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Predicting compressive stress-strain
behavior of elasto-plastic porous media
viamorphology-informed neural networks

Check for updates

W. Lindqwister 1,2,4 , J. Peloquin 3,4 , L. E. Dalton 1, K. Gall3 & M. Veveakis1

Porousmedia, ranging frombones to concrete and frombatteries to architected lattices, pose difficult
challenges in fully harnessing for engineering applications due to their complex and variable
structures. Accurate and rapid assessment of their mechanical behavior is both challenging and
essential, and traditional methods such as destructive testing and finite element analysis can be
costly, computationally demanding, and time consuming. Machine learning (ML) offers a promising
alternative for predicting mechanical behavior by leveraging data-driven correlations. However, with
such structural complexity and diversemorphology among porousmedia, the question becomes how
to effectively characterize thesematerials to provide robust feature spaces forML that are descriptive,
succinct, and easily interpreted. Here, we developed an automatedmethodology to determine porous
material strength. This method uses scalar morphological descriptors, known as Minkowski
functionals, to describe the porous space. From there, we conduct uniaxial compression experiments
for generating material stress-strain curves, and then train an ML model to predict the curves using
said morphological descriptors. This framework seeks to expedite the analysis and prediction of
stress-strain behavior in porous materials and lay the groundwork for future models that can predict
mechanical behaviors beyond compression.

Porous materials exist in abundance throughout nature, many with unique
morphologies that define their shape and function. These morphologies
range from having highly ordered structures, such as a honeycomb created
by a colonyof bees, todisorderedor stochastic structures suchas the random
frequency and distribution of pores in volcanic rock.Whether investigating
ordered or disordered structures, the meso-scale mechanical properties of
thesematerials have been found to be intrinsically linked to their structure at
the micro-scale1. In the geomaterial space, porous materials like rocks have
found processes like strain localization2–4, fault reactivation5–7, and granular
flow8 largely dependent on microstructural morphology9,10. Engineered
porous materials, such as ceramics11 and energy storage materials12, have
found similar conclusions. In thefield of biomaterials, the interplay between
themicrostructuralmorphology, osseointegration, andmechanics of bone13

have highlighted the importance of understanding the effects of structural
morphology for porous materials.

For studying the intricate morphology of porous materials, methods
like X-ray computed tomography (CT) have exponentially increased the
resolution of imaging and enabled digital 3D reconstructions. However, the

memory size of these datasetsmake high-throughputfinite element analysis
(FEA) simulation costly and impractical in certain applications14,15. To
address this bottleneck, extensive research has been conducted in extracting
morphological features from porous materials to characterize these struc-
tures for mathematical analysis. Recently, a combination of multiple tools
such as skeletonization andPatch Interface ShapeDetectionwas introduced
to extract information about the topology, patch interface lengths, andpatch
interface shapes of the microstructure16. Using this approach, the authors
were able to choose a robust microstructure representation with salient
features. Selection of features is critical in capturing the necessary infor-
mation about amicrostructuralmorphology. Nadiri et al.17 chose a different
set of features with morphology characterizations made using sphericity,
signifying irregularity, and projected area. The process of manually
extracting features from microstructural data is tedious, and for large
datasets it becomes less practical. Automatedworkflows and programs have
been created that can extract features such as grain area, slenderness ratio,
globular volume fraction, and colony size, withminimal user input18–20. Due
to the already extensive research and availability of morphological feature
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extraction methods, this work focused on utilizing these methods to char-
acterize porousmaterialmicrostructures and create descriptive features that
arewell-suited formachine learning (ML) implementation andpredictive of
mechanical behavior.

For the particular case of porous materials, Minkowski functionals
were selected as the primary geometric morphometers Mi, with the idea
emerging from the fields of statistical and digital rock physics21, where
Minkowski functionals were used to describe phenomenon such as the spin
of galaxies22 to the permeability of porous media23. The use of these func-
tionals as the linkage between microstructural geometry and meso-scale
phenomenon is supported byHadwiger’s theorem24, which states that d+ 1
Minkowski functionals can effectively characterize the geometric shape and
composition of a microstructure, with d representing the dimension of the
geometric system. All other descriptors that are additive, motion-invariant
and conditionally continuous are a linear combination of the above func-
tionals. In the case of a 3D system, the four Minkowski functionals of the
domain formedby the grains of themicrostructureΩ are the total volumeof
grains

M0ðΩÞ ¼
Z

Ω
dV ; ð1Þ

the total grain surface area

M1ðΩÞ ¼
Z

∂Ω
dS; ð2Þ

their total mean curvature, with r1 and r2 representing the principal radii of
curvature of the surface element dS

M2ðΩÞ ¼
Z

∂Ω
ð1=r1 þ 1=r2ÞdS; ð3Þ

and their total Gaussian curvature, which directly relates to the Euler
characteristic χ via the Gauss-Bonnet theorem21

M3ðΩÞ ¼
Z

∂Ω
ð1=r1r2ÞdS ¼ 4πχðΩÞ: ð4Þ

ThroughBiot’s seminalwork onunderstanding porousmaterial grain-
scale features, it has been shown that a porous material’s microstructural
geometry directly correlates with meso-scale properties such as strength1,25.
When referring to a porous or composite structure, the mechanical prop-
erties of the structure are often referred to as “effective” properties, such as
effective elastic modulus, to clarify their distinction from a sample of the
givenmaterial with zero porosity.With these descriptors readily extractable
from voxelized images of 3Dmicrostructures, it stands to reason that these
Minkowski functionals would be invaluable in predicting a porous mate-
rial’s mechanical behavior through an ML framework26,27.

Indeed, the development of ML algorithms for training on FEA
simulation data has enabled the discovery of relationships that previously
may have been too time-consuming to gather data for or too complicated in
general, such as predicting the stress-strain curve of a material28,29 or
determining optimal composite designs for maximizing crack
resistance30–32. For understanding the mechanical behavior of a material, a
stress-strain curve provides an invaluable amount of information about its
strength, deformation, and rigidity. Thus, in thisworkwe selected the elastic
region and the onset of the plastic region from uniaxial compressive stress-
strain curves to be the target data for training theMLmodel, with the intent
to further develop the model to predict multiple loading stress-strain
response curves in the future.

The overall goal of this research was to develop a systematic metho-
dology for characterizing porous materials using scalar morphological
descriptors and ML techniques to predict their response to compressive
loading. As a starting point, uniaxial compressive behavior was investigated

due to its ubiquity in real-world scenarios. By integrating physical and
computational elasto-plastic experiments with advanced morphometric
analysis and ML, we aim to expedite the calculation of structure-property
relationships in porous materials across a variety of fields including geo-
materials, structural biomaterials, and energy storage materials. This
approach seeks to present a step toward overcoming the challenges asso-
ciated with the complexity and variability of porousmediamicrostructures,
enabling faster predictions of mechanical behavior. ML models trained on
morphological features offer great potential for applications such as accel-
erating multiscale simulations, enabling real-time structural health mon-
itoring, and optimizing additive manufacturing processes in-situ.

Methods
Selected dataset
The dataset was curated from microstructural CT scans gathered using a
variety of resources. The online database digitalrocksportal.org33 provided
many publicly available 3DCT scans of variousmaterials. All data sourcing
can be found in Supplementary Table 2. These scans consisted of material
samples ranging from rock to wood to coral, binarized and cropped as
voxelized stacks of images. In total, the original dataset consisted of 161 raw
samples. Due to the high resolution of these scans (at aminimum, 750 × 750
× 750 voxels, with many double the size), the raw samples were segmented
into sub-samples, multiplicatively increasing the size of the available dataset
to 4200. Ultimately, 654 sub-samples were used for FEA simulation and
training of the ML model. It is important to note that this sub-sampling
technique created sub-samples that, although not being identical, were
extracted fromthe same rawmaterial sample.This hasbeenaccounted for in
the selection of the ML training and evaluation sets.

Representative elementary volume analysis
One area of consideration when segmenting 3D images for ML data set
generation is to find a representative elementary volume (REV), so that the
selected sub-samples are representative of the raw material sample. REV
analysis consists of analyzing properties of interest for randomly selected
sub-samples to understand how the segmented volume of a particular sub-
sample affects its calculated morphological properties. As the size of the
sampling volume increases, the values of individual properties should
converge to those of the raw sample34.

Due to the variable nature of the raw data used in this scientific study
(differing resolutions, CT scanning parameters, raw sample sizes, etc), REV
analysis was performed to normalize volumes for training such that all sub-
samples were composed of identical voxel counts, and to determine the
minimum sub-sampling volume for cropping the 3D microstructures. To
address this issue of dataset scaling, all Minkowski functionals must be
normalized to be scale-invariant35. Due to Euler characteristic and surface
area being inherently dependent on the tortuosity and resolution of a
microstructure, respectively, both of these values are directly correlatedwith
the volume of a sample. However, literature has shown that normalizing
these values via sample volume tends to yield acceptable REV results34–36.
Furthermore, the correlation coefficient of a scatter plot of non-normalized
Euler numbers versus varied volumes gives an indicator on the scale-
invariance of a microstructure, with a higher correlation coefficient corre-
sponding to a more scale-invariant microstructure36.

As seen in Fig. 1, REV analysis for porosity, surface area, and Euler
characteristic visibly converged to scale-invariant values. The minimum
sampling volume fraction that, for all three REV scales, achieved variance
less than the threshold value of 0.01was 0.2 voxels/voxels. This indicates that
microstructural properties remain scale-invariant up to a volume fraction
0.2, giving a lower bound to the sub-samplingmethod described inmethods
andFig. 2.With aminimumrawsample volumeof 750 × 750×750voxels, a
sub-sampling cube size of 150 × 150 × 150 voxels was selected.

Morphometer extraction pipeline
Toextract geometricmorphometers fromthevoxelized3Dmicrostructures,
the open source digital reconstruction and image processing software
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Fig. 1 | Results from representative elementary volume (REV) analysis. A Porosity values assessed from randomly sampled volumes. B Surface area values, normalized by
volume, assessed from randomly sampled volumes. C Euler characteristic values, normalized by volume, assessed from randomly sampled volumes.
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Fig. 2 | Graphical representation of ImageJ morphometer extraction workflow
and machine learning (ML) process. A Original scan of raw sample. B Cropped
original scan to create rectangular prism.C Subscan of cropped scan.D Subscanwith
individual grains identified via Watershed algorithm. EMinkowski functionals and
(F) mean grain morphological descriptors are calculated and exported as .CSV file.
GA3D surfacemesh file of the entire subscanmicrostructure is exported as STL file.
HMinkowski functionals and mean grain descriptors are combined for each sub-

sample and used to (I) train a neural network. Themesh files are used to (J) perform
monotonic compression testing via finite element analysis (FEA), and (K) the stress-
strain curves are then given to the network as targets for training. The number of
inputs are represented by n and the number of outputs are represented by p, where n
are morphological features of the microstructure and p are stress values for points
along the elastic and into the plastic region of the stress-strain curve for the
respective microstructure.
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ImageJ and the morphometer extraction library MorpholibJ37 were used.
This process is represented schematically in Fig. 2 and is briefly described
here:Upon importing and cropping the voxelized3D image to a rectangular
prism, the image was automatically binarized to separate the solid and void
portions. This cropped prism was then segmented into smaller prisms to
increase the dataset size for ML. A marker-based watershed segmentation
algorithm was then performed on the subscan to separate and label each of
the solid grains within the material38. With the image segmented and the
individual grains identified, morphological analysis was completed using
the MorphoLibJ plugin. M0, the total volume of grains, was calculated by
counting the total number of voxels in the 3D image and converting this
value to porosity by dividing by the total bounding size of the image. Surface
area, M1, was calculated following Lang et al., and is described in the
MorpholibJ manual37. Per Armstrong et al. and Guevel et al., total mean
curvatureM2 is captured by the mean grain size10,21, which is quantified as
the mean breadth inMorpholibJ. The mean breadth �b of a convex set is the
average of the caliper diameter over all directions, and for a domainΩwith a
smooth boundary ∂Ω, is proportional to the integral of the mean
curvature37,39 as follows:

�b ¼ 1
2π

Z
∂Ω

κ1ðxÞ þ κ2ðxÞ
2

dS ð5Þ

with κ1,2(x) representing the principal curvatures of a surface. These
quantities are inversely related to the radii of curvature identified in Eq. (3).
The final morphometer M3, Gaussian curvature, is quantified through the
Euler characteristic indicated in Eq. (4), where the Euler number in 3D is
calculated through6-connectivity.AswithM0,M1,2,3 were all normalized by
image volume to ensure feature scalability.

Outside of the four normalized Minkowski functionals, 31 other
microstructural features were extracted for MLmodel training to verify the
feature significance of the Minkowski functionals and see which combi-
nations of features resulted in the highest model performance. As indicated
in Supplementary Table 3, these additional features included angular
orientation values for describing the anisotropy of the structure, number of
voxels within the structure, andmore37. The additional 31 features were also
examined to quantify potential anisotropy of the materials. Hadwiger’s
theorem assumes a motion-invariant—or isotropic—microstructure24,
meaning themicrostructuralmeasurements are expectednot to varyheavily
in anydirection,which is reflected in the scalar representation ofMinkowski
functionals. Although porous materials tend to be largely isotropic, it was
hypothesized that the sub-sampling method may have increased the effects
of local anisotropy potentially making additional features a requirement for
accurate ML predictions.

Finite element analysis
With a sufficient dataset of 3D microstructures and their extracted
morphometers, FEAsimulationswith an elasto-plastic constitutive lawwere
performed to generate a compressive stress-strain curve for each sub-
sample. The open-source, parallel-processing capable finite element pack-
ageMOOSE/REDBACKwas used as themain FEAplatform40,41. Through a
python-based scripting pipeline, MOOSE/REDBACK was fed voxelized
microstructural volumes for high-throughput analysis, with meshing per-
formed through its built-in microstructure mesh generator. Following the
methodology of Lesueur et al. (2017)42, these subscan volumes were
imported into MOOSE as image stacks of .tif files, creating voxel-based
hexahedron elements corresponding to the individual voxels of the image
stack. To speed up the collection of FEA simulation data, a mesh con-
vergence study was performed to potentially reduce the order of nodes on
the mesh and to exponentially decrease simulation time. From the mesh
convergence study, a minimum mesh of 50 × 50 × 50 nodes was found to
invoke just a 5% error on the final converged value. Thus, the mesh was
coarsened down to 50 × 50 × 50 nodes from 150 × 150 × 150, decreasing
individual simulation time from 30 hours to 1 hour at a relatively minimal
cost to simulation accuracy.

The focus of this work was to predict compressive stress-strain beha-
vior using the Minkowski functionals, and particular emphasis was not
placed on a specificmaterial application as the authors believe the developed
methodology could, in similar form, apply to many different porous
materials. However, to further explore the predictive capabilities of the
trainedmodelwith application to real-world loading scenarios, thematerial
parameters for FEA were chosen to correspond with those of a readily
available 3D printable material. In the absence of the physical material
samples used for generating the raw CT dataset, selection of this 3D prin-
table material enabled fabrication of physical representations of the CT
dataset that could be physically tested and compared with the FEA results.

TheFEAwas set up to simulate uniaxial compression.Thus, eachmesh
was subject to fixed displacement rate loading across the top face of the cube
while the bottom of the sub-sample remained fixed. Each sub-sample was
scaled to a size of 22mm x 22mm x 22mm and loaded at a rate of 5 mm/
min. A Young’s modulus of 2.6 GPa and Poisson ratio of 0.35 were used to
simulate the material behavior of the 3D printing material selected: For-
mlabs Grey Pro resin. Properties for this material were determined as per
ASTM D695 using the same printer, material, and testing apparatus as
described in themethods section.Beyond the standardmaterial properties, a
non-linear plasticity tensor following the Von Mises J2 plasticity criterion
was implemented alongside an isotropic elasticity tensor to simulate both
linear and nonlinear behavior of thematerial43. An isotropic, constant strain
hardening was implemented, integrating the behavior into the material
without bogging down high-throughput calculations for relatively limited
accuracy gains.

Microstructure-informed neural networks
The extractedmorphometers and FEA results were used for training anML
model to predict uniaxial compressive stress-strain curves from the
morphometers. The morphometers (see Supplemental Table 3) were used
as input features, providing morphological information about the micro-
structure. Model training was conducted separately with the entire set of 35
extracted morphometers as input, and then with only the four Minkowski
functionals as input for performance comparison against the entire set of
morphometers. The targets during model training were the compressive
stress-strain curves calculated using FEA, which consisted of 250 pairs of
stress and strain data points for each microstructure. To reduce the target
dimensionality, all curves were sampled at 15 equally spaced strain values
before being used for model training, resulting in 15 stress values for the
targets of each sample.

The ML algorithm used to train the model was selected to be a neural
network. A wide variety of approaches have been studied for using neural
networks to predict the mechanical behavior of materials based on struc-
tural characteristics28–30,44–48, and the network designs used in these studies
motivated the design of the neural network used in this work. Specifically,
Hassanin et al. showed that accurate predictions of strictly periodic porous
lattice mechanical properties could be made from a relatively small amount
of training data and features using a simple network consisting of three
hidden layers each with 50 nodes45.

Using these network parameters as a starting point, a multi-
dimensional search grid of parameter combinations was developed to
fine-tune the network parameters for the givendataset. As shown inTable 1,
three network parameters were varied during the grid search optimization:
nodes per layer, number of hidden layers, and activation function.With ten
options of nodes per layer, between one and five hidden layers, and four
activation functions, creating all possible combinations resulted in a total of
200 unique parameter combinations for the grid search. For each parameter
combination, 10-fold cross validation was performed with a training-
validation ratio of 80:20. With 600 samples used for model training, this
resulted in 480 training set samples and 120 validation set samples in each
fold. Each model was pre-trained using an unsupervised greedy layer-wise
technique45 and the training method used was Levenberg-Marquardt (a
damped least squares method with interpolation between the Gauss-
Newton algorithm and gradient descent) with mean square error (MSE) as
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the objective function to beminimized.Network trainingwas stoppedwhen
any of the following stopping criteria were met:
• At least 1000 training epochs occurred.
• The performance gradient fell below 1e-07.
• The adaptation parameter (mu) rose above 1e10.
• Validation error increased more than 6 times since the last time it

decreased.
After training, the performance of each model was further evaluated

using the set of 54 randomly selected evaluation samples that were withheld
from the training process. It should noted, however, that the training/eva-
luation set splitwasmade such that no sub-sampleswithin the evaluation set
were extracted from the same raw sample as any sub-sample in the training
set. This ensured that the evaluation set sub-samples were truly dissimilar
from those used in model training. Ultimately, a network consisting of one
hidden layer with 50 nodes and a sequential set of Sigmoid to Linear acti-
vation functions were selected based onmodel performance during the grid
search and the relative simplicity of the model compared to similarly per-
formingmodelswithmore layers or nodes (within anR2 of ± 0.001) (Fig. 2).

Physical sample fabrication and testing
As FEA results were collected, experimental tests were performed to verify
the FEA results with physical analogues. A Formlabs Form2 stereo-
lithography (SLA) printer was used with Formlabs Grey Pro resin and a
layer height of 0.05mmto fabricate thephysical samples. Thismethodof 3D
printing was selected because it is fast, it produces parts less anisotropic in
nature than traditional fused depositionmodeling (FDM) printing, and it is
considerably less expensive than powder-based printing methods. After
printing, uniaxial compression testing was performed on the 3D printed
microstructuresusing aTestResources 830E5 testing apparatus, as shown in
Fig. 3. The compression testing was performed at a load rate of 5mm/min
until an end strain value of 50%was reached (for 22mmheight samples this
resulted in a strain rate of 0.004 s−1). The experimentally collected com-
pressive stress-strain curveswere compared to those calculatedwith theFEA
simulation. In total, 20 unique sub-samples from 20 different raw samples
were fabricated and physically tested, with N = 3 duplicates of each sub-
sample to account for variance.

Results
Automated workflow efficiency
The speedatwhich the automatedworkflowcollects datawasdeterminedby
dividing the workflow into five steps: 1) segmenting the CT scan and
extracting geometric morphometers, 2) applying a finite element mesh and
running the FEA, 3) concatenating FEA results with morphometers to

create a database for ML, 4) performing the hyper-parameter optimization
grid search, and 5) training the final model. The average per-sample time
was computed for relevant steps, and the results were tabulated in Supple-
mentary Table 1. Once the raw sample file had been stored in the proper
directory location, the processwas completed automatically and requires no
user input.

Machine learning results and performance
Using the complete set of 35 input features and15 target output stress values,
the model performed well with a training R-square value of 0.969 and an
evaluation set R-square value of 0.943 (Fig. 4). There were a few notable
samples that had predictions with considerably less accuracy than others,
represented by the strands deviating farthest from the parity line. After
achieving success using the complete set of 35 input features, themodel was
retrained with only the fourMinkowski functionals as input features. Based
on Hadwiger’s Theorem, as discussed in the introduction, it was hypothe-
sized that these four functionals would accurately capture the micro-
structure geometry and thus provide themodel with necessary information
to create accurate predictions. After training the model with this reduced
input feature space, an evaluation set R-square value of 0.939 was obtained
(Fig. 4), showing a reduction in performance of only 0.004 from the original
model trained with all 35 features.

To evaluate the effectiveness of Minkowski functionals as input
features, model performance was compared across different feature sets.
Figure 5 shows the evaluation set R2 values for models trained with all 15
possible combinations of Minkowski functionals, all 35 extracted mor-
phometric features, and only the 31 non-Minkowski morphometers. The
M0 (volume) and M1 (surface area) functionals had a greater impact on
improving stress-strain prediction accuracy compared to M2 and M3,
which represent mean and Gaussian curvature, respectively. Although
the highest performance was achieved using all 35 extracted morpho-
metric features, as shown in Fig. 4, the model trained with just the four
Minkowski functionals performed nearly as well. Models trained with
only the 31 non-Minkowski morphometers showed similar performance

Table 1 | Table containing theneural networkparameters used
to create a grid search during model training

Nodes per Layer Number of Hidden
Layers

Activation Function

15 1 Linear

30 2 ReLU

45 3 SiLU “Swish”

60 4 Sigmoid

75 5 -

90 - -

105 - -

120 - -

135 - -

150 - -

The grid search was performed using each unique combination of parameters above, resulting in
200 unique combinations from ten node per layer values, five hidden layer numbers, and four
activation functions. After network training using each unique combination of parameters, each
trained network had performance evaluated using a reserved set of test samples unused during
model training.
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to those usingM0 orM1 alone. These performance patterns and potential
explanations for the differences between feature sets are expanded on in
the discussion section.

Although R-square provides a valuable metric for evaluating model
performance, predicting elasto-plastic compressive stress-strain curves for
the microstructures required further analysis to ensure realistic curves were
being predicted. A customMATLAB script was created to loop through all
microstructures in the evaluation set and display a plot of the predicted vs.
simulated compressive stress-strain curves. The plots were then sorted by
average residual value of the 15 data points. Figure 6 displays four of these
plots, three being pulled from the center of the distribution of plots and one
being pulled from the lowest-performing samples. The plots showed that
qualitatively, on average, the model predicted logical and accurate curves
when compared to the FEA results. Predicted vs. simulated compressive

stress-strain curves for all 54 evaluation set samples can be found in the
supplementary material in Supplementary Data File 1 as the first 54 lines of
the datafile.

Experimental validation of FEA
Experimentally gathered data was compared to scaled FEA results such that
the size of the FEA cube matched the size of the 3D printed cube
(22mm× 22mm× 22mm). For each of the 20 physical sub-samples, the
average Young’s modulus and yield strength were calculated and compared
to the FEA results. Across all 20 sub-samples, themean percent error (MPE)
between physical experiment and FEA for Young’s modulus and yield
strength was 4.8% and 7.4%, respectively, with the physical experiment
taken as ground truth. Two randomly selected physical versus FEA com-
parisons are shown in Fig. 6, where we see a close matching between the
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experimentally gathered and numerically calculated results. The implica-
tionsof these results for comparing experimental to simulationdata through
scaling are discussed in the discussion section below.

Discussion
The results of this scientific study and methodology development demon-
strate not only the capabilities ofMinkowski functionals as fast and accurate
predictors of porous elasto-plastic material compressive behavior, but also
that this is an effective framework for preparing 3D microstructures for
high-throughput analysis.

The automated process of microstructure feature extraction is capable
of producing data fromCT scans at a highly efficient rate, nearly 2.2 seconds
per sub-sample. Additionally, training the ML model took an insignificant
amount of time compared to the FEA and experimental testing, effectively
creating a “bottleneck” at this step. One possibility for reducing FEA
simulation time would be to utilize high performance computing and run
multiple simulations in parallel using a computing cluster. This would
effectively both reduce the time per simulation and increase the amount of
simulations run at one time. Utilization of high performance computing
would be especially important for potential future studies where more
complicated analysis that incorporates phenomenon beyond elasto-plastic
behavior is included, such as damage, fracture, and internal contact, or
where multiple loading modes are being simulated.

In Fig. 7A, the benefit of utilizing ML for these stress-strain curve
predictions is highlighted for certain scenarios. In general, the number of
samples required for training depends on desired model performance for
the evaluation set and future predictions. For example, in this study, a
training set size of approximately 450 samples would be required to achieve
a model performance of R2 = 0.90, while utilization of the entire available
600 training samples achieved a performance of 0.939 (using only Min-
kowski functionals as features in both cases). However, future prediction of
stress-strain curves frommaterials dissimilar to those used in this studymay
require a greater training set size. Figure 7B indicates, based on the time
requirements for FEA curve generation andmodel training documented in
Supplementary Table 1, when it becomes favorable to utilize this predictive
MLmodel over solely relying on FEA. Notably, for a given training set size,
the MLmodel becomes less time-consuming when approximately equal or

more stress-strain curve predictions are desired. Another key advantage of
thismethod is the reduction of input feature space, whichminimizesmodel
complexity compared to conventional 3D neural networks. Despite the
small dataset size of 654 sub-samples, thepredictivepowerof theMinkowski
functionals is evident, showcasing the method’s effectiveness in linking
microstructural descriptors to mechanical behavior.

The approach taken in this study is particularly appealing for scenarios
requiring numerous predictions for porous materials with morphologies
similar to those in the training set. For example, in multiscale analyses like
FE2 methods, lower-scale simulations could be substituted with this or a
comparable ML model, enabling faster calculations while accounting for
morphological changes at smaller scales through the use of Minkowski
functionals. In real-time structural health monitoring, such a model could
quickly predict stress-strain behavior based on sensor-detected morpholo-
gical changes, allowing for faster response to potential issues in critical
structures. Similarly, in additive manufacturing (AM), the model could be
employed tomonitormorphological variations during thebuildprocess and
adjust parameters in real-time to ensure that the final product meets
mechanical performance criteria, thus preventing defects and enhancing
quality.

The results of the representative elementary volume (REV) analysis,
shown in Fig. 1, indicate that the sub-samples of microstructures used are
scalable and representative.Due to the relatively accurateMLpredictions by
themodel and the voxel-size normalization detailed in ourmethods section,
it is shown that 1) the sample scaling did not negatively affect the predictive
capabilities of this model and 2) that a sufficient normalization scheme was
used to address varying sizes and resolutions for individual samples.

While the REV analysis demonstrates the scale invariance of mor-
phological descriptors, the issue of mechanical scaling, particularly in non-
linear, heterogeneous materials, presents a more nuanced challenge.
Although Fig. 1 provides evidence ofmorphological invariance,mechanical
responses do not always follow these trends, especially for materials with
complex strain behaviors that are not as easily modeled using basic elasto-
plastic methods. Size effects, such as strain localization emerging with
increasing slenderness of the samples, could be potentially affecting the
accuracy of the model’s predictions at larger scales. While the model per-
formswell for small sub-samples and 3D printed analogues, caution should
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be exercised when scaling predictions to larger structures without further
validation, as mechanical behaviors at larger scales may deviate from the
predictions made at smaller scales.

The performance of the ML model using only the four Minkowski
functionals as input features underscores the power of these geometric
descriptors. As demonstrated in Figs. 4 and 5, the reduction in performance
wasminimal when compared tomodels using all 35 extractedmorphometric
features. This supports Hadwiger’s Theorem, which claims that these func-
tionals are sufficient for capturing the essential geometryof themicrostructure.
Additional features could enhance model accuracy by capturing material
anisotropy, but the Minkowski functionals alone provide an efficient and
accuratemethod fordescribing thebehaviorofporousmaterials. Furthermore,
the experimental validation of these results, shown in Fig. 8, highlights that
materialswith similarMinkowski functional values exhibit similarmechanical
performance, even across different geological material types.

While the overall predictive power of the models remained strong,
there were still some notable predictive outliers. This can likely be attributed
to two key factors: mesh realization for certain microstructure subsections
and data clustering on randomized train-evaluation splits. Figure 9 presents

three examples of microstructure sub-samples with poor predictability in
the current neural network framework, with Fig. 9A demonstrating a lim-
itation of the current sub-sampling technique where some sub-samples of
less-porous microstructures lead to samples that are effectively solid.
Samples like these fall outside of the domain of analysis for our predictive
method, and would naturally not perform well in the current predictive
framework. With regards to the meshing technique, while a mesh con-
vergence studywas implemented to examine the largest acceptable degreeof
coarsening for a finite element mesh in order to increase simulation speed,
this mesh convergence study was not performed on every data point. As
such, some microstructures with very fine features in their meshes (such as
solid structures that are just one or two voxels in size across) would likely be
over-coarsened, leading to discrepancies in predicted stress-strain behavior
vs simulated stress-strain behavior. Figure 9B is an example of this phe-
nomenon, as this subscan has fine and floating details such as thin vertical
columns and complex, fine-grain geometry that is not captured sufficiently
on a coarsened mesh. Samples with many fine features like these are highly
likely to have their compressive stress-strain behavior poorly reflected
through the current simulation pipeline, leading to some inaccurate

Fig. 6 | Compressive stress-strain curves from
finite element analysis (FEA), machine learning
(ML) predictions, and experimental tests for six
randomly selected samples. A distribution of
average residuals was generated for all predicted
curves. (A) Scan008-064, (B) Scan004-011, and (C)
Scan026-010 were randomly chosen from the mid-
dle 20 percent of the residual distribution, illustrat-
ing the typical accuracy of the model’s predictions.
D Scan031-005 represents a sample from the lowest-
performing 25 percent, highlighting cases where the
model struggled. E, F Comparisons between
experimental compression tests and FEA results,
along with digital representations of the corre-
sponding porous samples.
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Fig. 8 | Experimental validation of correspon-
dence between Minkowski functionals and com-
pressive stress-strain behavior, specifically
Young’s modulus and yield strength. Subplots
(A–C) display representative stress-strain curves
from experimental testing of subscan pairs 1, 2, and
3, respectively. Images of the printed sample pairs
prior to testing can be seen in the upper-right corner.
The dash-outlined rectangle shows the linear-elastic
and onset of plastic region from where the average
and standard deviation of Young’s modulus and
yield strength were calculated and then plotted in
subplots (D,E), respectively. The standard deviation
was calculated using five duplicate experiments for
each sample.
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predictions. However, re-meshing these samples did improve the accuracy
of some samples, but not to a noticeable degree where it would substantially
upgrade overall model performance.

Another important factorwheremeshes appeared tobe influencing the
accuracy of FEA results came in cases with highly convex samples. Highly
convex samples—essentially, samples with large contiguous void spaces
with relatively low surface areas and Euler numbers close to zero—behaved
more as hollow bodies than as blocks under compression. This meant that
the solid scaffolding of these samples connecting the top boundary to the
bottom boundary was relatively thin, leading to a solid that would be more
likely to undergo buckling as opposed to squash-like compression. Fig-
ure 9C demonstrates a sample with highly convex internal geometry. This
represents an important limitation of the finite element model used, where
buckling moment behavior isn’t explicitly accounted for in the simulation,
and amaterial that fails in bucklingmaynot be accurately represented in the
elasto-plastic model utilized.

The relationship between R-square values and stress-strain curves, as
shown in Fig. 4, also reveals that larger deviations from the predicted
values are tied to specific mechanical features of the microstructures, par-
ticularly in the plastic region. This highlights the need for further refinement
of theMLmodel to better capture non-linear behavior under varying stress
conditions.

Conclusion
This study has demonstrated the effectiveness of using Minkowski func-
tionals as key geometric descriptors to predict the mechanical behavior of
porous elasto-plastic materials under uniaxial compressive loading. By
integrating high-throughput morphological feature extraction, finite ele-
ment analysis (FEA), and machine learning (ML), we developed a robust
framework capable of accurately predicting compressive stress-strain
responses. The strong performance of the ML model, particularly when
trained on only fourMinkowski functionals, underscores the power of these
descriptors in capturing essential microstructural details. While the model
has shown promise in accurately predicting behavior at simple uniaxial
conditions at smaller scales, challenges remain in applying it to larger
structures andmore elaborate loading conditions due to factors that are not
incorporated in the physics of the present approach, like potential change in
the physics of the larger scale that would impose size effects and render the
REV analysis of Fig. 1 non-representative of the structure, and dependency
of the failure mode to the loading conditions in strain localization and
fracture that would induce additional softening and non-uniqueness in the
correlation of the microstructure with the stress-strain response. The lim-
itations of the current meshing techniques and FEA methods for handling
complex geometries and non-linear mechanical behavior also contribute to
predictive outliers. Nonetheless, this work paves the way for broader
applications, including multiscale analyses such as FE2 simulations, struc-
tural health monitoring, and additive manufacturing, where ML models
could substitute lower-scale simulations for faster, real-time predictions.
Future effortswill focus on refining themodel formore complexmechanical
behaviors, improving mesh handling, and extending the methodology to
address anisotropic and heterogeneous materials.

Data availability
Additional data analysis plots, tables, and figures are available within the
supplementary materials. The finite element, segmented scan, and network
model that support the findings of this study are available through the
Mendeley Data repository “Neural network architecture and training data
for prediction of porous material mechanical properties based on their
microstructure” (https://data.mendeley.com/datasets/9wpm748fb3/4)49.
Base scan data used in this study can be traced fromSupplementary Table 2.
Furthermore, theFEAresult data used to generateSIFigs. 1 and2 is included
as SI Data File 1. Additionally, the ML input and output data can be found
in SI Data File 2.

Code availability
All code used in this study is available online on open access repositories.
The segmentation code is available onGitHubvia the repository “SegmentJ”
(https://github.com/wlindqwister/SegmentJ). FEA input files are available
on theMendeleyData repository “Neural network architecture and training
data for prediction of porous material mechanical properties based on their
microstructure” (https://data.mendeley.com/datasets/9wpm748fb3/4)49 in
the folder “MOOSE Input Files”. All input files are designed for use with the
public release of theMOOSEfinite element software alongwith theMOOSE
app REDBACK, specifically the branch “18_macrodissipation.” Finally, the
machine learning model used in this study is also available in theMendeley
Data respository in the folder “Neural Network Machine Learning.”
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