference-based evaluation on
them.

The organization of this paper is as follows: Section 2 reviews
relevant background research. Section 3 describes the methodology.
Section 4 presents the results, followed by a discussion in Section 5.
Section 6 concludes the paper and provides a summary of the main
takeaways. Appendix A provides all results from our inference and
evaluation experiments with LLMs.

Keywords: Data Smells, Boilerplate Code, Large Language Models,
Memorization in Large Language Models

2 Background Research
In order to address the research questions of this paper, we need
solid background knowledge in four domains. Section 2.1 provides
insight into the current research of Data Smells, section 2.2 elabo-
rates on the topic of Boilerplate code and existing methods for its
detection, section 2.3 describes what LLMs are and how they are
evaluated, and section 2.4 introduce the current state of research in
the domain of LLM memorization problem.

2.1 Data smells
Data smells are a recent but important topic of interest in the re-
search community due to their implication for Artificial Intelligence
models. They were first mentioned as a term in the informal scien-
tific literature in 2014 [11] and in the academic literature in 2018[12],
described as consequences of bad practices in data handling. Later,
they were systematically examined and defined by Foidl et al. [2] as
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@Override 
protected void onPostExecute(final String ContentText) { 

​ ​ String tweetText = null; 
 
​ ​ if (this.dialog.isShowing()) { 
​ ​ ​ this.dialog.dismiss(); 
​ ​ } 
 
​ ​ if (ContentText == null) { 
​ ​ ​ tweetText = getString(R.string.fetching_error); 
 

Figure 1: Annotated boilerplate code for an API usage pattern
of the mask.android.app.ProgressDialog API for Java

"context-independent, data value-based indications of latent data
quality issues may lead to problems in the future", analogous to code
smells in the software engineering domain. They are reported to be
caused by poor practices, such as inadequate data management and
handling, or poor data source quality. The potential risks of their
presence in the context of AI-based systems include maintenance
issues or failures and defect. In our paper, we are interested in those
data smells that are induced by poor source quality, particularly
those, that arise as a result of quality issues in the source codebases.

A taxonomy of the data smells for code-generation tasks has
been created, dividing them in nine subcategories [3]. One of those
subcategories, Limited informativeness, deals with different kinds of
code that brings little to no additional information to the model, e.g.
noise tokens or irrelevant code. A common approach to address the
"irrelevant code" data smell is to remove the instances containing
it [5, 13, 14]. However, it is not described how such an action would
affect the performance of an LLM for code generation tasks. A type
of irrelevant code is reported to be boilerplate code.

2.2 Boilerplate code
The definition of boilerplate code, a popular term from the SE do-
main, has been subjective and vague throughout the literature [6].
Systematically derived defining properties include:

Repetitive and standartized. Boilerplate code is usually found in
identical forms throughout multiple repositories [15, 16].
Undesirable but necessary. Due to the infeasibility of a certain func-
tionality to be implemented in any other way, the boilerplate ap-
proach becomes a single option, in spite of going against software
quality standards [6, 15, 16].
Localized. Boilerplate code snippets are usually found in methods
and files which are close in proximity rather than spread through-
out a whole repository [6].

A snippet considered by us to be boilerplate code is shown in
Figure 1.

Due to their repetitive nature boilerplate code fragments are
very similar to code clones. Nonetheless, they differ as the for-
mer is known to be non-(trivially) avoidable and localized [16],
i.e., boilerplate code usually occurs in one place or multiple places

with high proximity, rather than throughout a whole repository.
While multiple specialized tools exist for the detection of duplicated
code [17] and boilerplate text [18–20], almost none are available
for boilerplate code detection in particular. One of them is MAR-
BLE [6], a frequency-based tool, built to mine API-usage-pattern
boilerplate code for popular Java APIs. It utilizes the Probabilistic
API Miner [21] to extract possible candidates and then an AST-
based algorithm to filter the potential candidates. For every target
API, the pipeline finds boilerplate usage patterns specific to this
API. Throughout the thirteen target APIs that the MARBLE paper
examines, 1072 out of 9989 files were reported to include boilerplate
snippets, accounting for approximately 10.8% of the files.

2.3 Evaluation of Large Language Models
LLMs, powered by the Transformer architecture [22], along with
their training and evaluation processes, have become in most re-
cent years the central topic in Artificial Intelligence and Computer
Science. The process of forward pass, pivotal in both training and
inferencing the model, predicts the most probable next token, an
encoded textual fragment, with respect to a given context. A gener-
ation includes a prediction of one or more tokens with an optional
upper bound.

LLMs are evaluated on their generations. This is most commonly
done via reference-based, benchmark, or human evaluation. Bench-
marks are complex, used only to test already trained models, and
contain significant biases and limitations [23, 24] while human eval-
uation needs to be performed manually. However, reference-based
evaluation is often used in the training process, specifically during
fine-tuning, and is a simple, automatic operation which compares
a generation with a ground truth, also referred as the target of the
generation. The output is measured in terms of various evaluation
metrics, including, among others, exact match (EM), Levenshtein
distance (LD) and recall-oriented understudy for gisting evaluation
(ROUGE). Nevertheless, such estimation could also be biased, be-
cause of data contamination, i.e. a part of the test data appears in
the training data, which the model could overfit on.

A step towards addressing this bias is the release of The Heap [1],
a dataset which was deduplicated on the file level against popular
training datasets, e.g. The Stack [8], and explicitly dedicated for the
purposes of evaluation. Boilerplate code, however, usually appears
on the method level, so such leakage could occur even in The Heap,
referring back to the repetitive property of boilerplate code. It is
noteworthy to report that Data Smells in general are reported to
impact the performance of LLMs for code generation tasks [3], but
it is not quantitatively described how.

2.4 Memorization in Large Language Models
Due to the vast amounts of data used in the training process of LLMs
and their tendency to overfit on it, memorization in the context
of LLMs has become an increasingly explored topic. It is defined
as a sequence which is outputted verbatim as the ground which is
included in the training data [25]. In order to prove memorization
we use the notion of k-extractability[26].

Definition.A string (suffix)𝑥 of length 𝑙 is said to be k-extractable
from a language model 𝑓 if all of the following conditions hold:
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Figure 2: Detection and Annotation pipeline

(1) There exists a length-𝑘 context 𝑝 = (𝑥−𝑘 , . . . , 𝑥−1) such
that the concatenation 𝑝 | | 𝑥 appears in the model’s training
data.

(2) When 𝑓 is prompted with 𝑝 , it reproduces 𝑥 exactly using
greedy decoding.

3 Methodology
An approach consisting of two phases was developed to address
the objectives of this research. The first tackles the detection and
annotation of Boilerplate code within The Heap, and is thoroughly
described in section 3.1. The second phase aims to evaluate the
impact of the presence of the explored data smell on code comple-
tion tasks for LLMs. Its details are shown is section 3.2. A diagram
showcasing each of them can be found on Figure 2 and Figure 3,
respectively.

3.1 Detection and Annotation
The Detection and Annotation component of our experimental
setup finds the exact positions of API usage pattern boilerplate code
within The Heap and outputs the contaminated files annotated on
the character level with a bitmask for their boilerplate presence.

It begins with filtering only files containing a declaration of any
of the eight selected Java APIs from our The Heap. Due to its large
size and the high time complexity of the MARBLE tool, we divided
each of the eight resulting subsets into batches of roughly 1,000
files each. The eight APIs, as well as their presence in The Heap
and the number of resulting batches, can be found on Table 1.

Each of those batches was then fed into a modified, pipelined
version of the MARBLE tool, which takes the filtered and batched
files and outputs the boilerplate files, which contain Boilerplate
code along with the exact positions of the boilerplate snippets
within those files. The outputs of all batches related to an API are
joined, the eight resulting files are then fed to our Annotation tool,
and a final output is produced of a bitmask that encodes as 1 each
character being part a boilerplate code snippet and as 0 every other
character. For example, each red character in Figure 1 was masked
as 1 by our pipeline.

3.2 Evaluating the impact of Boilerplate code on
LLMs

In order to evaluate how boilerplate code affects LLM generation for
coding tasks, we perform five experiments on a total of threemodels.
They all use reference-based evaluation to quantify the results, with
four evaluation metrics being calculated for each generation.

Name of Java API
Number of
Occurrences

Number of
Batches

android.app.ProgressDialog 5,147 4
android.database.sqlite 7,979 8
android.support.v4.app.ActivityCompat 1,630 2
com.squareup.picasso 2,032 2
java.beans.PropertyChangeSupport 1,973 2
java.io.BufferedReader 49,161 48
javax.xml.parsers 13,667 10
javax.xml.transform 8,876 8
TOTAL 80,465 84

Table 1: Number of files containing each API and resulting
batches

Experiments. A total of five experiments were designed to eval-
uate and explain the impact of the Boilerplate code on code gen-
eration tasks and check whether their repetitive nature results in
memorization in/by the LLMs.

First, we set up a Next-Token-Prediction task, which applies a
standard forward pass process with iteratively increasing context.
Similar evaluation is used some fine-tuning training procedures
for an LLM, with the sole difference that in this case, instead of a
predicted weights metric, e.g. cross-entropy, we use token-based
evaluation approaches. In order to conduct the experiment, for
each file, we randomly sampled one method that has boilerplate
code within and one that does not, if such exist. Then, starting
from the first until the penultimate token, we use it along with all
previous ones for context and try to predict the next one. This aims
to show whether and how BC biases this most standard evaluation
technique.

Second, we construct a Contextual Next-Line Prediction experi-
ment, as line completion is one of the most common tasks for LLMs
for code generation. For each line, we pick itself and a context
consisting of up to 10 lines above it, and then categorize it in four
possible groups: 1) both the line and the context have boilerplate
code within, 2) the line has boilerplate code within but the con-
text is free of any, 3) the line is free of boilerplate code but the
context contains some, 4) both the line and the context are free
of boilerplate code. For each category, we randomly sample one
pair, if such exists. We causally mask the context and generate up
to 160 tokens, with a stopping criterion being the existence of a
full, non-empty line which has been generated. By undergoing the
described process, we additionally aim to show how the presence
or absence of boilerplate code within the context or the target of
a generation impacts the accuracy of a model’s prediction for a
bigger target.

Third, we create a experimental set-up for method-level predic-
tion given only the signature as context. For this task we use FIM
masking [27], since the higher complexity of the task, as well as
a stopping criterion that checks whether a full method has been
generated using the property of bracket symmetry in the Java syn-
tax. We again sampled one method containing and one method free
of boilerplate code, if such exist. Then, the method’s first line, i.e.
the signature, and its last line, i.e. the closing bracket, including
or excluding the return statement, are picked as prefix and suffix,
respectively. A Fill-In-Middle inference is then performed on the
method, with a constraint for maximum generated tokens of 1,500.
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This number was chosen as it is an approximation of a M+1.5xSTD
measure covering 90% of all methods across The Heap, with M
being the mean of all the token sizes of all methods throughout the
dataset and STD being the standard deviation of that measurement.
The goal is to check whether methods that include boilerplate code
are repetitive enough to be predicted by the model with only their
signature as context.

Fourth, we created a setup for a full context method-level pre-
diction. It is identical to the setup of the third experiment, with
the sole difference that this time, we add everything in the file
before the method signature to the prefix and everything in the file
after the closing bracket to the suffix. By doing this, we want to
further explore the properties that the other three experiments are
observing, and above all discover what changes more context will
introduce compared to the previous experiment.

Fifth, we perform a k-extractability experiment on randomly
sampled snippets of 80 tokens from methods containing boilerplate
code. We take k = 64 and try to predict the next 16 tokens, taking
only generations that perfectly match the ground truth for positives.
This is a setup similar to what Biderman et al. used to predict mem-
orization in LLMs [10]. We then use the data portrait of The Stack
v.2 1 to check for occurrences of the exactly predicted sequences
with the actual model. By doing so, we want to approximate what
part of the boilerplate code within The Heap is memorized from
The Stack in spite of the first being deduplicated against the second.

Models and Data. Three models were selected to carry out the
generations. Those are SmolLM-135M [7], StarCoder2-3B [8] and
MellumBase-4B [9]. They have all been trained on data that The
Heap was deduplicated against, namely The Stack v.2 [8], i.e. we
expect no consequences of data contamination on the file level
to be observed and only such induced by repetitive code in the
method level, including boilerplate code, to be observed. In the case
of MellumBase-4b, we need to note that The Stack was only its
main but not sole source for training data and it is not disclosed
what the other sources are. Experiments involving FIM inference
were run only on the two bigger models, namely Starcoder2-3B
and MellumBase-4B, as SmolLM-135M is not pretrained for FIM
inference. We configured all models for greedy decoding only.

The Heap was used as an evaluation dataset. The files annotated
to contain the boilerplate code data smell were accounted as one
of the two inputs to our Generation and Evaluation pipeline. The
other input was a set of 10,000 files uniformly sampled from the
Heap, which contains usages of none of the thirteen APIs reported
to contain high frequencies of boilerplate usage patterns [6]. It was
used to provide a baseline for results in the experiments.

Evaluation metrics. Each generation is evaluated right after its
creation against four evaluation metrics. Exact matching observes
what part of the generated tokens are identical and in the same
positions. BLEU evaluates what part of the derived 4-grams from
the prediction and reference overlp. Levenshtein distance evaluates
the edit distance between the ground truth and the predicted text.
ROUGE evaluates the overlap of n-grams for different values of n in
precision, recall and F1 scores. We calculate this metric for 1-grams,
2-grams and L-grams, with L being the longest matching sequence.

1https://stack-v2.dataportraits.org/
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Figure 3: Generation and Evaluation pipeline

4 Results
This section presents the key findings derived from the imple-
mented methodology, highlighting the most significant outcomes
in relation to the research objectives. It is organized in three sub-
sections, each addressing one of the three research questions. Sec-
tion 4.1 shows howmuch is BC contained in The Heap and describes
the properties of the detected files, section 4.2 outlines how does
BC affect the code generation performance of the three selected
LLMs, and section 4.3 elaborates on whether and how well is BC
memorized.

4.1 Presence of Boilerplate code within the
Heap

Utilizing our Detection and Annotation pipeline, we have inves-
tigated a total of 80,465 files across the Heap, targeting a total of
eight APIs in search for boilerplate usage patterns. For each target
API, the number of files in which boilerplate usage patterns, i.e.
boilerplate code, was found, is listed in Table 2.

The API associated with the largest number of boilerplate usage
patterns was found to be java.io.BufferedReader, with over 10000
files with boilerplate code present. The android.app.ProgressDialog
API is shown to induce boilerplate usage patterns to the greatest
extent, with approximately 51% of all files in which it occurs con-
taining some boilerplate code. The summative detection rate across
all files is approximately 21%. The relative presence of the data
smell in files for each API can be found in Figure 4. This makes
the Boilerplate code data smell for API usage patterns for the eight
targeted APIs present in approximately 0.3% of all files within The
Heap in its Java subset.
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Name of Java API Number of Boilerplate Files
android.app.ProgressDialog 1,871
android.database.sqlite 1,433
android.support.v4.app.ActivityCompat 826
com.squareup.picasso 92
java.beans.PropertyChangeSupport 32
java.io.BufferedReader 10,174
javax.xml.parsers 1,352
javax.xml.transform 764
TOTAL 16,544

Table 2: Number of files containing boilerplate code for each
API
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Figure 4: Percentage of Boilerplate code content within files

Moreover, our findings show that the length of almost all of the
boilerplate usage patterns within a file is contained within 1,000
characters, with only several exceeding 5,000 characters and only
four exceeding 10,000 characters, see Figure 5. The maximal length
of boilerplate code within a file we found to be 29,074 characters
for an android.database.sqlite usage pattern.

These code snippets we discovered to make up, in most cases,
no more than 5% of the respective file they are found in. They
also build up on average 21% of the methods they are used in.
Boxplots of this data can be seen on Figure 6. The maximum found
boilerplate part within a file was 76,97% for a usage pattern for the
java.io.BufferedReader API.

More fine-grained statistics for each of the target APIs can be
found in Appendix A.
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4.2 Boilerplate code impact on LLMs’ code
generation performance

The generations on which the following results are based are per-
formed on L-4 GPUs with 22.5GB of VRAM, except for the fourth
experiment, which was conducted on A-100 GPUs with 40GB of
VRAM.

The third and fourth experiment were run on two datasets of
1,000 files each, randomly sampled from the annotated and the base-
line data, respectively. The second and fifth ones were conducted on
two datasets of 10,000 files each, sampled in the same manner. Due
to the high computational cost, the first was run only on the two
smaller models, i.e. SmolLm-135M and Starcoder2-3B, on samples
of 1,000 and 600, respectively, produced in the same manner. The
results presented for Tables 3-6 represent the averaged respective
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metric bp fr base
exact match 0.670 0.582 0.530
bleu 0.474 0.351 0.292
exact match 0.801 0.722 0.679
bleu 0.624 0.524 0.467

Table 3: Results for the Next Token Prediction Experiment.
The first group of rows show SmolLM results, while the sec-
ond - Starcoder2

metric bp fr base
exact match 0.004 0.007 0.007
bleu 0.036 0.058 0.052
rouge-l-p 0.503 0.397 0.342
rouge-l-r 0.134 0.228 0.278
exact match 0.000 0.018 0.008
bleu 0.002 0.026 0.060
rouge-l-p 0.462 0.365 0.341
rouge-l-r 0.085 0.136 0.299

Table 4: Results for the Limited Context Method Body Pre-
diction Experiment. The first group of rows show Starcoder2
results, while the second - MellumBase

mean across all generations. The standard error for each velue was
calculated to be below 0.01.

We found that LLMs perform significantly better for next-token
prediction tasks for methods are which contaminated with BC data
smell, as can be seen in Table 3. Estimating the performance via the
exact matchmetric, we found that the two LLMs under investigation
perform with a difference of between 8 and 9 percentage points
compared to the BC-free methods within the same files and between
12 and 14 percentage points compared to the baseline, as shown in
Figure 7.

The ability to predict a method body based on the context around
it, i.e. experiments three and four, is measured to follow two impor-
tant trends, see Table 4 and Table 5.

First, naturally, giving more context to the LLM boosts the perfor-
mance across all metrics but ROUGE. However, we show that with
respect to these metrics, prediction of BC-contaminated methods
results in negligibly worse generations, showing that the investi-
gated LLMs’ capabilities to predict a method’s body on its signature
do not generally depend on the presence of BC in the method itself.
Patterns of BC-contaminated methods being more predictable with
respect to EM, BLEU and LD, nevertheless, slightly emerge when
the LLMs are given more context. In this setting, we observe with
the BLEU score showing approximately 5.5% improvement over
the baseline across both models and slightly less over the aver-
age for BC-free methods in the contaminated files. The highest
spike for BLEU we show to be for BC-contaminated methods on
MellumBase-4B which totals 33 percentage points improvement.

metric bp fr base
exact match 0.015 0.014 0.010
bleu 0.235 0.222 0.180
rouge-l-p 0.505 0.421 0.361
rouge-l-r 0.444 0.559 0.612
exact match 0.101 0.062 0.043
bleu 0.333 0.292 0.279
rouge-l-p 0.531 0.499 0.534
rouge-l-r 0.385 0.481 0.579

Table 5: Results for the Full Context Method Body Prediction
Experiment. The first group of rows show Starcoder2 results,
while the second - MellumBase
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Figure 7: ExactMatchMetrics for Next-Token Prediction. The
first group of boxplots (left) show SmolLM results, while the
second (right) - Starcoder2

Second, the ROUGE-L score did not show a major change be-
tween the two experiments, neither nominally nor relatively. How-
ever, it revealed a pattern of higher precision on predicting BC-
contaminated method bodies, and higher recall on methods from
the baseline dataset, as well as methods within BC-containing files
that are BC-free. This directly implies that for methods with BC
within, LLMs predicted more of the reference n-grams, but a lesser
number of the predicted n-grams were contained in the reference
solution.

The results for the second experiment are shown in Table 6
where the column names represent BC-contaminated target with
BC-contaminated context (mm), BC-contaminated target with BC-
free context (mu), BC-free target with BC-contaminated context
(um), BC-free target with BC-free context (uu), all from the anno-
tated dataset and a BC-free target with BC-free context from the
baseline dataset (base), respectively. Taking the EM, BLEU and nor-
malized Levenshtein distance metrics into consideration, we show
that the two bigger models generally performed significantly better
than the smaller one, with Starcoder2-3B scoring better than the
bigger MellumBase-4B. Differentiating between context and target
of the generations, with respect to where BC is present, we can see
that the pattern of BC-contaminated targets scoring higher than the
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metric mm um mu uu base
exact match 0.308 0.305 0.181 0.251 0.258
bleu 0.261 0.275 0.128 0.194 0.191
levenshtein 0.671 0.665 0.800 0.728 0.719
exact match 0.585 0.518 0.399 0.444 0.472
bleu 0.519 0.362 0.294 0.340 0.366
levenshtein 0.401 0.435 0.579 0.541 0.512
exact match 0.566 0.505 0.390 0.441 0.455
bleu 0.501 0.347 0.282 0.335 0.344
levenshtein 0.418 0.449 0.589 0.548 0.529

Table 6: Results for the Next Line Prediction Experiment.
The first group of rows show SmollLM results, the second -
Starcoder2, and the third - MellumBase

baseline is maintained across all models. We report a slightly better
performance for the um compared to the mm category for SmolLM-
135M. This behaviour is majorly reversed for the two bigger models.
The results for the uu category across the three models are slightly
lower than those for the baseline, a difference contained within 1%
in most cases. However, we report a drop in the performance of all
LLMs on the um category generations, which is shown to be over
20 percentage points compared to the mm category for the BLEU
score on the two larger models.

4.3 Memorization of Boilerplate code
We conducted our fifth, k-extractability, experiment for all three
models on a randomly sampled dataset consisting of 10,000 entries
which was again uniformly sampled from our set of annotated,
BC-contaminated files. We used L-4 GPUs with 22.5GB of VRAM
for this purpose.

For each model, we show the number of generations, which were
evaluated to be a perfect match with their references and the total
number of tested sequences, along with the calculated proportion
between the two. A sampled candidate was considered eligible only
if it consisted of more than 80 tokens for the respective model
and all ineligible were discarded. This information can be seen in
Table 7. While it reinforces the claim that the bigger an LLM is, the
better it performs, the data also implies that up to 24% of the code
generated in this experiment by the biggest model could have been
memorized by it.

We checked whether the perfectly matching code occurs verba-
tim in the Stack v2 via the Data Portrait provided by the creators of
the dataset. It is important to note that the tool is reported to not
be updated with the latest checkpoints of the dataset. Therefore,
the results of this check are to be considered a lower bound of the
actual ones. Out of the 50 entries that we uniformly sampled from
the results scoring EM of 1.00 for each of the models, we list the
partially and the fully matched snippets in Table 8. Assuming they
resemble the actual distribution, we can report that while only a
minority of the perfectly matched by the model snippets have a
perfect match in The Stack, between 66% and 86% of them have a
partial match.

Model Name Eligible Candidates Perfect Matches (% of Eligible)
SmolLM-135M 7,825 260 (3.3%)
Starcoder2-3B 7,382 800 (10.8%)
MellumBase-4B 8,523 2,038 (23.9%)

Table 7: Number of perfect matches found in our k-
extractability experiment against the total number of gener-
ations for valid references

Model Name
Sampled
Snippets

Partially Matched
Candidates

Perfectly Matched
Candidates

SmolLM-135M 50 40 28
Starcoder2-3B 50 43 22
MellumBase-4B 50 33 13

Table 8: Number of Perfect and Partial Matches in The Stack
out of Perfectly Matched Generations

5 Discussion
In the following we present a discussion about our findings. Sec-
tion 5.1 presents our interpretation of the results, section 5.2 dis-
cussed in-depth their implication and section 5.3 elaborates on this
paper’s limitations and possible threats to its validity.

5.1 Interpretation
Presence of Boilerplate Code. Focusing on API usage pattern BC,

we clearly showed that some APIs induce the necessity of BC sub-
stantially more than others. These findings confirm the results
presented by Nam et al. [6]. These imbalances are mainly attributed
to the lack of suitable abstractions which can replace the usage
patterns with simple consise statements. This owes to either a
conscious decision by the developers of such APIs to allow more
"manual" control over the APIs functionality within a client code
or their inability to provide such.

Boilerplate code impact on LLMs. Our results for reference-based
evaluation across multiple experiments proved beyond reasonable
doubt that BC has a significant impact on an LLM’s performance
for code generation tasks.

In almost all experiments, with the sole exception of experiment
three, we saw that LLMs perform much better when they have to
predict code which is fully or partially contaminated with BC. This
is the first indication of potential memorization of BC by LLMs,
which we can attribute to its repetitive nature.

We also showed that both BC-containing and BC-free contexts
prompt the BC-containing target to be predicted better than the
targets from the baseline data for the smaller model. For the two
larger models, the former proves to cause significantly better results,
while the latter type of context induces similar results to those of
the baseline. Taking into consideration the scaling law for LLMs
stating that bigger models tend to memorize more of their training
data [10, 28], we claim that this spike is due to said memorization.

Nevertheless, an analysis of our results discovers that BC-contaminated
context prompts a drop in performance when an LLM is expected
to predict a BC-free line directly after it. Our interpretation of this
outcome is that, given this context, the model is likely to continue
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generating boilerplate code, an idea which resonates with the al-
ready established claims of memorization. Similar is the case with
an imbalance between precision and recall in the ROUGE metric in
experiments three in four. A continuous generation of boilerplate
code inside the predicted method body, given only the method’s
signature, results in more tokens of the reference being guessed
correctly, but fewer of the guessed tokens being correct themselves.

Analyzing the information derived from experiments one and
four, we showed the pattern that models perform slightly better
in predicting the BC-free methods within BC-contaminated files
than methods of the baseline dataset. This outcome we accredit
to class and method coherence. While this code is not considered
to be a part of the usage pattern, as the pattern itself appears in
almost identical form, it will have a higher degree of similarity than
code which has no implicit cohesive influence of BC. These slight
patterns of similarity, encoded by the LLMs during training, show
up in the results from our experiments.

Finally, we address the results of experiment three, where the pre-
diction of BC-contaminated methods based on their signature alone,
yielded worse evaluation scores than those of BC-free or baseline
dataset methods on all metrics but ROUGE precision scores. We
claim that there is no explicit relation between a method’s signature
and the usage of specific API usage patterns, which are considered
boilerplate code. This is further reinforced by our observations that
this kind of BC builds in most cases only a minor part of a method.

Memorization. The evidence produced by our k-extractibility
experiment clearly shows that a non-insignificant part of the BC-
contaminated methods is memorized by LLMs. We also provided
evidence that this part grows with the the size of the explored
model, as reported in previous research [10, 28]. However, in the
majority of cases, only partial matches were found in their training
data. We conclude that due to small syntactic deviations of the
BC-usage patterns, mostly partial statements of the usage pattern
were memorized verbatim, which were later encoded in closest
proximity by the LLMs, enabling them to predict those fragments
more than efficiently.

5.2 Implications
Although our findings show that only 0.3% of The Heap is contam-
inated with BC data smell, we report that the eight targeted Java
APIs induce the smell in more than 20% of the files in which they
are used. This implies that if the set of targeted APIs grow, the total
presence of BC throughout The Heap, as well as other large code
datasets, could end up being much higher.

The reported impact of boilerplate code on LLM code generation
tasks implies a considerable bias in the reference-based evaluation
of LLMs, as well as in their fine-tuning. This requires the scientific
community to produce a way of dealing with this very bias. The
proposed removal approach for irrelevant code data smells, namely
clearing all files from methods containing the smell, reduces the
said bias but does not remove it completely. Developing an effective
approach to address this problem is out of the scope of the current
research and should be addressed in future work.

Lastly, our results show that LLMs, especially bigger ones, tend
to partially memorize API usage pattern boilerplate code. This
implies a higher performance for BC targets of AI-based software

development tools that are powered by such models. However, it
also constitute a legal threat to users of such tools with respect to
intellectual property copyright [1], as well as a vulnerability for
data extraction attacks [10].

5.3 Limitations and Threats to Validity
There are three main limitations of the current research.

First, our results are based on just one type of boilerplate code
in the Java language, namely API usage patterns. Extending it to
other types of boilerplate code within java, i.e. getter and setter
methods, may yield different results.

Second, due to constraints on computing power and time, we
investigated how the smell affects relatively small LLMs. Whereas
we expect the same behaviour to be maintained and even amplified
for larger models due to scaling laws, we do not provide a guar-
antee for this. This limitation of the current paper, as well as the
aforementioned one, needs to be addressed in future research.

Third, we relied on external tools for the detection of the data
smell [6]. Defects on those tools, if found, could undermine the
implications of the current work.

6 Conclusion
There are three main takeaways in our research.

First, while the files we found to contain boilerplate code data
smell in The Heap are a small portion of the dataset, we reported
that popular Java APIs induce the smell in large proportions. More-
over, we found that API usage pattern BC makes up for only a
minor part of the methods it is contained in.

Second, we demonstrated that boilerplate code significantly im-
pacts LLMs on code generation tasks, as they tend to predict it much
better than baseline code. Therefore, we concluded that the data
smell introduces a positive bias on the reference-based evaluation
of such models and emphasized the need to address it.

Third, we discovered that LLMs partially memorize boilerplate
code during their training process. Consequently, we discussed the
implications of this finding, with respect to both industry and data
privacy.

Responsible research
This research was conducted in accordance with high ethical stan-
dards, with a strong focus on transparency, reproducibility, and
responsible AI usage.

All experiments were designed for reproducibility: a fixed ran-
dom seed was used for sampling, and all code and results have been
open-sourced and are freely available on GitHub. This ensures that
others can verify, replicate, and build upon our work.

The datasets used are publicly available and covered by open
copyright or permissive licenses. When handling data containing
personal information, we took care to respect privacy and minimize
risk, following appropriate ethical guidelines.

We also considered the implications of using large language
models (LLMs) in software development tasks. LLMs can partially
memorize boilerplate or commonly seen code patterns. This raises
concerns about the unintended reproduction of sensitive or copy-
righted material. We therefore stress the importance of responsible
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use, especially in production environments or when handling pro-
prietary data.

Within the scope of the current research Large Language Models
were used as a tool only for the purposes of code documentation
and language polishing with respect to writing.
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A Full Result Tables for Inference Experiments
Table 9: Results for the No-Context Next Token Prediction Experi-
ment

Metric bp fr base
exact match 0.670 0.582 0.530
bleu 0.474 0.351 0.292
levenshtein 0.335 0.431 0.488
meteor 0.660 0.583 0.541
rouge-1-p 1.000 1.000 1.000
rouge-1-r 1.000 1.000 1.000
rouge-1-f 1.000 1.000 1.000
rouge-2-p 1.000 1.000 1.000
rouge-2-r 1.000 1.000 1.000
rouge-2-f 1.000 1.000 1.000
rouge-l-p 1.000 1.000 1.000
rouge-l-r 1.000 1.000 1.000
rouge-l-f 1.000 1.000 1.000
exact match 0.801 0.722 0.679
bleu 0.624 0.524 0.467
levenshtein 0.422 0.384 0.367
meteor 0.781 0.734 0.687
rouge-1-p 1.000 1.000 1.000
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Metric bp fr base
rouge-1-r 1.000 1.000 1.000
rouge-1-f 1.000 1.000 1.000
rouge-2-p 1.000 1.000 1.000
rouge-2-r 1.000 1.000 1.000
rouge-2-f 1.000 1.000 1.000
rouge-l-p 1.000 1.000 1.000
rouge-l-r 1.000 1.000 1.000
rouge-l-f 1.000 1.000 1.000

Table 10: Results for the Next Line Prediction Experiment

metric mm um mu uu base
exact match 0.308 0.305 0.181 0.251 0.258
bleu 0.261 0.275 0.128 0.194 0.191
levenshtein 0.671 0.665 0.800 0.728 0.719
meteor 0.389 0.394 0.248 0.339 0.339
rouge-1-p 0.353 0.418 0.263 0.348 0.365
rouge-1-r 0.340 0.375 0.234 0.328 0.339
rouge-1-f 0.337 0.382 0.236 0.327 0.339
rouge-2-p 0.232 0.279 0.137 0.207 0.210
rouge-2-r 0.231 0.275 0.135 0.205 0.205
rouge-2-f 0.230 0.274 0.135 0.203 0.204
rouge-l-p 0.352 0.417 0.262 0.347 0.364
rouge-l-r 0.339 0.375 0.234 0.328 0.339
rouge-l-f 0.337 0.382 0.235 0.327 0.338
exact match 0.585 0.518 0.399 0.444 0.472
bleu 0.519 0.362 0.294 0.340 0.366
levenshtein 0.401 0.435 0.579 0.541 0.512
meteor 0.634 0.584 0.468 0.520 0.550
rouge-1-p 0.613 0.617 0.483 0.523 0.567
rouge-1-r 0.595 0.602 0.462 0.508 0.544
rouge-1-f 0.597 0.600 0.461 0.506 0.543
rouge-2-p 0.505 0.493 0.335 0.375 0.403
rouge-2-r 0.502 0.494 0.332 0.371 0.396
rouge-2-f 0.501 0.489 0.331 0.369 0.394
rouge-l-p 0.613 0.616 0.482 0.523 0.567
rouge-l-r 0.595 0.602 0.461 0.508 0.543
rouge-l-f 0.597 0.600 0.461 0.505 0.542
exact match 0.566 0.505 0.390 0.441 0.455
bleu 0.501 0.347 0.282 0.335 0.344
levenshtein 0.418 0.449 0.589 0.548 0.529
meteor 0.618 0.569 0.457 0.516 0.528
rouge-1-p 0.596 0.605 0.477 0.520 0.547
rouge-1-r 0.580 0.588 0.453 0.503 0.524
rouge-1-f 0.581 0.587 0.453 0.501 0.523
rouge-2-p 0.489 0.478 0.327 0.368 0.380
rouge-2-r 0.487 0.480 0.323 0.365 0.374

metric mm um mu uu base
rouge-2-f 0.485 0.475 0.323 0.363 0.373
rouge-l-p 0.596 0.604 0.476 0.520 0.546
rouge-l-r 0.579 0.588 0.452 0.502 0.523
rouge-l-f 0.581 0.587 0.453 0.500 0.522

Table 11: Results for the Limited Context Method Body Prediction
Experiment

metric bp fr base
exact match 0.004 0.007 0.007
bleu 0.036 0.058 0.052
levenshtein 0.985 0.977 0.976
meteor 0.098 0.188 0.216
rouge-1-p 0.521 0.408 0.353
rouge-1-r 0.137 0.231 0.280
rouge-1-f 0.180 0.229 0.246
rouge-2-p 0.145 0.142 0.109
rouge-2-r 0.050 0.117 0.148
rouge-2-f 0.058 0.095 0.100
rouge-l-p 0.503 0.397 0.342
rouge-l-r 0.134 0.228 0.278
rouge-l-f 0.176 0.225 0.242
exact match 0.000 0.018 0.008
bleu 0.002 0.026 0.060
levenshtein 0.993 0.977 0.979
meteor 0.038 0.117 0.233
rouge-1-p 0.507 0.365 0.351
rouge-1-r 0.090 0.136 0.302
rouge-1-f 0.145 0.164 0.262
rouge-2-p 0.121 0.054 0.121
rouge-2-r 0.020 0.033 0.161
rouge-2-f 0.032 0.041 0.113
rouge-l-p 0.462 0.365 0.341
rouge-l-r 0.085 0.136 0.299
rouge-l-f 0.137 0.164 0.257

Table 12: Results for the Full Context Method Body Prediction Ex-
periment

metric bp fr base
exact match 0.015 0.014 0.010
bleu 0.235 0.222 0.180
levenshtein 0.954 0.961 0.969
meteor 0.380 0.409 0.385
rouge-1-p 0.514 0.425 0.365
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metric bp fr base
rouge-1-r 0.452 0.563 0.615
rouge-1-f 0.425 0.406 0.382
rouge-2-p 0.321 0.277 0.229
rouge-2-r 0.307 0.422 0.486
rouge-2-f 0.276 0.276 0.254
rouge-l-p 0.505 0.421 0.361
rouge-l-r 0.444 0.559 0.612
rouge-l-f 0.418 0.403 0.379
exact match 0.101 0.062 0.043
bleu 0.333 0.292 0.279
levenshtein 0.920 0.941 0.952
meteor 0.476 0.487 0.534
rouge-1-p 0.541 0.504 0.538
rouge-1-r 0.391 0.484 0.581
rouge-1-f 0.423 0.454 0.523
rouge-2-p 0.341 0.340 0.367
rouge-2-r 0.264 0.367 0.463
rouge-2-f 0.278 0.324 0.384
rouge-l-p 0.531 0.499 0.534
rouge-l-r 0.385 0.481 0.579
rouge-l-f 0.415 0.450 0.521
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