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Abstract

Code-Based Cryptography is a branch of the Post-Quantum Cryptography research area. As
such, its focus is on developing algorithms that can be used in the current communication systems
to secure them against an adversary powered in the (near) future by a quantum computer. A
code-based type cryptosystem is a public key cryptosystem that is resistant or slightly reduces
its security level against attacks by the known quantum algorithms. The biggest drawback of
this otherwise secure cryptosystem is its large public key.

This thesis considers a specific type of linear codes, large minimum distance self-dual codes,
and punctured codes derived from them that can provide the same security level as the original
McEliece system with approximately a 30% smaller public key.

Estimation of the bit security level of a cryptosystem using a small example of such a code
for its private key confirms that increasing the minimum weight of the code significantly reduces
the public key size of the system.

Further, we determine the parameters of putative self-dual codes with a large minimum
weight providing classical bit security of 80, 128 and 256 bits (quantum 67, 101, and 183 bits),
respectively. For the parameters corresponding to the classical 80 bits security of the McEliece
Cryptosystem, a particular example of a binary high minimum distance self-dual code is con-
structed. It is the first code of its type and length. A punctured code of this example is used for
the private key of the McEliece cryptosystem. A new decoding algorithm is introduced, which is
suitable for the specific construction of the new self-dual code. Moreover, we present a decryption
strategy that decodes the complete code instead of the punctured private key. All this results
in a McEliece type cryptosystem with 80 bits security classical (68 bits quantum) and reduced
public key size of around 38.5% compared to the original system. Reducing the key size makes
the quantum safe McEliece Cryptosystem more attractive for practical use.
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Preface

1. On the content

This report describes my study and research on Code-based cryptosystems. It includes the defini-
tion and analysis of a McEliece type encryption scheme using a family of large minimum distance
codes. This family of codes has not been previously considered for use in such a cryptosystem.
To define the Code-based scheme, we deliver the following results:

1. An implementation and cryptanalysis of a McEliece type cryptosystem using a small ex-
ample of a binary code with a large minimum distance.

2. Estimated parameters of a large minimum weight code which would provide the currently
required security levels of 80, 128 and 256 bits for the cryptosystem.

3. An example of a code suitable for the security level of 80 bits.

4. A decoding algorithm developed for the specific structure of the code from 2.

5. A proof that the new decoding is a valid scheme for a large group of codes.

6. An encryption scheme that integrates the new decoding algorithm.
The results are divided into parts 1, 2, 3 and 6 in one group, and 4 and 5 in another. The

first group of results are included in a conference submission, written together with Luca Mariot
and Stjepan Picek. The second group results are submitted to a journal. Both submissions are
still waiting to be reviewed. They can be found on:
• https://eprint.iacr.org/2021/837, L. Mariot, S. Picek and R. Yorgova, ’On McEliece

type cryptosystems using self-dual codes with large minimum weight’, submitted 19 Jun
2021.

• https://arxiv.org/abs/2106.11146, R. Yorgova, On decoding a specific type of self-dual
codes, submitted 16 Jun 2021.

2. On the implementation

We have implemented proof of concepts for most of the algorithms developed in this work. It
consists of C++ and SageMath code. The code is not provided.

The data generated and used for the experiments can be found in a git repository with a link
https://github.com/yorgova/MsThesisData.

3. Acknowledgements

During my thesis project, I was supervised by Stjepan Picek and Luca Mariot. I would like first
to thank Stjepan for accepting me as a 13th graduate student and for accepting my project idea
that was quite away from the research of the group. Next, I would like to thank him for the

v

https://eprint.iacr.org/2021/837
https://arxiv.org/abs/2106.11146
https://github.com/yorgova/MsThesisData


vi

support, useful discussions and guidance this year. I like to express my gratitude to Luca for
the discussions, for questioning some of my ideas, and for the thorough check of our submission
and parts of this work. I also want to thank the students and researchers of AISyLAB for the
technical support regarding the HPC/cluster and the cheering up online group meetings.

Further, I like to thank Zekeriya Erkin and Jos Weber for being members of my thesis
committee. I thank Jos Weber also for introducing me the code-based cryptosystems, which
provoked my interest.

Finally, I would like to say that I am lucky to have my partner, my son and all my family
behind my back all the time. I want to thank all of them for their patience and for accepting my
absence due to my busy time during the project. Special thanks to my partner, who supported
me constantly in this studying adventure.

R. Yorgova
Delft, August 2021



Contents

Abstract iii

Preface v
1 On the content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
2 On the implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1
1 Post-Quantum Cryptography and Code-Based Cryptosystems. . . . . . . . . . . . 1
2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
1 Error-correcting codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Linear block codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Basic decoding schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Basic Information Set Decoding . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Quantum Information Set Decoding . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Decoding problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Cyclic codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Self-dual codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Goppa codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Code-Based Cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 McEliece Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Niederreiter Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Public Key Encryption Schemes . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Cryptanalysis of the McEliece Cryptosystems . . . . . . . . . . . . . . . . 18

4 Key Encapsulation Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Related work and research questions 25
1 McEliece type Cryptosystems - existing solutions and security . . . . . . . . . . . 25
2 Research Questions - detailed description . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Main Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Sub-Questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 McEliece type crytposystem using an optimal self-dual code of length 104 29
1 Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Decoding algorithm and vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Decoding of the [104,52,18] Self-dual Code. Vulnerability and mitigation. . 31

vii



viii Contents

3 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Parameters Estimation for Self-dual Codes with Bit Security 80, 128, and 256 39

6 McEliece Cryptosystem with 80 bits security 41
1 Constructing a binary [1 064, 532, d ≥ 162] code . . . . . . . . . . . . . . . . . . 41

1.1 Algorithm for constructing Binary [n, n/2, d] self-dual codes having an
automorphism of a particular type. . . . . . . . . . . . . . . . . . . . . . . 41

1.2 A Binary [1 064, 532, d ≥ 162] Self-dual Code. . . . . . . . . . . . . . . . . 43
2 A new decoding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.1 Polynomial orthogonal property of self-dual codes of a specific type. . . . . 49
2.2 Shift-sum Decoding for Cyclic codes. . . . . . . . . . . . . . . . . . . . . . 52
2.3 Hard-decision Iterative Decoding of Self-dual Codes of a specific type . . . 56
2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 McEliece Type Cryptosystem Using the New Code Example . . . . . . . . . . . . 66

7 Discussion, limitations and future work 69
1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References 78

A Appendix 79
1 Algebraic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2 Parameters of Punctured Codes Derived from Self-dual Codes for Bit Security 80,

128, and 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3 Details on the construction of a binary [1 064, 532, d ≥ 162] Self-dual Code . . . . . 82
4 Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5 Generator matrices of the examples in Section 2.3 . . . . . . . . . . . . . . . . . . 84

5.1 Example 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Example 2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Example 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



1
Introduction

The development of quantum computers has a very high priority within the scope of international
research and development. While the high speed of quantum computations brings great opportu-
nities, for example, for medical research, it increases the risk for the security of the cryptography
used in the current communication systems and stored data.

Interception of a communication channel and getting a copy of the information traffic is a
feasible and common practice used, e.g., by Internet Service Providers (ISP) and State Agencies.
Therefore, in order to protect the data, encryption is often applied in different layers of the
communication network. Since a large amount of the intercepted/stolen data is stored for the
time when a powerful quantum computer will be available, it is of high importance that the
currently implemented cryptographic algorithms are safe against both classical and quantum
computing.

In the current cryptosystems, communication protocols (e.g., TLS), and digital signatures,
there are two public key algorithms1 which are widely implemented. These crypto algorithms
are based on mathematical problems that are hard towards classical computing, but they are
vulnerable towards the quantum Shor’s algorithm. This quantum computing algorithm can
solve both problems in polynomial time, which implies that all the currently intercepted/stolen
encrypted2 data are at risk to be revealed in the coming years.

There is still time to update digital signatures until a powerful quantum computer is developed
and available. It is because digital signatures are valid only for the time of use. In the future,
when the signature algorithm/public key is changed, then the old digital signatures would not be
accepted. On the contrary, for the other applications using encryption, the switch to quantum
safe algorithms is urgent. Post-Quantum Cryptography responds to this need.

1. Post-Quantum Cryptography and Code-Based Cryptosystems
Post-Quantum Cryptography (also called quantum-resistant cryptography) is the area of research
focused on the development of algorithms that can be used in the current communication systems
and which can secure them against an adversary using both classical and quantum computers.

Post-Quantum Cryptography has five branches named after the type of mathematical prob-
lems that are resistant to the existing quantum algorithms and are believed to be hard to solve

1Rivest-Shamir-Adleman (RSA) and the Elliptic Curve Diffie-Hellman
2Encrypted by one of the non quantum safe public key algorithms

1



2 Chapter 1. Introduction

with a large-scale quantum computer. These branches are Hash-based, Code-based, Lattice-
based, Multivariate, and Supersingular isogeny-based.

Our focus is on Code-Based Cryptography. As the name suggests, it studies cryptosystems
based on error-correcting codes. The first Code-Based cryptosystem is the public key cryptosys-
tem, proposed by Robert McEliece back in 1978 [40], which after longer than 40 years of study
remains with almost no change in its security level.

The code-based cryptosystems are resistant to the quantum Shor’s algorithm. The other well
known quantum algorithm, Grover’s search algorithm, has an impact on them by reducing the
bit security of the system by at most half. This reduction can be suppressed by doubling the
target security level.

Still, there is a major drawback, namely the large size of their public keys. This is a practical
limitation for broad use in the current communication systems. For comparison, for the 128 bits
security level of the McEliece cryptosystem, the size of its public key is around 187.69 Kb [8],
whereas the public key of RSA for the same bit security is 3 Kb (or equivalently, 3 072 bits), [45,
Table 2].

2. Motivation
The necessity of developing quantum-resistant cryptographic algorithms has also been recognized
by The National Institute of Standards and Technology (NIST), which in Dec 2016 has announced
a call for Public-key Post-Quantum Cryptography. There were 69 initial submissions of Public-
Key Encryption algorithms. Some of them have been broken within a month after publishing,
others within a year, whereas the remaining ones have been merged and improved. In Jan 2019,
seventeen (17) of the encryption algorithms have been admitted to the second round. A year
and a half later (Jul 2020), four finalists selected for the third round have been announced. One
of them is a code-based, namely The Classic McEliece by D. Bernstein et al. This fact indicates
that after a long time of research on the original encryption scheme [40], it remains one of the
most proven secure public-key cryptosystems.

At the same time, this system has received only a slight improvement over all these years.
Even the finalist with the proposed parameters does not lead to a solution to the main drawback
of the system - the large key size.

The remaining disadvantage inspires the research focus in this thesis: to reduce the key size
while preserving the security of the system.

A significant number of studies aim to minimize the key size of the McEliece type cryptosystem
by using different families of error-correcting codes. Most of the proposed cryptosystems in the
short term have been proven not secure. One common characteristic of these systems, besides
the original one, is that they use codes with a low error-correction capability3 [26, 2, 43].

In this work, we propose a McEliece type cryptosystem using codes with error-correction
capability higher than the capability of the codes adopted until now. It can be seen as a study
on the trade-off between the error-correction capability and the size of the public key. The codes
with this property that we use are large minimum distance self-dual codes and punctured codes
derived from them.

The codes with this property that we use are optimal self-dual codes. To the best of our
knowledge, such codes have not been implemented in a code-based cryptosystem until now.

The reason is most likely twofold: first, because the optimal self-dual codes are known for
the lengths up to 130, which are too small to be used for the current security requirements
and second, because there is no fast decoding algorithm for these codes, an exception being the
extended Golay code [49].

3The number of errors which the code is capable to correct.
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3. Research Question

Here we define the main research question in a broad aspect. Later, when we have introduced
the terminology and the existing results for McEliece type cryptosystems, we will formulate it
more specifically together with the sub-questions, the solutions of which justify the main result.

RQ To what extent can a McEliece type cryptosystem using codes with a high error-correcting
capability− derived from self-dual codes− be a secure and practically applicable post-quantum
cryptosystem?

The property secure is considered as secure against known attacks and practically applicable
when the key size is reduced.

Note that the research question we stated is rather involved and long. Still, this is a conscious
decision we follow since we deal with a topic that requires mathematical precision.

4. Contributions

In this work, we research for the first time the relation between the security level and the key size
of a McEliece type cryptosystem using a code obtained from a specific type of codes with a high
error-correcting capacity. The considered codes are large minimum distance binary self-dual codes.
We study and implement in SageMath a small example of the cryptosystem using a code derived
from a self-dual code of length of 104 and a minimum distance of 18. A decoding algorithm, as
part of the decryption process, is selected and applied. We prove that this cryptosystem has at
least 22 bits security level using a key of size 0.3251 Kb, whereas the key of the original type
McEliece cryptosystem with the same bit security level is at least 0.4515 Kb. Thus, our example
achieves a reduction of the key of around 28%.

We determine the parameters of a putative optimal self-dual code and a punctured code
derived from it, which, if implemented into a McEliece cryptosystem, would provide a bit security
level of 80, 128, and 256 (quantum 67, 101, and 183 bits), respectively.

Further, for the 80 bits security level, an optimal binary self-dual code with length 1 064 has
been constructed. A code with these parameters is presented here for the first time. A punctured
code of it is used for the private key of the McEliece cryptosystem.

To define the McEliece type cryptosystem, we specify the algorithms in each step of the
scheme. The decryption step requires a different decoding algorithm than the one used for the
small example. Therefore, a new decoding algorithm suitable for the generated large optimal
self-dual code is developed. It is integrated into a decryption scheme with a new strategy, namely
decrypting a padded ciphertext via the self-dual code. Thus, we introduce a McEliece type
cryptosystem with two private keys- an optimal self-dual code and a punctured code of it. The
punctured code is used for creating the public key, while the self-dual code is for decoding in the
decryption step. Thus, we show that codes with large error-correcting capacity are applicable for
McEliece type cryptosystems.

By cryptanalysis, we confirm that the newly generated code provides 80 bits classical (67 bits
quantum) security of the system with a key 38% smaller than the keys of the original McEliece
cryptosystem. The comparison is with the family of codes of the original McEliece system, as the
system with these codes has been a long time thoroughly researched, and its level of security has
been proven. Moreover, one of the four finalists of the NIST competition, The Classic McEliece,
uses this family of codes.
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5. Thesis Outline
The rest of this work is structured as follows: Chapter 2 contains the preliminaries on error-
correcting codes, the two main code-based cryptosystems, and their security, and at last, a short
description of the Key Encapsulation Mechanism (KEM). In Chapter 3 we present an overview
of the known McEliece type cryptosystems using different families of codes and their security
status at the time of writing4. The next chapter presents a small example of the McEliece type
cryptosystem using a binary self-dual code of length 104 with a minimum distance of 18 and a
security analysis of the system. Next, we compute possible parameters of large minimum distance
self-dual codes, which could provide 80, 128, and 256 classical bit security when implemented
in McEliece type Cryptosystem. For the case of 80 bits security in Chapter 6, we construct
an example of a self-dual code with the required parameters. Then, a new decoding algorithm
suitable for the specific structure of the example code is presented together with a new decryption
algorithm applying this decoding scheme. At last, we discuss limitations in the results regarding
the proposed McEliece type scheme and open problems for future research.

4July 2021



2
Preliminaries

This chapter presents the main objects and building blocks of the McEliece cryptosystem, which
are required later when constructing the scheme using codes with a high error-correcting capacity.
We start by introducing the necessary terminology on error-correcting codes, followed by the
formal definition of the two main code-based cryptosystems, McEliece and Niederreiter encryption
schemes. Then the notion of security of the system and several common attacks on this type of
systems are presented. For completeness, an informative description of the key encapsulation
mechanism (KEM) is included at the end of this chapter.

The theory of error-correcting codes is initially developed to detect and correct (with certain
limitations) errors in information transferred over a noisy communication channel. The introduced
errors can be detected and corrected based on the redundant information sent together with the
message (Figure 2.1). In Code-based cryptography, this error-correcting property is used in the
decryption process.

Figure 2.1: Codes for Error Correction Figure 2.2: Codes for Cryptography

The first cryptosystem based on coding theory was proposed by Robert McEliece back in
1978 [40]. It is a public key cryptosystem (PKC) that uses a specific type of error-correcting
codes for creating the public key. The encryption of a message block involves intentionally adding
the maximum number of errors which the code can correct (Figure 2.2). To be able to define the
system formally, we need a brief introduction to error-correcting codes.

Note that we will use algebraic structures such as field, polynomial ring, principle ideal, vector
space without introducing them. For completeness, we include their definitions in Appendix 1.

5



6 Chapter 2. Preliminaries

1. Error-correcting codes
1.1. Linear block codes
Here we are interested in a particular type of error-correcting codes, namely linear block codes
over a finite field, because of their nice algebraic properties that we will discuss in the places
where we use them.

Let Fq be the finite field with q elements, where q is a prime or a power of a prime number,
and Fnq is the standard vector space over Fq. Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vectors
in Fnq . The inner product u · v in Fnq is defined as u · v = u1v1 + u2v2 + · · ·+ unvn. Two vectors
u and v are called orthogonal if u · v = 0 .

The (Hamming) distance d(x, y) between two vectors x, y ∈ F2
q is the number of coordinates

in which x and y differ, i.e. d(x, y) = #{i| 1 ≤ i ≤ n, xi 6= yi}. The Hamming distance is a
metric1 on the linear space Fnq .

The (Hamming) weight wt(x) of a vector x ∈ Fnq is the number of its nonzero coordinates,
i.e. wt(x) = #{i| 1 ≤ i ≤ n, xi 6= 0}.

Clearly, the distance between two vectors x and y in Fnq is the weight of the vector x− y.

Definition 1.1. If C is a k-dimensional subspace of Fnq , C is called linear code over Fq of length
n and dimension k, or shortly an [n, k]q-code.

Usually, the elements of a code are called codewords.

Definition 1.2. The minimum distance of a code C is d = min{d(x, y)| x, y ∈ C, x 6= y}.

An [n, k, d]q-code is an [n, k]q-code with a minimum distance d.

Definition 1.3. The minimum weight of a code C is the smallest weight of any nonzero
codeword, i.e. wt(C) = min{wt(x)| x ∈ C, x 6= 0}

The minimum distance of a code determines the error-detecting and error-correcting capability
of the code, more specifically:

Theorem 1.1. [50, p.12] An [n, k, d]q-code C can detect s < d errors and correct t ≤ bd−12 c
errors.

Theorem 1.2. [39, p.10] For a linear code, the minimum distance is equal to the minimum
weight.

Since a linear code is a subspace, it can be determined by a set of basis vectors. A generator
matrix G of a [n, k]q-code C is a k×n matrix where the rows of G form a basis in C. A generator
matrix G is said to be in systematic, or standard form if G = [Ik | G1], where Ik is the identity
k × k matrix.

A parity check matrix H of an [n, k]q-code C is an (n−k)×n matrix, such that H is orthogonal
to every codeword of C:

c ∈ C ⇔ H · c> = 0>. (2.1)

The parity check matrix generates also a linear code, which is orthogonal or dual to the code C.
The orthogonal code is denoted by C⊥, C⊥ = {v ∈ Fnq : u · v = 0, ∀u ∈ C}.

The code C is called self-orthogonal if C ⊂ C⊥, and self-dual if C = C⊥.

If G is in a standard form [Ik | G1] one can show that for the matrix [−G>1 | In−k] the
following holds:

[Ik | G1] · [−G>1 | In−k]> = −G1 +G1 = 0,

1Holds the properties: d(x, y) = 0⇔ x = y; d(x, y) = d(y, x); d(x, y) ≤ d(x, z) + d(z, y).



1. Error-correcting codes 7

which implies that [−G>1 | In−k] is a parity-check matrix for the code C.
A linear code is called binary if it is a code over F2. To illustrate the terminology, we give an

example of a binary code.

Example 1.1. A binary [8, 3]-code C has a generator matrix

G =

 1 0 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 1 1 1 0 1 1

 .

Since the rows form a basis, each vector in C is a linear combination of them. Let v1, v2, v3
be the rows of G, i.e. v1 = (1, 0, 0, 0, 1, 1, 1, 1), v2 = (0, 1, 0, 1, 0, 1, 1, 1), v3 = (0, 0, 1, 1, 1, 0, 1, 1).
Then each codeword c = a1v1 + a2v2 + a3v3, where a1, a2, a3 ∈ F2. Then:

C = {0, v1, v2, v3, v1 + v2, v1 + v3, v2 + v3, v1 + v2 + v3}.

For example:

v1 + v2 = (1, 0, 0, 0, 1, 1, 1, 1) + (0, 1, 0, 1, 0, 1, 1, 1) = (1, 1, 0, 1, 1, 0, 0, 0).

The weight of this sum is 4. To define the minimum weight of the given code we need
the weights of all the nonzero codewords. They are wt(v1) = 5, wt(v2) = 5, wt(v3) = 5,
wt(v1 +v2) = 4, wt(v1 +v3) = 4, wt(v2 +v3) = 4, wt(v1 +v2 +v3) = 5. Then the minimum weight
is d = 4, which implies that the code can detect up to 3 errors and correct up to t ≤ bd−12 c = 1
error.

Since the generator matrix is in a systematic form, we can directly write the parity-check
matrix as [−G>1 | In−k], i.e.

H = [−G>1 | I5] =


0 1 1 1 0 0 0 0
1 0 1 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 0 1

 .

The inner product of v1 and v2 is v1 · v2 = 0 + 0 + 0 + 0 + 0 + 1 + 1 + 1 = 1 in F2, which
implies that the vectors v1 and v2 are not orthogonal. Then the given binary [8, 3]-code C is not
self-orthogonal and therefore it cannot be self-dual.

Two linear codes C1 and C2 of length n are called permutation equivalent if one can be
obtained from the other by a permutation of coordinates. That is, if there exist a permutation
σ ∈ Sn, Sn- the symmetric group of degree n, such that σ(C1) = C2. In particular, if a
permutation σ maps a code C to itself, then σ is called a permutation authomorphism of the code.

1.2. Basic decoding schemes
A message m is encoded in a codeword w and transmitted through a noisy channel. The received
vector r can be considered as r = w + e, where e is the error vector. The decoder must decide
from the received r which codeword was sent.



8 Chapter 2. Preliminaries

Note. Here we consider only symmetric channels, which means that the probability of flipping
0 into 1 during transmission is equal to the probability of flipping 1 into 0 during transmission,
and this probability is less than 0.5. If it is larger than 0.5, then the measurement result at the
receiver must be reversed when read. Therefore, the probability of receiving a vector of length n
with one error is p < 1/2, with two errors, is p2, as p2 < p < 1/2, and so on. Thus, we always
assume that the errors during transmission are as few as possible, and the decoder is always
searching for the closest codeword to the received vector.

If e is the zero vector, then there is no error and r = w, i.e. w is a codeword. Otherwise,
depending on the error vector e, r can be a codeword or not.

Finding the codeword whose distance to r is as small as possible can be done by exhaustive
search comparing r to all the codewords and pick the closest one. This approach is called nearest
neighbour decoding. For small codes, this approach is feasible, but for larger codes, it would be
computationally very expensive. The algebraic properties of linear codes are useful to define more
efficient decoding strategies using the concept of a syndrome.

Definition 1.4. Let C be an [n, k, d]q code with parity-check matrix H. The syndrome of a
vector v ∈ Fnq is the vector S(v) = H · v> of length n− k and coordinates of Fq.

By Equation (2.1), w ∈ C if and only if H · w> = 0>, which is equivalent to saying that, a
vector of Fnq is a codeword if and only if its syndrome is 0.

Since r = w + e, then H · r> = H · (w + e)> = H ·w> +H · e> = 0> +H · e> = H · e>, that
is S(r) = S(e). Thus, the syndrome of the error vector is known to the decoder and the question
of finding the error e is shifted to how to find a vector whose syndrome is equal to S(e).

Next we introduce the concept of coset and its relation to syndromes. Let u ∈ Fnq . Then
the set u + C = {u + c| c ∈ C} is called a coset of C. If we have two elements of the same
coset, u1, u2 ∈ u + C, then u1 = u + c1, u2 = u + c2 for some c1, c2 ∈ C. Further we have
S(u1) = S(u + c1) = S(u), S(u2) = S(u + c2) = S(u), which means that all the elements of a
coset have the same syndrome.

Let we assume that these two elements u1, u2 have weight tu, where tu ≤ bd−12 c. Then
the vector u1 − u2 has weight at most 2tu < d. Substitution of u1 and u2 in u1 − u2 leads to
u1 − u2 = c1 − c2 ∈ C. Thus, u1 − u2 must be a codeword and therefore the weight of u1 − u2
is greater or equal to d which is a contradiction to the wight of u1 − u2 to be at most 2tu < d.
Thus, the assumption for existence of two elements of weight tu ≤ bd−12 c in the same coset is not
true. Hence, every coset with a minimum weight of up to t has a unique minimum weight vector.
This element is called coset leader.

We can now define the following maximum likelihood decoding algorithm.

Algorithm 1: Syndrome Decoding
1 For a received vector r calculate S(r) = r ·H>
2 In the coset with the syndrome equal to S(r) find the coset leader e′
3 Decode r into w′ = r − e′

This algorithm is still computationally expensive. It needs the coset leaders of qn/qk number
of cosets and to store their syndromes, which is practically infeasible for a large code. In the next
sections, we will discuss other decoding algorithms appropriate for larger codes.
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1.3. Basic Information Set Decoding
The Information Set Decoding (ISD) technique was introduced by Prange in 1962 [54]. An
information set for a [n, k, 2t+ 1]2 code C is any subset A = {i1, · · · , ik} of k coordinates such
that, for any given set of values bi ∈ F2, with i ∈ A, there is a unique codeword c ∈ C. Thus, the
information set consists of any k indices such that the corresponding k columns of a generator
matrix of C have rank k.

Let r = mG + e be the received vector after transmission of the encoded message m by a
generator matrix G of the code C, where e is an error vector of weight t. Further, let S be a set
of k random coordinates defined as S = {i1, i2, . . . , ik | 1 ≤ ij ≤ n, ij 6= is}.

Following [7], we describe the Basic Information Set Decoding as follows:

• Choosing S randomly we make the following two assumptions: first, all entries of the error
vector e indexed by the set S are 0, i.e. ei1 = ei2 = ... = eik = 0 and second, S is an
information set, i.e. if we denote the columns of G with g1, g2, ..., gn, then the matrix
[gi1 , gi2 , ..., gik ] is nonsingular.

• Consider the projection φ : G 7−→ GS which maps the generator matrix G into the k
randomly chosen columns of it.

Then, φ(r) = φ(mG+ e) = φ(mG) + φ(e) = mGS . Since GS is nonsingular by the second
assumption, we can find the message m as m = φ(r)GS

−1.

• Obtain e = r −mG. If wt(e) = t then the message is m. Otherwise, go to the beginning
and try another set S.

Algorithm 2 presents the Basic Information Set Decoding in a more structured way as
pseudocode.
Algorithm 2: Basic Information Set Decoding
1 Choose k coordinates S = {i1, i2, ..., ik} and form the matrix GS . Repeat this step until

det(GS) 6= 0
2 Calculate GS−1

3 Compute φ(r)GS
−1 = m, where φ(r) is the vector of the k chosen coordinates of r

4 Compute e = r −mG. If wt(e) = t then the message is m, else repeat from 1.

1.4. Quantum Information Set Decoding
Let r = mG + e, G and e be defined as in Subsection 1.3. The structure of a Basic Quantum
Information Set Decoding is given as pseudocode in Algorithm 1.4.
Algorithm 3: Basis Quantum Information Set Decoding
1 Choose k coordinates S = {i1, i2, ..., ik} and form the matrix GS . If det(GS) 6= 0, find

GS
−1 else, giving up

2 Compute (ri1 , ri2 , ..., rik) ·GS−1 = m, m ∈ Fk2
3 Compute mG ∈ Fn2
4 Compute e = r −mG. If wt(e) 6= t then giving up
5 Returns 0.

According to [7], randomly searching for a root of the function in Algorithm 3 can succeed
in approximately

(
n
k

)
/0.29

(
n−t
k

)
iterations, where one iteration of this function has around

O(n3) bit operations. Grover’s algorithm uses about square root of the number of iterations,

i.e.
√(

n
k

)
/0.29

(
n−t
k

)
. Then, the complete number of qubit operations for finding a solution is
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O(n3)
√(

n
k

)
/0.29

(
n−t
k

)
. Note that the meaning of 0.29 is that, on average, 29% of the selected

matrices GS are nonsingular when G is a generator matrix of a Goppa code (introduced at the
end of the section).

1.5. Decoding problem
Based on the previous two subsections, we can define the decoding problem. Let an [n, k, 2t+ 1]
code C have a generator matrix G and a parity-check matrix H. Let a message m be encoded as
mG and transmitted, and the received vector be denoted by r = mG + e. Then the decoding
problem is one of the following equivalent problems [47]:

1. Find a codeword x of C that is the closest one to the received vector r, i.e. find x such
that d(x, r) = min{d(a, r) | a ∈ C};

2. Find an error vector e of the coset r + C = {r + a | a ∈ C} of minimum weight;

3. Find an error vector e with minimum weight in this coset of C that has a syndrome equal
to the syndrome of the received vector r.

When in the above problem we fix an upper bound for the weight of the error vector the
problem is called Computational Syndrome Decoding (CSD) problem. It is defied as:

Definition 1.5. [47] (CSD) For a given an [n, k, 2t+ 1] code C with a parity-check matrix H,
(n− k)× n, a vector s of length n− k and a positive integer t′, t′ ≤ t, find a vector e of weight
t′ in the coset of C with syndrome s.

In [5], the following main result regarding the CSD problem for an arbitrary linear code is
proven:

Theorem 1.3. [5] The general decoding problem for linear codes and the general problem of
finding the weights of a linear code are both NP-complete.

1.6. Cyclic codes
Consider the factor ring R = Fq[x]/(xn− 1) which denotes the polynomials of Fq[x] mod (xn− 1).
Then R consists of all polynomials with coefficients of Fq and power at most n− 1. Moreover, we
assume that n and q are co-prime.

Any polynomial c(x) = c0 + c1x + c2x
2 + · · · + cn−1x

n−1 of R can be associated with the
vector (c0, c1, c2, . . . , cn−1) of Fnq .

Definition 1.6. [39] An [n, k]q code C is called cyclic if any cyclic shift of a codeword is also
a codeword.

That is, whenever (c0, c1, c2, . . . , cn−1) is in C, then so is (cn−1, c0, c1, . . . , cn−2). Using the
corresponding polynomials in R, it is equivalent to: if c(x) = c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1 is

in C then xc(x) is also in C since

xc(x) = x(c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1) = cn−1 + c0x+ c1x
2 + · · ·+ cn−2x

n−2 mod (xn−1).

Thus, a right cyclic shift with one position is identical with a multiplication with x. Therefore,
c(x)g(x) ∈ C for any g(x) ∈ R, which means that the cyclic code C is an ideal in R.

From the definition for cyclic code C it follows that the permutation (1, 2, 3, . . . , n) is an
automorphism of C.
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Theorem 1.4. [39, p.190] Let C be a nonzero cyclic code in R. Then:
(a) There is a unique monic polynomial g(x) of minimum degree in C.

(b) C = 〈g(x)〉, i.e. C is a principle ideal in R generated by g(x).

(c) g(x) is a factor of xn − 1.

(d) Any c(x) ∈ C can be written uniquely as c(x) = f(x)g(x) in Fq[x], where
deg(f(x)) < n− deg(g(x)). The dimension of C is n− deg(g(x)). Thus, the message f(x)
becomes the codeword f(x)g(x).

(e) If g(x) = g0 + g1x + g2x
2 + · · · + grx

r, then C is generated, as a subspace of Fnq , by the
rows of the generator matrix

G =


g0 g1 g2 . . . gr 0 . . . 0
0 g0 g1 . . . gr−1 gr . . . 0

...
0 . . . 0 g0 g1 . . . gr



=


g(x)

xg(x)
. . .

xn−r−1g(x)

 .

The polynomial g(x) in Theorem 1.4 is called the generator polynomial for the cyclic code C.
If C = 〈g(x)〉, then g(x)|(xn − 1). Denote h(x) = xn−1

g(x) . Consider an element c(x) ∈ C. Then
c(x) = f(x)g(x) for some element f(x) ∈ Fq[x] and, h(x)c(x) = h(x)f(x)g(x) = 0 in R. The
opposite is also true ([39, p.195]), i.e. if c(x)h(x) = 0 for c(x) ∈ R then c(x) ∈ C.

The polynomial h(x) = xn−1
g(x) is called check polynomial of C.

Theorem 1.5. [39, p.195-196] Let C be a nonzero cyclic code in R with generator polynomial
g(x) and check polynomial h(x) = (xn − 1)/g(x). Then:

(i) the dual code C⊥ is cyclic and has generator polynomial g⊥(x) = xdeg(h(x)h(x−1) (the
reciprocal polynomial of h(x));

(ii) if h(x) = h0 + h1x+ · · ·+ hkx
k, then the parity check matrix of C is

H =


hk hk−1 · · · h0 0 0 · · · 0
0 hk · · · h1 h0 0 · · · 0

...

0 · · · 0 hk · · · h1 h0

 .

A polynomial e(x) of R is called an idempotent if e(x) = e(x)2.

Example 1.2. Let R1 = F2[x]/(x7 − 1), f(x) = x+ x2 + x4. Then,

f(x)2 = (x+ x2 + x4)2 = x2 + x4 + x = f(x) in R1. Therefore f(x) is an idempotent in R1.

The next theorems in this subsection are restricted within the factor ring F2[x]/(xn− 1) where
n is odd.
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Theorem 1.6. [51, p.54] Let C be a cyclic code in R. Then there exists a unique idempotent
e(x) ∈ C such that C = 〈e(x)〉. If e(x) is a nonzero idempotent in C, then C = 〈e(x)〉 if and
only if e(x) is a unit element of C, where a unit element means a neutral element in C regarding
multiplication.

The unique idempotent of Theorem 1.6 is called the generating idempotent of C.
The next theorem presents results for calculating an idempotent of any ideal in R. For that

we introduce the formal derivative of a polynomial in Fq[x].
For f(x) = a0 + a1x + · · · + anx

n ∈ Fq[x] the formal derivative of f(x) is defined as the
polynomial f ′(x) = a1 + 2a2x+ 3a3x

2 + · · ·+ nanx
n−1 ∈ Fq[x].

Theorem 1.7. [39, p.223] Let h(x) be a polynomial which divides xn − 1. Let e(x) be the
idempotent of the ideal with generator polynomial g(x) = xn−1

h(x) . Then:

e(x) = (xn − 1)

(
xh′(x)

h(x)
+ δ

)
,

where h′(x) is the derivative of h(x), and δ = 0 if the degree of h(x) is even, and 1 if the degree
of h(x) is odd.

Theorem 1.8. [51, p.55] Let C be a cyclic [n, k]-code with generator idempotent e(x) =
n−1∑
i=0

eix
i.

Then the k × n matrix


e0 e1 e2 . . . en−2 en−1
en−1 e0 e1 . . . en−3 en−2

...
en−k+1 en−k+2 en−k+3 . . . en−k−1 en−k


is a generator matrix for C.

The next result is valid in Fq. We consider the factorization of the polynomial xn − 1 over Fq
xn − 1 = h0(x)h1(x) . . . hs(x), where h0 = x− 1 and denote gj(x) = xn−1

hj(x)
.

Let Ij = 〈gj(x)〉 be the ideal of R generated by gj(x) for j = 0, 1, . . . , s and, ej(x) be the
generator idempotent of Ij for j = 0, 1, . . . , s.

Theorem 1.9. [51, p.56]
(i) the ideal Ij , j = 0, 1, . . . , s, is a minimal ideal of R;
(ii) R = I0 ⊕ I1 ⊕ · · · ⊕ Is;
(iii) Ij is a field which is isomorphic to the field Fdeg(hj(x))

q , j = 0, 1, . . . , s;
(iv) ei(x)ej(x) = 0, i 6= j;

(v)
s∑
j=0

ej(x) = 1.

The idempotents ej(x), for j = 0, 1, . . . , s, are called the primitive idempotents of R.
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1.7. Self-dual codes

An [n, k]q code C is called self-dual if C = C⊥. It is known that the weight of any codeword of
a self-dual code is even. A binary self-dual code C is called doubly-even if the weight of every
codeword is divisible by four, and singly-even if there is at least one codeword of even weight not
divisible by 4, i.e., weight ≡ 2 (mod 4) [52, p.11].

Upper bounds for the minimum weight of a binary self-dual [n, n/2, d] code are given in [55]:

d ≤ 4b n24c+ 4, if n 6≡ 22 (mod 24),

d ≤ 4b n24c+ 6, if n ≡ 22 (mod 24)
(2.2)

Stricter bounds are known for some specific lengths, like for n = 78 the maximum d is 14
instead of 16 [20]. Self-dual codes which reach the minimum weight bounds are called extremal,
whereas self-dual codes with the largest minimum weight for a given length among the known
ones are called optimal. In [68], it is proven that binary extremal double-even self-dual codes do
not exist for lengths n > 3 928.

It is known that with an increasing length, the number of self-dual codes grows fast. For
example, where are 85 inequivalent double-even self-dual codes of length 32 and at least 17 000 of
length 40.

For further reading about families of self-dual codes and their properties, we recommend [56].
Some results on binary self-dual codes with a particular structure are presented in Section 1.1.

1.8. Goppa codes
Here we present only the parameters of the codes. These parameters will be used later in Chapter 4
and Chapter 5. A detailed description of Goppa codes and their properties the reader can find in
[39, p.338-368].

The Goppa codes used in the McEliece type cryptosystem have the parameters length n,
dimension k and minimum weight d where n ≤ 2m, k = n−mt, d ≥ 2t+1 for some positive integer
m and error-correcting capability t. For example, the Goppa code used in [40] is constructed for
m = 10 and t = 50, i.e. a binary [1 024, 524, d ≥ 101] code.

It is also known that for particular m and t, there exist many inequivalent Goppa codes.

2. Code-Based Cryptosystems
2.1. McEliece Cryptosystem
The McEliece Cryptosystem is the first code-based cryptosystem proposed by Robert McEliece
in 1968 [40]. The security of the McEliece cryptosystem relies on the difficulty of the general
decoding problem Section 1.5. The original cryptosystem uses a binary [1024, 524] code with an
error-correcting capability of 50 errors. The steps of the encryption scheme are as follows:

1. Define the system parameters: k - the length of the message block, n - the length of the
ciphertext, t - the number of the intentionally added errors (equal to the error-correcting
capability of the implemented linear code).

2. Key generation: define: G - a generator matrix of an [n, k, 2t+ 1] code for which there is a
fast decoding algorithm; P - a random n× n permutation matrix and S - a random dense
k× k non-singular matrix and, compute G′ = SGP , S−1 and P−1 - the inverse of P and S.
Note that G′ generates a linear code with the same n, k and t. Then, (G′, t) - Public key,
(G,P, S) or (DecG, P, S) - Private key, where DecG is the fast decoding algorithm.
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3. Encryption: split the data for encryption into k-bit blocks. Then each block m is encrypted
as r = G′m+ e, where e is a random vector of length n and weight t.

4. Decryption: The received vector r is decrypted as follows:

(a) Compute r′ = rP−1, which is mSG+ eP−1.
(b) Decode r′ into a codeword c′ using the efficient decoding algorithm for the code with

generator matrix G, c′ = mSG.
(c) Compute c such that cG = c′ (If G is in a systematic form, then c is the first k bits of

c′).
(d) Compute m = cS−1.

The presented scheme can be applied with any linear code for which a fast decoding algorithm
is known. In particular, the original system in [40] employs a binary [1 024, 524, 101] Goppa code.
We call this encryption scheme a McEliece type cryptosystem if it uses a family of codes other
than the binary Goppa codes.

The existence of many inequivalent codes of the family of codes implemented in a McEliece
type cryptosystem is an initial requirement for the security of the system.

2.2. Niederreiter Cryptosystem
We describe the original Niederreiter Cryptosystem as presented in [44].

Let C be a [n, k, 2t+ 1]q-code and let H be a perity-check matrix of C. Then H is (n− k)×n
matrix and c ∈ C ⇐⇒ H · c> = 0>. Thus, H inducts bijection mapping between Fnq and Fn−kq for
the vectors of weight ≤ t in both. Remind that for every v ∈ Fnq , S(v) = H · c> is the syndrome
of the vector(Def 1.4).

Why is that bijection? From Section 1.2, if u, v ∈ Fnq , where wt(u) ≤ t, wt(v) ≤ t, then u, v
are coset leadres of different cosets, i.e. S(u) 6= S(v). From H ·u> 6= H · v> ⇐⇒ H(u>− v>) 6= 0.
If we assume that u = v then H(u> − v>) = H · 0> = 0. Therefore, H indeed induces a bijection.

1. Define the system parameters: n - the length of the message block, n− k - the length of the
ciphertext, t - the weight of the message block (equal to the error-correcting capability of
the implemented linear code).

2. Key generation: define: H - a parity-check matrix of an [n, k, 2t + 1]q code C for which
there is a fast decoding algorithm DecC ; P - a random n × n permutation matrix with
entries of Fq; S - a random dense (n− k)× (n− k) non-singular matrix with entries of Fq.
Compute K = SHP , S−1 and P−1 - the inverse of P and S.
Then, (K, t) - Public key, (H,P, S,DecC)- Private key.

3. Encryption: map the data for encryption into n-bit blocks, each with weight at most t.
Then each block m is encrypted as r = Enc(m) = Km>. The ciphertext r is the syndrome
of the message.

4. Decryption: The received vector r is decrypted as follows:

(a) Compute r′ = S−1r, which is r1 = S−1r = S−1Km> = S−1SHPm> = HPm> =
H(mP>)>. Note that mP> is also a vector of weight ≤ t since wt(m) ≤ t and the
matrix P is a permutation matrix with entries of Fq. The vector r1 = H(mP>)>, i.e.
r1 is the syndrome of the vector mP> of weight at most t.

(b) Decode, by syndrome decoding, r1 into the leader of the coset whose syndrome is equal
to r1, i.e. into coset leader r2 of u+ C, such that S(u+ C) = r1. Thus, r2 must be
equal to mP>.



3. Security 15

(c) Compute m as P−1r2> = P−1Pm> = m.
(d) Map back the decrypted n-bit block m with weight at most t into the initial data.

2.3. Comparison
An advantage of the Niederreiter cryptosystem is that the plaintext is of length n while the
ciphertext to be transferred, is of length n− k, which is shorter than n. In McEliece system it is
the opposite, the plaintext length is k < n, the ciphertext length is n > n− k. The Niederreiter
Cryptosystem is often referred as the dual McEleiece cryptosystem.

On the other hand, a shortcoming of the Niederreiter cryptosystem is that the message
weight must be at most t. Therefore, before encoding, each message must be mapped to such
an n bit sequence with maximum weight t, and when decrypted, the message must be mapped back.

In [36] it has been proven that both systems are equivalent, then their security levels are equal,
i.e., if an attack is successful in breaking one of the systems, it will be successful in breaking the
other system as well.

In order to improve the size of the public key of both systems, the public key is transformed
into a systematic form [Ik|G′k,n−k] or [H ′n−k,k|In−k] and instead of the complete matrix to be
uploaded, only the part of the corresponding matrix without the identity matrix is published, i.e.
G′k,n−k or H ′n−k,k.

3. Security
3.1. Public Key Encryption Schemes
Similar to the McEliece and Niederreiter encryption schemes described in the last subsections,
any public key encryption scheme contains the three building blocks: key generation, encryption,
and decryption. Here we define it formally.

Definition 3.1. [32, p.378] A public-key encryption scheme is a triple of probabilistic polynomial-
time algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1n and outputs a
pair of keys (pk, sk), where pk is the public key, sk is the private key, and both have a length of
at least n.

2. The probabilistic encryption algorithm Enc takes as input the pk and a message m from
some message space, and it outputs a ciphertext c, c = Encpk(m).

3. The deterministic decryption algorithm Dec takes as an input (sk, c) and outputs a message
m or a failure denoted by ⊥. We write this as m = Decsk(c).

It is required that, Decsk(Encpk(m)) = m for any (legal) message m excepting a negligible
probability of decryption error when Decsk(Encpk(m)) 6= m.

The encryption and decryption algorithms are polynomial-time, i.e., efficient for the sender
and the receiver. Besides that, for an adversary who can intercept the communication and obtain
a batch or batches of ciphertexts, it must be extremely difficult to recover the messages from the
ciphertexts without knowing the secret key and the decryption algorithm (or one wayness of the
encryption function).

We refer [32, p.43-52] and [59] for detailed definitions of probabilistic polynomial-time algo-
rithms, a negligible probability, security games, etc., which we use here without introducing.
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Defining the security of an encryption system includes defining the following three components:
1. Adversarial goals - define the attacker’s objectives and define when an attack is considered

successful (or the winning condition of a security game).

2. Attack models - the amount of information that the attacker has about the encryption
system, about the plaintext and the ciphertext (or which oracles in a security game are
allowed to be used by the attacker).

3. Computational model - the amount of computing resources available to the attacker in order
to succeed.

The adversarial goals can be:
• a total break of the system, which is obtaining the secret key and discovering a functionally

equivalent algorithm to the decryption algorithm;

• a partial break - the attacker is able to decrypt some ciphertexts with a certain probability
and not able to discover the secret key;

• a distinguishing break - when the attacker is able to distinguish the ciphertexts of two
messages with a probability higher than 1/2 (as in a security game with two oracles).

The common attack models are:

• The Ciphertext-Only Attack (COA) model assumes that the adversary only observes a
ciphertext (or multiple ciphertexts) without the secret key and without the decryption
algorithm.

• The Known- Plaintext Attack (KPA) model assumes access to one or more plaintext/ciphertext
pairs generated using some encryption key and algorithm.

• The Chosen-Plaintext Attack (CPA) model assumes the adversary can request and receive
plaintext/ciphertext pairs for self-chosen plaintexts, i.e., has access to an encryption oracle.
This can be done only once and together for all plaintexts in one batch.

• The adaptive Chosen-Plaintext Attack (CPA2) model is the CPAmodel with the modification
that the attacker can obtain in multiple batches plaintext/ciphertext pairs for self-chosen
plaintexts. Then the attacker can adapt each of the next plaintexts by observing the results
of previous pairs.

• The Chosen-Ciphertext Attack (CCA) model assumes all from the CPA2 model with the
added advantage for the attacker: he/she can request and receive the decrypted messages
of a self-chosen single batch of ciphertexts, i.e., has access to both: an encryption oracle
and decryption oracle. The ciphertexts in the request must be different from the ciphertext
in question.

• The Adaptive Chosen-Ciphertext Attack (CCA2) model is the CCA model with one more
advantage: the attacker is allowed to submit multiple batches of ciphertexts of his/her own
choice for decryption. Thus, the attacker is allowed to adapt the requests in response to the
previous plaintext/ciphertext pairs.

The attack models above are ordered in the increasing power of the attacker. Thus, an encryption
scheme has the highest security if it is secure against the last, CCA2, attack model.

There is at least one more common attack model, the side-channel attack model. This model
attacks the difficulty of the mathematical problem on which the security of the encryption scheme
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is based by exploring possible vulnerabilities in the software/hardware implementation of the
encryption scheme.

• A Side-Channel Attack (SCA) assumes that the attacker has access to the system (de-
cryption device) or is very close to it so that he/she can measure the power consumption,
electromagnetic leaks, or other signals. Analysing these measurements, the attacker can
gain information about the operations of the decryption device and, therefore, about the
decoding algorithm.

Notice that in a public key encryption system, the adversary always has access to the following
information: the encryption parameters, the encryption algorithm and the public key. Therefore
the attack model can be at least CPA2.

There are two categories of adversaries in terms of the computational resources at their disposal
to succeed:

• an attacker with available unbounded computing power;

• an attacker with available only a polynomial (in some security parameter) amount of
computing power - the best attack against a cryptosystem is by providing at most N
operations, with N being a very large number.

We note that CCA to the end of this section corresponds to the notation of CCA2 above.
Following [59], we define when a public key encryption scheme is called IND-CCA secure. It will
be used further in Section 4.

An encryption scheme is said to have perfect security (or information-theoretic security)
if an adversary with infinite computing power can learn nothing about the plaintext from a
given ciphertext. In probabilities, it is: the a posteriori probability that a message m was sent,
conditioned on the given ciphertext c, should be equal to the a priori probability that m was sent:

Pr[M = m | C = c] = Pr[M = m]

Semantic security is like perfect security, but the adversary is with bounded computing power
and, in polynomial time, the adversary can learn nothing about the message m having the
ciphertext c. In this case, the run time can be considered bounded by a polynomial function of
the key size.

A public key encryption algorithm is said to have indistinguishable encryptions against a
chosen ciphertext attack (IND-CCA secure) if for all probabilistic polynomial time adversaries A,
the advantage of the adversary in the IND-CCA security game, Alg. 4, is negligible [32]. That is:

Pr(Gameoutput = 1) = Pr(Awin) ≤ 1

2
+ negl(n),

where negl is a negligible function and n is the size of the public key.



18 Chapter 2. Preliminaries

Algorithm 4: [32, p.414] IND-CCA security game for public key encryption scheme.
1 Run Gen(1n) to obtain a pair of keys pk, sk (public, private).

2 The adversary A is given pk and access to a decryption oracle Decsk(·). It outputs a pair
of messages m0, m1 of the message space of the same length.

3 A uniform bit b ∈ {0, 1} is chosen and then a ciphertext c← Encpk(mb) is computed and
given to A.

4 A continues to interact with the decryption oracle, but may not request a decryption of c
itself. Finally, A outputs a bit b0.

5 The output of the experiment is defined to be 1 if b0 = b, and 0 otherwise.

3.2. Cryptanalysis of the McEliece Cryptosystems
Like any other public encryption scheme, the McEliece cryptosystem provides the following advan-
tages to the attacker: the encryption parameters, the encryption and decryption algorithms, and
the public key. Thus, the adversary can also select any plaintext and compute the corresponding
ciphertext. Therefore, as was mentioned in the previous section, we assume that the attack model
always is at least CPA2.

Concerning the adversary goals (total break, partial break or distinguishing break), there are
three main categories of attacks:
− Key-recovery attack: the attacker deduces the private key. In case the structure of the code

for the private key is revealed, the attack is known as a structural attack;

− Message-recovery attack: the attacker obtains a part or complete plaintext corresponding to
a ciphertext without knowing the private key. Such an attack is also known as a generic
attack;

− Distinguishing attack: the attacker can distinguish the cipher from a random message
without knowledge about the private key.

We consider several of the known attacks towards the McEliece encryption scheme. For each
attack, we will evaluate the probability of success or as an inverse problem - we will evaluate
the average number of attempts of the attack until the adversary achieves its target.

For algorithmic attacks, the security level of a system is defined as a minimum work factor.
A work factor is the average number of elementary (binary) operations needed to perform a
successful attack [3, p.72].

Next, we describe the main attacks published in the relevant literature, assuming that a
McEliece cryptosystem is defined by a private key (G,P, S), where G is a generator k × n matrix
of a binary [n, k, 2t + 1] code, P is a random n × n permutation matrix, S is a random dense
k × k non-singular matrix, and a public key (G′, t) where G′ = SGP . Further, we assume that
the attacker has access to a ciphertext c produced by the encryption scheme. Thus, we start by
first recalling the components over which brute-force attacks can be mounted. Then, we describe
the basic ISD attack and its work factor, along with some of its improved versions, particularly
Stern’s ISD attack. The last one we use for software implementation and experiments.

Brute-Force Attacks. A brute-force attack is achievable towards different components of
the encryption system:

− Towards the message: the attacker takes a random message m1 of length k, encrypts it to
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c1 = m1 · G′ and compute the difference e1 = c − c1. If the difference e1 has weight ≤ t,
then the plaintext corresponding to the ciphertext c is exactly m1, and the attack succeeds.
Then the probability of success is 1/2k since the number of all possible messages of length
k is 2k. Note that this is the decoding problem 2 defined in Section 1.5.

− Towards the coset leaders of the code generated by G′: the attacker computes the syndrome
of all coset leaders. The coset leader with syndrome equal to the syndrome of the ciphertext
c is the error vector. Knowing the error vector, one can compute the codeword and then the
message. The number of the coset leaders is |Fn2 |/|C ′| = 2n−k. Therefore the work factor of
this attack is at least 2n−k.

− Towards the error-vector: the attacker searches among the vectors e of length n and weight t
such that the syndrome of e is equal to the syndrome of the received vector c (the ciphertext).
Thus, a search on e such that S(e) = e ·H> equals S(c), where H represents the parity-check
matrix corresponding to G′. This problem is equivalent to the problem of finding a linear
combination of t columns of H, which results in a column vector with weight S(c). Since
there are

(
n
t

)
possible choices for the vector e, then the work factor of the brute force attack

towards the error vector is
(
n
t

)
.

Basis Information Set Decoding Attack (ISD). As it was mentioned in Section 1.3, the
ISD technique was proposed by Prange back in 1962 [54] as an efficient decoding method for
cyclic codes. Several works (e.g., [35, 48, 29]) considered increasingly improved versions of the
ISD decoding algorithm to attack the McEliece cryptosystem. (See Section 1.3 for the decoding
algorithm.)

Let r = mG′ + e, where G′ is a generator matrix of an [n, k, 2t+ 1] code C and e is an error
vector of weight t. Let A be an information set of k coordinates such that all entries of the error
vector indexed by A are 0. Recall that an information set for a code C is any set of k coordinates
such that the corresponding k columns of a generator matrix of C form a nonsingular matrix.

In summary, the algorithm for the ISD attack works as follows:

1. Choose k out of n indices for the information set. There are
(
n
k

)
possibilities. These k

columns of G′ are permuted to the first k positions which is G′P = [Ak | An−k], where Ak
are the chosen k columns and An−k the rest of G′;

2. Transform the matrix [Ak | An−k] into a systematic form, which takes O(k3) operations [40],
since it entails solving k linear equations in k unknowns. This is equivalent to transforming
G′P into [Ik|A′n−k] = UG′P , where U is the transformation matrix;

3. Compute m as m = rAU , where rA are the k coordinates of r in the positions of the
information set A. Then e = r −mG′. If wt(e) = t, then m is the encrypted message. The
possibilities for the error vector e to have 0 coordinates in the information set are k out of
n− t coordinates, i.e.

(
n−t
k

)
;

4. Estimate how many choices for k out of n columns have rank k of the generator matrices of
the family of [n, k, 2t+ 1]2 codes. In the original code-based cryptosystem, Goppa codes
were used, and for these codes, around 29% of the choices of k columns are invertible.

Therefore, the work factor for the ISD attack is
k3(n

k)
β(n−t

k )
, where β is the proportion of the

invertible k columns out of n for the generator matrices of the family of [n, k, 2t+ 1] codes. Note
that β is different for each family of codes.
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Stern’s ISD Attack. Stern [60] proposed an improvement of the ISD attack, which is based
on the following result:

Lemma 3.1. [3, p.76] The (n, k + 1) linear code generated by

G′′ =

(
G′

x

)
=

(
G′

u ·G′ + e

)

has only one minimum weight codeword, which coincides with e.

The idea behind the attack is to use the extended code generated by G′′ and find the
corresponding unique codeword e of weight t. Stern’s algorithm is probabilistic, using two input
parameters, p and l, together with the parity check matrix of the extended code [60].

Next, we describe the steps of the attack. Later we implement them in a SageMath code that
is used for experiments in Section 4.

Let the extended code be an [n, k] code with a parity check (n− k)× n matrix H, e be the
unique codeword of weight t and p and l - small parameters. Stern’s algorithm for finding the
codeword e is as follows:

1. Select randomly n− k linear independent columns from H. Permute H so that the selected
n− k columns are in the first positions and transform the matrix HP in a systematic form;

2. Partition the remaining k columns into two subsets of X and Y where for each column the
decision is independent and uniformly to join X or to join Y ;

3. Select l rows randomly from the n− k rows of H and denote the set of these l rows by Z;

4. Compute: for every subset A of X, A of p columns, and for every subset B of p columns of
Y , compute the sum of the columns in A and the sum of the columns in B only for the
rows in Z. The obtained two columns of length l denote by π(A) and π(B);

5. Compute: for every A and B such that π(A) = π(B) compute q as the sum of all columns
in A ∪B. This sum in the row positions of Z has only 0 since π(A) = π(B). If the weight
of q is t− 2p, then proceed to 6), otherwise if no vector q of weight t− 2p can be found,
then the attack has failed;

6. Construct two vectors y and z such that:

• yi = 1 iff i ∈ A ∪B, wt(y) = 2p since |A| = |B| = p,

• zj = 1 iff j is a column number in In−k such that q has entry 1, and on the same row,
the column j in In−k also has 1.

The weight of z is exactly the weight of q, i.e. t− 2p, the weight of y is 2p. Moreover, the
entries of 1 in y and in z are respectively in the last k and in the first n− k positions. Then
x = y + z has exactly weight 2p + t − 2p = t. Is the vector x in the code with a parity
check matrix H? The product x ·H is summing up the columns on positions zj and, the p
positions A of X with the p positions B of Y , which result in 0 in the rows of Z and in
t− 2p weight vector in the last n− k − l rows. These t− 2p entries with 1 cancel out with
the entries of 1 in the zj columns. Therefore x ·H = 0, which implies that the vector x is a
codeword.

The work factor of one iteration of the attack has the following three parts [60]:
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• work factor of the Gaussian elimination: f1 = 1
2 (n− k)3 + k(n− k)2

• work factor of step 4: f2 = 2pl
(
k/2
p

)
• work factor of step 5: f3 = 2p(n− k)

(k/2
p )

2

2l

Then the work factor of one iteration is B = f1 + f2 + f3.

The total work factor of the attack is B
Pt
, where Pt is the probability of finding a codeword

with weight t in one iteration. In particular, Pt is estimated in [60] as:

Pt =

(
t
2p

)(
n−t
k−2p

)(
n
k

) ·
(
2p
p

)
4p
·
(
n−k−t+2p

l

)(
n−k
l

) . (2.3)

Quantum Basic Information Set Decoding Attack. The Quantum Basic Information
Set Decoding function (Algorithm 3) is presented in Section 1.4. The number of qubit operations
per iteration and the number of iterations required to find a root of the function are given,
respectively O(n3) bit operations and

(
n
k

)
/0.29

(
n−t
k

)
iterations.

Then the work factor for the Basis Quantum Information Set Decoding attack, which is the
complete number of qubit operations for finding a solution, is O(n3)

√(
n
k

)
/0.29

(
n−t
k

)
.

Note that the meaning of 0.29 is that, on overage, 29% of the selected matrices GS are
nonsingular when G is a generator matrix of a Goppa code.

We stress the fact that we do not discuss the following attacks:
1. Taking advantage of partially known plaintexts;

2. Taking advantage of known relations between messages;

3. Message resent;

4. Reaction attack;

5. Malleability.
A detailed description of each of them, applied on the McEliece cryptosystem, can be found in,
e.g.[14] and [21]. The reason these attacks are excluded is that they all can be avoided by suitable
conversions for the original McEliece cryptosystem, as presented in [33]. These conversions
are adapted Pointcheval’s Generic Conversion [53] and Fujisaki-Okamoto’s Generic Conversion
[23]. These general transformations can convert any IND-CPA secure encryption scheme into an
IND-CCA secure encryption scheme.

4. Key Encapsulation Mechanism
The public key encryption schemes do not have a difficult key distribution, but they are very
inefficient when huge amounts of data must be encrypted fast. For fast encryption, private key
encryption algorithms are used. In practice, so called Hybrid Encryption is implemented, where
the public key encryption is applied for establishing the session key, and then, the actual data are
encrypted by the private key encryption algorithm. This improves both the efficiency and the
bandwidth because the private key schemes have lower ciphertext expansion.

We define the hybrid encryption via the KEM/DEM approach where the key encapsulation
mechanism (KEM) is the public key component of the encryption and the data encapsulation
mechanism (DEM) is the private key component.
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Following [32], the KEM includes three algorithms: Gen, Encaps and Decaps: Gen denotes
the key-generation algorithm, and it creates a pair of public and private keys; Encaps is an
encapsulation algorithm with the only input, a public key, and it outputs a ciphertext along with
a session key; Decaps is a decapsulation algorithm that obtains the same session key by using the
ciphertext and the private key. Here it is formally defined:

Definition 4.1. [32, p.390] A key encapsulation mechanism is a tuple of probabilistic polynomial-
time algorithms (Gen,Encaps,Decaps) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1n and outputs a
pair of keys (pk, sk), where pk is the public key, sk is the private key, and both have a
length of at least n.

2. The encapsulation algorithm Encaps takes as input a public key pk and the security param-
eter 1n, and outputs a ciphertext c and a key k ∈ {0, 1}l(n) where l is the key length. It is
denoted by (c, k)← Encapspk(1n).

3. The deterministic decapsulation algorithm Decaps takes as input a private key sk and a
ciphertext c, and outputs a key k or a failure denoted by ⊥. Its notation is k := Decapss k(c).

It is required that with all but negligible probability over (sk, pk) output by Encapspk(1n), if
Encapspk(1n) outputs (c, k) then Decapssk(c) outputs k.

Figure 2.3: Hybrid encryption.

Using a KEM, the hybrid encryption can be expressed as the scheme in Fig 2.3. In it, the
sender and the receiver perform the following steps:
• To encrypt a message m to a user with a pair of keys (pk, sk), the sender fulfils the following:

1. Run the encapsulation algorithm and compute (c, k)← Encapspk(1n).
2. Run the encryption algorithm and compute c′ ← Enck(m).
3. Output the ciphertext (c, c′).

• To decrypt the received ciphertext (c, c′), the recipient carries out the steps:

1. Run the decapsulation algorithm and compute k ← Decapssk(c)

2. If k =⊥ output ⊥.
3. Run the decryption algorithm and compute m← Deck(c′).
3. Output the message m.

In the description above, the sender implements a private-key encryption scheme to encrypt its
message m by using the key k. This private key encryption scheme is called a data-encapsulation
mechanism (DEM).
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In [59, Theorem 16.7], it is shown that if KEM is IND-CCA secure and DEM is IND-CCA
secure, then the hybrid encryption scheme using these KEM and DEM is also IND-CCA. The
definitions for IND-CCA secure encryption scheme is given in Section 3.1.
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Related work and research questions

1. McEliece type Cryptosystems - existing solutions and security
After the original McEliece encryption scheme [40] was proposed in 1978, there are numerous
publications (more than 18901) on modifications of this cryptosystem by implementing different
families of codes, and on attacks and security analysis of these systems.

Ten families of codes used in McEliece cryptosystems are listed in [61]. In this section, we
extend the list of studied codes with more recent implementations, and we add the current status
of the systems and the parameters of the unbroken systems at the time of writing.

Table 3.1: Codes used in McEliece type cryptosystems.
Symbols used for current status ∗: only specific instances are broken;

†: NIST submission; ‡: NIST finalist.

N Code Proposed by Current status

1 Binary Goppa codes McEliece, 1978 [40] Unbroken as of 2021

Bernstein et al., 2019 [6] Classic McEliece‡

2 GRS codes Niederreiter, 1986 [44] Broken in 1992 [58]

3 MRD codes Gabidulin, 1991 [25] Broken in 1995 [27]

Gabidulin et al., 1995 [24] Broken in 1996 [28]

4 Reed-Muller codes Sidelnikov, 1994 [57] Broken in 2007 [42]

5 QC-BCH subcodes Gaborit, 2005 [26] Broken in 2010 [46]

6 QC-LDPC codes Baldi et al., 2007 [2] Broken in 2008 [16]

7 Wild McEliece Bernstein et al., 2010 [9] Broken∗ in 2014 [17]

1On https://www.semanticscholar.org search on ’McEliece cryptosystem’ in (’journal article’ or ’conference’).

25
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8 Wild McEliece Incognito Bernstein et al., 2011 [10] Broken∗ in 2014 [22]

9 Convolutional codes Löndahl et al., 2012 [38] Broken in 2013 [34]

10 QC-MDPC codes Misoczki et al., 2013 [43] Unbroken as of 2021
Aragon et al., 2019 [1] BIKE†

11 Random linear codes Wang, 2016 [63] Broken∗ in 2019 [15]
RLCE† [62]

12 Rank-Metric codes Aguilar Melchor et al., 2019 [41] Reduced security 2020 [4]
ROLLO†

13 Specific self-dual codes Domosi et al., 2019 [18] Not studied

Table 3.2: Codes used in McEliece type cryptosystem - attacks & system parameters

Code Type of attack Code & System parameters

1 Binary Goppa codes Proven security level
against all known attacks

length public key size security in bits [6]
3488 255KB 128
4608 511.88KB 196
6688 1020.5KB 256
6960 1022.21KB 256
8192 1326KB 256

2 GRS codes Structural attack Broken

3 MRD codes Structural attack Broken

4 Reed-Muller codes Structural attack Broken

5 QC-BCH subcodes Structural attack Broken

6 QC-LDPC codes Structural attack Broken

7 Wild McEliece Structural attack Broken

8 Wild McEliece Incog. Structural attack Broken

9 Convolutional codes Structural attack Broken

10 QC-MDPC codes Proven security level
against all known attacks

length public key size security in bits [1]
24646 36.21MB 128
49318 144.97MB 196
81946 400.25MB 256

11 Random linear codes Structural attack Broken for length 532, 846, 1160

Unbroken for
length public key size security in bits
630 188kB 128
1000 450kB 196
1360 1232kB 256

12 Rank-Metric codes Generic attack
Unbroken as of 2020
Reduced security from 256 to 200 bits
No new parameters after the attack

13 Spec. self-dual codes Not studied
length public key size security in bits
4096 512kB unknown

min weight 64

The summary in Table 3.1 shows that most of the implementations are broken. The attacks
used in the security analysis are mainly structural attacks (see Table 3.2), which succeed in
revealing the private key. The common problems in the broken systems are:
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1. The McEliece type cryptosystems use codes with too much structure.

2. The public key does not hide well the structure of the private key.

The security of the code-base cryptosystem relies on Theorem 1.3 [5] that the problem of Decoding
Random Linear Codes is NP -complete. When the public key is distinguishable from a random
code, this is no longer true.

From the summarized results, besides the original cryptosystem based on Goppa codes, there
is one more unbroken system, BIKE, based on Quasi-Cyclic Moderate Density Parity Check
(QC-MDPC) codes. The other two implementations (11 and 12 in Table 3.1) have some problems.
In 11, there are six proposed codes for private keys claimed as random codes, but they have a
special structure. In three of these cases, the private key has been retrieved from the public key
in polynomial time. Thus, only half of the proposed codes remain for further studies. In 12, the
authors of the proposed rank-metric codes have also reported/published an attack that reduces
the security level from 256 bits to 200 bits. After this new finding, there is no exact mapping
between the parameters of the rank-metric codes and the actual system security level.

Finally, to the best of our knowledge, entry 13 is the only published example of a large self-dual
code implemented in a McEliece type cryptosystem. This code has a very small minimum weight
and cannot be considered optimal in this sense. Moreover, there is no extensive cryptanalysis and
no defined security of the system. The only reason to include it here is that no other example of
a self-dual code implementation has been found.

2. Research Questions - detailed description
Having introduced the main terminology and existing results on McEliece type cryptosystems,
now we can formulate the main research question and sub-questions in this work.

2.1. Main Question

To what extent can a McEliece type cryptosystem using codes with a high error-correcting
capability− derived from self-dual codes− be a secure and practically applicable post-quantum
cryptosystem?

2.2. Sub-Questions
The aim of this study is to reduce the key size of the McEliece cryptosystem by using codes with
high error-correcting capability while maintaining the security level of the encryption scheme.
Applying smaller keys would increase the practical usability of the system. One family of codes
with high error-correcting capability is the optimal binary self-dual codes. As there is no study of
these codes used in a code-based cryptosystem, their performance in terms of the system security
level relative to the key size is unknown. To be able to evaluate such a relation, we first study
the security level of a McEliece type cryptosystem, using a known optimal self-dual code of a
short length.

RQ1: What is the security level of a McEliece type cryptosystem using a code obtained from
an optimal binary [104,56,18] self-dual code? Define the encryption scheme.

The study on this question involves theoretical analysis, programming implementation of the
cryptosystem and experiments. After determining the security level of the small example, we
focus on a McEliece type cryptosystem providing the currently required bit security level of 80,
128 and 256 bits.
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RQ2: Which are the optimal parameters, length and error-correcting capability of a putative
self-dual code that, if used in a McEliece type cryptosystem, would provide a bit security level of
80, 128 and 256, respectively?

To create a McEliece type cryptosystem with the recently required 80 bits security, we have
to resolve two more challenges: to construct an optimal self-dual code of length of over 1000
and to develop a suitable fast decoding algorithm used in the decryption step. These challenges
determine the next two research sub-questions/tasks.

RQ3: Construct an optimal self-dual code with parameters defined in RQ2, which can be
used in a McEliece cryptosystem with a security of 80 bits.

In order to define a secure and practically applicable cryptosystem using the code generated
in RQ3, we have to determine the algorithms applied in each step of the system.

RQ4: Determine the algorithms in the steps of the McEliece type cryptosystem when using
the code obtained in RQ3?
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McEliece type crytposystem using an

optimal self-dual code of length 104

We implement an example of a binary [104, 52, 18] self-dual code in a McEliece type cryptosystem.
The code is one of the 18 codes given in [30] that has 23 700 codewords of weight 18. The code is
denoted by C1.

1. Cryptosystem
To define the implementation, we follow the description of the McEliece cryptosystem as given in
Section 2.1.

1. System parameters:
(a) k = 52 the length of the message m.
(b) n = 104 the length of the ciphertext.
(c) t = 8 the number of the intentionally added errors.

2. Key generation: let G be a generator matrix of the [104, 52, 18] self-dual code. Since the
public key G′ = SGP is expected to be in a systematic form, P is a randomly chosen
104× 104 permutation matrix, whereas S is calculated, e.g. from [GP | I52] after Gaussian
elimination by the following way:
let GP (52× 104) be denoted by [A1 | A2], where A1, A2 are the first and the second 52
columns of matrix GP . Then [GP | I52] = [A1 | A2 | I52] after Gaussian elimination is
[I52 | ∗ | S], where S is the dense nonsingular matrix in question.
− Choose a random 104× 104 permutation matrix P and compute GP .

Compute a 52× 52 invertible matrix S such that SGP is in a systematic form.
− Compute G′ = SGP and S−1 and P−1 - the inverse of P and S.
− Public key: (G′, t).
− Private key: (G,P, S).

3. Encryption: split the data for encryption into k-bit blocks. Then each block m is encrypted
as r = G′m+ e, where e is a random vector of length n and weight t. Stated differently, the
message m is encrypted with the public key (G′, t) with t errors intentionally introduced by
adding the error vector e.

1A generator matrix of C can be found on https://github.com/yorgova/MsThesisData

29
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4. Decryption: the decryption steps for the received vector r are:
(a) Compute r′ = rP−1, which is mSG+ eP−1.
(b) Decode r′ into a codeword c′ using the decoding Algorithm 5, which will be discussed

in Section 2.1. Note that c′ ∈ C and c′ = mSG.
(c) Denote by c the first k bits of c′ (since G is in systematic form).
(d) Return m = cS−1.

2. Decoding algorithm and vulnerabilities
2.1. Decoding Algorithm

The decoding algorithm that we apply in the second step of the decryption phase described in
Section 1 combines the two algorithms presented in [12] and [37]. From [12], we choose one of
the hard-decision deterministic decoding schemes, namely Algorithm II, which uses the set of
minimum weight codewords of the orthogonal code. This algorithm is generalized in [37] by
using any other set of fixed weight dual codewords or a combination of such sets instead of the
minimum weight codewords.

First, we define the elements used in the decoding scheme and then the steps of the algorithms.
Let D ⊂ Fn2 be an [n, k, d] binary code and D⊥ be its dual code with minimum distance d⊥.
Denote by B the set of all codewords in D⊥ with weight dB such that dB ≥ d⊥ (dB close to d⊥
as in [12]), i.e., B = {b ∈ D⊥ | wt(b) = dB}.

Let r = c+ e be the received vector, where c ∈ D and e ∈ Fn2 is an error vector. Then, for all
bi ∈ B it follows that the inner product 〈r, bi〉 = 〈c+ e, bi〉 = 〈c, bi〉+ 〈e, bi〉 = 〈e, bi〉. Note that
c ∈ D, bi ∈ B ⊂ D⊥, hence 〈c, bi〉 = 0.

Consider
WTB(r) =

∑
bi∈B

〈r, bi〉 (4.1)

as the sum of all 〈e, bi〉, with bi ∈ B. Stated differently, we count how many codewords in B are
not orthogonal to the received vector. Algorithm II in [12] is based on the following observation:
given two error vectors e1 and e2 with weight wt(e1) ≤ wt(e2) ≤ d

2 , then WTB(e1) ≤WTB(e2) is
valid in most cases (according to [12]). The steps of this decoding scheme are given in Algorithm 5.

In [37], the considered function is a linear combination of functions as WTB(r). The dual
code D⊥ is split into sets of codewords with the same weight: B0, B, . . . , Bn for di = 0, 1, . . . , n.
The counting function is defined as:

U(r) =

n∑
di=0

Udi(r), where Udi(r) = αdiWTBi
(r), (4.2)

and where αdi ∈ R, called a weighted factor, can be assumed to be only dependent on the
weight di of the dual codewords in Bdi . The function U(r) is called a potential function and Udi
subpotentials. According to [37], for efficient decoding, it is not necessary to use all subpotentials
in the potential function but only some of them. A decoding example presented in [37] is only
using the subpotentials of the maximum and minimum weight vectors in D⊥.

The decoding schemes that we implement are from Algorithm 5, where instead of WTB(r),
we are using U(r) with only one or two subpotentials and with weighted factors always equal to
1. The number of subpotentials and the value for the factors are determined by experimental
evaluation.
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Algorithm 5: Hard-decision Decoding using a set of dual codewords
1 Denote v = r, r-received vector

Calculate
X = WTB(v)

2 if X = 0 then
3 go to 8)

4 else
5 Calculate

εi = WTB(v + ei) for i = 1, 2, . . . , n,
where ei = (0, 0, . . . , 0, 1, 0, . . . , 0) with 1 in the i−th coordinate

6 Find j ∈ {1, 2, . . . , n} with
εj = min{εi | i = 1, 2, . . . , n}

7 v = v + εj
X = εj
go to 2)

8 Decode r as the codeword v. Exit.

2.2. Decoding of the [104,52,18] Self-dual Code. Vulnerability and mitigation.

Let B18 be the set of all codewords in C⊥ = C of weight 18. The cardinality of B18 is 23 700.
Moreover, rank(B18) = 52, which means that the set B18 spans the entire code.

For decoding, we use Algorithm 5 with potential function U(r) = U18(r) = WTB18
(r). A

programming implementation is tested on 2 000 random examples of received vectors r, where
r = mG+ e with m a random message of length 52 and e a random error vector of length 104
and wt(e) = 8. All vectors r are correctly decoded.

In the setup, the self-dual [104, 52, 18] code C is a private key of a McEliece type cryptosystem.
Then:

1. The rows of a generator matrix G of C are orthogonal.
2. The matrix GP , P permutation matrix, generates an equivalent to C self-dual code.
3. The matrix G′ = SGP , S being the non-singular matrix, consists of rows which are linear

combinations of rows in GP , i.e., SGP generates self-dual code with the same minimum
weight as in C.

From the last step, it follows that Algorithm 5 can be applied directly to the public key G′
and it will decrypt any ciphertext into a message without any additional knowledge. In order
to do it, the set of minimum weight codewords generated by G′ are required. This set can be
obtained for a self-dual code by computing all linear combinations of 1, 2, . . . , d/2 rows in G′ and
in the parity-check matrix of G′ when both matrices are in a systematic form.

An attacker to reveal the structure of the public key only needs to check the self orthogonality
of G′, and when k = n/2, then G′ generates a self-dual code. Self orthogonality check includes
only computing k(k − 1)/2 inner products. Generating the set of minimum weight codewords
in the public key and in the private key takes the same effort, i.e., the amount of work of the
attacker to break the system is equal to the amount of work of the creator of the encryption
system.

The number of all linear combinations, generating the set of minimum weight codewords in C,
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is:

Lnb =

d/2∑
i=1

(
k

i

)
+

d/2−1∑
i=1

(
k

i

)
=

9∑
i=1

(
52

i

)
+

8∑
i=1

(
52

i

)
≈ 232.36.

We will see later that 32 bits security is much higher than the security level of this system, but
this approach breaks the system entirely. Therefore, a McEliece type cryptosystem that uses
self-dual codes directly as a private key is vulnerable to a key-recovery attack 2.

To avoid this vulnerability, we consider a [102, 51, 17] punctured code of code C for the private
key, instead of the complete code C. Let matrix Gshort be obtained from G by removing two
columns and one row. Let also Cshort be the punctured code of C generated by Gshort. The aim
is to preserve the error-correcting capability of 8 errors for Cshort. To achieve this, the set B18

must have in the deleted columns only combinations of [0, 0], [0, 1], or [1, 0]. The particular set
B18, B18 ⊂ C, has 6 column pairs with this property. Gshort is obtained from G, particularly by
removing the first two columns and the first row.

To decode the punctured [102, 51, 17] code Cshort with generator matrix Gshort, we present
two strategies: A1 and A2. Strategy A1 is a known procedure to directly decode the punctured
code, which is applicable for codes of a small length. The strategy A2 is new, applicable only
when the number of errors is known, and it decodes the punctured code via the complete code. If
there exists a fast decoding scheme for the complete code, strategy A2 is suitable for codes of any
length.

A1 Decoding.

Strategy A1 performs the decoding via Algorithm 5 with the potential function U(r) = U17(r) +
U18(r). The set B18 with the first two columns removed is denoted by B18_short. The elements of
B18_short, which are orthogonal to Cshort and have weight 17 and weight 18, form the sets B′17 and
B′18, respectively. These two sets are used to calculate the subpotentials as U17(r) = WTB′17(r)
and U18(r) = WTB′18(r).

We obtained |B′17| = 5 925, |B′18| = 11 850, rank(B′17) = 49, rank(B′18) = 50 and together,
rank(B′17 ∪ B′18) = 51. Using B′17 ∪ B′18 in the decoding algorithm, we guarantee that each
received vector orthogonal to this set will be a codeword of the punctured code.

We tested an implementation of Algorithm 5 with the above-mentioned potential function
U(r) on a sample of 2 000 random received vectors r. In this case, r = mG+ e with m a random
message of length 51 and e a random error vector of length 102 with wt(e) = 8. All vectors r
are correctly decoded. An experiment shows that using Algorithm 5 only with B17 or only with
B18 instead of both does not always decode. For B17, there are 238 received vectors out of 2 000
which are not decoded, whereas, for B18, there are 9 out of 2 000 also not decoded. It is confirmed
that all 347 not decoded vectors are correctly decoded using Algorithm 5 with B′17 ∪B′18. For an
overview, the results of the experiments are included in Table 4.1.

Table 4.1: Performance of Decoding Strategy A1 on [102, 51, 17] code Cshort

set weight i cardinality rank tested r decoded r %

B′17 17 5 925 49 2 000 1 762 88.1
B′18 18 11 850 50 2 000 1 991 99.55
B′17 ∪B′18 17,18 17 775 51 2 000 2 000 100

2The private key structure is revealed, and this fact can be used for direct decoding via the public key.
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A2 Decoding.

This strategy decodes the punctured code via the complete code. We first define several elements
and describe the decoding strategy. Then we present a new decryption algorithm applying this
strategy.

Let m be a message of length 51 and (0 | m) be m padded with one zero from the left. Denote
by Pshort and Sshort the permutation and the non-singular matrices used for the public key
G′short = SshortGshortPshort. The matrix Gshort is the punctured matrix of G, defined as:

G =


g1,1 g1,2 g1,3 . . . g1,104
g2,1 g2,2
g3,1 g3,2 Gshort
...

...
g52,1 g52,2

 . (4.3)

The encoding of (0 | m) is:

(0 | m).G = (m∗1,m
∗
2 | mGshort). (4.4)

Thus, the received vector r′ = mGshort + e of length 102 can be decoded via decoding a
padded vector (∗, ∗ | r′) of length 104 by the initial self-dual code C. For (∗, ∗) there are four
options, 00, 01, 10, 11, and it is not known which one will decode r′.

The steps of decoding the punctured code via the complete code are:

1. Denote s = [[0, 0], [0, 1], [1, 0], [1, 1]], t = 8, k = 51, n = 102.

2. for i = 1: 4 do

Pad r′ into (∗ ∗ | r′), where ∗ ∗ = s[i].

Decode (∗ ∗ | r′) into c1, where c1 ∈ C.

if c1[3 : 104] belongs to Cshort then //c1 without the first 2 coordinates

Return c1[3 : 104]. Exit.

3. Return ’Unsuccessful decoding’. Exit.

For the decryption, we define two more elements. Let S and P be extended matrices of Sshort
and Pshort as follows:

S =


1 0 . . . 0
0
... Sshort

0

 and P =



1 0 0 . . . 0
0 1 0 . . . 0
0 0
...

... Pshort

0 0

 . (4.5)
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One can show that for the matrices defined above the following holds:

(0 | m).S.G.P = (0 | m.Sshort).G.P =

= (m∗1,m
∗
2 | m.SshortGshortPshort) =

= (m∗1,m
∗
2 | mG′short).

(4.6)

Thus, we can decode r′ of length 102 via decoding a padded (∗, ∗ | r′) of length 104 by the
initial self-dual code C.

The decryption, including this decoding strategy, is described in Algorithm 6.

Algorithm 6: Decryption using padded ciphertext.
1 Denote

s = [[0, 0], [0, 1], [1, 0], [1, 1]],
i = 1, t = 8, n = 102, k = n/2,

2 Compute
r′ = rP−1, r-received vector of length k

3 while i < 5
4 Pad

r′ into (∗ ∗ | r′), where ∗ ∗ = s[i]
5 Decode

(∗ ∗ | r′) into c1, c1 ∈ C, by Algorithm 5 with decoding set B18.

6 if 5) successful then
7 Denote

c2 = c1[3 : n+ 2], m2 = c2[1 : k]
8 Compute

m1 = m2 ∗ S−1
9 if (m1 ∈ C′short ∧ weight(m1 ∗G′short − r′) == t) then

10 Decrypt r as m1. Exit.

11 i = i+ 1 increase the index

12 if i == 5 then
13 return ’Unsuccessful decryption’. Exit.

An experiment for Algorithm 6 with 2 000 random examples of received vectors r of length
102 shows that all of vectors r are correctly decoded and decrypted.

As decryption is the last step of the McEliece cryptosystem, the scheme is defined. In Figure 4.1
we present the McEliece type encryption scheme using the punctured code Cshort of the optimal
binary [104, 52, 18] self-dual code C. For the decryption step, they are two choices- using the
punctured code or using the complete self-dual code.
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1. System parameters:

− k = 51 - length of the message m.
− n = 102 - length of the ciphertext r.
− t = 8 - number of the intentionally added errors.

2. Key generation:

− Gshort - a generator matrix of a [102, 51, 17] code, a shorted code of an optimal
[104, 52, 18] code.

− P - a random n× n permutation matrix.
− S - an invertible k × k matrix such that SGshortP is in a systematic form.
− G′short = SGshortP , S−1 and P−1 - the inverse of P and S.
− Public key: (G′short, t).
− Private key: (Gshort, G, P, S).

3. Encryption:

- e - a random vector of length n and wt(e) = t.
- m→ r = G′shortm+ e

4. Decryption:

1. By private key Gshort
• r′ = rP−1

• Decode r′ into a codeword c′ using
A1 Decoding - an algorithm
described in this sub-section

• c - the first k bits of c′

• m = cS−1

OR

2. By private key G
Decrypt by Algorithm 6
using padded ciphertext

Figure 4.1: McEliece type encryption scheme using a [102, 51, 17] punctured code
from an optimal [104, 52, 18] self-dual code

3. Cryptanalysis

The attacks described in Section 3.2 are considered against the punctured code of the [104, 52, 18]
self-dual code and against the Goppa codes, which would provide a bit security level of the
McEliece cryptosystem close to the bit security level provided by the first code. The chosen
Goppa codes are small, with a length of n = 2m, m = 6, 7 and a number of errors from 4 to
10. The choice of parameters for Goppa codes is also restricted by the information rate R > 0.4
(R = k/n) since the code has to be efficient, i.e., n − k check bits do not exceed much the k
information bits.

The total cost for each attack is defined in Section 3.2. In Table 4.3, we list the values of log2
of the total cost for each of the attacks. The notations of the attacks in Table 4.3 are defined in
Table 4.2. The value of the parameter β included in the work factor of the attacks A4 and A6 is
evaluated by experiment, and it equals 29, 05%. Figure 4.2 presents the result of the experiment.
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Table 4.2: Attacks

Name Attack
A1 Brute force attack towards the message
A2 Brute force attack towards the coset leaders of the private key
A3 Brute force attack on the error-vector
A4 Basis Information Set Decoding attack
A5 Stern’s attack
A6 Basis Quantum Information Set Decoding attack
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Figure 4.2: Evaluation of the parameter β

Table 4.3: log2(Work factor) of different attacks.
A = {A1, ..., A5}

Goppa codes
code n k t k(n-k) A1 A2 A3 A4 A5 A6 min(A)

C1 128 100 4 2 800 100 28 23.3468 30.7427 20.2171 25.3371 20.5533
C2 128 93 5 3 255 93 35 27.9791 31.074 21.1199 25.3457 21.1199
C3 128 86 6 3 612 86 42 32.3366 31.0785 21.9873 25.1787 21.9873
C4 128 79 7 3 871 79 49 36.46 30.801 22.6618 24.8562 22.6618
C5 128 72 8 4 032 72 56 40.3789 30.2708 23.19 24.3903 23.3368
C6 128 65 9 4 095 65 63 44.1158 29.5066 23.5314 23.7869 23.5629
C7 128 58 10 4 060 58 70 47.6887 28.5193 23.7787 23.0466 23.7787
C8 128 51 11 3 927 51 77 51.1119 27.3117 23.8866 22.1645 23.8866
C9 64 52 2 624 52 12 10.9773 23.8201 14.7128 20.4607 10.9773
C10 64 46 3 828 46 18 15.3465 24.0306 16.7361 20.3007 15.3465
C11 64 40 4 960 40 24 19.2773 23.6536 17.9063 19.8097 17.9063
C12 64 34 5 1 020 34 30 22.8622 22.7898 18.5835 19.0261 18.5835
C13 64 28 6 1 008 28 36 26.1599 21.4744 18.9469 17.9482 18.9469

The self-dual code with a punctured code derived from it
C104,52 104 52 8 2 704 52 52 37.9062 27.3062 22.3401 22.2038 22.3401
C102,51 102 51 8 2 601 51 51 37.6741 27.2311 22.253 22.1242 22.253

As discussed in the previous section, using a self-dual code for a private key in a McEliece
type cryptosystem is not secure. Instead, a punctured code is considered. The values in Table 4.3
show that the classical bit security of the [102, 51, 17] code C102,51 is 22.25 bits, and the Goppa
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codes with the closest security level are C3 and C4. For the quantum security level, our code
example is closest to code C8. Comparing the size of C102,51 with the sizes of all three Goppa
codes, C3, C4, and C8, one can show that the size of C102,51 is at least 28% smaller than the sizes
of C3, C4, and C8.

As it was mentioned in Section 3.2, we have implemented Stern’s ISD attack for the code
C102,51 into a SageMath code. We have performed experiments to evaluate the parameters p and
l, namely, finding the values for p and l when the attack succeeds for the shortest time. Figure 4.3
shows the outcome of the experiment. The values for (p, l) of the fastest Stern’s attack are

p 1 1 1 1 1 1 1
l 9 5 7 6 8 4 3

log2(time) -0.2413 -0.1856 -0.1458 -0.0062 0.0223 0.0968 0.6293

Figure 4.3: Time study of Stern’s attack for different (p, l)

Values for (p, l) can also be obtained from the work factor of Stern’s attack derived from
Eq. (2.3). The results are displayed in Figure 4.4. The values for (p, l) for the smallest work
factor are:

p 1 2 1 2 1 1 1
l 1 9 2 10 3 4 5

log2(WF ) 22.25 22.29 22.33 22.33 22.46 22.63 22.81

Note that the smallest values for the log2(WF ) differ by very little, and they all are less than
23. Thus, combining the results from the runtime experiment, we can conclude that a good choice
for the parameters (p, l) is (1, 5), (1, 4) and (1, 3).
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Figure 4.4: Work factor of Stern’s attack with different (p, l)

Remark 1. Structural attacks are not considered because both, the public and the private keys,
do not have any specific structure. In order to reconstruct the private key to the initial self-dual
code, 2k+(n+2) bits have to be restored, which has a much higher work factor than the claimed
bit security level requires.

Conclusion RQ1: The security level of the McEliece encryption scheme using a punctured
code of an optimal [104,52,18] self-dual code is 22. The system is defined with two choices for the
decryption step.



5
Parameters Estimation for Self-dual

Codes with Bit Security 80, 128, and 256

To estimate parameters for the self-dual codes, which would provide a security level of 80, 128,
and 256 bits, we apply the upper bounds for the work factor of the attacks in the previous section
to the known recently proposed Goppa codes with these security levels. Since our attacks are not
the best known, we expect to obtain higher values for the upper bounds. We use these higher
values further for the estimation of the parameters of the self-dual codes.

The private key of the original McEliece cryptosystem is a [1 024, 525] Goppa code with the
error-correcting capability of 50 errors. It is initially estimated to provide security of 64 bits.
Latter, via an improved version of Stern’s attack in [8], the security of the system is reduced to
60.5 bits. In the same publication [8], the authors proposed parameters for the Goppa codes,
where implementation in the McEliece cryptosystem would provide a security level of 80, 128,
and 256 bits. The proposed codes are listed in Table 5.1. The latest proposed codes providing
security levels of 128, 196, and 256 bits are in the NIST proposal [6].

From the results listed in Table 5.1, it follows that we have to search for codes providing a bit
security level of 83, 148, and 302 to ensure that they would provide at least 80, 128, and 256 bits
security against the latest attacks. In Table 5.2, we list the parameters of a few such codes. A
larger list is included in Table A.1 in Appendix 2.

Note that these are the parameters of the punctured [n, k, 2t+ 1] codes. The corresponding
self-dual codes have to be with length n + 2 and minimum weight 2t + 3 to ensure that the

Table 5.1: min(Log2(Workfactor)) of the attacks A1, . . . , A6 in Section 3.

Goppa codes
code security n k t k(n-k) min(A1, ..., A5) A6

D1 80 [8] 1 632 1 269 34 460 647 82.231 69.5887
D2 128 [8] 2 960 2 288 57 1 537 536 129.8371 96.7078
D3 128 [6] 3 488 2 720 64 2 088 960 147.4275 106.5127
D4 256 [8] 6 624 5 129 117 7 667 855 259.2255 166.1179
D5 256 [6] 6 688 5 024 128 8 359 936 265.2662 168.9545
D6 256 [6] 6 960 5 413 119 8 373 911 266.0612 169.8205
D7 256 [6] 8 192 6 528 128 10 862 592 302.1663 188.9797

39
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Table 5.2: min(Log2(Workfactor)) of the attacks A1, . . . , A6 in Section 3.

Punctured codes
code n k t k(n-k) min(A1, ..., A5) A6

B1 1 062 531 75 281 961 87.3248 67.5796
B2 1 064 532 75 283 024 87.3264 67.5837
B8 1 076 538 75 289 444 87.2886 67.6079
B9 1 894 947 134 896 809 147.8721 101.2093
B10 1 896 948 134 898 704 147.869 101.2097
B30 1 940 970 136 940 900 149.8767 102.3316
B31 4 006 2 003 284 4 012 009 303.9682 183.5916
B32 4 008 2 004 284 4 016 016 303.9619 183.5895
B42 4 028 2 014 284 4 056 196 303.8758 183.5694

punctured codes are within the required parameters. The estimation for the self-dual codes is for
the minimum weight with 15% less than the upper bounds for the minimum weight of a putative
binary self-dual code (see Eq. (2.2)).

This restriction increases the probability that such a code, if it exists, is not unique and could
be constructed. The existence of a large number of codes of the same family is a preliminary
requirement for the security of the McEliece type cryptosystem.

The size of the putative punctured codes B1, B9, and B31 is at least 38% smaller than the
size of the proposed smallest Goppa codes D1, D2, and D4, providing the security level of 80,
128, and 256 bits, correspondingly. In the next chapter, we will present a possible construction of
a self-dual code where the punctured code has the parameters of B1.

Conclusion RQ2: The optimal parameters of a putative self-dual code as a source for a
punctured code used in a McEliece type encryption scheme with a bit security level of 80, 128
and 256, respectively, are:

Self-dual codes Punctured codes
n k d bit security

1 064 532 154 80
1 066 533 154 80
1 078 539 154 80
1 896 948 272 128
1 898 949 272 128
4 008 2 004 572 256
4 0010 2 005 572 256
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McEliece Cryptosystem with 80 bits

security

To define a McEliece type cryptosystem with 80 bits security, we first construct an example of a
binary [1 064, 532, d ≥ 162] self-dual code1. To the best of our knowledge, it is the first code of its
type and parameters. A punctured code of it is used for a private key of the encryption scheme.
As next, an efficient decoding algorithm suitable for the new self-dual code is developed. It is used
in the decryption step of the cryptosystem. In addition, we prove that this new decoding scheme
is applicable for a large family of codes. Further, we propose a new decryption algorithm for the
McEliece type system with a private key a punctured code of the newly constructed self-dual
code. The decryption integrates the decoding of the complete self-dual code. Finally, we discuss
the bit security level of the McEliece type cryptosystem thus defined.

1. Constructing a binary [1 064, 532, d ≥ 162] code
To construct a binary [1 064, 532, d ≥ 162] self-dual code, we use a known algorithm presented
in [19] and [67]. We introduce first the main steps of this algorithm and then the construction of
the code in question.

1.1. Algorithm for constructing Binary [n, n/2, d] self-dual codes having an auto-
morphism of a particular type.

In Section 1.1, we mentioned when two linear codes in Fn2 are permutation equivalent. In the
binary case, two linear codes C and C′ are equivalent if one can be obtained from the other by a
permutation of coordinates. That is, if there exists a permutation σ, σ ∈ Sn (Sn- the symmetric
group of degree n), such that σ(C) = C′. If σ(C) = C for some σ ∈ Sn, then the permutation σ is
an automorphism of the code C.

Following the notations in [67], a permutation of order L, having f fixed points and t1 cycles
of length a1, t2 cycles of length a2, . . . , th cycles of length ah, with 1 < a1 < a2 < · · · < ah, is
called a permutation of type L-(t1, t2, . . . , th; f).

In this chapter, we only consider permutations of type L-(t1; 0), where L = pr, for p and r
being odd primes. That is, σ is of order pr and has only cycles of length pr and no fixed points.
Thus, without loss of generality, σ can be represented as:

1A generator matrix of this example code can be found on https://github.com/yorgova/MsThesisData

41
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σ = Ω1Ω2 . . .Ωt1 , (6.1)

where Ωs is a cycle of length pr for 1 ≤ s ≤ t1.

Let C be a binary [n, n/2, d] self-dual code with a generator matrixG and σ be an automorphism
of C. If v ∈ C, then v can be presented as

v = (v|Ω1, v|Ω2, . . . , v|Ωt1),

where v|Ωi = (v0, v1, . . . , vpr−1) denotes the coordinates of v in the i−th cycle of σ. Then, the
image of v, σ(v), is a vector obtained from v by a cyclic shift in each of v|Ωi. From another side,
σ(v) ∈ C since σ is an automorphism of C. Thus, all vectors obtained from v by cyclic shifts of
the coordinates in each Ωi are also codewords. Therefore, a matrix in the form(

G1 G2 . . . Gt1

)
, (6.2)

where Gj is a circulant matrix of length pr, generates codewords, and then it can be considered
as a sub-matrix of G.

Further, we follow the notations in [67] adjusted to out particular type of automorphism
(Eq. (6.1)). The sets Fσ(C) and Eσ(C) are defined as:

Fσ(C) = {v ∈ C| σ(v) = v} (6.3)

and
Eσ(C) = {v ∈ C| wt(v|Ωi) ≡ 0 (mod 2), 1 ≤ i ≤ t1}, (6.4)

where v|Ωi is the restriction of v on Ωi. Stated differently, Fσ(C) in the part of the code which
remains fixed under the automorphism σ, whereas Eσ(C) contains all the codewords with even
weight in each cycle of σ. It is known that both, Fσ(C) and Eσ(C), are linear subcodes of C [19].
Moreover, a codeword is fixed under σ if it is a constant in each cycle of σ. This last property
implies a map that projects the equal coordinates in each cycle into only one of them. The map
is denoted by π, and for our particular type of automorphism is defined as:

π : Fσ(C)→ Ft12 , π(v|Ωi) = vj , (6.5)

for some j ∈ Ωi, i = 1, . . . , t1.

Proposition 1.1. [67] If C is a binary self-dual code having an automorphism of type pr-(t1; 0),
then π(Fσ(C)) is a binary self-dual code of length t1.

Proposition 1.2. [67] A self-dual code C, as described in Proposition 1.1, can be decomposed
to C = Fσ(C)⊕ Eσ(C), where ⊕ stands for the direct sum of linear subspaces, and dimEσ(C) =
t1
2 (pr − 1).

Thus, a generator matrix of C can be decomposed as:

G =

(
X

Y

)
, (6.6)

where X is a generator matrices of Fσ(C) and Y is a generator matrix of Eσ(C).
Let P denote the set of even-weight polynomials in R = F2[x]/(xpr − 1) and map ϕ be the

following:
ϕ : Eσ(C) → Pt1 , (6.7)
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where v|Ωi = (v0, v1, . . . , vpr−1) is identified with the polynomial ϕ(v|Ωi)(x) = v0 + v1x+ · · ·+
vpr−1x

pr−1 in P for 1 ≤ i ≤ t1.
An inner product in Pt1 is defined as:

〈g, h〉 = g1(x)h1(x−1) + · · ·+ gt1(x)ht1(x−1) (6.8)

for every g, h ∈ Pt1 .

Lemma 1.1. [67] If C is a binary self-dual code having an automorphism σ defined in Eq. (6.1),
then ϕ(Eσ(C)) is a self-orthogonal code, that is:

u1(x)v1(x−1) + · · ·+ ut1(x)vt1(x−1) = 0, (6.9)

for ∀u, v ∈ ϕ(Eσ(C)).

The method from [19] and [67] uses the presented above properties of the subcodes Fφ(C) and
Eσ(C) and their images, π(Fσ(C)) and ϕ(Eσ(C)), to construct the self-dual code C. The method
includes the following steps (Algorithm 7):

Algorithm 7: Construction of a self-dual code having an automorphism.
1 Determine a generator matrix X ′ of π(Fσ(C)).

2 Find the generator matrix X of Fσ(C) corresponding to X ′.

3 Construct a generator matrix Y ′ of ϕ(Eσ(C)).

4 Find the generator matrix Y of Eσ(C) corresponding to Y ′.

5 if G =

(
X

Y

)
generates a code with a minimum weight d, then

6 return G (G generates C); Exit.

7 else

8 return to 1.

1.2. A Binary [1 064, 532, d ≥ 162] Self-dual Code.
Let B be a self-dual [1 064, 532, d ≥ 162] code having an automorphism σ1 of order 133 with 8
cycles of length 133 and no fixed points, i.e. σ1 of type 133− (8; 0). Without loss of generality σ1
can be represented as:

σ1 = Ω1Ω2 . . .Ω8,

where Ωi is a cycle of length 133 for 1 ≤ i ≤ 8.
The sets Fσ1

(B), Eσ1
(B), and the images π and ϕ are defined as in Section 1.1. For the

particular code B and permutation σ1 they are:

• Fσ1
(B) = {v ∈ B| vσ1 = v};

• Eσ1(B) = {v ∈ B| wt(v|Ωi) ≡ 0 (mod 2), i = 1, . . . , 8};
• π : Fσ1(B)→ F8

2, π(v|Ωi) = vj for some j ∈ Ωi, i = 1, . . . , 8;

• ϕ : Eσ1
(B) → P8, ϕ(v|Ωi)(x) = v0 + v1x+ · · ·+ v132x

132 in P for 1 ≤ i ≤ 8,
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where v|Ωi = (v0, v1, . . . , v132) and P is the set of even-weight polynomials in R1 =
F2[x]/(x133 − 1).

An inner product in P8 is defined as in Eq. 6.8 for t1 = 8:

〈g, h〉 = g1(x)h1(x−1) + · · ·+ g8(x)h8(x−1) (6.10)

for all g, h ∈ P8.

According to Section 1.1, for code B, the following holds:
1. B = Fσ1

(B)⊕ Eσ1
(B).

2. The image π(Fσ1
(B)) of the fixed subcode Fσ1

(B) is a binary [8, 4] self-dual code.
3. The image ϕ(Eσ1

(B)) is a self-orthogonal code, that is 〈g, h〉 = 0 for any g, h ∈ ϕ(Eσ1
(B)),

where 〈g, h〉 is defined in Eq. (6.10).

To construct the code B we follow the steps of Algorithm 7.
1. Determine a generator matrix of π(Fσ1(B)).

The image π(Fσ1(B)) is a binary [8, 4] self-dual code. Then a possible generator matrix of
π(Fσ1

(B)) is:

X ′ =

 1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


2. Find the corresponding generator matrix X of Fσ1

(B).
The corresponding to X ′ generator matrix of Fσ1

(B) is:

X =

 s o o o o s s s
o s o o s o s s
o o s o s s o s
o o o s s s s o

, (6.11)

where s = (1, 1, . . . , 1) is the all ones vector and o is the zero vector in F133
2 .

3. Construct a generator matrix Y ′ of ϕ(Eσ1(B)).
ϕ(Eσ1(B)) ⊂ P8, where P is the set of even-weight polynomials in R1 = F2[x]/(x133 − 1).

The factorization of the polynomial x133 − 1 over F2 is

x133 − 1 = h0(x)h1(x) . . . h9(x),

where h0 = x − 1, deg(h1(x)) = deg(h2(x)) = 3 and deg(hj(x)) = 18 for j = 3, . . . , 9.
Denote gj(x) = x133−1

hj(x)
, Ij = 〈gj(x)〉 - the ideal of R1 generated by gj(x) and, ej(x) - the

generator idempotent of Ij for j = 0, . . . , 9.

According to Theorem 1.9:
• R1 = I0 ⊕ I1 ⊕ · · · ⊕ Is;
• Ij is a field with 2deg(hj(x)) elements, j = 0, 1, . . . , 9;
• ei(x)ej(x) = 0, i 6= j.

Using Theorem 1.7 we calculated the general idempotent ej(x) of the ideal Ij , for j = 1, . . . , 9.
We observe that e1(x−1) = e2(x), e3(x−1) = e4(x), e5(x−1) = e6(x), e7(x−1) = e8(x) and
e9(x−1) = e9(x). The same relations are also valid between the generator polynomials
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gi(x), 1 ≤ i ≤ 9, i.e. g1(x−1) = g2(x), g3(x−1) = g4(x), etc. Using these relations and the
self-orthogonality of the image ϕ(Eσ1(B)), we construct a generator matrix of ϕ(Eσ1(B))
in the form:

Y ′ =


Y1
...
Y9

 , (6.12)

where Yj is 4× 8 matrix with elements of Ij , for j = 1, . . . , 9. The cells Y1, Y3, Y5 and Y7
are constructed under certain conditions, which we discuss at the end of this section. The
cells Y2, Y4, Y6 and Y8 are obtained from the previous four cells using the orthogonality
condition Eq.(6.10). For example, if Y1 is the following matrix:

Y1 =


e1(x) 0 0 0 0 g1(x) g1(x) g1(x)

0 e1(x) 0 0 g1(x) 0 g21(x) g31(x)

0 0 e1(x) 0 g1(x) g21(x) 0 g21(x)

0 0 0 e1(x) 0 g21(x) g31(x) g41(x)

,

then the corresponding Y2 is

Y2 =


0 g2(x) g2(x) 0 e2(x) 0 0 0

g2(x) 0 g22(x) g22(x) 0 e2(x) 0 0

g2(x) g22(x) 0 g32(x) 0 0 e2(x) 0

g2(x) g32(x) g22(x) g42(x) 0 0 0 e2(x)


As e1(x−1) = e2(x), g1(x−1) = g2(x), ei(x)ej(x) = 0 and gi(x)gj(x) = 0 for i 6= j, it follows
that the orthogonality condition Eq.(6.10) holds for any two rows in Y1, any two rows in
Y2, and any row of Y1 or Y2 with any row of Yj , j = 3, . . . , 9. For example, the first row of
Y1 is orthogonal to itself since:

e1(x)e1(x−1) + 0 + 0 + 0 + 0 + g1(x)g1(x−1) + g1(x)g1(x−1) + g1(x)g1(x−1) =

= e1(x)e2(x) + g1(x)g2(x) + g1(x)g2(x) + g1(x)g2(x) = 0.

Y2 is obtained from Y1 by the orthogonality condition, thus Eq.(6.10) also holds for any
row of Y1 with any row of Y2. For example, the Eq.(6.10) for the last row of Y1 and the
second row of Y2 is:

0 g2(x−1) + 0 + 0 g22(x−1) + e1(x)g22(x−1) + 0 + g21(x)e2(x−1) + g31(x) 0 + g41(x) 0 = 0

or equivalently:
e1(x)g21(x) + g21(x)e1(x)) = 0

The last is satisfied because the operations are in R1 = F2[x]/(x133 − 1).
The particular matrices that are chosen for Y3, Y4, . . . , Y8 are included in Appendix 3, matrix
Y ′.
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Generating a matrix of the cell Y9 requires a different approach since e9(x−1) = e9(x) and
g9(x−1) = g5129 (x). For example, let the first two rows of Y9 be

w1 = ( e9(x), 0, 0, 0, a1, a2, a3, a4 )

w2 = ( 0, e9(x), 0, 0, a5, a6, a7, a8 ),

where aj is 0 or gsj9 for sj = 0, . . . , 218 − 1, j = 1, . . . , 8. The condition 〈w1, w1〉 = 0 is:

e9(x)e9(x−1) + a1(x)a1(x−1) + a2(x)a2(x−1) + a3(x)a3(x−1) + a4(x)a4(x−1) = 0.

Using SageMath we obtain that this equation has more than 25 mil. of solutions for
(a1, a2, a3, a4). Combining with 〈w1, w2〉 = 0 and 〈w2, w1〉 = 0 one can verify that for a
fixed choice of (a1, a2, a3, a4) there exist at least 200 solutions for (a5, a6, a7, a8).
Let the next two rows of Y9 be:

w3 = (0, 0, e9(x), 0, a9, a10, a11, a12 )

w4 = (0, 0, 0, e9(x), a13, a14, a15, a16 ),

where aj is 0 or gsj9 for sj = 0, . . . , 218 − 1, j = 9, 10, . . . , 16.
There are 5 orthogonality conditions for w3 and 7 for w4. For example for w3 they are:
〈w3, w3〉 = 0, 〈w3, w1〉 = 0, 〈w1, w3〉 = 0, 〈w3, w2〉 = 0 and 〈w2, w3〉 = 0.

Using SageMath, a direct check of them for the possible cases of w3 could not find a
solution for an execution time of 24 hours. Therefore, we have developed a different strategy:
consider the third row, w3, with one variable and the fourth row, w4, with two variables
where we find a solution consequently - first for w3 and then for w4. In particular, the
strategy includes the following two main steps:

a) Generate by SageMath the following two rows of Y9:

v1 = ( e9(x), 0, 0, 0, gs19 (x), gs29 (x), gs39 (x), gs49 (x) )

v2 = ( 0, e9(x), 0, 0, gs59 (x), gs69 (x), gs79 (x), gs89 (x) ),

such that 〈v1, v1〉 = 0, 〈v1, v2〉 = 0, 〈v2, v1〉 = 0 and 〈v2, v2〉 = 0, where
sj = 0, . . . , 218 − 1 for j = 0, 1, . . . , 8.

b) Consider the third and fourth rows of Y9 in the form:

v3 = ( gs19 (x−1), gs59 (x−1), gy19 (x), 0, e9(x), 0, 0, 0) )

v4 = ( gs29 (x−1), gs69 (x−1), gy29 (x), gy39 (x), 0, e9(x), 0, 0) ),

where s1, s2, s5 and s6 are from v1 and v2, and yi is unknown, 0 ≤ yi ≤ 218 − 1 for
i = 1, 2, 3. Then:

(i) find y1 from 〈v3, v3〉 = 0;
(ii) find y2 from 〈v3, v4〉 = 0 and 〈v4, v3〉 = 0;
(iii) find y3 from 〈v4, v4〉 = 0.
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Using that g9(x−1) = g5129 (x) we rewrite v3 and v4 as:

v3 = ( g512s19 (x), g512s59 (x), gy19 (x), 0, e9(x), 0, 0, 0) )

v4 = ( g512s29 (x), g512s69 (x), gy29 (x), gy39 (x), 0, e9(x), 0, 0) ).

Then the orthogonality conditions from b) for finding y1, y2 and y3 acquire the following
form:

g512s19 (x)g512s19 (x−1) + g512s59 (x)g512s59 (x−1) + gy19 (x)gy19 (x−1) + e9(x)e9(x−1) = 0

g512s19 (x)g512s29 (x−1) + g512s59 (x)g512s69 (x−1) + gy19 (x)gy29 (x−1) = 0

g512s19 (x−1)g512s29 (x) + g512s59 (x−1)g512s69 (x) + gy19 (x−1)gy29 (x) = 0

g512s29 (x)g512s29 (x−1) + g512s69 (x)g512s69 (x−1) + gy29 (x)gy29 (x−1) + gy39 (x)gy39 (x−1) + e9(x)e9(x−1) = 0

or equivalently:

g513s19 (x) + g513s59 (x) + e9(x) = g513y19 (x)

g512s1+s29 (x) + g512s5+s69 (x) = gy1+512y2
9 (x)

gs1+512s2
9 (x) + gs5+512s6

9 (x) = g512y1+y29 (x)

g513s29 (x) + g513s69 (x) + g513y29 (x) + e9(x) = g513y39 (x) .

(6.13)

In particular, in a) we consider the following solution for s1, . . . , s8:

s1 s2 s3 s4 s5 s6 s7 s8

133 1 319 233 370 266 2 1 49

Solving the equations (6.13) for y1 , y2 and y3 we obtain:

• y1 = 117 + 511k1, k1 = 0, 1, . . . , 512, where we choose k1 = 2, y1 = 1139.

• y2 = 149579.

• y3 = 338 + 511k3, k3 = 0, 1, . . . , 512, where we choose k3 = 0, y3 = 338.

Hence, we have defined an example for the cell Y9 of Y ′ (Eq. (6.12)). The complete matrix
Y ′ of ϕ(Eσ1(B)) is given in Appendix 3.

Following Algorithm 7, the next step is:

4. Find the corresponding generator matrix Y of Eσ1(B).
The matrix Y ′ defines the generator matrix of the subcode Eσ1

(B) as

Y =


y1,1 y1,2 . . . y1,8
...

...
...

y36,1 y36,2 . . . y36,8

 , (6.14)

where each entry of the first 8 rows is a right circulant 3 × 133 matrix, as Ij is a cyclic
[133, 3] code for j = 1, 2, and each entry of the rest of the rows is a right circulant 18× 133
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since Ij is a cyclic [133, 18] code for j = 3, . . . , 9. The first rows of the circulants correspond
to the polynomials in the matrix Y ′ (Eq. (A.1))

In step 3. it was mentioned that the cells Y1, Y3, Y5 and Y7 are constructed under certain
conditions. The matrix Y ′, i = 1, . . . , 9, specifies the generator matrix Y of the subcode
Eσ1(B). The minimum weight of the code B has to be greater than or equal to 162, thus,
the same has to hold for the minimum weight of Y . In this regard, we construct the Yi cells
according to the following requirements:
• each row of Yi, i = 1, . . . , 9, has at least four non zero elements, i.e. each row has
weight greater than or equal to four;

• the weight of Y1,
(
Y1
Y2

)
, Y3,

(
Y3
Y4

)
, Y5,

(
Y5
Y6

)
, Y7,

(
Y7
Y8

)
and Y9 is at least 3.

In step 4. the matrix Y has to satisfy the following requirements:

• the first 24 rows, corresponding to
(
Y1
Y2

)
, have a minimum weight of at least 168;

• each next 18 rows corresponding to a row in Ys, s = 3, . . . , 9, have a minimum weight
of at least 168;

• the linear combinations of up to 8 rows of the 144 rows of Y corresponding to
(
Y3
Y4

)
,(

Y5
Y6

)
,

(
Y7
Y8

)
and the 72 rows corresponding to Y9, have a weight of at least 168.

Once we have constructed generator matrices for the subcodes Fσ1
(B) and Eσ1

(B), we can
proceed to step 5. of Algorithm 7.

5. if G =

(
X

Y

)
generates a code with a minimum weight d ≥ 162, where X and Y are given

in Eq. (6.11) and Eq. (6.14), then G generates the code B.

Software implementation: For constructing a generator matrix of B, we developed a
software in C++ performing the following:

- Constructing sub-matrices of Y corresponding to Ys, s = 1, . . . , 8, which hold the require-
ments in steps 3 and 4.

- Creating the sub-matrix of Y corresponding to Y9 defined in step 3.

- Creating the matrix G defined in Eq.(6.6).

- Creating the parity-check matrix H of G.

- Calculating the weight of all linear combinations up to 8 rows of G and of H. For this we
implement the algorithm for efficiently computing the codewords of fixed weight in linear
codes (for the binary case) presented in [13].

Due to computation time, the exact minimum weight of the code is not calculated. Instead,
all linear combinations of up to 8 vector rows of G and of the corresponding parity check matrix
are computed. They all have a weight greater than or equal to 168. A random linear combination
of a random number of rows of G on a single 16 RAM Intel7 PC for 30 days did not result in a
vector with a weight smaller than 168.
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Moreover, note that the requirements for steps 3. and 4. are held during the construction
of the cells of Y ′ and the matrix Y . Therefore, the first 24 × 1 064 and every next 18 × 1 064
sub-matrix of Y has a minimum weight of at least 168.

Based on the listed evidence, we expect the matrix G with the defined above sub-matrices X
and Y to generate a self-dual [1 064, 532, d ≥ 162] code.

Conclusion RQ3: The matrix

G =

(
X

Y

)
, (6.15)

where X and Y are given in Eq. (6.11) and Eq. (6.14), generates a self-dual code of length 1 064.
A punctured code of it used in a McEliece type encryption scheme is expected to provide a
security level of 80 bits.

2. A new decoding algorithm
The decoding Algorithm 5 applied for the small code example of length 102 is using the set of the
minimum weight dual codewords or union of sets with chosen weights from the dual code. For
code B1 to find all the codewords with the minimum weight is a computationally difficult problem.
Moreover, the set can be very large, i.e., it requires a large memory, which is a limitation for
practical implementation in the current communication systems.

This chapter presents a decoding scheme suitable for self-dual codes having an automorphism
of a specific type. We first prove a polynomial orthogonal property of such codes. Then an
algorithm for decoding of cyclic codes introduced by Bossert in [11] is described. Next, we combine
the basic idea of the cyclic codes decoding with the polynomial orthogonal condition for the
specific type of self-dual codes into a new hard decision iterative decoding algorithm for these
self-dual codes. Three examples demonstrate the efficiency of this new decoding strategy. At last,
we discuss an application of the new algorithm on the binary [1 064, 532, d > 160] self-dual code
constructed in Section 1.2.

2.1. Polynomial orthogonal property of self-dual codes of a specific type.
Consider all elements defined in Section 1.1 by the same names and notations. Let u and v are
two codewords of C. In polynomials they can be representes as u = (u1(x), u2(x), · · · , ut1(x)) and
v = (v1(x), v2(x), · · · , vt1(x)), where uj(x), vj(x) ∈ R for 1 ≤ j ≤ t1. An inner product of u and
v is defined similarly to Eq. (6.8) by:

〈u, v〉 = u1(x)v1(x−1) + · · ·+ ut1(x)vt1(x−1) (6.16)

for every u, v ∈ C.
According to Lemma 1.1, this inner product is equal to 0 if u, v ∈ ϕ(Eσ(C)). We will prove that

this orthogonality holds for every u and v in C, where C is a self-dual code with an automorphism
σ of type pr − (t1; 0), with p, r being odd primes.

Lemma 2.1. Let C be a binary [n, n/2, d] self-dual code possessing an automorphism σ of type
pr-(t1; 0), where p and r are odd primes and n = prt1. Then, Eq. (6.9) holds for every u, v ∈ C.

To prove Lemma 2.1, we first prove that Eq. (6.9) holds for every u, v ∈ Fσ(C), then for every
u ∈ Fσ(C) and every v ∈ Eσ(C), and at last, the statement in the lemma, for ∀u, v ∈ C.
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Proposition 2.1. Let C be a binary self-dual code having an automorphism σ of type pr−(t1; 0).
Let each u ∈ Fσ(C) be presented as u = (u1(x), u2(x), . . . , ut1(x)). Then, for u, v ∈ Fσ(C) it
follows:

u1(x)v1(x−1) + · · ·+ ut1(x)vt1(x−1) = 0. (6.17)

Proof. The codewords of the subcode Fσ(C) can be seen as one row circulant matrices in Eq. (6.2).
Moreover, the coordinates of a fixed codeword are constant in each pr cycle, i.e., v|Ωi = (0, 0, . . . , 0)
or v|Ωi = (1, 1, . . . , 1) for v ∈ Fσ(C), 1 ≤ i ≤ t1.

If a map π is defined as in Eq. (6.5), then π(Fσ(C)) is a binary [t1, t1/2] self-dual code.
Therefore, t1 must be even and the weight of each element in π(Fσ(C)) must also be even. Thus,
each fixed codeword in C has an even number of v|Ωi = (1, 1, . . . , 1). Hence, written in polynomials
in R it is:

• each g = (g1(x), g2(x), . . . , gt1(x)) ∈ Fσ(C) has an even number of coordinates gs(x) of the
form 1 + x+ x2 + · · ·+ xpr−1.

If 1 + x + x2 + · · · + xpr−1 is denoted by g0(x), then it can be obtained that g0(x−1) =
g0(x) mod (xpr − 1) and g0(x)g0(x−1) = g0(x) mod (xpr − 1).

Thus, we can conclude that Eq. (6.17) holds for two codewords in Fσ(C) if they intersect in
even positive number of cycle positions with full one vector or, they intersect in 0 cycle positions
with full one vector.

Let us assume that there exist two codewords v, v′ ∈ Fσ(C) that intersect in an odd number
of cycle positions with a full one vector, and this odd number is z. As the length of the cycles is
pr, then the regular inner product of v and v′, v.v′ = v1v

′
1 + v2v

′
2 + · · ·+ vprt1v

′
prt1 mod (2), will

be equal to zpr, where z is odd, and p and r are odd primes. Thus, v.v′ = zpr ≡ 1 mod(2), which
is a contradiction to C being a self-dual code. Therefore, Eq. (6.9) holds for any two codewords
in Fσ(C).

Let now u ∈ Fσ(C) and v ∈ Eσ(C), where u = (u1(x), u2(x), . . . , ut1(x)) with coordinates
ui(x) = 0 or ui(x) = 1 + x+ x2 + · · ·+ xpr−1, and v = (v1(x), v2(x), . . . , vt1(x)), where vi(x) ∈ P .

Since the weight of π(u) is even, then u contains even number of coordinates equal to
1 + x+ x2 + · · ·+ xpr−1. Let ui(x) = 1 + x+ x2 + · · ·+ xpr−1 for i ∈ {α1, α2, . . . , α2s}. Then,
〈u, v〉 and 〈v, u〉 are:
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〈u, v〉 =
t3∑
i=1

ui(x)vi(x
−1) =

=
∑

i∈{α1,α2,...,α2s}
(1 + x+ x2 + · · ·+ xpr−1) vi(x

−1) =

=
∑

i∈{α1,α2,...,α2s}

xpr−1
x−1 vi(x

−1) =

= xpr−1
x−1

∑
i∈{α1,α2,...,α2s}

vi(x
−1) ,

〈v, u〉 =
t3∑
i=1

vi(x)ui(x
−1) =

=
t3∑
i=1

vi(x)ui(x) =

= xpr−1
x−1

∑
i∈{α1,α2,...,α2s}

vi(x) .

(6.18)

Thus,

〈u, v〉 ≡ 0 mod(xpr − 1) if and only if
∑

i∈{α1,α2,...,α2s}
vi(x

−1) ≡ 0 mod(x− 1) ,

〈v, u〉 ≡ 0 mod(xpr − 1) if and only if
∑

i∈{α1,α2,...,α2s}
vi(x) ≡ 0 mod(x− 1) .

(6.19)

We consider the coordinates vi(x) of v ∈ Eσ(C). By definition Eσ(C) = {v ∈ C| wt(v|Ωi) ≡
0 (mod 2), i = 1, . . . , t1}, which implies that the weight of vi(x) is even for 1 ≤ i ≤ t1. When
vi(x) has even number of nonzero coefficients, then vi(1) = 0 in F2, which means 1 is a root of
vi(x). Therefore, x− 1 divides vi(x) for 1 ≤ i ≤ t1, i.e.

vi(x) ≡ 0 mod(x− 1). (6.20)

Thus, ∑
i

vi(x) ≡ 0 mod(x− 1)

for any i and in particular, this will also be satisfied for i ∈ {α1, α2, . . . , α2s}. Hence,∑
i∈{α1,α2,...,α2s}

vi(x) ≡ 0 mod(x− 1). (6.21)

Does
∑

i∈{α1,α2,...,α2s}
vi(x

−1) ≡ 0 mod(x− 1) also hold?

One can show that the following holds:

• vi(x−1) ≡ vi(xpr−1) in R, for 1 ≤ i ≤ t1;
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• vi(x) = (x− 1)v′i(x), for some v′i(x) ∈ R, 1 ≤ i ≤ t1 (from Eq.(6.20)).

• xpr−1 − 1 ≡ 0 mod(x− 1), since x ≡ 1 mod(x− 1) =⇒ xpr−1 ≡ 1 mod(x− 1).

Then,
vi(x

−1) = vi(x
pr−1) = (xpr−1 − 1) v′i(x

pr−1) ≡ 0 mod(x− 1) ,

for some v′i(x) ∈ R, for 1 ≤ i ≤ t1. In particular, this will also hold for i ∈ {α1, α2, . . . , α2s} and
therefore ∑

i∈{α1,α2,...,α2s}

vi(x
−1) ≡ 0 mod(x− 1). (6.22)

Combining Eqs. (6.19), (6.21), and (6.22), we derive the following proposition.

Proposition 2.2. Let C be a binary self-dual code having an automorphism σ of type pr−(t1; 0).
Then u ∈ Fσ(C), v ∈ Eσ(C) are orthogonal, namely 〈u, v〉 ≡ 0 mod(xpr − 1) and 〈v, u〉 ≡
0 mod(xpr − 1).

Summarizing Proposition 2.1, Proposition 2.2, and Lemma 1.1, we can prove Lemma 2.1.

Proof. Let u, v ∈ C, where C = Fσ(C)⊕ Eσ(C). Then,

u = u′ + u′′, v = v′ + v′′,

where u′, v′ ∈ Fσ(C) and u′′, v′′ ∈ Eσ(C). The inner product of u and v is

〈u, v〉 = 〈u′ + u′′, v′ + v′′〉 =

= 〈u′, v′〉+ 〈u′, v′′〉+ 〈u′′, v′〉+ 〈u′′, v′′〉.
The first term 〈u′, v′〉 = 0 according to Proposition 2.1. The next two terms are also 0 because
of Proposition 2.2. The last term 〈u′′, v′′〉 is also 0 because ϕ(Eσ(C)) is a self-orthogonal code
(Lemma 1.1). Therefore, 〈u, v〉 = 0 for any u, v ∈ C.

Remark 2. In case the binary self-dual code C has an automorphism γ of odd prime order p
with c cycles and no fixed points (type p− (c, 0)), the fixed subcode Fγ(C) is also self-dual [31]
and, the image ϕ(Eγ(C)) of the even subcode Eγ(C) is also self-orthogonal [65]. Following the
proofs of Proposition 2.1 and Proposition 2.2, one can conclude that they also hold for p instead
of pr. Therefore, Lemma 2.1 is also a valid statement for self-dual codes with an automorphism
of type p− (c, 0).

2.2. Shift-sum Decoding for Cyclic codes
A decoding concept introduced in [11] is on decoding cyclic codes by using the set of the minimal
weight codewords of the dual code. Later in [64], this concept is called Shift-Sum Decoding.

Cyclic codes are introduced in detail in Section 1.6. Here we recall only properties used for
the cyclic code decoding in [11] and, we point out a difference in one of the general notations.

Let C1 be a cyclic [n, k]2 code generated by polynomial g(x) = g0 + g1x+ g2x
2 + · · ·+ grx

r,
where g(x) ∈ R1 = F2[x]/(xn − 1) and r = n− k. Then C1 can be generated by the matrix

G1 =


g0 g1 g2 . . . gr 0 . . . 0
0 g0 g1 . . . gr−1 gr . . . 0

...
0 . . . 0 g0 g1 . . . gr

 .

Regarding the code C1, it is known that:
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• the polynomial g(x) divides xn − 1;

• the polynomial h(x), h(x) = xn−1
g(x) , is the check polynomial of the cyclic code C1;

• every codewords c(x) in C1 is divisible by the generator polynomial of C1, i.e., c(x) ≡
0 mod(g(x));

• c(x)h(x) ≡ 0 mod(xn − 1);

• the dual code C1
⊥ is also cyclic, generated by the reverse of the check polynomial h(x), i.e.

C1
⊥ is generated by hR(x) = xdeg(h(x))h(x−1).

Note that only in this subsection a polynomial b(x) of C1
⊥ refers to the polynomial, which is

in reverse order of the codeword as a vector in C1
⊥. Considering b(x) in this way, b(x) will be

divisible by h(x) instead of hR(x), i.e. b(x) = h(x)q1(x) for some polynomial q1(x). Then, for
every c(x) of C1 and every b(x) of C1

⊥ it holds that c(x)b(x) ≡ 0 mod(xn − 1). It is because
b(x) = h(x)q1(x), c(x) = g(x)q2(x) and then

c(x)b(x) = g(x)q2(x)h(x)q1(x) = (xn − 1)q1(x)q2(x) = 0 mod(xn − 1) .

This notation of b(x) of C1
⊥ is in correspondence to [11].

The support supp(f(x)) of any polynomial f(x) =
n−1∑
l=0

fix
i in R is the set of indices for which

the coefficients of f(x) are nonzero, i.e. supp f(x) = {i | fi 6= 0, ∀i}. Then, the weight of f(x) is
wt(f(x)) = |supp f(x)|.

Let C1
⊥ have a minimum weight d⊥ and b(x) = xb1 + xb2 + · · ·+ xbd⊥ be a minimum weight

codeword of C1
⊥. Thus, its support is supp(b(x)) = {b1, b2, · · · , bd⊥}, where bi ∈ {0, 1, . . . , n− 1}.

As C1
⊥ is cyclic and b(x) ∈ C⊥, then each cyclic shift of b(x) is also in C1

⊥, i.e. xsb(x) ∈ C⊥
for s = 1, . . . , pr. In particular, the polynomial x−b1b(x) ∈ C1

⊥ and it starts with x0 as
x−b1b(x) = x0 + xb2−b1 + · · ·+ xbd⊥−b1 . Thus, instead of b(x) of C⊥ we can use x−b1b(x) of C⊥.
Hence, we can always assume that b1 = 0, which leads to supp(b(x)) = {0, b2, · · · , bd⊥}.

Encoding by the cyclic code C1 is defined by its generator polynomial g(x), that is: a message
m(x) = m0 +m1x+m2x

2 + ...mk−1x
k−1 of length k is encoded into c(x) = g(x)m(x). Let the

encoded message c(x) be transmitted and r(x) = g(x)a(x) + e(x) be received where e(x) is the
error polynomial. Then, the product of the received r(x) with every dual codeword is:

r(x)b(x) = (c(x) + e(x)) b(x) = c(x)b(x) + e(x)b(x) = e(x)b(x) mod(xn − 1)

The product r(x)b(x) is denoted by w(x), and it can be considered as a syndrome because its
value only depends on the error [11].

Note that if e(x) /∈ C1, then w(x) = r(x)b(x) = e(x)b(x) is a nonzero linear combination of
b(x) and shifted b(x) (or only shifted b(x)), where b(x) as well as the shifted b(x) are in C1

⊥

because C1
⊥ is cyclic. This concludes that w(x) is a nonzero codeword of C1

⊥ and therefore
wt(w(x)) ≥ d⊥.

If the error is e(x) = xe1 + xe2 + · · · + xer , or equivalently, the errors are on positions e1,
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e2,...,er, then w(x) can be written as:

w(x) = e(x)b(x) = (xe1 + xe2 + · · ·+ xer )(1 + xb2 + · · ·+ xbd⊥ ) mod(xn − 1)

= xe1 + xe2 + · · ·+ xer+
xe1+b2 + xe2+b2 + · · ·+ xer+b2+
xe1+b3 + xe2+b3 + · · ·+ xer+b3+
...
xe1+bd⊥ + xe2+bd⊥ + · · ·+ +xer+bd⊥ ,

(6.23)

where the exponents ei+bj are calculated mod n. This representation can be seen as: the first row
contains all error positions of r(x), the second row - all error positions shifted with b2 positions,
the next row - all error positions shifted with b3 positions and so on, the last row - all error
positions shifted with bd⊥ positions. Thus, any nonzero coefficient in w(x) is an error or a shifted
error with b2, b3,..., or bd⊥ positions.

In order to move the shifted error positions in w(x) into the original error positions, we can
shift back by b2, b3,..., bd⊥ positions, which is equivalent to the multiplication of w(x) with x−j ,
for j ∈ {b1, b2, ..., bd⊥}. Considering all d⊥ polynomials w(x), x−b2w(x), x−b3w(x), ..., x−bd⊥w(x)
mod(xn− 1), one can conclude that they are all of the same weight, and any nonzero coefficient of
w(x) is at the original error position in one of these shifts. Therefore, the polynomials all together
have at least wt(w(x)) errors in their original positions. They have at least wt(w(x)) errors in
their original positions since a shifted error can eventually also be at another error position in
some shift [11].

Example 2.1. Shifts of w(x) for BCH(15,5,7) code2

The BCH (15,5,7) code is a cyclic code with generator polynomial g = x10 + x8 + x5 + x4 +
x2 + x+ 1 and generator matrix

G15 =


1 1 1 0 1 1 0 0 1 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 1 0 1 0 0 0
0 0 1 1 1 0 1 1 0 0 1 0 1 0 0
0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 1 0 1 1 0 0 1 0 1

 .

The parity-check polynomial is h(x) = x15−1
g(x) = x5 + x3 + x+ 1 and the dual of this BCH code is a

[15, 10, 4] code.
Let codeword c(x) = 1 +x3 +x4 +x6 +x8 +x9 +x10 +x11 be sent and let r(x) = x3 +x4 +x5 +

x6 + x8 + x9 + x10 + x11 + x12 be the received vector. Then the error vector is e(x) = 1 + x5 + x12.
Consider a codeword b(x) = 1 + x10 + x11 + x13 of the dual code with minimum weight d⊥ = 4.

Then the polynomial w(x) from Eq. 6.23 is

w(x) = e(x)b(x) = (1 + x5 + x12)(1 + x10 + x11 + x13) mod(x15 − 1)

= 1 + x5 + x12+
x10 + 1 + x7+
x11 + x+ x8+
x13 + x3 + x10

= 1 + x3 + x5 + x7 + x8 + x11 + x12 + x13,

2This example is created for this work and not being a part of [11].
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where the error positions 1, x5 and x12 are all in w(x). The other non zero positions in w(x)
are shifted error positions, like x3 shifted by x−13 is x5, x7 shifted by x−10 is x12, i.e. shifted by
x−j , j = 10, 13 where j ∈ supp(b(x)) = {0, 10, 11, 13}.

The vectors w(w), x−10w(x), x−11w(x), x−13w(x) are:

w(x) = 1 + x3 + x5 + x7 + x8 + x11 + x12 + x13,
x−10w(x) = x+ x2 + x3 + x6 + x8 + x10 + x12 + x13,
x−11w(x) = 1 + x+ x2 + x5 + x7 + x9 + x11 + x12,
x−13w(x) = 1 + x3 + x5 + x7 + x9 + x10 + x13 + x14.

The main idea in the decoding concept in [11] is in all the polynomials w(x), x−b2w(x),
x−b3w(x),...,x−bd⊥w(x) mod(xn − 1) to count the frequency of 1 at position j. From Eq. 6.23, it
is expected that the frequency in the error positions will be higher than in any other position,
which implies that a larger frequency is an indicator for an error in the corresponding position.
The frequency is denoted by Φj and calculated by:

Φj =
∑

i∈sup(b(x))

wi+j mod(n) , j = 0, 1, 2, · · · , n− 1,

where wbi+j mod(n) is counted in position j since the shift of w(x) by −bi moves the position
bi + j mod(n) into j.

Definition 2.1. [11] Two different codewords c1(x), c2(x) ∈ C1 are called cyclically different if
no shift i exist, such that xic1(x) = c2(x) mod(xn − 1).

Example 2.1 continuation
Counting the frequency Φj for the above example: 1 appears 3 times, x appears 2 times, x2 appears
2 times and so on: for j = 0, 1, ..., 14, Φj is:

position j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Φj 3 2 2 3 0 3 1 3 2 2 2 2 3 3 1

The positions 0, 3, 5, 7, 12, 13 have the highest frequencies, and all the error positions are among
them.

We obtain that the BCH (15,5,7) code has 7 cyclically different minimum weight dual codewords.
One set of them contains the following vectors:

1 (1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 5 (1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0)
2 (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 6 (1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
3 (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) 7 (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0)
4 (1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0)

Assume that the dual code C1
⊥ has L cyclically different minimum weight codewords b(l)(x),

l = 1, 2, · · · , L. The described process above can be applied to each of these codewords and
accumulate the sums per position. Then, the sum Φj becomes:

Φj =

L∑
l=1

∑
i∈sup(b(l)(x))

w
(l)
i+j mod n , j = 0, 1, 2, · · · , n− 1, (6.24)

where the values of Φj are bounded by 0 ≤ Φj ≤ Ld⊥ [11].
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Example 2.1 continuation
The results for Φj calculated for the set of 7 cyclically different minimum weight dual codewords
listed above and the received vector r(x) are:

position j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

total Φj 18 12 12 16 12 18 12 12 12 12 14 14 18 12 14

The highest frequency is 18 and it is in the positions 0, 5 and 12 which are exactly the error
positions since in our example e(x) = 1 + x5 + x12.

The decoding strategy in [11] can be summarized in the following steps:
1. Generate all or almost all cyclically different codewords of minimum weight d⊥ in the dual

code C1
⊥.

2. r(x) - received polynomial
Compute r(x)h(x). If r(x)h(x) = 0 then r(x) belongs to the code C1 - end, otherwise 3.

3. For every minimum weight dual codeword b(x) generated in step 1 and for r(x)
compute w(x) = b(x)r(x), x−b2w(x), x−b3w(x), . . . , x−bd⊥w(x) mod(xn − 1), for all
bj ∈ supp(b(x)).

4. Compute Φj defined in (6.24) for j = 0, 1, ..., n− 1 and determine the maximum value.
5. Determine the index jm (or indexes) with the maximal value Φj and flip the coordinate jm

of r(x) by adding xjm to r(x), i.e. r(x) becomes r(x) + xjm .
6. If r(x) + xjm belongs to the code C1 - end, otherwise repeat from step 3.

The idea of shifting and summing up in cyclic codes we use in a new algorithm for decoding
self-dual codes having an automorphism of type pr − (t1; 0).

2.3. Hard-decision Iterative Decoding of Self-dual Codes of a specific type
Consider all elements of Section 1.1 by the same names and notations.

Let a codeword c ∈ C be transmitted and r = c+ e be received where e is the error vector. In
polynomial representation it is:

(r1(x), r2(x), . . . , rt1(x)) = (c1(x), c2(x), . . . , ct1(x)) + (e1(x), e2(x), . . . , et1(x)),

where ri(x), ci(x), ei(x) are in R = F2[x]/(xpr − 1).
We denote by w the inner product of the received r with any minimum weight codeword

b ∈ C:

w(x) = 〈r, b〉 =

t1∑
i=1

ri(x)bi(x
−1) mod (xpr − 1) . (6.25)

As r = c+ e, for w(x) it follows that:

w(x) = 〈r, b〉 =

t1∑
i=1

ci(x)bi(x
−1) +

t1∑
i=1

ei(x)bi(x
−1) mod (xpr − 1)

On this step we use Lemma 2.1 proved in Section 2.1.

According Lemma 2.1, the term
t1∑
i=1

ci(x)bi(x
−1) is equal to zero. Therefore,

w(x) = 〈r, b〉 =

t1∑
i=1

ei(x)bi(x
−1) mod (xpr − 1).
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It is clear that, if the error vector e is zero, i.e., ei(x) = 0 for 1 ≤ i ≤ t1, then also w is zero. In
the case when e is nonzero, w(x) is a polynomial of degree at most pr − 1. Further, we define an
indicator that determines the flipping positions in the received vector so that w(x) becomes zero.

Let the support of b1(x), supp(b1(x)), be the set {β1, β2, . . . , βd} which means that b1(x) =
xβ1 + xβ2 + · · ·+ xβd . Then w can be written as:

w(x) =
t1∑
i=1

ei(x)bi(x
−1) mod (xpr − 1)

= e1(x)b1(x−1) +
t1∑
i=2

ei(x)bi(x
−1) mod (xpr − 1)

= e1(x)x−β1 + e1(x)x−β2 + · · ·+ e1(x)x−βd +
t1∑
i=2

ei(x)bi(x
−1) mod (xpr − 1)

If e1(x) = xε1 + xε2 + · · ·+ xεr , then the expression for w can be further reorganized as:

w(x) = xε1−β1 + xε2−β1 + · · ·+ xεr−β1+
xε1−β2 + xε2−β2 + · · ·+ xεr−β2+
xε1−β3 + xε2−β3 + · · ·+ xεr−β3+
...
xε1−βd + xε2−βd + · · ·+ +xεr−βd+

+
t1∑
i=2

ei(x)bi(x
−1) mod (xpr − 1),

(6.26)

where all εi − βj are calculated in mod(pr).
Eq. (6.26) can be seen as: the first row contains all error positions of e1(x) shifted by −β1

positions; the second row - all error positions of e1(x) shifted by −β2 positions and so on, the
dth row- all error positions of e1(x) shifted by −βd positions. The rest can be considered in the
same way regarding the error positions of e2, e3, . . . , et1 with shifts corresponding to the supports
of b2, b3, . . . , bt1 . Note that many of these terms can be cancelled out since these shifted error
positions can be the same for different eibi.

To move the shifted error positions of e1(x) in w(x) into the original error positions of e1(x),
we use the idea presented in [11] to multiply w(x) by xβj , where βj ∈ supp(b1(x)). When w in
Eq. (6.26) is multiplied by xβ1 , the first row of xβ1w(x) becomes exactly e1(x). Multiplying w
with xβ2 , the second row in Eq. (6.26) will become e1(x) and so on.

Thus, each of the polynomials:

xβ1w(x), xβ2w(x), . . . , xβdw(x) mod(xpr − 1) (6.27)

contains e1(x), xβj−βse1(x), and xβj

t1∑
i=2

ei(x)bi(x
−1) (all in R), which are the original and shifted

error positions of e1(x) and shifted error positions of ei(x), i = 2, 3, . . . , t1. Some of the original
or shifted error positions of e1(x) can be cancelled out with some of the shifted error positions of
e2(x), e3(x), . . . , et1(x). If in all polynomials xβsw(x) in Eq. (6.27) we count the number of 1s in
position j, for j = 1, 2, . . . , pr, it is expected that in some of the error positions, the number of 1s
will be greater than the number of 1s in the other positions.

The same process can be repeated for the polynomials

e2(x)b2(x−1), e3(x)b3(x−1), . . . , et1(x)bt1(x−1).
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In general, if we consider es(x)bs(x
−1), where supp(bs(x)) = {β(s)

1 , β
(s)
2 , . . . , β

(s)
ds
}, then each

of the polynomials:

xβ
(s)
1 w(x), xβ

(s)
2 w(x), . . . , xβ

(s)
ds w(x) mod(xpr − 1) (6.28)

contains es(x), xβ
(s)
j −β

(s)
i es(x), i 6= j and 1 ≤ i ≤ ds, and β

(s)
j

t1∑
i=1
i 6=j

ei(x)bi(x
−1), all in R. The

last are the original error positions of es(x), shifted error positions of es(x) and shifted error
positions of ei(x), i = 1, 2, . . . , t1, i 6= s. The original error positions (or a part of them which are
not cancelled out) are in all ds polynomials in Eq. (6.28), while the shifted error positions are
different in each of these polynomials. Thus, counting the number of 1s in each position from 1 to
pr in the elements in Eq. (6.28) will lead to a greater number of 1s in the original error positions
(or some of them). Stated differently, a larger number of 1s will be an indicator for an error in
this position. The polynomials in Eq. (6.28) are created for every s, 1 ≤ s ≤ t1, and the number
of 1s in each position is included in Φ

(s)
j (defined in Eq. (6.29)).

The total number of positions in the supports supp(bs(x)), for 1 ≤ s ≤ t1, for a codeword b
is equal to wt(b). Thus, d1 + d2 + · · ·+ dt1 = wt(b) = d when b is a minimum weight codeword.
Then for all s, 1 ≤ s ≤ t1, the total number of elements in Eq. (6.28) is also wt(b).

Let C has L cyclically different minimum weight codewords. In our case, cyclically different
codewords mean that one cannot be obtained from the other by applying σt, for some t, that
is, b 6= σt(c) for 1 ≤ t ≤ pr − 1, ∀b, c ∈ C. The counting of 1s in each position from 1 till pr in
the cycles Ωs is repeated for the polynomials in Eq. (6.28) for all L cyclically different minimum
weight codewords b. The number is denoted by Φ

(s)
j :

Φ
(s)
j =

L∑
l=1

∑
i∈supp(b(l)s (x))

w
(l)
i+j mod pr ,

j = 0, 1, 2, · · · , pr − 1, s = 1, 2, . . . , t1.

(6.29)

where w(l)
i+j mod pr is counted in position j since the shift of w(x) by −i moves the position

i+ j mod pr into j.
Thus, for L cyclically different minimum weight codewords, we calculate t1pr sums:

Φ
(1)
0 ,Φ

(1)
1 , . . . ,Φ

(1)
pr−1, Φ

(2)
0 ,Φ

(2)
1 , . . . ,Φ

(2)
pr−1, . . . , Φ

(t1)
0 ,Φ

(t1)
1 , . . . ,Φ

(t1)
pr−1 .

As it was mentioned, a higher number of 1s in a position from 1 till pr in the polynomials
in Eq. (6.28) is an indicator for an error in this position. Thus, an error is expected in the j−th

position in cycle Ωs if the value of Φ
(s)
j is greater than the sum for any other position in the same

cycle Ωs, and greater than the sum for any position in the other t1 − 1 cycles.

Note that the idea of shifting and counting, introduced in [11] and described in Section 2.2,
is specifically and only for cyclic codes. The presence of cyclic cells in the generator matrix of
code C (Eq. (6.2)) and, moreover, the orthogonality in the polynomial representation of each two
codewords (Lemma 2.1) makes it possible to use shifting and counting in a similar way.

Example 2.2. Let D90 be a binary [90,45,14] self-dual code with an automorphism φ of type
15− (6; 0). Without loss of generality, φ can be represented as:
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φ = Ω1Ω2 . . .Ω6, (6.30)

where Ωs is a cycle of length 15 for 1 ≤ s ≤ 6. The code D90 holds the conditions in Lemma 2.1
and therefore,

u1(x)v1(x−1) + u2(x)v2(x−1) + · · ·+ u6(x)v6(x−1) = 0, (6.31)

∀u, v ∈ D90.
Let the codeword c = (c1(x), c2(x), . . . , c6(x)) be sent and r = (r1(x), r2(x), . . . , r6(x)) be

received, where the polynomials ci(x) and ri(x) are given in Table 6.1. Then the error vector is
e = (e1(x), . . . , e6(x)) = (0, 0, 0, x8, x9 +x, x14 +x3 +x2). Thus, there are 6 errors: 1 error in
position 8 of Ω4, 2 errors in positions 1 and 9 in Ω5 and 3 errors in positions 2, 3 and 14 of Ω6.

We would like to compute Φ
(s)
j , defined in (6.29), for the given r.

i ri(x) ci(x)

1 x13 + x9 + x7 + x6 + x5 + x3 + x2 + x+ 1 x13 + x9 + x7 + x6 + x5 + x3 + x2 + x+ 1

2 x14 + x10 + x9 + x7 + x6 + x5 + x4 + x2 + x x14 + x10 + x9 + x7 + x6 + x5 + x4 + x2 + x

3 x13 + x12 + x10 + x9 + x8 + x7 + x6 + x+ 1 x13 + x12 + x10 + x9 + x8 + x7 + x6 + x+ 1

4 x14 + x13 + x12 + x11 + x10 + x6 + 1 x14 + x13 + x12 + x11 + x10 + x8 + x6 + 1

5 x14 + x9 + x8 + x3 + 1 x14 + x8 + x3 + x+ 1

6 x13 + x12 + x10 + x8 + x7 + x2 + x x14 + x13 + x12 + x10 + x8 + x7 + x3 + x

Table 6.1: Elements of F2[x]/(x15 − 1)

To calculate Φ
(s)
j , the set of all cyclically different codewords of weight 14 in D90 are required.

In Appendix 5.1, construction of a generator matrix of the code D90 is included. Using this
matrix, we obtain all minimum weight codewords. They are 375, where only 25 of them are
cyclically different.

Consider a codeword b = (x2, x10 + x6, x14, x12 + x9 + x5 + x, x9 + x7 + x6 + x5, x6 + x2).
Then, the corresponding w(x)

w(x) = 〈r, b〉 = r1(x)b1(x−1) + · · ·+ r2(x)b6(x−1) mod (x15 − 1),

is w(x) = x14 + x11 + x10 + x9 + x8 + x4 + x2 + x.

The supports of bi(x) are:

supp(b1(x)) supp(b2(x)) supp(b3(x)) supp(b4(x)) supp(b5(x)) supp(b6(x))

2 6, 10 14 1, 5, 9, 12 5, 6, 7, 9 2, 6

Using them, we calculate the 14 polynomials xβ
(s)
j w(x) in Eq. (6.28) for s = 1, 2, . . . , 6. They

are 14 since their number is equal to the wt(b), which is 14. The results for xβ
(s)
j w(x) are:

s x
β
(s)
j w(x) s x

β
(s)
j w(x)

1 x2w x13 + x12 + x11 + x10 + x6 + x4 + x3 + x 4 x12w x14 + x13 + x11 + x8 + x7 + x6 + x5 + x

2 x6w x14 + x10 + x8 + x7 + x5 + x2 + x+ 1 5 x5w x14 + x13 + x9 + x7 + x6 + x4 + x+ 1

2 x10w x14 + x12 + x11 + x9 + x6 + x5 + x4 + x3 5 x6w x14 + x10 + x8 + x7 + x5 + x2 + x+ 1

3 x14w x13 + x10 + x9 + x8 + x7 + x3 + x+ 1 5 x7w x11 + x9 + x8 + x6 + x3 + x2 + x+ 1

4 x1w x12 + x11 + x10 + x9 + x5 + x3 + x2 + 1 5 x9w x13 + x11 + x10 + x8 + x5 + x4 + x3 + x2

4 x5w x14 + x13 + x9 + x7 + x6 + x4 + x+ 1 6 x2w x13 + x12 + x11 + x10 + x6 + x4 + x3 + x

4 x9w x13 + x11 + x10 + x8 + x5 + x4 + x3 + x2 6 x4w x14 + x10 + x8 + x7 + x5 + x2 + x+ 1
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Similarly, we calculate such 14 polynomials for each of the other 24 cyclically different mini-
mum weight codewords in D90. All together, they are 350 polynomials. Then, in the polynomials
corresponding to s = 1, we count the frequency of 1, x, x2 and so on till x14. The frequencies
are denoted by Φ

(1)
0 ,Φ

(1)
1 , . . . ,Φ

(1)
14 . Similarly, we count the frequency of 1, x, x2 and so on till

x14 in all the polynomials corresponding to s = 2. They form the values of Φ
(2)
0 ,Φ

(2)
1 , . . . ,Φ

(2)
14 .

And so on until s = 6. The values of Φ
(s)
j are given in Table 6.2

s
j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 18 32 24 28 25 24 26 26 27 26 22 35 29 33 23
2 25 19 26 24 24 24 26 21 28 23 16 27 23 28 24
3 23 21 25 20 24 22 18 23 23 27 18 25 19 24 24
4 22 23 24 20 28 25 19 21 33 23 33 24 27 26 22
5 34 40 31 32 29 31 23 32 32 43 30 32 31 34 30
6 25 28 36 33 22 31 25 31 27 27 25 24 32 31 37

Table 6.2: Φ
(s)
j

The maximum value of Φ
(s)
j is 43, which appears in row 5, column j = 9. This indicates that

an error can be on cycle 5, position 9. Since e5(x) = x9 + x, indeed an error occurs on the last
cycle, position 9 (and position 1).

By flipping the bit on cycle 5, position 9 in r, we correct one error in the received vector.
Iteration of this process results in a decoding algorithm, which we describe next.

Here we define our new Hard-decision Iterative Decoding of Self-dual Codes of a particular
type. They have an automorphism of type pr − (t1; 0) or p − (c, 0) which determines their
structure. For this type of binary self-dual codes, Lemma 2.1 holds, and this is used in the
decoding scheme.

Hard-decision Iterative Decoding of Self-dual Codes 3

We suppose that C, σ and G are defined as in Section 1.1.

1) generate all or almost all cyclically different codewords of weight d or d+ o for some small o,
for example, 2 or 4 or 6. Denote the set by D1;

2) for the received vector r compute rG. If rG = 0, then r belongs to the code C → end,
otherwise → 3);

3) split r into t1 polynomials of F2[x]/(xpr − 1), i.e., r = (r1(x), r2(x), . . . , rt1(x));

4) for r = (r1(x), r2(x), . . . , rt1(x)) compute:

• w(x) = 〈r, b〉 = r1(x)b1(x−1) + r2(x)b2(x−1) + · · ·+ rt1(x)bt1(x−1) mod(xpr − 1)

for ∀ b ∈ D1, b = (b1(x), b2(x), . . . , bt1(x))

3A pseudocode of the decoding scheme is provided in Appendix 4.
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• xβ
(1)
i w(x) mod(xpr − 1) for ∀ β(1)

i ∈ supp(b1(x))

xβ
(2)
i w(x) mod(xpr − 1) for ∀ β(2)

i ∈ supp(b2(x))
...

xβ
(t1)
i w(x) mod(xpr − 1) for ∀ β(t1)

i ∈ supp(bt1(x))

Note that: (a) for the chosen code C if r ∈ C, then w(x) = 0, and (b) the products xβ
(s)
i w(x)

are cyclic shifts of w with a number of positions which values are from the support of bs(x).

5) compute Φ
(s)
j defined in Eq. (6.29) for j = 0, 1, · · · , pr − 1, s = 1, 2, . . . , t1;

6) determine Φmax = max{Φ(s)
j | j = 0, 1, · · · , pr − 1, s = 1, 2, . . . , t1} and find the posi-

tion with the value Φmax, i.e., find the cycle s1 and position(s) j1 such that Φ
(s1)
j1

= Φmax;

7) flip the coordinate of rs1(x) by adding xj1 to rs1(x), i.e., rs1(x) becomes rs1(x) + xj1 ;

8) for the modified r repeat from 2).

This algorithm could use a set of cyclically different codewords of weight d or weight slightly
higher than d. It is because if in the first set the codewords have only 0 coordinates in some of
the cycles of σ, it is clear that no error in this cycle can be corrected. Also, if the first set is very
small, the algorithm does not perform error correction close to the error-correction capability of
the code. Therefore, experiments are required to find a suitable number of low weight codewords
for efficient decoding performance. In Section 2.4, we give three examples and the decoding
performance of different sets of codewords.

2.4. Examples
The decoding algorithm is applied on three examples of self-dual code with the required structure,
where two of the codes are known, whereas the third one is new. The last is constructed to
demonstrate that self-dual codes with an automorphism of the particular type exist, and it is not
hard to generate them when their minimum weight is not close to its upper bound Eq. (2.2).

The first is the binary [90, 45, 14] self-dual code D90 from Example 2.2.

A. Decoding of a Binary [90,45,14] Self-dual Code
Example 2.3. Consider the binary [90, 45, 14] self-dual code D90 defined in Example 2.2. D90

has an automorphism φ of type 15−(6; 0). Note that D90 is an optimal code since the upper bound
(Eq. (2.2)) for the minimum distance is 16. The code D90 holds the conditions in Lemma 2.1,
and therefore, the new iterative decoding is applicable to it. The number of errors that D90 is
capable to correct is t ≤ bd−12 c errors, i.e., maximum 6 errors.

We mentioned that construction of a generator matrix of this code is included in Appendix 5.1
and that the code has 375 codewords of weight 14 where 25 of them are cyclically different. Using
the same generator matrix, we obtain the sets of codewords with weight 16 and weight 18. They
contain 11 745 and 215 915 codewords, respectively. The rank of the sets with codewords of weight
14, 16 and 18 is accordingly 45, 44, and 45. The sets with cyclically different codewords are
denoted by B14, B16, and B18, where |B14| = 25, |B16| = 783 and |B18| = 14 399 (Table 6.3).
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Table 6.3: Sets of codewords in the [90, 45, 14] s-d code D

weight i Ai rank cyclically different in simulations
14 375 45 B14, |B14| = 25 D1, |D1| = 25

16 11 745 44 B16, |B16| = 783 D2, |D2| = 450

18 215 915 45 B18, |B18| =14 399 D3, |D3| = 340

In simulations, we use three different sets of cyclically different codewords and compare their
performance. The sets are D1, D2, and D3, which are also given in Table 6.3.

We perform simulations on 2 000 random error vectors and random encoded messages for each
number of errors t, for t = 1, 2, . . . , 8. The simulation steps are:

• generate a random error vector e of length 90 and weight t;

• generate a random message vector m of length 45;

• encode the message vector m into c = mG;

• compute r = e+ c;

• decode the received vector r using the iteration steps 2 till 8 of Algorithm 9;

The results of the simulations are presented in Table 6.4. They show that the set D1 of
the cyclically different codewords of weight 14 is too small for a good decoding performance.
Using each of the other two sets, D2 and D3, the decoding algorithm reaches the error-correcting
capability of the code and corrects 100% of the errors, where errors are in the range up to 6.
Moreover, these two sets in the experiments correct 99.95% and 95.35% of the cases with 7 errors,
and 96.8% and 60.35% of the cases with 8 errors.

The results of the experiments indicate a high error-correcting capability of our new algorithm,
a capability beyond the upper bound for t.

Note that the rank of the set of weight 16 codewords is 44, which means that it is possible in
step 4) to obtain a vector r(x) such that the corresponding w(x) = 0 but rG 6= 0. That is the
reason we also consider the set D3 with rank 45, where the described exception is not possible.

Table 6.4: Decoding performance of the [90, 45, 14] self-dual code D

Decoding set D1, |D1| = 25 Decoding set D2, |D2| = 450 Decoding set D3, |D3| = 340
t tested corrected % t tested corrected % t tested corrected %
1 90 90 100 1 90 90 100 1 90 90 100
2 2 000 1 932 96.6 2 2 000 2 000 100 2 2 000 2 000 100
3 2 000 1 928 96.4 3 2 000 2 000 100 3 2 000 2 000 100
4 2 000 1 955 97.75 4 2 000 2 000 100 4 2 000 2 000 100
5 2 000 1 930 96.5 5 2 000 2 000 100 5 2 000 2 000 100
6 2 000 1 829 91.45 6 2 000 2 000 100 6 2 000 2 000 100
7 2 000 1 268 63.4 7 2 000 1 999 99.95 7 2 000 1 907 95.35
8 2 000 560 28 8 2 000 1 936 96.8 8 2 000 1 207 60.35
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B. Decoding of a Binary [78,39,14] Self-dual Code
Example 2.4. Let T be a binary [78, 39, 14] self-dual code with an automorphism φ1 of type
39− (2; 0). Note that T is an extremal code [20]. Since d = 14, the number of errors that T can
correct is up to 6. As in the previous example, the conditions in Lemma 2.1 are satisfied for the
code T , and therefore, the decoding Algorithm 9 is applicable to T .

A generator matrix of T is available in Appendix 5.2. We obtain that this example has 3 081
minimum weight codewords and 46 116 codewords of weight 16. The rank of the sets is 39 and
38, respectively. Among them, the cyclically different codewords are 79 with a weight of 14 and
1 644 with 16.

The set of 79 elements is denoted by T1, and the set of 79 elements of weight 14 together
with 244 elements of weight 16 is denoted by T2 ( Table 6.5). The sets T1 and T2 are used in the
decoding simulations.

Table 6.5: Sets of codewords in the [78, 39, 14] self-dual code T

weight i Ai rank cyclically different in simulations
14 3 081 39 B14, |B14| = 79 T1, |T1| = 79

16 64 116 38 B16, |B16| = 1644 T ′2, |T ′2| = 244

14,16 67 197 39 B14 ∪B16 T2 = T1 ∪ T ′2

Similarly to the first decoding example, for both sets T1 and T2, for each t, 1 ≤ t ≤ 8, we
perform simulations on 2 000 random error vectors and random encoded messages. The simulation
steps are the same. The results are included in Table 6.6.

Table 6.6: Decoding performance of the [78, 39, 14] self-dual code T

Decoding set T1, |T1| = 79 Decoding set T2,|T2| = 323
t tested corrected % t tested corrected %
1 78 78 100 1 78 78 100
2 2 000 2 000 100 2 2 000 2 000 100
3 2 000 2 000 100 3 2 000 2 000 100
4 2 000 2 000 100 4 2 000 2 000 100
5 2 000 2 000 100 5 2 000 2 000 100
6 2 000 2 000 100 6 2 000 2 000 100
7 2 000 1 974 98.7 7 2 000 1 995 99.75
8 2 000 1 530 76.5 8 2 000 1 725 86.25

The values in Table 6.6 show that the set of 14 weight codewords are sufficient for the
complete decoding of 6 errors which is the upper bound for the error capability of this code
example. Differently from the first code, here both, the set T1 and T2 have a high error-correcting
performance beyond the upper bound for t.

In both decoding examples, the complete set of 16 (or 16 and 18) weight cyclically different
codewords is not considered. There is a trade-off between the speed and memory of the decoder
from one side and the decoding performance of the algorithm from another side. To achieve
decoding up to d−1

2 errors for the first example, it is sufficient to use set D3 with 340 codewords
and set T1 with 79 codewords for the second example.

C. Decoding of a Binary [266,133,36] Self-dual Code
Example 2.5. Let B266 be a binary [266, 133, 36] self-dual code with an automorphism φ2 of
type 133 − (2; 0). The upper bound for the minimum weight of self-dual codes of length 266 is
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48 (Eq. (2.2)). To the best of our knowledge, there is no example of a self-dual [266, 133, d ≥ 36]
code. The code B266 has an error-correcting capability of 17 errors. Since the code possesses the
specific automorphism of type pr − (t1; 0), then the conditions in Lemma 2.1 are satisfied, and
the decoding Algorithm 9 is applicable to B266.

First, we describe the construction of the code and then present the decoding experiments.
The code B266 possesses an automorphism φ2 of type 133− (2; 0). Then:

1) B266 = Fφ2
(B266)⊕ Eφ2

(B266);
2) the fixed subcode π(Fφ2

(B266)) is a binary [2, 1] self-dual code;
3) the vectors of the image ϕ(Eφ2(B266)) are from P2, where P ⊂ F2/(x

133 − 1).
From 2), it follows that the generator matrix of Fφ2

(B266) is X =
(
l l

)
, where l =

(1, 1, . . . , 1) is the all-ones vector in F133
2 .

Applying 3) by computing experiment, we obtain an example for the generator matrix Y of
Fφ2

(B266):

Y =

y1,1 y1,2
...

...
y9,1 y9,2

 ,

where yi,j are right-circulant 3 × 133 cells for the first 2 rows in Y and yi,j are right-circulant
18× 133 cells for the next 7 rows. The first rows of these circulant matrices are given in Table A.5
in Appendix 5.

For code B266, only part of the codewords with weights 36, 38 and 40 are generated.They
are reduced to cyclically different codewords and are divided into three sets, denoted by L36,
L38 and L40 (Table 6.7). To decode code B266, we use eight sets Mi, for 1 ≤ i ≤ 8. Each of
them consists of a different number of elements from L36, L38 and L40. The set of codewords of
Lj , j = 36, 38, 40, included in the set Mi, is denoted by Mi,j , 1 ≤ i ≤ 8. Details are given in
Table 6.8.

Table 6.7: Sets of cyclically different codewords in the [266, 133, 36] s-d code B266

weight i cyclically different rank
36 L36, |L36| = 26 26

38 L38, |L38| = 275 133

40 L40, |L40| = 6583 132

Table 6.8: Decoding performance of the [266, 133, 36] self-dual code B266

Mi |Mi| |Mi,36| |Mi,38| |Mi,40| rank(Mi)
Correction of t errors in % for t equals to

18 17 16 15 14 13 12

M1 260 22 238 0 132 0.5 4.5 13 32.5 63.5 93.5 99
M2 300 26 274 0 133 1.5 5 15 46 76.5 98.5 100
M3 300 0 0 300 132 0 0 4 20.5 47 83 98
M4 601 0 0 601 132 1 6.5 15.5 44 73.5 97.5 100
M5 602 26 275 301 133 1.5 10 29.5 52.5 88 100 100
M6 1489 13 22 1454 133 13.33 27 52 78 97 99 100
M7 3450 18 94 3338 133 21.5 54 87.5 97.5 100 100 100
M8 6835 26 275 6534 133 53.33 83.50 99.23 100 100 100 100
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As in the previous two examples, for the sets Mi, for i = 1, . . . , 8, and each number of errors
t, in this case, 12 ≤ t ≤ 18, we are conducting a decoding experiment on 2 000 received encoded
messages with t errors. The simulation steps described in Example 2.3 are followed, where
the length of the error vector is 266, and the length of the message is 133. The results of the
simulations are provided in Table 6.8.
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Decoding performance of code B266 via M1, M2, M3
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Figure 6.1: Decoding via M1, M2, M3

We first perform the decoding experiment using the sets M1, M2 and M3. Note that M1 and
M2 consist of cyclically different codewords of weight d and d + 2 while M3 - of weight d + 4.
Moreover, M2 and M3 have the same cardinality, while the set M1 is smaller. The results (see
Fig. 6.1) show that the error correction efficiency depends on both the weight of the codewords in
the decoding set and the number of elements in the set. Using M2, the decoding Algorithm 9
corrects 15 errors (15 = t− 2) in 46% of the cases and 13 errors in 98.5% of the cases, while the
decoding using M3 corrects 15 and 13 errors in 20% and in 83% of the cases, respectively. Thus,
the error-correction performance of a decoding set of codewords of weight d and d+ 2 significantly
exceeds the performance of a set of codewords of weight d+ 4, when both sets are of the same
cardinality.
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Decoding performance of code B266 via M1, ..., M5
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Figure 6.2: Decoding via M1, . . . , M5

By experiment, we obtain that decoding to achieve error-correction results close to the results
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of M2, when only codewords of weight 40 are used, requires twice as many codewords. This is
illustrated by the set M4 in Fig. 6.2. M4 consists of twice as many codewords as in M2, and its
error-correction efficiency is very close to that of M2. For comparison, the performance of set M5

is also displayed on the same figure. This set is with the same cardinality as M4, but half of it is
of codewords of weight 40, and the other half is codewords of weight 36 and 38. It can be seen
that the performance of M5 outweighs the performance of M4.

At last, in Fig. 6.3, we present three larger decoding sets. All of them consists of codewords
of weight 36, 38 and 40. The last one, M8, reaches the error-correcting capability of t = 17 errors
of code B266 in 83.5% of the cases, whereas t − 1 errors are corrected in 99.23% of the cases.
Moreover, the decoding performance of Algorithm 9 using setM8 goes beyond the error-correcting
capability of the code as it corrects 18 errors in 53.33% of the cases.
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Figure 6.3: Decoding via M5, . . . , M8

To conclude, for the correction of 17 errors in 100% of the cases, decoding set with a larger
number of cyclically different codewords of weight 36 and 38 has to be generated. Note that L36,
L38 and L40 are only part of the sets of codewords with weights 36, 38 and 40.

Then, it can be expected that a set including all the cyclically different codewords of weight
36 and 38 together with a small subset of L40 will achieve correction of 17 errors in 100% of the
cases.

3. McEliece Type Cryptosystem Using the New Code Example
Let B1 be a punctured [1 062, 531, d′ ≥ 160] code obtained from the self-dual code B with a
generator matrix G, from Section 1.2, by removing the first two columns and the first row of G.
Let this generator matrix of B1 be denoted by Gshort.

As mentioned at the beginning of this section, the decoding Algorithm 5 is not suitable for
large codes. In contrast, the new hard-decision iterative decoding of specific self-dual codes is
applicable to code B. We implement the decoding scheme, as described in Algorithm 4, with a
set Lmix of cyclically different codewords of code B. Lmix containing codewords of weight 168,
180, 184 and 188.

Applying the iterative decoding in the decryption Algorithm 6, we obtain the decryption
with padding Algorithm 8. The latter is used in the decryption step when defining a McEliece
cryptosystem applying code B1.
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The McEliece type cryptosystem applying the code B1 is specified as follows:

1. System parameters:

− k = 531 - length of the message m.
− n = 1 062 - length of the ciphertext r.
− t = 75 - number of the intentionally added errors.

2. Key generation:

− Gshort - a generator matrix of a [1 062, 531, 75] code, a punctured code of a self-dual
[1 064, 532, d ≥ 162] code.

− P - a random n× n permutation matrix.
− S - an invertible k × k matrix such that SGshortP is in a systematic form.
− G′short = SGshortP , S−1 and P−1 - the inverse of P and S.
− Public key: (G′short, t).
− Private key: (Gshort, G, P, S).

3. Encryption:

- e - a random vector of length n and wt(e) = t.
- m→ r = G′shortm+ e

4. Decryption:

- Decrypt via Algorithm 8.

Algorithm 8 includes the decoding Algorithm 4 with decoding set Lmix containing
cyclically different codewords of B of weight 168, 180, 184 and 188.

Remark 3. Due to time limitations, we could not complete the simulations to determine the
optimal decoding set Lmix of codewords. The codewords of weight 168, 180, 184 and 188 from all
linear combinations of up to 8 rows of the 532×1064 generator matrix G and the corresponding
parity-check matrix are computed. The sets of cyclically different codewords of weight 168, 180,
184 and 188 contain 45, 3, 30 and 501 elements. These sets are very small and do not perform
efficient decoding of 77 errors.

The self-dual [266, 133, 36] code B266 of Example 2.5 is constructed via an automorphism
of order 133 as the code B. Using a set of 6 835 codewords, the mentioned decoding algorithm
corrects t− 1 errors in 99.23% of the cases, where t = 17. The t errors are corrected in 83.5%.

Since increasing the number of codewords with weight d and d+o, for o = 2, 4, in the decoding
set increases the decoding performance of the algorithm, there will be a set that decodes t errors
in 100% of the cases.

Note that the minimum weight of the punctured code B1 is 160, which means B1 has an
error-correcting capability of up to 79 errors. According to the estimation in Section 5 for a
security level of 80 bits, code B1 is required to correct 75 errors, which is t− 4.

In such a setup, we expect that the new algorithm will perform decoding of code B with the
same or close to the efficiency of decoding of B266 when using a large enough decoding set of
codewords.
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Algorithm 8: Decryption using padded ciphertext for McEliece
with a self-dual [1064, 532, d′ ≥ 160] code.

1 Denote
s = [[0, 0], [0, 1], [1, 0], [1, 1]],
i = 1, t = 75, n = 1062, k = n/2,

2 Compute
r′ = rP−1, r-received vector of length k

3 while i < 5
4 Pad

r′ into (∗ ∗ | r′), where ∗ ∗ = s[i]
5 Decode

(∗ ∗ | r′) into c1, c1 ∈ C, by Algorithm 9 with decoding set Bmix.

6 if 5) successful then
7 Denote

c2 = c1[3 : n+ 2], m2 = c2[1 : k]
8 Compute

m1 = m2 ∗ S−1
9 if (m1 ∈ B1 ∧ weight(m1 ∗G′short − r′) == t) then

10 Decrypt r as m1. Exit.

11 i = i+ 1 increase the index

12 if i == 5 then
13 return ’Unsuccessful decryption’. Exit.

The public key, punctured code B1, is not a self-dual code and has no specific structure.
Thus, it does not belong to any specific family of codes. Therefore, the problem of decoding B1

is expected to be as difficult as the problem of decoding a random code, that is NP-complete,
according to Theorem 1.3.

Conclusion RQ4: The algorithms in the Key Generation, Encryption and Decryption of
the McEliece type cryptosystem when using code B, obtained in RQ3, are defined. Hard-decision
iterative decoding is specially developed to specify the decoding integrated into the Decryption.
An algorithm using padded ciphertext determines the Decryption. Further discussion on RQ4
results is in Section 1.



7
Discussion, limitations and future work

As concluding remarks, here we answer the research questions, discuss the limitations of our
results, and formulate open problems for further research. Most results are included in two
submissions, one to a conference and another to a journal. Details are provided in section
Preface 1.

1. Discussion
In this work, we presented our study and research on the first Code-based cryptosystem, the
McEliece cryptosystem. It is one of the most studied and proven secure public key encryption
schemes. Still, there is a practical limitation for broad use in the current communication systems,
namely the large size of its public key.

We attempted to reduce the public key size of the McEliece cryptosystem by using codes with
a minimum distance larger than the distance of the codes adopted until now. We considered large
minimum distance self-dual codes (optimal self-dual codes) and punctured codes derived from
them. To the best of our knowledge, this family of codes has not previously been used in the
McEliece encryption scheme. The reasons can be that the optimal self-dual codes are only known
for the lengths up to 130, which are too small for the current security requirements, and that
there is no fast decoding algorithm for these codes (excepting the extended Golay code).

In this project, we focused on answering the question: To what extent can a McEliece type
cryptosystem using codes with a high error-correcting capability− derived from self-dual codes− be
a secure and practically applicable post-quantum cryptosystem?

First, we defined an example of the McEliece scheme using a known small optimal self-dual
code of length 104. For this, we specified the algorithm of each step of the scheme. We discovered
that a McEliece type cryptosystem using a self-dual code directly for a private key is vulnerable
to structural attacks. Therefore, a punctured code of a self-dual code is used instead.

We proposed a different strategy for the decryption step: decryption using padded ciphertext
and decoding via the complete self-dual code. As proof of concept, we implemented in SageMath
code the thus defined McEliece encryption scheme with a private key - a punctured code of the
small optimal self-dual code. Via cryptanalysis, we estimated that the classical bit security of
the small McEliece encryption scheme is 22 bits. The public key of this system is around 28%
smaller than the key size of the original McEliece encryption scheme of the same security level.

69
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With this, we answered our first research question:
RQ1: What is the security level of a McEliece type cryptosystem using a code obtained from an
optimal binary [104,56,18] self-dual code? Define the encryption scheme.

Next, using cryptanalysis, we estimated parameters for punctured codes obtained from optimal
self-dual codes, which, if used in McEliece type system, would provide a bit security level of 80,
128 and 256. It is shown (Chapter 5) that the size of putative punctured codes providing bit
security of 80, 128 and 256 bits is at least 38% smaller than the size of the proposed smallest
Goppa codes1 providing the same bit security levels. In particular, a punctured code of a putative
[1064, 532, d ≥ 162] self-dual code would provide a bit security level of 80 when used as a private
key of a McEliece type system. This completed the work on our second research question:
RQ2: Which are the optimal parameters, length and error-correcting capability of a putative
self-dual code that, if used in a McEliece type cryptosystem, would provide a bit security level of
80, 128 and 256, respectively?

RQ3: Construct an optimal self-dual code with parameters defined in RQ2, which can be used in
a McEliece cryptosystem with a security of 80 bits.

This question requires constructing an example of a binary [1064, 532, d ≥ 162] self-dual code.
Then a McEliece cryptosystem using a punctured code derived from it would be secured up to
the level of 80 bits.

To generate an example of such a code, we applied a known algorithm. It uses properties of
self-dual codes possessing an automorphism of a specific type. In our case, we used a permutation
of 8 cycles of length 133. Construction of a generator matrix of a self-dual code of length 1064 is
derived in Section 1.2. A particular example of a [1064, 532] self-dual code is also presented.

Due to computation time, we could not calculate the exact minimum weight of the example
code. Instead, we completed a number of other computations discussed at the end of Section 1.2.
Based on them, we expect that the constructed code has a minimum distance greater than or
equal to 168.

RQ4: Determine the algorithms in the steps of the McEliece type cryptosystem when using the
code obtained in RQ3?

The McEliece type cryptosystem has four steps described in Section 2.1. In the encryption
scheme using the code of length 1 064, only the decryption step is not defined. More precisely,
decoding the private key is not specified. The decoding algorithm implemented in the McEliece
small example in RQ1 uses a complete set of codewords with a particular weight or a few such
sets. For the self-dual code of length 1064 to find all the codewords with a certain weight is a
computationally difficult problem. In addition, the set can be very large, i.e., it requires a large
memory, which is a practical limitation for the usability of the system.

To create the missing decryption step, we developed a hard-decision iterative decoding
algorithm. We proved that the decoding is suitable for a large group of self-dual codes, more
precisely, self-dual codes with a specific structure. The code of length 1064 from RQ3 has such a
structure.

We included three examples of decoding optimal self-dual codes with different parameters.
The results of the experiments showed that the error-correcting performance of our new algorithm
is beyond the upper bound for the error-correction capability (t ≤ (d− 1)/2, t maximum number
of errors) of the code.

Further, we specified the missing decryption algorithm of the McEliece encryption scheme
using a punctured code of the self-dual code of length 1064. The decryption is decryption with

1Goppa codes are the family codes used in the original McEliece cryptosystem.
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padding with integrated iterative decoding for the self-dual code.
Note that in this case, the system has two private keys- the punctured code of the self-dual

code and the self-dual code by itself. The reason is that the punctured code is used for creating
the public key. It defines the parameters of the system: the length of the message, the length
of the ciphertext and the number of intentionally added errors. The self-dual code is used for
decoding in the decryption step via the new hard-decision iterative decoding.

Thus, we defined all the algorithms of the McEliece cryptosystem using the self-dual code of
length 1064.

Note that the punctured code is not a self-dual code and has no specific structure. This code
is the private key generating the corresponding public key of the cryptosystem. Then, also the
public key has no specific structure. Thus, the public key and the punctured private key do
not belong to any specific family of codes. Therefore, the problem of decoding the public key is
expected to be as difficult as the problem of decoding a random code that is NP-complete (see
Theorem 1.3). The full self-dual code is the second private key and is used for decoding.

To reverse engineer the process of creating the public key in order to retrieve the private key,
one has to perform the following operations:

1. Guess the inverse of the permutation applied in the key generation;
2. Extend the punctured code to the complete self-dual code, which requires creating two

columns and one row. This operation has a work factor of 22k2n = 22n. For our large code
example, this is equal to 22128, which is far beyond the claimed security level of 80 bits.

To attack the system, an attacker can:
1. Search for a self-dual code of length 1064 with a generator matrix in the form derived in

Section 1.2 (Eq.(6.6), (6.11), (6.14), (6.12)).
One can calculate that the number of choices for the generator matrix in the form given in
Section 1.2 is at least 16 ∗ 23 + 4 ∗ 16 ∗ 218, which is greater than 224.

2. Search for a relation between such a code and the public key.
Finding a relation between a self-dual code of length 1 064 and the public key leads to
searching for a permutation that maps 1 062 coordinates of the self-dual code into the public
key. The number of choices is at least 1 032!, which is much bigger than the claimed security
level of 80 bits.

With this, we finished the discussion on RQ4.

Summarising the results from all four research questions, we can conclude that self-dual
codes with a large minimum weight can be used as a source for private keys of a McEliece type
encryption scheme. The public key size is reduced by around 30%, comparable to the key size of
the original McEliece scheme. Thus, the system is practically applicable due to the smaller public
key and due to the new efficient decoding scheme integrated into the decryption. Also, the system
is secure up to the claimed level according to the discussion on RQ4 and the results in Chapter 5.

Therefore, we concluded that:
A McEliece type cryptosystem using a code with a high error-correcting capability ob-
tained from a self-dual code can be a secure and practically applicable post-quantum
cryptosystem to a great extent.

2. Limitations
McEliece type cryptosystem using self-dual codes and punctured codes derived from them is
proposed for the first time. Although the system is defined and analysed, there are limitations we
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encountered during the project. An open question still is what is the exact minimum distance of
the self-dual code of length 1064 generated in Section 1.1.

An exhaustive search for the existence of a codeword of weight d in a binary self-dual code
requires calculating the weights of at most

2

d/2−1∑
i=1

(
k

i

)
+

(
k

d/2

)
linear combinations of basis vectors, where k is the dimension of the code. For the code of length
1 064 and expected minimum distance of 168, this number is greater than 2152. We can consider
the work factor of Stern’s attack (Section 3.2) as another much better upper bound for the work
factor of calculating the minimum weight of the code. It is at most 287 (see Table 5.2).

Instead of calculating the exact minimum distance of the code, we could generate as large
as possible sets of cyclically different codewords with weight d, d + 2, d + 4. Then, we could
experiment with the error-correcting performance of different decoding sets obtained from these
sets of codewords. If we find a decoding set such that a ciphertext with t errors is correctly
decoded in more than 99% of the examples, then the self-dual code with the particular decoding
set could be used in a McEliece type cryptosystem.

Finding suitable decoding set for the self-dual code of RQ3 is the other limitation in our
work. Generating all codewords of weight d, d+ 2, d+ 4 takes a long computation time, but the
decoding algorithm has the advantage that requires only a subset of these sets. Therefore, we
consider this limitation as an open problem for future work.

3. Future work
The proposed McEliece type cryptosystem in this project is the first attempt to apply optimal
self-dual codes and punctured codes derived from them in such a scheme. We have implemented a
proof of concepts of the McEliece scheme for the small example using a code of length 104 and for
the code of RQ3. Because the decoding set for the large code was very small, the implementation
of the system could only decrypt ciphertext with up to 15 errors. Thus, the limitations discussed
above evoke the following question for future work:

(a) Develop a method for generating new codewords of weight close to d from existing such
codewords. For this, the particular structure of the code could help. The required new
codewords must be cyclically different from the existing ones.

(b) Define an optimal decoding set of codewords of the self-dual code of length 1 064 from RQ3.

(c) Estimate the minimum weight of the code from RQ3 by its decoding performance using
different decoding sets. For example, if there is a decoding set that decodes more than 99%
of the encoded messages with 83 errors successfully, then we can assume that the minimum
weight is d ≥ 167. The number of examples included in the simulations should be relevant
to the cardinality of the code.

Note that for a security level of 80 bits, the code must correct up to 77 errors, i.e. the
minimum distance of 156 fulfils the requirement.

Finding a solution for (a) will optimise the computation time for the process of creating sets
with codewords required for the problem (b). When an optimal decoding set of codewords is
derived in (b), then the minimum weight of the code could be estimated (i.e. solving (c)), and
even more, (b) provides the input data needed for the decryption of the cryptosystem.
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Further, a programming implementation of the McEliece type cryptosystem with optimised
computation time would be a logical continuation of the results in this project. The proof
of concept code of the cryptosystem is now on SageMath. For a faster implementation, we
recommend using C + + or Rust. From a security perspective for implementation on a real
network, Rust is by default secure, while C + + requires much more tests to achieve the same.

The cryptosystem could be analysed via side-channel attacks when there are solutions for all
of the above open problems, and a software implementation is developed.

We introduced a decryption algorithm (Algorithm 8) that integrates decoding a padded
ciphertext via the full self-dual code. As a new algorithm, it requires further analysis for eventual
vulnerabilities. This raises the next open research problem: Analyse the decryption Algorithm 8
for vulnerabilities.

A new decoding algorithm was developed specifically for self-dual codes of a certain type.
It uses the cyclic structure of cells of the code and an orthogonality condition. QC codes also
consist of cells with cyclic structure, which leads to the question of whether the algorithm can be
adjusted for QC codes and, in particular, for QC-MDPC codes. This is an interesting question
since QC-MDPC codes are used in the NIST submission BIKE [1]. If the answer is yes, the next
open problem is to compare this algorithm to the existing efficient decoding algorithms for such
codes.
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A
Appendix

1. Algebraic Structures
In this section we present a sequence of definitions of algebraic structures which are used in
Chapter 2 Preliminaries. We start with a list of properties regarding a set and two operations in
it.

Let (A, ◦, ∗) be a set A with defined two operations ◦ and ∗. One can define the following
properties:

1. Operation ◦ is closed:
∀a, b ∈ A⇒ a ◦ b ∈ A.

2. Operation ◦ is associative:
∀a, b, c ∈ A⇒ (a ◦ b) ◦ c = a ◦ (b ◦ c).

3. A has an identity regarding ◦:
∃ e1 ∈ A such that ∀a ∈ A⇒ a ◦ e1 = e1 ◦ a = a.

4. every element in A has an inverse regarding ◦:
∀a ∈ A ∃ a′ ∈ A such that a ◦ a′ = a′ ◦ a = e1.

5. Operation ◦ is commutative:
∀a, b ∈ A⇒ a ◦ b = b ◦ a.

6. Operation ∗ is closed:
∀a, b ∈ A⇒ a ∗ b ∈ A.

7. Operation ∗ is associative:
∀a, b, c ∈ A⇒ (a ∗ b) ∗ c = a ∗ (b ∗ c).

8. The operations ◦ and ∗ satisfy the distributive low:
∀a, b, c ∈ A⇒ a ∗ (b ◦ c) = a ∗ b ◦ a ∗ c.

9. A has an identity regarding ∗:
∃ e2 ∈ A such that ∀a ∈ A⇒ a ∗ e2 = e2 ∗ a = a.

10. Operation ∗ is commutative:
∀a, b ∈ A⇒ a ∗ b = b ∗ a.

11. every element in A has an inverse regarding ∗:
∀a ∈ A ∃ a′′ ∈ A such that a ◦ a′′ = a′′ ◦ a = e2.
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Definition 1.1. The set G with a defined operation ◦ is called a group if for (G, ◦) the properties
from 1 till 4 are satisfied, i.e. ◦ is a closed and associative operation, G has an identity element
and each element is invertible.

If ◦ is commutative (property 5) then G is called an abelian or commutative group.

Definition 1.2. The set R with defined operations ◦ and ∗ is called a ring if (R, ◦) is an abelian
group, the operation ∗ is associative and both operations satisfy the distributive low. That is,
(R, ◦, ∗) is a ring if the properties from 1 till 8 are satisfied.

If in addition ∗ is commutative (property 10), R is called a commutative ring and when R has
also an identity regarding ∗ (property 9), the ring is called a commutative ring with unity.

Definition 1.3. The set F with defined operations ◦ and ∗ is called a field if F is a commutative
ring with unity where every element is invertible regarding ∗, i.e. (F, ◦, ∗) is a field if all the
properties, from 1 to 11, are satisfied.

A subset of a group is a subgroup if it forms a group regarding the same operation in the given
group. That is, if G1 ⊂ G where (G, ◦) is a group, then G1 is a subgroup if (G1, ◦) is a group.

Definition 1.4. Let (R, ◦, ∗) be a ring and I ⊂ R. I is called an ideal in R if (I, ◦) is a
subgroup of (R, ◦) and ∀i ∈ I, ∀r ∈ R⇒ i ∗ r ∈ I.

An ideal consisting of all multiples of a fixed element is called a principal ideal, i.e. there
exists b ∈ I such that I = {rb | r ∈ R}. The principal ideal I is denoted by I = 〈b〉 and b is
called a generator of I. If a ring has no other ideals than principal ideals, it is called a principal
ideal ring.

An ideal I is called a prime ideal if ab ∈ I implies a ∈ I or b ∈ I.
An ideal I in a ring R is called maximal if there is no ideal between I and R, i.e. for every

ideal S, I ⊂ S ⊂ R, it follows that S = I or S = R.
Similarly, a minimal ideal I in R is a nonzero ideal containing no other nonzero ideal of R.

That is, for every ideal S ⊂ I it follows that S = 0 or S = I.

Definition 1.5. Let (V, +) be an abelian group, (F, +, ∗) a field and let a multiplication
F × V → V satisfy the following properties:

1. ∀a ∈ V ⇒ e2∗a = a , where e2 is the identity elements of F regarding the second operation.

2. ∀α, β ∈ F and ∀a ∈ V ⇒ (α ∗ β) ∗ a = α ∗ (β ∗ a).

3. ∀α ∈ F and ∀a, b ∈ V ⇒ α ∗ (a+ b) = α ∗ a+ α ∗ b).

4. ∀α, β ∈ F and ∀a ∈ V ⇒ (α+ β) ∗ a = α ∗ a+ β ∗ a.

Then the triple (V, +, F ) is called a vector space over the field F . The identity element of
(V, +) is denoted by 0.
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2. Parameters of Punctured Codes Derived from Self-dual Codes for Bit
Security 80, 128, and 256

In this section, we give work factors for the attacks A1, . . . , A5. The results are listed in Table A.1.

Table A.1: min(Log2(Workfactor)) of the attacks A1, . . . , A5 in Section 3.
The horizontal lines delimit 80, 128, and 256 bit security levels.

A = {A1, ..., A5}.

Punctured codes
code n k t k(n-k) min(M) code n k t k(n-k) min(A)

B1 1 062 531 75 281 961 87.3248 B22 1 924 962 136 925 444 149.9394
B2 1 064 532 75 283 024 87.3264 B23 1 926 963 136 927 369 149.9266
B3 1 066 533 75 284 089 87.3118 B24 1 928 964 136 929 296 149.9236
B4 1 068 534 75 285 156 87.3136 B25 1 930 965 136 931 225 149.9108
B5 1 070 535 75 286 225 87.299 B26 1 932 966 136 933 156 149.9078
B6 1 072 536 75 287 296 87.3009 B27 1 934 967 136 935 089 149.8952
B7 1 074 537 75 288 369 87.2865 B28 1 936 968 136 937 024 149.8922
B8 1 076 538 75 289 444 87.2886 B29 1 938 969 136 938 961 149.8796
B9 1 894 947 134 896 809 147.8721 B30 1 940 970 136 940 900 149.8767
B10 1 896 948 134 898 704 147.869 B31 4 006 2 003 284 4 012 009 303.9682
B11 1 898 949 134 900 601 147.8561 B32 4 008 2 004 284 4 016 016 303.9619
B12 1 900 950 134 902 500 147.853 B33 4 010 2 005 284 4 020 025 303.9509
B13 1 902 951 134 904 401 147.8402 B34 4 012 2 006 284 4 024 036 303.9446
B14 1 904 952 134 906 304 147.8371 B35 4 014 2 007 284 4 028 049 303.9336
B15 1 906 953 134 908 209 147.8244 B36 4 016 2 008 284 4 032 064 303.9273
B16 1 908 954 134 910 116 147.8214 B37 4 018 2 009 284 4 036 081 303.9163
B17 1 910 955 134 912 025 147.8088 B38 4 020 2 010 284 4 040 100 303.9101
B18 1 912 956 134 913 936 147.8058 B39 4 022 2 011 284 4 044 121 303.8991
B19 1 918 959 136 919 681 149.9586 B40 4 024 2 012 284 4 048 144 303.8929
B20 1 920 960 136 921 600 149.9554 B41 4 026 2 013 284 4 052 169 303.8819
B21 1 922 961 136 923 521 149.9425 B42 4 028 2 014 284 4 056 196 303.8758
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3. Details on the construction of a binary [1 064, 532, d ≥ 162] Self-dual
Code

A generator matrix Y ′ of ϕ(Eσ1(B)) is the following one:

Y ′ =



e1(x) 0 0 0 0 g1(x) g1(x) g1(x)

0 e1(x) 0 0 g1(x) 0 g21(x) g31(x)

0 0 e1(x) 0 g1(x) g21(x) 0 g21(x)

0 0 0 e1(x) 0 g21(x) g31(x) g41(x)

0 g2(x) g2(x) 0 e2(x) 0 0 0

g2(x) 0 g22(x) g22(x) 0 e2(x) 0 0

g2(x) g22(x) 0 g32(x) 0 0 e2(x) 0

g2(x) g32(x) g22(x) g42(x) 0 0 0 e2(x)

e3(x) 0 0 0 0 g3(x) g23(x) g33(x)

0 e3(x) 0 0 g23(x) 0 g33(x) g53(x)

0 0 e3(x) 0 g73(x) g133 (x) 0 g173 (x)

0 0 0 e3(x) g53(x) g213 (x) g233 (x) 0

0 g24(x) g74(x) g54(x) e4(x) 0 0 0

g4(x) 0 g134 (x) g214 (x) 0 e4(x) 0 0

g24(x) g34(x) 0 g234 (x) 0 0 e4(x) 0

g34(x) g54(x) g174 (x) 0 0 0 0 e4(x)

e5(x) 0 0 0 0 g5(x) g25(x) g35(x)

0 e5(x) 0 0 g25(x) 0 g35(x) g75(x)

0 0 e5(x) 0 g55(x) g115 (x) g135 (x) g175 (x)

0 0 0 e5(x) g75(x) g215 (x) g235 (x) 0

0 g26(x) g56(x) g76(x) e6(x) 0 0 0

g6(x) 0 g116 (x) g216 (x) 0 e6(x) 0 0

g26(x) g36(x) g136 (x) g236 (x) 0 0 e6(x) 0

g36(x) g76(x) g176 (x) 0 0 0 0 e6(x)

e7(x) 0 0 0 0 g7(x) g27(x) g77(x)

0 e7(x) 0 0 g137 (x) 0 g277 (x) g317 (x)

0 0 e7(x) 0 g37(x) g57(x) 0 g117 (x)

0 0 0 e7(x) g177 (x) g77(x) g7(x) 0

0 g138 (x) g38(x) g178 (x) e8(x) 0 0 0

g8(x) 0 g58(x) g78(x) 0 e8(x) 0 0

g28(x) g278 (x) 0 g8(x) 0 0 e8(x) 0

g78(x) g318 (x) g118 (x) 0 0 0 0 e8(x)

e9(x) 0 0 0 g1339 (x) g9(x) g3199 (x) g2333709 (x)

0 e9(x) 0 0 g2669 (x) g29(x) g9(x) g499 (x)

g680969 (x) g1361929 (x) g11399 (x) 0 e9(x) 0 0 0

g5129 (x) g10249 (x) g1495799 (x) g3389 (x) 0 e9(x) 0 0



, (A.1)

where the coefficients of the polynomials ei(x) and gi(x) for i = 1, 2, . . . , 9 are given in Table A.2.
Each of the entry polynomials in Y ′ generates a right circulant 3× 133 matrix for the first 8 rows
in Y ′ and a 18× 133 right circulant matrix for the rest of 28 rows in Y ′.
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Table A.2: The coefficients of a(x) = a0x0 + a1x1 + · · ·+ a132x132 in F2[x]/(x133 − 1)

Pol. (a0, a1, a2, . . . , a132)

e1(x) 1110100111010011101001110100111010011101001110100111010011101001110
100111010011101001110100111010011101001110100111010011101001110100

g1(x) 1001110100111010011101001110100111010011101001110100111010011101001
110100111010011101001110100111010011101001110100111010011101001110

e2(x) 1001011100101110010111001011100101110010111001011100101110010111001
011100101110010111001011100101110010111001011100101110010111001011

g2(x) 1011100101110010111001011100101110010111001011100101110010111001011
100101110010111001011100101110010111001011100101110010111001011100

e3(x) 0001001101011110011001111010100100111001011111111101100110010111000
010111101011000101011111110101110001111000011100100110010101000000

g3(x) 0111110001010000001101110010011110001111101111011111110111100010101
101100010010101100100001100000101010000100110011001001100101111010

e4(x) 0000000101010011001001110000111100011101011111110101000110101111010
000111010011001101111111110100111001001010111100110011110101100100

g4(x) 0010111101001100100110011001000010101000001100001001101010010001101
101010001111011111110111101111100011110010011101100000010100011111

e5(x) 0111101110001111110001001110111010110100001000001110110010111001110
110100111010101001100000101001011100111110100110010111101001110100

g5(x) 1001110111001101110101010101001010011110100001000001001000011110011
001001010100101100101110110100110111010110010010000101110010000011

e6(x) 0001011100101111010011001011111001110100101000001100101010111001011
011100111010011011100000100001011010111011100100011111100011101111

g6(x) 1110000010011101000010010011010111011001011011101001101001010100100
110011110000100100000100001011110010100101010101011101100111011100

e7(x) 0110110110100010100011000101100111010000111001010110011110000111101
101100000010110111001011101100110110001101011110101010011111011011

g7(x) 1010100001010000001001110111001111011101000111100111110001001001111
001110110011111000000000111111010100010100011101110111111001111001

e8(x) 0110110111110010101011110101100011011001101110100111011010000001101
101111000011110011010100111000010111001101000110001010001011011011

g8(x) 110011110011111101110111000101000101011111100000000011111001101110
011110010010001111100111100010111011110011101110010000001010000101

e9(x) 0111111111111111111011111111111111111101111111111111111110111111111
111111111011111111111111111101111111111111111110111111111111111111

g9(x) 1011011000010100010101101100001010001010110110000101000101011011000
010100010101101100001010001010110110000101000101011011000010100010
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4. Decoding Algorithm
Algorithm 9 gives the pseudocode of decoding self-dual codes with a specific structure defined in
Section 1.1. Let G be a generator matrix of a self-dual code C with this specific structure and r
be a given received vector.

Algorithm 9: Decoding self-dual codes having an automorphism
1 Generate the set D1 of all or almost all cyclically different codewords of weight

d or d+ o for some small o (2, 4, or 6)
2 Compute rG

if rG = 0 (r ∈ C) then return r. Exit.
else 3).

3 Split r into t1 polynomials of F2[x]/(xpr − 1), i.e., r = (r1(x), r2(x), . . . , rt1(x))
4 Compute:

• w(x) = 〈r, b〉 = r1(x)b1(x−1) + r2(x)b2(x−1) + · · · +rt1(x)bt1(x−1) mod(xpr − 1)

for ∀ b ∈ D1, b = (b1(x), b2(x), . . . , bt1(x))

• xβ
(1)
i w(x) mod(xpr − 1) for ∀ β(1)

i ∈ supp(b1)

• xβ
(2)
i w(x) mod(xpr − 1) for ∀ β(2)

i ∈ supp(b2)

•
...

• xβ
(t1)
i w(x) mod(xpr − 1) for ∀ β(t1)

i ∈ supp(bt1)

5 Compute Φ
(s)
j defined in Eq. (6.29) for j = 0, 1, · · · , pr − 1, s = 1, 2, . . . , t1.

6 Determine Φmax = max{Φ(s)
j } and, the cycle s1 and position(s) j1 such that Φ

(s1)
j1

= Φmax
7 Compute rs1(x) + xj1 .

rs1(x) ← rs1(x) + xj1

8 Repeat from 2) for the modified r.

5. Generator matrices of the examples in Section 2.3
This section provides generator matrices for the examples as discussed in Section 2.4.

5.1. Example 2.2
Let D90 be the binary [90, 45, 14] self-dual code of Example 2.2. The generator matrix of D90

defined in Eq. (6.6) requires the matrices X and Y generating the subcodes Fφ(D90) and Eφ(D90),
respectively.

For X a possible choice is

X =

 l o l o o o
o l o l o o
o o o o l l

 ,

where l = (1, 1, . . . , 1), o = (0, 0, . . . , 0), i.e., the all ones vector and the zero vector in F15
2 .
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The subcode Eφ(D90) it generated via its image ϕ(Eφ(D90)). A full description of how the
subcode ϕ(Eφ(D90)) is constructed is available in [66]. Here, we present one example of a generator
matrix of ϕ(Eφ(D90)), namely:

A′ =



e1(x) 0 0 0 µ1(x) µ2
1(x)

0 e1(x) 0 µ1(x) µ1(x) µ12
1 (x)

0 0 e1(x) µ2
1(x) µ12

1 (x) µ8
1(x)

e2(x) 0 0 0 µ2(x) µ2(x)
0 e2(x) 0 µ2(x) µ2(x) 0
0 0 e2(x) µ2(x) µ2(x) µ2(x)
0 µ3(x) µ3(x) e3(x) 0 0

µ3(x) µ3(x) µ3(x) 0 e3(x) 0
µ3(x) 0 µ3(x) 0 0 e3(x)
e4(x) 0 0 0 0 µ4(x)

0 e4(x) 0 0 µ2
4(x) 0

0 0 e4(x) µ2
4(x) 0 0


,

where ei, µi for 1 ≤ i ≤ 4 are given in Table A.3. All the polynomials in A′ are even weight
polynomials of F2[x]/(x15 − 1).

Table A.3: Elements of F2[x]/(x15 − 1)

e1 x14 + x13 + x12 + x11 + x9 + x8 + x7 + x6 + x4+
x3 + x2 + x

e2 x14 + x13 + x12 + x11 + x9 + x7 + x6 + x3

e3 x12 + x9 + x8 + x6 + x4 + x3 + x2 + x

e4 x14 + x13 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x

µ1 x11 + x10 + x6 + x5 + x+ 1

µ2 x14 + x13 + x11 + x9 + x8 + x5 + x+ 1

µ3 x14 + x10 + x7 + x6 + x4 + x2 + x+ 1

µ4 x13 + x12 + x10 + x9 + x7 + x6 + x4 + x3 + x+ 1

The corresponding generator matrix of the subcode Eφ(D90) is

Y =

 y1,1 . . . y1,6
...

. . .
...

y12,1 . . . y12,6

 ,

where yi,j are right-circulant 4 × 15 cells for the first 9 rows in Y and yi,j are right-circulant
2× 15 cells for the last 3 rows. The first rows of these circulant matrices are corresponding to the
given polynomials in matrix A′.

5.2. Example 2.4

Let T be the binary [78, 39, 14] self-dual code with an automorphism φ1 of type 39 − (2; 0)
considered in Section 2.4.

The the matrices X and Y of the generator matrix of T defined in Eq. (6.6) are:

X =
(
l l

)
,
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where l = (1, 1, . . . , 1) is the all ones vector in F39
2 and

Y =


y1,1 y1,2
y2,1 y2,2
y3,1 y3,2
y4,1 y4,2

 ,

where yi,j are right-circulant 12 × 38 cells for the first 3 rows in Y and yi,j are right-circulant
2× 39 cells for the last row. The first rows of these circulant matrices are given in Table A.4.

Table A.4: Coefficients of polynomials in F2[x]/(x39 − 1)

y1,1 000100110100101101110101100111110111111
y1,2 110011010100011111000101000011010111100
y2,1 100111101011000010100011111000101011001
y2,2 011111101111100110101110110100101100100
y3,1 011010000010001101000001000110100000100
y3,2 011111111111101111111111110111111111111
y4,1 011011011011011011011011011011011011011
y4,2 011011011011011011011011011011011011011

5.3. Example 2.5

We present details for the construction of the binary [266, 133, 36] self-dual code B in Secytion 2.4.
B has an automorphism φ2 of type 133− (2; 0). The generator matrix Y of Fφ2

(B) is

Y =

y1,1 y1,2
...

...
y9,1 y9,2

 ,

where yi,j are right-circulant 3 × 133 cells for the first 2 rows in Y and yi,j are right-circulant
18× 133 cells for the next 7 rows. The first rows of these circulant matrices are given in Table A.5.

Table A.5: Coefficients of polynomials in F2[x]/(x133 − 1)

y1,1 1110100111010011101001110100111010011101001110100111010011101001110
100111010011101001110100111010011101001110100111010011101001110100

y1,2 0000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000

y2,1 0000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000

y2,2 1001011100101110010111001011100101110010111001011100101110010111001
011100101110010111001011100101110010111001011100101110010111001011

y3,1 0001001101011110011001111010100100111001011111111101100110010111000
010111101011000101011111110101110001111000011100100110010101000000

y3,2 0000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000

y4,1 1001110111001101110101010101001010011110100001000001001000011110011
001001010100101100101110110100110111010110010010000101110010000011
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y4,2 0000000101010011001001110000111100011101011111110101000110101111010
000111010011001101111111110100111001001010111100110011110101100100

y5,1 01111011100011111100010011101110101101000010000011101100101110011101
10100111010101001100000101001011100111110100110010111101001110100

y5,2 1001110111001101110101010101001010011110100001000001001000011110011
001001010100101100101110110100110111010110010010000101110010000011

y6,1 1110000010011101000010010011010111011001011011101001101001010100100
110011110000100100000100001011110010100101010101011101100111011100

y6,2 0001011100101111010011001011111001110100101000001100101010111001011
011100111010011011100000100001011010111011100100011111100011101111

y7,1 0110110110100010100011000101100111010000111001010110011110000111101
101100000010110111001011101100110110001101011110101010011111011011

y7,2 1000110111000101001001110101010000001000001010100111111101011011101
100101011001100000011111110010111101111110101011000011101011010111

y8,1 1111010110101110000110101011111101111010011111110000001100110101001
101110110101111111001010100000100000010101011100100101000111011000

y8,2 0110110111110010101011110101100011011001101110100111011010000001101
101111000011110011010100111000010111001101000110001010001011011011

y9,1 0111111111111111111011111111111111111101111111111111111110111111111
111111111011111111111111111101111111111111111110111111111111111111

y9,2 1001101110000101110100110111000010111010011011100001011101001101110
000101110100110111000010111010011011100001011101001101110000101110
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