
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Hierarchical MPC Task
Allocation for Heterogeneous
Search and Rescue Robots with
Safe Return Constraints
A Multi-Criteria Decision-Making Approach

Berkay Yazıcıoğlu

Hierarchical MPC Task
Allocation for

Heterogeneous Search and
Rescue Robots with Safe

Return Constraints
A Multi-Criteria Decision-Making Approach

by

Berkay Yazıcıoğlu
to obtain the degree of Master of Science

at the Delft University of Technology

Student Number: 5564395
Thesis Committee: Dr. Manuel Mazo Espinosa, TU Delft, Chair, Supervisor

Dr. Anahita Jamshidnejad, TU Delft, Examiner, Daily Supervisor
Dr. Matthijs Spaan, TU Delft, Examiner

Research Group: Delft Center for Systems and Control
Project Duration: February 2023 - August 2025

Cover: Aerial view of the earthquake destruction in the Hatay province of
Turkey, February 7, 2023. (IHA via AP, modified)

Preface

This thesis project titled ”Hierarchical MPC Task Allocation for Heterogeneous Search and Rescue
Robots with Safe Return Constraints: A Multi-Criteria Decision-Making Approach” marks the conclu-
sion of a challenging and long period of research as a graduate student within the faculty of Electrical
Engineering, Mathematics, and Computer Science at the Delft University of Technology.

During my studies, I aimed to take on challenges from various fields that are related to my major,
and this work is a culmination of everything I learned, as well as the new frontiers that my research led
me towards. This project has undergone numerous iterations, during which it was often exciting and
enjoyable to explore novel ideas. Having said that, there have also been times when I struggled a lot
and making progress was difficult. Looking back, I’ve grown significantly as a person, and I’ve learned
that failure is not an outcome but a part of the process, which resulted in a work that I can say I am proud
of. I want to extend my sincerest gratitude to my supervisors, especially Dr. Anahita Jamshidnejad,
for believing in me during this entire period. Our discussions about the topic were always immensely
inspiring, where her guidance and expertise at every point of the research made me more motivated to
not only produce a meaningful work as an engineer, but also to seek what has not been explored as a
researcher.

I wish to thank my family for their unwavering support and trust in every decision I made. Without
their love, sacrifices, and encouragements, this phase of my life would not even be possible in the first
place. My partner in everything, Müge, thank you for becoming my home here and being there for me
with every up and down. You were the light during my struggles and the muse of my successes. I also
want to thank my friends for becoming my extended family; knowing that I could count on all of you
encouraged me to build a new life in a new country, together. Everyone I mentioned made my time
as a student in Delft the most memorable and truly the most joyful period of my life, and I am looking
forward to seeing what comes next. Finally, I want to thank you, the reader, for taking the time to read
this work.

Berkay Yazıcıoğlu
Delft, August 2025

i

Summary

Urban search and rescue (USaR) missions take place in complex, volatile environments where time,
information, and resources are limited. In such scenarios, the primary objective is to locate and assist
victims as efficiently as possible, often amid unknown and uncertain conditions. Traditional approaches
rely heavily on human teams that must adapt in real-time, reassigning roles, shifting priorities, and co-
ordinating actions under uncertainty. While robots have been increasingly introduced to assist in these
efforts, their autonomy has been largely restricted to lower-level tasks, such as local navigation, map-
ping, and obstacle avoidance. These capabilities, while valuable, fall short when robots are expected
to make mission-level decisions about what to do next, how to prioritize actions, or how to collabo-
rate as part of a team. To achieve higher levels of autonomy, robotic systems must be able to reason
about dynamically evolving tasks, heterogeneous capabilities, and long-term operational constraints.
Existing task allocation frameworks often assume that tasks are predefined and utility functions, which
quantify the value of taking actions with regard to mission goals, are fixed. This limits their adoption
in real-world applications where task definitions may emerge from the environment and change over
time. Furthermore, few systems adequately support continuous decision-making where robots must
periodically return for charging and resume operation without predefined sequences. These gaps in
adaptability, coordination, and mission continuity present a significant challenge for the autonomous
deployment of robots in realistic USaR scenarios.

This thesis proposes a hierarchical decision-making and coordination architecture that addresses
these challenges by unifying human-inspired reasoning with structured, optimization-based control. A
generalized system model is introduced in which robots are described not by fixed roles but by their
capabilities of action and perception, enabling the assessment of their individual suitability to tackle the
wide range of dynamically emerging tasks resulting from the robot-environment interactions. Subse-
quently, the optimal control of sequential decision-making is modeled as a nonlinear model predictive
control (MPC) problem with safe return constraints, enabling informed decision-making over a finite
horizon with an evolving set of tasks. The assessment of task suitability is initially evaluated by a fuzzy
inference system that combines the robot’s capabilities with the task-specific prioritization measures.
Then, a multi-criteria decision-making (MCDM) framework assigns mission-level utilities to task-related
robot actions by weighing factors such as urgency, information gain, and inter-task preferences using
the fuzzy system outputs, establishing flexibility and robustness when task definitions are ambiguous
or unexpected and mission priorities shift over time, as hard-coded heuristics often fail to adapt. The
decision-making framework is further integrated into a two-tier hierarchical control architecture. The
first tier involves local controllers, where each robot solves a linearization of the MPC formulation by
first filtering independent actions using utility estimates and observation overlaps, and then solving a
mixed-integer linear programming (MILP)-based scheduling problem subject to safe return constraints
in a computationally tractable way. In the second tier, the multi-robot extension of the MILP-based
MPC architecture resolves conflicts between robot plans by integrating their local solutions into a glob-
ally consistent allocation. This hierarchical structure balances the adaptability of distributed control with
the consistency of centralized planning, while also considering the remaining energy of the robots.

The proposed architecture was implemented in realistic computer-based USaR simulations involv-
ing dynamically evolving tasks, heterogeneous robot models, and uncertainty in observations. Com-
pared to heuristic baselines, the proposed method achieves faster victim identification and area map-
ping while maintaining higher overall utility scores in the majority of cases within seventeen randomized
single-robot scenarios, and produces comparable outputs to existing optimization-based solutions us-
ing significantly fewer computational resources. Moreover, the multi-robot experiments with different
team compositions demonstrate that the method successfully allocates high-priority tasks to the most
suitable robots in terms of their operational capabilities and task urgency, achieving faster mission
completion compared to non-cooperative methods in all scenarios. These results confirm the potential
of a fuzzy-MCDM-based, hierarchical control architecture to enhance autonomous behavior in robotic
USaR teams under real-world operational constraints, while maintaining an abstraction layer for repre-
senting most types of heterogeneity present in the field of USaR robotics.

ii

Contents

Preface i

Summary ii

Nomenclature viii

1 Introduction 1
1.1 Research Questions . 2
1.2 Research Contributions . 3
1.3 Thesis Structure . 3

2 Literature Review 4
2.1 Domain Characteristics . 4

2.1.1 USaR Environment . 5
2.1.2 Performance Factors . 6
2.1.3 Design Considerations . 7

2.2 Robotics in USaR . 8
2.2.1 Robot and Actuator Types . 8
2.2.2 Sensing, Perception, and Mapping . 10
2.2.3 Control Systems . 14

Path Planning . 15
Task Allocation . 18

3 Methodology 27
3.1 Problem Formulation . 27

3.1.1 Environment & Robot Modeling . 28
System Modeling Summary . 32

3.1.2 Task Allocation Modeling . 34
Fuzzy Action & Task Evaluation . 35
MCDM Formulation . 36
Optimization Problem Formulation . 39

3.2 Control Architecture . 40
3.2.1 Local Robot Controllers . 41

First Stage: Independent Action Filtering . 43
Second Stage: Optimal Selection & Ordering of the Reduced Action Set 47

Traversal Constraints . 48
Safe Return Constraints . 49
Utility Constraints . 49
Optimization Problem . 50

3.2.2 Global Coordination Controller . 52
Combining Coordinating Robot Schedules . 53
Design of the Extended Hierarchical MILP Task Allocation 54

Traversal Constraints . 54
Conflict Resolution Constraints . 55
Safe Return Constraints . 56
Utility Constraints . 56
Optimization Problem . 57

3.2.3 Central Agent Controller . 59

4 Case Study 60
4.1 Simulation Setup . 60

4.1.1 Environment Implementation . 60

iii

Contents iv

4.1.2 Action Types & Implementation . 61
4.1.3 Task Set Implementation . 63
4.1.4 Fuzzy System Implementation . 64

4.2 Experiment Setup . 68
4.2.1 Implemented Controllers . 68
4.2.2 Mission Metrics . 69
4.2.3 Mission Parameters . 70

5 Results & Discussions 74
5.1 Demonstration of the Task Allocation Behavior . 74
5.2 Single Robot Experiments . 76

5.2.1 Behavior of the Control Architecture . 76
Qualitative Analysis . 76
Quantitative Analysis . 80

5.2.2 Analysis of the Control Architecture in Structured Experiments 85
5.3 Multi-Robot Experiments . 90

5.3.1 Behavior of the Global Coordination Controller 90
Qualitative Analysis . 90
Quantitative Analysis . 93

5.3.2 Analysis of the Global Coordination Controller in Structured Experiments 97

6 Conclusions & Topics for Future Research 100

References 103

List of Figures

2.1 Survival likelihood with respect to the elapsed time after different types of structural col-
lapses [11]. 5

2.2 Hybrid locomotion examples for a USaR UGV. 8
2.3 Qualitative locomotion comparison of large UGV types (for legged, tracked, wheeled,

LT (legged-tracked), LW (legged-wheeled), WT (wheeled-tracked), and LWT (legged-
wheeled-tracked) robots) [21]. 9

2.4 UGV and UAV team for mapping a damaged building. On the left, UGV carrying the UAV
is given. On the right, mapping with only UGV (top) and combined mapping (bottom) with
followed trajectories are given [38]. 12

2.5 Relevance of functionality metrics for robots in USaR [52]. 14
2.6 Dijkstra based graph search algorithms overview. [54]. 15

3.1 Summary of the mathematical modeling of SaR robots and the generalized system. . . 32
3.2 Representation of the relationship between robot actions, observations and available

tasks. 34
3.3 Fuzzy inference system determining the value of a task given a robot action 35
3.4 Diagram of the proposed hierarchical control architecture. 40
3.5 Diagram of the proposed local robot controllers. 42
3.6 Operational diagram of the first stage for the linearization of the local MPC controllers. . 46
3.7 Diagram of the proposed global coordination controller. 52

4.1 Ground truth features of the simulation environment representing the (a) elevation, (b)
destruction rate, (c) population density, (d) randomly generated victims. 61

4.2 Fuzzy membership functions for the inputs and outputs of the Mamdani Type-1 rule
bases of the action evaluation system. 65

4.3 Fuzzy membership functions for the inputs and outputs of the Mamdani Type-1 rule
bases of the search prioritization system. 66

4.4 Fuzzy membership functions for the inputs and outputs of the Sugeno Type-1 rule bases
of the task value evaluation system. 67

4.5 Initial conditions and the areas of interest of the experiments. 71

5.1 Operation steps of the proposed MILP controller, at the beginning of a charging cycle. . 75
5.2 Selected optimal schedule of the GA controller for the same problem given in MILP op-

eration. 76
5.3 Progression per charge cycle of the single robot mission in the G1 environment with static

central agent and MILP controller. 77
5.4 Progression per charge cycle of the single robot mission in the G1 environment with static

central agent and GA controller. 78
5.5 Progression per charge cycle of the single robot mission in the G2 environment with static

central agent and MILP controller. 79
5.6 Progression per charge cycle of the single robot mission in the G2 environment with static

central agent and GA controller. 80
5.7 Action and traversal heatmaps of the MILP controller with dynamic central agent. 82
5.8 Action and movement heatmaps for the experiments in G1 and G2 at the end of four

simulation hours. 83
5.9 Control action utilities through G1 and G2 environment experiments. 84
5.10 Total mapped area progression of single robot experiments. 86
5.11 Detected victim count progression of single robot experiments. 86
5.12 Covered distance progression of single robot experiments. 86

v

List of Figures vi

5.13 Distribution of victim status for single robot experiments at the end of ten simulation hours. 87
5.14 Time of task completion after spawn for single robot experiments at the end of ten simu-

lation hours. 87
5.15 Distribution of control action utility for single robot experiments at the end of ten simula-

tion hours. 87
5.16 Distribution of runtime per optimization step. 89
5.17 Comparison of global cooperation controller outputs at different stages of G1 exploration

with the UAV and crawler team. 91
5.18 Comparison of global coordination controller outputs at different stages of G2 exploration

with the UAV and crawler team. 92
5.19 UAV and crawler mission in G1 at the end of three simulation hours. 94
5.20 UAV and crawler mission in G2 at the end of four simulation hours. 94
5.21 Two UGV mission in G1 at the end of three and a half simulation hours. 95
5.22 Two UGV mission in G2 at the end of four simulation hours. 95
5.23 Total mapped area progression of UAV-crawler team experiments with dynamic central

agent. 97
5.24 Detected victim count progression of UAV-crawler team experiments with dynamic cen-

tral agent. 97
5.25 Total mapped area and detected victim count comparisons of the UGV teamwith dynamic

central agent. 98

List of Tables

2.1 The average importance of area prioritization based on USaR case studies [5]. 6
2.2 Sensor comparison for USaR (- -: very low, -: low, o: medium, +: high, ++: very high)

[35][36]. 11

3.1 Summary of notations included in the autonomous robot system model for SaR applica-
tions. 33

3.2 Summary of notations included in the fuzzy-MCDM decision-making framework. 38
3.3 Summary of notations included in the first stage of the local robot controllers. 45
3.4 Summary of notations included in the second stage of the local robot controllers. 47
3.5 Summary of notations included in the global coordination controller. 53

4.1 Rule base of the action evaluation system with inputs σcap for the action capability of the
robot, σqual for the quality of observations, and σquant the quantity of observations upon
the observation of the action result. 65

4.2 Rule base of the victim search prioritization of a task τl(tk) with inputs σpriority(l)(dest) for the
destruction rate and σpriority(l)(pop) for the population density estimates in the vicinity of the task. 66

4.3 Rule base of the task evaluation system using the action evaluation ρaction and the task
prioritization ρpriority values to evaluate the direct utility of attempting a task through an
action. 67

4.4 Mission parameters of the case study. 70
4.5 UGV parameters used in the single robot experiments. 72
4.6 UAV parameters used in the multi-robot experiments. 73
4.7 Crawler parameters used in the multi-robot experiments. 73

5.1 Key results for each main mission metric related to G1 and G2 experiments at the end of
four simulation hours. 81

5.2 Outputs of USaR goals for single robot experiments in G at the end of ten simulation hours. 85
5.3 Summary of key results from the boxplots provided for the control architecture evaluation

(IQR = Inter-Quartile Range). 88
5.4 Summary of key results from the qualitative analysis of the heterogeneous team coordi-

nation experiments within small missions. 96
5.5 Summary of key results from the qualitative analysis of the homogeneous team coordi-

nation experiments within small missions. 96
5.6 Outputs of the USaR mission in G for the UAV-crawler team with dynamic central agent

at the end of ten simulation hours. 98

vii

Nomenclature

Abbreviations

Abbreviation Definition

ACO Ant Colony Optimization
DoF Degrees of Freedom
EM-DAT Emergency Events Database
FIS Fuzzy Inference System
FLC Fuzzy Logic Control
GA Genetic Algorithm
GNN Graph Neural Network
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
LiDAR Light Detection and Ranging
LTL Linear Temporal Logic
MILP Mixed-Integer Linear Programming
MPC Model Predictive Control
MRTA Multi-Robot Task Allocation
OP Orienteering Problem
PI Priority Index
PID Proportional–Integral–Derivative
PSO Particle Swarm Optimization
RADAR Radio Detection and Ranging
RL Reinforcement Learning
SaR Search and Rescue
SLAM Simultaneous Localization and Mapping
ToF Time of Flight
TSP Travelling Salesman Problem
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
USaR Urban Search and Rescue

viii

1
Introduction

Disasters catastrophically disrupt communities and functions of society by damaging the environment,
established structures, and humans, limiting the capabilities of local agencies for recovery. In the
immediate aftermath of any disaster, the utmost important goal is gathering as much information as
possible for focused efforts of extraction of the distressed individuals, commonly referred to as search
and rescue (SaR). According to the most recent data provided in the EM-DAT database [1], which com-
piles standardized information on the reported disasters in literature, natural and man-made disasters
claimed the lives of 1.4 million while affecting close to a billion people in total between 2000 and 2025.
Most large-scale human and property loss occurs in urban settings, where prior information gathering
and planning of a SaR mission are often difficult due to the high volatility and destruction that occurs
within the environment, as well as the limited availability of time and resources [2]. In general, any type
of SaR mission needs to consider how to efficiently allocate the resources at hand to the evolving situ-
ation by establishing a reliable and continuous operation, while maintaining effective search strategies
within a limited time window.

Robotic platforms have long been considered tools to extend the capabilities of SaR efforts; how-
ever, their historical roles have been limited. Beginning with early deployments such as tethered un-
manned ground vehicles (UGVs) in the World Trade Center collapse in 2001 [3], robots have mostly
been proposed as teleoperated tools or semi-autonomous sensors. Since then, the diversity and capa-
bility of robotic platforms have expanded significantly, including the usage of unmanned aerial vehicles
(UAVs), legged and tracked unmanned ground vehicles, and hybrid locomotion solutions adapted for
specific capabilities. Most of the early research utilizing these types of robots has concentrated on en-
abling lower-level autonomy, solving problems such as local navigation and obstacle avoidance within
bounded and well-defined environments. A more generalized description of lower-level autonomy can
be achieved by formulating it as path planning problems, where either optimal traversal between given
waypoints or reactive maneuvers to local changes are considered. The widely used approaches for
the first type of path planning consider a graph-based description of the SaR environment and perform
least-cost searches to reach a given goal. A more generalized version of such approaches considers
the optimal ordering of multiple possible waypoints, commonly referred to as the traveling salesman
problem (TSP), where an extension of it by considering a limited number of candidates to be selectable
when budget constraints are present, is called the orienteering problem (OP) [4]. In contrast, reactive
methods work by steering the robots within the vicinity of their current locations, considering cost func-
tions that define the robot’s goals. One of the more commonly used frameworks to enable this behavior
is an optimization-based method called model predictive control (MPC), where the robots make predic-
tions for future states within a limited look-ahead window to decide their next actions. MPC formulations
are especially useful for navigating under dynamic and uncertain conditions where specific constraints
need to be satisfied, making them suitable for SaR robots.

While these capabilities are crucial, they fall short when the robot is required to reason about what
it should do next, why a specific action is valuable, or how to allocate its effort. In realistic SaR sce-
narios, robot actions must be guided not only by feasibility but by context-sensitive understanding of
task relevance, expected utility, and collaboration potential. This necessitates autonomy at a higher

1

1.1. Research Questions 2

level, addressing decision-making under mission-level ambiguity and uncertainty, referred to as task
allocation in this thesis. These demands for flexibility, context-aware reasoning, and adaptive task inter-
pretation are only partially addressed by existing task allocation paradigms in the SaR literature. Many
rely on fixed mission templates or explicit role hierarchies, limiting their ability to respond to evolving
needs. The traditional approaches, such as auction and market-based methods, assume ad-hoc or
static utility functions formulated via domain-specific heuristics, often failing when unexpected tasks
or robot availabilities are introduced that were not considered during the system design. Conversely,
learning based methods show promising adaptability; however, they require consistent training, which
is not always possible or feasible within the SaR domain. These limitations motivate more human-like
reasoning in how robot capabilities are matched to emerging tasks, an approach reflected in state-of-
the-art human SaR coordination systems, which often use fuzzy decision-making to prioritize actions
based on situational features [5]. Some more recent works in the robotic SaR literature incorporate
such human expertise in formulating an autonomous robotic team, by integrating optimization-based
control architectures into fuzzy evaluations of the robot actions [6]. Optimization-based autonomy is
an emerging field within the SaR literature, particularly when combined with human knowledge and a
structured method, such as MPC. However, meeting the demands of different types of SaR missions
requires more than ad-hoc behavior strategies; it calls for a principled framework that can generalize
across robot types, respond to newly emerging tasks, and reason over mission-level priorities in a struc-
tured, interpretable way. Moreover, the longer-term structure of the mission is mostly unexplored within
the SaR domain, such as the need for energy-constrained robots to return for charging and resume
operation as part of a continuous planning loop.

Given the heterogeneity of robot platforms, each differing in mobility, sensing, and endurance, no
single robot type is ideally suited to meet the full spectrum of needs in generalized SaR operations. A
scalable and adaptive approach is to deploy autonomous teams capable of flexibly assigning respon-
sibilities and re-evaluating them throughout the mission. In this context, a task is not a fixed goal but
a semantically meaningful opportunity for action, such as inspecting a collapsed structure, scanning
a hotspot, or delivering aid, that emerges from incoming observations and changing mission priorities.
Rigid or role-specific behavior design quickly falls short in such settings, as it assumes tasks are fully
known in advance and tightly coupled to the assigned identity of each robot involved. Enabling robots
to reason over dynamically evolving tasks and evaluate their relevance in light of partial knowledge
and mission objectives is essential for true mission-level autonomy in robotic SaR teams. Moreover,
such autonomy must operate continuously, not in isolated decision rounds, but as an ongoing process
in which robots act, observe, recharge, and re-prioritize as the situation develops. This requires archi-
tectural support for persistent operation and adaptive behavior, extending beyond fixed sequences or
one-shot task assignments. Multi-criteria decision-making (MCDM) provides a principled foundation
for this need [7]. Rather than relying on single-objective optimization or handcrafted priorities, MCDM
integrates multiple, often conflicting criteria, such as comparing target-oriented actions to coverage-
oriented ones, into a unified utility representation. This allows robots to make modular, interpretable
trade-offs that adapt to changing mission demands. While widely used in strategic decision systems,
MCDM remains underexplored in robotic SaR, where its ability to integrate mission-level priorities and
heterogeneous actions could directly address the core limitations of current task allocation paradigms.

1.1. Research Questions
Having highlighted the limitations of existing frameworks in autonomous SaR robotics, alongside the
operational demands of SaRmissions such as time sensitivity, mission continuity, and optimal resource
allocation, this thesis sets out to design and evaluate a unified control architecture for multi-robot teams
operating in environments with uncertain and evolving task demands. Central to this objective is the
integration of observation-driven task emergence with fuzzy prioritization and MCDM, enabling robots
to assess task relevance in a context-aware manner across heterogeneous capabilities. Building on
this foundation, the research aims to develop a computationally tractable predictive planning approach
that supports energy-constrained, continuous operation at the robot level, complemented by a hier-
archical coordination mechanism that resolves task conflicts and maintains team-wide consistency in
dynamically evolving mission contexts. In line with this overarching objective, the following research
questions are formulated:

1.2. Research Contributions 3

• How can dynamic prioritization of emergent and ambiguous tasks in SaR scenarios be improved
using human-inspired fuzzy reasoning integrated with MCDMmodels of mission goals, compared
to static or heuristic-based methods in terms of responsiveness, decision quality, and flexibility?

• How can predictive control derived from a generalized task allocation model be made tractable
for real-time, energy-aware decision-making in autonomous systems using a mobile recharging
agent with safe return constraints, and how does it compare to state-of-the-art approaches?

• How does integration of a global hierarchical layer to local controllers affect coordination, scala-
bility, and conflict resolution in a heterogeneous multi-robot SaR team, and how does it improve
consistency and performance in task allocation?

1.2. Research Contributions
Answering the research questions and the overall objectives, the main contributions of this work include:

1. Introducing a novel generalization of an abstract systemmodel to account for a wide range of SaR
robot types and their capabilities, with robots modeled through their available heterogeneous ac-
tions and the resulting environmental observations, decoupling robot roles from static capabilities.
Tasks are treated as emergent, observation-dependent entities rather than fixed inputs to the SaR
mission, supporting dynamically evolving priorities. To evaluate the suitability of each action, the
thesis proposes a two-layer decision-making framework novel in its implementation to the SaR
domain: first, fuzzy prioritization encodes human-interpretable reasoning under uncertainty, and
second, a mission-level utility function is constructed through an MCDM architecture accounting
for the time-sensitivity as a shared criterion for each task attempted by an action.

2. Formulating a nonlinear MPC architecture for each robot at the robot level to support sequential
decision-making under dynamic task evolutions and limited foresight, with safe return constraints
to enable planning according to the remaining energy of the robots. The model enables each
robot to predict and optimize a future sequence of actions over a finite horizon, taking into account
evolving action utilities through task completions and energy constraints. A novel two-stage lin-
earization strategy is proposed for implementing the local nonlinear MPC formulation to reduce
intractability and improve real-time performance. In the first stage, a subset of approximately in-
dependent candidate actions is selected using partial utility estimations and observation overlap
filtering. In the second stage, the selected actions are scheduled using a mixed-integer linear pro-
gramming (MILP) formulation inspired by the OP solutions in the literature, with time and energy
constraints ensuring that the robots can always safely return for charging, thereby guaranteeing
long-term mission continuity. At the global level, a conflict resolution controller extends the local
MILP formulations by combining the local solutions to a globally optimal allocation.

3. Implementation and evaluation of the proposed methodology in a realistic urban search and res-
cue (USaR) scenario with evolving task sets and different types of robot models to demonstrate
the effectiveness of the MILP-based controllers compared to other heuristic and state-of-the-art
solutions that are compatible with the formalization proposed in this thesis. The USAR scenario
criteria are set to find as many victims as possible and map the area in the shortest amount of
time. The proposed methodology is compared with respect to these metrics, as well as task prior-
itization, victim health states, computational performance, and utility generation, in combination
with qualitative behavioral analyses.

1.3. Thesis Structure
The thesis is structured as follows. First, Chapter 2 presents the literature in the SaR domain, while
keeping the focus on USaR as it relates to the case study of this thesis. In Chapter 3, the specific
methodology proposed in this thesis is given. The implementation details of the proposed methodology
and the related case study simulation are given in Chapter 4. The results and related discussions of the
case study simulations are presented in Chapter 5, where the thesis is concluded with future research
suggestions in Chapter 6.

2
Literature Review

The structuring of the literature review begins by specifically defining the domain characteristics of
search and rescue (SaR), particularly in the context of urban settings, to properly define the require-
ments of a robotic team designed to operate within this field. Then, existing robotic solutions are intro-
duced by outlining the specific robot and actuator types, sensing capabilities, and control architectures
proposed historically and in the current state-of-the-art. In general, the SaR operations are commonly
divided into three categories [2]:

1. Urban search and rescue (USaR) refers to efforts aimed at locating an unknown number of station-
ary victims within a confined area that may be difficult to traverse and navigate due to the abrupt
distortion caused by a disaster. The most ubiquitous and highly unpredictable urban disasters
are earthquakes, where entrapment due to structural collapses necessitates USaR operations.
Other similar disasters include blast effects due to terrorism or gas leaks, industrial accidents,
avalanches, ground failures, subsidence, and tornadoes [8].

2. Wilderness SaR deals with open-ended search areas and is defined by the localization of several
mobile victims. It is characterized by target or surveillance-oriented missions. The main envi-
ronments of interest include forests, fields, caves, and mountains. The layout is not necessarily
mapped beforehand and may include dynamic hazards and constrained areas [9].

3. Air-sea SaR is similar to the wilderness case in mission taxonomy; however, the environments
are defined by their vast open areas without expecting many static or dynamic obstacles. The
search is usually conducted via aerial support and satellite assistance to the SaR efforts on the
field.

Urban disasters disproportionately affect a larger number of people and cause widespread destruc-
tion compared to other types of disasters. One of the most prevalent attributions to the increased
casualty rate in urban scenarios is the severance of local functions on a large scale, which prevents
structured SaR missions. There have been urban disasters that resulted in at least city-wide destruc-
tion, claiming the lives of thousands; the recent largest ones include Turkey 1999, India 2001, Iran
2003, Pakistan 2005, China 2008, Haiti 2010, Japan 2011, Nepal 2015, and Turkey 2023 earthquakes
[10]. The common denominator for the USaR efforts in these disasters is that international help usually
can not arrive in time to make significant contributions while local efforts are lacking due to the insuf-
ficient number of SaR teams and resources left in the aftermath of the destruction [10]. Considering
the technical challenges introduced by the volatile environment and the time-sensitive nature of urban
disasters, the focus of the thesis is selected in the USaR domain with an emphasis on large-scale
earthquake response.

2.1. Domain Characteristics
In the event of a disaster within an urban setting, it is essential to assess the immediate environmen-
tal and operational considerations to enable effective USAR missions. For the purpose of this thesis,
the most relevant environmental factors and constraints are investigated. Then, the tasks of USaR

4

2.1. Domain Characteristics 5

teams and the current margins for improvement, with an emphasis on robotics implementations, are
justified. Building on this framework, the qualitative parameters that can improve contemporary USaR
approaches are reached from the required autonomy perspective to formulate the design considera-
tions.

2.1.1. USaR Environment
There are various distinctly different disasters that may result in USaR scenarios with entrapment from
structural collapses. Therefore, the first step is to identify the so-called hot zones and the associated
hazards. As defined by Murphy [3], the USaR operations occur exclusively in the hot zones, where
only the essential personnel are allowed. The warm zones extend around the rescue areas with op-
erational and logistic stations, where the remaining areas are called cold zones. Boundaries between
these areas can be volatile and setting them throughout the mission depending on how the situation
evolves is an essential task [9]. Furthermore, the hot zones are generally exposed to weather con-
ditions, and the rescue efforts may extend through the night when the necessary infrastructures for
lighting are insufficient. The USaR teams must also remember that dynamic hazards may occur after
initial collapses emanating from unstable debris, explosions from leaks, or rapidly accelerating fires [8].
The communication and localization systems may become unreliable in a hot zone, if not completely
lacking, therefore establishing coordination and information flow on the field becomes a priority [9].

Figure 2.1: Survival likelihood with respect to the elapsed time after different types of structural collapses [11].

In general, confined spaces characterize the hot zones in disaster areas, where the regulations
for safety create additional bottlenecks for rapid rescue efforts [3]. From a high-level perspective, the
searchmust be conductedmethodically before any rescue can be performed. As an example of utilizing
the prior information from other disasters for establishing a prioritization model within USaR environ-
ments, Reinoso et al. [11] propose a mathematical model to predict the survival rates δS(ta) as a
function of elapsed time ta of different types of debris, as:

δS(ta) = (1− δF0)(1− FBE(ta / tmaxa |a, b)) (2.1)

Where δF0 denotes the factor of victims killed instantly depending on the structure type, tmaxa the max-
imum survival time, FBE(.) the Beta cumulative distribution function, and a, b the related structure-
dependent constants of the cumulative distribution. As shown in Figure 2.1, it is possible to model
historical data from previous earthquakes using this formulation, informed by qualitative observations
made during a mission, such as building types. Reinoso et al. further classify the following metrics that
can be modeled and relevant to USaR mission goals:

• Expected occupancy rate at the time of the collapse.
• Qualitative vulnerability defined by the structural type (see Figure 2.1), local building codes, falling
debris hazards around the structure, materials, and possible fire hazards both externally and
within the infrastructure.

• Susceptibility to earthquake-induced secondary hazards such as tsunamis, subsidence, and land-
slides.

• Miscellaneous factors such as weather conditions and the efficiency of rescue and emergency
plans in place.

2.1. Domain Characteristics 6

From a more fine-grained perspective, USaR teams need to account for reduced visibility in the
debris, environmental noise, secondary collapses, and inevitable deaths during or before the rescue;
hence, they need to make quick decisions while ensuring personnel safety, stress, and fatigue man-
agement [3]. Combining all the environmental factors, the first 72-hour duration is generally the most
important time interval for extended USaR missions to succeed [10].

2.1.2. Performance Factors
Disaster response in an earthquake area depends on many factors, a substantial number of which can
be considered situational. However, the ultimate goal and, hence, metric for success is rescuing as
many victims as possible within the minimum amount of time to ensure their survival and well-being.
Therefore, one of the most important factors that affect USaR performance is overall situational aware-
ness, including risk and safety assessment for the rescuers [8]. There are margins for improvement in
the current methodologies listed by Statheropoulos et al [8], determined by surveying USaR personnel
on the field. The initial analysis is conducted externally on a collapsed building through a thorough sta-
bility evaluation by specialized structural engineers. Unsafe buildings and uncertainties prolong these
efforts before any detection of victims can be performed. Additionally, as new information is gath-
ered, some buildings may need to be re-searched after debris removal, which can negatively affect the
efficiency of USaR operations, as human resources and equipment are always limited. A case study
surveying different spatial task allocation strategies for the USaR teams on the field under uncertainties
[12] indicates that the most successful strategies are the ones that allocate resources for decreasing
the uncertainties during the operation, where the most notable sources of uncertainty can be listed as:

• The number of injured people and the severity of their condition.
• Overall operation and individual task durations.
• Infrastructure priorities and routing within a partially unknown environment.
• Risk levels during rescue and agent fatigue.

Comparing the odds of USaR personnel with high and low situational awareness, respectively, for
locating a victim, the former is nine times more likely to achieve success than the latter, depending
on the mission time [13]. For the purpose of this thesis, the overarching performance factor in an
earthquake scenario is therefore highlighted as improving situational awareness to enable informed
decisions on the part of the rescuer. This improvement can be made efficiently by considering which
uncertainty should be addressed first in terms of search priority. Compiled from expert interviews and
earthquake response field data, the priority-index (PI) model [5] can be used to categorize parameters
that define the likelihood of finding victims. Presented in Table 2.1, these categories are further divided
into sub-categories that define respective degrees of severity in practice. Incorporating these decision
parameters into the initial search task can provide the groundwork for improved situational awareness
of rescue efforts and quantify the factors that affect search performance.

Rank Prioritization of
areas in USaR

Average importance
weight (1 to 5) Rank Prioritization of

areas in USaR
Average importance

weight (1 to 5)

1 Destruction level
of the building 4.60 7 Risk level in the

damaged areas 3.10

2 Population
density 4.57 8 Vulnerable

population 2.30

3 Number of
injured people 4.53 9 Access time 1.90

4 Severity level
of injuries 4.50 10 Number of stories

of buildings 1.77

5 Number of
trapped people 4.37 11 Type of building 1.70

6 Occupancy level
of buildings 3.37 12 Time of the day -

weather conditions ≤ 1.50

Table 2.1: The average importance of area prioritization based on USaR case studies [5].

2.1. Domain Characteristics 7

2.1.3. Design Considerations
The current areas for improvement, as explained in Sections 2.1.1 and 2.1.2, clearly necessitate the de-
velopment of new tools for the USaR task to enable more possibilities in the field. Data on the operation
of current earthquake response teams indicate that visual contact with victims and their localization is
deemed to be of the highest importance; while improving the detection sensors and introducing ways of
structural 3D mapping, combining communication with victims is pointed as the second and third most
important requirements, respectively [14]. Furthermore, reviews based on previous disasters show that
focusing on enriching topological navigation and mapping may be sufficient for a new tool to accomplish
situational awareness to make enough difference during the mission [15].

Due to increased awareness requirements and the limited number of USaR personnel, autonomous
robots offer valuable promise for the USaR toolbox. It is estimated that teleoperated solutions would
require at least a 2:1 ratio of robots to operators on the field due to regulatory constraints; hence,
the system must be designed to gather a meaningful amount of intelligence that could not have been
achieved with human teams given the same mission duration [15]. To increase this ratio effectively,
the need for more reliable autonomy becomes evident. Robots can ideally be used to remove debris
and access risky or cluttered environments for retrieval and payload delivery; however, the autonomy
constraints would be substantially high for safety purposes and thus not applicable in practice. Based
on a European Union study on the inter-relation of tools in practice for USaR, modular systems are
sought the most for robustness [16]. Furthermore, this work highlights the importance of end-user
integration and well-defined behaviors during a USaR mission. Having said that, the systems must not
attempt to do everything simultaneously due to overflowing requirements and ease of deployability [17].
For these reasons, the focus of this thesis is highlighted as aiding only the victim search rather than
rescuing.

Robots can eliminate the performance bottlenecks associated with the human element, such as risk
assessment, fatigue management, and resources allocated for the initial search mission [3], as well as
improve the information flow. Navigational autonomy is a promising field of research since it allows for
informed decision-making by constrained area survey, hot zone assessment, victim identification/local-
ization, mitigation activities, and stay-behind monitoring, which are increasingly valuable tasks in an
earthquake scenario [17]. The assumptions and requirements in the selected domain are summarized
as follows, constituting the high-level design goals to improve situational awareness via autonomous
robots:

(A) The USaR environment is assumed to be (partially) unknown, and the number of stationary en-
trapped victims within the hot zone boundaries is uncertain.

(i) The system surveys the designated hot zone area while tracking the evolving situation within
and around it rather than directly interacting with the rescue efforts.

(ii) Fundamental features include mapping the area, locating victims, and continuously updating
the current information on areas where USAR efforts cannot operate yet, while evaluating
the risks involved.

(iii) The considered scenarios do not involve sudden and drastic environmental changes. At the
same time, the system design should be modular enough to enable the later incorporation
of factors that are outside the scope of this thesis.

(B) The main selected metric of operation is ensuring the minimum mission time while finding as
many victims as possible.

(i) Tasks for this mission design include sensing the status of the victims while operating with
navigational autonomy in the field and utilizing intelligent decision-making to determine the
next course of action.

(ii) Although sensor fusion is not prioritized and is assumed to be a black box for this thesis, per-
ception methodologies must be detailed and modeled regarding their effect on the system.

(iii) The level of allowed autonomy in USaR is an active discussion. Still, the system should be
fully autonomous in lower-level control (following a trajectory, climbing stairs, and avoiding
obstacles), whereas the higher-level decision-making autonomy should enable possible hu-
man input. The system’s outputs and behavior should be human-interpretable and center
the end-user in the design.

2.2. Robotics in USaR 8

2.2. Robotics in USaR
Robots have been proposed and utilized in a USaR scenario for 20 years now, where some of the first
versions were deployed after the World Trade Center disaster in 2001 for reaching to victims that oth-
erwise would not be possible [18]. These initial attempts were all controlled by USAR personnel on the
field outside the debris, where the relatively smaller ones were tethered for power and data streaming.
In comparison, the bigger ones could operate wirelessly. Their primary purpose was to establish a
visual and auditory connection with the victims, as well as the situational hazards inside the collapsed
building [18]. Since then, the available computing power, control strategies, sensor quality, and com-
munication networks have substantially increased, creating new opportunities for more intelligent and
autonomous robots.

Since the working environment of USaR robots is unpredictable and unstructured, Liu et al. define
the five key performance factors as survivability, mobility, sensor, communication, and operation [19].
Survivability is closely correlated with the reliability, durability, and adaptability of robots in volatile sit-
uations. These metrics directly translate into the ability of an intelligent system to succeed robustly in
its task, even in changing environments. Mobility and, by extension, fault tolerance add to this argu-
ment by considering how an intelligent robot can stabilize itself and overcome a wide range of potential
obstacles during a mission. Sensors are fundamental for gathering environmental information, not
only to assess a victim’s situation but also to avoid threats to themselves as well as to prevent causing
further damage. Communication encapsulates the system’s ability to gather and convey essential, time-
sensitive information between victims and rescuers, where the operation combines all these metrics to
determine the tasks the robot should perform during a USaR mission.

This section presents state-of-the-art robotics solutions, along with their respective strengths and
weaknesses, for operating under the assumptions outlined in Section 2.1.3. The literature is structured
in a modular approach, in the order of the types of robots and specialized actuators for USaR, sensors,
perception, and finally, the approaches in the autonomous control of singular and teams of robots.

2.2.1. Robot and Actuator Types

(a) Hybrid wheeled-tracked locomotion [20]. (b) Hybrid legged-tracked locomotion [21].

Figure 2.2: Hybrid locomotion examples for a USaR UGV.

Following the successful field applications after the World Trade Center disaster, USaR robot de-
signs with operators had gained traction with further integration in disasters such as the 2004 Japan
earthquake, the 2005 USA Katrina hurricane, and again the 2011 Japan earthquake/tsunami [5]. Since
the situational requirements can occur with a large variance in a USaR mission, the initial works mainly
focus on different shapes and mobility systems for teleoperated ground robots with similar sensors and
ranges [18]. The types of robots can be divided into two general categories: unmanned ground vehi-
cles (UGVs) and unmanned aerial vehicles (UAVs). In the context of USaR, unmanned refers not to
the control of the robots but to the designs that do not require any physical human presence on board;
hence, it is not a notion of autonomy.

UGVs in USaR are tied to the faster localization of victims, resulting in shorter rescue times and a
more reliable assessment of building damage compared to UAVs [22]. Additionally, Berns et al. sepa-

2.2. Robotics in USaR 9

rate small and large UGVs functionally; a large UGV can be used for longer-range information collection
close to the danger zones, while a small UGV can be used to enter tight places to look for victims to
assess their status more in detail [22]. Hence, the operational goal is important for determining the
physical architecture of the robots, on which task allocation, control, and perception strategies can be
developed. For hot zone assessment and navigation, large UGVs are generally proposed with wheeled,
tracked, or legged locomotion systems and their hybrid combinations [18][19]. The reasoning behind
these choices can be pointed out as enabling generalized robust mobility options for the environmental
uncertainties rather than specializing in certain use cases [3]. Especially in a USaR environment, cer-
tain features such as stairs, extremely uneven or unstable grounds, soft terrain, and dynamic obstacles
are fundamentally more difficult to navigate [23]. The capabilities of an autonomous low-level controller,
in essence, rely on the choice of fault-tolerance strategies such as tip-over correction and locomotion
systems. Figure 2.3 presents performance comparison between the most common configurations for
large UGVs, where some examples of the hybrid approaches are given in Figure 2.2. The comparison
metrics are qualitatively presented, where the mobility in unstructured environments, energy efficiency,
and overall speed of robots are compared across different locomotion types [21]. Although enabling
more range through speed, wheeled robots are generally unsuitable for a USaR deployment when
many irregularities within the debris fields are present. Combining tracks with either legs or wheels is
preferable to using only one locomotion method, as it enables robustness while keeping control com-
plexity and energy requirements moderately low. Specific variations within the same category may also
lead to improvements in performance; for instance, the wheel-track configuration suggested in [20] out-
performs other hybrid solutions for stair climbing. To account for the shortcomings of the locomotion
systems, low-level autonomous controllers are proposed and implemented for various USaR robots
[23].

Figure 2.3: Qualitative locomotion comparison of large UGV types (for legged, tracked, wheeled, LT (legged-tracked), LW
(legged-wheeled), WT (wheeled-tracked), and LWT (legged-wheeled-tracked) robots) [21].

In contrast to large UGVs, small UGVs are designed to crawl under the debris and navigate within
close range of the victims to establish direct information and communication streaming [22]. In addi-
tion to the general locomotion types available for large UGVs, the functional purpose of small UGVs
enables more specialized designs for close-quarter environments. Soft robotics and serialized tracked
segments to slide into the cracks in the rubble are proposed uniquely for USaR purposes [18]. Fur-
thermore, state-of-the-art snake robots are configured with passive wheels or interlocking motorized
joints to enable high degrees of freedom (DoF) motion necessary for their operational goal [24]. The
trade-offs, however, can be noted as reduced mission duration and considerably increased control
complexity, which are inversely proportional to the gain in mobility. Nevertheless, snake-type locomo-
tion can be effective for locating victims if deployed close to the debris site that is to be searched and
equipped with the necessary tools for this task. Similarly to the hybrid locomotion of large UGVs, mod-
ular and shape-shifting mechanisms are also proposed for small UGVs for a USaR mission. One of the

2.2. Robotics in USaR 10

initial such designs is called a variable geometry tracked vehicle because the shape of the robot can
be altered during operation [18]. The initial shape of this robot resembles a crawler with tracks. When
in a raised configuration, the tracks assume the shape of a triangle, allowing the design to conform to
the terrain. An improvement on this strategy is suggested by adding modular connections between the
tracked segments of the robot for docking and separating according to the needs of the terrain [25].

Some unique approaches for USaR robots consider different types of actuators in addition to the
presented locomotion strategies. Han et al. [26] propose a snake robot with a grippermodule for digging
and interacting with the rubble on the way to potential victims, equipped with sensors and a camera
at the fingertips. Integration of snake-like actuators into the current USaR toolbox is explored in the
literature, with designs such as connecting them to other UGVs as sensory limbs [18], or a teleoperated
deployment unit containing a specialized snake robot attached to USaR dogs [27]. This idea is further
conceptualized as a shape-shifting robot carrying a smaller snake-like peripheral that can detach for
a USaR scenario in the early stages of the field [3]. Teleoperated UGV and snake robot hybrids are
successfully implemented and field tested by allowing the operator to detach and control using the main
robot as a connection hub [28]. A similar design is proposed for USaR operations by configuring the
snake as a detachable limb consisting of interlocked gears, which the main UGV can use to interact
with the rubble on demand or extend it with a cord as a standalone unit [29]. Utilizing UAVs instead can
eliminate the inherent mobility constraints emerging from UGVs. With UAV technologies on the rise,
they have been used in USaR environments in two primary modes: on-site and logistic chain [30]. On-
site UAVs operate in the hot zone, mostly for visual reconnaissance over a wide area. Functionalities of
mapping for risk assessment, victim search, target observation, and surveillance are the main benefits
of incorporating teleoperated UAVs during a mission [31]. Furthermore, the advancements in micro
UAVs substantiate the arguments for their utilization by entering confined places, ventilation ducts, and
underground sewer channels [30]. Logistic chain UAVs, in contrast, operate in warm and cold zones
for cargo transportation. In addition to increased mobility, UAVs offer vertical exploration as a means to
enhance situational awareness in disaster areas. Especially partially collapsed buildings can usually
only be explored from above due to the unstable structure, making UAVs invaluable to the USaR task
[3].

Although UAVs are superior for navigating the environment quickly, the robots must be close and
within the debris to detect victims under collapsed structures. To that end, smaller UAVs are more
desirable for exploration at the cost of short mission duration and limited computing capabilities [2].
In this sense, UGVs enable closer sensing and better assessment of victim status, while UAVs can
eliminate the mobility problem on unstructured terrain and, therefore, increase the range of operation.
Several designs are proposed to combine these strengths of UGVs and UAVs in the form of air-ground
hybrid locomotion. A differential drive cylindrical robot that can rotate itself on the side by expand-
ing its propellers located horizontally inside the chassis for traversing steep terrain is proposed and
demonstrated to be feasible [32]. The downside of this approach is that the robot needs to change its
orientation between transitions, and the dynamic components that expand into propellers are prone to
failure. Premachandra et al. solve this problem by keeping the propellers stationary in the chassis and
using them to assist lateral movement on tough terrain instead [33]. In this work, propellers attached
to a suspension system are used to fly over obstacles and allow for quick maneuvers in support of
the separate ground locomotion system. Finally, a ground-air USaR robot with a victim detection and
positioning system and the capability to carry cargo is proposed [34]. Still, without compromising on re-
ducing the sensory capabilities, these solutions suffer from substantial power requirements to support
flight.

2.2.2. Sensing, Perception, and Mapping
Sensing methodologies are essential for USaR missions, allowing human and robotic teams to detect
and assess victims, establish structural analysis, evaluate risks, and achieve overall situational aware-
ness. The traditional search in an urban disaster zone without any technological tools can be performed
by visual inspection or knocking into the debris and aiming to detect a response from underneath it [8].
Unfortunately, without having multiple points of view, visual obstruction due to dust and rubble may pro-
hibit effective victim localization. In contrast, weak or unconscious victims are impossible to detect with
the latter method. Contemporary USaR efforts include various sensory tools to overcome the issues

2.2. Robotics in USaR 11

of the traditional methods.

Feature Field of View Resolution Robustness Size
Victim

Detection

Ultrasonic distance - - - ++ - -

LiDAR
Rotating distance ++ ++ + o -

Solid State distance + + + + -

Camera
Visible

vision /

distance
++ ++ ++ ++ ++

Infrared
vision /

heat
++ + o ++ ++

ToF distance + o ++ ++ o

Microphone sound o - - - o +

Thermopile heat - - - - ++ +

Pyroelectric heat - - - o ++ ++

RADAR distance + o - - - -

Chemical
metabolic

byproducts
- - - o o ++

Wireless Sniffer WiFi + + + + - -

Table 2.2: Sensor comparison for USaR (- -: very low, -: low, o: medium, +: high, ++: very high) [35][36].

The sensory tools for USaR can be listed under penetrating and non-penetrating sensors. Non-
penetrating sensors only measure within the direct line of sight of the measured features, while ob-
structions in the field of view do not constrain penetrating sensors. The non-penetrating sensors in-
clude ultrasonic sensors, rotating light detection and ranging (LiDAR), solid-state LiDAR, and cameras
[35]. Ultrasonic sensors use the time of flight (ToF) of generated sound waves reflecting from surfaces
and are relatively unaffected by adverse environmental conditions. Disadvantages include noise due
to bouncing, resolution, and blind zones in the field of view. Conversely, LiDARs achieve ToF measure-
ments through pulsed light emitted from a laser diode, where the generated 3D data points are called
point clouds. Although LiDARs also suffer from the same problems as ultrasound sensors, their accu-
racy and precision have been significantly improved. Furthermore, the ability to measure via individual
rays enables different approaches to the LiDAR system, primarily through rotating a LiDAR array or
generating dense rays using a solid-state setup, albeit at the cost of a more limited field of view. The
final and most widely adopted non-penetrating sensors are cameras of three overarching types: visual,
infrared, and ToF. Visual cameras capture between 400 and 780 nm light, similar to the human eye,
with higher potential resolution. Additionally, multiple visual cameras are used to perceive depth and
construct 3D features. Variations in lighting and weather conditions limit the use of visual cameras;
hence, they are mostly utilized in combination with other sensors. Infrared cameras measure between
780 and 1000 nm wavelengths, mostly utilized in the near-infrared spectrum and as a replacement or
in support of visual cameras. At the expense of resolution, infrared cameras are not susceptible to
lighting conditions and can measure thermal bodies. Finally, ToF cameras are active sensors that use
near-infrared light pulses to construct a 3D representation of the environment by measuring the phase
difference between the emitted and received signals.

Penetrating sensors for USaR include microphones, thermopiles, pyroelectric sensors, radio detec-
tion and ranging (RADAR), chemical sensors, and wireless mobile phone sniffers [2] [36]. Microphones
mimic the traditional way of finding humans, often coupled with actuators to knock into the debris. Di-
rectional microphones are used to process the location of potential victims since the processing of
audio data is generally noisy. Thermopiles and pyroelectric sensors measure heat signatures, where

2.2. Robotics in USaR 12

the former is used to detect the absolute temperature of a point, and the latter is used to detect thermal
gradients. RADARs use radio waves for long-distance motion measurement, unaffected by adverse
conditions. The drawbacks are the resolution and power requirements. Chemical sensors are mainly
used to detect CO2 for detecting the breathing cycles of victims and SpO2 for blood oxygen measure-
ments. Generally, they require close proximity to have reliable estimations of victims and are heavily
dependent on conditions such as humidity, temperature, and dust. Having said that, there are recent
developments in chemical sensor arrays specifically for USaR victim detection by also measuring the
trace chemical changes in the environment related to human metabolism, making chemical sensing
feasible for finding victims inside entrapment [37]. Finally, wireless sniffing of mobile phone WiFi net-
works has been suggested and tested to detect potential victims to narrow down the potential area of
measurements for other accompanying sensors [2].

Figure 2.4: UGV and UAV team for mapping a damaged building. On the left, UGV carrying the UAV is given. On the right,
mapping with only UGV (top) and combined mapping (bottom) with followed trajectories are given [38].

USaR necessitates specialized perception methodologies to process and draw meaning from the
sensor measurements. Queralta et al. examine such methods under active and passive perception
[39]. Active perception requires the robot to interact with the environment to obtain measurements,
such as the signals emitted by LiDARs and RADARs. Passive perception does not require such inter-
actions, and the most mature method is the use of cameras. Camera perception mainly relies on neural
networks, where the input data is semantically segmented as a basis of object detection [39]. Seman-
tic segmentation is often computationally costly and requires large datasets for accuracy; however, in
recent years, both aspects have been significantly improved. Infrared and visual camera data can be
processed to detect life signs in enclosed places [40]. Coupled with stereo vision, infrared fusion is fur-
ther developed for USaR scenarios with relative baseline matching to detect humans with an accuracy
of around 85%, depending on the environmental factors [41]. In general, multiple sensors, as listed in
Table 2.2 are fused together to perceive varying features with specific combinations, calledmulti-modal
information. The multi-modal information fusion can be achieved with different sensors on the same
robot or distributively between the measurements of multiple robots [39]. Borges et al. present the ter-
rain traversability perception available to ground vehicles using cameras, LiDARs, and RADARs, where
cost-efficient methods exist for most robot types [42]. To achieve navigational autonomy on both lower
and higher levels, terrain sensing is integral to USaR robots. Furthermore, specialized terrain analysis
is imperative for first classifying damaged building areas and then quantifying the collapse intensity,
expected structural damage, and finally, the life vulnerability estimates of the perceived environmental
segments proposed by Reinoso et al. [11]. Pollino et al. provide a LiDAR and camera-based fusion
algorithm to detect rubble features for environmental assessment using spectral analysis and machine
learning tools, complementing the theoretical framework Reinoso et al. suggest [43]. Frameworks for
integrating digital perception strategies into the USaR mission, considering structural triage methods

2.2. Robotics in USaR 13

such as estimating the potential number of victims, access times, and risk metrics to the rescuers, are
also suggested for manual USaR missions [44].

The final component for environmental awareness in a USaR setting is mapping. Mapping the dis-
aster area during victim search is essential, as the landscape is expected to be different. Locating
points of interest with respect to the traversable area increases search efficiency. The most ubiquitous
method of mapping in robotics is called Simultaneous Localization and Mapping (SLAM), where the
robots are localized within the unknown environment during mapping, and the map assists in the lo-
calization correction in the next steps [23]. There are many SLAM algorithms using this basic strategy
for mapping unknown environments; however, in general, they are separated into 2D and 3D SLAM
categories. Picard et al. provide a comprehensive survey for 3D real-time SLAM algorithms for em-
bedded systems, which are the most relevant approaches for USaR robots [45]. These algorithms
typically utilize camera and LiDAR-based perception algorithms to detect landmarks and approximate
the environment as a semantic network. The mapping strategy may range from city-sized points of
interest-based representation to high-fidelity, close counters 3D mapping inside the rubble, depending
on the capabilities of the autonomous robot. In general, higher fidelity SLAM algorithms trade com-
putational power in favor of resolution, where robust SLAM approaches are suggested using simpler
sensors for small UGVs in a USaR mission [46].

For USaR robotics, SLAM approaches takemore specific forms to satisfy the navigational autonomy
requirements. UAVs are generally utilized to take pictures and videos, and using them offline for 3D
reconstruction of disaster zones via structure-from-motion techniques has been suggested [47]. Online
and faster methods for aerial 3D mapping of the USAR area have been surveyed by Verykokou et
al., where pipelines for integrating autonomous pathing are discussed [14]. Zhang et al. propose a
multi-layered mapping framework for detecting features such as terrain roughness, slope, elevation,
and step height to build maps for ground robots using UAVs to efficiently explore a USaR area [48].
Similar strategies of combining UAVs and UGVs for collaborative mapping exist; for instance, a team
of UAVs is used to extract a 2.5D occupancy grid map for a humanoid search robot to traverse a
USaR area, detecting victims [49]. Qin et al. propose a collaborative perception scheme in which
both types of robots can perform mapping individually, with UGVs creating a coarse LiDAR-based map
and UAVs creating a finer map using cameras. Both types of maps are transferable between each
other; specifically detected features enable heterogeneous systems to utilize each other’s maps with
respect to their own representation of the environment. To map indoor and enclosed areas, Michael
et al. suggest teleoperated robots in an earthquake-damaged building where the UGV carries the
UAV on a launching pad attached on top until the location of interest is reached [38]. The UAV can
autonomously take off and land, while navigation is performed semi-autonomously with the assistance
of teleoperation. Shown in Figure 2.4, the sensor readings are merged to generate a 3D map and
its manifold into 2D features during operation. Finally, Azpurua et al. propose a mapping framework
based on the Riemannianmanifold from 3DSLAMdata to construct amesh representation of a confined
environment and then extract traversable faces as the final map [50]. A more recent work specifically for
SaR scenarios introduced a vision-basedmapping framework that combines aerial and ground robots to
enhance scene understanding in complex environments [51]. The system integrates video feeds from
both robot types to perform three core tasks: detecting victims, tracking their movement, and mapping
terrain elevation. By utilizing state-of-the-art computer vision approaches, their proposed framework
estimates 2D keypoints of human bodies to reconstruct partial poses, even when certain body parts
are occluded, by matching detections from different viewpoints. Victim tracking is modeled as a state
estimation problem, where fused detections from both robots are processed through a Kalman filter to
estimate the victim’s trajectory over time. Additionally, terrain elevation is derived through homography-
based projection of visual data, allowing the system to infer object placement and ground layout for
safer navigation. The approach was further validated in real-world experiments, demonstrating its
effectiveness in dynamic and partially occluded conditions, which highlights the potential of coordinated
multi-robot vision in heterogeneous teams for addressing key perception challenges outlined in the SaR
literature.

2.2. Robotics in USaR 14

2.2.3. Control Systems
The environmental conditions in USAR hot zones are generally extreme and noisy, as outlined in Sec-
tion 2.2.1, specialized robot types are often recommended. The control scheme for most of these so-
lutions had traditionally been via teleoperation [18]. Most control architectures for teleoperated robots
focus on increasing stability in performing certain actions, such as traversing stairs, uneven terrain,
self-correction, and perception stabilization [23]. In the literature, low-level controllers exist for various
types of actuators, which are mature enough for both USAR robotics and robotics in general. For the
sake of scrutiny, such low-level controllers are not investigated in this thesis. Instead, the main focus
is on higher-level control structures related to the increased autonomy requirements of USaR robots,
which encapsulate the intelligent decision-making and efficient task-completion capabilities of state-of-
the-art solutions. Furthermore, the relevant literature for the assumptions and goals outlined in Section
2.1.3 is found to mainly focus on multi-robot solutions or systems that can be extrapolated as such;
hence, actuator-specific single-robot controllers are not investigated in this section.

Figure 2.5: Relevance of functionality metrics for robots in USaR [52].

Regarding high-level control strategies, Drew defines the functionality metric trade-offs of robot
teams with respect to mobility, autonomy, and reliability in their survey of multi-robot applications in
USaR [52]. As shown in Figure 2.5, effective perception and planning are highlighted as the optimal
combination of thesemetrics, encapsulating features such as cooperative mapping, formation, and task
allocation. Locomotion specialization, mission duration, and environmental manipulation are catego-
rized under cost-function trade-offs, which are essential for the design of individual robots initially and
for using the teaming approach to account for the shortcomings of respective design choices. Commu-
nication link reliability and scalability are important constraints for the success of robot teams on the
field, regardless of the level of autonomy. Finally, human-robot interaction considers the end-user of
these approaches, with examples including single-operator control of the team and supervised auton-
omy. Perception and planning autonomy are estimated to be more important than other aspects of the
current research in USaR robotics, with two main components: Path planning and task allocation. In
the context of this thesis, path planning refers to the specific trajectory a robot is planned to take to
reach a selected goal position. This strategy may be local and potentially include the vehicle dynamics,
or it may be global, involving the identification of feasible waypoints towards the goal while avoiding
obstacles and collisions. Task allocation, in its simplest form, involves generating the goal points for the
path planners and determining the actions to be taken for each robot. Task allocation is more abstract
in the sense that simply traversing to a goal location at a given time can be a task on its own, or the
task structure might be more complex considering area coverage, ensuring communication pipelines,
searching a specific area, and interacting with the environment in a cognitive way to fulfill semantic
goals [39].

Another relevant approach to investigating the literature is to categorize the multi-robot target de-
tection problem in a more general manner. Robin and Lacroix propose a taxonomy of controllers for
autonomous multi-robot teams in terms of how the overall mission is formulated [53]. In their proposal,
the control architecture types are split under target detection and target tracking, denoting whether
the targets are previously known or not, respectively. In the specific context of this thesis, a similar
categorization is also referred to as coverage-oriented and target-oriented SaR where the former as-
sumes an unknown environment and thus aims to improve the exploration coverage, while the latter

2.2. Robotics in USaR 15

approaches consider prior knowledge to be utilized, enabling strategies that can directly attempt to find
mission targets. When mobile search is considered, as in the case of autonomous robots in a USaR
environment, the search mission can be separated with respect to any guarantees that can be made
for finding the victims. If the area is known in advance, the search can be defined as a capture mission,
in which worst-case duration can be shown to be bounded and, therefore, optimized. In a more realistic
scenario where the area is partially known and a probability distribution can be formulated in the search,
the mission is regarded as a probabilistic search. When this task is cyclic, as it is often necessary to
revisit previously mapped areas for victim assessment and surveillance, it is referred to as patrolling ,
considering the statistical performance over time between two visits to the same point. In the case of
no guarantees being made for victim detection, the task is regarded as hunting. For the purposes of
this thesis, as laid out under Section 2.1.3, probabilistic search formulation is considered, with which
the literature on path planning and task allocation is investigated.

Path Planning

Path planning refers to the strategy employed by robot controllers to ensure safe, feasible, and efficient
traversal between specified waypoints. In the work of Ibanez et al., a comprehensive taxonomy of state-
of-the-art path planners is constructed [54]. The categories are laid out on the axis of local and global
planners, where local planners usually implement lower-level obstacle avoidance between consecutive
waypoints and generally execute faster. In contrast, global planners require more information from the
environment, which is generally computationally expensive, to construct a better approximation of an
optimal look-ahead pathing strategy between multiple given and calculated waypoints. For both cate-
gories, a path planner must be provided with a representation of the environment in which to operate. If
the path planners need to optimize for additional criteria as well, such as the energy and time of traver-
sal, modeling the mechanical interaction with the environment surface also becomes relevant. Building
upon the sensors and mapping capabilities of USaR robots as described in Section 2.2.2, algorithm-
specific environmental representations are utilized for most control architectures. These include cell
decompositions by tesselation using triangles, hexagons, squares, or irregular-sized grids denoting re-
gions of interest at different fidelity levels [54]. Instead of superimposing sensed features into distinct
regions, another way of representing the environment is through map construction. Roadmaps are usu-
ally represented by graphs, where nodes represent a robot state and edges represent the transitions.
The methods for roadmaps include Voronoi decomposition, visibility graphs, and state-lattice graphs
[39][54]. In terms of robot-surface interaction modeling, the relevant information for path planners is
generally in the form of stability, slippage, time, and energy. With the details outside the scope of this
thesis, further information can be found in the literature cited in Section 2.2.1.

Figure 2.6: Dijkstra based graph search algorithms overview. [54].

Some of the most prevalent methods in global path planning are graph search methods. These
methods discretize the c-space, also called the working space of robots, in the form of generalized

2.2. Robotics in USaR 16

graphs. Denoting the waypoints as goal states, graph search algorithms aim to find the optimal node
order between them. Regardless of whether the sampled environment is based on cell decomposition
or roadmaps, a graph search can be conducted in an edge-restricted or any-angle fashion. Edge-
restricted algorithms strictly use the edges on the initially given graphs to conduct the search, meaning
a state transition can only happen to its immediate neighbors. Alternatively, any-angle algorithms are
not constrained by the initially provided edges and can construct paths consisting of states that may
not be neighboring each other. The majority of both types of algorithms are developed based on the
basic idea of Dijkstra’s shortest path update rule. Briefly, Dijkstra’s method considers a propagating
search from a source in which, for each reached node u and an unreached neighbor v with an edge
weight w(u, v), the following rule is applied at step k to update the cost of dk+1(v):

dk+1(v) =

{
dk(u) + w(u, v) dk(v) > dk(u) + w(u, v)

dk(v) otherwise
(2.2)

This approach is majorly improved using domain-specific heuristics, which provide the basis of A* al-
gorithms. The heuristics must be admissible, meaning that within the mathematical formulation of the
graph, they never overestimate the true cost of ensuring optimality. The basic A* algorithm improves
the rule given in Equation (2.2) by adding an admissible heuristic function to the updated cost, usually
in the form of Euclidean or Manhattan norm for spatial graphs. Dynamic A*, also known as D*, imple-
ments a similar strategy but allows the previous computations to serve as incremental steps, enabling
fast re-planning. Other improvements on these edge-restricted algorithms exist, such as D* Lite, Life-
long Planning A*, and Hybrid A*, on which further details can be found in the work of Gonzalez et al.
[55]. Any-angle algorithms also draw on an A* formulation at their core, relying on graphs with defined
norms to enable search without relying on only the edges. Such algorithms include Theta*, Field D*,
and Accelerated A*, the taxonomy of which is given in Figure 2.6 , and further information is available
in the work of Ibanez et al. [54]. The optimality of graph search methods depends on the heuristics
they use and is ultimately influenced by the approximation of the environment. Instead, in the most
general case, partial derivative equations of the search space on which the path planning is done can
be solved with respect to a source node, called a boundary, in the form of Eikonal equations. Eikonal
equations model how a wave propagates from a boundary in a given space, with a formulation similar
to Dijkstra’s in that both extend the search from the source and update the states reached according
to the minimum cost. When used for path planning, gradient descent is the most prevalent approach
to calculate the optimal path to a waypoint. The Fast Marching Method (FMM) employs this approach
to generate smooth and continuous optimal paths. Gomez et al. list a family of algorithms based on
Eikonal solvers and improved versions of the original FMM [56]. These methods have been further inte-
grated with heuristics to handle anisotropic environment models, dynamic re-planning, and non-linear
constraints, such as the Fast Iterative Method, Fast Sweeping Method, and Ordered Upwind Method
[54].

When the environmental model and path planning objectives are in higher dimensions, sampling-
based methods are widely used to approximate the global solution asymptotically. In general, sampling-
based path planning methods are either in the form of single or multiple queries, meaning only one goal
state is present in the former, while intermediary goals are allowed in the latter [54]. The overarching
approach in many single-query methods in this category stems from the Rapidly Random Tree (RRT)
algorithm, where the search space tree is dynamically created by sampling sequential branches until
a feasible path to the goal state is found. Since the tree is built incrementally, further iterations can
be performed to increase the optimality of the found path. Different improvements on this approach
have been proposed, such as adding heuristics to speed up the convergence rate, similar to the A*
family of algorithms. When expanded to the multiple-query problem, the most prominent method is the
Probabilistic Roadmap Method, where samples in the search state are generated from the given goal
points, and trees are expanded from each sample to create a continuous path. Finally, Fast Marching
Tree algorithms leverage RRT to create samples similar to those of the FMM approaches detailed
previously. More information on single- and multiple-query methods, as listed here, can be found in the
review article by Gonzalez et al. [55].

Aside from the single- and multiple-query sampling methods, metaheuristic optimization techniques
also aim to find near-optimal solutions for complex problems, often utilizing state space sampling for ex-
ploration. These methods yield suboptimal results, requiring problem-specific tuning to achieve better

2.2. Robotics in USaR 17

performance; however, they offer scalable and flexible general solutions in exchange. The most com-
monly used examples for path planning include Genetic Algorithms (GAs), Simulated Annealing, Ant
Colony Optimization (ACO), and Particle Swarm Optimization (PSO) [57]. Most such algorithms take
inspiration from mathematically modeled natural phenomena. GAs sample the state space randomly
and represent them as a population, of which, at each iteration, the best candidates are combined,
similar to the cross-over of genes. Random mutations are introduced between each generation and
the offspring to explore the state space more effectively, thereby simulating evolution during optimiza-
tion. The ACO algorithm models the current iteration of solutions as ants operating in the search space,
where the ideal solution is marked by artificial pheromones that attract the subsequent iterations. The
pheromones are usually temporal to enable robustness in the search space in the presence of distur-
bances, since having timeouts on the established pheromones enables the correction of erroneous
decisions as the overall system information increases with time, and individuals also take random ac-
tions for exploration. PSO, in contrast, models how a flock of animals behaves when searching for food.
It is similar to genetic optimization techniques in that the population of candidates is used through it-
erations; however, in the case of PSO, the population is not altered but rather regarded as particles
moving in the state space. An artificial speed function determines the movement of the particles, and
a distance measure between particles in the update function models their spreading. Additional heuris-
tics can be added specific to the problem to the generic update function. Simulated Annealing is based
on the annealing process of metals, where the method cools down the solution space by considering
worse solutions first to explore, and then reduces randomness to refine the result. More metaheuristic
global optimization techniques exist, similar to the ones included here, for which the review paper of
Zafar et al. can be referred to in detail in [57].

In the context of USAR path planning, Li et al. propose a hybrid method that utilizes a team of
UAVs and UGVs, employing GAs for path planning. In their work, the non-autonomous UAVs are used
strictly for providing aerial images to the UGVs, where with each updated map, the existing population
of the algorithm is utilized to re-plan the paths [58]. Furthermore, considering their feature extraction
methodology, the genetic algorithm results are locally optimized continuously to ensure obstacle-free
and smooth pathing. In the work of Alenazi et al., a newmetaheuristic method called the Spiral Dynamic
Optimization algorithm is suggested by combining the basic Probabilistic Roadmap approach with meta-
heuristics modeling the logarithmic spirals found in nature, such as currents, to guide the expansion
of the sampled state space where the authors argue that the convergence is improved compared to
other methods when a cluttered indoor space is considered with hazardous obstacles [59]. When the
continuous path planning of a swarm of robots is considered, the original PSO algorithm is enhanced
by Couceiro et al. called Robotic PSO [60]. The Robotic PSO algorithm characterizes each robot with
its position and performance, where the main difference lies in how the obstacle avoidance is formu-
lated into the update function of the PSO approach. Furthermore, they incorporate social inclusion and
exclusion mechanisms, whereby better-performing robots tend to stay together, while poor performers
are directed towards unknown areas through the use of rewards and punishments, utilizing an update
function called Darwinian Robotic PSO. They conclude that for search missions, the improved PSO
approaches outperform other metaheuristic methods.

While the path planning approaches outlined so far consider the global optimization problem, arti-
ficial intelligence-based approaches can be used for both local and global path planning. The most
generic approaches in this category are neural networks and fuzzy controllers [57]. Neural networks
essentially model how neurons interconnect and fire with respect to input signals in nature to control
the actions of the robots. Depending on how the input-output relationship is configured, such systems
are proposed as a base for local and global path planners. Alternatively, fuzzy control systems operate
based on if-then rules provided by human experts on specific control inputs to generate robust robot
actions. This provides a powerful tool for constructing well-defined behaviors on planned paths, which
can be reactive to immediate inputs for the local case. To deal with more complex environments or if the
immediate behavior of a robot can not be sufficiently formulated beforehand, deep learning approaches
are proposed for USaR robots. Hu et al. use a Voronoi-based cell decomposition for individual robots,
where the path planning to a select number of sampled potential paths is done through deep reinforce-
ment learning [61]. In this work, the deep-learning model guides the robot around obstacles where the
observation and action spaces are configured with respect to the velocity, time, and targets of individ-
ual robots. Although not an artificial intelligence method, another generic technique that can be used

2.2. Robotics in USaR 18

for both local and global planning is Model Predictive Control (MPC). The generalized MPC approach
minimizes the cost function of a system using a dynamic model by predicting the feature behavior to
optimize the control actions along a prediction horizon. An example of this method used for local path
planning of a UGV in the rough terrain of a USaR area is given by Shin et al. [62]. They model the non-
holonomic kinematics of a UGV with passivity constraints, allowing for improved energy preservation
and resulting in faster and more efficient movements in the path planner. The optimization along the
horizon is performed by employing a PSO solver. Scheffe et al. propose a more generalized approach
for nonlinear and nonconvex MPC problems for robotic path planning, where the robots are modeled
as finite-state automatons and their possible trajectories from a given state are assumed to be feasible
motion primitives that can be sequentially appended to each other [63]. Then, an MPC problem is
formulated via the stacked control inputs and the accumulated penalty of the states and inputs along
the prediction horizon. They use the finite state automaton to describe the discretized system, where
a receding horizon graph search is employed for the optimization. The graph search expands from the
initial state until the accepting state is reached, if applicable, and a lazy look-ahead prediction of the
next accumulated costs is applied to decide which branches of the graph to explore in the successive
stages.

Most reactive computing methods model the environment as a field to guide the robot. These meth-
ods include artificial potential fields, vector field histograms, and virtual impedance algorithms [54][57].
Artificial potential fields model the obstacles as sources of repulsive forces acting on the robots with
respect to distance, and the goal locations do the same by acting as attractive forces. The following
dynamic action of the robot is calculated by summing all artificial forces acting on it, constrained by
its kinematics. Improvements to this idea have been proposed, especially for overcoming the issue of
getting stuck in local minima, such as escape heuristics, genetic methods, particle swarm look-ahead
algorithms, and via the usage of scalar electrostatic force modeling instead of the sum of directional
forces [54]. A relevant version of potential fields, especially for USaR applications, has been proposed
by Park et al., called the advanced fuzzy potential field method [64]. This work uses a Takagi-Sugeno
model that ties control actions to the repulsive forces with fuzzy rules. They make abstractions for any
number of inputs that may be relevant from expert perspectives; in their case, the measured distances
dn, the angular difference between the obstacle and robot trajectory ψn, and the angular difference be-
tween the obstacle and the goal ϕn are modeled by membership functions. Such a framework enables
scalability, wheremetrics related to USaR goals can easily be incorporated into the controller. The draw-
back of their method is that all simultaneous measurements are regarded as independent, distributed
fuzzy systems, which results in an exponential number of possible rules, and the number of considered
measurements cannot change on the fly. In addition to the potential fields, vector field histograms eval-
uate the obstacle density around the robot and select control actions accordingly, rather than modeling
individual forces. Virtual impedance algorithms operate similarly to potential fields, where instead of
attractive and repulsive forces, the robot is guided by virtual mechanical impedance models such as
stiffness and damping. Ibanez et al. [54] also lists other reactive computing methods, such as bug
algorithms and the dynamic window approach. Bug algorithms, as exhaustively surveyed by McGuire
et al. [65], are the most straightforward methods, where the robot follows a path along the sides of the
obstacle until an exit condition is met. The dynamic window approach searches the input space for
the velocity of the robots constrained by feasible speed values and timings. This approach is locally
optimal but struggles with local minima as well. On the other side of the reactive computing category,
local optimization encapsulates planners that take a pre-existing path as input and optimize it for the
vehicle’s dynamics and the occurrence of obstacles during operation. These methods usually employ
constrained interpolation techniques, using clothoid, polynomial, Bézier, or spline curves to generate
paths between waypoints sampled from the original path. An introduction to these methods can be
found in the work of Gonzalez et al. [55] for further reference.

Task Allocation

Task allocation refers to the strategy employed by an autonomous robotic team to identify, assign, and
plan the actions required to achieve its mission goals. Having defined path planning as the control
structures that navigate robots between given locations with a set of constraints and mission metrics,
task allocation considers how such locations can be selected, in what order, and how robot assignments
can be made. In most literature, the separation of operational components is not made, where the

2.2. Robotics in USaR 19

selection of waypoints is considered part of the path planning architecture. For the purpose of this thesis,
such components of the autonomous controllers are regarded as an instance of the overall exploration
task in the USaR area. Exploration is defined as reaching states in the operational environment of the
robots that result in the acquisition of new measurements of features of interest in the mission, often
achieved by employing frontier expansion. Frontier expansion is one of the most popular strategies for
robotic teams that explore unknown areas, where the frontier is defined as the threshold between the
known and unknown segments of the operational space. In the literature presented thus far, the works
that utilize frontier-based exploration strategies include Azpurua et al. using 3D frontier extraction and
mapping with traversability extraction [50], Zhang et al. proposing UAVs to detect clustered frontiers for
the UGVs during mapping [48], Qin et al. using frontiers as 3D viewpoint generators with selecting the
path with the most information gain from the path planner outputs to them [66], Niroui et al. k-means
clustering the grid locations between obstacles to select frontiers [67], and Hu et al. proposing robots
that place information nodes that act as communication relays that the radius of determines the points
on the map to be regarded as a frontier at each time step.

Exploration-based task allocation is sometimes referred to as area coverage algorithms, especially
if the geometry of the area can be estimated during operation. Queralta et al. note a complete algorithm
can only be constructed when only convex and the joint regions exist in the environment, where efficient
task allocation can occur via area decompositions [39]. When the area is unknown or assumptions
about the environment cannot be made, multi-robot area coverage algorithms are generally NP-hard,
with nondeterministic polynomial time complexity. For that reason, probabilistic components have been
the focus of the literature for USaR task allocation. As defined by Lacroix et al., probabilistic modeling
uses a probability distribution in the search space, sometimes by modeling the movement of the targets
if applicable [53]. Since USaR missions should minimize the time to reach as many victims as possible,
a probabilistic framework can maintain a level of guarantee to approximate optimal behavior in worst-
case scenarios. Sarmiento et al. propose one of the earlier works with such formulation, where they
define the mission goal as a single robot finding an object in a known environment by minimizing the
expected time to find it [68]. The environment E is first decomposed into polygons, where their size is
determined based on the maximum view field possible for the robot. Then, the general formulation of
the problem is finding an optimal task allocation S∗ consisting of an ordering of the decomposed areas
that minimizes the expected time E[T |S] given a candidate area S:

S∗ = arginf
S

(E[T |S]) = inf
S

∑
j

tj
A(Sj)\

⋃
k<j A(Sk)

A(E)

 (2.3)

Where in Equation (2.3) tj denotes the intermediary time for traveling to the jth region, and the operator
A(.) is the area of a given region. It is essential to note that there is a subtle distinction between
minimizing the expected value of the time required to find a target and minimizing the worst-case time
it would take. For the latter, the shortest path that entirely covers the environment must be found,
where the prioritization of areas or the rate of reaching new regions is not considered. In contrast,
minimizing the expected time can be achieved by gaining the probability mass of detecting the target
as quickly as possible, corresponding to the second term in the summation given in Equation (2.3). They
employ a graph-based search for task allocation, similar to Equation (2.2), where the nodes represent
the decomposed regions and the dynamic weights are formed by multiplying the elapsed time by the
probability mass value at the child node. To favor higher probabilities earlier, they postulate that the
region j strictly dominates k if the probability mass function for the region j is larger than that of k
and the marginal time to reach from the current search node to the region j is smaller than that of k.
Although this work provides a probabilistic guarantee, it is not generalizable to the case of an unknown
environment and an unknown task count.

A similar formulation for heterogeneous teams searching for an uncertain number of targets in a
known environment is proposed by Meuth et al., in which an arbitrator is designed to detect changes
in the environment and vehicle constraints for re-planning [69]. Their work first employs a probabilistic
decomposition method that is initiated by creating a Voronoi diagram of a point set in the environment.
Then, relative to the facet anchors, the vertices of each facet are examined under a given set of con-
straints, such as distance and observability. If a facet does not meet the constraints, it is divided into
smaller facets until all decomposed regions satisfy them. Afterward, at each time step, a probability

2.2. Robotics in USaR 20

of observing the state of a location during the search is generated by considering the sensing capa-
bility of a robot, the likelihood that the area will be visible, and the number of times the area is visited.
Using this, they propose a method called equilibrium task allocation, in which a set of robots is first
randomly assigned to a set of regions. If multiple robots are assigned to the same region, a gradient
descent-based approach is used to disperse the robots by employing an equilibrium error defined by
the deviation of a robot’s loading from the average team load. Once equilibrium is achieved, vehicles
are swapped between regions, and the algorithm is repeated until no more swaps are possible. An
improvement in the form of a Hybrid Binary PSO task allocation algorithm is then designed, where
each particle consists of a set of vehicles and regions. Bit masks are applied to filter out undesirable
mappings of robots to regions, making the position update function a binary decision that combines
both binary and real-valued positions under a single fitness function.

The main bottleneck for optimal task allocation in an unknown area is the lack of completeness in an
algorithm that provides a probabilistic guarantee for finding an unknown number of victims. These tasks
can be regarded as dynamically occurring during the mission progression, meaning the final number
and type of tasks may be unknown to controllers during operation. To address this problem, receding
horizon task allocation algorithms are suggested in the literature. Riehl et al. put forward a receding
horizon cooperative search algorithm that jointly optimizes the waypoints and sensor orientations of a
team of robots to find a moving target [70]. In their formulation, the states are represented by x(k) and
q(k) vectors for position/weights and sensor tasks as field of view orientations respectively, where a
path Pi for robot i is defined by a sequential ordering of its states with respect to the connected graph
vertices in the environmental representation. To employ a receding horizon approach, given a fixed
horizon, a path reward Ri(Pi) is proposed as follows:

Ri(Pi) :=

k+TPi∑
j=k

gi(x(j), q(j))

(
1−

j∑
l=0

r(l)

)
(2.4)

In Equation (2.4) k represents the current time step, gi(.) the conditional probability of finding the target,
and r(.) is the accumulated team reward until the given timestep. The conditional probability of finding
a victim at a corresponding future timestep is defined by the aggregation of the weighted sum of agent
reward factors across the robotic team, where the agent reward factor measures the probability of the
sensor configuration q(j) finding a target at the position x(j). Accordingly, they separate the setAplan(k)
of robots that need re-planning and normalize path rewards by dividing the total duration of paths. Then,
the predictive control optimization problem is proposed as finding the optimal paths for each robot in
the set Aplan(k) that maximizes the cumulative normalized path rewards at a given timestep. Finally,
they propose a cooperative graph-based model predictive search algorithm to solve this optimization
problem. At every step that Aplan is non-empty, an environmental graph representation is dynamically
created so that only the states of interest are kept. Following that, using the remaining path information
of other robots, the optimization problem is solved by fixing a robot at a time to create an optimal task
allocation schedule. This work demonstrates that, with optimal filtering of graph states, the probability
of finding the target is one with sufficient mission time, which is minimized by the optimization approach.
Themain setback in this formulation is that the team is assumed to be homogeneous, and the guarantee
can only be made for the single-target case.

Jamshidnejad and Koning tackle the model predictive control problem for exploration task allocation
considering non-homogeneous and imperfect sensors of USaR robots by incorporating fuzzy logic in
decision-making [6]. This work assumes an unknown environment and an unknown number of targets,
modeling their health state and the probability of moving to a neighboring cell in the environment grid.
To combine coverage and target-oriented task allocation goals, a hierarchical control architecture is
proposed, featuring local fuzzy controllers on each robot and a supervisory model predictive controller
that oversees the team-based optimality of the local controller outputs. Locally, the robots keep a map
of their immediate environment only, and a combined global map is kept at the centralized supervisory
level. Formulating ev(x, y, k) as the probability of the existence of a victim in position (x, y) at timestep
k, c(x, y, k) as the scan certainty, and hv(k) as the perceived health level of the victim v if detected
at the timestep k, a fuzzy rule set is proposed to assign priorities ρ(x, y, k) to positions (x, y) at the
timestep k. These three input values are fed to the fuzzy rules with the appropriate fuzzy sets denoting
linguistic terms adopted from human expertise in a USaR scenario. Using the local maps of robots, a

2.2. Robotics in USaR 21

set of paths Pi(k) consisting of ordered locations starting from the current timestep k is constructed to
warm start the optimization, of which the task allocation problem becomes equivalent to assigning the
best paths to the robots. The potential paths are compared by their grade, expressed as:

g(Pi(k)) = −c1ℓ(Pi(k)) + c2

k+ℓ(Pi(k))−1∑
j=k

λjρ(xai (k), y
a
i (k), j) (2.5)

where in Equation (2.5), the term multiplied by the constant c1 denotes the length of the path, and the
term multiplied by the constant c2 denotes the degree of exploration; incorporating a discount factor
λ ∈ [0, 1] to the aggregation of priority values along the path. The discount factor intends to reduce the
potential effects of errors in future state estimations, and the constants c1, c2 enable the trade-off tuning.
The potential path Pi(k) with the highest grade g(.) is selected by the local fuzzy controllers for every
robot at each control step. The centralized supervisory controller is then responsible for resolving task
allocation conflicts; in this specific work, it is approximated by a threshold on the intersection of the
perception fields of robots. When this threshold is exceeded, the considered paths of local controllers
of the respective robots are given to the receding horizon optimization solver to determine the best
combination of them using the following formulation:

max
P(k)

w1

N∑
i=1

g(Pi(k)) + w2

∑
(x,y)∈E

c(x, y,NP(k)) (2.6)

s.t. (xvv(k), y
v
v(k)) /∈ Pi(k) ∩ Pj(k) where i, j = 1, . . . , N i ̸= j v = 1, . . . , N v(k)

The optimization variable P(k) in Equation (2.2.3) is the set of paths for N robots of which the task allo-
cation conflict is detected, where the first term denotes the sum of the path grades and the second is the
total predicted scan certainty of the environment at the end of the prediction horizonNP(k) correspond-
ing to the largest length of the candidate paths. Effectively, this latter term acts to scatter the robots
efficiently. The constraint restricts multiple robots from visiting the same victims, aiming to address the
underlying reason for task allocation conflicts in this formulation. They benchmark the proposed hierar-
chical control architecture by comparing simulations that use only local controllers, only the supervisory
controller, a randomized task allocator, and an ACO controller, considering the scan certainties in the
environment as pheromones. Two primary metrics consist of the rise time for total scan certainty and
victim search efficiency, which is measured by the number of detected victims per time step and their
corresponding health states. They conclude that the proposed architecture improves all these metrics
compared to the baseline and distributed selfish controllers, while approximating the purely centralized
case sufficiently with substantially less complexity.

While some works in the literature handle only the exploration task by formulating it as a path op-
timization or waypoint selection problem, the necessities in a USaR scenario may require auxiliary
tasks and goals to be successful, such as establishing communication networks, delivering goods, and
creating a base of operations during the mission [12]. Although connectivity and charging are mostly
regarded as constraints in optimization problems, there are works that formulate these requirements as
tasks. Hollinger et al. propose a periodic connectivity task for USaR scenarios in which communication
is assumed to be restricted by the relative locations of the robots [71]. Even though for most applica-
tions, ensuring continuous connectivity is desired, the central hypothesis claimed in their work state that
breaking it intentionally may lead to more efficient information gathering. They explore and formalize
a framework of path selection-based task allocation with periodic connectivity constraints, effectively
behaving as scheduled tasks. The environment representation as a graphG = (N,E) is time-extended
for planning, denoted by G′ = (N ′, E′), which is a directed graph with time-stamped nodes and edges
that substantiate the time increments between locations on the original graph. Additionally, a connec-
tivity graph GC = (N,EC) is constructed describing which nodes have established communications.
Given K robots, A =

⋃K
k=1Ak the set of potential time-stamped paths, a disconnection interval, and a

mission ending time T , the task allocation problem is expressed by:

A∗ = max
Ak⊆N ′

F (∪K
k=1Ak) (2.7)

s.t. A(τTI) is connected on GC ∀τ ∈ {0, . . . , ⌊T/TI⌋} (2.8)

2.2. Robotics in USaR 22

Where in Equation (2.8), F (.) is a known deterministic function of possible paths, and C(.) is the time-
cost of a given path. Showing that for a fully connected GC , this optimization problem is NP-hard,
Hollinger et al. propose an approximate algorithm called implicit coordination, guaranteeing connection
at every TI interval. The synchronous online algorithm optimizes the objective one variable at a time in a
round-robin fashion for each robot until convergence. Although they show that the algorithm converges
fast and is scalable, it lacks guarantees for the execution of other possible tasks that may exist, and
the efficiency relies on accurate synchronization. In a similar manner, Li et al. tackle the charging
constraints of robotic teams in SaR missions as practical tasks, which are presented as an essential
bottleneck in the efficiency of autonomous searching schemes [72]. They consider optimizing the area
coverage by placing static charging stations in a known environment with an offline genetic optimization-
based algorithm. The exploration allocation and the charging station locations are calculated together
prior to deployment. To that end, each chromosome in the population represents ordered exploration
task locations per robot, with the locations that require the robot to charge marked. Then, the cost of
each gene is formulated as J = c1T + c2P + c3L+ c4H, where T denotes the mission completion time,
P the cost of the time taken to cover prioritized tasks, L the penalty for violating energy limitations, as
well as the number of required charging stations, and H the distance between the charging points.

Contrary to the aforementioned works, it is also possible to assign semantical tasks to robots instead
of specifying their arrival at a location to perform an action. Most SaR literature, in this regard, considers
hierarchies in the robotic team and heuristic approaches that define such tasks. Hayat et al. consider
two main tasks for multi-objective task allocation in SaR scenarios by minimizing the time for area
coverage and setting up communication paths [73]. Their defined mission consists of a search phase
followed by a response phase to find a stationary target. In the first phase, the search paths are
planned centrally on a base station, where the total time to cover the area and return to the base
station is denoted by τs. Upon detecting the target at the location l with a robotm at time t1, it is added
to the set S denoting surveilling robots and removed from the set of searching robots U . Afterward,
the response phase begins, in which any robot coming into the communication range of the set S is
labeled as a relay added to the set R and removed from U . Whenever the set R is populated, the relay
labeling time trl is updated. Finally, the robots are required to form a communication chain through
the robots in R to the base station, for which the time it takes is denoted tn, effectively completing the
total duration of the second phase as τR = trl + tn. The main optimization goal in the formulation of
this work is therefore minimizing the total time τ = λτS + (1 − λ)τR , with λ ∈ [0, 1] representing a
trade-off tuning constant. Hayat et al. then propose three heuristic strategies that define tn; namely
inform-first, connect-first, and simultaneous inform and connect. In the inform-first strategy, the first
robot added to R acts as a data mule and goes directly to the base station, while a relay chain for
continuous monitoring is established whenever the set R contains enough robots. In the connect-first
strategy, the first robot in R plans the shortest path to reach enough robots in the set U to form a relay
chain back to the base station, where each alerted robot immediately starts forming the chain. Finally,
the simultaneous strategy combines the first two by having the first robot in R to go directly to the base
station, while adjusting its path if any robots in U are close by on its path to add them to the set R to
start forming the relay chain while it is on the way. The total mission time τ is minimized with all three
strategies using a genetic optimization approach, with the paths the robots take through both phases
represented as chromosomes. Similarly, Hoog et al. propose a role-based task hierarchy in the robotic
team by assigning robots as either explorers or relays [74]. Their formulation differs in that relay robots
are also mobile and move between explorers and the base station, where they meet with explorers
periodically in dynamically defined rendezvous points. Then, they propose a dynamic change in the
roles with a role swap rule, considering two robots A and B each having destinations DA and DB .
Denoting the path cost between two locations in the environment as γ(u, v), the role swap condition is
satisfied when:

max{γ(A,DA), γ(B,DB)} > max{γ(A,DB), γ(B,DA)} (2.9)

If Equation (2.9) holds, the robotA assumes the role of robotB and they swap the hierarchies within the
team, upon which this information is propagated whenever possible. Explorers search the far reaches
of the environment using frontier exploration, where upcoming rendezvous points are dynamically de-
termined and set whenever explorers gain enough information, thresholded by the remaining area to
be searched. This heuristic effectively prevents the hierarchy from becoming too imbalanced. This
work demonstrates that role swaps allow shorter travel paths and, therefore, faster exploration. The

2.2. Robotics in USaR 23

decision-making architecture of predefined heuristic tasks is also formulated from the perspective of
reinforcement learning as a generalized solution, as proposed in the work of Liu et al. [23]. In their hier-
archical reinforcement learning model, a MAXQ task prioritization scheme is utilized in which the root
task represents the overall mission, i.e., finding victims while exploring a cluttered USaR environment.
This task is further decomposed into four individual sub-tasks, namely, exploration, navigation, victim
identification, and human control. Accordingly, the robots select their lower-level controls based on the
learned parameters and rewards they receive through performing higher-priority tasks earlier. With the
human control option, the learning is aimed to continue during actual deployment.

Although the literature indicates that specific task allocation methods utilizing heuristics and prede-
fined behavioral algorithms are effective, they often lack scalability and robustness in their decision-
making processes. For that reason, generalized task allocation approaches are suggested for the
USaR missions, where the primary focus is on optimally assigning any number and type of tasks, pro-
vided the metrics are formulated correctly. Basilico and Amigoni define the USaR goal for robotic teams
as achieving good global performance through local decisions with partial information [7]. Since the
goodness of a local decision can be measured with respect to multiple criteria that may change dynam-
ically in their global prioritization, an abstract methodology for task allocation is necessary. To that end,
they propose the evaluation of tasks as a Multi-Criteria Decision-Making (MCDM) optimization problem.
The formalization of the problem starts with considering a setN of n criteria, where each candidate task
p can be associated with a vector of utilities up = (u1(p), . . . , un(p)). When dealing with an arbitrary
number of potential criteria, the optimality involves selecting tasks on the Pareto frontier. Although it is
possible to estimate the Pareto frontier through heuristics similar to the work of Sarmiento et al. [68],
the rigorous approach includes maximizing a global utility function u(p) = f(up) that aggregates the
different utility criteria. Basilico and Amigoni show that if this function is non-decreasing in every one of
its arguments, the optimal p∗ is guaranteed to be on the Pareto frontier. They continue by arguing that
most mainstream approaches, including those laid out thus far, combine utilities in an ad-hoc manner
and implicitly seek to approximate the Pareto optimal results. One crucial element missing from ad-
hoc methods is regarding different dependencies between criteria, such as redundancy and synergy.
While the global utility of redundant criteria is less than the sum of their individual utilities, synergetic
situations arise when such criteria are very different from each other and hence contribute more to the
global utility than the sum of their individual utilities. The MCDM formulation addresses these aspects
through the aggregation method, utilizing Choquet integrals. To achieve that, a function that maps the
power set of N as µ : P(N) → [0, 1] is defined with properties µ({∅}) = 0, µ(N) = 1, and given that
A ⊆ B ⊆ N then µ(A) ≤ µ(B). In practice, µ represents a fuzzy measure on the criterion set N
that associates weights. Criteria G ⊆ N are considered redundant if µ(G) <

∑
i∈G µ(i), synergetic

if µ(G) >
∑

i∈G µ(i), and independent otherwise. The discrete Choquet integral denoting the global
utility is thus as follows:

f(up) = C(up) =
n∑

j=1

(u(j)(p)− u(j−1)(p))µ(A(j)) (2.10)

A(j) = {i = N |u(j)(p) ≤ ui(p) ≤ u(n)(p)}

Where in Equation (2.10), (j) ∈ N denotes the jth criteria in the increasing ordering of utilities given
as u(1)(p) ≤ · · · ≤ u(n)(p) ≤ 1, with the assumption that u(0)(p) = 0 holds. Accordingly, the Pareto
optimization is shown to be guaranteed by the maximization of C(.) over all candidate tasks. Using
this framework, they implement the task allocation of a robotic team in an unknown environment for
finding an unknown number of targets in a USaR scenario. Three different approaches are included
to demonstrate the scalability and robustness of MCDM. The first one includes the amount of free
area beyond the location p as A(p), the probability of connectivity to the base station P (p), and the
distance from the current location r as d(p, r). The set of weights µ is determined by assigning more
importance to A than to P and d for faster exploration, where P and d are shown to have redundancy
while d and A enjoy a synergy. This analysis guides them to assign feasible µ values. The second
method adds another criterion, the remaining battery of robots as b. The final approach dynamically
changes the weights µ through the mission to alter the priorities of the robots as time progresses from
exploring to exploiting. Finally, noting that for n criteria, 2n − 2 weights need to be defined, a more
principled method is proposed by considering two aspects. The first one is the overall importance is
called Shapley’s value, defined as the average marginal contribution of a criterion i to each subset that

2.2. Robotics in USaR 24

does not include it:

ϕµ(i) =
∑

T⊆N\{i}

(|N | − |T | − 1)!|T |!
|N |!

(µ(T ∪ {i})− µ(T)) (2.11)

A higher value of ϕµ(i) ∈ [0, 1] means more importance i has in the task allocation. The second aspect
is the interaction between two criteria i and j, named Shapley’s interaction index Iµ(i, j) ∈ [−1, 1]:

Iµ(i, j) =
∑

T⊆N\{i,j}

(|N | − |T | − 2)!|T |!
(|N | − 1)!

(µ(T ∪ {i, j})− µ(T ∪ {i})− µ(T ∪ {j})− µ(T)) (2.12)

Accordingly, if Iµ(i, j) < 0 then i, j are redundant where the value −1 representing full redundancy, the
opposite is true for Iµ(i, j) > 0 demonstrating synergy and Iµ(i, j) = 0 implies mutual independence.

The review article from Khamis et al. distinguishes the problem modeling of generalized multi-robot
task allocation from the types of methods used to solve it; namely given as discrete fair division, optimal
assignment, alliance efficiency, and multiple traveling salesman problems (TSP) [4]. The discrete fair
division assumes a given set of N robots and a set of tasks S, and divides the task set so that each
robot gets a fair share in the sense that the utility of the assigned subset of tasks is worth 1/N the total
value of S. This problem can be extended to include indivisible and divisible tasks, as well as the hetero-
geneity of robots. The optimal assignment problem approach encapsulates maximizing the aggregate
utility of task assignments to robots, where all the works laid out so far fall into this category, including
the generalization of Basilico and Amigoni. The alliance efficiency problem is a mono-objective opti-
mization formulation in which several tribes with specific skills aim to exploit the search space regarding
modeled resources necessary for survival. A tribe is defined as a tuple t := ⟨xt, st, rt, at⟩ where xt is a
point in the solution space, st the set of skills depending on the objective function values, rt the set of
resource demands as constraints, and at the alliance identification. Finally, the multiple TSP considers
the tasks as a set of cities to be visited by m salesmen, and the objective becomes determining a tour
for each salesman, such that each city is visited with minimal time or distance. There exist many formu-
lations of this problem, generally differing in the means of resolving sub-tours. Most TSP formulations
can be classified under those that rank the cities, explicitly utilize time-indexed variables for the cities,
or construct multi-commodity flow models. Kant and Mishra lay out a new type of TSP-like formulation,
called the Orienteering Problem (OP), where not only does the order of visited cities need to be deter-
mined, but also which ones should be selected similar to a knapsack-problem need to be decided to
maximize collected utility before a global budget expires [75]. They define profits at each city as ϕx,
travel time as Txyand a binary decision variable ψxy for selecting transitions. Then, the formalization
takes the following form, which establishes a feasible connected path and adherence to the time budget
through transition and city selections:

max
n−1∑
x=2

n∑
y=2

ϕx ψxy (2.13)

s.t.
n∑

x=2

ψ1x = 1,

n−1∑
x=1

ψxn = 1

n−1∑
x=1

ψxk =

n∑
y=2

ψky ≤ 1 ∀k = 2, . . . , n− 1

n−1∑
x=1

n∑
y=2

Txy ψxy ≤ Tmax

Kant and Mishra also survey the variants of the canonical OP; as team OP, time-window OP, time-
dependent OP, stochastic/probabilistic OP, clustered OP, multi-objective OP, and links to generalized
TSP. They introduce various ways of implementing these problems, ranging from MILP approximations
to metaheuristics with different evolution strategies for genetic algorithms, ant colonies, iterated local
searches, and adaptive large-neighborhood searches as promising approaches in the literature. A

2.2. Robotics in USaR 25

state-of-the-art generalized solution for the OP-type problems is introduced by Kobeaga et al. [76],
proposing a specialized genetic algorithm. Each candidate route is encoded as a permutation of all
nodes, where the visited nodes form a closed tour and every non-visited node is treated as a fixed
point, ensuring a fixed-length chromosome that can represent any subset of nodes. This approach
notably allows infeasible individuals during the search to enhance exploration, then relies on dedicated
repair and improvement operators to restore feasibility. A custom crossover operation, adapted from
the edge recombination method often used for TSP problems, is designed to preserve as much parental
structure as possible by probabilistically including nodes that appear in only one parent, and reusing
a high proportion of parent edges to keep the cost of offspring low. The mutation operator further
refines diversity by randomly selecting a node and either dropping it from a candidate route or adding
it, where in the latter case, the node is inserted at its best position according to a fast heuristic that
approximates theminimal cost increase. To polish each new solution, the algorithm applies an intensive
post-optimization phase: first a tour-improvement local search reorders the nodes to minimize travel
distance, which often converts borderline infeasible tours into feasible ones; if the route still violates
the cost budget, a feasibility repair via a drop operator iteratively removes the least beneficial nodes
until all constraints are satisfied. Once a tour is feasible, an insertion heuristic greedily tries to add any
remaining high-profit nodes using a custom cost evaluation to identify low-cost insertion points. This
robust framework is thoroughly benchmarked on medium and large graphs, consistently demonstrating
its superiority over other approaches in terms of solution quality with minimal computational time.

Having defined the task allocation schemes as single tasks versus multi-tasks, single robot versus
multi-robot, instantaneous versus scheduled assignments, and centralized and distributed approaches,
Khamis et al. define two overarching methods for solving the aforementioned problems. The first is
optimization-based approaches, which consider nonlinear and nonconvex integer optimization for most
task allocation problems. These approaches can be solved by methods such as genetic optimization,
simulated annealing, and PSO. The second approach is market-based, drawing inspiration from real-
life auctions that utilize explicit communication and the expression of capabilities in the form of bids for
overtaking tasks. Most auctions are designed utilizing the contract net protocol, which can be defined
as decentralized competitive bidding. The four stages of this protocol start with the announcement
stage, broadcasting the tasks to be allocated to the robots. Then, in the submission stage, each robot
calculates its capability and utility for overtaking tasks and submits a bid accordingly. The following
selection stage encapsulates the coordinator reviewing the bids using an optimization strategy to accept
the best bids. Finally, in the contract stage, the winning agents are allocated tasks via a contract.
Although this approach is flexible and robust, it may prioritize individual utilities more than the overall
outcome.

In the review article of Felix et al. the market-based task allocation methods are compiled under
auction-based and consensus-based categories [77]. Similar to the contract net protocol, robots submit
bids representing the utilities they gain from completing auctioned tasks. Given a task t, the utility of
a robot Ur(t) is generally formulated as the difference between the expected rewards Rr(t) and costs
Cr(t). Sequential single-item auctions extend this concept by considering dependencies between tasks,
where each bid is adjusted based on previous allocations of the robot. To account for the cost of adding
a task t to the currently scheduled plan Pr of a robot, the marginal costMr,t is utilized and defined by
the difference between the cost of the proposed plan Cr(Pr+ t) and the current plan Cr(Pr). Thus, this
approach prioritizes task synergies and sequential dependencies, enabling further constraints to be
employed. Parallel single-item auctions also exist to allow simultaneous bidding, where the auctioneer
assigns tasks to the bidders with the highest bids on a rolling basis, allowing for faster deployment at
the expense of decreased dependency management. In contrast, consensus-based approaches apply
cooperative strategies to task allocation, requiring all robots to reach an agreement over task distribu-
tion. The Consensus-Based Bundle Algorithm is one of the most prominent examples in this category
for robotic task allocation, in which each robot r constructs a bundle of tasks Br = {t1, t2, . . . , tk} in
descending order of task value based on its local utility function. Here, the marginal utility MUr,t of
adding task t to a robot’s current bundle is represented as:

MUr,t = Ur(t)−
∑
t′∈Br

Ur(t
′) (2.14)

2.2. Robotics in USaR 26

Conflict prevention is substantiated by robots exchanging their bundles iteratively, where comparisons
are performed, and outbid tasks are dropped incrementally. This way, conflict-free task allocation is
proposed to be achieved globally, while also ensuring local optimality. Finally, hybrid methods that
combine auction and consensus procedures are presented. One such method is clustered combina-
torial auctions, where tasks are first grouped into clusters, and robots bid on task bundles rather than
single tasks. For task allocation, clusters are assigned based on the overall marginal benefit, allowing
for the efficient handling of inter-dependencies. Given a total set of tasks T , this method optimizes the
search through subsets S ⊂ T to calculate the overall bundle utility U(S) as follows:

U(S) =
∑
t∈S

(Rr(t)− Cr(t)) (2.15)

In general, market-based approaches excel at scalability and ease of deployment for task allocation
schemes; however, for robotic applications similar to USaR scenarios, they fall behind in optimality
compared to optimization-based methods such as genetic algorithms and simulated annealing [78].

Finally, some works in the literature consider generalized task allocation from the perspective of
finite-state automata. Tsalatsanis et al. introduce a dynamic allocation scheme in which every robot’s
suitability for a task is evaluated through a fuzzy-logic utility function, and decisions are taken by a
limited-look-ahead discrete-event supervisor [79]. They propose finite-state automatons for robot ac-
tions and task executions, accounting for the possible failures and task abilities of different robots as
well as globally defined inter-task dependencies. Although the method is robust and able to reallo-
cate tasks online, it is not scalable since the global joint finite-state automaton of all robots and tasks
grows rapidly. Bai et al. push formal task allocation of finite-state automatons further by casting both
individual and collaborative requirements as Linear Temporal Logic (LTL) formulas [80]. They assume
that each robot has its own individual task specification, where the heterogeneous robotic team must
satisfy a collaborative goal through a sequence of task executions. They propose a centralized au-
tomaton that decomposes the global LTL definition into robot sub-tasks, where task hierarchies and
completion orders are encoded. Their hierarchical split between global sequence extraction and local
schedule optimization demonstrates how LTL decomposition can maintain task-level optimality with-
out expanding the state space; however, this method requires all tasks to be determined beforehand,
which conflicts with the uncertain environment in which USaR missions take place. Guo et al. add a
final layer of refinement to this approach by introducing safe-return constraints, formalized as a second
LTL formula, into probabilistically labeled Markovian motion primitives of individual robots [81]. They
synthesize an outbound policy that maximizes task success probability and cost efficiency, and a return
policy that guarantees a high-probability path back to a charging platform on demand. All of the LTL and
automata-based solutions require global solvers and definitive tasks from the start, which is unsuitable
for the USaR requirements laid out in this thesis; however, their abstraction of robot capabilities and
task requirements is a powerful approach for heterogeneous autonomous robotic teams.

3
Methodology

This chapter presents the formalization and implementation of the proposed decision-making and coor-
dination architecture for autonomous robot teams in USaR environments. The methodology builds di-
rectly on the conceptual foundation laid out for the need for flexible, interpretable, and mission-adaptive
task allocation, identified as a key gap in the literature. To address this, Section 3.1 introduces a gen-
eralized system model that abstracts robot capabilities through their heterogeneous action sets and
the observations these actions yield. This abstraction enables an observation-driven definition of tasks
and grounds a two-stage decision-making framework that combines fuzzy reasoning and MCDM. Then,
Section 3.2 introduces the hierarchical control architecture for optimally tackling the defined MPC op-
timization problem in a computationally tractable way for SaR applications, by applying MILP-based
linearization.

3.1. Problem Formulation
In essence, heterogeneous robot actions can be modeled as environmental interactions, such as actua-
tion and sensing, that take a certain time and expend a certain amount of energy, while obtaining obser-
vations about the outcome of the action from the environment. Building on this framework, the robots in
a SaR environment also need to store a local map that holds long-term information, enabling individual
decision-making. At the system level, a global map and a task set are the minimum requirements for
the proposed structure in this thesis, as the main goal of SaR robots is to increase environmental aware-
ness for human teams. As a high-level description of the system formalization, each robot operates
on its own local map, which may have different representations of the environment. Upon taking an
action, a robot obtains a set of observations and updates its own map accordingly, while also updating
the global map. These updates, resulting from action observations, are then used to construct the next
task set, determining which tasks are assigned to the corresponding robot. Whenever a robot plans an
action, it synchronizes its local map with the global map to access the most recent information flow in
the environment. This framework is proposed as the most general representation of an asynchronous
robotic team with sporadic synchronizations, accounting for all types of heterogeneous representations.
Section 3.1.1 first introduces the mathematical formalization of the environment, robots, and the task
sets. Then, Section 3.1.2 introduces the framework of heterogeneous task allocation through robot ac-
tions, and concludes with the MPC optimization formulation of the proposed generalized robotic SaR
missions.

Remark 3.1.1 (Notation Design.). In this thesis, a framework of notation design is used for
overall consistency and clarity. Calligraphic letters are employed to denote the general sets
used as domains and for variables configured as the operational space of the robots, such
as maps, ground truth sets, and observations. Uppercase letters are generally used for sets
that are direct subsets of the sets denoted by the calligraphic letters and the representation of
the time-dependent sets. Another use of uppercase letters is for the binary decision variables
associated with the specific controllers introduced in the control architecture. The notable
exceptions to these rules are the letters H N , andM which are used to represent scheduling

27

3.1. Problem Formulation 28

horizons, small constants, and big constants, respectively. Lowercase letters have a variety
of functions throughout the thesis; however, they are consistently utilized for representing
atomic members of corresponding sets. The exceptions to this logic are the usage of the
letter z for binary charge constraints, f for robot state-related functions, u for utilities, and t for
time. Subscripts are always lowercase, where k is the timestep counter, i is the robot index, j
is the charger schedule index, l is the task or criteria index depending on the context, andm,n
are the indices used for iterating over other sets defined wherever applicable. Superscripts
are also generally strings of lowercase letters denoting the context of the associated variable.
If a variable is tied to another variable, that models a unique member of a set, then the letter
chosen for the latter set is used as a superscript to indicate the relationship. The Greek
letters are used for modeling the crucial design elements and functions, such as energy and
tasks. Some examples include the letter ν for value functions, δ for time-energy depletion
functions, σ for fuzzy system input functions, and the letters ϕ,Φ for task-related functions
or binary functions. The important exceptions for this design choice include the letters π,Π
for schedules and control input-output vectors, and the letter κ for iterating from an already
existing timestep, in the form of a subscript k + κ. Finally, bold letters are used to denote
vectors, and the accentˆis used to denote predictions.

3.1.1. Environment & Robot Modeling
The generalized representation of the ground truth environment is modeled by a temporal attributed
graph G:

G = (V, E ,F , ℓenv, ωenv, νenv) (3.1)

where V is a set of spatial vertices, E is a set of undirected edges E ⊆ {(u, v) | u, v ∈ V , u ̸= v}
representing the distances between connected vertices, andF is a set of attributable semantic features.
The time-dependent vertex labeling function ℓenv : V → 2F maps the vertices v ∈ V to an attribute tuple
as ℓenv(v) = F (v) ⊆ F that contains relevant semantic features of the vertex v. The edge weight
function ωenv : E → R denotes a distance metric between connected vertices. Finally, the ground
truth value function νenv :

⋃
v∈V

{v} × R → R|F (v)| maps each vertex and time instance t to real values

corresponding to the entries of the feature set F (v) of vertex v at time t. In practice, human USaR teams
look for interpreted and/or measured indicators from the environment to decide where the search efforts
should be concentrated at a given time. An example framework from the literature is given in Table
2.1. Therefore, the semantic features F (v) of a vertex v may be attributed as fuzzy features relating
to the USaR prioritization criteria provided in Section 2.1. Generally, the feature set contains all of
the relevant labels of a unique vertex that denotes an input to the decision-making architecture of the
robotic system.

There is a wide range of heterogeneity in USaR robotics in terms of robot actuators and traversabil-
ity (Section 2.2.1), as well as sensing capabilities (Section 2.2.2). In most general terms, all robots in
the USaR domain can be characterized by their state, containing a ground truth vertex and a current
map. The heterogeneity is then modeled by a set of actions that determine the transitions between
states. Actions constitute a relationship between robot-specific measurable features and robot-specific
capabilities in terms of actuation and sensing. To model a closed-loop system, a set of observations
related to unique actions is included in the model of a generalized USaR robot. In practice, the obser-
vation set contains assigned values for relevant features, serving as a short-term memory, while the
local maps contain distilled information related to robot decision-making, acting as a long-term memory.
For each robot i ∈ {1, . . . , N robot}, where N robot ∈ N+ denotes the number of robots in the autonomous
robot team, the most general representation consists of a robot-specific state space Si, action space
Ai, and observation space Oi. Consequently, the robots transition between states only through taking
actions, while collecting relevant observations tied to the taken action from the current state. To prop-
erly define the action space, in this thesis, a robot-specific unique action type set Ci = {α1, . . . , αNaction

i
}

is formulated, where Naction
i ∈ N+ denotes the number of unique action types attributed to the robot i.

3.1. Problem Formulation 29

Then, the action space of a robot can be defined by:

Ai ⊆ Ci × V (3.2)

This thesis formulates an abstract action a = (α, v) as a tuple with a ∈ Ai, α ∈ Ci, and v ∈ V for
the robot i. Upon executing an action from a given state s ∈ Si, a robot i spends δtimei (s, a) ∈ R≥0

time and consumes δenergyi (s, a) ∈ R≥0 energy. Furthermore, each robot has its own state transition
function f si : Si ×Ai → Si and observation function foi : Si ×Ai → 2Oi . In the context of the proposed
formulation, an observation is defined by a tuple:

o = (v, F o(v), νo(v)), o ∈ Oi (3.3)

where v ∈ V is the vertex associated with the observation, F o(v) ⊆ F (v) is a set of observed features,
and their corresponding measurement values, and νo(v) is constructed by sampling the ground truth
values νenv(v, t) at the time instance t of the action execution. The sampling method is specified by the
unique observation functions foi and the selected action type α, therefore enabling a substantial amount
of flexibility in defining robot-environment interactions and heterogeneous features. Each action gen-
erates a set of bounded observations Oi = {o1, . . . , o|fo

i (s,a)|}, where specific action types are mapped
to a subset of environmental features associated with particular vertices, enabling the representation
of various field of view types and sensor modeling.

A robot ri(tk), is modeled as a discrete-time tuple, where each robot i ∈ {1, . . . , N robot} evolves
asynchronously over its own local timeline. At a global timestep tk, a USaR robot is modeled as a
time-dependent state and time-invariant robot-specific features:

ri(tk) =
(
si(tk), ϵ

crit
i , Ci, foi , f si , δtimei , δenergyi

)
(3.4)

where si(tk) ∈ Si is the robot state at the global time tk and ϵcriti ∈ R≥0 is the critical energy level of the
robot. Robots operate asynchronously, as actions may take different durations to complete. For that
reason, two distinct time indices are used within the thesis: a global time tk for coordinating system-
wide events, and a robot-local time ti,k̃i

to track each robot’s asynchronous action execution and state
transitions. As given in the robot state description, at time ti,k̃i

, robot i begins executing action a ∈ Ai.
Although this action is not explicitly included in the robot’s state si(tk), it is used to determine when the
next state transition will occur. Specifically, the next local timestep for the robot transitioning from its
current state is denoted by the time it takes to complete the latest selected action:

ti,k̃i+1 = ti,k̃i
+ δtimei

(
si(ti,k̃i

), a
)
, a ∈ Ai (3.5)

As an extension of the asynchronous robot modeling, at any global time tk, the state transition of a
robot ri(tk) is defined as:

si(tk) =

si
(
ti,k̃i

)
if tk < ti,k̃i+1

f si

(
si(ti,k̃i

), a
)

if tk = ti,k̃i+1

, a ∈ Ai (3.6)

This establishes the robot states as piecewise constant during action execution, with transitions occur-
ring only at completion points. In contrast, the global time evolution is characterized by the times at
which at least one robot completes an action, denoted by:

tk+1 = min
i∈{1,...,N robot}

{
ti,k̃i+1 | ti,k̃i+1 > tk

}
(3.7)

Thus, at each global time tk, only the robots whose actions are completed at that instant will update
their state, while others remain unchanged, effectively synchronizing the overall robotic team at the
system level. Similarly, for robot i, the observation function foi maps the robot’s state and action at
execution start to an observation set. At global time tk, the resulting observation set Oi(tk) is defined
as:

Oi(tk) =

{
foi

(
si(ti,k̃i

), a
)

if tk = ti,k̃i+1

∅ otherwise
, a ∈ Ai (3.8)

3.1. Problem Formulation 30

This models the feedback the robots get by performing their actions, ranging from a set of local mea-
surements to interactions with the SaR environment. The robot state si(tk) denotes the robot’s most
recently updated state as observed at global time tk. It is defined by the tuple:

si(tk) =
(
vri(tk), ϵi(tk), Mi(tk), Ai(tk), ti,k̃i

)
(3.9)

where vri(tk) ∈ V is the vertex that the robot is positioned at time tk, ϵi(tk) ∈ R≥0 is the available energy,
Mi(tk) is the local map, Ai(tk) ⊆ Ai is the set of feasible actions, and ti,k̃i

is the local time of the robot
at a given time tk. The local maps denote a robot-specific approximation of the ground truth:

Mi(tk) = (VM
i (tk), E

M
i (tk), O

M
i (tk)) (3.10)

where VM
i (tk) ⊆ V is the set of mapped vertices, EM

i (tk) ⊆ E is the set of mapped edges, and OM
i (tk)

is the set of observation sets related to themapped vertices and relevant robot-specific features. Robots
operate and make decisions based solely on their local maps, which may differ in spatial coverage and
detail depending on robot type. To establish this behavior, at each time step tk, each robot-specific
action type α ∈ Ci is assigned a set of allowed vertices V α

i (tk) ⊆ VM
i (tk). For most actions, this set

consists of vertices on the local map such that the robot can traverse to from its current location and
obtain a non-empty observation set. However, for some action types, there may be further constraints,
such as the availability of a charging station at a candidate vertex when α = charge. Then, the set of
feasible actions is defined by:

Ai(tk) = {(α, v) | α ∈ Ci, v ∈ V α
i (tk)} (3.11)

It is further assumed that each action (α, v) ∈ Ai(tk) is unique. As a design constraint, no action
may be taken if the available energy is below the robot’s critical energy threshold. All energy-related
feasibility and updates are evaluated relative to the robot’s most recent local state at time ti,k̃i

. The
energy constraint and update rule are therefore expressed as:

ϵi(ti,k̃i
) < ϵcriti ⇒ Ai(ti,k̃i

) = ∅ (3.12)

ϵi(ti,k̃i+1) = ϵi(ti,k̃i
)− δenergyi

(
si(ti,k̃i

), a
)
, a ∈ Ai(ti,k̃i

) (3.13)

The direct interpretation of the energy constraint provided in Constraint (3.12) yields that without the
ability to replenish the individual energy levels ϵi(ti,k̃i

), the robots quickly become nonoperational, and
the continuous autonomy of mission execution diminishes. To address this issue, an action type dedi-
cated to charging is assumed to be included for every robot within the team:

αcharge ∈ Ci, ∀i ∈ {1, . . . , N robot} (3.14)

∃(αcharge, v) ∈ Ai(tk), v ∈ V charge
i (tk), ∀i ∈ {1, . . . , N robot} (3.15)

where the Constraint (3.15) reformulates the critical energy constraint in terms of including a feasible
charging action at every feasible action setAi(tk), denoted by the feasible vertex set V charge

i (tk) , which
contains the vertices enabling charging that the robot can reach with sufficient energy at the time step
tk. In the formulation of this thesis, charging actions can only occur upon docking on the central agent.
The central agent is configured as the base of operations for the robotic system, enabling charging
for all robots, coordinating the global map, and overseeing mission objectives. Therefore, the set
V charge
i (tk) at the time step tk contains a subset of vertices that the central agent is scheduled to be
in. In practice, this central agent can be a static hub that the USaR personnel set up along the hot
zones; however, in the context of this thesis, it is regarded as another autonomous unit that evolves
the task sets algorithmically and moves within the USaR zone by scheduling paths to improve search
efficiency. There are two benefits to this approach: the first is that it allows for a completely autonomous
system description, where the robots do not always assume that the charging location is static and can
incorporate evolving situations into their decision-making, enabling the maximum amount of flexibility
for the proposed system. The second benefit is that by intentionally relocating the central agent through
the hot zone to get closer to areas of interest, a faster completion time for the mission can be achieved.
Formally, the central agent state sc(tk) that is capable of coordinating the information of the robotic
system is modeled as:

sc(tk) = (vc(tk),Mc(tk), T (tk),π
c(tk),H

c(tk)) (3.16)

3.1. Problem Formulation 31

The state sc(tk) contains the vertex of the central agent as vc(tk), the global map Mc(tk), the set
of available tasks T (tk), the remaining schedule πc(tk), and the number of scheduled waypoints left
Hc(tk) at time tk. The global mapMc(tk) has the same formulation as the local maps. The local maps
of robots may differ from one another, depending on the physical and computational requirements of
each robot. Therefore, whenever they receive new observations, they update both their local maps and
the global map. Conversely, as new areas are mapped, the central agent selectively sends updates to
the local robot maps, enabling information flow between robots. Therefore, whenever a new action is
taken at a time tk, the central agent state is asynchronously updated to generate the new global map
Mc(tk+1) and the task set T (tk+1). Another source of asynchronicity is the central agent’s schedule,
πc(tk) which consists of time and vertex pairings on a limited horizon that the central agent will follow.
Therefore, the vertex of the central agent is updated whenever this schedule is met, expressed as
follows at time tk:

πc(tk) =
[
(tc1, v

c
1) . . . (tc|Hc(tk)|, v

c
|Hc(tk)|)

]
(3.17)

(tc1, v
c
1) = (tk, v

c(tk)) (3.18)

Where tcj denotes the time the central agent plans to reach vertex vcj , where its state is updated ac-
cordingly, and Hc(tk) denotes the remaining horizon in the schedule it follows at time tk, for j ∈
{1, . . . , Hc(tk)}. When the central agent finishes its schedule, it generates a new one, details of which
will be introduced in the following section. As an underlying assumption, robots can only charge if they
are at the same vertex as the central agent simultaneously. To establish this behavior, tcj+1 denotes
the latest possible time for any robot to meet with the central agent at the vertex vcj . For completeness,
tcHc(tk)+1 = ∞ is considered by all robots to enable them to return to the final vertex of the schedule if
they have sufficient energy. As a result, it is assumed that when the central agent reaches vcHc(tk)

, the
next scheduling time is calculated based on the last time any robot plans to reach this vertex, ensuring
there are no scheduling conflicts that prevent the robots from returning to the central agent.

From this formulation of the central agent, the construction of the set V charge
i (tk) depends on which

vertices vcj ∈ πc(tk) can be reached before their corresponding deadlines tcj+1 with sufficient energy,
such that ϵi(ti,k̃i

) ≥ ϵcriti always holds true for some j ∈ {1, . . . , Hc(tk)}. These conditions can be
formalized by:

Time and energy thresholds of the feasibility of si(tk) for safely reaching the charger waypoint j

ϵchargei,j (si(tk)) = ϵcriti + δenergyi (si(tk), (α
charge, vcj)), ∀j ∈ {1, . . . , Hc(tk)} (3.19)

tchargei,j (si(tk)) = tcj+1 − δtimei (si(tk), (α
charge, vcj)), ∀j ∈ {1, . . . , Hc(tk)} (3.20)

Then, at the time step tk for the robot i, the set V charge
i (tk) is defined as:

V charge
i (tk) =

{
vcj , j ∈ {1, . . . , Hc(tk)} | ϵi(tk) ≥ ϵchargei,j (si(tk)), tk ≤ tchargei,j (si(tk))

}
(3.21)

The set of possible actions and their related observations model how the robots interact with the
environment and participate in completing the USaR mission. This approach models the robots in the
most generalizable way, and is congruent to how actual humans operate. Often in real-life scenarios,
the observable outcomes of approaching a problem in different ways are considered and compared
to find the best option for achieving a goal. Although the overall objective of a USaR mission usually
does not change from initialization, the specific tasks assigned to achieve it dynamically evolve as the
mission progresses. The set of tasks that are available at time tk is denoted by T (tk), and a task
τl(tk) ∈ T (tk), l ∈ {1, . . . , |T (tk)|} is defined as a tuple:

τl(tk) = (vtaskl , ϕtaskl , F task
l) (3.22)

where vtaskl ∈ V is the vertex at which the task is located, ϕtaskl : Si × Ai → {0, 1} is a Boolean
indicator function that denotes whether the task can be successfully completed by robot i performing

3.1. Problem Formulation 32

action a ∈ Ai(tk) from its current state si(tk), and F task
l ⊆ F (vtaskl) is the subset of environmental

features associated with the task. The feature set F task
l effectively denotes the type of its attached task,

where two tasks m and n are considered of the same type if F task
m = F task

n , meaning task categories
are specified by their associated semantic features. The task set T (tk) is defined as the set of all
attemptable tasks at the time tk:

T (tk+1) = Φ(T (tk), a), a ∈ {Ai(tk) | i ∈ {1, . . . , N robot}} (3.23)

Here, Φ(·) denotes the task set update function, which modifies T (tk) by removing any tasks success-
fully completed by actions that finished execution at time tk. This ensures that only uncompleted and
newly spawned tasks remain available in the system.

System Modeling Summary

Figure 3.1: Summary of the mathematical modeling of SaR robots and the generalized system.

The summary of the interactions between a robot and the central agent, as well as the modules de-
fined for the operation of the robots, are given in Figure 3.1. The single-line arrows represent inputs
and outputs to the corresponding modules, where the thick line arrows represent transitions as a bun-
dle. The wavy lines demonstrate environmental sensing and asynchronous communication with other
robots. The flow of operations begins at the stage when the local time equals the global time, at which
point the robot synchronizes its own local map with the global map. From the updated local map, sets
of feasible vertices are generated for each action type to construct the feasible action sets. Then, the
controller, which will be defined further in Section 3.2 takes the current task set, central agent schedule,

3.1. Problem Formulation 33

and the feasible action sets as the inputs to generate the next action of the robot. The robot state is
updated for the next local time while simultaneously obtaining an observation set from the environment,
and updating its local map as a result. When the local map is updated, the global map is also updated
accordingly, enabling other robots to make up-to-date decisions. Furthermore, the central agent relies
on these synchronization operations to update the current tasks, overseeing which ones are completed
and which tasks need to be spawned, as well as updating its own schedule based on the states of the
robots in the environment.

The summary of notations introduced in this section is given in Table 3.1 for reference, where each
column contains the related notation for the ground truth variables, robot parameters, robot state, and
central agent state, respectively. Within these columns, contextually relevant notations are clustered
with consecutive cells in a gray background.

tk global time ti,k̃i

local time of
a robot i si(tk)

state of
a robot i sc(tk)

central agent
state

G environment
graph ri(tk) robot i vri(tk)

vertex of
a robot i vc(tk)

central agent
vertex

v ∈ V environment
vertices Si

state space
of a robot i Mi(tk)

local map of
a robot i Hc(tk)

remaining
schedule length

of the central agent

E environment
edges

α
∈ Ci

action types
of a robot i V M

i (tk)
local map
vertices of
a robot i

πc(tk)
remaining
schedule

of the central agent

F
environment

feature
set

a = (α, v)
∈ Ai

action and
action space of

a robot i
EM

i (tk)
local map
edges of
a robot i

πc
j(tk)

= (tcj , v
c
j)

time and vertex pair
for a waypoint j

of the central agent

ℓenv
vertex

feature label
function

fsi

state transition
function of
a robot i

OM
i (tk)

local map vertex
observations
of a robot i

Mc(tk) global map

ωenv
edge
weight
function

foi

observation
function of
a robot i

ϵi(tk)
energy
level

of a robot i

τl(tk)
∈ T (tk)

task l and
the available
task set

νenv
vertex feature
value function

o
∈ Oi

observation and
observation space

of a robot i
Ai(tk)

feasible
action set
of a robot i

vtaskl

vertex of
a task l

N robot robot count F o(v)
feature set

of an observation
on the vertex v

V α
i (tk)

feasible vertex set
per action type
of a robot i

ϕtaskl

completion
condition of
a task l

ϵ
charge
i,j

energy feasibility
threshold
of a robot i

to reach charger
waypoint j

νo(v)
feature value set
of an observation
on the vertex v

δtimei

time expenditure
of a robot i

when an action
is taken

F task
l

feature set
associated with

a task l

t
charge
i,j

time of arrival
deadline
of a robot i

to reach charger
waypoint j

ϵcriti

critical energy
value of
a robot i

δ
energy
i

energy loss
of a robot i

when an action
is taken

Φ

transition
function

of the available
task set

Table 3.1: Summary of notations included in the autonomous robot system model for SaR applications.

3.1. Problem Formulation 34

3.1.2. Task Allocation Modeling
Thus far, the system model is provided as a generalizable heterogeneous robotic team with asyn-
chronous timings. This section aims to provide a decision-making model for assigning utilities to ac-
tions based on the tasks they attempt at a given state of the SaR mission. The designed relationship
between actions, their resulting observations, and the relevant tasks in the current task set is demon-
strated in Figure 3.2 for better contextualization of the proposed system. Here, five different tasks are
depicted, with two distinct types corresponding to F1 and F2 feature sets. The complete set of actions
the robot can take is denoted by Ai for each robot i, however, only actions one through three can
attempt any task, therefore only these actions are considered within the current set of possible actions,
Ai(ti,k̃i

). In this specific example, some actions are able to make observations related to other types
of features, such as an for F3, however, since it does not relate to any task in the current timestep,
this action is redundant. Having said that, the task set evolves with what other tasks are completed
beforehand, and this specific action may be needed if a task related to F3 spawns in a later timestep.
The observations are local to the vertex of the taken action; therefore, only the tasks that spatially fall
within the area of effect of the actions can be completed. This behavior is modeled by the indicator
functions ϕtaskl (si(tk), a) of each task. Depending on the nature of each action, the resulting observa-
tion set may attempt multiple actions, as illustrated in the cases of a1 and a2, modeling the multitasking
behavior of a robot. Similarly, a task can be attempted by multiple actions, as given in the case for τ3,
modeling different ways to approach the same task. These two behavior models cover all bases for the
generalizable task allocation structure proposed in this thesis without relying on heuristic formulations.

Figure 3.2: Representation of the relationship between robot actions, observations and available tasks.

As a result of this formulation, the robots need to rank every action in their current action set Ai(ti,k̃i
)

based on the overall utility it produces for the global mission goals. This utility depends on two indepen-
dent factors, since the tasks are not attempted individually but through action observations. The first
factor, therefore, is how well a robot can perform a specific action corresponding to the feature sets
that the action produces. This is a standalone property of the robots, regardless of the tasks or actions
they may attempt, due to the heterogeneous capabilities of each robot. For example, the same action
may produce different quality of observations, be prone to errors due to the environmental constraints
present at that time, or cover different-sized areas between robots. The second factor is how impor-
tant an attempted task is from the perspective of the global USaR mission. This metric is independent
of which robot attempts those tasks; rather, it aims to rank the importance of the same type of tasks
relative to one another. The separation of action and task evaluations into a multi-stage fuzzy system
further serves to prevent the rule explosion problem inherent to such approaches, as well as to improve
modularity in the formalization of the robotic team. Section 3.1.2 introduces the fuzzy action and task
evaluation architecture, where Section 3.1.2 continues with the introduction of the MCDM formulation to
generate action utilities based on how well the fuzzy system outputs satisfy mission-level criteria while
considering interactions between action outputs. The problem formulation is then concluded with the
introduction of the general nonlinear MPC problem in Section 3.1.2, which defines the optimal control
of the robotic team using the generalized mathematical model.

3.1. Problem Formulation 35

Fuzzy Action & Task Evaluation

The proposed fuzzy action-task evaluation system begins by introducing a capability metric for a robot
performing an action, which models the difference in confidence in the abilities of different robots per-
forming similar actions. Similarly, the same action performed by the same robot at different states may
yield varying results, where this behavior is generalized through the aggregation of the quantity and
quality of observations upon the execution of the said action. The action evaluation is then modeled by
the fuzzy rules as follows:

Raction
m :If σcapi (si(ti,k̃i

), a) is Baction
m,1 and σquali (si(ti,k̃i

), a) is Baction
m,2 and

σquani (si(ti,k̃i
), a) is Baction

m,3 then ρactioni (si(ti,k̃i
), a) is Caction

m

, a ∈ Ai(ti,k̃i
) (3.24)

Where σcapi (si(ti,k̃i
), a) is the capability of the robot i, σquali (si(ti,k̃i

), a) is a measure of the quality of
observations and σquani (si(ti,k̃i

), a) is a measure of the quantity of observations upon performing the
action a ∈ Ai(ti,k̃i

) at the state si(ti,k̃i
). These general terms cover all aspects of any type of action that

can be taken by a robot, and enables application specific implementations within a formal framework.
The sets Baction

m,{1,2,3} and C
action
m are fuzzy sets that adopt a relevant linguistic term, with m denoting the

fuzzy rule index. Likewise, the priority of a task l ∈ {1, . . . , |T (ti,k̃i
)|} is determined by the state of the

current task set T (ti,k̃i
) where the task needs to have a measure of comparison between other tasks

in terms of its relevant features F task
l . The generalized fuzzy system for this evaluation is as follows,

with fuzzy sets configured similarly to the action evaluation:

Rpriority
m,l : If

 ∧
j∈{1,...,|F task

l |}

σpriorityl,j (T (ti,k̃i
)) is Bpriority

m,l,j

 then ρpriorityl (T (ti,k̃i
)) is Cpriority

m (3.25)

The priority evaluation of each task τl(ti,k̃i
) depends on the predetermined fuzzy rules for each type of

task set, denoted by their unique feature sets F task
l . Types of tasks may vary quite significantly within

the evolving task set, and incorporating all relationships between different types of tasks to create an
absolute ranking of tasks is practically infeasible. For this reason, this fuzzy system only evaluates
the priority of each task within the same type of tasks, which are subject to the same rule sets. This
is once again done for increasing modularity. A comparison of different types of tasks is performed
at an upper hierarchy to address the issue of fair evaluation among all tasks currently considered by
the robot. Finally, the value of attempting a task through an action for a robot is determined by the
combination of the outputs of these two systems by another fuzzy model:

Rtask
m :If ρactioni (si(ti,k̃i

), a) is Caction
m and ρpriorityl (T (ti,k̃i

)) is Cpriority
m then

ν taskl (T (ti,k̃i
), si(ti,k̃i

), a) is f taskm (ρactioni , ρpriorityl)
, a ∈ Ai(ti,k̃i

) (3.26)

This final stage of the fuzzy system is configured as a Takagi-Sugeno system, as opposed to the Mam-
dani systems selected for the initial stages. This selection is intentional to maintain a continuous output
surface, as the task evaluation values still need to be compared with respect to time and other types
of tasks. The complete fuzzy system for action-task evaluation is given in Figure 3.3.

Figure 3.3: Fuzzy inference system determining the value of a task given a robot action

3.1. Problem Formulation 36

MCDM Formulation

The fuzzy inference system for action-task evaluation outputs a utility for each task attempted through
an action. However, the final architecture must incorporate preferences across different types of tasks
and account for time-related considerations. As previously addressed, these variables are often in-
cluded as ad-hoc utility functions or within fuzzy systems in other works of the literature; however, this
approach often fails when the types of spawned tasks and the amount of time it is feasible to assign
to each task change dynamically throughout the mission. USaR missions often generate unforeseen
or hybrid tasks; for example, a robot may need to place a communication beacon if the centralized
task set considers it necessary during operation. If there is a robot capable of doing that, it needs to
consider performing this task as well. Furthermore, tasks related to searching victims may be more
time-sensitive than placing beacons, and mapping may be less important than searching for a victim at
the later stages of the mission. Separating time costs from the fuzzy system additionally has the benefit
of incorporating it as part of the hard constraints when the robot needs to return to a charging location
safely, considering the charger’s schedule. The MCDM method introduced by Basilico and Amigoni
naturally accounts for all these factors without having to define an entire rule base from scratch, and
avoids introducing additional heuristics as new types of tasks become available [7]. At a high level,
MCDM first ranks all categories represented by the different types of task utilities present in the cur-
rent task set, along with a time category introduced at this stage. Then, a Choquet integral is used to
compute a weighted sum of incremental utility contributions, where each increment is weighted by the
accumulated importance of the active subset of criteria. As a result, all task-related utilities obtained
from the fuzzy inference system are aggregated into a single utility value that reflects system-wide
priorities for robot decision-making at the local time ti,k̃i

.

Remark 3.1.2 (Choquet Integral and Utility Aggregation). The Choquet integral is a fuzzy ag-
gregation operator used to capture interactions between criteria when multiple criteria are
present in a decision-making problem. It can be viewed as a generalization of the Lebesgue
integral, designed for situations where the underlying measure is not additive, but instead cap-
tures interactions between subsets of a finite set of variables. In a classical Lebesgue integral,
the total contribution of a function is obtained by integrating over the values it takes, weighted
by the additive measure of the domain regions exceeding those values. The Choquet integral
replaces the additive measure with a monotonic set function that allows the weight assigned
to a group of variables to reflect more than just the sum of their parts. This distinction is crucial
when the criteria are not independent, for example, when the value of achieving two objectives
simultaneously is not equal to the sum of their individual contributions. In such cases, the Cho-
quet integral enables the modeling of synergistic or redundant interactions. This makes the
Choquet integral especially suited for multi-criteria decision problems where mutual influence
among criteria must be explicitly taken into account. The precise formulation of a generalized
Choquet integral for decision-making problems is proposed by Khamis et al. [4] for further
reference, and briefly introduced in the Section ??.

To aid understanding of the application of the Choquet integral in utility calculations, a
small example is provided next. Let the individual utility values for some criteria Ccriteria =
{α1, α2, α3} be u1 = 0.2, u2 = 0.7, and u3 = 0.5 respectively. Then, let the importance of the
unique interactions between these criteria be defined as:

µ({α1}) = 0.2, µ({α2}) = 0.3, µ({α3}) = 0.4,

µ({α1, α2}) = 0.6, µ({α1, α3}) = 0.7, µ({α2, α3}) = 0.8, µ({α1, α2, α3}) = 1.

Then, the utilities are sorted in ascending order, where the subscript () denotes the ordering.
The ordering and the corresponding criteria interaction sets are:

u(1) = 0.2, u(2) = 0.5, u(3) = 0.7

C(1) = {α1, α2, α3}, C(2) = {α2, α3}, C(3) = {α2}

3.1. Problem Formulation 37

Finally, the discrete Choquet integral is calculated to find the aggregated MCDM utility, where
a(0) = 0:

umcdm =

3∑
i=1

(u(i) − u(i−1)) · µ(C(i))

= (0.2− 0) · µ({α1, α2, α3}) + (0.5− 0.2) · µ({α2, α3}) + (0.7− 0.5) · µ({α2})
= 0.2 · 1 + 0.3 · 0.8 + 0.2 · 0.3
= 0.5

In the formulation of the thesis, a feature set F ⊆ F (v) for a vertex v ∈ V consists of semantical
labels that the corresponding vertex is associated with. As an example, depending on the capabilities
present in the robotic team in terms of detecting information relevant to the unique labels, a feature set
F = {terrain, charger, victim} can denote the most basic functionalities a USaR robot may have;
namely detecting terrain information from the associated vertex, whether or not a charger exists in
that vertex and the capability of detecting victims from that vertex. The same approach is utilized in
all formulations whenever a variable contains a unique feature set that defines it. A feature set F task

l

associated with a task τl(ti,k̃i
) ∈ T (ti,k̃i

) denotes the minimal set of features that an observation set
Oi(ti,k̃i

) needs to contain to be attempted by the robot i by performing the action a ∈ Ai(ti,k̃i
). Following

this interpretation, each unique feature set F task
l at a given task set can be said to correspond to a unique

criterion that each evaluated action needs to satisfy in terms of the detected features generated by the
related observation. An overarching criterion in any type of decision-making during a SaR mission is
the assessment of time to ensure the efficient allocation of resources in time-critical settings. To ensure
the inclusion of time as a singular criterion on its own for the assessment of allocated tasks at a given
decision-making step, an additional feature set F time = {time} is included for each task τl(ti,k̃i

) along
with its own feature set F task

l . Formally, the proposed MCDM stage begins by generating the unique
criteria set C(T (ti,k̃i

)) of the current task set, with the addition of the time criterion:

C(T (ti,k̃i
)) = F time ∪

{
F task
l | l ∈ {1, . . . , |T (ti,k̃i

)|}
}

(3.27)

Then, a fuzzy measure µ : 2C(T (ti,k̃i
)) → [0, 1]R within the power set of the criteria set assigns an

importance to each group of criteria, satisfying the following conditions:

µ(∅) = 0, µ(C(T (ti,k̃i
)) = 1, Cm ⊆ Cn ⊆ C(T (ti,k̃i

)) ⇒ µ(Cm) ≤ µ(Cn) (3.28)

Considering that the fuzzy measure µ describes the dependencies between the criteria, the set Cm ⊆
C(T (ti,k̃i

)) is independent if µ(Cm) =
∑

c∈Cm
µ(c) holds. Then, for each individual criterion in this set,

the action utility vector uaction
i (ti,k̃i

, a) for the robot i with the candidate action a ∈ Ai(ti,k̃i
) is calculated

by summing all fuzzy utilities that the action considers corresponding to that criterion:

uaction
i (ti,k̃i

, a) =

〈|T (ti,k̃i
)+1|∑

l=1

ϕtaskl

(
si(ti,k̃i

), a
)
· 1c(F

task
l) · ν taskl

(
T (ti,k̃i

), si(ti,k̃i
), a
)〉

c∈C(T (ti,k̃i
))

(3.29)
Where the operator ⟨⟩x∈X denotes building an ordered set as a vector by iterating a given set X, the
indicator function 1c : 2F → {0, 1} denotes if a given task has a matching label to the criteria c ∈
C(T (ti,k̃i

)). The action utility vector effectively contains the aggregated sum of all tasks that correspond
to the same criteria, with a one-to-one correspondence to each entry c ∈ C(T (ti,k̃i

)) considered as a
result of a candidate action. While this is a mathematically rigorous way of representing the action
utility vector, in practice, only calculating the tasks that fall within the action observation set is sufficient.
The additional entry for the time criteria F time needs to be formulated in terms of the generalized task
variables to complete the formalization. To that end, the time utility is incorporated as a meta-task, for
which the robots do not directly attempt it; however, a utility value needs to be generated, similar to the
tasks the robot considers. The following values are set to account for the time utility incorporation:

3.1. Problem Formulation 38

ϕτ|T (ti,k̃i
)+1|(si(ti,k̃i

), a) = 1 (3.30)

F task
|T (ti,k̃i

)+1| = F time (3.31)

ντ|T (ti,k̃i
)+1|(T (ti,k̃i

), si(ti,k̃i
), a) = 1−min

(
1,

δtimei (si(ti,k̃i
), a)− δtmin

δtmax − δtmin

)
(3.32)

where δtmin and δtmax are the normalization values for the time the robot spends performing the eval-
uated action. These normalization values depend on the context the utilities are generated in, for
example, while local controllers only need to consider the time scaling between all currently evaluated
actions Ai(ti,k̃i

); global controllers may need to take into account the total elapsed time tk and nor-
malize according to an absolute time of performing the action. At the final stage of the MCDM utility
calculation of a given action, the discrete Choquet integral over the fuzzy utility vector uaction

i (ti,k̃i
, a)

and corresponding criteria set C(T (ti,k̃i
)) is expressed as follows for the robot i:

MCDM utility calculation through robot actions

ui(ti,k̃i
, a) =

|C(T (ti,k̃i
))|∑

l=1

µ(Ci,(l)) ·
(
uaction
i,(l) (ti,k̃i

, a)− uaction
i,(l−1)(ti,k̃i

, a)
)

(3.33)

where (l) ∈ {1, . . . , |C(T (ti,k̃i
))|} indicates the criterion at the lth order according to the sorted order

that satisfies uaction
i,(1) (ti,k̃i

, a) ≤ · · · ≤ uaction
i,(|C(T (ti,k̃i

))|)(ti,k̃i
, a) ≤ 1 and uaction

i,(0) = 0. Finally, the set Ci,(l)

indicates the aggregated criteria so far during the sum, denoted as:

Ci,(l) =
{
m ∈ {1, . . . , |C(T (ti,k̃i

))|} | uaction
i,(l) (ti,k̃i

, a) ≤ uaction
i,(m)(ti,k̃i

, a) ≤ uaction
i,(|C(πs(ti,k̃i

))|)(ti,k̃i
, a)
}
(3.34)

fuzzy system MCDM system

ρcapi (si(tk), a)
capability rating of the

robot i executing action a
from state si(tk)

C(T (tk))
criteria set of the

current task set containing
unique task feature sets

ρquali (si(tk), a)
quality rating for the observations
of the robot i executing action a

from state si(tk)
µ(C), C ⊆ C(T (tk))

importance of the joint
contribution of the
criteria subset C

ρquani (si(tk), a)
quantity rating for the observations
of the robot i executing action a

from state si(tk)
uaction
i (tk, a)

aggregated utility vector per
criteria c ∈ C(T (tk)) of

using observations resulting from
action a of the robot i, using
the fuzzy system outputs

ρ
priority
l,m (T (tk))

priority rating of the task l
within the current task set
for each task feature
m ∈ {1, . . . , |F task

l |}

ui(tk, a)

MCDM utility result of robot i
taking action a, as the output of the
discrete Choquet integral taken on

uaction
i (tk, a) over the criteria set C(T (tk))

ν taskl (T (tk), si(tk), a)
output of the fuzzy system for
the task l when the robot i
performs the action a

safe
return

constraints

z
charge
i,j (tk)

M time, Menergy

binary variables denoting the
robot i can reach the central

agent waypoint j from
its current state

big-M constants for time
and energy constraints

Table 3.2: Summary of notations included in the fuzzy-MCDM decision-making framework.

3.1. Problem Formulation 39

Optimization Problem Formulation

Having established the mathematical models for the robot-environment interactions and the utility-
based task allocation framework through possible robot actions, the generalized USaR problem can be
expressed as an optimization problem with safe return constraints. By definition, the safe return capa-
bilities are directly tied to the feasible charging vertex set V charge

i (tk) being non-empty for all robots at
all times. This condition can be formulated linearly by introducing a binary variable zchargei,j (tk) ∈ {0, 1}
to denote whether the vertex vcj ∈ πc(tk) is included in the set V charge

i (tk) at the time step tk. Then, the
overall USaR objective as an optimization problem, maximizing the total utility generated by the team
of robots through allocating tasks via their actions across all global time steps, can be formulated as
follows:

Generalized MCDM task allocation as an optimization problem formulation

argmax
{ai∈Ai(tk)}N robot

i=1

∑
k∈K

N robot∑
i=1

ui(tk, ai) (3.35)

s.t.

tk − tchargei,j (si(tk)) ≤M time ·
(
1− zchargei,j (tk)

)
, ∀i, ∀j, ∀k (3.36)

ϵchargei,j (si(tk))− ϵi(tk) ≤Menergy ·
(
1− zchargei,j (tk)

)
, ∀i, ∀j, ∀k (3.37)

Hc(tk)∑
j=1

zchargei,j (tk) ≥ 1, ∀i, ∀k (3.38)

tk ̸= ti,k̃i
⇒ ai =

(
αidle, vri

(
ti,k̃i

))
, ∀i, ∀k (3.39)

{αcharge, αidle} ∈ Ci, ∀i (3.40)

Where M time and Menergy denote sufficiently large big-M constants, and K = {k ∈ N | tk ≤ tend}
denotes the set of all possible global time steps before the end of mission time tend is reached. Big-M
constraints are a modeling technique in mixed-integer programming where a large constant is used to
conditionally activate or deactivate parts of a constraint based on the value of a binary variable. This
thesis considers the subscripts i, j, and l to denote robot, charger schedule, and task/criteria indices
respectively; denoted by i ∈ {1, . . . , N robot}, j ∈ {1, . . . , Hc(tk)}, l ∈ {1, . . . , |T (tk)|} when used in the
context of task iterations and l ∈ {1, . . . , |C(T (tk))|} when used in the context of MCDM criteria. The
Constraints (3.36), (3.37), and (3.38) formulate that at least one safe return action is always feasible
for each robot i at all time steps k. The Constraint (3.39) establishes the correctness of the expression
in the Problem (3.35) by assigning idle actions whenever robots are out of sync with the global time
tk, such that the corresponding utility is always defined. Moreover, the Constraint (3.40) ensures both
charge and idle types of actions are provided for all robots. In addition to the above considerations,
the system dynamics follow the asynchronous update rules introduced in Equations (3.5) and (3.7). At
each global time tk ∈ K, only the robots that tk = ti,k̃i

will complete their actions, update their states
via their transition function, and generate utility. The utility function ui(tk, ai) corresponds to the MCDM-
evaluated utility of the action completed by the robot i at the global time tk when the action ai ∈ Ai(tk) is
taken. Due to the asynchronous nature of robot actions, most robots will not complete an action at each
global time step. For those robots, the utility is defined as ui(tk, ai) = 0. Since robots plan their next
action within their local times, they may attempt to tackle the same tasks simultaneously, or generate
a mismatch in the expected utility before taking an action when another robot has already completed
those tasks during parallel operation. Furthermore, a global solution to this optimization problem is both
intractable and infeasible since the global task set dynamically evolves with each action. To address
both aspects of the generalized optimization problem, a hierarchical MPC-based controller architecture
is presented in the next section.

3.2. Control Architecture 40

3.2. Control Architecture
The system model described in Section 3.1.1 requires a control architecture to generate robot actions
that maximize the total MCDM utility at the end of the SaR mission, as described in the Problem (3.35).
Directly solving this problem is not possible, as addressed, due to the task sets at each global timestep
evolving as a result of the robot actions performed, and robots executing their individual actions asyn-
chronously with one another. To address the issue of robot synchronization in terms of global optimal-
ity, a hierarchical control architecture is proposed to balance decentralized robot-level autonomy with
global coordination, enabling robots to reason independently while maintaining coherent team behavior
under dynamically evolving task conditions. This hierarchical control architecture in the context of the
designed mathematical formulation of the robotic SaR team is demonstrated in Figure 3.4. Each robot
employs its own local controller, which generates a candidate action sequence πa

i (tk) from the current
task state T (tk), the central agent’s schedule πc(tk), and the feasible action set Ai(tk) of the robot
i. The global controller then ensures that all current robot schedules are non-conflicting and optimal
from the perspective of global mission goals, since the local controllers are unaware of the schedules
of other robots. Both controllers, at their core, integrate fuzzy decision-making and multi-criteria utility
estimation, as described in Section 3.1, into a model predictive optimization problem with safe return
constraints. MPC formulations are naturally suited when the underlying problems are unpredictable,
and a limited look-ahead into the future states of the system is necessary due to the sequential devel-
opment of the state space. Therefore, a nonlinear MPC problem formulation is introduced in Section
3.2.1 at the local level for each robot, and then the conditions for linearizing this optimization problem
are described as a MILP optimization problem for computational tractability. Section 3.2.2 describes
the upper hierarchy as the global coordination controller of the robotic team, which utilizes the opti-
mized schedules resulting from the local controllers to resolve conflicting task allocations under robot
coordination conditions. This hierarchical division of control enables scalable operation across het-
erogeneous teams and supports mission continuity by explicitly incorporating safe return behaviors
and energy-aware planning. Finally, a controller for the central agent scheduling is introduced in Sec-
tion 3.2.3 to induce dynamic behaviors within the SaR environment and establish a fully autonomous
closed-loop heterogeneous robotic system.

Figure 3.4: Diagram of the proposed hierarchical control architecture.

3.2. Control Architecture 41

3.2.1. Local Robot Controllers
To solve the optimization problem defined in Section 3.1, each robot needs to be able to make its
own decisions independently from other robots in the environment. As discussed earlier, an offline
solution to this problem is infeasible due to the dynamically changing task sets throughout the mission.
To address this point, an MPC reformulation of the original problem is proposed for each robot at the
local control level. The finite-horizon optimization considers the current state of the system and aims
to find the best sequence of actions by estimating the future states within the horizon Hpred

i ∈ N+ of a
robot. At each global time tk, when a robot i completes an action, the robot triggers its local planner,
effectively meaning at the planning stage, tk = ti,k̃i

is satisfied. Additionally, the robots do not need to
consider the entirety of the global task set since only the prediction horizon amount of actions can be
considered at the local stage. Thus, Ti(tk) ⊆ T (tk) denotes the subset of global tasks that the robot i
considers for the finite-horizon optimization, thereby reducing the action space related to the task sets.
As a result, each robot needs to estimate its future states ŝi(ti,k̃i+κ) and an approximation of the future
task sets T̂i(ti,k̃i+κ), where κ ∈ {0, . . . , Hpred

i −1} denotes the estimation step. Therefore, starting from
the feasible task set at the initial timestep Ti(ti,k̃i

), the task set estimator takes the form of:

T̂i(ti,k̃i+κ+1) = Φ̂i

(
T̂i(ti,k̃i+κ), a

)
, a ∈ Ai(ti,k̃i+κ) (3.41)

Where the function Φ̂i(·) approximates the global task set update function Φ(·) by only considering the
effects of the robot’s actions to satisfy the locality of the controller design, likewise, the extended state
πs
i (ti,k̃i

) and control inputs πa
i (ti,k̃i

) are formulated along the prediction horizon as follows:

πs
i (ti,k̃i

) =
[(
ŝi(ti,k̃i

), T̂i(ti,k̃i
)
)

. . .
(
ŝi(ti,k̃i+Hpred

i −1
), T̂i(ti,k̃i+Hpred

i −1
)
)]

(3.42)

πa
i (ti,k̃i

) =
[
a ∈ Âi(ti,k̃i

) . . . a ∈ Âi(ti,k̃i+Hpred
i −1

)
]

(3.43)

Then, the MPC optimization problem for local robot controllers can be expressed as:

MPC reformulation of the generalized task allocation problem for local robot controllers at the
global time tk

argmax
πs

i(ti,k̃i
),πa

i(ti,k̃i
)

Hpred
i −1∑
κ=0

ui

(
ti,k̃i+κ,π

a
i,κ+1(ti,k̃i

)
)

(3.44)

s.t.

ti,k̃i+κ − tchargei,j

(
ŝi(ti,k̃i+κ)

)
≤M time ·

(
1− zchargei,j (ti,k̃i+κ)

)
, ∀j, ∀κ (3.45)

ϵchargei,j

(
ŝi(ti,k̃i+κ)

)
− ϵi(ti,k̃i+κ) ≤Menergy ·

(
1− zchargei,j (ti,k̃i+κ)

)
, ∀j, ∀κ (3.46)

Hc(tk)∑
j=1

zchargei,j (ti,k̃i+κ) ≥ 1, ∀κ (3.47)

ti,k̃i
= tk (3.48)

{αcharge, αidle} ∈ Ci (3.49)

The evaluation of the objective function given in Problem (3.44) requires the nonlinear estimation
of the state ŝi(ti,k̃i+κ), and the feasible task set T̂i(ti,k̃i+κ) at each timestep ti,k̃i+κ, where both depend
on the previous action taken at the time ti,k̃i+κ−1. As a result, the objective function must be calculated
sequentially, starting from the robot’s current local time ti,k̃i

= tk. The objective function provided
in Problem (3.44) is the reformulation of the MCDM utility aggregation of the robotic team presented
in Problem (3.35) for establishing a prediction-based finite horizon problem to decide the next action
of individual robots. The exact calculation of the utility function is provided in Equation (3.33). The
Constraints (3.45), (3.46), (3.47) correspond to the safe return conditions such that there exists at least

3.2. Control Architecture 42

one valid charging action throughout the prediction horizon, such that the robot can always rendezvous
with the central agent, depending on its schedule. These constraints follow the exact same formulation
of the generalized MCDM task allocation problem, specifically the Constraints (3.36) , (3.37), (3.38).
Similarly, the Constraint (3.48) sets the starting time of the prediction horizon to the global time tk since
the decision-making times are synchronized through the local robot times, and the Constraint (3.49)
ensures charge and idle actions must always be included in the capabilities of the robots in the team.
To ensure correct and reliable operations, all of these constraints are regarded as hard constraints that
always need to be satisfied. Since charging actions are always present, the problem remains feasible,
allowing the robot to always return to the charger if no other action satisfies the first three constraints.

Remark 3.2.1 (Local Robot Controller Assumptions). The set of available actions at each time
step is constrained by both the charging constraints and the task set, as only actions relevant
to the current tasks generate a positive utility. For these reasons, some simplifying assump-
tions are made regarding the evolution of the task set. First, the task set update estimate
function Φ̂i(.) only models the evolution of the tasks that are present in the initial task set
T (tk), meaning it does not try to predict what new tasks may be generated along the predic-
tion horizon. This is established due to the added complexity of estimating not only how the
central agent creates tasks at a given time, but also to avoid predicting the states of all other
robots within the team, which may result in the creation of new tasks. The robots may still
consider the same tasks within their individual local horizons, and this aspect is addressed
in the upper hierarchy, where the global cooperation optimization takes place. The second
assumption is that the creation of the initial task set estimation T̂i(ti,k̃i

) is treated as a prepro-
cessing step, in which only a reasonable number of tasks are filtered for consideration (such
as a constant number of tasks that are closest to the robot at the local time ti,k̃i

). The charging
constraints of the MPC optimizer are also enforced during the preprocessing step, ensuring
that all tasks within the preprocessed set are related to at least one feasible action. If no such
actions are taken, the robot must return to the central agent for charging.

Despite its flexibility, the nonlinear MPCmodel poses challenges for real-time use due to its dynamic
and nonconvex nature. The feasible actions and task sets evolve in response to predicted states, and
repeated task attempts within the horizon necessitate bookkeeping to avoid redundant actions in terms
of generated observational overlaps. Moreover, the sorting operation during MCDM calculations intro-
duces further non-convexity via sorting and criteria aggregation. To address this, a two-stage MILP
approximation is proposed, as provided in Figure 3.5. In the first stage, a subset of actions is gener-
ated across the prediction horizon by selecting those that are sufficiently independent in space and task
scope, and achieve high estimated MCDM utility at the initial timestep. This approximation assumes
that early utility estimates provide a reliable proxy for long-term contribution, which is reasonable under
moderately dynamic task environments. In the second stage, a prediction horizon-length action se-
quence is selected from this set under time and energy constraints, utilizing a MILP-based linearization
of the nonlinear problem. The advantages of this approach are twofold: First, it enables fast solution
times while preserving the core features such as utility prioritization, task assignment, and safe return
constraints. Second, modern MILP solvers effectively leverage the strengths of branch-and-bound and
cutting planes algorithms to tackle highly branching sequential decision-making problems.

Figure 3.5: Diagram of the proposed local robot controllers.

3.2. Control Architecture 43

First Stage: Independent Action Filtering

The first stage of the proposed local controllers starts by defining the dependence between the cri-
teria across all possible actions determined from the initial prediction time ti,k̃i

, denoted by the set
Apred

i (ti,k̃i
) ⊆ Ai:

Apred
i (ti,k̃i

) =

Hpred
i −1⋃
κ=0

Âi(ti,k̃i+κ) (3.50)

where the sets Âi(ti,k̃i+κ) denote the predicted feasible action sets along the prediction horizon. The
actions generate task utilities through their predicted observations, therefore let two observation tuples
satisfy o1 = o2 if and only if vo1 = vo2 holds. Two observation vertices are considered equal if their
locations and associated features F (vo) are the same. Then, the observation sets related to two distinct
actions O1 = fo(si(ti,k̃i

), a1) and O2 = fo(si(ti,k̃i
), a2) are independent if O1 ∩ O2 = ∅. The vertex vo

contains the features that match the requirements of a task that the action is intended for, and therefore,
if two vertices are equivalent between action measurement predictions, there is a dependence between
them. With this approach, it is assumed that only one measurement from a specific location-feature pair
is needed within one prediction horizon; therefore, completing the first action partially or fully satisfies
the tasks associated with the shared vertex-feature pair, thereby reducing the marginal utility of the
second.

LetOpred
i,m (ti,k̃i

) = f̂oi (si(ti,k̃i
), ai,m) denote the predicted observation set associated with each action

ai,m ∈ Apred
i (ti,k̃i

), where m ∈ {1, . . . , |Apred
i (ti,k̃i

)|}. For each observation on ∈ Opred
i,m (ti,k̃i

), n ∈
{1, . . . , |Opred

i,m (ti,k̃i
)|} of individual actions, the corresponding utility value upredi,m,n(ti,k̃i

) contains marginal
MCDM utility predictions, computed as:

ūi,m,n(ti,k̃i
) =

ûi

(
si(ti,k̃i

), ai,m(ti,k̃i
)
)

|Opred
i,m (ti,k̃i

)|
(3.51)

for all observations n in Opred
i,m (ti,k̃i

). The utility predictions represented by ûi(si(ti,k̃i
), ai,m) exclude

the time-meta task term from Equation (3.33) since time-based preferences will be incorporated in the
second stage, and this stage only aims to generate independent action sets and their predictedmarginal
MCDM utilities. Then, the full predicted observation set and corresponding aggregated utilities over
unique observations are defined as:

MCDM utility prediction calculation per unique observation along the prediction horizon

Opred
i (ti,k̃i

) =

|Apred
i (ti,k̃i

)|⋃
m=1

Opred
i,m (ti,k̃i

) (3.52)

upred
i (ti,k̃i

) =

〈∑|Apred
i (ti,k̃i

)|
m=1

∑|Opred
i,m(ti,k̃i

)|
n=1 ūi,m,n(ti,k̃i

) · 1o(Opred
i,m,n(ti,k̃i

))∑|Apred
i (ti,k̃i

)|
m=1

∑|Opred
i,m(ti,k̃i

)|
n=1 1o(Opred

i,m,n(ti,k̃i
))

〉
∀o∈Opred

i (ti,k̃i
)

(3.53)

where 1o(o′) ∈ {0, 1} is an indicator function denoting if a given observation o′ is equal to the
reference observation o ∈ Opred

i (ti,k̃i
). The total predicted observation set Opred

i (ti,k̃i
) is constructed as

the union of all predicted observation sets. The vector upred
i (ti,k̃i

) thus stores the average normalized
MCDM utility for each unique observation across all actions. This aggregation reflects an expected
utility interpretation, assuming that different actions generating the same observation contribute toward
its predicted value.

Then, let Xi,m ∈ {0, 1} be the binary decision variable for selecting the mth action from Apred
i (ti,k̃i

)

and Yi,n ∈ {0, 1} be the binary decision variable for selecting the nth unique observation inOpred
i (ti,k̃i

) for

3.2. Control Architecture 44

robot i. Here, m ∈ {1, . . . , |Apred
i (ti,k̃i

)|} indexes actions and n ∈ {1, . . . , |Opred
i (ti,k̃i

)|} indexes unique
predicted observations. The linear optimization problem for selecting independent actions can then be
expressed by relating the selections in Xi to the unique observations and their corresponding utilities
within Yi. To that end, let the set IXi

(n) contain the indices of Xi that correspond to actions relating to
the observation Opred

i,n (ti,k̃i
), and the set IYi(m) contain the indices of Yi that correspond to the unique

observations relating to the given action Apred
i,m (ti,k̃i

). The optimization goal is then selecting as many
high-value actions as possible while maintaining Noverlap number of overlaps in their corresponding
observations. Note that for the approximation of individual action utilities to be exact, there should
be zero overlaps. However, in practice, some overlap in the observations for different actions may
be preferable to keep the search space smoother, at the cost of overestimating the total utility, since
repeated observation selections inflate their contribution up to Noverlap times. The associated MILP for
the first stage of the task allocator is formulated as follows:

MILP formulation for the first stage of the local robot controllers to generate independent action
sets and their corresponding utilities

argmax
Xi,Yi

|Opred
i (ti,k̃i

)|∑
n=1

Yi,n upred
i,n (ti,k̃i

) (3.54a)

s.t.∑
n∈IYi

(m)

Yi,n ≥ |IYi(m)| −MY(1−Xi,m), ∀m (3.54b)

∑
n∈IYi

(m)

Yi,n ≤ |IYi
(m)|+MY(1−Xi,m), ∀m (3.54c)

∑
m∈IXi

(n)

Xi,m ≥ 1−MX(1− Yi,n), ∀n (3.54d)

∑
m∈IXi

(n)

Xi,m ≤ 1 +Noverlap +MX(1− Yi,n), ∀n (3.54e)

In the above constraints,MX andMY are sufficiently large constants used to deactivate constraints
when the associated decision variables Yi,n andXi,m are not selected, respectively. There are two sets
of constraints characterizing the relationship betweenXi and Yi. The first pair consisting of Constraints
(3.54b) and (3.54c) ensures that all observations relating to a selected action are also chosen. The
second pair consisting of Constraints (3.54d) and (3.54e) maintains that if an observation is selected,
there must be at least one and at most 1 + Noverlap associated actions selected. The optimization is
always feasible as long as |Opred

i (ti,k̃i
)| > 0 and Noverlap > 0 hold; at least one action will always satisfy

the proposed constraints, because actions generate their corresponding observation sets, which, by
definition, do not overlap. Using the single-step partial MCDM utilities of observations, the optimal
selection of actions is steered towards the most non-overlapping total utility distribution. The selected
actions and their utility are then given by the optimal X∗

i and Y ∗
i where each utility for the selected

action set is calculated by summing the utilities of all related observations and then dividing by the
number of times each observation is associated with a selected action, ensuring that contributions are
not overrepresented due to overlapping observations:

Outputs of the first stage of the local robot controllers

Amilp
i (ti,k̃i

) =
{
Apred

i,m (ti,k̃i
), m ∈ {1, . . . , |Apred

i (ti,k̃i
)|} | X∗

i,m = 1
}

(3.55)

umilp
i (ti,k̃i

) =

〈 ∑
n∈IYi

(m)

upred
i,n (ti,k̃i

)∑
m′∈IXi

(n)X
∗
i,m′

〉
m∈{1,...,|Amilp

i (ti,k̃i
)|}

(3.56)

3.2. Control Architecture 45

i robot iterator m
action-prediction
horizon iterator n

unique observation
iterator

Apred
i (tk)

set of predicted
actions along the
prediction horizon

Opred
i,m (tk)

predicted observation
set as the result of

an action m
Opred

i (tk)
set of unique

observations along
the prediction horizon

ûi(si(tk), am)
partial MCDM
estimation

of an action m
ūi,m,n(tk)

normalized utility for a
unique observation n

as the result of an action m
upred
i (tk)

unique observation
utility vector as the

input to the first stage

Xi,m

binary decision
variable for selecting

an action m
Yi,n

binary decision
variable for selecting
a unique observation n

Noverlap
maximum number
of allowed action

overlaps per observation

IXi
(n)

index set of actions
corresponding to a
unique observation n

IYi
(m)

index set of observations
corresponding to the
unique action m

MY

MX

big-M constants
for the decision

variables

Amilp
i (tk)

selected actions
at the output umilp

i (tk)
utility of selected

actions at the output Hpred
i prediction horizon

Table 3.3: Summary of notations included in the first stage of the local robot controllers.

Remark 3.2.2 (Local Robot Controller First Stage Example). To contextualize the first stage
of the local robot controllers, a simple example is demonstrated in Figure 3.6, and the sum-
mary of notations included in this stage is given in Table 3.3. In this example, three actions
are predicted to be feasible along the prediction horizon of the robot, denoted by a1, a2, a3,
Each of these associate with a predicted observation set, namely Opred

i,1 (tk) = {o1, o2, o3},
Opred

i,2 (tk) = {o2, o3, o4}, and Opred
i,3 (tk) = {o3, o4, o5, o6}, while the combined set becomes

Opred
i (tk) = {o1, o2, o3, o4, o5, o6}. To calculate an approximation of independent utilities for

each action, the marginal utility contributions ûi,m of each unique observation are calculated,
using Equation (3.51) as shown in the diagram. Then, applying Equation (3.53), the values per
action are averaged to find the singular utility for each action, contained in the vector upred

i (tk).
Using the binary decision variables Xi for selecting actions and Yi for selecting observations,
the cost function described in Problem (3.54a) maximizes the utility selection described by
Yi values. The optimal selections are shown in red in the diagram. Trivially, the direct maxi-
mization of the cost function is achieved by selecting all observations. Then, the Constraint
(3.54d) establishes that for each observation n, at least one corresponding action must be
selected, of which the relationships are expressed by the elements of the set IXi

containing
action indices per observation. The Constraint (3.54a) sets that at most Noverlap + 1 actions
per observation can be chosen. In this example, o3 is observed by all actions, therefore it must
be included by Yi. However, since Noverlap = 1, only two out of the three actions are feasible
for selection by this constraint. To establish the inverse relationship, the Constraints (3.54b)
and (3.54c) ensure that when an action is selected, all observations related to that action must
also be selected. Therefore, the optimization problem here can be expressed as selecting two
actions that cover the entirety of the set Opred

i (tk), which is satisfied by selecting a1 and a2, as
shown at the output stage of the diagram. Finally, the utilities corresponding to these actions
are calculated by taking the weighted average of the included observations of corresponding
actions, where the weights are the inverse of the number of selected actions related to the
observation, as described in Equation (3.56). With this operation, the overrepresented action
o3 is normalized in the final approximation of the independent utility of the reduced action set
Amilp

i (tk). The optimization problem defined in the first stage is always feasible, as it is always
possible to select only one action that satisfies all constraints by definition.

3.2. Control Architecture 46

Figure 3.6: Operational diagram of the first stage for the linearization of the local MPC controllers.

3.2. Control Architecture 47

Second Stage: Optimal Selection & Ordering of the Reduced Action Set

Having obtained a set of reduced actions Amilp
i (ti,k̃i

) and the corresponding independent utility vector
umilp
i (ti,k̃i

) at the output of the first stage, the optimization problem on the second stage reduces to
selecting the best ordering of at most Hpred

i actions that maximizes the total utility. Since the action
set Amilp

i (ti,k̃i
) consists of approximately independent actions, the states corresponding to taking each

action can be estimated directly. To establish this, the estimation functions δ̂timei : Ai ×Ai → R≥0 and
δ̂energyi : Ai × Ai → R are introduced for defining the time and energy expenditure when the action
Amilp

i,n (ti,k̃i
) is taken right after the estimated state resulting from the action Amilp

i,m(ti,k̃i
). Consequently,

the pairwise transitional values of relative time, energy, and MCDM time utility can be represented by
the square matrices T trans

i , Etrans
i and Tmcdm

i , constructed as follows:

T trans
i,m,n = δ̂timei (Amilp

i,m(ti,k̃i
), Amilp

i,n (ti,k̃i
)) (3.57)

Etrans
i,m,n = δ̂energyi (Amilp

i,m(ti,k̃i
), Amilp

i,n (ti,k̃i
)) (3.58)

Tmcdm
i,m,n = 1−min

(
1,

δ̂timei (Amilp
i,m(ti,k̃i

), Amilp
i,n (ti,k̃i

))− δtminn

δtmaxn − δtminn

)
(3.59)

where the normalization values δtmaxn and δtminn are considered as the maximum and minimum of the
time transitions from all considered actions to the action n, respectively. This is done to correctly rate
the sequential times spent on consecutive action transitions, where consistently high utility selections
generate more utility when their consecutive timings are also low. Note that the subscripts m,n ∈
{1, . . . , |Amilp

i (tk)|} iterate over the candidate actions. To maintain continuity from the current state of
the robot, the candidate action set is padded from the starting action to include an idle action, enabling
transitions from the current state.

i
robot
iterator m,n

action set
iterators j

central agent
schedule iterator

Amilp
i (tk)

selected actions
from the first stage

at the input
umilp
i (tk)

utility of selected
actions from the frst
stage at the input

Hpred
i

maximum number
of selected
candidates

T trans
i,m,n

transition time of
taking action n
after action m

Etrans
i,m,n

energy loss of
taking action n
after action m

Tmcdm
i,m,n

MCDM time utility
of taking action n
after action m

Πmilp
i (tk)

tuple containing
the decision
variables

Xi,m,n

binary decision variable
for transitioning from
action m to action n

Vi,m

binary decision
variable for

selecting action m

Ti,m

continuous decision
variable for the
elapsed time on
selecting action m

Ei,m

continuous decision
variable for the

remaining energy on
selecting action m

Z
charge
i,m,j

binary decision
variable denoting

safe return to central
agent schedule j

on selecting action m

Ui,m

continuous decision
variable for the
utility gained by

action m

Uselect
i,m

continuous decision
variable for the
utility gained by

selecting action m

πa
i (tk)

output schedule
of actions

Table 3.4: Summary of notations included in the second stage of the local robot controllers.

All decision variables for the MILP task allocation problem within a single set are represented by
the following tuple:

Πmilp
i (ti,k̃i

) = (Xi, Vi, Ti, Ei, Ui, Z
charge
i , U select

i) (3.60)

where Xi is a square matrix denoting the binary decision variables for selecting the transition from the
candidate m to the candidate n, Vi is the vector of binary decision variables denoting the selection of
the candidate m. For the state represented by each candidate action, Ti is the vector of continuous

3.2. Control Architecture 48

decision variables denoting the normalized elapsed time, Ei is the vector of continuous decision vari-
ables denoting the remaining energy, Ui is the vector of continuous decision variables denoting the
utility obtained by including the corresponding candidate at its elapsed time, and U select

i is the vector of
continuous decision variables denoting the utility of the selected actions supplied by the values in Vi.
Finally, the binary decision variables encoding the safe return feasibility of each action are encoded
within the |Apred

i (ti,k̃i
)| × |πc(ti,k̃i

)| matrix Zcharge
i . The summary of notation in the formulation of the

local controller second stage is provided in Table ’3.4.

Traversal Constraints

Since the initial condition of the robot is encoded in the first candidate, a valid sequence of actions
must always include it as the first element. Additionally, each selection must be unique; therefore, there
can not be any loops encoded in the transition matrix Xi. While the order of selection matters for the
calculation of Ei and Ti values, for the utility-related variables, the vector Vi becomes relevant to acti-
vate only the selected candidates. The traversal constraints maintaining this behavior are formulated
as follows:

Traversal constraints of the local controller second stage, ∀m,n = {1, . . . , |Apred
i (ti,k̃i

)|}

• At most Hpred
i + 1 candidates must be selected.∑

m

Vi,m ≤ Hpred
i + 1 (3.61)

• The total number of transitionsmust be equal to the number of transitions between selected
candidates. ∑

m

Vi,m −
∑
m

∑
n

Xi,m,n = 1 (3.62)

• Candidate 1 must have exactly one outgoing transition.∑
n

Xi,1,n = 1 (3.63)

• Candidate 1 must have no incoming transitions.∑
m

Xi,m,1 = 0 (3.64)

• No self-transitions can occur.
Xi,m,m = 0 (3.65)

• Allow a transition Xi,m,n if only both candidates m and n are selected.

Xi,m,n ≤ Vi,m ∧Xi,m,n ≤ Vi,n (3.66)

• The candidate n can not be selected if there is no incoming transition to it.∑
m>1

Xi,m,n = Vi,n (3.67)

• If there is an outgoing transition from candidate m, the candidate must be selected.∑
n

Xi,m,n ≤ Vi,m (3.68)

3.2. Control Architecture 49

Safe Return Constraints

The safe return constraints must be accounted for to further restrict the space of feasible action
sequences regarding the formulation of the system described in this thesis. To that end, first, the
bookkeeping of the elapsed time and energy values Ei and Ti defined by the selection and ordering
encoded byXi and Yi needs to be performed. For establishing correctness, the initial conditions Ti,1 =

ti,k̃i
and Ei,1 = ϵi(ti,k̃i

) are set at the start of the sequence. Then, the safe return constraints Zcharge
i,m,j

denoting whether the candidatem can feasibly meet the central agent waypoint j can be determined by
comparing the corresponding values inEi and Ti to the time and energy deadlines of each waypoint. To
establish this condition as a hard constraint, the selection of infeasible candidates needs to be blocked.
The set of constraints that ensures all these conditions is formulated as follows:

Safe return constraints of the local controller second stage, ∀m,n = {1, . . . , |Apred
i (ti,k̃i

)|} and
∀j ∈ {1, . . . , |πc(ti,k̃i

)|}

• Elapsed time along the set of selected actions must be sequential.

Xi,m,n = 1 ⇒ Ti,n − Ti,m = T trans
i,m,n (3.69)

• Remaining energy along the set of selected actions must be sequential.

Xi,m,n = 1 ⇒ Ei,m − Ei,n = Etrans
i,m,n (3.70)

• If the time deadline for the central agent waypoint j is not met by the actionm, then Zcharge
i,m,j

must be zero.
Ti,m − tchargei,j (Amilp

i,m(ti,k̃i
)) ≤M time(1− Zcharge

i,m,j) (3.71)

• If the energy requirement for the central agent waypoint j is not met by the action m, then
Zcharge
i,m,j must be zero.

ϵchargei,j (Amilp
i,m(ti,k̃i

))− Ei,m ≤Menergy(1− Zcharge
i,m,j) (3.72)

• If none of the central agent waypoints can be feasibly reached by the action m, it can not
be selected. ∑

j

Zcharge
i,m,j = 0 ⇒ Vi,m = 0 (3.73)

Although the Constraints (3.68) and (3.69) are written as indicator constraints, for generalized MILP
solvers, the conversion to a big-M representation is straightforward. In this thesis, indicator constraints
are provided wherever appropriate for conciseness. Moreover, a key observation in this formulation
is that since utilities are always positive, the maximization of the cost function will always attempt to
select as many actions as possible. By Constraint (3.73), at least one safe return constraint pair will be
attempted to be satisfied, further steering the optimizer towards feasible regions.

Utility Constraints

The final component of the optimization framework is the linearization of theMCDM formula provided
in Equation (3.33), contained by the variables in the utility vector Ui. Assuming that the time component
of the utility function does not affect the individual utility of other criteria, the objective function can be
separated into dependent (time) and independent (aggregation of the remaining criteria) components.
As discussed, this stage separates the criteria related to the candidate actions, calculated similarly to
Equation (3.27), but without including the timing meta-task in the utility calculation, which are extracted
in the previous stage as umilp

i,n (ti,k̃i
). Then, let the feature set F dom

n denote the dominating features in
the MCDM calculation of the utility value for the candidate n. The criteria for determining which fea-

3.2. Control Architecture 50

tures should be included depend on the use case; however, including the features corresponding to the
values above the median of the corresponding action utility vector (as introduced in Equation (3.29)) is
proposed for this thesis. Accordingly, the reduced fuzzy measures for linearizing the MCDM problem
are denoted by µn,1 = µ(F time), µn,2 = µ(F dom

n), and µn,3 = µ(F dom
n ∪ F time). This decomposition cre-

ates a utility function with two criteria; therefore, the necessary sorting operation can be represented by
a conditional statement. Then, the calculated sequential utilities within Ui are masked by the selection
denoted by Vi within the vector U select

i . The constraints to establish this formulation are given as follows:

Utility constraints of the local controller second stage, ∀m,n = {1, . . . , |Apred
i (ti,k̃i

)|}

• If the MCDM value related to the elapsed normalized time aggregation is larger than the
time-independent utility, linearize the discrete Choquet integral accordingly.∑

m

Xi,m,nT
mcdm
i,m,n ≥ umilp

i,n (ti,k̃i
) ⇒

Ui,n = µn,1 ·

(∑
m

Xi
m,nT

mcdm, i
m,n − umilp

i,n (ti,k̃i
)

)
+ µn,3 · umilp

i,n (ti,k̃i
) (3.74)

• If the MCDM value related to the elapsed normalized time aggregation is smaller than the
time-independent utility, linearize the discrete Choquet integral accordingly.∑

m

Xi,m,nT
mcdm
i,m,n ≤ umilp

i,n (ti,k̃i
) ⇒

Ui,n = µn,2 ·

(
umilp
i,n (ti,k̃i

)−
∑
m

Xi,m,nT
mcdm
i,m,n

)
+ µn,3 ·

∑
m

Xi,m,nT
mcdm
i,m,n (3.75)

• If the candidate action m is not selected, then it can not contribute to the total utility.

Vi,m = 0 ⇒ U select
i,m = 0 (3.76)

• If the candidate action m is selected, then it contributes to the total utility.

Vi,m = 1 ⇒ U select
i,m = Ui,m (3.77)

Optimization Problem

Optimization problem defined for the second stage of the local controllers.

argmax
Πmilp

i (ti,k̃i
)

|Amilp
i (ti,k̃i

)|∑
m=1

U select
i,m (3.78a)

s.t.

1. Traversal constraints: (3.61)(3.62)(3.63)(3.64)(3.65)(3.66)(3.67)(3.68) (3.78b)
2. Safe return constraints: (3.69)(3.70)(3.71)(3.72)(3.73) (3.78c)
3. Utility constraints: (3.76)(3.77)(3.74)(3.75) (3.78d)

∀m,n ∈ {1, . . . , |Amilp
i (ti,k̃i

)|}, ∀j ∈ {1, . . . , |πc(tk)|}

3.2. Control Architecture 51

The complete optimization problem for finding the optimal ordering of actions within the prediction
horizon for the second-stage MILP controller of the robot i, with all formulated constraints, is provided
in the Problem (3.44). Solving the combinatorial MILP formulation given in Equation (3.78a) exactly
could be infeasible in practice since the solution space is factorial by the number of considered actions
|Amilp

i (ti,k̃i
)| in the worst case. To address this issue, the proposed approach is embedded in a heuristic

improvement algorithm that employs a large neighborhood search (LNS). The rationale behind this
approach is to produce an initial incumbent solution from the full problem and then iteratively attempt
to improve it by fixing a portion of the candidate selections, allowing the remaining variables to be
optimized as a smaller problem using the same model. If a better solution is found, then the initial
incumbent solution is updated accordingly. The LNS process is applied for a number of iterations
or until a maximum stall value is reached. With this, the final proposed algorithm for the local robot
controllers is as follows:

Algorithm 1: Local robot control optimization using MILP with LNS
1: Generate an incumbent solution πa*

i (ti,k̃i
) by partially optimizing the model in Equation (3.78a)

2: if Optimal solution found then

3: return

4: end if

5: Umilp*
i ← Final utility of each candidate encoded by the ordering in πa*

i (ti,k̃i
)

6: niter ← 1

7: nstall ← 0

8: while niter ≤ N iter and nstall < N stall do

9: xbest ← Select randomly nbest candidates using Umilp*
i as a probability distribution

10: for j = 1 to nbest do

11: Add the constraint Vi,xbest = V *
i,xbest to the original problem

12: end for

13: πnew*
i (ti,k̃i

)← Solve the smaller MILP problem in Equation (3.78a) with the added constraints

14: Unew*
i ← Final utility of each candidate encoded by the ordering in πnew*

i (ti,k̃i
)

15: if
∑

m Unew*
i,m >

∑
m Umilp*

i,m then

16: πmilp*
i (ti,k̃i

)← πnew*
i (ti,k̃i

)

17: Umilp*
i ← Unew*

i

18: nstall ← 0

19: else

20: nstall ← nstall + 1

21: end if

22: niter ← niter + 1

23: Reset constraints for the next iteration

24: end while

3.2. Control Architecture 52

3.2.2. Global Coordination Controller
The overall optimization problem defined in Equation (3.35) is locally addressed by the individual robot
controllers, while the global optimality still needs to be accounted for due to the potential conflicts
in robot behaviors. A key observation in the problem formulation is that the robots can individually
contribute to the utility at a given time. Additionally, increasing the number of tasks attempted through
collective actions will generate more utility than multiple robots attempting the same tasks in isolation.
Furthermore, local controllers are incentivized to select actions that reduce the total time while also
yielding more utility, as assessed by the robot’s own predicted performance in undertaking the related
tasks. When multiple robots are present, it may be more beneficial to assign the same task set per
action to a more capable robot, provided they also minimize time to a similar extent. As a result, the two
components of global optimality are highlighted as solving the conflicts between unique robot actions
and ensuring coordination regarding robot abilities. To contextualize, when two actions are conflicting,
at most only one of them must be performed, whereas coordination implies that the best allocation of
the scheduled actions must be ensured. Ideally, coordination is satisfied through resolving all conflicts
optimally. However, the formulation of this thesis supports modeling any amount and type of action-task
pairings selected within a prediction horizon, thus forcing the local controllers to select locally optimal
but globally suboptimal actions. This sub-optimality can be improved by incorporating the decisions of
other robots into the upper controller hierarchy.

In this section, a hierarchical global coordination controller is designed to compare the local opti-
mization outputs of coordinating robot schedules. Thus, at the first stage of global coordination control,
the robots that meet a certain criterion for coordination are identified. Then, the scheduled actions
based on the previous prediction across individual horizons are combined into a single pool of actions
that can be distributed to the set of coordinating robots. Since the proposed control architecture is
hierarchical and the global controller behaves as an overseer from the perspective of the SaR mission,
the results of the local controllers are used directly instead of repeating the generation of entire feasible
action sets at this level. The results from the local stage are assumed to be already optimal, and their
utilities can be viewed as approximately individual from each other. With this remark, an extended
version of the optimization problem employed in the second stage of the local controllers is introduced
to reassign the best tasks through the combined pool of actions at the final stage of the global coor-
dination controller. The entire process is summarized in Figure 3.7, where the summary of notations
included in the section is given in Table 3.5.

Figure 3.7: Diagram of the proposed global coordination controller.

3.2. Control Architecture 53

i
robot
iterator m,n

combined
action set
iterators

I initi

index of the initial
conditions of the robots

on the combined action set

ϕcoord
coordination indicator
between two robots ϕconflict

conflict indicator
between two robots Icoord(tk)

index set
of coordinating

robots

Acoord
i (tk)

combined action set of
current robot schedules Ocoord

i (tk)
combined observation
set corresponding of

current robot schedules
ucoord
i (tk)

utility vector for the
combined action set

Πcoord(tk)
tuple containing
the decision
variables

T coord
i,m,n

transition time of
robot i taking

action m after action n
Ecoord

i,m,n

energy loss of
robot i taking

action m after action n

Xi,m,n

binary decision
variable for robot i
transitioning from

action m to action n

Ti,m

continuous decision
variable for elapsed time

of robot i on
selecting action m

Ei,m

continuous decision
variable for remaining
energy of robot i

on selecting action m

Vi,m

binary decision
variable for robot i
selecting action m

Ui,m

continuous decision
variable for utility
gained by robot i
on action m

Uselect
i,m

continuous decision
variable for utility
gained by robot i
selecting action m

Table 3.5: Summary of notations included in the global coordination controller.

Combining Coordinating Robot Schedules

Assume that a function ϕcoord : Si × Sj → {0, 1} determines if two given robots such that i ̸= j and
i, j ∈ {1, . . . , N robots} need to coordinate in their current state. This coordination indicator may con-
sider the predicted tasks, robot types, or robot distances in practice to determine which robots are
evaluated together within the global controller. Let πa

i (tk) be the most recently optimized schedule
on the prediction horizon of the robot i at global time tk. Then, assume that there exists a function
ϕconflict : Ai × Aj → {0, 1} to determine if two actions from different robots are in conflict. The imple-
mentation of this function may be decided upon considering the overlapping observational features of
these actions or by setting a distance measure between those that attempt similar tasks. The local con-
trollers are assumed to output actions as independently as possible from each other since the overall
utility yield is expected to be higher compared to actions that create redundancy. Furthermore, with an
admissible heuristic chosen for conflict detection, removing all conflicts from the robot schedule should
increase the independence between different robot actions. Although a combination of scheduled way-
points does not directly alter the action utilities, the timings between them change, considering some
actions are essentially skipped if not selected. These remarks naturally lead to an extension of the
MILP implementation proposed for the local controllers to generate a global utility with multiple robots.
The search space with multiple robots for the same problem would become intractable rather quickly;
therefore, the outputs of the local controllers are used as the actions to be allocated to each robot. The
combined set of actions of all robot schedules that are selected for coordination is given as follows:

Acoord(tk) =
⋃

i∈Icoord(tk)

(αidle, vri(tk)) ∪ πa
i (tk) (3.79)

Where Icoord(tk) is the set of all robot indices that are flagged for coordination. An idle action is added at
the beginning of each ordered set that is concatenated to denote the starting point of all robots. Since
all actions in Acoord(tk) are evaluated jointly by the global coordination controller at synchronized global
time tk, each robot i denoted in Icoord(tk) must independently compute its predicted marginal utility for
each action in this shared set. Let Ocoord

i (tk) denote the predicted observation set for the robot i when
hypothetically performing each action am ∈ Acoord(tk), evaluated from its own state si(tk), similar to
the first stage of the local controllers. A similar scheme for utility estimation, without time dependency,
is employed in this stage, similar to the first stage of the local controllers.

ucoord
i,m (tk) = ûi(si(tk), am), m ∈ {1, . . . , Acoord(tk)} (3.80)

3.2. Control Architecture 54

Themarginal utility computations per observation are unnecessary in this case, as the pooled action set
is already locally optimal based on the outputs of the local controllers; therefore, correcting for overlap-
ping observations is redundant in terms of approximation quality. If there are significantly overlapping
actions in terms of their observations, then it can be said that they are conflicting, therefore their selec-
tion can be regarded as mutually exclusive instead of allowing the assignment of both within the robotic
team. Finally, to denote the starting index of each robot within the vector Acoord(tk), the indicator set
I init is constructed, which I initi holds the index of the idle action for the robot i within the action vector.

Design of the Extended Hierarchical MILP Task Allocation

The construction of the optimization model for the global coordination controller closely follows theMILP
formulation proposed for the local controllers, where the pool of actions Acoord(tk) needs to be allocated
to each participating robot. Similarly, each robot operates within its transition matrices and selection
vectors, with the addition of encoding conflicts and one-to-one assignment of actions to robots. At a
higher level, it might not be feasible for all robots to perform all actions in this set. Therefore, additional
selection constraints are added to prevent impossible selections. Another key observation is that the
robots need to collaboratively track time, maintaining an elapsed time variable for each candidate.
This differs from the local controller formulation, in which timings are considered individually for each
candidate and normalized with respect to all possible one-step transitions to the corresponding actions.
The partial transitional estimation of the MCDM time utility is sufficient for a single robot in terms of its
local control, as selecting quicker actions with better utility back-to-back will yield a solution close to the
Pareto frontier, denoted by the total utility and elapsed time of all selected actions. For multiple robots,
this is insufficient, as while one robot is busy performing an action, the other robot is free to choose
any of the remaining actions, and their timings are not additive. To that end, the MCDM time transitions
and regular time transitions are combined into a single matrix for all robots, formulated as follows:

T coord
i,m,n = δ̂timei (Acoord

m (tk), A
coord
n (tk))/δt

max(tk) (3.81)

Ecoord
i,m,n = δ̂energyi (Acoord

m (tk), A
coord
n (tk)) (3.82)

Where δtmax(tk) is selected as at least the maximum difference between the first and last accumulated
action execution times on the schedule for all robots. If this value is increased, the robots are allowed to
undertake more actions. However, the elapsed time utilities within the MCDM formulation may fail since
the difference between time-intensive and efficient selections becomes intractable if the normalization
constant is too large. Conversely, if the time normalization is too small, some candidates may not be
selected because the elapsed time may exceed the upper bound. Let the combination of all decision
variables per robot i be expressed by:

Πcoord
i (tk) = (Xi, Vi, Ti, Ei, Ui, U

select
i) (3.83)

where Xi is a square matrix denoting the binary decision variables for selecting the transition of the
robot i from the candidate m to the candidate n, Vi is the vector of binary decision variables denoting
the selection of the candidatem for the robot i. For the state represented by each candidate action, Ti
is the vector of continuous decision variables denoting the normalized elapsed time of the robot i, Ei is
the vector of continuous decision variables denoting the remaining energy of the robot i, Ui is the vector
of continuous decision variables denoting the utility obtained by including the corresponding candidate
at its elapsed time of the robot i, and U select

i is the vector of continuous decision variables denoting the
utility of the selected actions supplied by the values in Vi of the robot i. Safe return constraints are
expressed in a simplified manner for global coordination, with details assigned to their corresponding
sections in the MILP optimization constraint presentation.

Traversal Constraints

Similar to the local robot formulations, the feasible traversal within the environment, as actions are
sequentially scheduled, needs to be established by the optimization constraints. The difference in the
global case is that the action pool is shared by all robots; therefore, the encoding of their selection Vi and
transitionsXi is kept separately for each robot. Additionally, the robots are allowed to select any number

3.2. Control Architecture 55

of candidates, rather than enforcing a horizon similar to the local controllers. For individual robots, the
same rules apply as in the local case. For the entire cooperating robotic team, it is essential to set
constraints by specifying which candidate indices correspond to the starting points of each robot, as
indicated by the values within the ordered set I init. The traversal constraints for the global coordination
controller can be summarized as:

Traversal constraints of the global coordination controller, ∀i ∈ Icoord(tk), ∀m,n =
{1, . . . , |Acoord(tk)|}

• The total number of transitionsmust be equal to the number of transitions between selected
candidates per robot. ∑

m

Vi,m −
∑
m

∑
n

Xi,m,n = 1 (3.84)

• Starting candidates for each robot must have no incoming transitions.∑
i

∑
m

Xi,m,I initi
= 0 (3.85)

• No self-transitions can occur for any robot.∑
i

Xi,m,m = 0 (3.86)

• Allow a transitionXi,m,n if only both candidatesm and n are selected for the corresponding
robot.

Xi,m,n ≤ Vi,m ∧Xi,m,n ≤ Vi,n (3.87)

• The candidate n can not be selected if there is no incoming transition to the corresponding
robot. ∑

m

Xi,m,n = Vi,n, ∀n /∈ I init (3.88)

• If there is an outgoing transition from candidate m, the candidate must be selected for the
corresponding robot. ∑

n

Xi,m,n ≤ Vi,m (3.89)

Conflict Resolution Constraints

Conflict resolution constraints of the global coordination controller, ∀i ∈ Icoord(tk), ∀m,n =
{1, . . . , |Acoord(tk)|}

• If the candidates m and n are conflicting, at most only one robot may schedule it across
the team of cooperating robots.

ϕconflict
(
Acoord

m (tk), A
coord
n (tk)

)
= 1 ⇒

∑
i

Vi,m +
∑
i

Vi,n ≤ 1 (3.90)

• Each candidate can only be selected at most once.∑
i

Vi,m ≤ 1, ∀m (3.91)

As discussed, since a linearization step similar to the first stage of the local controllers are not

3.2. Control Architecture 56

employed here, due to the selected action pool being locally optimal for the corresponding robots, to
prevent redundancy in robot task allocations, conflicting actions need to be disabled from being selected
at the same time at the team level. In this thesis, exceeding a measure of overlapping observations
constitutes conflicts; however, additional criteria can be implemented in practice, such as semantical
closeness of the task definitions and spatial proximity. Furthermore, it needs to be established that
each candidate may only be selected at most once between robots, since the traversal constraints
only encode individual feasibility of candidate schedules. The expressions establishing the conflict
resolution are provided in Constraints (3.90) and (3.91).

Safe Return Constraints

The continuous decision variables Ti,m ∈ [0, 1]R for each candidate per robot are used for both the
MCDM calculations and the tracking of total elapsed time. The energy Ei,m ∈ R and the elapsed time
Ti,m variables are constrained similarly to the local controllers. To establish the safe return constraints,
at this level of the controller hierarchy, only the last element is checked, rather than considering the
entire schedule of the central agent. This eliminates the need for introducing additional decision vari-
ables. Not including the intermediary points in the central agent’s schedule may result in some actions
being infeasible, even though they were selected by the local controller of the same robot. However, if
such a robot cannot find any feasible actions due to this simplification, it would still need to recalculate
a new schedule without considering the globally allocated tasks or any other actions that may conflict
with them. Therefore, it is likely that the discarded actions can be selected again during that phase.
With this formulation, the safe return constraints for the global controller are expressed by the follow-
ing, where tchargei,Hc(tk)

(Acoord
m (tk)) and ϵchargei,Hc(tk)

(Acoord
m (tk)) denote the robot-specific deadline and minimum

energy values for reaching the last element of the central agent schedule when the action m is taken:

Simplified safe return constraints of the global coordination controller, ∀i ∈ Icoord(tk), ∀m,n =
{1, . . . , |Acoord(tk)|}

• Normalized elapsed time along the set of selected actions for each robot must be sequen-
tial.

Xi,m,n = 1 ⇒ Ti,n − Ti,m = T coord
i,m,n (3.92)

• The remaining energy along the set of selected actions for each robot must be sequential.

Xi,m,n = 1 ⇒ Ei,m − Ei,n = Ecoord
i,m,n (3.93)

• If the candidatem is selected for the robot i, then it must be able to reach the final waypoint
of the central agent in time.

Vi,m = 1 ⇒ δtmax(tk) · Ti,m ≤ tchargei,Hc(tk)
(Acoord

m (tk)) (3.94)

• If the candidatem is selected for the robot i, then it must be able to reach the final waypoint
with sufficient energy.

Vi,m = 1 ⇒ Ei,m ≥ ϵchargei,Hc(tk)
(Acoord

m (tk)) (3.95)

Utility Constraints

The utility calculation of each selected candidate is the same as that of the local controllers, with
the MCDM times replaced with the elapsed times. Each robot keeps track of its continuous utilities
per candidate action via the decision variables Ui,m. Their calculation involves the linearization of the
discrete Choquet integral for two variables, similarly to the local controllers, where µm,1 = µ(F time),
µm,2 = µ(F dom

m), and µm,3 = µ(F dom
m ∪ F time) are defined as the weights of the linearized MCDM

3.2. Control Architecture 57

formulations within each action corresponding to ucoord
i,m (tk). Thus, the MCDM utilities with respect to

elapsed time are generated by the constraints as follow, while maintaining the filtering of the selected
utilities for the inclusion in the cost function calculation:

Utility constraints of the global coordination controller, ∀i ∈ Icoord(tk), ∀m = {1, . . . , |Acoord(tk)|}

• If the MCDM value related to the elapsed normalized time aggregation is larger than the
time-independent utility, linearize the discrete Choquet integral accordingly for robot i.

1− Ti,m ≥ ucoord
i,m (tk) ⇒ Ui,m = µm,1 ·

(
1− Ti,m − ucoord

i,m (tk)
)
+ µm,3 · ucoord

i,m (tk) (3.96)

• If the MCDM value related to the elapsed normalized time aggregation is smaller than the
time-independent utility, linearize the discrete Choquet integral accordingly for robot i.

1− Ti,m ≤ ucoord
i,m (tk) ⇒ Ui,m = µm,2 ·

(
ucoord
i,m (tk)− 1 + Ti,m

)
+ µm,3 · (1− Ti,m) (3.97)

• If the candidate actionm is not selected by any robot, then it can not contribute to the total
utility.

Vi,m = 0 ⇒ U select
i,m = 0 (3.98)

• If the candidate action m is selected by a robot, then it contributes to the total utility.

Vi,m = 1 ⇒ U select
i,m = Ui,m (3.99)

Optimization Problem

The complete MILP optimization problem for allocating as many candidate actions as possible from
the combined pool of locally optimal results while maintaining no conflicts to maximize the sum of
MCDM utilities with respect to elapsed time is given by:

Optimization problem defined for the global coordination controller.

argmax
{Πcoord

i (tk)}i∈Icoord(tk)

∑
i∈Icoord(tk)

|Acoord(tk)|∑
m=1

U select
i,m (3.100a)

s.t.

1. Traversal constraints: (3.84)(3.85)(3.86)(3.87)(3.88)(3.89) (3.100b)
2: Conflict resolution constraints: (3.90)(3.91) (3.100c)
3. Safe return constraints: (3.92)(3.93)(3.94)(3.95) (3.100d)
4. Utility constraints: (3.96)(3.97)(3.98)(3.99) (3.100e)
∀m,n ∈ {1, . . . , |Acoord(tk)|}, ∀i ∈ Icoord(tk)

The resulting V ∗
i and X∗

i from the optimization described in Equation (3.100a) indicates which se-
lection and ordering of actions are allocated per robot schedule. It is indeed possible for some robots
to lose all of their respective schedules after this operation; therefore, they need to optimize for their
local controllers again with restricted actions to prevent conflicts, until all conflicts are resolved. This is
achieved by keeping track of a set of banned actions Aban

i (tk) per robot in case a new local optimization
becomes necessary, and removing the already allocated tasks from the global problem. Furthermore,
with each added robot to the global controller optimization, the state space increases cubically. To
combat this, only two robots are optimized at a time until all marked robots for coordination have been

3.2. Control Architecture 58

handled. The selection of which robots to optimize first depends on the use case, where it can be
hierarchical by prioritizing the same type of robots first, or it can rely on a distance measure of either
the robot locations, robot schedules, or both. Since for each iteration, at least one robot will have a
nonempty schedule, the overall global optimization framework finishes in at most N robot iterations. To
improve the convergence speed to the optimal solution, the local controller outputs are given to the
MILP solver as a warm start. Finally, since robots calculate their schedules asynchronously, the pro-
posed algorithm first preprocesses the Acoord(tk) set to contain only the relevant actions for the current
task set T (tk). The complete algorithm for the global coordination is thereby given as follows:

Algorithm 2: Global coordination optimization
1: Icoord(tk)← Get all robots that are marked for coordination

2: Construct the set of banned actions per robot Aban
i (tk)← ∅

3: while There is at least one pair of robots that needs coordination do

4: Acoord(tk)← Combine all scheduled actions for the selected robots

5: Acoord(tk), U
coord
i (tk)← preprocess

(
Acoord(tk), T (tk), Icoord(tk)

)
6: Detect conflicts using the Equation (3.90)

7: Add the constraint Vi,m = 0 if the action m is not feasible for the robot i

8: πcoord*
i (tk)← Perform the optimization described in Equation (3.100a), using the local controller

outputs as a warm-start.

9: πa
i (tk)← Update schedules by keeping πa

i,m(tk) such that V ∗
i,m = 1 with the order denoted in X∗

i,m

10: if All |πa
i (tk)| > 0 then

11: continue

12: end if

13: for Each robot with |πa
i (tk)| = 0 do

14: Update the banned set of actions Aban
i (tk)with the actions conflicting with the old schedule

15: Perform local optimization without the actions in Aban
i (tk)

16: end for

17: Discard one robot from the coordination set Icoord

18: Update the banned set of actions Aban
i (tk) for all remaining robots with the actions fixed for the

removed robot.

19: end while

3.2. Control Architecture 59

3.2.3. Central Agent Controller
The central agent is designed to be the coordination and charging hub of the entire robotic system. In
practice, it may correspond to a team of humans as mission control, a semi-autonomous structure with
teleoperated controls, or another fully autonomous robot similar to the ones formulated thus far, with
simpler control requirements. In this thesis, a controller for the last case is presented to maintain the
complete autonomy of the entire system and to provide a framework of the related design consider-
ations. As it was briefly introduced previously, the schedule of the central agent along a scheduling
horizon Hc(tk) is denoted by:

πc(tk) =
〈
(tcj , v

c
j) | tcj ≥ tk, t

c
1 = tk

〉
j∈{1,...,Hc(tk)}

(3.101)

where tcj+1 denotes the time at which the central agent leaves the corresponding vertex vcj , denoting a
time limit for meeting with the robots. The controller needs to ensure that all robots have at least one
way of reaching to it without violating constraints along the new central agent schedule. Furthermore,
it can be said that if this assumption holds, it must already hold for the current central agent vertex
vc(tk), therefore the schedule generation can be separated into two phases consisting of finding the
vertices first and then allocating times per vertex. If the first phase generates vertices that some robot
may not feasibly reach at any time, this formulation guarantees that at least the current vertex is always
reachable.

The first phase of the central agent controller starts with extracting the set of valid vertices V c(tk)
from the current global map. A valid vertex must be reachable by the central agent. Additionally, it
must be within N range ∈ R≥0 range from at least one task in the current task set T (tk). Given a spatial
distance measure between vertices d(v1, v2) ∈ R≥0, the set V c(tk) is formulated as:

V c(tk) = {v(tk) ∈ Mc(tk) | d(v(tk), vtask(tk)) ≤ N range, ∃ vtask(tk) ∈ T (tk)} (3.102)

The selection of a goal vertex for path construction indirectly affects the maximum utility the robots can
gain per charging cycle. Since the utilities are coupled to the task locations, the goal vertex is defined
as the closest vertex to the weighted center of mass described by the locations of vertices related to
the current tasks. The weights wc

l ∈ [wmax, wmin]R, l ∈ {1, . . . , |T (tk)|} correspond to the normalized
reverse distances between the central agent vertex and task vertices to favor the exploitation of the
closer tasks. Then, the center of mass pcom is calculated as follows, where p(v) denotes the coordinates
of the vertex v:

pcom =

[∑
m wc

m p(V c
m(tk))∑

m wc
m

]
, m ∈ {1, . . . , |V c(tk)|} (3.103)

Then, the initial schedule πc(tk) is generated with the ordered vertices on the shortest path to the vertex
vcom of pcom from the current vertex vc(tk), where Hc(tk) number of waypoints are generated along it.

Having obtained a set of vertices that constitute πc(tk), the second phase assigns feasible times tcj
to each vertex such that all robots can still safely return to the central agent within the new schedule.
Vertices at the end of the central agent schedules are assumed to be valid indefinitely by the robot
controllers, therefore the agent controller needs to estimate the earliest possible time it can leave its
position by considering the robot schedules. Let the integer cchargei denote the schedule index within
the control horizon of each robot that corresponds to a charge action. If there are no charge actions,
then equals to the remaining control horizon within the schedule. Then, the time tc2 of which the central
agent should leave its current location is defined by:

tc2 = tk +max


cchargei∑
m=2

δtime
(
πai,m−1(tk), π

a
i,m(tk)

)
| ∀i ∈ {1, . . . , N robot}

+ δtime(vc1, v
c
2) (3.104)

where δc(vc1, vc2) ∈ R≥0 is the time it takes to traverse the consecutive vertices in the central agent
schedule. Likewise, the remaining times on the planning horizon are calculated with:

tcj+1 = tcj + δtime(vcj , v
c
j+1), ∀j ∈ {2, . . . , |πc(tk)| − 1} (3.105)

4
Case Study

The proposed controller architectures consist of a number of abstractions and parameters that require
tuning for good performance. In this chapter, first, the environmental models are designed to adhere
to the problem’s mathematical formulation. The simulation environment is set up to reflect a real-life
urban city block, with similar proportions and landscapes that would occur after a large-scale disaster.
The design and assignment of features of the environment are programmed via a custom code using
Python. The specifics of the USaR mission progression, victim modeling, physical properties of the
modeled robots, the global task set update function, sensor modeling, and the action conflict defini-
tions are provided in the Section 4.1. In Section 4.2, the methodology of benchmarking the proposed
algorithms are given, as well as the tuned control parameters of the robots. The tuning of these param-
eters are done exhaustively through various simulations. The implementation of the algorithms and
analyses in this chapter is done via MATLAB R2024b on a PC with Intel Core i7 Processor with 2.30
Ghz frequency. The GA algorithm is implemented via the native genetic algorithm implementation of
MATLAB, using custom fitness, mutation, and crossover implementations. The MILP based controllers
are implemented using Gurobi v12.0.1 on the MATLAB environment.

4.1. Simulation Setup
This section details how the specific mathematical modeling of the autonomous robotic team for SaR
missions presented in Section 3.1 are implemented for the realistic computer-based simulations in-
volved in the case study of this thesis, by specifying the mission environment, robot parameters, in-
cluded action types and behaviors, task set evolution and fuzzy system implementation within the con-
text of the proposed mission respectively.

4.1.1. Environment Implementation
The simulation setup is implemented following the same order in the mathematical formulation given in
Section 3.1. The global vertex set V consists of a 100×100 grid equidistantly sampled from a 250000m2

USaR area. The search area is assumed to be unknown and unexplored before the start of the USaR
mission. The edge set E is defined by the 8-connectivity of every vertex within its spatial neighborhood;
therefore, robots can traverse only along the compass directions with respect to the orientation of the
search area. The global feature set F consists of four categories as given in Figure 4.1. The first
feature is the elevation of each vertex called terrain, given in Figure 4.1a, where the edge function ωenv
models the Euclidean distances between the elevation of connected vertices. The other three features
are destruction rate, population density and victims given in Figures 4.1b, 4.1c, and 4.1d respectively.
The nonzero areas of destruction rate indicate the different types of structures present in the search
area, where each one locally introduces unique features and challenges to the robot team. Similarly,
the population density areas are concentrated around the buildings to establish a measurable quality
to the prioritization of the destroyed areas. Finally, the victims are placed randomly by considering the
population density values as a probability density function. Then, for each victim, the maximum time
until that victim is detectable tvictim is decided randomly between tvictim, max and tvictim, min regarding a

60

4.1. Simulation Setup 61

uniform distribution with respect to the destruction rate. This means that if the destruction is low, the
final time of detectability is more likely to be closer to the minimum time value. The measurable feature
from vertices that contain victims is the health status, which is modeled by the following function for the
victim m at time tk:

σhealthm (tk) = max
{
0, 100 + tk

−100

tvictimm

}
(4.1)

Where the victim can not be detected if the health value reaches zero at a given time.

Figure 4.1: Ground truth features of the simulation environment representing the (a) elevation, (b) destruction rate, (c)
population density, (d) randomly generated victims.

4.1.2. Action Types & Implementation
The implementation of the robots requiresmodeling the behavior of the state transition function f si (si(tk), a)
and the observation function foi (si(tk), a), for a = (α, v) ∈ Ai(tk), α ∈ Ci, and v ∈ VM(tk). To model
the behavior of the robots specifically, some distinct types of actions are provided that aim to address
the requirements of a USaR robot. Within this extended formulation, the letter ρ is used to introduce ad-
ditional notation regarding the physical modeling of the robots, wherever necessary, as a real number,
with subscripts denoting their context.

1. idle action: This action is included to allow the robots to stay idle if there are no other feasible
actions present at the time.

4.1. Simulation Setup 62

2. move action: This action takes the robot from its current vertex vri(tk) to a neighboring vertex v.
This action is only feasible if the edge connecting between these two vertices is traversable by
the robot. It is usually more practical to encode a path via the move action directly, since the main
objective of the control architecture is the task allocation. Thus, the action a = (α, v) denotes
moving to the end vertex v from the current robot vertex using the shortest graph path that exists
in the robot map Mi(tk) between them. The traversal times and energies are dependent on the
distance traveled ωenv(vri (tk), v), robot speed ρ

speed
i , and energy per meter dϵmovei :

δtimei (si(tk), (move, v)) = ωenv(vri(tk), v)/ρ
speed
i (4.2)

δenergyi (si(t
i
k), (move, v)) = dϵmovei · ωenv(vri(tk), v) (4.3)

3. map action: The mapping action is designed to get measurements from unknown areas of the
search area, corresponding to the feature set Fmap

i = {terrain, destruction, population} cor-
responding to observation of the terrain, destruction rate, and population values within the range
ρmapi . Since these features are likely to be observed by a camera or a LiDAR in a real scenario,
from a vertex v in the area, only the vertices within the direct line of sight can be measured at a
given time tk. The direct line of sight is calculated by the straight line between the target eleva-
tion and the current robot elevation, characterized by vri (tk) + ρheighti , where the sensor height is
a robot-specific parameter. The time and energy expenditure of a mapping action of a robot i is
modeled by:

δtimei (si(tk), (map, v)) = dtmapi + δtimei (si(tk), (move, v)) (4.4)
δenergyi (si(tk), (map, v)) = dϵmapi + δenergyi (si(tk), (move, v)) (4.5)

4. search action: In real-life scenarios, searching takes more time than mapping and is usually
concentrated in the vicinity of areas that have a higher victim likelihood, which depends on the
outcome of the map actions. Searching for victims are done using microphones, visual cues, heat
sensors and various other methods that usually penetrate through walls and obstructions. Thus
all vertices within ρsearchi radius can be observed by the robots, where search actions correspond
to the observation of the feature set F search

i = {victim}. The time and energy expenditure of a
victim search action of a robot i is modeled by:

δtimei (si(tk), (search, v)) = dtsearchi + δtimei (si(tk), (move, v)) (4.6)
δenergyi (si(tk), (search, v)) = dϵsearchi + δtimei (si(tk), (move, v)) (4.7)

5. charge action: Robots may return to the central agent for charging at any point, upon which
this action can be taken if and only if the robot and central agent vertices are the same at a given
time tk. This action is included to provide a framework of an autonomous system that operates
indefinitely and takes the remaining energy into account while planning the next actions. In this
case study, it is assumed that the charging takes place instantaneously, considering methods like
battery swapping are available in real life scenarios. Thus, the time and energy expenditure of
charging is as follows for all robots:

δtimei (si(tk), (charge, vc(tk))) = 0 (4.8)
δenergyi (si(tk), (charge, vc(tk))) = ϵi(tk)− 100 (4.9)

Note that, similar to the move action definition, actions can be compounded to signify multiple ac-
tions taking place back-to-back, as given in the expressions for the search and map task resource
expenditure. This formulation enables controllers to reduce the dimensionality of the allowed actions
at the prediction horizon and create a finer-grained abstraction layer, guaranteeing a relevant obser-
vation as a result of considering a compounded task. For the purposes of this thesis, therefore, only
map and search actions are considered for utility generation, while charge actions are used to satisfy
the safe return constraints. As an extension, and to make full use of the MCDM formulation proposed
in this thesis, if both search and map task are available from the same vertex v for a robot i, then the

4.1. Simulation Setup 63

compounded action a = ({search, map}, v) takes the maximum of their individual times rather than the
entire sum, as well as expending reduced energy:

δtimei (si(tk), ({search, map}, v)) = max{dtsearchi , dtmapi }+ δtimei (si(tk), (move, v)) (4.10)
δenergyi (si(tk), ({search, map}, v)) = (dϵsearchi + dϵmapi)/2 + δenergyi (si(tk), (move, v)) (4.11)

This formulation encourages multitasking in the system designed for this case study. By design, the
map update function and task set evolution are tied to the specific types of observations performed
by robots when they take the relevant actions. At time t0, the global task set and the robot maps are
empty, where the robots are placed at the same vertex as the central agent. Since the mapping actions
are required to determine where the search actions should take place, the configuration of the robot
maps Mi(tk) and the task set T (tk) reflects this requirement. The local map vertices only contain
the terrain measurements of the mapping attempts done throughout the mission. Each map action
attempts to measure the vertices in the ground truth G that fall within the mapping radius of the robot.
These vertices are all added to the local map, where each observation vertex that is not in the line
of sight, therefore unmeasured, is given a placeholder terrain value of NaN. This approach creates a
distinction between the unknown vertices that have not been attempted yet and the ones that have
been attempted from a specific vertex but have failed. The observation prediction of the vertices that
are not currently in the local map always assumes that they can be measured from all actions taken
within the measurement radius. Alternatively, if a mapping action at a given location has produced
NaN values, corresponding observations are removed from the prediction of the same action; thus, the
robots emergently seek out different lines of sight to map these vertices. Additionally, the local maps
only contain edges that are traversable by a robot, as decided by the following function:

ϕtraversablei (v1, v2) = true ⇐⇒ e(v1, v2) ∈ E ∧ |vterrain1 − vterrain2 | ≤ ρstepi (4.12)

Denoting that the edge needs to exist, and the difference in elevationmust be smaller than themaximum
step size a robot i can take. After removing infeasible edges, the connected component of the local
map that contains the current robot vertex becomes the new local map in the next time step. At the
beginning of each path planning step, the local map is updated from the global map; conversely, at the
end of each map and search action, the global map is updated directly. The global mapMc(tk) contains
all mission information, in addition to the terrain values of the local maps, including the timestamped
central agent schedule, individual robot schedules, population density, destruction rate, and victim
status. Consequently, the task sets are updated from the global map to enable condensed information
to be processed by the local robots without going through all the features of the global mission status.

4.1.3. Task Set Implementation
The global task set T (tk) starts empty, and in the context of this thesis, is updated autonomously by
the central agent. The update function Φ(T (tk), a) creates tasks that can be attempted by map and
search actions, where they can be simultaneously attached to the same task, from the current state
of the global map. Since local maps always contain the vertices where individual robots exist, the first
and only task is a mapping task at the starting location. Then, the available mapping tasks are updated
by detecting the frontier vertices of the global map. Conversely, a mapping task is completed when
the corresponding task vertex is no longer a part of the exploration frontier as a result of a robot action.
Since the map actions can be performed from anywhere in the local robot map, the robots can complete
and attempt multiple tasks with a single action. Similarly, search tasks are created on the vertices of
the global map that has a search priority index larger than a mission-specific constant, which is set to:

ρpriorityl ≥ 0.1, ∀τl(tk) ∈ T search(tk) (4.13)

Where T search(tk) ⊆ T (tk) denotes the set of all search tasks. A search task is completed and is not
spawned again if a search action takes an observation from the location of the task. Finally, the set
of allowed actions Ai(t

i
k) of a robot i at local time tk contains all vertices within ρmapi /2 proximity of

mapping tasks as map actions, and similarly, all vertices within ρsearchi /2 proximity of search tasks as
search actions on its local map. As a requirement of the controller design, it also contains charge
and idle actions, where all of the elements in Ai(tk) can be compounded by move actions to denote

4.1. Simulation Setup 64

different paths the robot can take to perform them. As a design choice, the shortest weighted path on the
local map to all action-associated vertices is generated using the compounded move tasks, constituting
the final feasible action set at a given timestep. As a final note, a search task involves tasks that
have the feature set F task = {victim}, and a mapping task involves tasks that have the feature set
F task = {terrain, destruction, population}.

The central agent is configured similarly to the robots, of which the only defined actions are move
and idle. The transitional properties are modeled as follows:

δc(vc, v) = ωenv(vc, v)/ρspeedcentral (4.14)

ϕtraversablecentral (v1, v2) = true ⇐⇒ e(v1, v2) ∈ E ∧ |vterrain1 − vterrain2 | ≤ ρstepcentral (4.15)

Specifying the coordination and conflict behaviors within the system, the function ϕcoord(r1(tk), r2(tk)) =
1 is set if the average Cartesian distance between scheduled action pairs within the control horizon is at
most 200 meters, which covers the footprints of most buildings in the case study. Given two separate
actions from robots i and j as ai ∈ Ai and aj ∈ Aj , a conflict is defined if both actions are of the
same type and the Cartesian distance between the final vertices d(vi, vj) upon taking these actions is
within half of the average radius of the corresponding observation areas. This is established to create
a spatial spread between the robots, enabling more efficient exploration of the USaR area while still
allowing simultaneous operation within close proximity, if different types of actions are taken to generate
better exploitation of the explored areas. Specifically, in terms of this case study, the conflict detection
takes the form of:

ϕconflict((map, vi)), (map, vj)) = true ⇐⇒ d(vi, vj) ≤ (ρmapi + ρmapj)/4 (4.16)

ϕconflict((search, vi), (search, vi)) = true ⇐⇒ d(vi, vj) ≤ (ρsearchi + ρsearchj)/4 (4.17)

4.1.4. Fuzzy System Implementation
The implementation of the specific membership functions follow the results presented in the work of
Hassanzadeh et al. [5] , where a fuzzy inference mechanism for human teams in USaR missions is
proposed for effective prioritization of objectives relating to the available environmental information.
Specifically, their framework is directly implemented for task evaluation, where the destruction and
population estimates are converted to a prioritization value for victim searching. Since there are five
membership functions at the output of this model, the fuzzy system for evaluating actions that runs in
parallel also has the same number of membership functions for establishing symmetrical processes.
The final output of the fuzzy system considers three membership functions for both inputs and outputs
for simplicity. Furthermore, trapezoidal membership functions are used when the underlying data is
categorical, and Gaussian functions are used when it is continuous and smooth, such as distance and
quality measures, which are estimated to be taken parametrically from sensory measurements.

As shown in Figure 3.3, each action linked to a task type is evaluated via a network of fuzzy inference
systems. The action evaluation part of this network is designed as a Mamdani Type-1 system where
the ruleset is given in Table 4.1. Actions are robot-specific; therefore, their evaluation is designed to be
related to the observational capabilities upon taking search and map actions. The fuzzy input setsBaction

m,1

Baction
m,3 include the ”Low”, ”Medium”, and ”High” membership functions to model the robot’s ability to take

that action, the quality of observation, and the quantity of observation, respectively. The capability is
defined rather vaguely, however, in the context of this case study, it represents the level of reliability of
the robot’s action compared to other actions and other robots. The quantity is the normalized number
of observations predicted to be measured upon taking the action for the predicted states in the receding
horizon control. At the same time, the quality is determined by the average Euclidean distance of the
robot’s location during the action to the locations of the predicted observations.

4.1. Simulation Setup 65

Raction
m σcap σqual σquant ρaction Raction

m σcap σqual σquant ρaction

1 Low Low Low Very Low 15 High Medium Medium High
2 Medium Low Low Very Low 16 Low High Medium Medium
3 High Low Low Low 17 Medium High Medium Medium
4 Low Medium Low Very Low 18 High High Medium High
5 Medium Medium Low Low 19 Low Low High Medium
6 High Medium Low Low 20 Medium Low High High
7 Low High Low Very Low 21 High Low High Medium
8 Medium High Low Low 22 Low Medium High Medium
9 High High Low Medium 23 Medium Medium High High
10 Low Low Medium Low 24 High Medium High Very High
11 Medium Low Medium Medium 25 Low High High High
12 High Low Medium Medium 26 Medium High High Very High
13 Low Medium Medium Low 27 High High High Very High
14 Medium Medium Medium Medium

Table 4.1: Rule base of the action evaluation system with inputs σcap for the action capability of the robot, σqual for the quality
of observations, and σquant the quantity of observations upon the observation of the action result.

(a) (Low) (Medium) (High) membership of the action capability of
a robot.

(b) (Low) (Medium) (High) membership of the action observation
quantities.

(c) (Low) (Medium) (High) membership of the action observation
quality.

(d) (Very Low) (Low) (Medium) (High) (Very High) membership of
the action evaluation output.

Figure 4.2: Fuzzy membership functions for the inputs and outputs of the Mamdani Type-1 rule bases of the action evaluation
system.

4.1. Simulation Setup 66

Rpriority
m,(l) σpriority

(l)(dest) σpriority
(l)(pop) ρpriority(l) Rpriority

m,(l) σpriority
(l)(dest) σpriority

(l)(pop) ρpriority(l)

1 Low Very Low None 14 Very High Medium Medium
2 Medium Very Low None 15 Collapsed Medium Low
3 High Very Low None 16 Low High Low
4 Very High Very Low Low 17 Medium High Medium
5 Collapsed Very Low None 18 High High High
6 Low Low None 19 Very High High High
7 Medium Low None 20 Collapsed High Medium
8 High Low Low 21 Low Very High Medium
9 Very High Low Low 22 Medium Very High High
10 Collapsed Low None 23 High Very High High
11 Low Medium Low 24 Very High Very High Very High
12 Medium Medium Low 25 Collapsed Very High High
13 High Medium Medium

Table 4.2: Rule base of the victim search prioritization of a task τl(tk) with inputs σ
priority
(l)(dest) for the destruction rate and σ

priority
(l)(pop)

for the population density estimates in the vicinity of the task.

(a) (Low Damage) (Medium Damage) (High Damage) (Very High
Damage) (Collapsed) membership of the measured destruction level.

(b) (Very Low) (Low) (Medium) (High) (Very High) membership of the
measured population density estimate.

(c) (None) (Low) (Medium) (High) (Very High) membership of the search prioritization of a task.

Figure 4.3: Fuzzy membership functions for the inputs and outputs of the Mamdani Type-1 rule bases of the search
prioritization system.

The output set Caction
m includes ”Very Low”, ”Low”, ”Medium”, ”High”, and ”Very High” membership

functions to enable a fine-grained rule set. of which the membership function plots are given in Figure
4.2. Subsequently, the priority of tasks is calculated via another Mamdani Type-1 system to denote
the value of attempting a specific task from the perspective of the USaR mission goals independently
of the robot’s actions. For a mapping task, the only relevant criteria chosen in this case study is the
number of unknown neighbors of the task vertex in the mission map Mc(tk). Since there is only one
input and one output, a fuzzy system is not specifically modeled for mapping tasks, and their priority is
directly set to the normalized value of unexplored vertices adjacent to the task. The fuzzy model of the
searching tasks is directly inspired by the real-life USaR decision-making [5] of human teams on the
field. The environmental features measured from mapping actions are used as inputs for the task pri-

4.1. Simulation Setup 67

oritization system. The fuzzy set Bpriority
m,(search),1 models the destruction rate of a vertex with membership

functions ”Low”, ”Medium”, ”High”, ”Very High”, and ”Collapsed” and the fuzzy set Bpriority
m,(search),2 models

the estimated population density with membership functions ”Very Low”, ”Low”, ”Medium”, ”High”, and
”Very High”. The output set Cpriority

m also includes the categories ”Very Low”, ”Low”, ”Medium”, ”High”,
and ”Very High””; where the rule set and the membership functions of the task prioritization system are
given in Table 4.2 and Figure 4.3. One important aspect of this rule set is that under some conditions,
the search priority is lowered when the destruction rate increases from ”Very High” to ”Collapsed”, since
the latter category denotes a very low survival rate.

Rtask
m ρaction ρpriority f task(ρaction, ρpriority)

1 Low Low Very Low
2 Medium Low Low
3 High Low Medium
4 Low Medium Low
5 Medium Medium Medium
6 High Medium High
7 Low High Medium
8 Medium High High
9 High High Very High

Table 4.3: Rule base of the task evaluation system using the action evaluation ρaction and the task prioritization ρpriority values
to evaluate the direct utility of attempting a task through an action.

(a) (Low) (Medium) (High) membership of the action evaluation result of
the robot.

(b) (Low) (Medium) (High) membership of the task prioritization result of
the robot.

Figure 4.4: Fuzzy membership functions for the inputs and outputs of the Sugeno Type-1 rule bases of the task value
evaluation system.

The outputs of the initial fuzzy systems for task prioritization and action evaluation are fed to a
Takagi-Sugeno Type-1 fuzzy system for determining the final crisp value ν taskl (T (tk), si(tk), a) for each
affiliated task with the given input. The rule base and the input membership functions of this stage
are given in Table 4.3 and Figure 4.4. This stage is chosen to be a Takagi-Sugeno system due to its
ability to directly link outputs to functions, which suits the modularity aspect of the controller design.
The output categories of the fuzzy system in Table 4.3 correspond to the following constant values in
the context of this case study:

ν taskl (T (tk), si(tk), a) =



0 f taskm (ρactioni , ρpriorityl) = Very Low
0.25 f taskm (ρactioni , ρpriorityl) = Low
0.5 f taskm (ρactioni , ρpriorityl) = Medium
0.75 f taskm (ρactioni , ρpriorityl) = High
1 f taskm (ρactioni , ρpriorityl) = Very High

(4.18)

4.2. Experiment Setup 68

4.2. Experiment Setup
This section concludes the construction of the case study by introducing the implemented controllers to
be benchmarked against the proposed MILP-based controller, then specifying the metrics of the USaR
mission defined for the case study to determine the performance of the included controllers. Finally,
the specific mission parameters are detailed to introduce the types of experiments that are carried out
and their boundaries.

4.2.1. Implemented Controllers
The hierarchical MILP-based MPC controllers proposed in this thesis perform their optimization consid-
ering multiple layers of information available at a given time. These layers are defined by the USaR
goals of time minimization and efficient exploitation of the search area exploration, which are conflict-
ing goals. The three main components of the information processing in the proposed controllers are
selecting the actions that minimize time, maximizing the robot’s fuzzy decision-making system output,
and maximizing the actions’ MCDM output. The MCDM formulation combines the minimum time and
maximum utility of an action into a single value, incorporating a trade-off between the two. To effec-
tively analyze the behavior and performance of the proposed architecture, the following controllers are
implemented:

• GA controller: The GA controller is the direct implementation of the nonlinear MPC formulation
described in Problem (3.35), to establish a baseline for the proposed architecture. This con-
troller considers all possible feasible actions related to the selected task set at a given time and
evaluates the MCDM utilities sequentially for a candidate schedule of actions, using observation
predictions that contribute new information to the system at each prediction step. For the experi-
ment setup, the maximum iteration count is set toNgen = 200 the number of candidate schedules
in a population npop = 20, the elite count nelite = 2, the crossover ratio ρco = 0.7, and the mutation
rate ρmu = 0.2. Finally, the maximum stall generations is set to N stall = 25, after considerable
tuning of all variables through various trials. The implementation of this controller closely follows
the state-of-the-art approach for generalized OP via genetic optimization presented by Kobeaga
et al. [76], with the addition of the specific constraints presented in the methodology of this thesis.

• MILP controller: The MILP controller is the proposed solution in this thesis, which is imple-
mented as a two-stage algorithm that linearizes the MPC formulation of the robot controllers.
The MILP problem does not require any parameters to be set, but the LNS improvement frame-
work described in Algorithm 1 requires a maximum number of iterations and stall iterations, set
to N iter = 10 and N stall = 5. The initial partial solution to the incumbent problem is given a max-
imum of 10 seconds, or until the optimal solution is found before the limit is reached. Similarly,
LNS improvement solutions are each given at most 3 seconds. Finally, the number of stochastic
best action selection during LNS improvements is set to nbest = ⌈Hpred

i /2⌉. Finally, the maximum
number of overlaps for the first stage constraints Noverlap = 1 is set. The reason for not setting
this value to zero is to enable a higher fidelity of action selections due to the density of tasks in
this case study, at the expense of underestimating action utilities.

• hybrid controller: The hybrid controller employs the first stage of theMILP controller for reducing
the action space, however, uses the GA controller on the reduced action set. This controller is
included to set a bridge between the GA and MILP approaches and make a direct comparison
between them possible, since they operate under different assumptions about the action sets in
the context of this case study.

• shortest-time controller: The shortest-time controller selects the action with the shortest com-
pletion time at a given time step from the feasible action set. This controller aims to demonstrate
the effect of the mission outputs if the only consideration is minimizing the time, which is one of
the highlighted components of the proposed controllers.

• fuzzy controller: The fuzzy controller selects the action with the best aggregated fuzzy evalua-
tion as given in Equation (3.29). The fuzzy utility vector uactioni contains the utility for both search
and map tasks for the first prediction time step, where the corresponding action that has the maxi-
mum value is chosen using this vector. The fuzzy controllers do not consider the timings, and the
proposed MPC methods only consider the completion of current tasks rather than the creation

4.2. Experiment Setup 69

of new ones. A one-step implementation of the fuzzy controller is deemed suitable for compar-
ing with the shortest-time controller and the overall utility exploitation of the MCDM-based utility
generation proposed in the methodology.

• MCDM controller: The MCDM controller is similar to the fuzzy and shortest-time controllers in
the sense that it is a one-step implementation of selecting the action with the most MCDM util-
ity at a given timestep. This controller is included for direct comparison with the other one-step
implementations and to cover all three of the optimized variables within the proposed solutions.
Furthermore, it enables a better analysis of the effect of the receding-horizon control for the opti-
mization problem laid out in this thesis.

• random controller: The random controller selects a random action from the feasible action set
at each timestep, and included to establish a baseline for the results in the context of this specific
case study environment.

4.2.2. Mission Metrics
The metrics used for quantifying the performance of the robots in terms of both the controller behavior
and USaR mission goals are as follows:

• mapped area: This metric measures the direct effect of taking mapping actions. Both the total
area mapped at the end of the mission duration and the rate at which this value is reached are
relevant to the analysis of the USaR performance for this metric.

• distance covered: Since the action times are non-uniform through actions, instead of directly
measuring the time for certain predetermined milestones, the total covered distance is deemed to
be a relevant metric that makes it possible to analyze the efficiency in robot actions. The primary
function of the center of mass controller is to minimize the distances that robots need to travel for
charging, thereby reducing the time spent idling.

• detected victims: The number and health status of the detected victims is the ultimate metric
of the USaR goals laid out in this thesis. For all scenarios, there are 100 victims, some of whom
may be unreachable or undetectable due to the randomness of their placement. Still, similar to
the mapped area metric, the total number at the end of the USaR mission, as well as how fast
victims are found and their overall health status, define the success of a controller.

• task completion time: Tasks are spawned emergently from the mission state, where multiple
can be completed with one action. How quickly good-quality tasks are removed from the pool of
available tasks at each control step, inadvertently, should also affect the other metrics, aiming to
provide a better insight into the information exploitation that the controllers can offer within the
case study. Since tasks are spawned at different times, the duration for which each task stays
alive after spawning constitutes this metric.

• utility per control step: The local controllers aim to maximize the MCDM utility for the entirety
of the mission. The direct outputs of mapped area, covered distance, and victim detection cover
the USaR mission goals. However, assessing the correlation between the utilities per control
step and the USaR outcomes is equally important to conclude if the controller design works as
intended. The utilities are calculated for both the fuzzy value of an action, which is the value
without time optimization, and for the MCDM value that combines the timing and task completion
resulting from the action into a single value.

• runtime: The final metric is the runtime of the algorithms. The described optimization prob-
lem has a factorial search space by the number of estimated actions and the prediction horizon.
While GA offers a generalized solution, the MILP algorithm can efficiently branch and bound this
search space within the given time budget. Since there is no time budget enforced on the GA,
and a reasonable number of candidate evaluations are provided, the runtime difference between
these methods in combination with the other performance metrics gives a complete picture of the
performance for the proposed MILP architecture.

4.2. Experiment Setup 70

4.2.3. Mission Parameters
All controllers in the experiments consider the closest N tasks = 200 tasks to a robot’s current position
at each timestep to establish locality, where the related feasible action set may vary in size. The
selection of the considered task set is set to a high number since the task definitions in the case study
are observed to be considerably dense. Although the optimization problem becomes more challenging
with the current formulation andmay not be the best approach for a real-life implementation, it highlights
the fidelity and performance of the proposed solutions as a trade-off. The central agent is considered
under two scenarios. The first scenario involves a static central agent that remains in its initial location
throughout the mission. The second scenario includes a dynamic central agent where the center of
mass controller is defined in Section 3.2.3. This controller aims to steer the center of the mission
toward the midpoint of all available tasks, helping to escape local minima and redundant actions due to
over-exploitation of the USaR search area. Since all robots must return to charge at some point, there
may be a scenario where the central agent remains in equilibrium and all robots are currently docked;
therefore, the task state does not change to alter this equilibrium, effectively halting the entire system.
To avoid this situation, N range is set to a suitable value, where the central agent must select a goal point
within this range for any attemptable task when a new schedule is made. The size of the central agent
schedule at the time of construction is defined by the constant Hc.

mission parameters MCDM weights
tend 10:00 (hh:mm) µt 1

N victim 100 µm 3

tvictim,max 10:00 (hh:mm) µs 7

tvictim,min 05:00 (hh:mm) µmt 6

N range (central agent) 50 (m) µst 12

ρspeedcentral 0.5 (m/s) µms 13

ρstepcentral 0.5 (m) µmst 13

Hc 5

Table 4.4: Mission parameters of the case study.

The last mission-related parameters to be discussed are the MCDM fuzzy measures µ as intro-
duced in the Equation (3.33). This case study considers two actions, as well as the timing meta-action;
therefore, there are seven weights to be set in total, for each value in the power set of these three cat-
egories. In practice, the elements within each set of this power set denote a mutual optimization of the
involved variables. For example, the fuzzy measure for the set that contains all three action categories
quantifies the importance of optimizing all three simultaneously. For the USaR mission defined in this
case study, finding victims as fast as possible is the main objective, while mapping the area efficiently
is the secondary objective. However, due to the structure of the task generation system, spawning
new search tasks depends entirely on good selections of which mapping tasks should be attempted
first. By using the initial letters of all categories to denote the corresponding power set, the single cat-
egory weights are designed to follow µt < µm < µs. When multiple goals are possible to be optimized
at the same time, the relationship stays the same, however should be substantially higher than their
single category counterparts, as µm < µmt and µs < µst. If a very good quality action is possible which
optimizes for both task types at the expense of time minimization, the candidate is worth exploring,
therefore µ(.) < µms ≤ µmst is established. The final weight µmst describes the best possible action in
the case study, where the action optimizes perfectly for all categories. This is improbable in practice,
especially in the framework of this case study. Therefore, its value is set close to the second-best
scenario described µms. The values for all mission-related parameters and MCDM weights discussed
thus far are summarized in Table 4.4. All missions terminate at the 10th hour, and all mission types
contain randomly generated 100 victims.

4.2. Experiment Setup 71

Figure 4.5: Initial conditions and the areas of interest of the experiments.

The controllers proposed in the methodology, when applied simultaneously, operate independently
of each other. The local controllers operate with the information on their local maps and the tasks with
the closest proximity; however, if there is a conflict in schedules, the locally optimal task allocations
are separated into approximately globally optimal schedules. This behavior makes it difficult to assess
the direct effects of the local controller design on the mission outputs. Furthermore, the center-of-mass
controller defined for the central agent shifts the focal point of the robotic mission closer to the unfinished
tasks, therefore affects the local controller decisions in terms of the changed feasibility of different
actions at each planning step and makes it difficult to analyze the local exploitation of the gathered
environmental information at each charging cycle. For these reasons, the experiments are split into
single and multi-robot runs, with two datasets each for static and dynamic central agent conditions. The
datasets are gathered with two repetitions for each initial condition given in Figure 4.5, (denoted with
the red squares), amounting to 34 runs per controller.

In addition to the quantitative metrics provided for the case study, a qualitative analysis of the be-
havior of the robot controllers should also be performed. As simplified scenarios, the lower left (G1) and
top right (G2) quadrants of the search space are separated to run both GA and MILP algorithms, as
given in Figure 4.5. These quadrants contain interesting subareas in terms of the traversability, destruc-
tion, population density, and the overall challenge to the controllers. The subareas are also marked
in Figure 4.5, where blue areas denote buildings that are reachable for a ground robot, and the gray
areas denote buildings that are not. Reachability is usually established through step sizes between
vertices; however, the pink rectangles in Figure 4.5 denote vertical edge connections to vertex groups
with higher elevations that are otherwise inaccessible to a ground robot. The exploration of those areas
depends on the exploration of these vertical ramps; therefore, it is a difficult task to achieve consistently.
The initial condition for the area G1 is set to point 1, whereas the initial condition for the area G2 is set
to point 9. These simplified experiments are designed to have a maximum duration of four hours, and
100 victims are placed within them, similar to the global environment. The robot parameters used for
the single robot experiments are provided in Table 4.5, of which the traversability analysis is performed
based on its selected step size of 2 meters. The prediction horizon is selected as Hpred = 6 since
the average expectation of the action energy expenditure is 7.5 with the selected parameters, which
accumulates to approximately half of the maximum energy of the robot along the prediction horizon. A
charge cycle is defined by the actions the robot takes between two charge actions. With the selected
value of the prediction horizon, half of a charge cycle is expected to be predicted, which is observed to
be sufficiently accurate through trial and error. Finally, the control horizon is selected as one to account
for the lack of task spawn predictions in the MPC formulation.

4.2. Experiment Setup 72

UGV move actions map actions search actions

N tasks 200 ρstep 2 (m) ρmap 30 (m) ρsearch 20 (m)

Hpred 6 dϵmove 0.1 (1/m) dϵmap 5 dϵsearch 10

ϵcrit 0 ρspeed 1 (m/s) dtmap 00:30 (mm:ss) dtsearch 03:00 (mm:ss)

ρheight 1 (m) σcapmap 1 σcapsearch 1

Table 4.5: UGV parameters used in the single robot experiments.

For multi-robot experiments, a similar qualitative analysis is performed on the areas G1 , and G2,
however, this time, two additional robots are modeled to observe the ability of the proposed architecture
to allocate tasks to better capable robots, as well as to demonstrate the modularity and heterogeneity
claims of this thesis. The first robot is a UAV, whose height and step sizes are large enough to reach any
location on the map with unobstructed vision. Aligning with the use of UAVs in real-life USaR scenarios,
the mapping capability is given the maximum value while the search capability is reduced since it is not
expected to go inside the buildings. In contrast, the second robot is implemented as a crawler, whose
step size is given a large enough value that it can reach everywhere in the USaR environment due to
its small size and ability to crawl under rubble. This robot still suffers from the same vision blockages
as the UGV. While it has the maximum search capability, its mapping capabilities are reduced as a
tradeoff. The parameters for these robots are given in Tables 4.6 and 4.7. As the final component of
their modeling, the capability is defined as the rate of error in measurements, where the robots will fail
to measure random observations in proportion to the loss of capability per action. This differs from the
other components of action evaluation, namely quantity and quality, as both are calculated based on
the predictions of robot actions rather than actual measurements. The quality degrades with distance
for both actions, hence the mapping observations are selected with respect to the probability density
function defined by the following parametric formula:

fmap(d) = 0.4 +
0.6

1 + e10(d−0.7)
(4.19)

Where the variable d denotes the distance of each predicted observation. For search actions, not only
does the probability of detection decrease with distance, but it also changes with the level of destruction
in the area. Aligning with the fuzzy evaluation system established for action predictions, the probability
of detecting a victim increases with the destruction level until the ”Very Damaged” membership function
peak, then it slightly decreases as the destruction level reaches ”Collapsed”. The probability density
function is denoted by:

c(b) = 1− 1

e−10(b−0.3) + eb−0.5
(4.20)

f search(b, d) =
0.8

e5c(b)d
+ 0.2 (4.21)

Where b denotes the building destruction level for each observation. At each measurement step, the
number of observations corresponding to 1 − σcap of the total area within range are selected to be
unmeasured, using the probability density functions defined above. With this formulation, the aim is to
test the capability of the coordination system to allocate robots that are better suited for certain tasks,
how balancing the elapsed time affects these allocations, and what the outcomes of the coordination
performance are in terms of the quantitative metrics defined for the single robot case. For complete-
ness, a team with two UGVs is also tested for a meaningful comparison with the results of single-robot
experiments.

4.2. Experiment Setup 73

UAV move actions map actions search actions

N tasks 200 ρstep 25 (m) ρmap 30 (m) ρsearch 20 (m)

Hpred 6 dϵmove 0.1 (1/m) dϵmap 5 dϵsearch 10

ϵcrit 0 ρspeed 1 (m/s) dtmap 00:30 (mm:ss) dtsearch 03:00 (mm:ss)

ρheight 25 (m) σcapmap 1 σcapsearch 0.3

Table 4.6: UAV parameters used in the multi-robot experiments.

Crawler move actions map actions search actions

N tasks 200 ρstep 25 (m) ρmap 20 (m) ρsearch 20 (m)

Hpred 6 dϵmove 0.1 (1/m) dϵmap 5 dϵsearch 10

ϵcrit 0 ρspeed 0.5 (m/s) dtmap 00:30 (mm:ss) dtsearch 03:00 (mm:ss)

ρheight 1 (m) σcapmap 0.3 σcapsearch 1

Table 4.7: Crawler parameters used in the multi-robot experiments.

5
Results & Discussions

This chapter presents and discusses the results of the experimental setup presented in Chapter 4 with
the proposed control architecture and environmental modeling in Chapter 3. The experiments are car-
ried out first with only one robot to thoroughly compare the MPC based MCDM methodology proposed
in this thesis to other relevant approaches, and then the proposed control architecture is compared
with multiple different robotic team comparisons to showcase the performance of the global coordina-
tion controller at the top of the hierarchy in the defined system. The layout of the presented results for
both types of experiments follows: first, a qualitative analysis and behavioral presentation of how the
autonomous robotic team behaves in smaller scenarios, and then, a more detailed quantitative analy-
sis for generalized scenarios across many experiments is provided to conclude the final discussions.
At the beginning of this chapter, a representative demonstration of how the task-allocation framework
works in a computer-based simulation is presented for better contextualization of the work included in
this thesis.

5.1. Demonstration of the Task Allocation Behavior
Starting with the demonstrative example of how task allocation occurs at a timestep where the robot
starts from the static central agent after a charging action, the steps of the MILP controller operation
are shown in Figure 5.1. The vertices that are not explored, i.e., not on the local map, are marked
gray, the vertices that are on the local map but are not accessible are marked black, and others are
marked white. Furthermore, the central agent is represented by a pentagram, and the robot’s location
is marked with a black circle, both of which are positioned in the bottom left corner, as the robot had just
finished charging at this specific timestep. The optimization procedure proposed in this thesis begins
by distilling the set of considered tasks, as shown in Figure 5.1a. Here, the green squares represent a
mapping task established by the global map’s exploration frontier. The purple squares denote search
tasks spawned by the observations of map actions that exceed the search priority threshold. The set
of feasible actions related to these tasks is given in Figure 5.1b, where dots represent an action with
the corresponding color to their related tasks. The feasible set of actions must consist of actions that
the robot can move to, perform, and return to the charger without violating the safe return constraints.
Therefore, selecting at least one action from this set is always possible. The MILP controller assumes
that the utilities of sequential actions are independent and can be calculated from the start. To maintain
this assumption, the first stage of the MILP controller selects actions that maximize the task utility
while adhering to a maximum of one overlap constraint for each unique observation of the selected
actions. The selected actions and the area of observation for each of them are shown in Figure 5.1c.
Initially, in this example (performed separately from the structure explained for the case study), there
are 225 map tasks and 43 search tasks, totaling 596 map actions and 118 search actions. After the
first stage of the MILP controller, the total number of map actions and search actions reduces to 19
and 6, respectively, corresponding to a 96.4% reduction in the search space. The second stage of the
MILP controller then finds the best order ofHpred actions from the reduced action set, and calculates the

74

5.1. Demonstration of the Task Allocation Behavior 75

shortest path between the scheduled waypoints, as shown in Figure 5.1d. The resulting pathmaximizes
coverage while minimizing the time and eventually plans to make its way to the area with the most
search tasks. This specific selection of waypoints can be attributed to the postprocessing of action
values per observation after the first stage of MILP, where observations within overlapping areas have
reduced utility contributions. If this were not in place, the bottom two search tasks would be selected,
resulting in a redundancy of observations. The trade-off for this approach is the underestimation of
singular actions; however, since the overlap is set to one in this case study, the adverse effect of
this trade-off generally weighs less. Furthermore, the MCDM fuzzy measures assign higher scores
to actions that share a vertex, as both type categories can be performed simultaneously from there.
However, in such cases, the search action is almost always prioritized over map actions due to the
MCDM weights selected for this case study. As a comparison, the GA output is given in Figure 5.2,
where the selection of waypoints is directly performed on the initial feasible action set. Although the
general paths and the portion of themap that the robot is steered towards are the same, it is immediately
observable that the GA output is much smoother and able to exploit the vertices that contain both good
utility search and map actions related to them. The ability to choose any action leads to selecting a
smoother final path with fewer redundancies at the expense of increased computational burden and a
much higher-dimensional search space.

(a) The set of tasks available at a given time (green squares for map,
purple squares for search).

(b) The set of feasible actions related to the current tasks, shown by
the dots with the corresponding colors for related actions.

(c) Actions and their area of observation selected by the first stage of
the MILP controller.

(d) MILP controller output schedule, red line denoting the selected
path.

Figure 5.1: Operation steps of the proposed MILP controller, at the beginning of a charging cycle.

5.2. Single Robot Experiments 76

Figure 5.2: Selected optimal schedule of the GA controller for the same problem given in MILP operation.

5.2. Single Robot Experiments
The single robot experiments are performed with a UGV configuration where the two types of mission
goal-related actions, map and search can be performed by the robot. The mapping actions are modeled
based on a camera and LiDAR setup; therefore, the line of sight from the height of the robot affects what
features and vertices are observable from a given state. On the contrary, the searching tasks have a
shorter range; however, they can penetrate through walls and obstacles. Furthermore, measurement
errors are not included in this section; however, the modeling of the sensor data reflects the capabilities
assigned to the fuzzy inference system of the model to reflect real-life behavior as closely as possible.
The UGV description also has a maximum step size that the robot is allowed to take, thus making the
traversal through the terrain and the corresponding optimal paths non-trivial in the experiments.

5.2.1. Behavior of the Control Architecture
The behavioral analysis of the control architecture for a single UGV mission is presented first, with a
qualitative analysis comparison for GA and MILP-based controllers over the small areas represented
by G1 and G2. In total, nine charging cycles are presented for each environment per controller, allowing
for a meaningful comparison of behaviors at specific intervals across varying environmental factors in
the selected areas. Then, quantitative results over multiple runs within the small environments with
different controllers are presented to conclude the behavioral analysis. The results of the subarea G1

for the MILP and GA controllers are given in Figures 5.3 and 5.4 respectively. Likewise, the results
of the subarea G2 is provided in Figures 5.5 and 5.6 with the same order. For all of them, the same
legend format is used, where the blue line shows the actual path the robot took at each control step, and
the dashed red line shows the path it will take to return to the charger in the next timestep, denoting a
single charge cycle per image. The red diamonds denote undetected victims, while the green diamonds
denote detected ones.

Qualitative Analysis

Starting with the MILP controller on subarea G1, at the first charge cycle the robot mostly performs
mapping actions around M1 and discovers the edges of M4, where it immediately starts searching,
bypassing the closer but less prioritized search tasks in the vicinity ofM1. By the second cycle, due to
its proximity, the robot is steered towardsM1, where both search and mapping actions are performed
effectively to reach and explore the inside of the building. The third cycle marks the final exploitation of
the information gathered from the previous cycle, by consecutively performing well-separated search

5.2. Single Robot Experiments 77

Figure 5.3: Progression per charge cycle of the single robot mission in the G1 environment with static central agent and MILP
controller.

actions to complete the exploration ofM1, and making its way to mapM4. The reason that map actions
are taken here instead of better-utility yielding search actions is that the robot has already expended
a significant amount of energy on its way to that location, and the only feasible actions remaining are
the map actions due to their lower energy cost. The robot approachesM4 from the shortest path at the
fourth cycle due to the higher utility concentration there, and performs the search actions it could not
do in the previous cycle. This behavior consists in the fifth, sixth, and seventh cycles where most ofM4

is explored by the end of it. In the fifth and seventh cycles, the effects of the shrinking feasible action
set are even more pronounced, as map actions are taken on the way back to the charger toward the
end of each cycle. In the eighth cycle, the effect of local minima starts to be observed due to the static
placement of the central agent. However, since most of the available actions around M1 and M4 are
exhausted, the robot finally reaches M2 and maps a big portion of the unexplored area by the end of
the ninth cycle. In comparison, the GA controller starts by mapping a big portion of M1 and performs
multiple search actions without steering away towards M4, highlighting the ability of the GA controller
to exploit local information better than the MILP implementation. Within the first cycle, it is already able
to detect the vertical ramps and utilize them quite well. This utilization continues until the end of the
fourth cycle, whereM1 is almost fully explored and the gap betweenM1 andM4 is mapped, in contrast
to the MILP controller that never discovered that portion of the map. While completing the tasks in
the explored area faster than the MILP controller, the GA controller did not enter M4 until the sixth
cycle, by which the MILP controller had already finished the tasks in the lower half of M4. However,
the GA controller takes the cycles six, seven, and eight to fully map and search the lower half M4,

5.2. Single Robot Experiments 78

Figure 5.4: Progression per charge cycle of the single robot mission in the G1 environment with static central agent and GA
controller.

where it detects approximately the same number of victims within that area by the end of the eighth
cycle, compared to the MILP controller. By then, the mapped area is also similar in size, however,
due to the exploration of more hard-to-find corridors earlier on, the GA controller chooses to map the
entirety of the left side of the search area instead of steering towards the middle by the end of cycle
nine. The main takeaway from the comparisons within the subarea G1 is that, while the behaviors are
quite similar, the GA algorithm appears to be able to explore regions of interest more thoroughly than
the MILP controller, before exploring new parts of the map.

The subarea G2 offers more challenges in terms of the complexity of local areas due to the structure
of M7. This building contains multiple pathways, and the interior sections are only explorable if the
specific paths and ramps are quickly and efficiently mapped. Starting with the MILP controller, it is
quick to find the closest entrance ofM7 to the central agent and makes its way into the right-hand side
section of the building through the vertical ramp. The robot continues to complete this section of M7

at the end of the second cycle. By the third cycle, a significant portion of the inside of the building is
completed; therefore, the MILP controller continues exploring down the passage inside the building
to reach and search around the corridor south of M7, finding another inner passage, and returns to
the charger using the same way. Since most of the immediately available tasks are completed within
M7, the robot spends the fourth cycle mapping a large portion of the G1 environment and searching for
victims withinM4 remotely from the outside. At the fifth cycle, the robot continues to perform the same
behavior; however, this time it discovers the second pathway within M7, upon which it spends some

5.2. Single Robot Experiments 79

Figure 5.5: Progression per charge cycle of the single robot mission in the G2 environment with static central agent and MILP
controller.

redundant search actions, since the discovery of a new pathway spawns additional search tasks in the
same area. In the sixth cycle, the MILP controller steers the robot to the first passage and efficiently
maps the bottom left of the G2 area, reachingM6 already. Although it was discovered in the fifth cycle,
the robot opts not to continue down the second passage it had already found and instead chooses a
path that leads to a larger area, yielding a greater sum of utility. Cycles seven and eight are spent on
mapping and searching the left-hand side ofM7 through the recently discovered pathway. Finally, the
robot completes most ofM7 at the end of the ninth cycle and spends the remaining time mapping the
rest of G2.

Another observation from this experiment is that once a continuous visual obstruction is reached,
similar to the case in the final cycle, the controllers take smaller steps along the wall to potentially find
a line of sight that would enable the measurement of the map portion on the other side. Ultimately,
this behavior facilitates the efficient discovery of various pathways throughout the experiments. In
comparison, the GA controller starts its first cycle similarly to the MILP controller. At the end of the
second cycle, the robot has already completed the right-hand side of M7 and has found the entrance
to the second passage. However, the exploration of multiple entry points early on makes the controller
spend extra time going back and forth between them, as observed on cycles three and four, leading to
inefficient behavior compared to the MILP controller. Although it is established that the GA controller
takes advantage of the local information better and explores the area more thoroughly, this behavior
creates an adverse effect in this case due to the complexity ofM7 and the layout of the inner passages.

5.2. Single Robot Experiments 80

Figure 5.6: Progression per charge cycle of the single robot mission in the G2 environment with static central agent and GA
controller.

This behavior enables the GA controller to find the victims within M7, more specifically, the ones that
are close to the left-hand side of the building faster, at the expense of mapping considerably less area
than the MILP controller by the end of cycle six. Still, having completed exploring most of M7, the GA
controller is quick to compensate for the reduced mapping of the area at cycle seven, by systematically
exploring all of the middle part of G2. At the eighth cycle, both controllers had achieved similar results
in terms of victim discovery and mapped area, albeit at different time rates. During the ninth cycle, the
GA controller steers the robot back to the inside of M7, and performs redundant actions on the areas
that had already been searched due to the local minima induced by the static central agent. Comparing
the GA and MILP controller behaviors in G2 area, the established results from the previous analysis are
reinforced. However, the local strength of the GA controller led to a more detrimental behavior than the
MILP controller, which, in this case, can be said to have performed better, albeit with a small margin.

Quantitative Analysis

The results for all controllers in terms of mapped area and detected victim count percentages for the
smaller experiments done in G1 and G2 are summarized in Table 5.1. Note that although the first nine
charge cycles are analyzed qualitatively, these results are obtained at the end of four simulation hours,
by which time most controllers had charged more than nine times. As observed from the behavioral
analysis, the GA and MILP controllers yield similar results, with the MILP controller achieving a higher
victim count percentage in the G1 environment. This is likely due to the exploration towards the middle

5.2. Single Robot Experiments 81

part of the map, rather than the left side, at the end of the final discussed charge cycle. For the G2 area,
the results are the same. Compared to the other methods, the MCDM controller achieves the closest
performance to the MPC-based controllers. This is an expected result, as GA and MILP controllers
employ a receding horizon approach to make more informed decisions, rather than greedily selecting
the best utility in a one-shot manner. However, the stark difference between the performances supports
the notion that this specific problem formulation can not be solved optimally by always taking the next
best action.

GA MILP hybrid MCDM shortest-time fuzzy random

victim count (%) 73 81 79 51 12 44 38

mapped area (%) 66.8 65.8 66.1 49.8 26.3 87.8 44.8

victim health (%) 68.2 67.7 67.5 72.3 55.8 41.2 45.6
G1

distance (km) 6.3 5.7 5.8 4.9 1.6 11.2 8.1

victim count (%) 38 38 38 27 21 24 18

mapped area (%) 69.9 70.0 69.8 54.7 16.7 73.4 44.6

victim health (%) 74.5 75.1 75.0 74.1 68.4 56.2 48.2
G2

distance (km) 6.6 5.9 5.7 5.3 1.9 13.0 8.3

Table 5.1: Key results for each main mission metric related to G1 and G2 experiments at the end of four simulation hours.

Judging by the results presented in Table 5.1, the proposed MILP method consistently outperforms
all baselines by achieving the best balance between victim count and mapped area across both scenar-
ios, although for individual metrics, other controllers may perform better. It reaches the highest victim
count (81% and 38%) and maintains high mapping performance (65.8% and 70.0%) while keeping
travel distance relatively low and victim health at strong levels. Compared to alternatives, it improves
victim count by up to 113% and mapped area by over 46% in critical cases. GA and hybrid methods fol-
low closely but offer slightly lower results, sacrificing optimality for general balance. MCDM achieves
decent mapping and health levels but lags behind in victim discovery due to its focus on coverage.
Within the G1 environment, the MCDM method achieved a higher victim health percentage; however,
with a lower number of victims, this information suggests that only prioritizing the more immediate
search to the initial state is preferred by this controller. Shortest-time minimizes distance drastically but
performs poorly in all other metrics. Overall, MILP achieves the most favorable trade-off between dis-
covering victims and mapping effectively, while controlling distance and maintaining acceptable victim
health for the small area comparisons.

To contextualize this observation, additional plots are provided in Figures 5.8 and 5.9 for all con-
trollers. The first plot for each environment in Figure 5.8 marks where the search and map actions had
taken place, where search is denoted by a star and map is denoted by a dot. The second plot for each
environment shows which vertices are visited and how many times they are visited throughout the mis-
sion. When compared to GA and MILP, the MCDM controller appears to be stuck in local minima and
has taken multiple search actions in very close proximity redundantly. This, in turn, leads to poor time
optimization in general, as search tasks are time- and energy-intensive. The second set of plots in Fig-
ure 5.9 shows the fuzzy system evaluation of the actions taken at each control step in the first column,
and the MCDM evaluation of the actions in the second column. The variance in the MCDM evalua-
tion of the MCDM controller is lower than that of GA and MILP controllers, while the fuzzy evaluations
are nearly identical. This further supports the idea that the MCDM controller consistently gets stuck
in local minima around the buildings. Compared to the other controllers, the shortest-time approach
significantly performs worse across the board. Investigating the heatmap patterns in Figure 5.8c , it
behaves as an exhaustive controller where the sensors are always on whenever new information can
be gathered. This substantiates the approach of modeling the time and energy expenditure of actions
in a general sense, as most works in the literature do not consider this aspect. Due to the dense nature

5.2. Single Robot Experiments 82

of the tasks in this case study, the detrimental effect of this approach is even more pronounced. The
action evaluation plots in Figure 5.9c consistently show low values, validating the correct implementa-
tion of the deteriorating quality and quantity of observations when the robot repeatedly performs similar
actions in close proximity. In contrast, the fuzzy controller achieves the best mapping percentage for
both cases across all controllers, while simultaneously detecting the least amount of victims. This is a
direct result of how the fuzzy evaluation system combines the task priority information with the action
evaluation. Since search tasks can only spawn from good-quality mapping actions, the prioritization of
map actions substantially increases compared to search actions without any MCDM weights. Addition-
ally, while task prioritization approaches one when very specific and rare circumstances occur (i.e., the
building is severely damaged and the population density is extremely high), the mapping task prioritiza-
tion is only tied to the number of unexplored vertices in close proximity to a frontier location. For these
reasons, the fuzzy controller almost always selects the next best mapping action. The MPC-based
controllers outperform all other methods convincingly, as laid out in the Table 5.1.

(a) MILP controller with dynamic central agent in G1 environment. (left: actions, right: traversal)

(b) MILP controller with dynamic central agent in G2 environment. (left: actions, right: traversal)

Figure 5.7: Action and traversal heatmaps of the MILP controller with dynamic central agent.

Concluding the small area analysis, Figure 5.7 show the final state of the USaR mission with the
central agent controller activated at the end of four simulation hours. The red line marks the path the
central agent took through the mission, where it slowly converges to the center of both areas as time
progresses, to stay close to all unattempted available tasks that remain. The movement heatmaps
demonstrate a much more balanced distribution of the robot in the USaR area, where the number
of maximum visits to a vertex is reduced by three times compared to the static cases. Furthermore,
the total mapped area percentage for G1 and G2 becomes 85.2% and 79.8% respectively for the MILP
controller when the dynamic central agent is enabled. Likewise, the percentage of detected victims
are 88% and 41% respectively. Compared with the static case, the number of victims is close enough,
which may indicate that the saturation time has been reached for these small environments to detect
the victims within areas M1, M4 and M7 that are closest to the initial starting point. The close to 15%
increase in the mapped area percentage can be attributed to the central agent moving closer to the
unexplored areas over time, enabling the robots to map them without being constrained by the energy
and time accumulation present in the static case.

5.2. Single Robot Experiments 83

(a) GA controller (left to right: G1 actions, G1 heatmap, G2 actions, G2 heatmap)

(b) MILP controller (left to right: G1 actions, G1 heatmap, G2 actions, G2 heatmap)

(c) shortest-time controller (left to right: G1 actions, G1 heatmap, G2 actions, G2 heatmap)

(d) fuzzy controller (left to right: G1 actions, G1 heatmap, G2 actions, G2 heatmap)

(e) MCDM controller (left to right: G1 actions, G1 heatmap, G2 actions, G2 heatmap)

(f) random controller (left to right: G1 actions, G1 heatmap, G2 actions, G2 heatmap)

Figure 5.8: Action and movement heatmaps for the experiments in G1 and G2 at the end of four simulation hours.

5.2. Single Robot Experiments 84

(a) Control action utilities of the GA controller.

(b) Control action utilities of the MILP controller.

(c) Control action utilities of the shortest-time controller.

(d) Control action utilities of the fuzzy controller.

(e) Control action utilities of the MCDM controller.

(f) Control action utilities of the random controller.

Figure 5.9: Control action utilities through G1 and G2 environment experiments.

5.2. Single Robot Experiments 85

5.2.2. Analysis of the Control Architecture in Structured Experiments
After presenting the detailed behavioral analysis of the control architecture within smaller and distinct
environments, to draw more meaningful and generalizable results, longer experiments were conducted
over a larger area with 17 different initial points and randomized victim placement, with multiple repeti-
tions. The results of these experiments are presented in this section.

GA MILP hybrid MCDM shortest-time fuzzy random

mapped area (%) 44.5 41.7 41.6 26.9 6.3 48.0 17.2

victim count (%) 45.4 41.1 41.2 24.4 3.5 14.5 11.4

victim health (%) 71.1 73.4 71.5 51.6 48.5 47.7 47.2
static

total distance (km) 18.1 16.5 16.9 12.9 4.6 28.0 22.3

mapped area (%) 62.3 60.2 57.0 35.4 6.5 55.7 16.9

victim count (%) 57.3 59.3 56.0 35.0 6.7 23.9 19.9

victim health (%) 71.2 76.0 74.1 57.2 44.1 41.6 46.5
dynamic

total distance (km) 12.1 10.4 10.7 8.9 3.5 19.3 15.8

Table 5.2: Outputs of USaR goals for single robot experiments in G at the end of ten simulation hours.

In Table 5.2, the results of the USaR mission metrics at the end of ten simulation hours are sum-
marized. Starting with the mapped area percentage, the overall progression of the averaged area size
through the USaR mission is given in Figure 5.10. Similar to the local experiment results, the fuzzy
controller maintains the largest mapped area percentage for the static central agent case, ending at
48% of the USaR area. This value is likely to be the maximum that can be reached without moving
the central agent with the selected robot parameters. It is closely followed by GA, MILP and hybrid
controllers ranging from 44% to 41%, where they approximately double the amount of MCDM controller
coverage. Only the shortest-time controller falls below the random controller, reaching a maximum of
6.3% area coverage. When the dynamic central agent is introduced; GA, MILP, hybrid, and MCDM
controllers almost double their mapped area percentages. Interestingly, moving away from the local
minima induces all three of the proposed controllers in this thesis to catch up the mapping performance
of the fuzzy controller around halfway through the mission time, and surpass it by the end of the sim-
ulations. This is likely due to the efficient exploration of these controllers when introduced to a new
environment and the effect of the dynamic central agent reducing the amount of redundant search ac-
tions in general. Continuing with the averaged number of detected victims given in Figure 5.11, there
is a clear separation between the GA, MILP and hybrid controllers and the rest. The closest result
following them comes from the MCDM controller, where similar to the mapped area percentages, is al-
most doubled by the proposed solutions. Including the dynamic central agent, the number of detected
victims is approximately increased by 25% for all controllers. Once again, the shortest-time controller
performs the worst for this metric, while the fuzzy controller closely follows the random controller. This
further establishes that the fuzzy controller can not employ a meaningful victim search strategy the way
the inference system is designed in this thesis. However, when combined with the MCDM method for
effective prioritization of mission goals with respect to elapsed time, the results dramatically increase,
supporting the optimality claims of the proposed architecture. The covered distance metric given in
Figure 5.12 indicates the efficiency of taken actions, where it is expected to be lower if the controllers
achieve better local exploitation. Indeed, after the fuzzy controller which is able to travel further due to
mostly choosing map actions, therefore spending less time per action in general, the random controller
results in the most distance covered out of all remaining approaches. In terms of these USaR mission
metrics, it can be said that the controllers with overall higher area coverage and victim detection with
lower covered distances are the best suited for a USaR task. This is indeed the case for GA, MILP and
hybrid controllers.

5.2. Single Robot Experiments 86

Figure 5.10: Total mapped area progression of single robot experiments.

Figure 5.11: Detected victim count progression of single robot experiments.

Figure 5.12: Covered distance progression of single robot experiments.

5.2. Single Robot Experiments 87

Figure 5.13: Distribution of victim status for single robot experiments at the end of ten simulation hours.

Figure 5.14: Time of task completion after spawn for single robot experiments at the end of ten simulation hours.

Figure 5.15: Distribution of control action utility for single robot experiments at the end of ten simulation hours.

5.2. Single Robot Experiments 88

The boxplots in Figures 5.13, 5.14, and 5.15 provide detailed insight into the distribution of various
key metrics for both dynamic and static environments. The Table 5.3 further summarizes these findings
by combining the dynamic and static central agent scenarios in terms of the median placement and the
inter-quartile range, wherever medians do not sufficiently represent the differences between the data.
From this table, it is clear that when the best-performing methods per metric are investigated, the MILP
method achieves the best results for the direct mission goals. While the fuzzy controller achieves the
highest fuzzy utility, the MILP controller achieves the highest MCDM utility with an inter-quartile range
2.8 times larger than that of the pure-MCDM controller. Still, the fact that the MILP controller achieves
better victim health times and counts highlights the strengths of the proposed architecture in balancing
trade-offs while optimizing behavior with respect to mission goals, as provided as preferences between
decision criteria.

GA MILP hybrid MCDM shortest-time fuzzy random

victim

health (%)
median 71.2 74.7 72.8 54.4 46.2 44.6 46.9

victim discovery

time (h)
median 3.1 2.8 3.1 4.5 5.4 5.8 4.8

map task

completion time (h)
median 0.24 0.26 0.29 0.63 0.08 0.63 0.89

search task

completion time (h)
median 0.25 0.31 0.37 0.21 0.76 1.80 1.15

median 0.60 0.65 0.65 0.62 0.16 0.81 0.25fuzzy evaluation of

performed actions IQR 0.22 0.29 0.34 0.45 0.15 0.16 0.19

median 5.5 5.9 5.9 5.7 1.9 5.3 2.3MCDM evaluation of

performed actions IQR 3.2 2.8 2.8 1.0 1.1 2.9 2.8

median 28.8 12.8 20.3 - - - -
runtime (s)

IQR 27.2 12.7 17.9 - - - -

Table 5.3: Summary of key results from the boxplots provided for the control architecture evaluation (IQR = Inter-Quartile
Range).

For the victim health upon discovery, the Figure 5.13 shows the distribution of the victim health
percentages at the end of the simulation times for each controller. As expected, these values closely
mirror the victim discovery time, which are inversely proportional to each other. Overall, the GA, MILP,
and hybrid controllers achieve over 70% health rate upon victim discovery. The performance of the
other controllers in this metric is also relatively high, between the 51.6% achieved with the MCDM
controller and 47.2% of the random controller. However, these controllers also find significantly fewer
victims; therefore, the performance of the proposed controllers becomes even more highlighted when it
is considered that they discover twice as many victims as the best-performing other methodology. The
task completion time distribution for both types of tasks is given in Figure 5.14. This metric is interesting
in that it provides insight into how effectively the new information is utilized by the controllers. In general,
most search tasks should be undertaken as fast as possible, while minimizing the map task completion
equates to faster exploration of the important areas, as well as possibly generating new search tasks
that may lead to more victim discovery. The GA and hybrid controllers excel in this metric, with a median
completion time of 15 minutes for both map and search task completion. The MILP controller results
in a slightly higher median by 5 minutes for map tasks and 8 minutes for search tasks. As observed
previously, the shortest time controller executes map tasks almost as soon as they spawn, while the
fuzzy controller mostly ignores the search tasks until the local task set starts consisting mostly of search

5.2. Single Robot Experiments 89

tasks, leading to the dramatic increase observed in their median. Interestingly, while all distributions
experience a slight increase with the dynamic central controller, the fuzzy and shortest-time controllers
experience a slightly worse performance.

The action evaluation distributions in terms of the fuzzy system output and MCDM output per control
action are given in Figure 5.15. This metric is primarily included to determine if the controllers function
as intended. While the GA, MCDM, hybrid and MILP controllers output approximately similar medians
for both evaluation types, the MCDM controller results in a higher variance for fuzzy action evaluation
and a much smaller variance for the MCDM action evaluation, which further establishes its optimality
for the local minima but not for the global problem in general. Likewise, the fuzzy controller maximizes
the fuzzy action evaluation but results in a slightly lower MCDM evaluation, with a considerably small
variation. These observations lead to the conclusion that inclusion of both these approaches into the
proposed solutions lead to the exploration and time minimization trade-off necessary for a successful
USaR mission.

Finally, the runtime distribution is given in Figure 5.16. Since all three of the controllers behave
similarly across all metrics, the runtime with respect to the scale of the problem at hand is the final
arbitrator of which controller should be selected in practice. The GA controller does not have a time
limit like the MILP controller, only a sufficiently large amount of maximum and stall generations set for
achieving solutions that are close enough to the global optimum. The median for the GA optimization
runtime is 28 seconds, while it falls down to 20 seconds for the hybrid controller. This improvement can
be attributed to the task selection implementation of the first-stage MILP controller, which significantly
reduces the dimension of the search space. Furthermore, the hybrid controller directly uses GA opti-
mization after the task set selection, using the same hyper-parameters. The runtime of the hybrid may
be improved with further tuning; however, for smaller prediction horizons similar to this case study, the
MILP controller is significantly more advantageous. The median for the MILP controller is at around
12 seconds, meaning most of the time the incumbent partial solution found in the first 10 seconds is
efficiently improved by the LNS heuristic afterwards. Additionally, all three controllers find the optimal
solution faster when the robot has reduced energy, since the safe return constraints consistently dis-
able the consideration of high-cost tasks along the prediction horizon. Having said that, the GA based
controllers do not have a direct way of limiting the infeasible sequential selections and can only check
for them after evaluating the entire population of each generation. Conversely, the MILP controller
has built-in constraints to eliminate the branches in the search space that lead to such infeasibilities,
and with sufficiently tight bounds on the decision variables, the branch-and-cut approach of the linear
solvers converges to a good solution fast enough within the given time budget.

Figure 5.16: Distribution of runtime per optimization step.

5.3. Multi-Robot Experiments 90

5.3. Multi-Robot Experiments
The multi-robot experiments are conducted with two different teams of robots, where the first team con-
sists of a heterogeneous composition comprising a UAV and a crawler-type robot, whereas the second
team consists of a homogeneous composition with two UGVs with identical parameters. Furthermore,
errors in action observations are introduced to the robotic systems for this part, to establish a clearer
distinction between robot actions and decision-making prioritization with respect to the robot’s capabil-
ities for undertaking different task allocations. Only the proposed MILP controller is presented in this
section, as it has already been established to be the best-performing controller. Therefore, the main
focus of the multi-robot experiments is to benchmark the cooperation behavior maintained by the global
coordination controller. Similar to the single-robot results, a behavioral analysis of robot coordination
is presented, comparing it to task allocations made without any coordination within the small subsets
of the defined simulation environment. Then, a thorough analysis of the main metrics established by
the coordination is presented, based on the results of generalized experiments.

5.3.1. Behavior of the Global Coordination Controller
The behavioral analysis of the global coordination controller is performed within the areas G1 and G2

using a heterogeneous team consisting of a UAV and a crawler-type robot. The Figures 5.17 and 5.18
contain various cooperation optimization results throughout missions within G1 and G2 using the UAV-
crawler team, respectively. While the legend for task, victim, and terrain visualization is the same as
the single robot plots, here, the UAV is represented by the blue lines and the crawler is represented
by the red lines. For each decision on their respective paths, the dashed circles represent mapping
actions, and the continuous circles represent search actions.

Qualitative Analysis

Starting with the mission in G1, the Figure 5.17a shows that both robots picked the exact same paths
where all actions are conflicting due to the limited size of the task set. The coordination strategy ad-
dresses this by allocating the tasks with better utility mapping to the UAV actions, while steering the
crawler toward the less important tasks. Furthermore, since the UAV is twice as fast as the crawler, it
selects more back-to-back map actions than the less capable crawler to be executed simultaneously.
Figure 5.17b shows the mission state where the M4 area is being explored, and the UAV has just
finished charging at the central agent location. The M4 area is densely populated with both mapping
and search tasks. Therefore, the local controllers for both robots planned their routes to achieve the
most efficient run, mapping and searching the area simultaneously. Since the UAV is more capable for
mapping and the crawler is for searching, the coordination optimization allocated the search actions
that cover more of the search tasks to the crawler, while the UAV retained the remaining non-conflicting
actions. While both robots chose the mapping actions on their first waypoint due to their proximity and
shorter execution time, the overall paths they take for the globally optimized allocation are also short-
ened, showing the capability of the global controller approach to distribute the robots in the USaR area
better than the direct local controller outputs put together. Aligning with this, the UAV still attempts
search tasks immediately after mapping, as it is better for the USAR goals that the robots do not al-
ways wait for each other to finish their immediate tasks. As shown in Figure 5.17c, all search tasks
are allocated to the crawler, while all mapping tasks are allocated to the UAV, resulting from global co-
ordination. Simultaneously, the shortest execution-time paths for the new allocation of local controller
outputs are solved. Finally, the Figure 5.17d demonstrates a new scenario, where almost all of the
tasks within the G1 environment had already been finished, thus both local controllers attempt to solve
the remaining tasks at the same time. Since the UAV is better suited for mapping tasks, all mapping
actions are allocated to it. Since the crawler can not be given any other action without violating the
conflict constraints, it plans a new path by discarding all possible conflicting actions with the globally
allocated UAV actions. The only remaining option is the single search task left in the environment, to
which the crawler is directly steered at the end of its new local planning. Note that while this search
task does not achieve anything and should ideally be removed from the task set, it still provides a good
example of the global coordination optimization behavior.

5.3. Multi-Robot Experiments 91

Figure 5.17: Comparison of global cooperation controller outputs at different stages of G1 exploration with the UAV and crawler
team.

5.3. Multi-Robot Experiments 92

Figure 5.18: Comparison of global coordination controller outputs at different stages of G2 exploration with the UAV and
crawler team.

5.3. Multi-Robot Experiments 93

Continuing the qualitative analysis of the global coordination controller behavior within the G2 envi-
ronment, the Figure 5.18a shows the mission state where a portion ofM7 is already discovered as soon
as the mission starts, and the crawler planning for its new schedule after performing initial searches on
the discovered part. Both robots plan their schedule at the local level to exploit the discovery of M7 ,
picking a conflicting combination of both search and map actions along the same routes approaching
from different ends. The global coordination controller’s most optimal allocation is to assign all search
tasks to the crawler and all mapping tasks to the UAV, operating simultaneously on the same path.
This example shows that the coordination controller not only aims to spread the robots within the USaR
area, but also helps them operate simultaneously on parallel tasks if a highly exploitable local task set
is present. The second mission instance, as shown in Figure 5.18b, demonstrates that most of theM7

area is already mapped, and the search tasks within that area yield the best local utility for both robots,
as can be seen from the controller outputs before cooperation. As a result, most scheduled actions
across robot paths are conflicting, as they are all allocated to the crawler due to its higher capability of
performing them. Similar to the previously explained scenarios in G1, the UAV plans a new local path
disregarding all the actions that conflict with the global coordination output, therefore choosing to map
new areas instead. Note that the crawler allocation order of the chosen search tasks is not the most
optimal path, which may be caused by either the time normalization of the elapsed times within the
MILP formulation of the global controller being too large, reducing the effect of travel times between
actions, or the bias caused by feeding the local controller outputs to the global controller as a warm
start. Regardless, the tasks are allocated correctly, and the inefficient behavior of the current schedule
is expected to be corrected in the next planning step for the crawler, as more search tasks are removed
from the global task set. This hypothesis is further supported by Figure 5.18c, where the mission state
is a few path planning steps after the previous example. Here, the UAV had just finished charging
and planned a path that first aims to search the high-priority tasks within theM7 area and then moves
towards mapping a new portion of the map. In the meantime, the crawler steers towards the remaining
search tasks that it failed to optimally order in the previous example, before returning to charging. As a
result of the global coordination controller, the crawler retains its local path, while the UAV is allocated
a direct path for the only non-conflicting, yet best-suited, mapping tasks. The final example in Figure
5.18d jumps ahead in G2 where the M7 area is completed and the robots have just started exploring
M5. In this case, both robots had finished charging simultaneously and are now in the same location.
Since both robots have full energy and can plan for the entirety of their prediction horizon, they initially
choose the faster-to-execute map tasks locally and steer towards the concentrated search tasks, for
which they select the exact same locations for search actions. Consequently, the global coordination
controller assigns all search tasks to the crawler and all mapping tasks to the UAV. This is due to the
distinct difference in perceived capability of the robots for performing different actions, where if the
robots were similar enough, the allocation result would be more balanced for all examples provided in
Figure 5.18. In this case study, however, the seemingly trivial prioritization of the crawler for search
tasks and the UAV for mapping tasks highlights the effectiveness of the global coordination controller,
provided that the fuzzy models on which the robots rely for decision-making are well-tuned.

Quantitative Analysis

The Figures 5.19a and 5.19b show the heatmap of the locations each robot visited and the action
distribution for each robot for the environments G1 and G2 respectively. Note that for G1, when the UAV
and the crawler cooperate, all tasks within the USaR are is completed in just three hours, therefore for
the no cooperation case only the results of the first three hours are shown instead of the entirety of
the four hour mission. The results when the robots do not cooperate are given in Figure 5.19a, where
it can be seen that although most of the prioritized areas M1, M2, M3 and M4 are completed, both
robots selfishly try to concentrate on the same areas and the action distribution is evenly distributed. In
contrast, the cooperation results given in Figure 5.19b show that the majority of the chosen mapping
actions are performed by the UAV while the majority of the search actions are performed by the crawler,
and the entirety of the mission area is explored before the simulation ends. Furthermore, the heatmap
of robot movements is less jittery in the sense that bigger loops are taken from the central agent around
the USaR area and can cover more of the G1 environment compared to the no-coordination experiment.

5.3. Multi-Robot Experiments 94

(a) Experiment with no coordination. (left to right: UAV heatmap, crawler heatmap, taken actions)

(b) Experiment with coordination. (left to right: UAV heatmap, crawler heatmap, taken actions)

Figure 5.19: UAV and crawler mission in G1 at the end of three simulation hours.

(a) Experiment with no coordination. (left to right: UAV heatmap, crawler heatmap, taken actions)

(b) Experiment with coordination. (left to right: UAV heatmap, crawler heatmap, taken actions)

Figure 5.20: UAV and crawler mission in G2 at the end of four simulation hours.

5.3. Multi-Robot Experiments 95

(a) Experiment with no coordination. (left to right: UGV1 heatmap, UGV2 heatmap, taken actions)

(b) Experiment with coordination. (left to right: UGV1 heatmap, UGV2 heatmap, taken actions)

Figure 5.21: Two UGV mission in G1 at the end of three and a half simulation hours.

(a) Experiment with no coordination. (left to right: UGV1 heatmap, UGV2 heatmap, taken actions)

(b) Experiment with coordination. (left to right: UGV1 heatmap, UGV2 heatmap, taken actions)

Figure 5.22: Two UGV mission in G2 at the end of four simulation hours.

5.3. Multi-Robot Experiments 96

mapped area (%) detected victims
heterogeneous team

UAV crawler total UAV crawler total

mission end time

(hh:mm)

coordination 93 7 100 20 76 96
G1

no coordination 65 14 79 29 61 90
03:00

coordination 91 9 100 22 71 93
G2

no coordination 66 19 85 26 58 84
04:00

Table 5.4: Summary of key results from the qualitative analysis of the heterogeneous team coordination experiments within
small missions.

mapped area (%) detected victims
homogeneous team

UGV1 UGV2 total UGV1 UGV2 total

mission end time

(hh:mm)

coordination 50 46 96 45 49 94
G1

no coordination 66 5 71 52 6 58
03:30

coordination 39 43 82 41 40 81
G2

no coordination 61 4 65 38 5 43
04:00

Table 5.5: Summary of key results from the qualitative analysis of the homogeneous team coordination experiments within
small missions.

The action distribution behavior is even more prevalent in the results within G2 environment pre-
sented on Figure 5.20. Since this environment introduces more challenges than the G2 environment,
the experiment where the robots cooperate take at least four hours to complete all possible tasks. The
Figure 5.20a shows the results when the robots do not coordinate, and is similar to the results of the
G1 environment. However, on Figure 5.20b theM7 area is almost exclusively searched by the crawler,
while it is almost exclusively mapped by the UAV. In contrast, theM5 area is searched by both of them
equally, noting that the corresponding building within contains the most victims in the entirety of the
USaR environment G with higher destruction levels, therefore usually prioritized first upon exploration.
For that reason, both robots are steered to search this area simultaneously. The effect of the speed
difference between the robots is visible here, observing that the UAV searches are mostly concentrated
on the farthest side of M5 to the central agent. Comparing the heatmaps for both robots, the crawler
typically performs large loops around the search area to maximize the efficiency of its task allocation,
while doing so, it spends a considerable amount of time traversing compared to the UAV. To maximize
the simultaneous operation utilities, the global coordination controller assigns the UAV the search tasks
where it can reach faster than the crawler. Since the UAV search capability is low, the corresponding
measurements contain errors, accounting for the higher concentration of the search actions taken by
this robot on the left-hand side of M5. The mission ends before any robots prioritize searching M6,
which is an acceptable tradeoff since most of the important areas are efficiently completed by that
time. The results are summarized in the Table 5.4, where it is clearly visible that the complete area
coverage in G1 is achieved with coordination, while the non-coordinated team covers only 79% of the
map. Detected victims increase by 6.7%, and the mission finishes a simulation hour earlier, indicating
both improved effectiveness and operational efficiency. In the more complex G2 area, coordination still
boosts area coverage by 8% and raises victim detection by nearly 12%, again with a full hour saved in
mission time.

For completeness, a team with two UGVs is also tested, as shown in Figures 5.21 and 5.22. It
can be seen that the robots take identical actions and paths when the global coordination controller is
not used. In contrast, the coordinated experiment in G1 given in Figure 5.21b is not only completely
finished in three and a half simulation hours, but also the robots are distributed evenly among the tasks
they undertake. A clear partitioning is visible, especially when compared to their respective heatmaps,

5.3. Multi-Robot Experiments 97

indicating that the global controller achieves spatial dispersion of the robots, in contrast to the concen-
trated behavior of the UAV-crawler team. This behavior is more advantageous for homogeneous teams,
which is an emergent property of the designed control architecture presented in this thesis. Remark-
ably, in the experiments within G2 given in Figure 5.22b, the robots can find their way into theM5 area,
which was not achieved in other corresponding UGV experiments. The majority of the USaR area, in
this case, is completely explored as well, highlighting the effectiveness of the coordination strategy.
Since both robots have completely the same properties, and errors within time estimations and action
executions are not modeled alongside the observation error implementation, the robots always take the
same actions when presented with the same information. This behavior is also visible from the summa-
rized results provided in Table 5.5, where, without coordination, most action executions are performed
by the first robot that is initialized in the simulations. The smaller number of detections achieved by
the other robot can be attributed to the corrections made for the erroneous measurements by the other
robot at the same time. In G1, coordination leads to a 62% increase in detected victims and a 35% gain
in area coverage, while reducing mission time by 30 minutes. The effect is even more pronounced in
G2, where the number of detected victims rises by 88% and area coverage improves by 26%, again
with a time reduction of half an hour. These numbers highlight a key insight: coordination has a dispro-
portionately positive effect on homogeneous teams, compensating for their lack of functional diversity
through more effective spatial distribution and improved task management.

5.3.2. Analysis of the Global Coordination Controller in Structured Experiments

Figure 5.23: Total mapped area progression of UAV-crawler team experiments with dynamic central agent.

Figure 5.24: Detected victim count progression of UAV-crawler team experiments with dynamic central agent.

5.3. Multi-Robot Experiments 98

Figure 5.25: Total mapped area and detected victim count comparisons of the UGV team with dynamic central agent.

mapped area (%) detected victims (%) victim health (%)

UAV crawler total UAV crawler total UAV crawler total

coordination 90.3 9.6 100.0 20.9 74.5 95.5 53.3 71.2 67.2

no coordination 65.5 19.8 85.3 27.5 48.3 75.9 62.4 62.1 62.2

Nr. of search actions Nr. of map actions

UAV crawler total UAV crawler total

coordination 70.9 116.3 187.2 167.2 88.7 255.9

no coordination 83.5 87.9 171.4 131.0 118.9 249.9

Table 5.6: Outputs of the USaR mission in G for the UAV-crawler team with dynamic central agent at the end of ten simulation
hours.

Since the behavioral preferences are highlighted more obviously for the heterogeneous robotic
team, on Figures 5.23 and 5.24, the total mapped area and victim detection progressions are given
for the UAV-crawler team with a dynamic agent within the general USaR area G, respectively. The
dynamic agent is selected for these experiments because, from the single-robot results, the effect of
an autonomously moving central agent on enabling the system to converge to a globally optimal state is
consistently observed, and the effect of enabling coordination between robots is generally independent
of the central agent’s schedules. Thus, the proposed architecture of complete autonomy is used for the
final set of multi-robot experiments. On Figure 5.23, without coordination, the system can map 85.3% of
the USaR area at the end of the mission, with UAV actions accounting for 65.5% and the crawler actions
for 19.8% of this result. In contrast, for all 34 experiments performed from 17 different initial conditions,
the robot team was able to map 100% of the USaR area with coordination. Furthermore, 90.3% of the
G environment is mapped by the UAV, and the remaining is mapped by the crawler. This result further
reinforces the observation that the global coordination controller can assign tasks more suitable to each
individual robot, thereby increasing the system’s time efficiency. Since the total areas are quite close to
each other, another interesting observation from the Figure 5.23 can be made regarding the rise time
of the averaged mapped area curve. Without coordination, the 25% total area is mapped at around
three simulation hours, whereas this duration drops to around one and a half simulation hours for the
coordinated robots. For 50% the total area, the robots spend approximately five hours and two hours
forty-five minutes without and with coordination, respectively. Thus, cooperation generally enabled the
UAV-crawler team to map the USaR area twice as fast at the earlier stages of the mission, which in
turn generated more search tasks to be evaluated sooner.

5.3. Multi-Robot Experiments 99

A similar trend is observed for the averaged victim detection results provided in Figure 5.24, where
the team with coordination detects 95.5% of the victims and the team with no coordination detects
75.9% of all victims. The correlation to the faster rise times achieved by the coordination controller is
also observable for the victim detection. These outcomes together lead to the conclusion that without
coordination, the robots spend more time on actions that are ineffective due to the reduced capabili-
ties defined in the robot models, even though the capability values of robots are included in the local
controller predictions. This makes sense from the perspective of local controllers, since even with a
reduced capability, the robots still need to perform searching and mapping as efficiently as possible.
In Table 5.6, further data is provided regarding the average health status of victims for both cases, as
well as how many times on average the robots performed search and mapping actions. From the vic-
tim health percentage results, it can be seen that without coordination, the robots measure whoever
they can selfishly, resulting in similar health percentages at around 60%. In contrast, with coordination,
the crawler can detect substantially more victims with average health 71.2%, meaning the proposed
architecture not only assigns more searching tasks to the crawler but can also prioritize more important
areas much more effectively during the USaR mission. In return, the UAV detects victims that are not
as urgent as others, while this results in a lower health percentage, it means that these victims are dis-
covered much later during the mission from less destroyed areas, which is a desirable behavior to save
as many victims as possible with better health conditions. From the averaged number of performed
actions for both cases, it can be seen that coordination results in more actions taken due to the better
rise times of exploration, enabling more options faster than the no-coordination case. Finally, the com-
parison of total mapped areas and detected victims for a team with two UGVs using a dynamic central
agent is provided in Figure 5.25. Here, the effectiveness of the proposed system on homogeneous
teams is easily observed, with 60.2% of the USaR area mapped without coordination compared to the
96.2% reached with coordination. Similarly, without coordination, the homogeneous team finds 59.3%
of the victims while with coordination, this value reaches 82.3%. For both of these metrics, the global
coordination controller achieves approximately 50% increase within the allocated mission time, which
is consistent with the expectation of doubling the total number of robots operating at the same time.

6
Conclusions & Topics for Future

Research

Addressing the autonomy needs of a heterogeneous team of robots in the search and rescue (SaR)
domain is a multifaceted challenge that requires both rapid exploration of unknown environments and
a reliable mechanism for determining which tasks are most relevant at any given time. Effective per-
formance depends not only on identifying and prioritizing tasks among competing objectives but also
on understanding the alternative ways to achieve similar goals while minimizing overall mission time.
In response to these demands, this thesis introduced a unified architecture for autonomous multi-robot
teams operating in urban search and rescue (USaR) missions, aimed at achieving adaptive and energy-
aware coordination under dynamically evolving task conditions. The design and implementation of the
proposed framework were grounded in key challenges identified in the SaR literature. To this end, the
work introduced a generalized system model that decouples robot identity from fixed roles, instead
characterizing each robot through its available heterogeneous actions and the resulting environmental
observations. This abstraction enabled an observation-driven notion of task formation, allowing robots
to dynamically interpret and evaluate their own roles within a shared, mission-level objective space.

The first research question posed in this thesis concerned the dynamic prioritization and selection
of tasks in a USaR environment using a combination of fuzzy reasoning and multi-criteria utility model-
ing, and how this approach improves flexibility and decision quality over static or heuristic allocations.
In response, the research introduced a two-layer decision framework that first utilizes a fuzzy infer-
ence system to evaluate imprecise or emergent task characteristics and then applies a multi-criteria
decision-making (MCDM) utility model to rank candidate robot actions across mission-relevant factors,
such as urgency and information gain. This dynamic, observation-driven prioritization enables robots
to continually reassess task importance as conditions evolve, achieving a level of adaptability that fixed
heuristics cannot match. In contrast to static rule-based methods, which often fail when confronted with
unexpected tasks or changing mission priorities, the fuzzy–MCDM approach offers greater flexibility by
encoding human-like reasoning about task value and adjusting to new information on the fly. This two-
stage mapping effectively converts complex, uncertain inputs into a unified priority metric at each plan-
ning step, enabling continuous adaptation, while the dynamicity of the task allocations as the missions
progresses is maintained by the robust predictive framework the MPC modeling provides. As a result,
the designed framework consistently improves the decision quality. Experiments demonstrated that
the proposed task allocation strategy identified victims more quickly and achieved higher overall utility
scores than heuristic baselines in the majority of 17 simulated single-robot scenarios. Specifically, the
methods using the proposed decision-making prioritization architecture found two to three times more
victims compared to other methods, while balancing high area mapping percentages, which is a com-
peting objective in the formulated case study. Robots employing this adaptive prioritization reached
critical targets sooner and maintained higher victim health levels, demonstrating more effective focus
on urgent, high-value tasks without relying on mission-specific hand-tuned heuristics. Thus, for the
first research question, it is concluded that the fuzzy–MCDM strategy provides a more flexible and ro-
bust task allocation approach, markedly improving decision quality in dynamic task expressions within

100

101

USaR environments.

The second research question focused on how to reduce the computational complexity of predictive
decision-making, arising from the generalized system model, to enable real-time planning, and how the
resulting controller performs in a fully autonomous single-robot setting with charging constraints and a
mobile central agent. To address this, the thesis formulated a model predictive control (MPC) approach
for task planning and introduced a novel two-stage strategy to make it tractable in real time. In the first
stage, each robot’s local controller prunes the decision space by filtering for a subset of high-value,
nearly independent candidate actions using the fuzzy utility outputs and by removing overlaps in their
predicted observations. In the second stage, the controller solves a simplified scheduling problem over
this reduced action set with a mixed-integer linear programming (MILP) implementation, essentially
an orienteering-type routing optimization that incorporates travel times, charging opportunities, and
safe-return energy constraints. This decomposition significantly reduces the combinatorial complex-
ity of planning while preserving the multi-criteria structure of the decision model, effectively enabling
real-time, online re-planning. Most MILP solvers in contemporary use employ efficient branch-and-cut
structures that are well-suited to the sequential ordering maintained by the proposed constraints of the
optimization problem for both local and global controllers. This effectively narrows down the search
space to the most relevant action-task pairings as more resources are allocated to the optimization
process. Furthermore, the linear encoding of the model predictions and action ordering enables direct
implementations on hardware that can facilitate parallel processing, making the proposed method of
this thesis a strong architecture for real-life embedded implementation. In a fully autonomous single-
robot scenario, where the robot periodically returns to a mobile central charging agent, the controller
demonstrated performance comparable to that of a state-of-the-art nonlinear MPC solution, but with
significantly greater efficiency. While the comparisons to non-predictive control approaches highlighted
the importance of a look-ahead structure within an evolving mission, the proposed MPC linearization
achieved similar mission outcomes to a genetic algorithm baseline that directly solved the nonlinear
problem. Yet, the proposed methodology produced high-quality solutions significantly faster, meet-
ing real-time requirements that the metaheuristic struggled to meet. The controller proved capable
of continuous energy-aware operation, proactively scheduling charge-return actions and navigating
with safe-return constraints always in mind. In practice, the robot planned ahead to loop back toward
the mobile charger before battery depletion and optimized its route for both mission utility and power
management. Additionally, the local controller maintained scalability with respect to increasing task
density and spatial complexity while remaining responsive to the evolving mission-level information
flow. Thus, for the second research question, it is established that the two-stage MILP linearization of
the generalized MPC framework, applicable to all types of robotic missions that can be represented by
the mathematical model provided in this thesis, meets real-time requirements and enables continuous,
energy-aware operation without sacrificing planning quality for small to medium prediction horizons.

The third research question investigated the impact of integrating a global hierarchical extension
on top of the local controllers on the coordination, scalability, and overall performance of a multi-robot
team with abstract heterogeneity, particularly in terms of conflict resolution and task consistency under
increasing mission complexity. The thesis addressed this by introducing a global coordination con-
troller that acts as a higher-level supervisor to the individual robot planners. This global layer takes
the tentative plans from each local controller and merges them into a consistent team-wide strategy
whenever a coordination criterion is met, explicitly resolving conflicts such as duplicate task assign-
ments and overlapping action regions. Since the results from the individual robots are already locally
optimal and feasible in terms of safe return, a global redistribution of the combined pool of coordinating
robot actions is sufficient for approximating a synchronous and mission-level optimal behavior of the
robotic team. The addition of this hierarchical coordinator significantly improved multi-robot collabora-
tion. Tasks were allocated to the most suitable robots based on capabilities and workload, minimizing
redundant efforts and idle time, while maintaining a unified mission focus even as new tasks emerged.
This led to improved scalability and overall performance. In heterogeneous two-robot trials, for exam-
ple, involving an unmanned aerial vehicle (UAV) and a crawler-type unmanned ground vehicle (UGV),
the coordinated system achieved near-complete area coverage and victim detection rates above 90%,
compared to substantially lower performance without coordination. The globally coordinated team also
demonstrated faster exploration in early mission phases, as evidenced by approximately twice the rise
times of mapped areas and detected victim counts in the presence of the coordination controller. In

102

homogeneous-team scenarios, introducing the global coordination layer similarly enhanced effective-
ness, with coordinated teams completing more mission objectives in less time. These results confirm
that the hierarchical extension enhances task consistency, resource distribution, and mission through-
put. The coordination mechanism, designed to handle abstract heterogeneity through capability-based
rather than role-based modeling, scaled smoothly to various team compositions and mission scales
without requiring hard-coded behavioral logic. Thus, for the third research question, it is observed
that the global coordination mechanism significantly enhances the operational effectiveness of both
heterogeneous and homogeneous team compositions, while eliminating redundant task allocations by
establishing a mission-level preference for ambiguous robot capabilities.

In summary, the findings across all three questions demonstrate a cohesive advancement in au-
tonomous SaR task allocation. This thesis established a unified hierarchical control architecture that
supports adaptive task prioritization, efficient real-time planning under operational constraints, and coor-
dinated multi-robot behavior. The full-stack approach yielded consistent gains in mission performance,
including faster victim recovery, improved utility accumulation, and more complete area exploration,
even under energy and communication limitations. By tightly integrating fuzzy-MCDM-based utility
modeling with scalable predictive control and coordination layers, the system responded effectively
to evolving task demands without relying on static policies or handcrafted roles. The architecture’s
capacity for autonomous operation, proactive energy scheduling, and dynamic conflict resolution was
validated across extensive scenario-based evaluations. Looking forward, several extensions could sig-
nificantly enhance the capabilities and applicability of the proposed architecture. First, allowing dynamic
adjustment of the MCDM utility weights throughout the mission would enable the system to shift its pri-
orities, for example, emphasizing exploration early on and focusing on victim retrieval as information
accumulates, mirroring real-world strategic adaptations. Second, introducing temporal logic constraints,
such as requiring certain actions to follow others (e.g., transporting a payload after picking it up), would
support more complex and goal-oriented behaviors beyond the current atomic task model. In parallel,
integrating learning-based models could enable robots to refine their utility estimations and task prioriti-
zation based on environmental feedback and past performance, thereby improving robustness in novel
or uncertain conditions. Another promising direction is integrating a framework for handling planned
tasks that are expected to become available in a known future time. By enabling robots to anticipate
and schedule tasks in advance, the system can support more proactive and temporally coordinated
behaviors, thereby improving overall mission efficiency and responsiveness to time-sensitive oppor-
tunities. Beyond these improvements to decision-making, future work could also explore scalability
under larger teams and partial observability, integration with human operators for semi-autonomous
coordination, and real-world deployment to assess performance under physical constraints such as
noisy sensing, energy degradation, or communication failures. Together, these directions represent a
promising path toward more adaptive, interpretable, and resilient autonomous SaR systems.

References

[1] CRED. EM-DAT - the International Disaster Database. UCLouvain, 2023. URL: www.emdat.be.
[2] Sean Grogan, Robert Pellerin, and Michel Gamache. “The Use of Unmanned Aerial Vehicles and

Drones in Search and Rescue Operations - a Survey”. In: Proceedings of the PROLOG. Hull, UK,
2018.

[3] R.R. Murphy et al. “Mobility and sensing demands in USAR”. In: vol. 1. IEEE Computer Society,
2000, pp. 138–142. DOI: 10.1109/IECON.2000.973139.

[4] Alaa Khamis, Ahmed Hussein, and Ahmed Elmogy. “Multi-robot task allocation: A review of the
state-of-the-art”. In:Studies in Computational Intelligence 604 (2015), pp. 31–51. ISSN: 1860949X.
DOI: 10.1007/978-3-319-18299-5_2.

[5] Reza Hassanzadeh and Zorica Nedovic-Budic. “Where to Go First: Prioritization of Damaged
Areas for Allocation of Urban Search and Rescue (USAR) Operations (PI-USAR Model)”. In:
Geomatics, Natural Hazards and Risk 7.4 (2016), pp. 1337–1366. DOI: 10.1080/19475705.
2015.1058861.

[6] Christopher de Koning and Anahita Jamshidnejad. “Hierarchical Integration of Model Predictive
and Fuzzy Logic Control for Combined Coverage and Target-Oriented Search-and-Rescue via
Robots with Imperfect Sensors”. In: Journal of Intelligent and Robotic Systems: Theory and Ap-
plications 107 (3 Mar. 2023). ISSN: 15730409. DOI: 10.1007/s10846-023-01833-2.

[7] Nicola Basilico and Francesco Amigoni. “Exploration strategies based on multi-criteria decision
making for searching environments in rescue operations”. In: Autonomous Robots 31 (4 Nov.
2011), pp. 401–417. ISSN: 09295593. DOI: 10.1007/s10514-011-9249-9.

[8] Milt Statheropoulos et al. “Factors That Affect Rescue Time in Urban Search and Rescue (USAR)
Operations”. In: Nat Hazards 75 (2015), pp. 57–69.

[9] Robin R Murphy. Disaster Robotics. USA: MIT Press, Sept. 2017. ISBN: 978-953-51-3376-6.
[10] Anna Rom and Ilan Kelman. “Search Without Rescue? Evaluating the International Search and

Rescue Response to Earthquake Disasters”. In: BMJ Global Health 5.12 (2020).
[11] Eduardo Reinoso, Miguel A. Jaimes, and Luis Esteva. “Estimation of Life Vulnerability Inside

Buildings During Earthquakes”. In:Structure and Infrastructure Engineering 14.8 (2018), pp. 1140–
1152. DOI: 10.1080/15732479.2017.1401097.

[12] Navid Hooshangi et al. “Urban Search and Rescue (USAR) Simulation System: Spatial Strategies
for Agent Task Allocation Under Uncertain Conditions”. In: Natural Hazards and Earth System
Sciences 21.11 (2021), pp. 3449–3463. DOI: 10.5194/nhess-21-3449-2021.

[13] J.L. Burke and R.R. Murphy. “Human-Robot Interaction in USAR Technical Search: Two Heads
are Better ThanOne”. In:RO-MAN 2004. 13th IEEE InternationalWorkshop on Robot and Human
Interactive Communication. 2004, pp. 307–312. DOI: 10.1109/ROMAN.2004.1374778.

[14] Styliani Verykokou et al. “3D Reconstruction of Disaster Scenes for Urban Search and Rescue”.
In:Multimedia Tools and Applications 77 (8 Apr. 2018). sensory requirements of UAVs, pp. 9691–
9717. ISSN: 15737721. DOI: 10.1007/s11042-017-5450-y.

[15] J.L. Casper and R.R. Murphy. “Workflow Study on Human-Robot Interaction in USAR”. In: Pro-
ceedings 2002 IEEE International Conference on Robotics and Automation. Vol. 2. 2002, 1997–
2003 vol.2. DOI: 10.1109/ROBOT.2002.1014834.

[16] Shashank Govindaraj et al. “Command and Control Systems for Search and Rescue Robots”. In:
Search and Rescue Robotics. Rijeka: IntechOpen, 2017. Chap. 8. DOI: 10.5772/intechopen.
69495. URL: https://doi.org/10.5772/intechopen.69495.

103

www.emdat.be
https://doi.org/10.1109/IECON.2000.973139
https://doi.org/10.1007/978-3-319-18299-5_2
https://doi.org/10.1080/19475705.2015.1058861
https://doi.org/10.1080/19475705.2015.1058861
https://doi.org/10.1007/s10846-023-01833-2
https://doi.org/10.1007/s10514-011-9249-9
https://doi.org/10.1080/15732479.2017.1401097
https://doi.org/10.5194/nhess-21-3449-2021
https://doi.org/10.1109/ROMAN.2004.1374778
https://doi.org/10.1007/s11042-017-5450-y
https://doi.org/10.1109/ROBOT.2002.1014834
https://doi.org/10.5772/intechopen.69495
https://doi.org/10.5772/intechopen.69495
https://doi.org/10.5772/intechopen.69495

References 104

[17] ElenaMessina and Adam Jacoff. “Performance Standards for Urban Search and Rescue Robots”.
In:Unmanned Systems Technology VIII. Vol. 6230. International Society for Optics and Photonics.
SPIE, 2006, p. 62301V. DOI: 10.1117/12.663320.

[18] Binoy Shah and Howie Choset. “Survey on Urban Search and Rescue Robots”. In: Journal of the
Robotics Society of Japan 22.5 (2004), pp. 582–586. DOI: 10.7210/jrsj.22.582.

[19] Jinguo Liu et al. “Current research, key performances and future development of search and
rescue robots”. In: Frontiers of Mechanical Engineering in China 2 (4 Oct. 2007), pp. 404–416.
ISSN: 16733479. DOI: 10.1007/s11465-007-0070-2.

[20] Markus Eich et al. “A versatile stair-climbing robot for search and rescue applications”. In: 2008,
pp. 35–40. ISBN: 9781424420322. DOI: 10.1109/SSRR.2008.4745874.

[21] L. Bruzzone and G. Quaglia. “Review article: locomotion systems for ground mobile robots in
unstructured environments”. In: Mechanical Sciences 3.2 (2012), pp. 49–62. DOI: 10.5194/ms-
3-49-2012. URL: https://ms.copernicus.org/articles/3/49/2012/.

[22] Karsten Berns et al. “Unmanned Ground Robots for Rescue Tasks”. In: Search and Rescue
Robotics. Rijeka: IntechOpen, 2017. Chap. 4. DOI: 10.5772/intechopen.69491. URL: https:
//doi.org/10.5772/intechopen.69491.

[23] Yugang Liu and Goldie Nejat. “Robotic urban search and rescue: A survey from the control per-
spective”. In: Journal of Intelligent and Robotic Systems: Theory and Applications 72 (2 Nov.
2013), pp. 147–165. ISSN: 15730409. DOI: 10.1007/s10846-013-9822-x.

[24] Aksel Andreas Transeth, Kristin Ytterstad Pettersen, and Pal Liljeback. “A survey on snake robot
modeling and locomotion”. In: Robotica 27.7 (2009), pp. 999–1015. DOI: 10.1017/S0263574709
005414.

[25] Houxiang Zhang et al. A Novel Modular Mobile Robot Prototype for Urban Search and Rescue.
2008. DOI: 10.5772/6055. URL: www.intechopen.com.

[26] Sangchul Han et al. “Snake Robot Gripper Module for Search and Rescue in Narrow Spaces”.
In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 1667–1673. DOI: 10.1109/LRA.2022.
3140812.

[27] Alexander Ferworn et al. “Dog and Snake Marsupial Cooperation for Urban Search and Rescue
Deployment”. In: 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR). 2012, pp. 1–5. DOI: 10.1109/SSRR.2012.6523887.

[28] Tetsushi Kamegawa et al. “Development of a separable search-and-rescue robot composed of
a mobile robot and a snake robot”. In: Advanced Robotics 34.2 (2020), pp. 132–139. DOI: 10.
1080/01691864.2019.1691941.

[29] Justin Huff, Stephen Conyers, and Richard Voyles. “MOTHERSHIP - A serpentine tread/limb
hybrid marsupial robot for USAR”. In: 2012. ISBN: 9781479901654. DOI: 10.1109/SSRR.2012.
6523893.

[30] Ariel Braverman. “Unmanned aerial systems (UAS) in urban search and rescue-methodology,
capacity development, and integration”. In: Journal of Emergency Management (1 Jan. 2021),
pp. 33–38. ISSN: 33735433. DOI: 10.5055/jem.0496.

[31] Rudin Konrad, Daniel Serrano, and Pascal Strupler. “Unmanned Aerial Systems”. In: Search and
Rescue Robotics. Rijeka: IntechOpen, 2017. Chap. 3. DOI: 10.5772/intechopen.69490. URL:
https://doi.org/10.5772/intechopen.69490.

[32] Scott Morton and Nikolaos Papanikolopoulos. A Small Hybrid Ground-Air Vehicle Concept. 2017.
ISBN: 9781538626825.

[33] Chinthaka Premachandra et al. “A study on development of a hybrid aerial terrestrial robot system
for avoiding ground obstacles by flight”. In: IEEE/CAA Journal of Automatica Sinica 6 (1 Jan.
2019), pp. 327–336. ISSN: 23299274. DOI: 10.1109/JAS.2018.7511258.

[34] Di Zhang et al. “Development of a Hybrid Locomotion Robot for Earthquake Search and Rescue
in Partially Collapsed Building”. In: 2019 IEEE International Conference on Mechatronics and
Automation (ICMA). 2019, pp. 2559–2564. DOI: 10.1109/ICMA.2019.8816327.

https://doi.org/10.1117/12.663320
https://doi.org/10.7210/jrsj.22.582
https://doi.org/10.1007/s11465-007-0070-2
https://doi.org/10.1109/SSRR.2008.4745874
https://doi.org/10.5194/ms-3-49-2012
https://doi.org/10.5194/ms-3-49-2012
https://ms.copernicus.org/articles/3/49/2012/
https://doi.org/10.5772/intechopen.69491
https://doi.org/10.5772/intechopen.69491
https://doi.org/10.5772/intechopen.69491
https://doi.org/10.1007/s10846-013-9822-x
https://doi.org/10.1017/S0263574709005414
https://doi.org/10.1017/S0263574709005414
https://doi.org/10.5772/6055
www.intechopen.com
https://doi.org/10.1109/LRA.2022.3140812
https://doi.org/10.1109/LRA.2022.3140812
https://doi.org/10.1109/SSRR.2012.6523887
https://doi.org/10.1080/01691864.2019.1691941
https://doi.org/10.1080/01691864.2019.1691941
https://doi.org/10.1109/SSRR.2012.6523893
https://doi.org/10.1109/SSRR.2012.6523893
https://doi.org/10.5055/jem.0496
https://doi.org/10.5772/intechopen.69490
https://doi.org/10.5772/intechopen.69490
https://doi.org/10.1109/JAS.2018.7511258
https://doi.org/10.1109/ICMA.2019.8816327

References 105

[35] Francisca Rosique et al.A systematic review of perception system and simulators for autonomous
vehicles research. Feb. 2019. DOI: 10.3390/s19030648.

[36] Steve Burion. “Diploma Work Human Detection for Robotic Urban Search and Rescue Human
Detection for Robotic Urban Search and Rescue”. PhD thesis. École Polytechnique Fédérale de
Lausanne, 2004.

[37] Andreas T. Güntner et al. “Sniffing Entrapped Humans with Sensor Arrays”. In: Analytical Chem-
istry 90 (8 Apr. 2018), pp. 4940–4945. ISSN: 15206882. DOI: 10.1021/acs.analchem.8b00237.

[38] Nathan Michael et al. “Collaborative mapping of an earthquake-damaged building via ground
and aerial robots”. In: Journal of Field Robotics 29 (5 Sept. 2012), pp. 832–841. ISSN: 15564959.
DOI: 10.1002/rob.21436.

[39] Jorge Pena Queralta et al. “Collaborative multi-robot search and rescue: Planning, coordination,
perception, and active vision”. In: IEEE Access 8 (2020), pp. 191617–191643. ISSN: 21693536.
DOI: 10.1109/ACCESS.2020.3030190.

[40] A. Mäyrä et al. “Optical sensors and algorithms for life-sign detection in USaR-operations”. In: AIP
Conference Proceedings. Vol. 1537. 2013, pp. 41–46. ISBN: 9780735411616. DOI: 10.1063/1.
4809690.

[41] Fahed Awad and Rufaida Shamroukh. “Human Detection by Robotic Urban Search and Rescue
Using Image Processing and Neural Networks”. In: International Journal of Intelligence Science
04 (02 2014), pp. 39–53. ISSN: 2163-0283. DOI: 10.4236/ijis.2014.42006.

[42] Paulo Borges et al. “A Survey on Terrain Traversability Analysis for Autonomous Ground Vehicles:
Methods, Sensors, and Challenges”. In: Field Robotics 2 (1 Mar. 2022), pp. 1567–1627. DOI:
10.55417/fr.2022049.

[43] Maurizio Pollino et al. “Assessing earthquake-induced urban rubble by means of multiplatform
remotely sensed data”. In: ISPRS International Journal of Geo-Information 9 (4 Apr. 2020). ISSN:
22209964. DOI: 10.3390/ijgi9040262.

[44] Albert Y. Chen et al. “Supporting Urban Search and Rescue with digital assessments of structures
and requests of response resources”. In: Advanced Engineering Informatics 26 (4 Oct. 2012),
pp. 833–845. ISSN: 14740346. DOI: 10.1016/j.aei.2012.06.004.

[45] Quentin Picard et al. A survey on real-time 3D scene reconstruction with SLAM methods in em-
bedded systems. 2023. arXiv: 2309.05349 [cs.RO]. URL: https://arxiv.org/abs/2309.
05349.

[46] Xieyuanli Chen et al. “Robust SLAM system based on monocular vision and LiDAR for robotic ur-
ban search and rescue”. In: 2017 IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR). 2017, pp. 41–47. DOI: 10.1109/SSRR.2017.8088138.

[47] F Yamazaki et al. Construction of 3D models of buildings damaged by earthquakes using UAV
aerial images. 2015. URL: https://www.researchgate.net/publication/283506944.

[48] Shiyong Zhang et al. “Fast Active Aerial Exploration for Traversable Path Finding of Ground
Robots in Unknown Environments”. In: IEEE Transactions on Instrumentation and Measurement
71 (2022). ISSN: 15579662. DOI: 10.1109/TIM.2022.3158425.

[49] Dimitrios Chatziparaschis, Michail G. Lagoudakis, and Panagiotis Partsinevelos. “Aerial and ground
robot collaboration for autonomous mapping in search and rescue missions”. In: Drones 4 (4 Dec.
2020), pp. 1–24. ISSN: 2504446X. DOI: 10.3390/DRONES4040079.

[50] Héctor Azpúrua, Mario F.M. Campos, and Douglas G. Macharet. “Three-dimensional Terrain
Aware Autonomous Exploration for Subterranean and Confined Spaces”. In: Proceedings - IEEE
International Conference on Robotics and Automation. Vol. 2021-May. Institute of Electrical and
Electronics Engineers Inc., 2021, pp. 2443–2449. ISBN: 9781728190778. DOI: 10.1109/ICRA4
8506.2021.9561099.

[51] Bernardo Esteves Henriques, Mirko Baglioni, and Anahita Jamshidnejad. “Camera-based Map-
ping in Search-and-Rescue via Flying and Ground Robot Teams”. In: Machine Vision and Appli-
cations 35.5 (Aug. 2024), p. 117. ISSN: 1432-1769. DOI: 10.1007/s00138-024-01594-4. URL:
https://doi.org/10.1007/s00138-024-01594-4.

https://doi.org/10.3390/s19030648
https://doi.org/10.1021/acs.analchem.8b00237
https://doi.org/10.1002/rob.21436
https://doi.org/10.1109/ACCESS.2020.3030190
https://doi.org/10.1063/1.4809690
https://doi.org/10.1063/1.4809690
https://doi.org/10.4236/ijis.2014.42006
https://doi.org/10.55417/fr.2022049
https://doi.org/10.3390/ijgi9040262
https://doi.org/10.1016/j.aei.2012.06.004
https://arxiv.org/abs/2309.05349
https://arxiv.org/abs/2309.05349
https://arxiv.org/abs/2309.05349
https://doi.org/10.1109/SSRR.2017.8088138
https://www.researchgate.net/publication/283506944
https://doi.org/10.1109/TIM.2022.3158425
https://doi.org/10.3390/DRONES4040079
https://doi.org/10.1109/ICRA48506.2021.9561099
https://doi.org/10.1109/ICRA48506.2021.9561099
https://doi.org/10.1007/s00138-024-01594-4
https://doi.org/10.1007/s00138-024-01594-4

References 106

[52] Daniel S. Drew. “Multi-Agent Systems for Search and Rescue Applications”. In: Current Robotics
Reports (2 2021), pp. 189–200. DOI: 10.1007/s43154-021-00048-3/Published.

[53] Cyril Robin and Simon Lacroix. “Multi-robot target detection and tracking: taxonomy and survey”.
In: Autonomous Robots 40 (4 Apr. 2016), pp. 729–760. ISSN: 15737527. DOI: 10.1007/s10514-
015-9491-7.

[54] J. Ricardo Sánchez-Ibáñez, Carlos J. Pérez-Del-pulgar, and Alfonso García-Cerezo. Path plan-
ning for autonomous mobile robots: A review. Dec. 2021. DOI: 10.3390/s21237898.

[55] David González et al. “A Review of Motion Planning Techniques for Automated Vehicles”. In:
IEEE Transactions on Intelligent Transportation Systems 17 (4 Apr. 2016), pp. 1135–1145. ISSN:
15249050. DOI: 10.1109/TITS.2015.2498841.

[56] Alberto Valero-Gomez et al. “Fast Marching Methods in Path Planning”. In: IEEE Robotics Au-
tomation Magazine 20 (Dec. 2013), pp. 111–120.

[57] MohdNayab Zafar and J. C.Mohanta. “Methodology for Path Planning andOptimization of Mobile
Robots: A Review”. In: Procedia Computer Science. Vol. 133. Elsevier B.V., 2018, pp. 141–152.
DOI: 10.1016/j.procs.2018.07.018.

[58] Jianqiang Li et al. “A Hybrid Path Planning Method in Unmanned Air/Ground Vehicle (UAV/UGV)
Cooperative Systems”. In: IEEE Transactions on Vehicular Technology 65 (12Dec. 2016), pp. 9585–
9596. ISSN: 00189545. DOI: 10.1109/TVT.2016.2623666.

[59] Mohammad R. Alenezi and Abdullah M. Almeshal. “Optimal Path Planning for a Remote Sens-
ing Unmanned Ground Vehicle in a Hazardous Indoor Environment”. In: Intelligent Control and
Automation 09 (04 2018), pp. 147–157. ISSN: 2153-0653. DOI: 10.4236/ica.2018.94011.

[60] Micael S. Couceiro, Rui P. Rocha, and Nuno M.F. Ferreira. “A novel multi-robot exploration ap-
proach based on Particle SwarmOptimization algorithms”. In: 2011, pp. 327–332. ISBN: 9781612847696.
DOI: 10.1109/SSRR.2011.6106751.

[61] Junyan Hu et al. “Voronoi-BasedMulti-Robot Autonomous Exploration in Unknown Environments
via Deep Reinforcement Learning”. In: IEEE Transactions on Vehicular Technology 69 (12 Dec.
2020), pp. 14413–14423. ISSN: 19399359. DOI: 10.1109/TVT.2020.3034800.

[62] Jongho Shin, Dongjun Kwak, and Kiho Kwak. “Model Predictive Path Planning for an Autonomous
Ground Vehicle in Rough Terrain”. In: International Journal of Control, Automation and Systems
19 (6 June 2021), pp. 2224–2237. ISSN: 20054092. DOI: 10.1007/s12555-020-0267-2.

[63] Patrick Scheffe et al. Receding Horizon Control Using Graph Search for Multi-Agent Trajectory
Planning. Nov. 2022. DOI: 10.36227/techrxiv.16621963.v2.

[64] Jong Wook Park et al. “Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoid-
ance”. In: Computational Intelligence and Neuroscience 2016 (2016). ISSN: 16875273. DOI: 10.
1155/2016/6047906.

[65] K.N. McGuire, G.C.H.E. de Croon, and K. Tuyls. “A comparative study of bug algorithms for robot
navigation”. In: Robotics and Autonomous Systems 121 (2019), p. 103261. ISSN: 0921-8890.
DOI: https://doi.org/10.1016/j.robot.2019.103261. URL: https://www.sciencedirect.
com/science/article/pii/S0921889018306687.

[66] Hailong Qin et al. “Autonomous Exploration and Mapping System Using Heterogeneous UAVs
and UGVs in GPS-Denied Environments”. In: IEEE Transactions on Vehicular Technology 68 (2
Feb. 2019), pp. 1339–1350. ISSN: 00189545. DOI: 10.1109/TVT.2018.2890416.

[67] Farzad Niroui et al. “Deep Reinforcement Learning Robot for Search and Rescue Applications:
Exploration in Unknown Cluttered Environments”. In: IEEE Robotics and Automation Letters 4 (2
Apr. 2019), pp. 610–617. ISSN: 23773766. DOI: 10.1109/LRA.2019.2891991.

[68] Alejandro Sarmiento, Rafael Murrieta-Cid, and Seth Hutchinson. “An efficient motion strategy
to compute expected-time locally optimal continuous search paths in known environments”. In:
Advanced Robotics 23 (12-13 Sept. 2009). path cost on a graph with dynamic weights, pareto
optimal heuristic, similar to de Koning, pp. 1533–1560. ISSN: 01691864. DOI: 10.1163/016918
609X12496339799170.

https://doi.org/10.1007/s43154-021-00048-3/Published
https://doi.org/10.1007/s10514-015-9491-7
https://doi.org/10.1007/s10514-015-9491-7
https://doi.org/10.3390/s21237898
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1016/j.procs.2018.07.018
https://doi.org/10.1109/TVT.2016.2623666
https://doi.org/10.4236/ica.2018.94011
https://doi.org/10.1109/SSRR.2011.6106751
https://doi.org/10.1109/TVT.2020.3034800
https://doi.org/10.1007/s12555-020-0267-2
https://doi.org/10.36227/techrxiv.16621963.v2
https://doi.org/10.1155/2016/6047906
https://doi.org/10.1155/2016/6047906
https://doi.org/https://doi.org/10.1016/j.robot.2019.103261
https://www.sciencedirect.com/science/article/pii/S0921889018306687
https://www.sciencedirect.com/science/article/pii/S0921889018306687
https://doi.org/10.1109/TVT.2018.2890416
https://doi.org/10.1109/LRA.2019.2891991
https://doi.org/10.1163/016918609X12496339799170
https://doi.org/10.1163/016918609X12496339799170

References 107

[69] Ryan J. Meuth et al. “Adaptive task allocation for search area coverage”. In: 2009 IEEE Interna-
tional Conference on Technologies for Practical Robot Applications, TePRA 2009. 2009, pp. 67–
74. ISBN: 9781424449927. DOI: 10.1109/TEPRA.2009.5339643.

[70] James R Riehl, Gaemus E Collins, and João P Hespanha. Cooperative Graph-Based Model
Predictive Search. 2007.

[71] Geoffrey A. Hollinger and Sanjiv Singh. “Multirobot Coordination With Periodic Connectivity: The-
ory and Experiments”. In: IEEE Transactions on Robotics 28.4 (2012), pp. 967–973. DOI: 10.
1109/TRO.2012.2190178.

[72] Bingxi Li et al. “Planning Large-Scale Search and Rescue using Team of UAVs and Charging Sta-
tions”. In: 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR
2018. Institute of Electrical and Electronics Engineers Inc., Sept. 2018. ISBN: 9781538655726.
DOI: 10.1109/SSRR.2018.8468631.

[73] Samira Hayat et al. “Multi-objective UAV path planning for search and rescue”. In: Proceedings -
IEEE International Conference on Robotics and Automation. Institute of Electrical and Electronics
Engineers Inc., July 2017, pp. 5569–5574. ISBN: 9781509046331. DOI: 10.1109/ICRA.2017.
7989656.

[74] Julian DeHoog, StephenCameron, and Arnoud Visser. “Dynamic team hierarchies in communication-
limited multi-robot exploration”. In: 8th IEEE International Workshop on Safety, Security, and Res-
cue Robotics, SSRR-2010. 2010. ISBN: 9781424488995. DOI: 10.1109/SSRR.2010.5981573.

[75] Ravi Kant and Abhishek Mishra. “The Orienteering Problem: A Review of Variants and Solution
Approaches”. In: Proceedings of the 26thWorld Multi-Conference on Systemics, Cybernetics and
Informatics (WMSCI 2022). Orlando, FL, USA: International Institute of Informatics and Systemics
(IIIS), 2022, pp. 41–46. ISBN: 978-1-950492-64-0. DOI: 10.54808/WMSCI2022.01.41.

[76] Gorka Kobeaga, María Merino, and Jose A. Lozano. “An efficient evolutionary algorithm for the
orienteering problem”. In: Computers and Operations Research 90 (2018), pp. 42–59. ISSN:
0305-0548. DOI: https://doi.org/10.1016/j.cor.2017.09.003. URL: https://www.
sciencedirect.com/science/article/pii/S0305054817302241.

[77] Félix Quinton, Christophe Grand, and Charles Lesire. “Market Approaches to the Multi-Robot
Task Allocation Problem: a Survey”. In: Journal of Intelligent & Robotic Systems 107 (Feb. 2023).
DOI: 10.1007/s10846-022-01803-0.

[78] Mohamed Badreldin, Ahmed Hussein, and Alaa Khamis. “A Comparative Study between Opti-
mization and Market-Based Approaches to Multi-Robot Task Allocation”. In: Advances in Artificial
Intelligence 2013 (Nov. 2013), pp. 1–11. ISSN: 1687-7470. DOI: 10.1155/2013/256524.

[79] Athanasios Tsalatsanis, Ali Yalcin, and Kimon. P. Valavanis. “Dynamic task allocation in cooper-
ative robot teams”. In: Robotica 30.5 (2012), pp. 721–730. DOI: 10.1017/S0263574711000920.

[80] Ruofei Bai et al. “Hierarchical Multi-robot Strategies Synthesis and Optimization under Individual
and Collaborative Temporal Logic Specifications”. In: (Oct. 2021). DOI: 10.1016/j.robot.2022.
104085. URL: http://arxiv.org/abs/2110.11162%20http://dx.doi.org/10.1016/j.robot.
2022.104085.

[81] Meng Guo et al. “Hierarchical Motion Planning under Probabilistic Temporal Tasks and Safe-
Return Constraints”. In: (Feb. 2023). URL: http://arxiv.org/abs/2302.05242.

https://doi.org/10.1109/TEPRA.2009.5339643
https://doi.org/10.1109/TRO.2012.2190178
https://doi.org/10.1109/TRO.2012.2190178
https://doi.org/10.1109/SSRR.2018.8468631
https://doi.org/10.1109/ICRA.2017.7989656
https://doi.org/10.1109/ICRA.2017.7989656
https://doi.org/10.1109/SSRR.2010.5981573
https://doi.org/10.54808/WMSCI2022.01.41
https://doi.org/https://doi.org/10.1016/j.cor.2017.09.003
https://www.sciencedirect.com/science/article/pii/S0305054817302241
https://www.sciencedirect.com/science/article/pii/S0305054817302241
https://doi.org/10.1007/s10846-022-01803-0
https://doi.org/10.1155/2013/256524
https://doi.org/10.1017/S0263574711000920
https://doi.org/10.1016/j.robot.2022.104085
https://doi.org/10.1016/j.robot.2022.104085
http://arxiv.org/abs/2110.11162%20http://dx.doi.org/10.1016/j.robot.2022.104085
http://arxiv.org/abs/2110.11162%20http://dx.doi.org/10.1016/j.robot.2022.104085
http://arxiv.org/abs/2302.05242

	Preface
	Summary
	Nomenclature
	Introduction
	Research Questions
	Research Contributions
	Thesis Structure

	Literature Review
	Domain Characteristics
	USaR Environment
	Performance Factors
	Design Considerations

	Robotics in USaR
	Robot and Actuator Types
	Sensing, Perception, and Mapping
	Control Systems
	Path Planning
	Task Allocation

	Methodology
	Problem Formulation
	Environment & Robot Modeling
	System Modeling Summary

	Task Allocation Modeling
	Fuzzy Action & Task Evaluation
	MCDM Formulation
	Optimization Problem Formulation

	Control Architecture
	Local Robot Controllers
	First Stage: Independent Action Filtering
	Second Stage: Optimal Selection & Ordering of the Reduced Action Set
	Traversal Constraints
	Safe Return Constraints
	Utility Constraints
	Optimization Problem

	Global Coordination Controller
	Combining Coordinating Robot Schedules
	Design of the Extended Hierarchical MILP Task Allocation
	Traversal Constraints
	Conflict Resolution Constraints
	Safe Return Constraints
	Utility Constraints
	Optimization Problem

	Central Agent Controller

	Case Study
	Simulation Setup
	Environment Implementation
	Action Types & Implementation
	Task Set Implementation
	Fuzzy System Implementation

	Experiment Setup
	Implemented Controllers
	Mission Metrics
	Mission Parameters

	Results & Discussions
	Demonstration of the Task Allocation Behavior
	Single Robot Experiments
	Behavior of the Control Architecture
	Qualitative Analysis
	Quantitative Analysis

	Analysis of the Control Architecture in Structured Experiments

	Multi-Robot Experiments
	Behavior of the Global Coordination Controller
	Qualitative Analysis
	Quantitative Analysis

	Analysis of the Global Coordination Controller in Structured Experiments

	Conclusions & Topics for Future Research
	References

