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The Effects of Aeroelastic Tailoring on
Flight Dynamic Stability

Mario Natella∗, Xuerui Wang†, and Roeland De Breuker‡
Delft University of Technology, Delft, Zuid-Holland, 2629HS, The Netherlands

This paper presents a unified framework for aeroelastic tailoring of free-flying air-
craft with composite wings. A continuous-time state-space model is used to describe
the flow. The 3D composite wing structures is condensed into a Timoshenko beam
model by means of a cross-sectional modeler. The aerodynamic and structural mod-
els are closely coupled with the six degrees of freedom flight dynamic equations of
motion in the state-space formulation. This paper refers to the clamped-wing aeroe-
lastic tailoring as classic aeroelastic tailoring. Hence, the term aeroelastic tailoring
will point at the novel approach that includes free-flying aeroelastic phenomena into
the optimization process. The emphasis of the present paper is to show the effects
of aeroelastic tailoring on body-freedom flutter and flight dynamic stability at large.
The results of this paper will be used in the further development of aeroelastic
tailoring practices for composite aircraft design.

I. Introduction

The period between 1980-1990 saw a unprecedented development in wing structural design practices
due to the use of composite materials. The physical understanding of the properties of composite

materials grew stronger and stronger in those years thus providing engineers and designers with new viable
and innovative solutions. One of the solutions made possible because of composite materials is classic
aeroelastic tailoring. As defined by M. Shirk et al.[1] in 1987, classic aeroelastic tailoring is the embodyment
of directional stiffness in aircraft design, to enhance its performance.
Proving this concept on the scale of commercial aircraft is an ongoing challenge in this field of research.
The classic aeroelastic tailoring optimization methods have already been proven very promising in latest
developments on composite wing design. Among the benefits of aeroelastic tailoring, we find (i) weight
reduction, (ii) root-bending moment alleviation and (iii) optimized distribution of properties and material
throughout the structure. The degree of said effects is highly dependent on the load cases selected for the
optimization. A study from T. Weisshaar et al.[2] in 1957 was one of the first studies to show the benefits of
such a practice in structural design. Weisshaar et al. show how classic aeroelastic tailoring leads to the
design of structures at maximized flutter speed (intended as clamped-root flutter). In his work it has also
been mentioned that while the flutter speed was being maximized, classic aeroelastic tailoring contributes
to minimizing the body-freedom flutter speed. This is a dynamic instability that involves aircraft pitch and
plunge in combination with wing deformations. Said dynamic instability is more critical for flexible aircraft
configurations.

The motivation behind this work is the need for a unified framework for analysis and optimization of modern
composite aircraft. The integrated approach, combining aeroelasticity, flight dynamics and aeroelastic
tailoring practices, is a natural evolution of engineering design given the challenges ahead of us. The
theoretical framework has been throughly investigated in literature, showing the importance of flight
dynamics in aeroelastic analyses. Some representative contributions are made by Cesnik[10], Patil[11, 12],
Meirovitch[13] and Palacios[14].
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Fig. 1 Frame definitions.

The purpose of this study is twofold. On one hand, to present a unified aeroelastic framework for free-flying
aircraft that is suitable for integrated aeroelastic stability analyses, aeroelastic tailoring practices and active
control law design. On the other hand, to discuss the evolution of flight dynamic stability in a classic
aeroelastic tailoring optimization. The framework developed within the scope of this paper is applied on
the NASA Common Research Model (CRM) model∗. The structure has been designed using composite
materials and in such a way that a desirable degree of flexibility was reached. This model has a nonlinear
static aeroelastic trim solution, so its stability is assessed linearizing around the nonlinear trim solution.
Flutter, phugoid and short period modes are monitored throughout the optimization.

II. Model Descriptions

A. Rigid-Body Flight Dynamics
The nonlinear six degrees of freedom (6DoF) rigid-body dynamic equations of motion (EOM) in the
body-fixed flight dynamic frame (Oc, x f , y f , z f ) can be written as (Etkin [15]),

mV̇ = −mω × V + F
Jω̇ = −ω × Jω +M
θ̇ = E−1f ω

Ṙ = CT
f V (1)

The body-fixed flight dynamic frame (Oc, x f , y f , z f ) has its origin on the aircraft center of gravity (c.g.)
and with Oc x f z f represents the aircraft symmetrical plane as illustrated in Fig. 1. Conventionally, the
aeroelastic solutions are calculated in the body-fixed frame (Oc, xb, yb, zb ), which has opposite Oc xb and
Oc zb directions compared to the (Oc, x f , y f , z f ) frame.
In Eq. 1, V and ω represent the translation and rotational velocities of the (Oc, x f , y f , z f ) frame relative
to the inertial frame (O, X,Y, Z ). R and θ indicate the position and Euler angles of the (Oc, x f , y f , z f )
frame relative to (O, X,Y, Z ). m is the total mass and J represents the inertia matrix. F and M are the total
force and moment vectors. Cf (φ, θ, ψ) is the rotation transformation matrix from inertial axes (O, X,Y, Z )
to (Oc, x f , y f , z f ), and the E(φ, θ) matrix links angular velocities ω to Eulerian velocities θ̇. Bold mark

∗https://commonresearchmodel.larc.nasa.gov
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Fig. 2 Structural analysis flow chart, Werter et al. [7].

indicates vectors and matrices.

In this paper, gravity is modeled as a concentrated force acting on the c.g., which means the gravity has
no contribution to the aeroelastic stiffness. The total force in Eq. 1 can be written as the summation
of aerodynamic and gravitational forces as F = Fa + Fg . When expressed in the flight dynamic frame,
Fg = Cf [0, 0, mg]T , in which g represents the gravitational acceleration.

Under small perturbations, Eq. 1 can be linearized around an equilibrium point and expressed in the
state-space form. Define the rigid-body states as X f = [∆V, ∆ω, ∆R, ∆θ]T , where ∆ indicate the variations
with respect to the equilibrium condition. The linearized rigid-body dynamic equations can be expressed by

Ẋ f = ArrX f +



M−1f
0


F f (2)

where F f = [∆Fa, ∆Ma]T indicates the variations of the aerodynamic forces and moments with respect
to the equilibrium point. M f = diag([mI3, J]) represents the flight dynamic mass matrix. Since Fg is a
function of the Euler angles, it can be incorporated into the Arr matrix.

B. Structural Dynamics
The wing structure is modeled with Timoshenko beam elements described in a corotational frame of reference
(FoR), Werter et al. [7]. The corotational frame is rigidly connected to the element and moves with the
deformation of the beam at the particular point. A detailed mathematical derivation of the structural system
in a corotational framework is presented in the the work of Battini and Pacoste [4]. The main advantage
presented by the corotational approach is that the rigid connection renders the direction of the aerodynamic
element constant irregardless of the local deformation.
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Fig. 3 Linear cross-sectional element of the wing FE model.

A logical chart of the structural analysis is shown in Fig. 2. The analysis commences with the modeling of
the structural properties, described in terms of lamination parameters. Said parameters are then translated
in cross-sectional properties assigned to a particular node locations. The formulation as such is suitable
for both analysis and optimization of composite wing structures. Customary in optimization of composite
structure is to opt for a discrete formulation of the problem, given the discrete nature of the thickness of a
composite laminate. However, the introduction of lamination parameter allows for a continuous formula-
tion of the optimization problem yielding to a convex design spacewherein lies the optimum, Setoodeh et al.[3]

The stiffness matrices derived from the classical lamination theory can be writtern as a function of 15
lamination parameters and the material invariants, Gürdal et al.[5]. The aeroelastic framework assumes
symmetric laminate, thus reducing the lamination parameters to 10 for a thorough description of the laminate.
From this assumption also follows the de-coupling between in-plane and out-of-plane deformations, and
prevention of out-of-plane warping.
Unbalanced laminate are allowed, thus accounting for the bending-torsion coupling in composite laminates,
a key-stone in aeroelastic tailoring optimization.

Once the laminate has been properly described, the cross-sectional properties are to be translated in equivalent
properties to lump in a specific node of the wing FE model. The computation of the equivalent properties
is performed by means of the cross-sectional modeler, see Fig. 2, developed by Willaert et al.[6]. The
formulation as such evaluates the Timoshenko stiffness matrix of a thin-walled cross-section, discretized in
N elements. Material properties and thickness are assumed constant within an element, although changes
between elements are allowed. From the Timoshenko stiffness matrix, the static response of the wing is thus
determined. The dynamic analysis, linear about the nonlinear static equilibrium point, is then performed.
For the analytical details refer to Werter et al.[7].

Brief Overview of the FE Model
The beam is modeled with N nodes, and N − 1 elements, depending on the input specified in the input
file. The length of the element is then evaluated. The number of mesh points of each section is determined
by rounding up the length of the element divided by the average element length. The beam orientation is
determined by the unit vectors e1, e2 and e3. The unit vector e1 is defined along the beam as shown in Fig. 3,

e1 =
x2 − x1
|x2 − x1 |

(3)

with 1 and 2 being the two end nodes of the beam element. The unit vector e3 is defined using e1 and the
average chord direction cavg. Note that the average chord direction is the average of the chord directions at
the end nodes. Having said that, unit vector e3 is given by,

e3 =
e1 × cavg
|e1 × cavg |

(4)
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Fig. 4 Aerodynamic mesh in the aeroelastic framework developed by
Wertel et al.[8].

The unit vector e2 is derived from e1 and e3 as follows,

e2 =
e3 × e1
|e3 × e1 |

(5)

For each structural elements thus generated, the local stiffness matrix is determined. The global matrix is
then assembled using the co-rotational framework as developed and discussed in the work of Battini and
Pacoste[4].

C. Aerodynamic Model
The aerodynamic module used in this work is the unsteady vortex-lattice method. The model is based on
the unsteady potential flow theory under the assumption of incompressible, inviscid and irrotational flow,
Werter et al.[8]. The governing equations can thus be written as,

∇2Φ = 0 (6)

subject to flow tangency (Eq. 7) and far-field boundary conditions (Eq. 8),

(∇Φ + v∞) · n = 0 (7)

lim
d→∞

∇Φ = 0 (8)

For a unique solution of the aerodynamic problem, the wake has to be taken into account making sure that
the Kutta condition is satisfied at the trailing edge, see Fig. 4 for a visual representation of the wake in the
current aeroelastic framework. This means that the vortex strength has to be zero at the trailing edge. For
the sake of completion, the shed vorticity can also be calculated remembering that the circulation ΓΓΓ is zero
around a curve enclosing the wing as proven by the Kelvin’s theorem.

Omitting the extensive analytical derivation, that can be found in the work of [8], from the unsteady flow
theory the following set of equations in state space formulation is obtained as follows,



Γ̇ΓΓ

α̇αα


=



K8 K9

0 0





ΓΓΓ

ααα′


+



0
I


α̇ααinp (9)

where ααα′ signifies the total angle of attack which includes the trim ααα and the contributions of both structural
and rigid states. The explicit expression for ααα′ will be derived in Chap. III.
What important for the aeroelastic coupling is the aerodynamic output in terms of forces and moments acting
on the wing. The outputs are then to be lumped to the beam location at the particular section. Without going
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into details of the analytical formulation, extensively illustrated in the work of Werter et al.[8], the output
equation can be written as follows,



fa
ma


=

[
L8 L9

] 

ΓΓΓ

ααα′


+ L7α̇αα

′ (10)

It is important to notice that α̇̇α̇α′ only affects the aerodynamic forces and not the vorticity ΓΓΓ.

III. Integrated Framework
In this section the state-space model that integrates aerodynamics and free-flying structural dynamics is
derived. The derivation is carried out in two steps, first connecting the free-flying structural output to the
aerodynamics input (Section A), then the aerodynamic output to the free-flying structural input (Section B).

A. From Aerodynamic Input to Structural Output
The aerodynamics in continuous-time state-space model is formulated in such a way that α̇αα is the input of
the system. This model works under the assumption that the vertical gust (or excitation) is much smaller
than V∞. In the most general case, the angle of attack is a non-linear function of both the structural (Xs) and
the flight dynamic (X f ) degrees of freedom,

ααα′ = fff
(
Xs,X f

)
(11)

Linearizing the relationship we obtain the following expression for ααα′,

ααα′ ≈ ααα +ΘΘΘ +
∆xxxea
V∞

θ̇θθs +
∆xxxcg
V∞

q −
ḣhhs

V∞
+

ḣr
V∞

(12)

whereΘΘΘ is the angle of attack increment caused by the combined flexible and rigid rotations, θ̇θθs refers to
the structural angular velocity, q to the rigid angular velocity, ∆xxxea and ∆xxxcg are the distances with respect
to the elastic axis and center of gravity respectively, ḣhhs and ḣr are the flexible and rigid plunge velocity
respectively. Note that q and ḣr are not vectors since they are identical for every element.

In a linearized model, the angle of attack can be re-written as a function of the structural and flight dynamic
states, referred to as Xs and X f and defined as,

XT
s = ∆

[
δδδs,1 θθθs,1 . . . δδδs, i θθθs, i . . . δδδs,N θθθs,N

]
(13)

XT
f = [∆V ∆ωωω ∆R ∆θθθ] (14)

where,
δδδTs, i = [δx, i δy, i δz, i] (15)

θθθTs, i = [θx, i θy, i θz, i] (16)

with i = 1, · · · , N , where N is the number of structural elements. The linear expression for the angle of
attack thus becomes,

ααα′ =
[
0 I ΨΨΨ1 ΨΨΨ2

]



ΓΓΓ

ααα

Ẋs

Xs

X f



(17)

where ΨΨΨi , with i = 1, 2, is nothing other than a selection matrix which translates the states into their
respective influence on the angle of attack.
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By using the linear expression for the angle of attack in Eq. 9, we have,


Γ̇ΓΓ

α̇αα


=



K8 K9 K9ΨΨΨ1 K9ΨΨΨ2

0 0 0 0


X +



0
I


α̇ααinp (18)

where X =
[
ΓΓΓT, αααT, ẊT

s , XT
s , XT

f

]T
, which for convenience we can re-write as,



Γ̇ΓΓ

α̇αα


= H1T1X +H7α̇ααinp (19)

with T1 being a boolean selection matrix to select the appropriate contributions to the angle of attack.

Similarly, from Eq. 9 and 10, the aerodynamic force can be written as,


fa
ma


=

[
L8 L9 L9ΨΨΨ1 L9ΨΨΨ2

]
X +

[
0 0 L7ΨΨΨ1 L7ΨΨΨ2

]
Ẋ + L7α̇̇α̇αinp (20)

or equivalently,


fa
ma


= H2T1X +H3T2Ẋ + L7α̇ααinp (21)

with T2 being a boolean selection matrix for the contributions to the input α̇αα.

B. From Aerodynamic Output to Structural Input
In this section, the distributed aerodynamic forces fa and momentsma acting on panels are transformed into
concentrated aerodynamic forces Fa and moment Ma in the flight dynamic equations, as well as the elastic
forces fs acting on the structural nodes.

The total force Fa and moment Ma are simply summations of fa and ma respectively, and can be written in
the matrix form as F f = [∆Fa,∆Ma]T = HFA[fa, ma]T , where HFA is a Boolean matrix.
The transformation from fa to fs is based on the nearest neighbor method, which means the distributed
aerodynamic force on each panel is inflicted by the nearest structure node. A Boolean matrix can be created
by placing 1 for the selected panel location. This interpolation can be expressed by fs = HSA[fa, ma]T .

Using Eq. 2, the EOM of the flexible-body dynamics can be given in its general form as,



Ẍs

Ẋs

Ẋ f



= As



Ẋs

Xs

X f



+



M−1s 0
0 0
0 M−1f
0 0





fs
F f


(22)

whereMs,Cs,Ks respectively represent the structural mass, damping and stiffness matrices. Applying the
force transformation, we have,



Ẍs

Ẋs

Ẋ f



= As



Ẋs

Xs

X f



+



M−1s HSA

0
M−1f HFA

0





fa
ma


(23)

By introducing a boolean selection matrix T3, such that,



Ẋs

Xs

X f



= T3



ΓΓΓ

ααα

Ẋs

Xs

X f



(24)
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we can rewrite Eq. 23 as,


Ẍs

Ẋs

Ẋ f



= AsT3X + Bs



fa
ma


(25)

C. State-Space Model
The state-space model is assembled by combining the flight dynamic, structural, aerodynamic models and
the corresponding transfer functions defined previously in this paper.
Let us begin by substituting the force relationship (derived in Eq. 20) into Eq. 25 thus obtaining,



Ẍs

Ẋs

Ẋ f



= AsT3X + Bs

(
H2T1X +H3T2Ẋ + L7α̇ααinp

)
(26)

combining with Eq. 19,

Ẋ =


0
BsH3T2


Ẋ +



H1T1

AsT3 + BsH2T1


X +



H7

BsL7


α̇ααinp (27)

or equivalently,
(I −H4) Ẋ = H5X +H6α̇ααinp (28)

and finally,
Ẋ = (I −H4)−1 H5X + (I −H4)−1 H6α̇ααinp (29)

The coupled state matrix is shown in Eq. 30. The matrices T refer to off-diagonal coupling terms, with the
subscripts A, S and F refer to aerodynamic, structural and flight dynamic states respectively. The T matrices
can be calculated from Eq. 29. It can be proven that TSF = TFS = 0, which indicates the absence of inertia
coupling between structural and flight dynamics via the presented approach. The influence of such inertial
couplings will be analyzed in future work.

From this system we can easily derive other dynamic equations, namely aeroelasticity, flight dynamics, and
free-flying flexible-body dynamics. The flight dynamic state-space equations are obtained by the combination
of aerodynamic and rigid-body dynamics as shown in Eq. 31, also referred to as quasi-rigid aircraft.



Γ̇ΓΓ

α̇αα

Ẍs

Ẋs

Ẋ f



=



K8 K9

000 000
TAS TAF

TSA
−M−1s Cs −M−1s Ks

I 000
TSF

TFA TFS Arr





ΓΓΓ

ααα

Ẋs

Xs

X f



+ Bα̇̇α̇αinp (30)



Γ̇ΓΓ

α̇αα

Ẋ f



=



K8 K9

000 000
TAF

TAF Arr





ΓΓΓ

ααα

X f



+ B′α̇̇α̇αinp (31)
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Fig. 5 Aerodynamic meshes of the NASA CRM aircraft.
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Fig. 6 Aerodynamic meshes of NASA CRM aircraft in top view.

IV. Stability Analyses on Benchmark Model
The model is based on NASA CRM aircraft model and falls within the CS25† category for conventional
large commercial aircraft. A standard alloy (Aluminum 7075T73) has been used to model the material
properties of the aircraft. The wing spans is 58.5 m, with a wetted surface of 410.7 m2. The fuselage length
is 73.9 m, with a diameter of approximately 6 m.
The aim of this section is to provide benchmark results for the free-flying aeroelastic aircraft, which will
later be used for aeroelastic tailoring optimization. Reference values for flight dynamics responses have been
taken from the CS25. Both the quasi-rigid and the fully-flexible aircraft model are analyzed and compared
against the classic clamped aircraft responses.

A. Stability Analyses
The stability of the aircraft has been analyzed in cruise conditions at 136 m/s, at 11000 m altitude and Mach
number of 0.85. The trim solution for this flight condition is at an angle of attack of 4.9◦, and horizontal tail
deflection of 2.8◦.

†EASA Certifications on: https://www.easa.europa.eu/certification-specifications/cs-25-large-aeroplanes
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Table 1 Modes of flexible aircraft clamped at the wing-root.
STR: structural modes, AE: aeroelastic modes.

Frequency [Hz] Damping Ratio [-]

I STR 2.02 -
II STR 5.47 -
III STR 7.77 -
IV STR 10.9 -
V STR 18.1 -
VI STR 19.2 -
VII STR 20.8 -
VIII STR 26.7 -
IX STR 31.4 -
X STR 35.9 -
I AE 0.874 -
II AE 1.19 0.180
III AE 1.39 0.838
IV AE 2.58 0.273
V AE 6.61 0.0708
VI AE 7.75 0.00205
VII AE 14.7 0.0325
VIII AE 20.6 0.000933
IX AE 25.2 0.0216
X AE 35.4 0.0128

Table 2 Modes of free-flying quasi-rigid aircraft.

Frequency [Hz] Damping Ratio [-]

Phugoid 0.0430 0.146
Short Period 1.28 0.781

The stability has been assessed for three different models, (i) the classic flexible aircraft model with clamped
boundary conditions, Tab. 1, (ii) the free-flying quasi-rigid aircraft model, Tab. 2 and (iii) the free-flying
flexible aircraft model, Tab. 3.
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Table 3 Modes of free-flying flexible aircraft.
AE: aeroelastic modes.

Frequency [Hz] Damping Ratio [-]

Phugoid 0.0339 0.172
Short Period 1.38 0.913
I AE 1.05 -
II AE 1.38 0.913
III AE 1.47 0.206
IV AE 3.75 0.111
V AE 6.78 0.0604
VI AE 7.75 0.00243
VII AE 14.6 0.0391
VIII AE 20.5 0.000871
IX AE 25.2 0.0239
X AE 35.4 0.0128

Table 4 Material properties of CRM wing.§

Property Value

E11 1.47 · 1011

E22 1.03 · 1010

G12 7.00 · 109

ν12 0.27

V. Effects of Aeroelastic Tailoring on Free-Flying Stability

A. Optimization Set-up
The aeroelastic tailoring optimization has been set up for weight minimization. The CRM initial guess has
been chosen to be stiff enough to be feasible and stable, with the following 0-dominated stacking sequence‡,

[(0)60%, (90)10%, (±45)30%]s (32)

The loads are calculated using a full-aircraft aerodynamic model. The fuselage and the horizontal tail are
rigid, and not included in the tailoring process. They are only included in the calculation of the aircraft
weight used for trim purposes. The wing is made of composite material with properties shown in Tab. 4.

The model is suject to the following constraints:

• feasibility of lamination paramenters, see Gürdal et al.[5],
• buckling failure index, see Dillinger et al.[9],
• strain failure index,
• aileron effectiveness,
• aeroelastic stability.

The flight dynamic stability is only monitored throughout the optimization, to observe its evolution. It is
although not formulated as a constraint, thus allowing for the convergence to an design with unstable rigid
body motions.

‡NB: the 0-direction refers to the direction that runs along the beam axis.
§SI units are used.
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Fig. 7 Objective convergence.

B. Optimization Results and Observations
The phenomena observed as a result of the aeroelastic tailoring optimization are hereby discussed.

Optimized Stiffness and Mass Distribution
The objective converges to 0.55 as shown in Fig. 7. This normalized value corresponds to a mass of
approximately 3800 kg. The optimized stiffness and thickness distribution is shown in Fig. 8. The skins and
spars are thickened in the neighborhood of the engine location (approximately 10m in span-wise direction).
The thickness is then further adjusted in case the section is under relatively high stresses.
The driver behind the stiffness optimization is twofold. The stiffness is tailored to (i) induce wash-out effect
and (ii) control the buckling response. The latter has been found to be the main driver for the spar tailoring.

Modal Coalescence
As in classic aeroelasticity, modal coalescence is one of the mechanisms causing instabilities. Throughout the
optimization we can observe how the 1st aeroelastic mode and the phugoid reach a difference in frequency of
only 0.1 Hz, as shown in Fig. 9. Aeroelastic stability has not been found critical for any of the design points.

Short Period Mode Instability
The short period mode has been found to be unstable during the optimization, as shown in Fig. 10. The
physical explanation is hereby given. The objective of aeroelastic tailoring is weight minimization which
implies a wing root bending moment minimization by moving lift inboard. For a swept-back wing, an
inboard movement of the lift vector also implies a forward movement (towards the aircraft nose). At the
same time, the center of gravity (c.g.) is also moving backward (towards the rear of the aircraft) due to the
fact that the wing weight decreases during the optimization. These two factors cause the aerodynamic center
(a.c.) moves in front of the c.g., which indicates an unstable short period mode.
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Fig. 8 Optimized stiffness and thickness distributions.
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VI. Conclusions and Recommendations
This work has shown the importance of flight dynamic stability for composite aircraft optimization. While
the classic flutter speed, as in clamped-root flutter, is maximized, the body-freedom flutter speed is reduced,
which makes the short period mode unstable in the tested flight condition.
The use of composite materials and the aeroelastic tailoring practices enhance the level of flexibility, also for
conventional aircraft configuration, to a point where the body-freedom flutter becomes a critical phenomenon.
This is not only important for stability but also for the aircraft maneuverability and handling qualities.

In future developments of this work, stability and handling quality constraints will be investigated. This
will allow to perform aeroelastic tailoring optimization prescribing a certain level of maneuverability. This
practice will be useful in designing new aircraft concepts and unconventional configurations via aeroelastic
tailoring while guaranteeing desirable handling qualities.
An overall stability constraint for aeroelastic tailoring will also be formulated. An exception can be made for
the slow and controllable rigid-body modes (e.g. phugoid, spiral modes) that can be easily controlled by the
pilot in a large time scale. The three dimensional free-flying aeroelastic stability will also be investigated in
the future research.
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