

Delft University of Technology

Federated Learning for Tabular Data
Exploring Potential Risk to Privacy
Wu, Han ; Zhao, Zilong ; Chen, Lydia Y.; van Moorsel, Aad

DOI
10.1109/ISSRE55969.2022.00028
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE)

Citation (APA)
Wu, H., Zhao, Z., Chen, L. Y., & van Moorsel, A. (2022). Federated Learning for Tabular Data: Exploring
Potential Risk to Privacy. In C. Ceballos (Ed.), Proceedings of the 2022 IEEE 33rd International Symposium
on Software Reliability Engineering (ISSRE) (pp. 193-204). IEEE.
https://doi.org/10.1109/ISSRE55969.2022.00028
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISSRE55969.2022.00028
https://doi.org/10.1109/ISSRE55969.2022.00028

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Federated Learning for Tabular Data: Exploring
Potential Risk to Privacy

Han Wu∗
School of Computing
Newcastle University

Newcastle upon Tyne, UK

han.wu@ncl.ac.uk

Zilong Zhao∗
Department of Computer Science

Delft University of Technology
Delft, Netherlands

Z.Zhao-8@tudelft.nl

Lydia Y. Chen
Department of Computer Science

Delft University of Technology
Delft, Netherlands

lydiaychen@ieee.org

Aad van Moorsel
School of Computer Science

University of Birmingham
Birmingham, UK

a.vanmoorsel@bham.ac.uk

Abstract—Federated Learning (FL) has emerged as a po-
tentially powerful privacy-preserving machine learning method-
ology, since it avoids exchanging data between participants,
but instead exchanges model parameters. FL has traditionally
been applied to image, voice and similar data, but recently it
has started to draw attention from domains including financial
services where the data is predominantly tabular. However, the
work on tabular data has not yet considered potential attacks,
in particular attacks using Generative Adversarial Networks
(GANs), which have been successfully applied to FL for non-
tabular data. This paper is the first to explore leakage of private
data in Federated Learning systems that process tabular data. We
design a Generative Adversarial Networks (GANs)-based attack
model which can be deployed on a malicious client to reconstruct
data and its properties from other participants. As a side-effect
of considering tabular data, we are able to statistically assess the
efficacy of the attack (without relying on human observation
such as done for FL for images). We implement our attack
model in a recently developed generic FL software framework for
tabular data processing. The experimental results demonstrate
the effectiveness of the proposed attack model, thus suggesting
that further research is required to counter GAN-based privacy
attacks.

Index Terms—Federated Learning, GAN, Privacy, Tabular
Data

I. INTRODUCTION

Federated Learning (FL), or collaborative learning in some

literature, is an emerging paradigm for machine learning

models, specifically useful to maintain privacy for sensitive

personal information [1]. FL enables multiple clients (e.g., end

users, companies, institutes) to cooperatively train a machine

learning model without exposing their sensitive data (e.g. cus-

tomer identifiable information, healthcare records) [2]. During

the training process, each client iteratively trains a sub-model

using its local data and exchanges only the parameters of

the sub-model with a parameter server to construct a global

model. Clearly, this potentially alleviates or at least reduces the

privacy risks associated with traditional, centralised, machine

learning that rely on data sharing. Compelling use cases

of FL reported in the literature include a risk management

application for small and micro enterprise loans [3], an edge

computing platform for fire detection [4], and an anti-money

laundering system for banks [5].

∗Equal contribution

Despite the fact that in FL data itself is not exchanged, the

risk to privacy is not completely eliminated. Recent attack

models on FL have managed to reveal sensitive informa-

tion of the training data by studying the model parameters

exchanged [6]–[10]. These attacks have been performed on

image processing models, for instance, the attack model runs

on a malicious parameter server in [10] to reconstruct the

persons’ images owned by a specific client. To evaluate the

efficacy of such attack, one subjectively judges whether the

image generated by the attack model is close to the target one

[6].

In many application areas, such as financial services, data

does not come in the shape of images, but is tabular data, that

is, data consisting of information and values structured in rows

and columns (such as in spreadsheets). A typical example is

a table of customer records, and in such cases, tabular data

will typically contain sensitive information about individuals,

such as income and marital status. In recent years, researchers

have started to apply FL to tabular data, mostly focusing on

improving performance [2], [11], [12]. However, given the

sensitive nature of much tabular data, it is essential to consider

privacy implications of FL when applied to tabular data.

In this paper, we explore if it is possible to infer infor-

mation about the collective data of the various participants

based solely on the exchange of machine learning model

information. Particularly, our attack model assumes one of the

participants to be malicious, called adversary, aiming to infer

collective data properties about some data classes. We call

this a class property inference attack. The adversary adopts

advanced data synthesising technology, Generative Adversarial

Networks (GANs) [13], to construct samples of the target

class. Through these samples the adversary infers the statistical

property of the target class, i.e., the distributions of some

attributes.

Despite the great success that GANs have achieved in

image processing [14]–[16], GANs for tabular data synthesis

are still in the preliminary stage of development [17]–[19].

Therefore, attacks against FL for tabular data have not been

considered yet in the literature. In this paper, we therefore

propose a tabular GAN-based privacy attack approach against

FL systems. Our attack approach is inspired by GAN-based

attacks on image data such as studied by [20] and [9], but with

193

2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/22/$31.00 ©2022 IEEE
DOI 10.1109/ISSRE55969.2022.00028

20
22

 IE
EE

 3
3r

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

So
ft

w
ar

e
Re

lia
bi

lit
y

En
gi

ne
er

in
g

(IS
SR

E)
 |

 9
78

-1
-6

65
4-

51
32

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

SR
E5

59
69

.2
02

2.
00

02
8

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

Bank A

Parameter Server

Bank B

Bank C

Central Server

Bank ABank B

Bank C

Local
data

Model
Parameters

(a) Centralised Learning (b) Federated Learning

Local
data

Fig. 1: Conventional Centralised Machine Learning and Federated Learning.

some differences: (i) Our attack model runs on a malicious

client, while [9] assumes the parameter server to be malicious;

(ii) [20] assumes that the adversary can change the architecture

of the global model (e.g., number of neurons), which is not

realistic and we deprecate this assumption in this paper; (iii)

[20] aims to reconstruct the class of images that look similar,

while our attack focuses on inferring statistic characteristics of

the specified class and we use quantitative methods to evaluate

the privacy risk, which is missing in [20].

To demonstrate the effectiveness of our attack, we perform

experiments on datasets that are not Independent and Identi-

cally Distributed (Non-IID). Non-IID means the data distribu-

tions of participating FL clients differ from each other or are

dependent. The Non-IID setting is particularly susceptible to

privacy leakage, as we will see. We introduce distance metrics

to quantitatively measure the statistical similarity between

the synthetic samples and target ones. In this sense, tabular

data allows for statistically more powerful assessment of the

success of attacks than image data, which relies on subjective

similarity assessment [6] using the human eye.

The results of our experiments show that an adversary

is able to infer considerable information about potentially

sensitive data properties. In tabular data for a finance scenario,

such data leakage could for instance pertain to income and

marital status of customers associated with the target class. We

also compare our GAN-based attack with the use of GANs

for synthetic data generation. Interestingly, an unexpected

outcome of our experiments is that for certain properties

associated with a data class, the data generated in our GAN-

based attack is more similar to the real data than that generated

by state-of-the-art synthetic tabular data generators. This is

particularly the case for data features that most influence the

classification.

In summary, the main contributions of this paper are:

• To the best of our knowledge, we are the first to explore

privacy risks in FL for tabular data. Related GAN-based

attacks have mainly focused on recovering image data

and the approaches are not directly applicable for tabular

data.

• We propose a class property inference attack on tabular

data classification models in FL, where the adversary

infers the property of the target class. Then we use

similarity metrics to evaluate the seriousness of such

private information leakage.

• We conduct extensive experimental evaluation to assess

the efficacy of our attack. On the Bank Loan and Credit

datasets, our model successfully infers private informa-

tion of the target class.

II. PRELIMINARY KNOWLEDGE

A. Federated Learning

Throughout this paper, we comprehend the machine learn-

ing model as a deterministic function Y = f(x1, x2, . . . , xd; θ)
parameterised by a set of parameters θ. We work with

the supervised learning models for tabular data classifica-

tion. Specifically, the input is a d-dimensional feature vector

(x1, x2, . . . , xd) such as the profile record of a customer

(e.g., age, gender, income). The output of the model Y has

a finite set of labels such as the types of customer’s loan

status (e.g., positive or negative). The training data is a set

of data records in the form of (x1, x2, . . . , xd, y), in which

y is the correct class label of the corresponding features.

The objective of model training is finding the optimal set of

parameters that fits the training data. In the training process,

the model normally starts from randomly selected parameters,

then the loss function L is computed to evaluate the distance

between the model output and the actual labels. We use

L(f(x1, x2, . . . , xd), y; θ) to denote the loss calculated on the

data record (x1, x2, . . . , xd, y) given the model parameters

θ. The model adopts the optimization function to iteratively

update its parameters, based on the loss computed on a

batch of training data records. The training finishes when the

parameters remain stable around certain values and the loss is

close to the minimum.

Considering the concrete example illustrated in Fig. 1, in

which multiple banks establish collaboration on developing

a machine learning model that predicts their customers’ loan

status. We assume such collaboration to be necessary because

each bank holds a small set of available customer data and

none of the banks is able to train a usable model on its own. In

the conventional machine learning approach, all banks upload

their local data to a central server for training, as depicted in

Fig. 1(a). The central server releases the final model to each

of the banks when the training is finished. This is effective

but under high privacy risk as the sensitive data is transferred

from one place to another.

194

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

Update

model

Generator
G

Real
Data

Synthetic
Data

Discriminator
D

Discriminator
Loss

Generator
Loss

Random noise
z

Update model

Fig. 2: The general architecture of a GAN.

Federated Learning, introduced by McMahan et al. in [11],

is a distributed machine learning framework designed for

privacy preservation. Compared to the conventional training

methods that collect all data in one place for training, FL

allows multiple clients to jointly train a model, while keeping

their data stored locally. Fig. 1(b) presents the case of FL

paradigm, where each bank trains a model locally and shares

only the model parameters. We use θi to denote the parameters

of the local model fi on the i th client. As FL training starts,

each client trains the local model using the loss Li computed

on its local data, and then uploads its model parameters θi to

the parameter server. The parameter server aggregates these

local models based on the model averaging function:

θ∗ =

K∑
i=1

ωi · θi, (1)

where K is the total number of clients and ωi is the aggre-
gation weight assigned for the i th client. The clients download

the averaged model parameters θ∗ from the parameter server

to update its local model, and apply it for the next round

training. We use x to denote any input features in the shape

of (x1, x2, . . . , xd). The FL training finishes when the global

model, denoted by f∗(x; θ∗), converges and reaches a certain

accuracy on all clients.

In this paper we work on Horizontal FL, where the tabular

data on different clients share the same feature space but have

different sample space [21]. For instance, in the tabular dataset

held by the banks in Fig. 1, each row corresponds to one

particular customer. These banks have different rows of data,

i.e., different groups of customers, with the same personal

features. The case where the clients have different feature

spaces is called Vertical FL [2], [22], which is beyond the

scope of this paper.

B. Generative Adversarial Networks

In 2014, Goodfellow et al., for the first time, introduce

the Generative Adversarial Networks (GANs) to generate syn-

thetic image samples indistinguishable from the real ones [13].

The training strategy of the GAN is a zero-sum game between

two competing deep learning networks. The architecture of

this game is depicted in Fig. 2. The generator network G
takes random noise as input to generate synthetic samples,

which are fed to the discriminator network D together with the

real samples. D is trained to distinguish the synthetic samples

from the real ones, while G is trained to fool D. Both real

data and synthetic samples are fed into D and the output

is the predicted ’real’ or ’synthetic’ label of the input data,

which is combined with the actual input label to compute the

discriminator loss LD. The generator loss LG is computed to

evaluate the similarity between real and synthetic samples. LD
and LG are applied to update D and G respectively.

This game ends when D is unable to distinguish between the

samples from the real training data and the synthetic samples

generated by G. The objective of GANs can be summarised

as the equation below [13]:

min
G

max
D

E
x∼Pr

[logD(x)] + E
z∼Pz

[log(1−D(G(z)))] (2)

where Pr denotes the distribution of the real training dataset

x, and Pz is the distribution of the random input z for G. The

distribution of the generator’s output G(z) is denoted by Pg .

Ideally, the GAN expects to obtain Pr = Pg when the training

finishes.

III. RELATED WORK

Privacy Attacks on Federated Learning. Privacy attacks

on FL can be categorised into insider and outsider attacks

according to the sources of attacks [23]. Outsider attacks are

those carried out by eavesdroppers on the communication

network of FL system, or the users who can access the final

trained FL model. In this paper, the discussion of privacy

attacks on FL mainly focuses on the insider attacks, which

are launched by the FL server or the clients in the FL system.

Membership inference attacks have been extensively studied

[8], [24]–[26], in which the attacker aims to infer whether a

given data point has been used for training the model. Melis

et al. [8] first apply the membership inference attack against

FL to infer the presence of exact data points in other clients’

training data. The authors also managed to infer the properties

of a subset of the training data by using property classifiers.

Under the assumption that the final FL model is accessible,

previous reconstruction attacks on Machine Learning model,

such as the Model Inversion Attack (MIA), would apply [6],

[27]. MIA has been studied to reconstruct a recognisable

image of a person, given only access to the trained facial

recognition model and the person’s name. Hitaj et al. [20]

first apply GANs on the malicious client to reconstruct the

class representatives of other clients in FL. In [9] the authors

assume the parameter server to be the attacker and reconstruct

the training data on a specific client. However, only in the

special case where all class members are similar, the results

of those reconstruction attacks are close to the training data

[8]. For instance, all handwritten images of the digit ’3’ are

visually similar, thus the synthetic images of ’3’ look similar

to the real ones [20]. Additionally, the reconstruction attacks

mainly focus on image processing models, and the results are

just visually measured.

Tabular GANs. Beyond GAN’s success in generating

images [28], [29], generating realistic synthetic tabular data

using GANs has only recently been introduced. For instance,

medGAN is proposed in [30] to generate synthetic patient

records via a combination of an autoencoder and GANs. Park

195

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

et al. [17] propose table-GAN which adopts Convolutional

Neural Network (CNN) to synthesise tables in relational

databases. By contrast, conditional GAN is designed to gener-

ate a specific class of data [14]. CTGAN [18] constructs a spe-

cific conditional vector combined with a mechanism training-
by-sampling. For a chosen discrete column, CTGAN samples

training data by log-frequency which largely oversamples the

minor category. Zhao et al. design CTAB-GAN [19] and

CTAB-GAN+ [31] which can effectively synthesize diverse

data types in tabular data, including the mixed data type of

continuous and discrete variables and long-tail distribution.

IV. SCENARIOS AND ATTACK MODEL

A. Federated Learning Scenario

Our FL scenario follows the framework described in Sec-

tion II-A, additionally includes some details. We assume that

K(K ≥ 2) clients agree on a common learning objective and

collaboratively train a deep neural network model. The clients

reach a consensus on the structure of the neural network model

before training starts. We use Ti = {xi,yi}(1 ≤ i ≤ K) to

denote the tabular data stored locally on client i. The feature xi

consists of Nc columns with data from continuous variables,

namely continuous columns, and Nd columns with discrete-

valued data, called discrete columns. The target column, yi,

is a discrete column that contains the class labels of the rows.

In each round of FL, the client i trains its model locally

using Ti and uploads the model parameters θi to the param-

eter server, which aggregates these parameters according to

Equation (1). To simplify our experiments, we assume that

the parameter server should collect parameters from all clients

before aggregation, while in some work only a fraction of

clients is used [21].

B. Non-IID Data

We use xi = {Ci
1, . . . , C

i
Nc

, Di
1, . . . , D

i
Nd
} to denote the

features of tabular data on the i th client, where {Ci
1, . . . , C

i
Nc
}

are the continuous columns and {Di
1, . . . , D

i
Nd
} are the dis-

crete columns. The values in these columns are considered

as random variables that follow an unknown joint distribution

PTi
= {P(xi),P(yi)}. We study FL scenarios with data that is

not Independent and Identically Distributed (Non-IID), which

means PTi differs from client to client [21]. This is close to the

real world cases that none of the clients knows the distribution

of the overall dataset. Thus collaboration via FL is necessary

in order to obtain a usable prediction model.

Particularly, the Non-IID data in our FL scenario is label

skewed, that is, the distribution of labels, denoted by P(yi)
is imbalanced across clients. For instance, in Section VI we

design the case in which one client holds the dataset with 99%

negative class and 1% positive class, while the other client

holds 90% and 10% respectively.

Studies have shown that compared to centralised machine

learning, the performance degradation is almost inevitable for

FL processing Non-IID data [11], [32]. In our FL framework,

we design a similarity-based aggregation algorithm to com-

pute the aggregation weights assigned for the clients, which

mitigates the impact of Non-IID data. We discuss this further

in Section VI-B.

C. Malicious Client

Our attack model is actively conducted by a malicious

client, the adversary, in the FL scenario. Throughout the FL

process, the adversary pretends to be an honest client but aims

to extract the private information of a specific class, which the

adversary is not supposed to know. Note that there can be two

cases about the target class: (i) the adversary does not have

the data of the target class; (ii) the adversary has only a small

amount of the target class records, so the distribution cannot

represent the property of the class in the overall dataset. Both

cases are studied in Section VII.

Following the FL protocol, the adversary uploads its local

model parameters to the server and downloads the aggregated

results in each round. This way it behaves like a normal client

that collaborates with other clients to train the classification

model. To conduct the attack, the adversary runs the GAN

model locally, and manipulates its local dataset using the

generated samples. This ‘infects’ the model parameters that

the adversary uploads to the parameter server and affect

the aggregated model parameters based on an aggregation

function. Subsequently, the other clients are ‘infected’ and

their sub-models become ’too’ good at distinguishing the target

class, thus the parameters uploaded leak more information

of the target class. The details of the attack procedure is

introduced in the next section.

V. PROPOSED PRIVACY ATTACK

In this section, we introduce the workflow of the proposed

class property inference attack.

A. Attack Target and Outline

Our class property inference attack is not targeted at re-

constructing the actual rows in the real tabular data, e.g., the

records of some specific customers. Instead the adversary aims

to infer only the properties that characterise the target class.

Let class a be the target class of our attack, then the class
property refer to the distributions of the features in class a
data, i.e., P(x | y = a). Particularly, we focus on evaluating

the efficacy of our attack model to infer the distributions of

sensitive columns in the targeted real data. In our work, the

sensitive columns are selected based on the following criteria:

• The content of the column contains personal information

that needs to be protected from public view. The typical

examples include age, income and marital status infor-

mation of customers.

• The properties of the column values, e.g., range and

distribution, can be potentially exploited by scammers or

competitors.

• The column should have a certain effect on the classi-

fication model’s prediction. In other words, the selected

column has a correlation with the prediction target. Oth-

erwise in real FL scenarios, it can problematic to use

irrelevant private features for model training.

196

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

Samples for

Training

Client 1
(Adversary)

Client 2

b

c

Data Label

a

c

Data Label

Client 3
a

b

Data Label

Discriminator

Generator

Parameter
Server

Client 2

θ*

Generator

Loss

Discriminator

Loss

Probabilities

of labels

Local Data

Copy θ*

Samples for Injection

Random noise

Data Poison

GAN training

Target label 'a'

Injected

samples

a b c
0.7 0.2 0.1

θ*

θ*θ
A

θ
2

θ
3

Fig. 3: GAN-based Attack on Federated Learning.

To conduct the attack, the adversary trains a GAN locally

to generate synthetic samples of class a. Specifically, the

network architecture of the generator G follows the tabular

GAN structure proposed in [18]. A GAN discriminator D
requires both the real and synthetic samples as input, as

illustrated in Fig. 2. However, in our attack, the GAN runs

locally on the adversary client and thus real samples of the

class a are not available. The solution is to let the adversary

employ the global model f∗(x; θ∗) as its GAN’s discriminator.

This is possible because the global model is an aggregation

of the classification models trained on all clients, some of

which use the class a data as input. The adversary exploits

this attribute to learn the distribution of the target class data

without directly accessing class a data.

Following the idea of image GAN-based attack in [20], we

employ a data poison method that surreptitiously influences the

FL process into leaking more information about the target class

a. However, [20] changes the global model output dimension

from M to M + 1 (the additional one for judging fake/real

data), given the fact that there are only M classes in the

dataset. This is not realistic in our case because it is suspicious

for the adversary to change the output dimension. In our

approach, the adversary injects a number of synthetic samples

into its local training dataset but changes the labels of those

injected samples to class b. When the adversary trains the local

classification model with the poisoned training dataset, the

model sees a number of samples whose distribution is similar

to class a but are actually labeled as b. Consequently, the

FL system needs to work harder in order to distinguish these

injected samples from the real class a data. The discriminator

finally benefits from this impact as the global model becomes

better at classifying class a.

B. Class Property Inference Attack

The procedure of our class property inference attack is

depicted in Fig. 3. For simplicity, we consider the case in

which three clients (client 1, 2, and 3) collaboratively train a

classification model. Overall, there are three types of labels

to be predicted in the training data, class a, b, and c. To

better elaborate our idea, the example in Fig. 3 follows the

label-skewed Non-IID data scenario discussed in Section IV-B.

Specifically, each client is assumed to own the data of only

two different classes, i.e., Client 1 has classes (b, c), Client 2

has classes (a, c), Client 3 has classes (a, b). As illustrated in

the figure, Client 1 is assumed to be the adversary in the FL

system, which aims to infer the properties of the class a data

(highlighted in green). The steps of the attack are summarised

as follows:

(i) The clients, including the adversary, establish a consensus

on the architecture of the classification model. The param-

eter server computes the aggregation weights based on

the statistic information collected from the clients. This

initialisation process is explained in Section VI-B.

(ii) The FL process runs for a number of rounds, following

the protocol introduced in Section IV-A. In each round

the parameter server aggregates the parameters of models

uploaded by all clients and distributes the global model

to each of them.

(iii) Specifically, within the above step, the normal partici-

pants Client 2 and Client 3 follow the steps below:

1) The client downloads the global model parameters θ∗

from the parameter server to update its local model.

2) The client trains the updated model for a few epochs

using its local data, i.e., Client 2 with class (a, c) data,

Client 3 with class (a, b) data.

3) The parameters of the trained local model θi is up-

loaded to the parameter server.

(iv) Meanwhile, the adversary uploads and downloads model

parameters in the same way as normal clients, but with

different training methods:

1) The adversary downloads the global model parameters

θ∗ to update its local model, and makes a copy of

f∗(x; θ∗) to be the discriminator D.

197

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

2) The generator G takes random noise as input, and

generates samples to emulate class a data. Note that

the output dimension of G is identical to the feature

dimension of the training data, since G aims to generate

one particular type of data.

3) The adversary trains D with both its local real data and

the samples generated by G. Here we need to train with

the real data because the performance of D is unstable

in the early stage of FL training. The output of D is a

multinomial probability distribution of being classified

into the three classes.

4) The discriminator loss and generator loss are computed

and used to update D and G respectively.

5) The adversary generates samples from the G and as-

signs label b to these samples.

6) The real training data is mixed with the generated

samples.

7) The adversary trains its local model on the poisoned

dataset.

8) The parameters of the adversary’s local model, θA is

uploaded to the parameter server.

(v) The FL system finishes training when the global model

f∗(x; θ∗) converges and reaches a predefined accuracy

on all clients.

C. Quantitative Analysis of Privacy Leakage

In our work, we evaluate the efficacy of the proposed attack

via similarity analysis. The more similar the synthetic samples

are to the targeted real data, the more serious the privacy

leakage is, i.e., the more effective the attack model is.

In the attacks on image data, the similarity between gen-

erated images and the target ones is normally evaluated

by people’s subjective opinions. For instance, in order to

quantify the efficacy of their attack on facial recognition

models, Fredrikson et al. perform experiments using Amazon’s

Mechanical Turk to see if human can use their generated

facial images to correctly pick the target person from a list

[6]. The authors take the accuracy of human judgement as

the evaluation metric of similarity. Such evaluation is not

applicable for tabular data since the class of the generated

records can not be simply judged by observation.

In this paper, two metrics are used to measure the sim-

ilarity between synthetic tabular samples and the targeted

real tabular data: the Jensen-Shannon Divergence (JSD) and

the Wasserstein Distance (WD). Specifically, we use JSD to

calculate the similarity distance between two discrete columns,

and WD for the distance between two continuous columns.

The JSD between two probability vectors p and q is defined

mathematically as:

JSD(p, q) =

√
KL(p||m) +KL(q||m)

2
(3)

where m is the point-wise mean of p and q, and KL is the

Kullback-Leibler divergence [33]. The JSD distance metric is

symmetric and bounded between 0 and 1 which makes it easier

to interpret the result. But one limitation of JSD is that it

TABLE I: Dataset used in our experiments.

Dataset Bank Loan Income Type

Number of Records 5,000 10,000
Target column Personal loan Income type

Sensitive columns

Age, income,
family members,
mortgage,
credit card usage

Gender, family members,
income, marital status,
number of children,
age, education type

Accuracy, AUC on CL 0.9850, 0.9951 0.9840, 0.9780
Accuracy, AUC on FL 0.9770, 0.9849 0.9725, 0.9921

is impossible to calculate JSD distance if two distributions

have no overlapping. In practice, the calculation demands the

vectors p and q have the same length, which makes it not

suitable for continuous columns.

The WD between two distributions u and v is defined as:

WD(u, v) = infπ∈Γ(u,v)

∫
R×R

|x− y|dπ(x, y) (4)

where Γ(u, v) is the set of probability distributions on R×R

whose marginals are u and v on the first and second factors,

respectively. It can be interpreted as the minimum cost to

transform one distribution into another where the cost is given

by amount of distribution to shift times the distance it must

be shifted. JSD and WD are also applied in the aggregation

function of our FL framework introduced in Section VI-B.

We use T ◦ = {x◦,y◦}(y◦ = a) to denote the tar-

geted tabular data. The sensitive columns in T ◦ consist of

n continuous and m discrete features, denoted by x◦
p =

{C◦
1 , . . . , C

◦
n, D

◦
1 , . . . , D

◦
m}. Let T ′ = {x′,y′} be the syn-

thetic tabular samples generated by the attack model, and x′
p =

{C ′
1, . . . , C

′
n, D

′
1, . . . , D

′
m} be the sensitive columns, then the

similarity between T ◦ and T ′ is quantitatively measured by

JSD(D◦
i , D

′
i)(i ∈ [1,m]) and WD(C◦

i , C
′
i)(i ∈ [1, n]).

VI. EXPERIMENTAL SETUP

In our experiments, we focus on the scenarios of digital

finance, where the data processed are financial data and the

sensitive columns are considered commercial confidentiality.

We note that the associated code is available upon request.

A. Datasets

Bank Loan dataset. The dataset contains the records of

5,000 customers from Thera Bank1. The prediction target is

a binary category that indicates whether the individual has

applied for the personal loan. After removing the irrelevant

features, the dataset has 11 features, as listed in Table I. In the

five selected sensitive columns, four are continuous columns

while family members is a discrete column.

Income Type dataset. The dataset is sampled from the

Credit Card dataset2 and contains the records of 10,000 credit

card applicants. Instead of the previous binary prediction

1https://www.kaggle.com/datasets/itsmesunil/bank-loan-modelling
2https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction

198

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

target, we choose the attribute income type as our target col-

umn, which has three different classes: working, commercial
associate, and state servant. There are 15 features in the

dataset, including seven sensitive columns, which consist of

five discrete columns and two continuous columns (age and

income), as depicted in Table I.

Bank Loan dataset is for binary classification scenario,

in which the records are classified into one of two classes,

normally positive or negative. The case of classifying records

into one of three or more classes is called multi-class classi-

fication, which we study using the Income Type dataset. As a

benchmark, we first train centralised machine learning models

with the datasets. On each dataset, we use a fully connected

deep neural network, known as multi-layer perceptron to

predict the target labels. Each dataset is split into training

set for model training and test set for evaluation. As listed

in Table I, the centralised learning (CL) prediction accuracy

reaches 0.9850 on the Bank Loan test set and 0.9840 on the

Income Type test set.

In the FL experiments we split the dataset into (K + 1)
subsets, where K is the number of clients in the FL system.

Each client owns one of the subsets, and the remaining subset

is used as the held-out test set. In the case of FL with

Non-IID data, the prediction accuracy of the classification

model is generally lower than in the centralised learning. We

mitigate this deterioration in accuracy by using a similarity

based aggregation algorithm in our FL system, which will be

introduced in the next section. Benefiting from this similarity

based aggregation algorithm, the FL prediction accuracy with

Non-IID data remains above 0.97.

B. Federated Learning Framework for Tabular Data

In previous FL work such as [8], [21], the authors compute

the aggregation weights based only on the size of local data,

which is not comprehensive, especially when it comes to

non-IID data. [34] proposes a way to calculate aggregation

weights based on class distribution, but it only works for single

label data. Since tabular data contains multiple columns, each

column can have different distribution and data type (e.g.,

discrete and continuous). Therefore, the previous weighting

algorithm cannot be directly applied. [12] designs a mecha-

nism to calculate aggregation weights in FL for tabular data

based on (i) data similarity between local and global and (ii)

size of data. When calculating data similarity, [12] evaluates

the distance between local and global distribution column by

column.

Discrete columns use the Jensen-Shannon Divergence

(JSD) [35] to calculate the distance between local and global

class distribution. For each discrete column j and client i,
[12] computes the similarity distance JSDij between local

and global class distribution according to Eq. (3). Concretely,

class distribution is represented by a probability vector (i.e.,

p and q in Eq. (3)) based on image class frequency. Local

and global vectors have the same length (i.e., the number of

all classes in the group) and corresponding bit in all vectors

should represent same class.

Parameter ServerCalculate WD/JSD for
each column

Client j

Continuous
columns

Discrete
columns

Category frequency distribution Variational Gaussian Mixture

Calculate ωj using

the normalised JSD/WD

Client 1

......

Client K

Local data

Fig. 4: The initialisation process before FL training.

Continuous columns use the Wasserstein Distance

(WD) [36]. For client i, it first estimates a Variational Gaussian

Mixture (VGM) for their continuous column j and sends the

V GMij to server. Server samples the continuous column Cij

using V GMij , sampling size is the same as the local data

size of client i. Server gathers all the samples: Cj = {C1j ,

C2j , ... CKj} where K is the number of clients, and uses Cj

as an approximation of global distribution of column j. Then

the distance between local and global distribution – WDij is

calculated by Eq. (4) between Tij and Tj for each client i of

continuous column j.

Once each client calculates the distances for all the columns,

a normalization process is applied on these distances com-

bined with size of local data to calculate the final aggrega-

tion weights in Eq. (1). The above initialisation process is

summarised in Fig. 4. The implication of this aggregation

algorithm is, the more similar the client’s local data is to

the overall dataset, the higher weight it gets in the model

aggregation.

Our FL framework is implemented using the Pytorch RPC

framework. This choice makes it easy to control the flow

of the training steps from the server. Clients just need to

join the group, then wait to be initialized and assigned work.

To parallelize the training across all clients, RPC provides

a function rpc async() which allows the server to make

nonblocking RPC calls to run functions at a client.

One drawback of current RPC framework from Pytorch

v1.8.1 is that it does not support the transmission of tensors

directly on GPU through RPC call. This means that each time

when we collect or update the model weights we need to pay

an extra time cost to detach the weights from GPU to CPU

or reload the weights from CPU to GPU. In this work we

ignore the communication cost and focus only on the privacy

concerns.

C. Model Setup

For all the experiments we conduct preprocessing on the

dataset to speed up the training process. The continuous

columns are scaled into the [−1, 1] range while the discrete

199

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

TABLE II: The Network Architectures in FL Experiments

Bank
Loan

dataset

Classifier/
Discriminator

LL(20, 32)
ReLU−−−−→ LL(32, 64)

ReLU−−−−→
LL(64, 128)

ReLU−−−−→ LL(128, 256)
ReLU−−−−→

LL(256, 128)
ReLU−−−−→ LL(128, 64)

ReLU−−−−→
LL(64, 32)

ReLU−−−−→ LL(32, 2) → Sigmoid()

Generator
LL(128, 256) → BN(256)

ReLU−−−−→
LL(384, 256) → BN(256)

ReLU−−−−→
LL(640, 20) → Tanh()

Income
Type

dataset

Classifier/
Discriminator

LL(62, 64)
ReLU−−−−→ LL(64, 128)

ReLU−−−−→
LL(128, 256)

ReLU−−−−→ LL(256, 128)
ReLU−−−−→

LL(128, 64)
ReLU−−−−→ LL(64, 3)

Generator
LL(128, 256) → BN(256)

ReLU−−−−→
LL(384, 256) → BN(256)

ReLU−−−−→
LL(640, 62) → Tanh()

columns are one-hot encoded. As introduced in Section V, the

FL system with an adversary involves three neural network

models: (i) the classification model (classifier), denoted by

f∗, (ii) the discriminator D which shares the same architec-

ture with the classification model, (iii) the generator G. The

network architectures for the Bank Loan and Income Type

datasets are depicted in Table II. LL represents the Linear

Layer and ReLU, arrows denote the links between the layers,

Sigmoid and Tanh are the activation functions used. Batch

normalisation, denoted by BN, is adopted at the intermediate

layers of the generator. The architecture of G refers to the

work in [18].

In the FL training process, we adopt Adam optimizer in f∗

with the learning rate of 0.0006 for the Bank Loan dataset, and

0.001 for the Income Type dataset. In the experiments where

the adversary is enabled, we use the Adam optimizer in D
with the learning rate of 0.0002 and the weight decay of 1e-6.

SGD optimizer is used in the G and the learning rate is set to

0.0002 with the momentum of 0.9. We arrived at these values

based on our experience running the experiments with the two

tabular datasets. In both normal and attack experiments, each

client trains f∗ for 10 epochs before uploading the model

parameters to the parameter server. We finish the FL training

and save the models for evaluation when the performance of

f∗ stops improving on each client.

In the experiment with an adversary client, we do the normal

FL training for the first few rounds and run the attack model

when the accuracy of f∗ reaches a specified threshold (e.g.

0.85) on the adversary’s local data. This makes the training of

the GANs more efficient as D, whose parameters are copied

from f∗, starts from a considerable accuracy. This schema is

reasonable in realistic as the adversary stays inactive until it

observes that f∗ reaches a functional level on its local data.

This threshold also works for the data poison process, which

means the adversary will not inject new samples to its local

dataset until f∗ achieves a certain accuracy to classify the

poisoned dataset.

VII. EXPERIMENTAL RESULTS

In this section we evaluate the efficacy of the proposed

attack by comparing the synthetic samples with the targeted

real data. We design use cases for both binary and multi-class

classification scenarios. We run two clients in the experiments

with the Bank Loan dataset, and three clients with the Income

Type dataset. One of the clients is selected to play the role of

adversary, and we report on the synthetic samples created in

each round. All experiments are performed on a workstation

running Ubuntu 20.04 LTS equipped with a 3.9 GHz CPU

Intel Xeon W-2245, 16 cores, 128GB RAM and an Nvidia

Quadro RTX6000 GPU card. In our experiments, each client

represents a finance company that joins the FL system. The

computing and communication resources are assumed to be

sufficient and stable since the hardware devices and network

are supposed to be deployed at enterprise level. Therefore, we

do not consider the case with heterogeneous clients, which

is commonly considered in FL system based on smartphone

devices [37].

A. Class Property Inference

Binary classification. We use the Bank Loan dataset to

study a binary classification model f∗
b . The prediction target

personal loan has two categories: negative indicates the cus-

tomer has never accepted a personal loan offer from the bank,

while positive indicate the customer has previously taken such

a loan. We select the positive class as the target class of our

inference attack. In our experiments, the adversary owns 50%

of the overall dataset, the other client holds 40%, and the

remaining 10% is used as the test set for evaluating f∗
b .

To demonstrate privacy leakage most effectively, the ad-

versary is designed to own only a small number of positive
records, i.e., 1% of its local data. Hence, the adversary has

relatively little knowledge about the properties of the positive
class due to the insufficient sample size. By contrast, the other

client owns most of the positive records in the overall dataset.

Fig. 5 illustrates the inference results of the positive cus-

tomers’ income distribution during the FL training process. In

the figures, the green (right-most) curve represents the income
distribution of all positive customers in the overall dataset. The

curve filled with blue (shaded) area is the income distribution

of the synthetic samples generated by the adversary’s GAN

in different FL training rounds. For comparison, we also plot

the positive customers’ income distribution that the adversary

observes from its local data, represented by the red (left-most)

curve. The figure displays the results for increasing number of

training rounds, from 200 to 1000. The FL training finishes

at round 1000 when the classification model f∗
b reaches

convergence.

An intuitive, indicative way to assess the efficacy of our at-

tack is to visually check how well the distribution of synthetic

samples (the curve filled with blue area) fits the distribution

of all target data (the green curve). (Note, a formal assessment

using distance measures is carried out in the next section.) We

observe that the synthetic samples are not yet able to emulate

the actual income distribution of positive customers at earlier

200

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: The distribution of positive customers’ income, for increasing training rounds, using the Bank Loan dataset. The red

(left-most) curve is for the adversary’s local data; The green (right-most) curve is for the overall dataset; The curve filled with

blue (shaded) area is from the synthetic samples generated by the adversary’s GAN. For increasing FL training rounds, the

generated distribution increasingly matches the overall data.

rounds (round 200 to 600). As the FL training progresses,

the distribution of synthetic samples converges and stabilises

within the same range of the actual distribution (round 900 to

1000). This is because the classification model f∗
b becomes

better at distinguishing positive from negative records, and

consequently the GAN benefits from the discriminator D,

whose parameters are copied from f∗
b .

The results of the class property inference attack illustrates

how private information is leaked. The adversary constructs

a distribution that reasonably closely matches the distribution

the real data. More precisely, where the adversary initially

would conclude from its own data that positive customers

have an income level between about 50 and 150 (the red

curve in Fig. 5), by using the proposed attack, the adversary

manages to capture the information that it is not supposed

to know: positive customers actually have a income level

approximately between 100 and 200 (the blue shaded area).

Such privacy violation defeats the reliability of distributed

privacy-preserving learning.

Multi-class Classification. For FL for multi-class classi-

fication we us the Income Type dataset. The overall dataset

consists of three classes: Working (52.4%), Commercial as-
sociate (33.6%) and State servant (14%). The number of

participants (clients in FL context) is three, and each client

owns just two classes of data. Specifically, the adversary has

data about classes (Working, Commercial associate), while

the other two hold (Working, State servant) and (Commercial
associate, State servant) respectively. The target class of our

attack is the properties of the State servant data, e.g., marital

status, secondary education, etc.

Fig. 6 illustrates the inferred distribution of State servants’
marital status over FL training rounds. Marital status is a

discrete column including five categories. In early rounds,

the GAN is still generating relatively arbitrary outputs, as

illustrated by the red bars in round 200 and 240 (the red bar is

the right of the two bars for each value on the horizontal axis).

After 500 rounds of FL training, the attack model captures

the private information that most State servants are married.

Finally, the inferred distribution stabilises and approaches the

actual distribution, as observed from the figures in round 710

and 720. In addition to the example depicted in Fig. 6, the

adversary can infer other private properties from the synthetic

samples. For instance, in the synthetic samples, 64% of the

State servants have secondary education and 34% have higher

education. This observation is close to the characteristic in the

real overall dataset, where the proportions are 58% and 39%

respectively.

B. Similarity Analysis

As introduced in Section V-C, we use the distance measures

JSD and WD to quantify the similarity between synthetic

tabular samples T ′ and the targeted real tabular data T ◦. We

calculate JSD between T ′ and T ◦’s discrete columns, and

WD between continuous columns. A smaller value of JSD/WD

indicates that the values in the two columns are more closely

distributed (specifically, JSD/WD for two identical columns

equals to 0).

Fig. 7 depicts the WD of income between the T ◦ and

T ′, for increasing number of FL training rounds, for the

binary classification problem (the Bank Loan dataset). The

WD distance metric version of the results visualized in Fig. 5

for the income class property, is given in Fig. 7, the curve ’WD

with data poison’. The WD/JSD counterpart of the results for

multi-class classification after 720 rounds, visualized in the

right-most chart of Fig. 6, is in Fig. 9 (the left most column

for each of the properties given on the horizontal axis).

Data Poisoning. For the setting of data poisoning, it

is recommended that the amounts of poisoning data should

not exceed 5% of the adversary’s local training data size.

Otherwise it is difficult for the FL global model to converge.

Through our experimental results, it turns out that the use

of data poisoning (see Section V-A) is important for better

convergence of the distance metrics. To show this, we display

in Fig. 7 results with data poisoning enabled and with data poi-

soning disabled, respectively, while all other settings remain

the same. Fig. 7 indicates that without data poisoning (the

201

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: The distribution of State servants’ marital status, for increasing training rounds, using the Income Type dataset. Each

bar denotes the density/proportion of records with the specific marital status. For increasing training rounds, the generated

distribution increasingly matches the overall data.

Fig. 7: The WD similarity distance between synthetic samples

and the targeted real data, for increasing FL training rounds,

using the Bank Loan dataset. Results are shown with and

without data poison, indicating that using data poison achieves

better convergence.

dashed curve), WD converges less than with data poisoning

enabled. It is observed that the WD fluctuates before the FL

system finishes training. This is due to the fact that every time

the adversary copies the parameters from the global model f∗,

it builds a new D which requires several rounds of training

before the GAN is stable.

C. Comparison with Tabular GANs for Synthetic Data

To the best of our knowledge, this paper is the first to use

tabular GANs for privacy attacks in FL, and therefore there is

no work we can directly compare our approach to. However, a

comparison is possible with GANs used for the generation of

synthetic tabular data, in particular CTGAN [18], CTAB-GAN

[19] and CTAB-GAN+ [31].

We train the advanced tabular GANs until convergence (300

epochs in our experiments) and calculate the JSDs and WDs

between T ◦ and the synthetic samples generated by these

advanced tabular GANs. Note that these advanced tabular

GANs are trained in a single process independent of the FL

system, and they all require the targeted real dataset T ◦ as

input. The synthetic samples of our approach are generated by

the adversary’s GAN in the last round of FL training, round

1000 for the Bank Loan dataset (last figure in Fig. 5) and

round 720 for the Income Type dataset (last figure in Fig. 6).

The similarity results for the targeted class in Bank Loan

dataset are depicted in Fig. 8. Note that in Fig. 5, we only

showed the results for income, here we present the results for

other class properties as well. One would have expected that

the synthetic samples in our approach have a larger similarity

distance than the advanced tabular GANs’ synthetic samples,

since our GAN is not trained with the targeted real data.

However, we can observe that the WD of our approach even

outperforms CTGAN and CTAB-GAN in terms of the age
and income class properties. We speculate that the reason

for this is that these two columns have significant impacts

on the FL classification model and consequently it becomes

easier for our GAN to capture the distributions. By contrast,

the mortgage and family members distributions show a larger

WD/JSD between the adversary’s constructed data and the

targeted real data. This is because the distributions are difficult

to emulate (mortgage is a long tail distribution and most

values are 0) and the features contribute less to the global

classification model.

The similarity results obtained for the multi-class classifica-

tion experiments are given in Fig. 9. With respect to the class

properties, only income and age are continuous values and the

rest are discrete. One can observe that the similarity of our

synthetic samples outperforms the advanced tabular GANs in

terms of the number of children, income and education type
features. In the targeted real dataset, the gender ratio of the

State servant class is approximately 0.3 (male/female). Our

approach fails to infer this property and generates samples

with the gender ratio of 0.84. The JSD/WDs of other sensitive

columns in our synthetic data are comparable with the results

obtained from the advanced tabular GANs.

D. Discussion

Our class property inference attack aims at inferring the

macro-level tabular data property of the target class. While

202

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: The similarity distance between the targeted real data

(positive class of Bank Loan dataset) and synthetic samples.

such information leakage does not reveal the actual private

data of any individual, it can be detrimental to the FL clients,

e.g., financial companies in a real-world setting. Moreover, it is

difficult to detect our attack from either the client or parameter

server perspective. Unlike attack models that rely on white-

box access to the global model [9], [22], [27], our adversary

only requires black-box access and does not modify the global

model directly. Thus our attack’s impact on the final trained

global model is negligible: throughout our experiments, the

accuracy of the global model is above 0.97.

One limitation of our attack is that the inference result

depends on the correlations between the features and the target

class. Therefore the distributions of ’weak’ features are not

likely to be reconstructed by the generator. In practice, the FL

clients are suggested to include as many ’weak’ features as

they can to mitigate such attack.

Existing record-level defenses such as Differential Privacy

are proven to be less effective on property inference attacks

[20], [38]. For other counter measures, we provide suggestions

from a software engineering perspective. FL is an emerging

technology and its Software Development Life Cycle is still

being explored. Our work encourages software engineers to

advance this life cycle and improve FL’s security. In the

requirement analysis phase, engineers will pay more attention

to the clients with highly imbalanced training data since these

clients have the motivation to conduct such attack. Counter

measures at the architecture design level may mitigate the

impact of our attack. For instance, if the clients’ training data

can be kept unchangeable throughout the FL process, then data

poison is prevented. Our work intends to point software and

system engineers to this potential threat and to inspire research

in effective detection methods.

VIII. CONCLUSION

In this paper, we propose, implement and evaluate a GAN-

based privacy attack against Federated Learning that processes

tabular data. The attack enables a malicious client to infer

properties that characterise a specific class, without actually

having access to the data. The malicious client runs a tabular

GAN locally, exchanges model parameters per the usual FL

protocol, and utilises the global model as its discriminator.

Fig. 9: The similarity distance between the targeted real data

(State servant class of Income Type dataset) and synthetic

samples.

Synthetic samples generated by our GAN reveal potentially

sensitive properties of the target class. We use similarity

metrics to evaluate the seriousness of this privacy risk in

our experiment. The results show that our GAN-based attack

manages to infer the distributions of continuous and discrete

properties exhibited by the target class data with increasing

accuracy for more rounds of model updates. Interestingly, our

approach to generate synthetic samples for a privacy attack at

times outperforms state-of-the-art GAN-based synthetic data

generators, which are trained with the actual targeted data.

This is especially the case for data properties that heavily

influence the classification outcome and it will be worth

investigating our approach for the generation of synthetic data.

We finally note that our attack is difficult to detect since the

adversary behaves like a normal client. In future work, we

aim to investigate counter measurements against this attack,

including client-level differential privacy.

IX. ACKNOWLEDGMENTS

This work is supported by the UK Engineering and Physical

Sciences Research Council for the projects titled “Fintrust:

Trust Engineering for the Financial Industry” (EP/R033595/1).

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[2] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving ver-
tical federated learning for tree-based models,” in The 46th International
Conference on Very Large Data Bases (VLDB), 2020, pp. 2090–2103.

[3] Y. Cheng, Y. Liu, T. Chen, and Q. Yang, “Federated learning for privacy-
preserving ai,” Communications of the ACM, vol. 63, no. 12, pp. 33–36,
2020.

[4] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen,
H. Yu, and Q. Yang, “Fedvision: An online visual object detection
platform powered by federated learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 08, 2020, pp. 13 172–
13 179.

[5] M. Alazab, S. P. RM, M. Parimala, P. Reddy, T. R. Gadekallu, and Q.-V.
Pham, “Federated learning for cybersecurity: concepts, challenges and
future directions,” IEEE Transactions on Industrial Informatics, 2021.

203

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

[6] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[7] N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMahan,
“cpsgd: Communication-efficient and differentially-private distributed
sgd,” Advances in Neural Information Processing Systems, vol. 31, 2018.

[8] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019, pp. 691–706.

[9] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 2512–2520.

[10] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[11] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[12] Z. Zhao, R. Birke, A. Kunar, and L. Y. Chen, “Fed-tgan: Feder-
ated learning framework for synthesizing tabular data,” arXiv preprint
arXiv:2108.07927, 2021.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[14] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[15] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[16] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” Advances in neural
information processing systems, vol. 29, 2016.

[17] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim,
“Data synthesis based on generative adversarial networks,” in The 44th
International Conference on Very Large Data Bases (VLDB), 2018.

[18] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional gan,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[19] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen, “Ctab-gan: Effective table
data synthesizing,” in Asian Conference on Machine Learning. PMLR,
2021, pp. 97–112.

[20] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 603–618.

[21] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data:
A survey,” Neurocomputing, vol. 465, pp. 371–390, 2021.

[22] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack on
model predictions in vertical federated learning,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 2021,
pp. 181–192.

[23] L. Lyu, H. Yu, and Q. Yang, “Threats to federated learning: A survey,”
arXiv preprint arXiv:2003.02133, 2020.

[24] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). IEEE, 2017, pp. 3–18.

[25] Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang, H. Tang, C. A.
Gunter, and K. Chen, “Understanding membership inferences on well-
generalized learning models,” arXiv preprint arXiv:1802.04889, 2018.

[26] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in 2019 IEEE symposium on
security and privacy (SP). IEEE, 2019, pp. 739–753.

[27] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in pharmacogenetics: An {End-to-End} case study of person-
alized warfarin dosing,” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 17–32.

[28] S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S. Al-
barqouni, and A. Mukhopadhyay, “Gans for medical image analysis,”
Artificial Intelligence in Medicine, vol. 109, p. 101938, 2020.

[29] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

[30] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Gen-
erating multi-label discrete patient records using generative adversarial
networks,” in Machine learning for healthcare conference. PMLR,
2017, pp. 286–305.

[31] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen, “Ctab-gan+: Enhancing
tabular data synthesis,” arXiv preprint arXiv:2204.00401, 2022.

[32] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[33] J. M. Joyce, Kullback-Leibler Divergence. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 720–722. [Online]. Available:
https://doi.org/10.1007/978-3-642-04898-2 327

[34] R. Guerraoui, A. Guirguis, A.-M. Kermarrec, and E. L. Merrer, “Fegan:
Scaling distributed gans,” in Proceedings of the 21st International
Middleware Conference, ser. Middleware ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 193–206. [Online].
Available: https://doi.org/10.1145/3423211.3425688

[35] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Transactions on Information Theory, vol. 37, no. 1, pp. 145–151, 1991.

[36] A. Ramdas, N. G. Trillos, and M. Cuturi, “On wasserstein two-sample
testing and related families of nonparametric tests,” Entropy, vol. 19,
no. 2, 2017. [Online]. Available: https://www.mdpi.com/1099-4300/19/
2/47

[37] C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, and X. Liu,
“Characterizing impacts of heterogeneity in federated learning upon
large-scale smartphone data,” in Proceedings of the Web Conference
2021, 2021, pp. 935–946.

[38] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differential
privacy for robustness and privacy in federated learning,” in 29th
Network and Distributed System Security Symposium (NDSS 2022),
2022.

204

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2023 at 08:44:12 UTC from IEEE Xplore. Restrictions apply.

