
Quantum gradient estimation and its application to quantum

reinforcement learning

A.J. Cornelissen

August 21, 2018

Master thesis
Student number: 4322231
Master’s program: Applied Mathematics
Specialization: Analysis
To be defended on: September 4th, 2018
Assessment committee: Prof. Dr. R.M. de Wolf

Prof. Dr. J.M.A.M. van Neerven
Dr. M.P.T. Caspers

Research institute: Delft University of Technology
in collaboration with Centrum Wiskunde & Informatica

Faculty: Electrical Engineering, Mathematics and Computer Science
Contact: ajcornelissen@outlook.com

Abstract

In 2005, Jordan showed how to estimate the gradient of a real-valued function with a high-dimensional
domain on a quantum computer. Subsequently, in 2017, it was shown by Gilyén et al. how to do this with
a different input model. They also proved optimality of their algorithm for `∞-approximations of functions
satisfying some smoothness conditions.

In this text, we expand the ideas of Gilyén et al., and extend their algorithm such that functions with fewer
regularity constraints can be used as input. Moreover, we show that their algorithm is essentially optimal in
the query complexity to the phase oracle even for classes of functions that have more stringent smoothness
conditions. Finally, we also prove that their algorithm is optimal for approximating gradients with respect
to general `p-norms, where p ∈ [1,∞].

Furthermore, we investigate how Gilyén et al.’s algorithm can be used to do reinforcement learning on a
quantum computer. We elaborate on Montanaro’s ideas for quantum Monte-Carlo simulation, and show
how they can be used to implement quantum value estimation of Markov reward processes. We also show
essential optimality of this algorithm in the query complexity of all its oracles. Next, we show how we can
construct a quantum policy evaluation algorithm, and how we can use these algorithms as subroutines in
Gilyén et al.’s quantum gradient estimation algorithm to perform quantum policy optimization.

The most important open questions remain whether it is possible to improve the query complexity of the
extension of Gilyén et al.’s algorithm, when function classes containing functions of Gevrey-type 1 are used
as input, as at the moment for this specific parameter setting the algorithm is not better than a very
simple classical gradient estimation procedure. Improvement of this result would automatically improve the
quantum policy optimization routine as well.

i

Preface

This thesis report is the result of the final project that was part of my master program Applied Mathematics
at the Delft University of Technology. The research was done in close collaboration with Centrum Wiskunde
& Informatica in Amsterdam, from January to August 2018.

For me, this project was the first real experience with conducting research along the frontiers of the current
knowledge in the field of quantum computing. This enthused me a lot, and I hope to continue to try pushing
the boundaries of our common knowledge in the years to come.

I owe a debt of gratitude to a lot of people who helped me through this project. First and foremost, I would
like to thank Ronald de Wolf, without whom I probably would have never found these interesting problems
that lie at the interface between mathematics and quantum computing. I would like to thank him for taking
the time and energy to supervise this project, and regularly providing helpful insights and discussions.

Secondly, I would also like to thank Martijn Caspers, who throughout the project was always willing to help
me out, and arranged the possibility to present my findings to all that were interested.

Simultaneously, I would like to thank Ronald de Wolf, Martijn Caspers and Jan van Neerven for taking the
time to take part in my assessment committee.

Furthermore, I would like to thank András Gilyén for his insightful research paper [GAW17] that I was able
to learn from, and for expressing recognition for my work by referencing this master thesis in his paper.

Additionally, I would like to thank my parents and sister, for supporting me not only over the course of the
last few months, but also throughout the rest of my studies.

Finally, I would like to thank all my fellow students who showed interest in the research that I was conducting.
Especially, I would like to thank Erik Meulman for the many useful discussions we have had over the course of
these last nine months, and for inspiring me to think about reinforcement learning in a quantum computing
setting.

Arjan Cornelissen,
August 20th, 2018

ii

Contents

Abstract i

Preface ii

1 Introduction 1

2 Introduction to quantum mechanics 2
2.1 Mathematical background . 2

2.1.1 Notation . 2
2.1.2 Hilbert spaces . 3
2.1.3 Tensor products . 6

2.2 The postulates of quantum mechanics . 11
2.3 Projective measurements . 18

3 Quantum computing 21
3.1 Qubits . 21

3.1.1 Single-qubit systems . 21
3.1.2 Multiple-qubit systems . 24

3.2 Quantum gates . 27
3.2.1 Single-qubit gates . 28
3.2.2 Multiple-qubit gates . 30

3.3 Quantum circuits . 33
3.4 Quantum algorithms . 37
3.5 Examples of quantum circuits and quantum algorithms . 39

3.5.1 SWAP . 39
3.5.2 Toffoli gate . 41
3.5.3 Quantum Fourier transform . 42
3.5.4 Quantum Fourier adder . 46
3.5.5 Phase estimation . 48
3.5.6 Amplitude amplification . 53
3.5.7 Amplitude estimation . 59

4 Quantum gradient estimation 63
4.1 Nomenclature . 63

4.1.1 Derivatives . 63
4.1.2 Gevrey function classes . 64
4.1.3 Phase oracle queries . 66
4.1.4 Quantum gradient estimation algorithms . 67

4.2 Fractional phase queries . 67
4.2.1 Block-encodings . 68
4.2.2 Implementation of a (1, 1, 0)-block-encoding of sin(f)G 69
4.2.3 Approximation of the function exp(it arcsin(x)) . 70
4.2.4 Implementation of block-encodings of polynomials of arbitrary operators 75
4.2.5 Addition of real and complex parts . 81
4.2.6 Quantum circuit of the fractional phase query . 81

4.3 Gilyén et al.’s quantum gradient estimation algorithm . 83
4.3.1 Grid . 84
4.3.2 Numerical method . 84
4.3.3 Algorithm . 90

iii

5 Optimality of Gilyén et al.’s quantum gradient estimation algorithm 97
5.1 Lower bound of specific cases . 97
5.2 Lower bound of more general cases . 104
5.3 Essential optimality of Gilyén et al.’s algorithm and further research 106

6 Quantum reinforcement learning 108
6.1 Introduction to reinforcement learning . 108

6.1.1 State spaces, action spaces and rewards . 109
6.1.2 Markov processes . 111

6.2 Quantum value evaluation . 114
6.2.1 Classical Monte-Carlo methods . 115
6.2.2 Quantum speed-ups . 117
6.2.3 Essential optimality of query complexity . 127

6.3 Quantum policy evaluation . 130
6.4 Quantum policy optimization . 133

6.4.1 The class of functions of Gevrey-type 1 is closed under composition 133
6.4.2 Smoothness properties of the policy evaluation function of a Markov decision process . 136
6.4.3 Quantum algorithm for quantum policy optimization 141
6.4.4 Applications . 152

7 Conclusion 155

Bibliography 156

A Mathematical background of tensor products of Hilbert spaces 158

B Error-propagation lemmas 166

C Hybrid method 168
C.1 Principle of deferred measurement . 168
C.2 Hybrid method . 171

iv

1 Introduction

Over the past few decades, the world has undergone dramatic changes as it entered the period collectively
referred to as the information age. Machines are taking over more and more tasks that previously had
to be performed by hand, sharing information all over the globe is becoming easier and less costly every
year, and ever more computational power becomes available to the masses at ever decreasing costs. All of
these developments were made possible by major advances on the microscopic level, as computer processor
manufacturers have been able to develop smaller and smaller chips, capable of performing more and more
operations per second.

This development is reaching its physical limit, though. As computer chip manufacturers are creating
transistors that measure just a few nanometers across, they face new problems that stem from the laws
of quantum mechanics. Most notably, quantum effects like quantum tunneling prevent the development
of transistors that are much smaller than the ones that are being created today. So, to keep up with the
demands of society, researchers are faced with finding new ways to improve the existing technology.

One of the most radical ideas in this respect is to not regard these quantum phenomena as problematic,
but to try to utilize them to one’s advantage instead. The research field collectively referred to as quantum
computing is the field that is concerned with these ideas. Specifically, it investigates the development of a
device referred to as a quantum computer, capable of harnessing the quantum mechanical effects to perform
computations. In this text, we provide the reader with an elementary introduction into quantum mechanics,
in Chapter 2, and subsequently we show how the fundamental laws of quantum mechanics constitute the
basic building blocks of quantum computing, in Chapter 3. We also elaborate on some commonly used
techniques in this field there.

A very prominent question in the field of quantum computing is how computations that can be done on a
normal computer, can be sped up using techniques that are based on quantum mechanics. A comprehensive
list, known as the quantum algorithm zoo, has been compiled by Stephen Jordan [Jor]. It features some
of the well-known quantum algorithms that achieve a significant speed-up over classical algorithms, most
notably Shor’s algorithm and Grover’s algorithm, as well as some lesser known problems that can be solved
faster on a quantum computer than on a classical computer.

One of these problems is numerically estimating the gradient at some point in the domain of a real-valued
function with high-dimensional domain. The initial algorithm was developed, coincidentally, by Stephen
Jordan as well [Jor05]. Recently, Jordan’s idea was modified and improved upon by Gilyén et al. in [GAW17]
and they proved that their algorithm is optimal in some circumstances. We expand on the ideas that were
presented in [GAW17]. In Chapter 4, we extend the algorithm they present to broader classes of input
functions, and in Chapter 5, we prove optimality of their algorithm in a greater variety of circumstances.

Almost simultaneously with quantum computing, the field of reinforcement learning has also advanced
tremendously over the last few decades. This field, simply put, is concerned with using trial and error to
learn the best way to perform some task. Recent breakthroughs in this field include the defeat of one of
the world’s leading Go players, Lee Sedol, in March 2016 [SSS+17], and the defeat of one of the best chess
engines, Stockfish, in December 2017 [SHS+17].

The algorithms that arise from the field of reinforcement learning generally require a lot of computational
power, from which the question naturally arises whether these computations can be sped up using a quantum
computer. The area trying to answer this question is known as quantum reinforcement learning, and we give
an introduction to this field in Chapter 6. Moreover, as gradient estimation is a commonly used technique
in the field of reinforcement learning, we investigate whether Gilyén et al.’s ideas can be used in the field of
quantum reinforcement learning as well.

This report constitutes the final thesis of the master program Applied Mathematics, at the Delft University
of Technology. The research was conducted in close collaboration with Centrum Wiskunde & Informatica.

1

2 Introduction to quantum mechanics

As the name suggests, quantum computing is performing computations using the laws of quantum mechanics.
Hence, if one is to fully understand quantum computing, then one needs to understand the basic principles
of quantum mechanics. Within the context of this text, one can think of the field of quantum mechanics
as providing the connection between quantum computing and physics, but it must be noted that quantum
mechanics itself is much broader.

Following the approach provided by [NC00], the basic principles of quantum mechanics can be summarized in
four statements, which are commonly referred to as the postulates of quantum mechanics. These postulates
provide the framework on top of which the theory of quantum computing is built. Hence, in order to provide
the reader with a solid introduction into quantum computing, elaborating on the postulates of quantum
mechanics is indispensable.

These postulates are already interesting and complicated enough, that we can infer some very general,
though useful results from it. These results often play a very central role in our understanding of the theory
of quantum mechanics, and hence they cannot be omitted in any thorough introductory text into the field.

This chapter aims to introduce the reader to the field of quantum mechanics. The main part of this chapter
is Section 2.2, in which the postulates of quantum mechanics are elaborated upon. Fully expressing these
postulates, though, requires some mathematical background that is beyond undergraduate level. That is why,
first of all, Section 2.1 is devoted to developing the necessary mathematical theory. Finally, in Section 2.2 and
Section 2.3, we introduce the reader to some of the general results that follow directly from the postulates
of quantum mechanics.

2.1 Mathematical background

In this section, we develop the mathematical tools necessary to understand the very basic constructs in
quantum mechanics. Specifically, we will introduce the notion of Hilbert spaces and highlight some of
its properties in Subsection 2.1.2, and subsequently we will consider tensor products of Hilbert spaces in
Subsection 2.1.3.

We will assume that the reader is familiar with undergraduate level mathematical constructs in the field
of real analysis, such as metric spaces, vector spaces, normed spaces, inner product spaces and notions of
completeness. An introduction to these concepts can be found in many standard introductory texts into the
field, for example [AB98].

To improve readability, we will mainly focus on developing the intuition behind the constructs that we
introduce in this chapter. This approach is sufficient to accurately highlight all the aspects that we will
need throughout the remainder of this text. However, if one were to try to understand the behavior of these
constructs in different settings than the ones in which we will encounter them during this text, one might
run into trouble with the introduction presented in this section. Hence, in order to facilitate more curious
readers, and in an attempt to avoid any possible ambiguity, we will give a very precise rigorous introduction
of these concepts in Appendix A.

2.1.1 Notation

Before we start to introduce these more advanced constructs, though, let’s first clear up some notational
issues. First of all, throughout this text, we will assume that N is the set of natural numbers starting from 1,
hence N = {1, 2, 3, . . . }. In many other texts, one might find that N also contains the element 0 (which

2

would make it a half-group under the addition operation), but within this text, we will use a definition of N
such that 0 6∈ N.

Secondly, and perhaps more importantly, throughout this text we will be using the standing assumption that
the inner product is linear in the second variable, and conjugate linear in the first. Mathematicians tend to
consider the inner product to be linear in the first variable, and conjugate linear in the second, whereas we
will be using the exact opposite convention, which happens to be more common among physicists, and is
also in closer connection to matrix-vector multiplications in linear algebra. So, whenever we have elements
x and y from some complex inner product space and c ∈ C, we have:

〈x, cy〉 = c〈x, y〉 = 〈cx, y〉

This concludes our introductory remarks on the notation that we will be using. In the following sections,
we will introduce the most important mathematical constructs that we will need to accurately describe the
basic building blocks of quantum mechanics.

2.1.2 Hilbert spaces

Arguably the most important and most central construct in the theory of quantum mechanics is the Hilbert
space. As we will see in Section 2.2, in order to describe any physical system on a quantum mechanical level,
one must resort to using Hilbert spaces. Because of its central role in the remainder of this text, we will
attempt to avoid any confusion about this concept, and hence we present a precise mathematical definition
below.

Definition 2.1.1: Hilbert space
Let H be an inner product space over K, where K = R or K = C. Recall that we can define a norm
‖·‖ : H → {x ∈ R : x ≥ 0}, by:

∀h ∈ H, ‖h‖ =
√
〈h, h〉

If H is complete with respect to this norm (i.e., all Cauchy sequences in H converge in H), then we refer
to H as a Hilbert space. If K = C, then we say in addition that H is a complex Hilbert space. Finally,
we refer to the elements of Hilbert spaces as vectors.

In order to build some intuition of the concept of Hilbert spaces, let’s consider some examples. First of all,
remark that every Hilbert space is an inner product space, and so in order to define a Hilbert space, we need
to define a set, and an inner product operation on that set. This, we will do in all the examples below.

Example 2.1.2: Perhaps the simplest example of a Hilbert space is R, where we take the inner product to be
ordinary multiplication, so for all x, y ∈ R, 〈x, y〉 = xy. One can easily show that this inner product obeys
all the inner product axioms. In particular, we have that 〈x, x〉 = x2 ≥ 0 for all x ∈ R, ensuring that the
radical that appears in Definition 2.1.1 is well-defined.

Example 2.1.3: Similarly, arguably the simplest example of a complex Hilbert space is C, where we define the
inner product to be 〈x, y〉 = xy, for all x, y ∈ C. Again, we see that for all x ∈ C, 〈x, x〉 ≥ 0, as is required for
any inner product. Moreover, it is apparent that this inner product is indeed linear in the second variable,
and conjugate linear in the first (mathematicians would consider the inner product 〈x, y〉 = xy instead, but
according to the physicist view, this is not considered to be an inner product at all, as it is not linear in the
second variable).

Example 2.1.4: Other very simple Hilbert spaces are Rn and Cn, for any n ∈ N. The inner products on
these spaces very easily follow from the inner products of vectors, as prescribed by linear algebra.

Example 2.1.5: Somewhat more interesting complex Hilbert spaces are `2(N) and L2(R). First of all, we

3

define `2(N) as such:

`2(N) =

{
(a1, a2, a3, . . .) : ∀i ∈ N, ai ∈ C,

∞∑
i=1

|ai|2 <∞

}
The inner product is defined as:

〈(a1, a2, a3, . . .), (b1, b2, b3, . . .)〉 =

∞∑
i=1

aibi

One can easily check using the Cauchy-Schwarz inequality that for any a, b ∈ `2(N), we have |〈a, b〉| < ∞.
Again, we easily observe that the inner product is linear in the second variable, and conjugate linear in the
first (hence most mathematicians would define the inner product with the conjugate on the bi’s, rather than
on the ai’s).

Example 2.1.6: Alternatively, one could consider the subspace of `2(N) of all finitely supported sequences,
which I will for now define as `2f (N). So, we have:

`2f (N) = {(a1, a2, a3, . . .) : ∀i ∈ N, ai ∈ C,∃n ∈ N : ∀i ≥ n, ai = 0}

We can use the same inner product as the one that we defined on `2(N) to define an inner product on `2f (N).

We remark here, though, that the resulting space `2f (N) with the corresponding inner product is not a Hilbert

space, as it is not complete with respect to the norm induced by this inner product. In particular, `2f (N) is
merely an inner product space, but it can not be referred to as a Hilbert space.

To prove that it is not complete, we can simply construct a Cauchy sequence in `2f (N) that does not converge

in `2f (N). To that end, consider the sequence (an)∞n=1 ⊆ `2f (N), an = (1, 1
2 ,

1
3 , . . . ,

1
n , 0, 0, . . .). We leave it to

the reader to check that this is indeed a Cauchy sequence in `2f (N), but that it does not converge in `2f (N).

Example 2.1.7: Our final example of a Hilbert space is the space L2(R). Its precise mathematical definition
is already quite involved, but we can intuitively think of this space of containing all integrable functions
f : R→ C, satisfying the relation:1 ∫ ∞

−∞
f(x)f(x) dx <∞

The inner product between two functions f, g ∈ L2(R) is defined by:2

〈f, g〉 =

∫ ∞
−∞

f(x)g(x) dx

Again, we can see the linearity in the second variable pop up.

The space L2(R) in particular is interesting in quantum mechanics, as it can be used to describe the behavior
of a free particle that is free to move in one direction. We will encounter this space again when we develop
some intuition about the postulates of quantum mechanics, in Section 2.2.

The above examples can be used as canonical examples as Hilbert spaces, and together they highlight most
of the important properties of Hilbert spaces that we will need. This means that whenever some statement
is true for all of the spaces introduced in the examples above, it is generally true for all Hilbert spaces that
we will encounter throughout this text, indicating that they are well-suited for developing intuition about
the Hilbert spaces we will be using.

Let’s now step back a little and see what structure the Hilbert spaces have on an abstract level. If a vector x
of a Hilbert space satisfies 〈x, x〉 = 1, we say that the element has unit length. If two vectors x, y of a

1In the formal definition of L2(R), this integral must be interpreted as a Lebesgue integral, but we will not go into details
about that here. The interested reader is referred to [AB98].

2Idem.

4

Hilbert space satisfy 〈x, y〉 = 0, then we say that x and y are orthogonal. If we have a (finite or infinite)
set of vectors {xi}i∈I of a Hilbert space, we say that the set is orthogonal if any two vectors of the set are
orthogonal. If in addition all of the elements of the set {xi}i∈I are of unit length, we say that the set is
orthonormal, and that any two vectors are orthonormal. At this point, the reader should check that the set
of vectors {ei}∞i=1 ⊆ `2(N) is orthonormal, where for i ∈ N, ei is defined as the sequence being identically 0
except for just a single 1, (0, 0, 0, . . . , 0, 0, 1, 0, 0, . . .), where the 1 is in the ith position.

A basis of a Hilbert space is a (finite or infinite) set of linearly independent vectors such that the linear
subspace of finite linear combination of these vectors is dense in the Hilbert space. In particular, this means
that every vector in the Hilbert space can be written as a convergent sum of these vectors. If the set of
vectors that comprises the basis is in addition orthogonal or orthonormal, we speak of an orthogonal or
orthonormal basis, respectively. The reader should check that the set {ei}∞i=1 is indeed an orthonormal basis
of `2(N).

We know that two bases of a Hilbert space will always have equal cardinality (the proof can for example be
found in any introductory text on linear algebra). Hence we can unambiguously define the dimension of a
Hilbert space to be the cardinality of any basis of it.

The question now naturally arises whether there exist Hilbert spaces for which it is impossible to construct
a basis, and hence that do not have a well-defined dimension. The answer is more difficult than one would
expect. If one assumes the axiom of choice, one can always construct a basis of a Hilbert space. One proves
this using Zorn’s lemma. Otherwise, one can in general only construct bases of Hilbert spaces where the
dimension is at most the cardinality of N. These spaces are known as separable Hilbert spaces.

Definition 2.1.8: Separability of Hilbert spaces
A Hilbert space is called separable if it contains a countable dense subset.

Theorem 2.1.9: Separability and the existence of bases
A countable basis of a Hilbert space exists if and only if the Hilbert space is separable.

Sketch of the proof. Separability implies the existence of a countable basis through the constructive process of
Gramm-Schmidt orthogonalisation. Conversely, we can construct a countable dense subset from a countable
basis by considering all linear combinations with rational coefficients of the basis vectors.

As the existence of a countable basis implies that a countable subset of linearly independent vectors spans a
dense subset of the Hilbert space, we can intuitively think of separable Hilbert spaces as having a countable
dimension. In other words, from any point in a separable Hilbert space, one can travel in a number of
dimensions that is no greater than the cardinality of N.

One might ask why the equivalent characterization of Theorem 2.1.9 is not used as the defining property of
separable Hilbert spaces. The reason for this is because the definition as presented in Definition 2.1.8 readily
generalizes to a Banach space setting, whereas the equivalent characterization does not. As we will not be
concerned with Banach spaces throughout the remainder of this text, for all intents and purposes, the reader
can consider the equivalent characterization presented in Theorem 2.1.9 as the definition of separability,
throughout the rest of this text.

We remark that all the spaces that we considered in the example earlier in this section, are in fact separable.
In R, we have the subset Q, which can easily be proven to be countable by enumerating all possible fractions
and hereby constructing a bijection with N, and moreover it is dense in R. Similarly, in C, we have the dense
subset Q+ iQ. From there, it is not difficult to see that for every n ∈ N, we have that (Q+ iQ)n is dense in
Cn. Furthermore, for `2(N), we have already seen that a basis exists, and hence it is separable as well.

Constructing a countable dense subset of L2(R) is a little bit more involved. Here, we will just state that
one can do so by considering linear combinations with rational coefficients of identity functions on finite

5

intervals of R with rational endpoints. We leave it to the reader to check that this set is countable and dense
in L2(R).

Finally, we consider the question when two Hilbert spaces can be considered equal. Formally speaking, we
can only say that two Hilbert spaces are equal if they are equal as sets, and if the inner products defined
on them have equal action. In general, though, we are mainly focused on whether the Hilbert spaces have
equal properties. This is where the following definition and theorem come into play.

Definition 2.1.10: Hilbert space isomorphisms
Let A and B be Hilbert spaces over K, where K = R or K = C, with corresponding inner products 〈·, ·〉A
and 〈·, ·〉B , respectively. Let ψ be a bijective linear map ψ : A→ B, such that:

〈a1, a2〉A = 〈ψ(a1), ψ(a2)〉B

Then we say that ψ is a Hilbert space isomorphism from A to B. We say that A and B are isomorphic
as Hilbert spaces, if there exists a Hilbert space isomorphism from A to B. If this is the case, we denote
this by A ' B.

Theorem 2.1.11: Isomorphism characterization of separable Hilbert spaces
Let A and B be Hilbert spaces over K, where K = R or K = C. Then A and B are isomorphic as Hilbert
spaces if and only if they have equal dimension.

Sketch of the proof. Suppose that A and B are isomorphic as Hilbert spaces. Let {ai}i∈I be an orthonormal
basis of A, and let ψ be a Hilbert space isomorphism from A to B. Then, we find that {ψ(ai)}i∈I is an

orthonormal set in B. Moreover, we have ‖a‖2 = 〈a, a〉A = 〈ψ(a), ψ(a)〉B = ‖ψ(a)‖2B , and so ψ is bounded.
By linearity of ψ, we find that: ∑

i∈I
ciψ(ai) = ψ

(∑
i∈I

ciai

)
where by the boundedness of ψ, we trivially check that convergence of one sum implies convergence of the
other. As ψ is bijective, we find that every element can be written as a convergent sum of the elements
{ψ(ai)}i∈I , hence it is a basis. As we have |{ai}i∈I | = |I| = |{bi}i∈i|, we find that A and B have equal
dimension.

Conversely, if A and B have equal dimension, we can construct equinumerous orthonormal bases {ai}i∈I
and {bi}i∈I of A and B, respectively. But then we can find a bijection between the bases, i.e., for all i ∈ I,
ψ(ai) = bi. Now, we extend this map linearly to a map from A to B. We easily check that this is an
isomorphism of Hilbert spaces, and hence that A and B are isomorphic as Hilbert spaces.

Note that if we are willing to use the axiom of choice, then we can indeed define the dimension of any Hilbert
space. Otherwise, the above statement only holds for separable Hilbert spaces (as we cannot say that two
Hilbert spaces have equal dimension if we cannot define the dimension in the first place).

So, to recap, we can consider two Hilbert spaces isomorphic if and only if their dimensions are equal. This has
the remarkable implication that for every finite-dimensional complex Hilbert space H, we can find an n ∈ N
such that H ' Cn. Moreover, rather unexpectedly, we obtain `2(N) ' L2(R), but here any isomorphism is
highly non-trivial.

2.1.3 Tensor products

In this section, we will introduce the reader to the mathematical concept known as the tensor product. The
way we do this is somewhat odd, because we will refrain from giving a precise mathematical definition, but
we will describe all of its relevant properties instead. The reason for omitting a precise construction in the

6

main body of this text is because it is rather involved, and does not provide us with any additional insight.
However, we must not underestimate the importance of careful rigorous constructions of the mathematical
objects that we want to use, so we do present the precise construction in Appendix A. The curious reader
can find all the details there.

The concept that we will introduce in this chapter, we will refer to as the tensor product. However, in litera-
ture, one can find several different forms of tensor products, e.g. vector space tensor products, Banach space
tensor products and Hilbert space tensor products. We will be using the term tensor product synonymously
with Hilbert space tensor product throughout the remainder of this text, and we will not encounter any of
the others (except for in Appendix A where we introduce the concept in a rigorous way).

So, let’s cut to the chase and give the most important properties of the Hilbert space tensor product.

Theorem 2.1.12: Properties of the Hilbert space tensor product space
Let A and B be Hilbert spaces over K ∈ {R,C}. Then, we find:

1. A⊗B is a Hilbert space.
2. For all a ∈ A and b ∈ B, a⊗ b ∈ A⊗B.
3. For all a1, a2 ∈ A and b1, b2 ∈ B, 〈a1 ⊗ b1, a2 ⊗ b2〉A⊗B = 〈a1, a2〉A · 〈b1, b2〉B .
4. For all a ∈ A and b ∈ B, we have ‖a⊗ b‖A⊗B = ‖a‖A · ‖b‖B .
5. The map A×B → A⊗B, given by (a, b) 7→ a⊗ b is jointly continuous.
6. For all a1, a2 ∈ A and b ∈ B, we have a1 ⊗ b+ a2 ⊗ b = (a1 + a2)⊗ b.
7. For all a ∈ A and b1, b2 ∈ B, we have a⊗ b1 + a⊗ b2 = a⊗ (b1 + b2).
8. For all a ∈ A, b ∈ B and k ∈ K, we have k(a⊗ b) = (ka)⊗ b = a⊗ (kb).
9. The map A×B → A⊗B, given by (a, b) 7→ a⊗ b, is bilinear.

10. Let BA and BB be orthonormal bases of A and B, respectively. Then, BA⊗B = {a⊗ b : a ∈ BA, b ∈
BB} is an orthonormal basis of A⊗B.

11. Whenever the dimensions of A and B are defined, dim(A⊗B) = dim(A) dim(B).

Proof. For the proof, we refer the reader to Appendix A.

Note that in Theorem 2.1.12, we specify that whenever we have a ∈ A and b ∈ B, where A and B are
Hilbert spaces, then a⊗ b ∈ A⊗B. We do not specify what a⊗ b is, though, we will just consider it to be a
mathematical object, which happens to be an element of the Hilbert space A⊗B.

As A ⊗ B is a Hilbert space, it is closed under taking linear combinations. Hence, for any a1, a2 ∈ A and
b1, b2 ∈ B, we have that a1 ⊗ b1 + a2 ⊗ b2 ∈ A ⊗ B. If we choose a1 and a2, and b1 and b2 to be linearly
independent, we can show that we cannot write this element as a simple tensor, i.e., there do not exist a ∈ A
and b ∈ B such that a1⊗ b1 + a2⊗ b2 = a⊗ b. So, we define simple tensors to be the elements of A⊗B that
can be written as a⊗ b for some a ∈ A and b ∈ B, and using property 10 of Theorem 2.1.12, we observe that
these elements span a dense subspace of A⊗B.

The bilinearity property, i.e. properties 6 through 9 in Theorem 2.1.12, can lead to some confusion at first
sight. For example, let 0B denote the additive identity of B. Then we have for any vector a ∈ A that
a⊗0B = a⊗ (0 ·0B) = 0(a⊗0B) = 0A⊗B , the additive identity element of A⊗B. Hence, we cannot view the
set {a⊗ 0B : a ∈ A} as a set of elements lying along an axis of the tensor product space, analogously to the
Cartesian product. Instead, this set only contains one element, the 0-vector in the resulting space A⊗B.

Another source for confusion is that scalar multiples can be distributed over the left and right part of the
tensors freely. For all c ∈ K, a ∈ A and b ∈ B, for example, we have:

c(a⊗ b) = (ca)⊗ b = a⊗ (cb) =
(√
ca
)
⊗
(√
cb
)

where the last equality holds whenever
√
c is defined. This can be especially confusing when working with

minus signs:

(−a)⊗ b = −(a⊗ b) = a⊗ (−b) = (ia)⊗ (ib) = (−ia)⊗ (−ib) and (−a)⊗ (−b) = a⊗ b

7

where the last two equalities on the left hand side only hold whenever K = C.

From Theorem 2.1.12, we observe that if A and B are Hilbert spaces over K = {R,C}, then A⊗B is again
a Hilbert space. Hence, if C is another Hilbert space over K, we can tensor it again, this time with C, and
obtain the new space A ⊗ B ⊗ C. Again, for any a ∈ A, b ∈ B and c ∈ C, we obtain that a ⊗ b ⊗ c is an
element of A⊗B ⊗C, and all properties in the above theorem generalize to A⊗B ⊗C in the obvious way.
For example, observe that the map (a, b, c) 7→ a ⊗ b ⊗ b becomes trilinear, where a ∈ A, b ∈ B and c ∈ C.
Continuing in this manner, we can define any tensor product space of a finite number of Hilbert spaces.

Now, we introduce some shorthand notation. Let (An)Nn=1 be a finite sequence of Hilbert spaces, and for
every i ∈ {1, . . . , N}, let ai ∈ Ai. Then, we can write:

N⊗
n=1

An = A1 ⊗ · · · ⊗AN and

N⊗
n=1

an = a1 ⊗ · · · ⊗ aN

Moreover, if A is any Hilbert space and a ∈ A, then we can write:

A⊗N =

N⊗
n=1

A = A⊗ · · · ⊗A︸ ︷︷ ︸
N times

and a⊗N =

N⊗
n=1

a = a⊗ · · · ⊗ a︸ ︷︷ ︸
N times

Note that in this text, we will only be using a finite number of tensor products. It appears to be possible to
generalize this to countable tensor products, and interestingly, the resulting infinite tensor product space is
not separable for any infinite sequence of non-trivial Hilbert spaces. More about this can be found in [Ng13].

Next, let’s consider operators on Hilbert space tensor product spaces. To that end, we introduce the following
definition of the tensor product of two operators.

Definition 2.1.13: Tensor product of bounded linear operators on Hilbert spaces
Let A and B be two Hilbert spaces over K ∈ {R,C}, and let LA and LB be bounded linear operators
acting on A and B, respectively. Then, we define the operator LA ⊗LB to act on A⊗B, and we define
it to be the linear extension of the following mapping:

LA ⊗ LB : a⊗ b 7→ LAa⊗ LBb

Proof ot the well-definedness of LA ⊗ LB. A very similar proof is given in the appendix, where the well-
definedness of Definition A.8 is verified. The interested reader is referred there.

Let’s derive some properties of these tensor product operators:

8

Theorem 2.1.14: Properties of tensor products of bounded linear operators on Hilbert
spaces
Let A and B be two Hilbert spaces over K ∈ {R,C}. Then we have the following statements concerning
tensor product operators:

1. Let LA ∈ B(A) and LB ∈ B(B). Then LA ⊗ LB ∈ B(A⊗B) and ‖LA ⊗ LB‖B(A⊗B) = ‖LA‖B(A) ·
‖LB‖B(B).

2. The map B(A)× B(B)→ B(A⊗B) defined by (LA, LB) 7→ LA ⊗ LB is jointly continuous.
3. Let LA,1, LA,2 ∈ B(A) and LB ∈ B(B). Then LA,1 ⊗ LB + LA,2 ⊗ LB = (LA,1 + LA,2)⊗ LB .
4. Let LA ∈ B(A) and LB,1, LB,2 ∈ B(B). Then LA ⊗ LB,1 + LA ⊗ LB,2 = LA ⊗ (LB,1 + LB,2).
5. Let LA ∈ B(A), LB ∈ B(B) and k ∈ K. Then, k(LA ⊗ LB) = (kLA)⊗ LB = LA ⊗ (kLB).
6. The map B(A)× B(B)→ B(A⊗B) defined by (LA, LB) 7→ LA ⊗ LB is bilinear.
7. Let LA,1, LA,2 ∈ B(A) and LB,1, LB,2 ∈ B(B). Then (LA,1 ⊗ LB,1)(LA,2 ⊗ LB,2) = (LA,1LA,2) ⊗

(LB,1LB,2).
8. Let LA ∈ B(A) and LB ∈ B(B). Then (LA ⊗ LB)∗ = L∗A ⊗ L∗B .
9. Let SA ∈ B(A) and SB ∈ B(B) be self-adjoint. Then SA ⊗ SB is self-adjoint as well.

10. Let UA ∈ B(A) and UB ∈ B(B) be unitary. Then UA ⊗ UB is unitary as well.
11. Let NA ∈ B(A) and NB ∈ B(B) be normal. Then NA ⊗NB is normal as well.

Proof. We will postpone the proof of statement 1 to the end of this proof. First of all, we remark that
statement 2 follows trivially from statement 1. Furthermore, we observe that statements 3 through 5 can
be easily checked by looking at the action of these tensor product operators on the simple tensors. Then we
can infer the general statement by linear extension (where we use the well-definedness). Statement 6 is just
a restatement of statements 3 through 5. Statement 7 follows directly from linear extensions of the action
of the composite operator on the simple tensors.

For statement 8, let a1, a2 ∈ A and b1, b2 ∈ B. Then, we find:

〈(LA ⊗ LB)∗(a1 ⊗ b1), a2 ⊗ b2〉A⊗B = 〈a1 ⊗ b1, (LA ⊗ LB)(a2 ⊗ b2)〉A⊗B = 〈a1 ⊗ b1, LAa2 ⊗ LBb2〉A⊗B
= 〈a1, LAa2〉A · 〈b1, LBb2〉B = 〈L∗Aa1, a2〉A · 〈L∗Bb1, b2〉B
= 〈L∗Aa1 ⊗ L∗Bb1, a2 ⊗ b2〉A⊗B

As the simple tensors span a dense subset of A⊗B, we find that (LA⊗LB)∗ = L∗A⊗L∗B on a dense subspace
of A⊗B. By continuity, we can extend this to all of A⊗B.

Statement 9 follows directly from 8. Statements 10 and 11 follow directly from 7 and 8.

So, now it remains to prove statement 1 without making use of any of the other statements. To that end,
let a ∈ A and b ∈ B. We find, using property 4 of Theorem 2.1.12:

sup
a∈A,b∈B
a6=0,b 6=0

‖(LA ⊗ LB)(a⊗ b)‖A⊗B
‖a⊗ b‖A⊗B

= sup
a∈A,b∈B
a 6=0,b6=0

‖LAa⊗ LBb‖A⊗B
‖a⊗ b‖A⊗B

= sup
a6=0
a∈A

‖LAa‖A
‖a‖A

· sup
b∈B
b 6=0

‖LBb‖B
‖b‖B

= ‖LA‖B(A) · ‖LB‖B(B)

Hence, we directly obtain:

‖LA ⊗ LB‖B(A⊗B) = sup
x∈A⊗B
x 6=0

‖(LA ⊗ LB)x‖A⊗B
‖x‖A⊗B

≥ sup
a∈A,b∈B
a 6=0,b 6=0

‖(LA ⊗ LB)(a⊗ b)‖A⊗B
‖a⊗ b‖a⊗b

= ‖LA‖B(A) · ‖LB‖B(B)

This proves one inequality. For the other, we take N ∈ N and finite sequences (aj)
N
j=1 in A and (bj)

N
j=1 in B,

such that:

x =

N∑
j=1

aj ⊗ bj

9

Note that we can apply Gramm-Schmidt orthogonalisation to the aj ’s, and absorb all the scalar factors into
the bj ’s by bilinearity. So, without loss of generality, we can assume that the sequence (aj)

N
j=1 is orthogonal

in A. Then, we find that the sequences (aj ⊗ bj)Nj=1 and (aj ⊗LBbj)Nj=1 are orthogonal in A⊗B. Hence, we
obtain:

‖(I ⊗ LB)x‖2A⊗B =

∥∥∥∥∥∥
N∑
j=1

aj ⊗ LBbj

∥∥∥∥∥∥
2

A⊗B

=

N∑
j=1

‖aj ⊗ LBbj‖2A⊗B ≤
N∑
j=1

‖aj‖2A · ‖LB‖
2
B(B) · ‖bj‖

2
B

= ‖LB‖2B(B) ·
N∑
j=1

‖aj ⊗ bj‖2A⊗B = ‖LB‖2B(B) ·

∥∥∥∥∥∥
N∑
j=1

aj ⊗ bj

∥∥∥∥∥∥
2

A⊗B

= ‖LB‖2B(B) · ‖x‖
2
A⊗B

As we took x arbitrarily among the linear combinations of simple tensors in A ⊗ B, which form a dense
subspace of A⊗B by construction, we obtain:

‖I ⊗ LB‖B(A⊗B) ≤ ‖LB‖B(B)

Similarly, we prove that ‖LA ⊗ I‖B(A⊗B) ≤ ‖LA‖B(A). But then, we find that (LA ⊗ LB) is a bounded
operator on the linear subspace of A ⊗ B spanned by all simple tensors. This space is dense in A ⊗ B by
construction, and hence we obtain that LA ⊗ LB is a bounded operator acting on all of A⊗B. This allows
us to make the following norm estimate:

‖LA ⊗ LB‖B(A⊗B) = ‖(LA ⊗ I)(I ⊗ LB)‖B(A⊗B) ≤ ‖LA ⊗ I‖B(A⊗B) · ‖I ⊗ LB‖B(A⊗B)

≤ ‖LA‖B(A) · ‖LB‖B(B)

This completes the proof.

Finally, we have a look at the tensor product of the finite-dimensional complex Hilbert spaces Cn and Cm,
for n,m ∈ N. Obviously, we have dim(Cn) = n and dim(Cm) = m. Hence, employing property 11 of
Theorem 2.1.12 allows us to conclude that dim(Cn ⊗Cm) = nm. Now notice that dim(Cnm) = nm. Hence,
by employing Theorem 2.1.11, we find Cn ⊗ Cm ' Cnm.

Theorem 2.1.11 does not supply us with an explicit isomorphism, though. However, we can explicitly
construct one, as follows:

ψ : Cn ⊗ Cm → Cnm,


a1

a2

...
an

⊗

b1
b1
...
bm

 7→



a1b1
a1b2

...
a1bm
a2b1

...
anbm


This map is known as the Kronecker product of vectors. This map is so frequently used that we usually
replace the map symbol with an equality. That is, we identify the spaces Cn ⊗ Cm with the space Cnm, in
the following manner:


a1

a2

...
an

⊗

b1
b1
...
bm

 =



a1b1
a1b2

...
a1bm
a2b1

...
anbm


10

This has important implications when we consider the operators on these spaces. Suppose, namely, that we
have matrices A ∈ Cn×n and B ∈ Cm×m. Using the above identification, one can easily deduce from sparse
matrix considerations that we must make the following identification as well:

A⊗B =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

⊗

B11 B12 · · · B1m

B21 B22 · · · B2m

...
...

. . .
...

Bm1 Bm2 · · · Bmm



=



A11B11 A11B12 · · · A11B1m A12B11 · · · A1nB1m

A11B21 A11B22 · · · A11B2m A12B21 · · · A1nB2m

...
...

. . .
...

...
...

A11Bm1 A11Bm2 · · · A11Bmm A12Bm1 · · · A1nBmm
A21B11 A21B12 · · · A21B1m A22B11 · · · A2nB1m

...
...

...
...

. . .
...

An1Bm1 An1Bm2 · · · An1Bmm An2Bm1 · · · AnnBmm


This is known as the Kronecker product of matrices. Hence, we have constructed a very concrete way to
think about tensor products on finite-dimensional spaces. This matrix-view of things will help us in the
chapters to come, but we will not encounter it again in the remainder of this one.

This completes our discussion about the mathematical background necessary that one needs to understand
the postulates of quantum mechanics. Thus, we are now in good position to introduce the postulates. This
is what the next section is all about.

2.2 The postulates of quantum mechanics

Now that we have developed the necessary mathematical background, we are ready to turn our attention to
the basics of quantum mechanics. Similarly as in [NC00], we will summarize the basic principles of quantum
mechanics into 4 postulates (though we will permute the order). We will go through these 4 postulates one
by one, and following every postulate, we will try to develop some intuition.

There are points in the theory where there is still some ambiguity, i.e. where no general consensus on the
correct formulation of the theory seems to have been reached. Whenever we encounter such instances, we
will briefly elaborate on the discrepancy that exists between the different formulations. Luckily, none of
these instances are relevant for the field of quantum computing, so we will not be concerned with attempting
to resolve these issues. On the contrary, we will generally take the easiest option, leaving the options that
require more involved mathematics for more complete introductory texts on quantum mechanics from a
mathematical perspective.

So, let’s start with the first postulate.

Postulate 2.2.1: State space
Associated to any isolated physical system, there is a separablea complex Hilbert space H, referred to as
the state space of the system. The state of the physical system is completely described by a unit vector
in this state space, which we refer to as a state vector, or simply a state.

aThe literature is not completely clear about whether the state space is required to be separable. [NC00] makes no
reference to the separability condition whatsoever, whereas in the Dirac-Von Neumann axioms, it is a necessary condition.
In this text, we will mainly be concerned with finite-dimensional Hilbert spaces, hence separability will be a requirement
that is automatically fulfilled. Hence, assuming that the state space is separable does not lead to any problems for the
remainder of this text.

11

First of all, we will elaborate a little bit on the notation that we use to indicate vectors in state spaces.
Within the realm of quantum mechanics, it is commonplace to denote states, i.e., unit vectors in the state
space, by the ket-symbol |·〉, where the dot is replaced by some unique symbol, used to distinguish between
states. Moreover, let’s say that we have two such states, |s〉 and |t〉. Then, we denote their inner product
by 〈s|t〉. Finally, we let 〈s| be the element of the dual of the Hilbert space corresponding to |s〉. Hence,
formally, we can write 〈s| : H → C, |t〉 7→ 〈s|t〉. Note that as the inner product is conjugate linear in the first
variable, we obtain that |s〉 7→ 〈s| is a conjugate linear map, so in particular if |ψ〉 = α |φ1〉+β |φ2〉, we have
〈ψ| = α 〈φ1|+ β 〈φ2|.

Note that the postulate does not tell us what state space is related to what isolated physical system. Instead,
it just tells us that every isolated physical system has a Hilbert space associated to it. In a sense, it defines
a framework in which we can describe nature, but it does not tell us how we should use it.

In order to develop some intuition, let’s specialize to an exemplary state space. For example, consider a
particle that is free to move along a one-dimensional infinite axis. Let’s say, for the sake of simplicity, that
the state space of this particle is L2(R). Then, all states the particle can be in, are precisely the functions
f : R→ C, such that the square of the absolute value of this function integrates to 1, i.e.:∫ ∞

−∞
|f(x)|2 dx = 1

For future reference, let’s introduce two possible states of the free particle:

|s+〉 : x 7→ e−
1
2x1R+

(x) and |s−〉 : x 7→ e
1
2x1R−(x)

Note that these vectors in L2(R) indeed have unit length, which we can easily check:

〈s+|s+〉 =

∫ ∞
−∞

(
e−

1
2x1R+

(x)
)2

dx =

∫ ∞
−∞

e−x1R+
(x) dx =

∫ ∞
0

e−x dx = 0− (−1) = 1

〈s−|s−〉 =

∫ ∞
−∞

(
e

1
2x1R−(x)

)2

dx =

∫ ∞
−∞

ex1R−(x) dx =

∫ 0

−∞
ex dx = 1− 0 = 1

By itself, it is not at all clear how we should interpret the statement that “the particle is in a state |s+〉”.
We will elaborate on this a little bit more after having introduced the next postulate.

Postulate 2.2.2: Measurement
Associated to any measurement of a physical system with corresponding state space H, is a set of
operators {Mi}m∈I acting on H which satisfies the equation (known as the completion relation):∑

m∈I
M∗mMm = 1H

where the set of measurement outcomes, I, can be any set.a If the system is in state |ψ〉 ∈ H, the
probability that one measures the outcome m ∈ I, is given by:

P(m) = 〈ψ|M∗mMm |ψ〉

If prior to measurement, the physical system was in state |ψ〉 ∈ H, and the measurement outcome was
m ∈ I, then the resulting state of the system, directly after measurement, is given by:

Mm |ψ〉√
〈ψ|M∗mMm |ψ〉

aNote that if I is uncountable it is not directly obvious how this summation is to be interpreted. One can make this
explicit using limits of nets. As in quantum computing one only encounters finite sums of measurement operators, we will
not be concerned with this technicality here.

12

Let’s attempt to develop some intuition behind this postulate by looking at it from the example of the
particle moving along an infinitely long straight axis, parametrized by R. Recall that we said that its state
space is given by L2(R).

As we said that the particle is free to move along the one-dimensional straight axis, it is natural to ask
where the particle is. To that end, suppose that we want to figure out whether the particle is located in
some interval J = (a, b) ⊆ R. Then, we can devise a measurement operation, which will tell us whether the
particle is located in this interval, or outside of it. Hence, we define our set of measurement outcomes to be
{i, o}, where i denotes that the particle is inside the interval J , and o denotes that the particle is outside of
it.

Next, we must define the corresponding measurement operators Mi and Mo, which act on L2(R). These, we
will define as follows:

(Mif)(x) = f(x) · 1J(x) and (Mof)(x) = f(x) · 1R\J(x)

First of all, let’s check that these measurement operators satisfy the completeness relation. To that end,
first of all observe that M∗i = Mi and M∗o = Mo, as we are dealing with multiplication operators on L2(R).
Hence, we find, for all f ∈ L2(R):

(M∗iMi +M∗oMo)f(x) = M2
i f(x) +M2

o f(x) = 1J(x)2f(x) + 1R\J(x)2f(x) = f(x)

So, indeed, M∗iMi +M∗oMo = 1H, hence the completeness relation is satisfied.

Now, we can employ Postulate 2.2.2 and calculate the probability that our measurement outcome indicates
the particle is located somewhere in the interval J , whenever its state is |ψ〉 = f : R → C. Hence, we
calculate:

P(i) = 〈ψ|M∗iMi |ψ〉 =

∫ ∞
−∞

f(x) · (M∗iMif)(x) dx =

∫ ∞
−∞

f(x) · f(x) · 1J(x)2 dx =

∫
J

|f(x)|2 dx

Similarly, the probability that the particle is located outside of the interval J , is given by:

P(o) = 〈ψ|M∗oMo |ψ〉 =

∫ ∞
−∞

f(x)(M∗oMof)(x) dx =

∫ ∞
−∞

f(x) · f(x) · 1R\J(x)2 dx =

∫
R\J
|f(x)|2 dx

Note that both these probabilities indeed sum to 1, as they should:

P(i) + P(o) =

∫
J

|f(x)|2 dx+

∫
R\J
|f(x)|2 dx =

∫ ∞
−∞
|f(x)|2 dx = 1

Now, we are ready to make a crucial observation. If the state of the particle is a function whose function is
identically 0 in the interval J , then the probability of measuring that the particle is located in the interval
J is 0. However, the more “mass” of the function is located in the interval J , the higher the probability of
measuring that the particle is located in that interval. So, the amplitude of the function tells us something
about how likely it is that we will measure the particle to be in that location.

Let’s make this a little bit more concrete. Suppose that the particle is in the state |s+〉. If we perform a
measurement to see whether the particle is located in the interval (1,∞), we obtain:

P(inside (1,∞)) =

∫ ∞
1

∣∣∣e− 1
2x1R+

(x)
∣∣∣2 dx =

∫ ∞
1

e−x dx = 0− (−e−1) =
1

e

On the other hand, if we perform a measurement to figure out whether the particle is in the interval (−∞, 0),
we obtain:

P(inside (−∞, 0)) =

∫ 0

−∞

∣∣∣e 1
2x1R+

(x)
∣∣∣2 dx =

∫ 0

−∞
0 dx = 0

13

So, before we perform any measurement, can we answer the question whether the particle is in the interval
(−∞, 0)? Yes, we can answer this question with definitely not, because the probability that our measurement
will indicate that it is, is 0. Similarly, can we answer the question whether the particle is in the interval
(1,∞)? No, we cannot answer this question. All we can say is that if we were to measure whether the
particle is in the interval (1,∞), we would get an affirmative answer with probability 1/e, and a negative
answer with probability 1 − 1/e. In other words, the position of the particle is not a well-defined number.
Instead, it is given by a probability distribution, induced by the state vector.

Now, let’s say that the particle was in the state |s+〉, that we performed a measurement to see whether it
was in the interval (1,∞), and that we obtained an affirmative answer. Postulate 2.2.2 now prescribes what
happens to the state of the particle. The state the particle is in after the measurement is, is given by:

Minside (1,∞) |s+〉√
〈s+|M∗inside (1,∞)Minside (1,∞) |s+〉

=
Minside (1,∞) |s+〉√
P(inside (1,∞))

=
1(1,∞)(x)1R+

(x)e−
1
2x√

1
e

= e−
1
2 (x−1)

1(1,∞)(x)

So, we can see that the state is altered by our measurement. This is a very important concept in quantum
mechanics: in general one cannot perform a measurement without influencing the state of the physical system
that is being measured. In the particular example of the particle moving along the infinite axis, this means
that we can never recover the entire state of the particle by subsequent measurement, because the state is
already altered after our first measurement.

Finally, suppose that our particle starts out in the state |s+〉, and we measure whether it is located in the
interval (1,∞) twice directly subsequently, i.e., there is no time in between the two measurements. Will
we get the same answer? We already know that if after the first measurement, we obtain that it is in the
interval (1,∞), then the state after the first measurement is:

e−
1
2 (x−1)

1(1,∞)(x)

So, now the probability that our second measurement yields that the particle is located somewhere in the
interval (1,∞) is given by:

P(inside (1,∞)) =

∫ ∞
1

|e− 1
2 (x−1)

1(1,∞)(x)|2 dx =

∫ ∞
1

e−(x−1) dx = 0− (−1) = 1

And hence for sure, our second measurement will reaffirm what the first measurement already told us,
namely that the particle is indeed located in the interval (1,∞). Hence, we can think about this as if any
measurement alters the state in such a way that any subsequent measurement performed instantly thereafter
will always reaffirm the outcome of the first measurement.

All the concepts highlighted in the discussion lie at the heart of quantum mechanics, and hence are vital
if one wants to grasp the implications of the theory. Because these observations play such a central role in
the field, we have conveniently enumerated the most important implications of the first two postulates of
quantum mechanics in the theorem below.

Theorem 2.2.3: Implications of the first two postulates
1. Suppose that we perform any measurement of any system. Then the probabilities of the outcomes

sum to 1, affirming that we indeed always get exactly one outcome.
2. Suppose that we have two isolated physical systems with identical state spaces, which we will refer

to as H. Suppose that one is in a state |ψ〉, and the other is in a state eiφ |ψ〉, where φ ∈ [0, 2π).
Then, identical measurements will yield identical probabilities on the outcomes, when applied to
either of the systems. In particular, we are not able to distinguish between two states that differ
by a global phase factor.

3. Suppose we have a set of measurement operators {Mm}m∈I such that for all m ∈ I, we have
M2
m = Mm. Suppose we were to perform this measurement twice directly after each other, i.e.

with no time in between. Then the outcome of the second measurement will always affirm the
outcome of the first one.

14

Proof. We start with statement 1. To that end, suppose we have a set of measurement operators {Mm}m∈I
which we use to measure a system that is in state |ψ〉 ∈ H. Then we obtain, using linearity and the
completeness relation:

∑
m∈I

P(m) =
∑
m∈I
〈ψ|M∗mMm |ψ〉 = 〈ψ|

(∑
m∈I

M∗mMm

)
|ψ〉 = 〈ψ|1H |ψ〉 = 〈ψ|ψ〉 = 1

This proves statement 1.

Secondly, we focus on statement 2. To that end, suppose that {Mm}i∈I is a set of measurement operators
acting on H. Suppose that the first system is in state |ψ〉 ∈ H, and that the second system is in state eiφ |ψ〉.
Let m ∈ I. The probability that we obtain outcome m when measuring the first system is give by:

P(measurement of system 1 yields m) = 〈ψ|M∗mMm |ψ〉

Similarly, we find that the probability of obtaining measurement outcome m when measuring the second
system is:

P(measurement of system 2 yields m) = 〈ψ| e−iφM∗mMme
iφ |ψ〉 = e−iφeiφ 〈ψ|M∗mMm |ψ〉

= 〈ψ|M∗mMm |ψ〉

Here, the minus sign in the exponential comes from the fact that the map |s〉 7→ 〈s| is conjugate linear.
Hence, we find that both probabilities are indeed equal. As this is the case for all measurement outcomes
and for all measurement operations, we obtain that we can never tell the state of the two systems apart.

Finally, we prove statement 3. To that end, suppose that the set of measurement operators acts on a state
space H, and suppose that the system starts out in state |ψ〉. Next, suppose that we apply the measurement
corresponding to the measurement operators twice, in such a way that there is no time in between the
measurements. If the first measurement yielded outcome m ∈ I, then the state directly after the first
measurement is given by:

|ψm〉 =
Mm |ψ〉√

〈ψ|M∗mMm |ψ〉
Now, we obtain that the probability of obtaining m as outcome of the second measurement can be calculated
to be:

〈ψ|M∗m√
〈ψ|M∗mMm |ψ〉

M∗mMm
Mm |ψ〉√

〈ψ|M∗mMm |ψ〉
=
〈ψ| (M2

m)∗M2
m |ψ〉

〈ψ|M∗mMm |ψ〉
=
〈ψ|M∗mMm |ψ〉
〈ψ|M∗mMm |ψ〉

= 1

And hence for sure, the second measurement will affirm the outcome of the first measurement.

The requirement that we impose in the third statement of this theorem seems rather arbitrary. We will see
in Section 2.3, though, that the measurements that obey this relation actually form a very important class
of measurements.

Now that we have developed some intuition about what it means for an isolated physical system to be in a
particular state, we are ready to consider what happens when we have multiple isolated physical systems.

Postulate 2.2.4: Composition
Suppose that we have two isolated physical systems, having corresponding state spaces H1 and H2.
Then the combined physical system is automatically isolated, and its state space is given by H1 ⊗H2.
Moreover, if the first physical system is in state |h1〉 and the second physical system is in state |h2〉,
then the state of the composite system is |h1〉 ⊗ |h2〉.

Often, the notation |h1〉 ⊗ |h2〉 is abbreviated to |h1〉 |h2〉 or even |h1, h2〉. We will use the above forms
interchangeably throughout the remainder of this text.

15

Definition 2.2.5: Entanglement
Suppose that we have a composite system of two isolated physical systems. Then, we say that the
isolated physical systems are entangled, when we cannot write the state of the composite system as a
simple tensor.

Let’s consider an example of a composite system. Suppose that we have two axes (one might picture
them as parallel lines extending off to infinity), along which two particles move independently. Then, the
corresponding state space of the combined system of these particles is L2(R) ⊗ L2(R). Next, suppose that
the first particle is in state |s+〉, and the second particle is in state |s−〉, which we defined earlier. Then, the
state of the composite system is |s+〉 ⊗ |s−〉 = |s+〉 |s−〉 = |s+, s−〉. Note that this is again a vector of unit
length in the vector space L2(R)⊗ L2(R), as:

(〈s+| ⊗ 〈s−|)(|s+〉 ⊗ |s−〉) = 〈s+|s+〉 · 〈s−|s−〉 = 1 · 1 = 1

So, in this situation, the state of the composite system is a simple tensor. This implies that the composite
system is not entangled, i.e., that the state of the composite system is not an entangled state.

Let’s now consider another state that the composite system can be in. We consider the following state:

|ψ〉 =
1√
2

(|s+, s+〉+ |s−, s−〉)

Let’s first of all check that this is indeed a unit vector in L2(R)⊗L2(R). To that end, we first of all calculate:

〈s−|s+〉 =

∫ ∞
−∞

e
1
2x1R−(x) · e− 1

2x1R+
(x) dx = 0

Thus, we can now calculate the length of the vector |ψ〉 in L2(R)⊗ L2(R):

〈ψ|ψ〉 =
1

2
(〈s+, s+|+ 〈s−, s−|) (|s+, s+〉+ |s−, s−〉)

=
1

2
(〈s+, s+|s+, s+〉+ 〈s+, s+|s−, s−〉+ 〈s−, s−|s+, s+〉+ 〈s−, s−|s−, s−〉)

=
1

2
(〈s+|s+〉 〈s+|s+〉 = 〈s+|s−〉 〈s+|s−〉+ 〈s−|s+〉 〈s−|s+〉+ 〈s−|s−〉 〈s−|s−〉)

=
1

2
(1 + 0 + 0 + 1) = 1

Hence, we find that |ψ〉 indeed is a state that the composite system of two particles moving along infinitely
long straight axes can be in. As |s+〉 and |s−〉 are not scalar multiples of each other, though, |ψ〉 is not a
simple tensor. Hence, we find that |ψ〉 is an entangled state, and that if the composite system is in state
|ψ〉, then it is entangled.

An interesting question that now arises is the following. Suppose that the composite system is in the state
|ψ〉 defined above, what is the state of the first particle? The only correct answer to this question is that the
question is invalid. If a composite system is in an entangled state, it no longer makes sense to talk about the
states of the individual components. This can only be done when the system is not in an entangled state.3

Measurements on composite systems obey the same rules that are prescribed in Postulate 2.2.2. Let’s
consider an example. Again, suppose that the composite system of two freely moving particles along two
axes starts out in the state |ψ〉. Let us measure whether the second particle is located somewhere in the

3Sometimes, somewhat sloppily, reference is made to the state of the first particle of an entangled system. What is meant
here is the partial state, which is found by taking a partial trace of the density operator. We will not go into detail about this
here, but we refer the interested reader to [NC00], section 2.4.3.

16

interval (0,∞). Again, the measurement outcomes are {inside (0,∞), outside (0,∞)}. The corresponding
measurement operators are:

Minside (0,∞) = 1R ⊗ 1R+ and Moutside (0,∞) = 1R ⊗ 1R−

Note that indeed these satisfy the completeness relation:

Minside (0,∞) +Moutside (0,∞) = 1R ⊗ (1R+
+ 1R−) = 1R ⊗ 1R = 1L2(R)⊗L2(R)

Now, we can calculate the probability that we obtain that the second particle is located in the interval (0,∞):

P(inside (0,∞)) = 〈ψ|M∗inside(0,∞)Minside(0,∞) |ψ〉

=
1√
2

(〈s+, s+|+ 〈s−, s−|)(1R ⊗ 1R+
)∗(1R ⊗ 1R+

) · 1√
2

(|s+, s+〉+ |s−, s−〉)

=
1

2
(〈s+, s+|+ 〈s−, s−|)(1R ⊗ 1R+) (|s+, s+〉+ |s−, s−〉)

=
1

2

(
〈s+, s+| (1R ⊗ 1R+

) |s+, s+〉+ 〈s+, s+| (1R ⊗ 1R+
) |s−, s−〉

+ 〈s−, s−| (1R ⊗ 1R+
) |s+, s+〉+ 〈s−, s−| (1R ⊗ 1R+

) |s−, s−〉
)

=
1

2

(
〈s+|1R |s+〉 〈s+|1R+

|s+〉+ 〈s+|1R |s−〉 〈s+|1R+
|s−〉

+ 〈s−|1R |s+〉 〈s−|1R+
|s+〉+ 〈s−|1R |s−〉 〈s−|1R+

|s−〉
)

=
1

2
(〈s+|s+〉 · 〈s+|s+〉+ 〈s+|s−〉 · 〈s+| 0 + 〈s+|s+〉 · 〈s−|s+〉+ 〈s−|s−〉 · 〈s−| 0)

=
1

2
(1 + 0 + 0 + 0) =

1

2

So, we find that with probability 1
2 , we measure the second particle to be located in the positive part of the

axis. As the probabilities must sum to 1, we find that the probability that it is located in the negative part
of the axis must be equal to 1

2 as well.

Now, suppose that the measurement yields that the second particle is indeed located in the positive part
of the axis along which it is free to move. What will be the state of the composite system after the
measurement? Postulate 2.2.2 provides us with the tools to calculate this, and we find that the resulting
state of the composite system can be calculated as follows:

Minside (0,∞) |ψ〉√
〈ψ|M∗inside (0,∞)Minside (0,∞) |ψ〉

=
(1R ⊗ 1R+) |ψ〉√
P(inside (0,∞))

=
1√

1
2

·
(
1R ⊗ 1R+

)
· 1√

2
(|s+, s+〉+ |s−, s−〉)

=
√

2 · 1√
2

(
(1R ⊗ 1R+) |s+, s+〉+ (1R ⊗ 1R+) |s−, s−〉

)
= 1R |s+〉 ⊗ 1R+ |s+〉+ 1R |s−〉 ⊗ 1R+ |s−〉
= |s+〉 ⊗ |s+〉+ |s−〉 ⊗ 0 = |s+, s+〉

So, we find that the resulting state is a simple tensor. Hence, the measurement has completely eradicated the
entanglement. This is a common observation in quantum mechanics: measurement can break entanglement.

Even more interestingly, before we performed the measurement, the composite system was in an entangled
state, and hence it did not make sense to talk about the state of the first particle. Now, however, even
though we only measured the second system and did not touch the first one, we are all of a sudden able to
talk about the state of the first system, as the composite system is no longer entangled. Moreover, if we
had measured whether the first particle was in the interval (0,∞) before we performed the measurement
we analyzed above, we would have obtained the result inside (0,∞) with probability 1

2 . Now, though, if

17

the second particle turned out to be inside (0,∞), we would measure the first particle to be in the interval
(0,∞) with probability 1. So, the measurement of the second system has influenced the probability of the
measurement outcomes of measurements performed on the first system.

The above postulate allows us to describe combined states of multiple systems. So, we can think of Postu-
late 2.2.4 as allowing us to scale up the descriptive power of quantum mechanics in the spatial dimensions.
With this view, the next postulate is a natural counterpart, as it allows us to scale up our theory in time.

Postulate 2.2.6: Evolution
The evolution of a closed physical system is described by a unitary transformation of its state space. In
other words, let |ψt〉 be the state of some closed physical system at time t. Then we have that for any
times t1 and t2, the states |ψt1〉 and |ψt2〉 are related by:

|ψt1〉 = U |ψt2〉

where U only depends on t1 and t2.

Again, suppose that we consider one particle that is moving along an infinitely long straight axis, whose
state space is L2(R). An example of a unitary transformation on this state space is τ1, the operation that
shifts a given function f : R → C to the right by 1, so (τ1f)(x) = f(x − 1). Hence, it could happen that
if the free particle is in state f at some time t1, then at time t2 the particle is in state τ1f , i.e., its state
has moved along the infinite horizontal axis one unit to the right. As the operator τ1 is indeed a unitary
operator, we obtain that the new, shifted function has the same norm as the original one. Hence, it still has
unit length, which ensures that it is again a state.

Observe that Postulate 2.2.6 does not tell us how the states at times t1 and t2 are related, but only that they
are related by some unitary operator. Figuring out what physical systems correspond to what evolution
operators is a very interesting and very delicate problem indeed. We will only hint at how one can solve this
problem here. Associated to every closed physical system is what is known as a Hamiltonian, which is an
operator acting on the state space of the closed physical system. Once one know this Hamiltonian, one can
use Schrödinger’s equation to obtain the evolution operator between two given times. In practice, figuring
out the Hamiltonian is a very difficult problem, and then obtaining the evolution operator is not at all trivial
either. More on this can e.g. be found in [NC00], or [Gri16].

This completes our discussion about the postulates of quantum mechanics. In the subsequent sections, we
will build some theory around these postulates such that we can conveniently refer to it later on in this text.

2.3 Projective measurements

In the previous section, we have defined how we can describe a measurement of a physical system, using
the theory of quantum mechanics. It turns out that throughout this text, we are mainly concerned with a
special subclass of these measurement operations, known as the projective measurements. These, we will
define here, and subsequently, we will prove some of its properties.

Definition 2.3.1: Projective measurement
Let {Mm}m∈I be a set of measurement operators acting on a state space H. Suppose that for all m ∈ I,
we have that Mm is self-adjoint, and that for all m,n ∈ I, we have:

MmMn = δm,nMm

Then, we say that these are orthogonal projective measurement operators, and the corresponding mea-
surement is called a projective measurement.

18

Such orthogonal projective measurement operators map every element of the state space onto some linear
subspace of the state space. Suppose that the states {|ψ1〉 , . . . , |ψn〉} span this orthogonal subspace. Then,
we can write the corresponding orthogonal projective measurement operator as:

n∑
k=1

|ψk〉 〈ψk|

This is especially convenient if the orthogonal projective measurement operator has one-dimensional range,
because then we can simply write it as

|ψ〉 〈ψ|
where |ψ〉 is a state (i.e., a unit vector) in its range.

Recall that we already encountered projective measurements before, in Theorem 2.2.3. There we proved the
remarkable property that two consecutively executed identical measurements on the same system will always
yield the same outcome, provided that there is no time in between the measurements.

A projective measurement where the outcomes are real numbers can be concisely represented into one
operator acting on the state space of the physical system being measured. This operator is known as the
observable, and it is defined as follows.

Definition 2.3.2: Observable
Suppose that we have an isolated physical system with corresponding state space H, and a set of
pairwise orthogonal projective measurement operators {Mm}m∈I , where I ⊆ R. Then, the observable
corresponding to this measurement, A, which is a (not necessarily bounded) operator on the state space
H, is defined as:

A =
∑
m∈I

mMm

It is instructive to note that as all the Mm’s are projection operators, we have effectively written A in its
spectral decomposition.

Observables have some very convenient properties, which we highlight in the following theorem.

Theorem 2.3.3: Properties of observables
Let {Mm}m∈I be a set of orthogonal projective measurement operators, where I ⊆ R, and let A be the
corresponding observable. Then, we find:

1. A is self-adjoint.
2. The probability that we obtain measurement outcome m when we measure a physical system in

state |ψ〉 is given by:
P(m) = 〈ψ|Mm |ψ〉

3. Suppose that the physical system being measured is in state |ψ〉, and suppose that |ψ〉 is in the
domain of A. We denote the expected value of the measurement by E(A). Then we find that E(A)
is finite, and:

E(A) = 〈ψ| A |ψ〉

Proof. The first statement is not very difficult to check. We asserted in Definition 2.3.1 that for all m ∈ I,
Mm is self-adjoint. Hence, we obtain:

A∗ =

(∑
m∈I

mMm

)∗
=
∑
m∈I

mM∗m =
∑
m∈I

mMm = A

This proves 1. To prove 2, we simply use the properties that we imposed on Mm:

P(m) = 〈ψ|M∗mMm |ψ〉 = 〈ψ|M2
m |ψ〉 = 〈ψ|Mm |ψ〉

19

Hence, we have proven statement 2, and we can now readily use it to prove statement 3:

E(A) =
∑
m∈I

mP(m) =
∑
m∈I

m 〈ψ|Mm |ψ〉 = 〈ψ|

(∑
m∈I

mMm

)
|ψ〉 = 〈ψ|A |ψ〉

Here, we needed that |ψ〉 is in the domain of A, because otherwise the right-hand side is not defined. This
completes the proof.

This completes our discussion about projective measurements. There is yet another way of looking at
quantum measurements, by introducing what are known as POVMs, or positive operator-valued measures.
This we will not need in the remainder of this text, and hence we will not cover it here. The interested
reader, we refer to [NC00], section 2.2.6.

20

3 Quantum computing

In the previous chapter, we have introduced quantum mechanics in a very general setting. This means that
we have provided the reader with some basic tools that can be used to understand the field of quantum
mechanics as a whole.

In this chapter, we will specialize towards the field of quantum computing, which is the subfield of quantum
mechanics concerned with performing calculations using the postulates described in the previous chapter.
In this subfield, only finite-dimensional Hilbert spaces are of interest to us, so we shall abandon the idea of
infinite-dimensional Hilbert spaces altogether from now on.

First of all, we will introduce the most fundamental notion in quantum computing, known as the qubit, in
Section 3.1. Next, we will introduce the concept of quantum gates, which can be used to manipulate qubits,
in Section 3.2. Afterwards, we will elaborate on how we can combine these quantum gates to form quantum
circuits and quantum algorithms, in Section 3.3 and Section 3.4. Finally, in Section 3.5, we will cover the
most important quantum circuits and quantum algorithms, which form the basic building blocks of the field
of study.

3.1 Qubits

The most fundamental notion in the field of quantum computing is the qubit. First of all, we will cover single-
qubit systems in Subsection 3.1.1. Then, we will generalize this to multiple-qubit systems in Subsection 3.1.2.

3.1.1 Single-qubit systems

We will start with its formal definition. Afterwards, we will attempt to develop some intuition behind this
concept.

Definition 3.1.1: Qubit
Suppose that we have a physical system whose state space is 2-dimensional. Then, we refer to this
physical system as a single-qubit system. The amount of information it can store, we refer to as a qubit.
Moreover, to the state space of any single-qubit system, we associate an orthonormal basis of the state
space, which we denote by {|0〉 , |1〉}. This, we refer to as the computational basis, and its elements
we refer to as the computational basis states. All states that are not a scalar multiple of any of the
computational basis states, we refer to as superposition states.

The above definition can sound pretty abstract at first, so let’s attempt to develop some intuition behind
this concept. To that end, we will first of all consider the classical analogue to the qubit, known as the bit.
The term bit is shorthand for binary digit, and recall that a binary digit is a number that is either 0 or 1.

We can use bits to store information. For instance, suppose that we have a door that can be either open or
closed. We can associate a 0 with the fact that the door is closed, and similarly let’s write a 1 whenever the
door is open. Now, we have found a way to represent a certain amount of information, namely whether this
door is open or closed, in a bit. Hence, storing whether a door is open or closed, amounts to storing one bit
of information.

Now, let’s relate this back to qubits. The term qubit is shorthand for quantum bit, indicating that it is indeed
the quantum analogue of a classical bit.

Let’s investigate how we would store whether a door is open or closed in a single-qubit system. For example,
we could bring the single-qubit system in the state |0〉 whenever the door is closed, and similarly we could

21

ensure that the system is in state |1〉 if the door is open. Hence, we can store whether a door is open or
closed in a qubit as well as in a classical bit.

However, there are many more states we can bring a single-qubit system into, aside from the two computa-
tional basis states |0〉 and |1〉 we discussed above. More precisely, as all states of a single-qubit system are
unit vectors in the state space, which is spanned by the set of computational basis states, {|0〉 , |1〉}, all states
that a single-qubit system can be in, can be described by the following expression, with suitable choices for
α, β ∈ C:

α |0〉+ β |1〉 with |α|2 + |β|2 = 1

Whenever both α and β are non-zero, the state α |0〉+ β |1〉 is referred to as a superposition state. On the
other hand, if either α or β is zero, then one of the terms vanishes and hence the resulting state is either
α |0〉 and β |1〉. So, we refer to these states as scalar multiples of computational basis states.

Suppose now that we want to figure out whether our single-qubit system is in state |0〉 or |1〉. This is done
by performing a measurement in the computational basis. We formally define this in the following definition.

Definition 3.1.2: Measurement in the computational basis
Let M0 = |0〉 〈0| and M1 = |1〉 〈1|. These form a family of measurement operators {Mi}i∈{0,1} in the
sense of Postulate 2.2.2. These measurement operators, we refer to as computational basis measurement
operators. The corresponding measurement, we refer to as the measurement in the computational basis.

It is easily checked that the set of computational basis measurement operators satisfies the completeness
relation, as specified in Postulate 2.2.2. That is, we have that |0〉 〈0| + |1〉 〈1| = I, the identity operator on
the state space of the corresponding single-qubit system.

Let’s attempt to develop some intuition behind this measurement in the computational basis. Suppose that
we prepare a single-qubit system in the state |0〉, and perform a measurement in the computational basis.
Postulate 2.2.2 now provides us with a way to evaluate the probabilities of the possible outcomes, where we
use that {|0〉 , |1〉} is an orthonormal set of vectors:

P(0) = 〈0|M∗0M0 |0〉 = 〈0|0〉 〈0|0〉 〈0|0〉 = 1 and P(1) = 〈0|M∗1M1 |0〉 = 〈0|1〉 〈1|1〉 〈1|0〉 = 0

So, for sure, we will obtain the measurement outcome 0. If, in contrast, we prepare the single-qubit sys-
tem in the state |1〉, we can evaluate the measurement outcome probabilities of the measurement in the
computational basis in a similar manner:

P(0) = 〈1|M∗0M0 |1〉 = 〈1|0〉 〈0|0〉 〈0|1〉 = 0 and P(1) = 〈1|M∗1M1 |1〉 = 〈1|1〉 〈1|1〉 〈1|1〉 = 1

Hence, this time, we obtain the measurement outcome 1 with certainty. So, in conclusion, performing a
measurement in the computational basis tells us with certainty, i.e., with success probability 1, in which
computational basis state a single-qubit system is, if we know beforehand that its state is indeed a compu-
tational basis state. In this sense, a qubit behaves similarly to a bit, where we can usually simply read the
state of the bit with success probability 1.

More interesting things happen when we measure a single-qubit system in the computational basis if the state
of this system is not a computational basis state itself. In particular, suppose that the state of our single-
qubit system is given by |ψ〉 = α |0〉+ β |1〉, with α, β ∈ C. Of course, the state must be a unit vector, so we
must have |α|2 +|β|2 = 1. Now, observe that we can, similarly as before, evaluate the probability distribution
over the outcomes of a measurement in the computational basis. Here, we use that 〈ψ| = α 〈0|+ β 〈1|.

P(0) = 〈ψ|M∗0M0 |ψ〉 = 〈ψ|0〉 〈0|0〉 〈0|ψ〉 = 〈ψ|0〉 〈0|ψ〉 = (α 〈0|0〉+ β 〈1|0〉)(α 〈0|0〉+ β 〈0|1〉) = αα = |α|2

P(1) = 〈ψ|M∗1M1 |ψ〉 = 〈ψ|1〉 〈1|1〉 〈1|ψ〉 = 〈ψ|1〉 〈1|ψ〉 = (α 〈0|1〉+ β 〈1|1〉)(α 〈1|0〉+ β 〈1|1〉) = ββ = |β|2

Thus, interestingly, if we measure a single-qubit system that is in the state α |0〉+β |1〉 in the computational
basis, then we obtain 0 with probability |α|2 and 1 with probability |β|2.

22

Next, recall that a measurement in general influences the very state of the system being measured. So,
let’s investigate how the state of a single-qubit system is altered by performing a measurement in the
computational basis. Again, we assume that the single-qubit system, prior to measurement, was in the state
|ψ〉 = α |0〉+ β |1〉, and suppose that the measurement in the computational basis yielded the measurement
outcome 0. Then, Postulate 2.2.2 prescribes the resulting state of the single-qubit system directly after the
measurement:

M0 |ψ〉√
〈ψ|M∗0M0 |ψ〉

=
|0〉 〈0|ψ〉√

P(0)
=
α |0〉
|α|

=
α

|α|
|0〉

This resulting state is a scalar multiple of the computational basis state |0〉, and hence is no longer a
superposition state. Similarly, if the result of the measurement had been 1, the resulting state directly after
the measurement would be:

M1 |ψ〉√
〈ψ|M∗1M1 |ψ〉

=
|1〉 〈1|ψ〉√

P(1)
=
β |1〉
|β|

=
β

|β|
|1〉

And hence in this case, the resulting state is a scalar multiple of the computational basis state |1〉. So,
we conclude that after performing a measurement in the computational basis, the resulting state is always
a scalar multiple of a computational basis state, and hence cannot be a superposition state. This is an
important conclusion: a measurement in the computational basis will always break the superposition. In
particular, this means that if we have a “quantum door” that was closed with probability |α|2 and open
with probability |β|2 prior to measurement, then, based on the measurement outcome, we can tell for sure
whether it is closed or open after the measurement in the computational basis.1

This concludes our discussion on the development of intuition for single-qubit systems. The final piece of
this subsection will be devoted to clearing up some notational issues, which will make life a lot easier in the
sections to come.

First of all, we will identify the state space of any single-qubit system with C2. The existence of such an
identification is justified as we can easily deduce from Theorem 2.1.11 that both spaces are isomorphic.
Explicitly, observe that every state of a single-qubit system can be written as a 2-dimensional vector with re-
spect to the computational basis introduced in Definition 3.1.1. That is, we make the following identification,
for all α, β ∈ C:

α |0〉+ β |1〉 =

[
α
β

]
= αe0 + βe1

Here, {e0, e1} is the Cartesian basis of C2. The following relations are special cases of this identification:

|0〉 =

[
1
0

]
= e0 and |1〉 =

[
0
1

]
= e1

In particular, observe that |0〉 is not the 0-vector. Rather, it is a vector of unit length in the state space of
a single-qubit system. Observe that, with this identification, both computational basis state vectors of any
single-qubit system are in one-to-one correspondence with the Cartesian basis vectors of C2.

Finally, we introduce the following special superposition states, which will be of use later on:

Definition 3.1.3: Special single-qubit superposition states
We define the following shorthand notation:

|+〉 =
1√
2

(|0〉+ |1〉) and |−〉 =
1√
2

(|0〉 − |1〉)

This concludes our discussion on single-qubit systems. Next, we will generalize the ideas that we developed
in this subsection to multiple-qubit systems.

1Standard introductory texts use the example of “Schrödinger’s cat” which is in a superposition of being dead or alive,
rather than a quantum door that can be open or closed.

23

3.1.2 Multiple-qubit systems

In this section, we will look at multiple-qubit systems. Similar to the previous subsection, we will first of
all provide a definition and some properties, and subsequently we will attempt to develop some intuition for
them.

Definition 3.1.4: Multiple-qubit systems
Let n ∈ N and suppose that we have n single-qubit systems. Then the composition of all these n physical
systems, we refer to as an n-qubit system. We refer to the states of this system as n-qubit states. Simple
tensor products of computational basis states of the single-qubit systems, we refer to as computational
basis states, and all states that are not a scalar multiple of any of the computational basis states, we
refer to as superposition states.

So, recall that to each of the n single-qubit systems, we have associated a set of computational basis states
{|0〉 , |1〉}. The above definition now tells us that the computational basis states of the composite n-qubit
system are all the states |b1〉 ⊗ |b2〉 ⊗ · · · ⊗ |bn〉, where b1, . . . , bn ∈ {0, 1}.

Next, let’s prove some properties of multiple-qubit systems.

Theorem 3.1.5: Properties of multiple-qubit systems
Let n ∈ N and suppose that we have n single-qubit systems, with corresponding state spaces H1, . . . ,Hn.
Then, the corresponding n-qubit system has the following properties:

1. The state space of the n-qubit system is H =
⊗n

k=1Hk.
2. The set {|b1〉 ⊗ |b2〉 ⊗ · · · ⊗ |bn〉 : b1, . . . , bn ∈ {0, 1}} forms an orthonormal basis of H.
3. dim(H) = 2n and H ' C2n .

Proof. The first statement follows directly from Postulate 2.2.4. The second statement is a direct consequence
of Theorem 2.1.12, property 10. Statement 3 follows from statement 2, the definition of the dimension of a
Hilbert space, and Theorem 2.1.11.

At this point it is instructive to note that the dimension of the state space grows exponentially in the number
of single-qubit systems that comprise the composite system. Indeed, if one has an n-qubit system, then the
dimension of its state space is 2n. This means that a state of an n-qubit system can be a superposition
state of 2n computational basis states. This fact forms the core idea in the exponential speedups that can
be achieved with quantum computing.

There exists a variety of different notations for the computational basis states of multiple-qubit systems.
These, we cover in the next definition.

Definition 3.1.6: Computational basis states of multiple-qubit systems
Let n ∈ N and b1, . . . , bn ∈ {0, 1}. Define j = (b1b2 · · · bn)2, i.e. the number j ∈ {0, 1, . . . , 2n − 1} whose
binary expansion is given by b1b2 · · · bn. Then, we identify the following notations to denote n-qubit
computational basis states:

|j〉 = |b1b2 · · · bn〉 = |b1〉 |b2〉 · · · |bn〉 = |b1〉 ⊗ |b2〉 ⊗ · · · ⊗ |bn〉

Next, let k ∈ Z, and suppose that k ≡ j mod 2n, where 0 ≤ j < 2n. Then we identify the following
notation for n-qubit states: |k〉 = |j〉.

So, for example, by the 3-qubit state |13〉, we denote the following state:

|13〉 = |5〉 = |1〉 ⊗ |0〉 ⊗ |1〉

With the above definition, several ambiguities are possible. For example, the 2-qubit computational basis
state |−1〉 is equal to |3〉 = |11〉 = |1〉 ⊗ |1〉, whereas the 3-qubit computational basi state |−1〉 is equal to

24

|7〉 = |111〉 = |1〉 ⊗ |1〉 ⊗ |1〉. Furthermore, consider the 4-qubit state |11〉. Then, we must interpret 11 as
a decimal number, so we obtain |11〉 = |1011〉 = |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉. However, if we are talking about the
2-qubit state |11〉, we must interpret 11 as a binary number, and hence we simply mean |1〉⊗|1〉. In practice,
these ambiguities very rarely occur, but whenever they do, we will explicitly state which of the states is
meant.

Now, let’s attempt to build some intuition for multiple-qubit systems. To that end, we will again draw a
parallel with storing information classically. Suppose that we want to store what season it is, i.e., we want
to store whether it is spring, summer, autumn or winter. To do so, we could take two bits, and assign the
values 00, 01, 10 and 11 to spring, summer, autumn and winter, respectively. Hence, by concatenating two
bits, we enabled ourselves to distinguish between 4 different states. It is not difficult to see that in general,
taking n bits allows us to distinguish between 2n states.

Similarly, suppose that we want to store the season in a 2-qubit quantum system. Again, we could associate
|00〉 to spring, |01〉 to summer, |10〉 to autumn and |11〉 to winter. Now, our 2-qubit system can be in some
superposition of these four states. More precisely, all states of our 2-qubit system can be written as follows,
where α, β, γ, δ ∈ C:

α |00〉+ β |01〉+ γ |10〉+ δ |11〉 = α |0〉+ β |1〉+ γ |2〉+ δ |3〉 with |α|2 + |β|2 + |γ|2 + |δ|2 = 1

Again, we can think of our system as being in some kind of weighted average of the four basis states
representing the four seasons.

Similarly to the single-qubit case, we can measure in what computational basis state an n-qubit system is,
by performing a measurement in the computational basis. We provide its formal definition below.

Definition 3.1.7: Measurement of a multiple-qubit system in the computational basis
Let n ∈ N and suppose that we have an n-qubit system. Then, we define, for all j ∈ {0, 1, . . . , 2n − 1},
the following measurement operator:

Mj = |j〉 〈j|

where |j〉 is an n-qubit state vector and 〈j| is its Hilbert space dual vector. These measurement operators,
we refer to as computational basis measurement operators, and they form the family {Mj}2

n−1
j=0 . The

measurement corresponding to this family of measurement operators is referred to as the measurement
in the computational basis.

Analyzing the probability distribution of a measurement in the computational basis of a multiple-qubit
system is analogous to the single-qubit case. Suppose that we have a 2-qubit system in the following state:

|ψ〉 = α |0〉+ β |1〉+ γ |2〉+ δ |3〉

Then, we obtain the following probability distribution on the possible measurement outcomes:

P(0) = |α|2, P(1) = |β|2, P(2) = |γ|2, P(3) = |δ|2

Hence, if a two-qubit system starts out in a state that is a scalar multiple of a computational basis state,
we will recover this computational basis state with probability 1 upon performing a measurement in the
computational basis. On the other hand, if for instance we have a two-qubit system in the state 1√

2
|0〉+ 1√

2
|3〉,

then a measurement in the computational basis yields the outcome 0 with probability 1/2, and similarly 3
is obtained with probability 1/2 as well. These observations extend to more general n-qubit systems in the
natural way.

There is something more we can do with multiple-qubit systems, though. For example, for a two-qubit
system, we could decide to perform a partial measurement, e.g. we could decide to just measure the first
qubit in the computational basis. The corresponding family of measurement operators is {M0 ⊗ I,M1 ⊗ I},
where M0 and M1 are the single-qubit computational basis measurement operators.

25

Let’s analyze the consequences of such a measurement by means of an example. Suppose that we have a
two-qubit system in the following state:

|ψ〉 =
1√
3
|00〉+

1√
3
|01〉+

1√
3
|11〉

Then, employing the methods prescribed by Postulate 2.2.2, we can evaluate the probability distribution
over the measurement outcomes:

P(0) = 〈ψ| (M∗0 ⊗ I)(M0 ⊗ I) |ψ〉 =
2

3
and P(1) = 〈ψ| (M∗1 ⊗ I)(M1 ⊗ I) |ψ〉 =

1

3

We can observe that we can simply quadratically sum the amplitudes of the computational states that
have for instance a 0 in the first qubit, in order to obtain the probability of obtaining the corresponding
measurement outcome 0 when performing the partial measurement on the first qubit.

If we relate this to our example of storing the seasons in a 2-qubit system, suppose that we just want to know
whether it is either of summer or spring, or either of autumn or winter. Recall that we associated |00〉 with
summer, |01〉 with spring, |10〉 with autumn, and |11〉 with winter. Both summer and spring correspond to a
state in which the first qubit is in state |0〉, whereas both autumn and winter correspond to a state in which
the first qubit has state |1〉. Hence, we can simply apply a partial measurement on the first qubit to obtain
our answer.

This completes our attempt at developing some intuition for multiple-qubit systems. In the remainder of
this subsection, we will introduce some notational conveniences, and elaborate on why they do not give rise
to any ambiguities.

First of all, we can again identify the state space of an n-qubit system with C2n . To that end, observe that we
can write every n-qubit state with appropriate choices for (αj)

2n−1
j=0 ⊆ C, which is justified by Theorem 3.1.5,

property 2:
2n−1∑
j=0

αj |j〉

This allows for the following identification of the state space of an n-qubit system with C2n , where we denote
the Cartesian basis of C2n by {e0, e1, . . . , e2n−1}:

2n−1∑
j=0

αj |j〉 =


α0

α1

...
α2n−1

 =

2n−1∑
j=0

αjej

This implies that for all j ∈ {0, 1, . . . , 2n − 1}, we have the following simple relation:

|j〉 = ej

Hence, we again find a one-to-one correspondence between the computational basis states of the state space
of an n-qubit system and the Cartesian basis states of C2n .

Next, we check here that this identification is compatible with the Kronecker product, as defined in Sec-
tion 2.1. To that end, we take any b1, b2, . . . bn ∈ {0, 1} and we define b = (b1 . . . bn)2 to be the integer with
corresponding binary representation b1 . . . bn. Now, we observe:

|b1〉 ⊗ |b2〉 ⊗ · · · ⊗ |bn〉 = |b〉

= =

eb1 ⊗ eb2 ⊗ · · · ⊗ ebn = eb

26

where the bottom equality follows from our discussion in Section 2.1. Hence, indeed, by linearity, we have
found that we can simultaneously use the identification that we introduced in Section 2.1, and the one that
we introduced in this section, without reaching contradictory statements.

Let’s consider some examples of two-qubit states, and how the identification with vectors from C4 can be
used in calculations. In particular, let’s consider the state |+〉 ⊗ |+〉. We can simply write out its definition
and expand the parentheses to figure out how we can write this state as a superposition of the computational
basis states:

|+〉 ⊗ |−〉 =
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉 − |1〉) =
1

2
(|00〉 − |01〉+ |10〉 − |11〉)

We can do the same calculation using the identifications we introduced above, where in the middle equality
we calculate the Kronecker product between two two-dimensional vectors:

|+〉 ⊗ |+〉 =
1√
2

[
1
1

]
⊗ 1√

2

[
1
−1

]
=

1

2


1
−1
1
−1

 =
1

2
(|00〉 − |01〉+ |10〉 − |11〉)

Observe that both calculations yield the same result, as they should. In fact, there is no preferred way of
doing such calculations, on the contrary, both are equally valid. Usually, the context dictates which one of
the methods is easiest to use, but the reader is free to apply both of these methods interchangeably.

Finally, note that in this section, the concept of superposition played a very central role, whereas we never
mentioned the word entanglement. It is very important to understand the distinction between these two
notions, which is why we devote the next remark to this distinction.

Remark 3.1.8: Superposition vs. entanglement
It is important to understand the difference between superposition and entanglement. We say that an n-
qubit system is in superposition, if it is not in one of the computational basis states. On the other hand,
we say that an n-qubit system is in an entangled state, or simply that it is entangled, if its state cannot
be written as a simple tensor, cf. Postulate 2.2.4. Hence, a 1-qubit system can be in superposition, but
it cannot be entangled. Furthermore, as all the computational basis states are simple tensors, we obtain
that whenever an n-qubit system is entangled, it is necessarily in superposition.

So, again consider the following state:

1

2
(|00〉 − |01〉+ |10〉 − |11〉) = |+〉 ⊗ |−〉

This is a superposition state, as it is not a scalar multiple of any of the four computational basis states, |00〉,
|01〉, |10〉 and |11〉. However, as it can be written as a simple tensor, namely |+〉⊗ |+〉, it is not an entangled
state.

This concludes our discussion on single-qubit and multiple-qubit systems. In the subsequent section, we will
consider how we can manipulate these systems, in order to perform calculations.

3.2 Quantum gates

This section will be devoted to introducing the concept of quantum gates. In short, these quantum gates
provide us with the basic operations that we can perform to manipulate qubits. To understand how they
do this, we will first of all draw a parallel with their classical counterparts. Afterwards, we will elaborate on
those quantum gates that modify one single qubit, in Subsection 3.2.1, and subsequently, in Subsection 3.2.2,
we will cover quantum gates that modify affect qubits.

27

So first, in order to understand how quantum computers can manipulate qubits, let’s first have a look at
how classical computers manipulate bits. On hardware level, namely, classical computers manipulate bits by
means of logic gates. These gates can be thought of as functions, mapping a few input bits to a few output
bits. For example, the NOT-gate is a very simple logic gate, which takes one bit as input and outputs one
bit as well. If its input bit is 0, it outputs a 1, and similarly if its input bit is 1, it outputs a 0. Hence
applying this logic gate to a bit has the effect of flipping the state of this bit.

Some well-known logic gates are listed in Section 3.2, namely the NOT, AND, OR and XOR gates. Here,
the gates are also graphically depicted as rectangular blocks. In these schematic pictures, the horizontal
lines connected to the left side of the gate indicate the input bits, and the horizontal lines exiting the gate
on the right represent the output bits, i.e., time progresses from left to right. Hence, one can observe on the
left side in Section 3.2 that the NOT-gate has 1 input and 1 output bit.

NOT gate: AND gate: OR gate: XOR gate:

NOTa b
AND

a

b
c OR

a

b
c XOR

a

b
c

a b
0 1
1 0

a b c
0 0 0
0 1 0
1 0 0
1 1 1

a b c
0 0 0
0 1 1
1 0 1
1 1 1

a b c
0 0 0
0 1 1
1 0 1
1 1 0

Figure 3.1: Some well-known logic gates. In the schematic pictures, the rectangular block represents the
gate. The horizontal lines extending to the left of it, represent the input bits, and the lines on the right side
correspond to the output bits. The table below it describes how the values of the input and output bits are
related. We refer to these tables as the truth tables of the corresponding logic gates.

Similarly to the classical case, qubits can also be modified by gates, but these gates are known as quantum
gates. These quantum gates also have a certain number of qubits as input, and they have a certain number
of output qubits as well, just like in the classical case. However, Postulate 2.2.6 tells us that we can only
modify physical systems in a unitary manner. In particular, this means that these quantum gates cannot
remove any qubits from or add any qubits to the system they are operating on. So, we find that the number
of input and output qubits, associated to any quantum gate, must be the same.

The above observation allows us to make a clear distinction between single-qubit gates and multiple-qubit
gates. We will first of all consider single-qubit gates, in Subsection 3.2.1, and subsequently we will consider
multiple-qubit gates in more detail, in Subsection 3.2.2.

3.2.1 Single-qubit gates

As remarked before, a quantum computer can use quantum gates to manipulate qubits. Whenever a quantum
gate operates on one qubit, we refer to this gate as a single-qubit gate. This section aims to give a brief
overview of the different single-qubit gates that one might encounter in the field of quantum computing.

We already remarked before, as a consequence of Postulate 2.2.6, that every single-qubit gate must perform
a unitary transformation on the state space of the single-qubit system. As the state space of a single-qubit
system is isomorphic to C2, and as we by convention associate the computational basis states, |0〉 and |1〉, to
the Cartesian basis vectors of C2, we can represent the action of every single-qubit gate as a 2×2 matrix with
complex entries. We refer to this matrix as the matrix representation of the single-qubit gate, and hence,
due to the canonical mapping between the state space and C2, implicitly we always assume this matrix
representation to be with repsect to the computational basis. Generally, we will simply identify the quantum
gate with its matrix representation, hence we will refer to both as being the same mathematical object.

28

One of the easiest operations that we can perform on a single-qubit system is the X-gate, which is in most
respects the quantum analogue of the classical NOT-gate. Its matrix representation is given by:

X =

[
0 1
1 0

]
Recall that we made the following identification in Section 3.1:

|0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
So, we find that X has the following action on the computational basis states:

X |0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉 and X |1〉 =

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
= |0〉

Thus, we see that |0〉 is mapped to |1〉 and |1〉 is mapped to |0〉. Hence, applying the X-gate comes down to
flipping the computational basis states of the qubit on which the gate is applied. Here, we see the analogy
with the NOT-gate, which flipped the state of the bit on which it was applied.

Whereas the NOT-gate was the only logic gate with one input and output bit that we considered, there
are many more single-qubit gates of interest to us. The most well-known, with their corresponding matrix
representations, are listed in Figure 3.2. Here, we also provide a graphical depiction of the quantum gate.
That is, we represent every gate as a block, with 1 horizontal line extending from it on both the left and
right sides. These lines, just as with the logic gates, represent the input and output qubits of the quantum
gate, respectively. Similarly to the classical case, we can think of time progressing from left to right in these
graphical depictions of single-qubit gates.

Pauli-X-gate X
[
0 1
1 0

]
Pauli-Y -gate Y

[
0 −i
i 0

]
Pauli-Z-gate Z

[
1 0
0 −1

]
Hadamard gate H 1√

2

[
1 1
1 −1

]
S-gate S

[
1 0
0 i

]
T -gate T

[
1 0

0 e
πi
4

]
Rφ-gate

Rφ
[
1 0
0 e2πiφ

]
Figure 3.2: Some well-known single-qubit gates. Note that all of them have exactly one input and output
qubit. Moreover, in the last one, the Rφ-gate, φ can be a real number. If we take φ = 1/2, we obtain the
Z-gate. Similarly if we take φ = 1/4, we obtain the S-gate, and φ = 1/8 yields the T -gate.

Let’s highlight some of the important properties of the single-qubit gates listed in Figure 3.2. We already
mentioned that X is just like the NOT-gate in classical computing. Additionally, it is one of the Pauli gates,
which are commonly denoted by X, Y and Z. The Z-gate is also called the phase flip gate, as it maps
α |0〉+ β |1〉 7→ α |0〉 − β |1〉. Hence, it flips the phase of the |1〉 state, whereas it leaves the phase of the |0〉
state untouched.

29

Continuing down the list of single-qubit gates presented in Figure 3.2, we arrive at the Hadamard gate.
Observe that it has the following action on the computational basis states:

|0〉 7→ 1√
2

(|0〉+ |1〉) = |+〉 and |1〉 7→ 1√
2

(|0〉 − |1〉) = |−〉

Thus, we observe that the Hadamard gate is able to create superposition states from computational basis
states. This property of H we will use frequently throughout many quantum algorithms. Moreover, observe
that H2 = I, and hence H is self-inverse.

Next, observe that the Rφ-gate defines a gate for all real values of φ. Moreover, observe that if we choose
φ = 1/2, the matrix representation reduces to that of Z. Similarly, φ = 1/4 leaves us with the S-gate, and
by choosing φ = 1/8, we obtain the T -gate. Hence, the Rφ-gate can be used to model many of the other
single-qubit gates, which is something we will be using later on as well.

Finally, recall that all the before-mentioned quantum gates are unitary operators on the state space of a
single-qubit system. As such, their corresponding matrix representations are unitary, and hence we obtain
for every single-qubit gate with matrix representation U :

UU∗ = I

U∗, the Hilbert space adjoint of U , is again a unitary operator. It acts on the same space as U , i.e., on
the state space of a single-qubit system. Hence, U∗ again defines a single-qubit gate, and we refer to this
gate as the reverse single-qubit gate of U , the reverse gate of U or simply the reverse of U .2 Moreover, its
matrix representation is the Hermitian conjugate of the matrix representation of U . For instance, we easily
obtain that the reverse single-qubit gate of Rφ is given by: (Rφ)∗ = R−φ, which can be easily checked by
calculating the matrix representations of the left- and right-hand side, and observing that both are equal.

This concludes our discussion on single-qubit gates. In the next section, we will generalize these ideas to
operations on multiple-qubit systems.

3.2.2 Multiple-qubit gates

In the last section, we elaborated on how quantum computers can manipulate single-qubit systems. In this
section, we generalize these ideas to multiple-qubit systems. Particularly, we will consider n-qubit quantum
gates, which are quantum gates that manipulate n-qubit systems.

Recall that all quantum gates must be unitary operations, with the same number of input and output qubits.
In particular, this means that if we have a quantum gate which acts on an n-qubit system, its action is a
unitary operator on the state space of this n-qubit system. But from Theorem 3.1.5, we know that this state
space is isomorphic to C2n . Hence, we can represent every n-qubit quantum gate by a 2n × 2n matrix with
complex entries. This matrix, we refer to as the matrix representation of the n-qubit quantum gate. Similarly
to the single-qubit case, we will frequently identify the single-qubit gate with its matrix representation.

These quantum gates, we can also graphically depict like we did in the single-qubit case. In Figure 3.3, for
example, we have drawn several quantum gates that act on 2, 3 and 4 qubits, respectively. The corresponding
matrix representations will be 4× 4, 8× 8, and 16× 16 matrices with complex entries, respectively.

There are several important multiple-qubit gates and classes of them that deserve special mention here.
Below, we will cover the most important ones, which are very broadly used throughout the field of quantum
computing. Many have some kind of specialized notation associated to them.

2In the field of quantum computing, it appears to be more common to denote the reverse gate of U by U†, instead of U∗.
We, however, will use the notation U∗, because it is in accordance with the notation found in the mathematical introduction,
presented in Chapter 2.

30

U V W

Figure 3.3: Schematic depiction of a 2-qubit gate U , a 3-qubit gate V and a 4-qubit gate W .

First of all, we consider the CNOT -gate, which is shorthand for the Controlled-NOT gate. This is a 2-qubit
gate, which has the following matrix representation:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


It is interesting to observe the action that this 2-qubit gate has on the computational basis states. We
will show how to evaluate this for the state |00〉 below, where we use the Kronecker product of vectors as
introduced in Section 2.1:

CNOT |00〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

([10
]
⊗
[
1
0

])
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1
0
0
0

 =


1
0
0
0

 = |00〉

Similarly, one can evaluate the action of CNOT on the other basis states. Then, we obtain that CNOT has
the following action:

|00〉 7→ |00〉 |10〉 7→ |11〉
|01〉 7→ |01〉 |11〉 7→ |10〉

Hence, we see that on the second qubit, a NOT operation is performed, but only when the first qubit is 1.
This explains the name controlled-NOT, because controlled on the first qubit being 1, a NOT-operation is
performed on the second qubit. In the context of the CNOT gate, we call the first qubit the control qubit,
and the second qubit the target qubit.

The following specialized graphical depiction of the CNOT-gate has been invented:

CNOT =

Here, the black dot is placed on the line that represents the control qubit, and the encircled plus sign is
placed on the horizontal line that represents the target qubit.

Of course we can also reverse the role of the control and target qubits. That is, we can make the second
qubit the control qubit, and the first qubit the target qubit. The resulting 2-qubit gate, we will call CNOT .3

It will perform a flip of the first qubit, whenever the second is in state |1〉, and it will not modify the first
qubit if the second qubit is in state |0〉. The matrix representation and action on the basis states are given
as follows:

CNOT =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 and
|00〉 7→ |00〉 |10〉 7→ |10〉
|01〉 7→ |11〉 |11〉 7→ |01〉

3This is not standard notation.

31

We now depict the CNOT -gate in the obvious way: we place the black dot on the control qubit, which is
now the second qubit, and we place the encircled plus on the first qubit, which is the target qubit in this
case. Thus, we have:

CNOT =

Next, we can extend this notion of the controlled-NOT operation to arbitrary controlled single-qubit opera-
tions. To that end, for any single-qubit gate U , we can introduce the controlled-U gate, acting on 2 qubits.
This controlled-U gate has the following 4× 4 matrix representation:

C(U) =


1 0 0 0
0 1 0 0
0 0
0 0

U


Hence, we obtain the following action, where |ψ〉 is any single-qubit state:

C(U)(|0〉 ⊗ |ψ〉) = |0〉 ⊗ |ψ〉 and C(U)(|1〉 ⊗ |ψ〉) = |1〉 ⊗ U |ψ〉

So, indeed, we find that the single-qubit operation U is only performed on the second qubit whenever the
first qubit is 1. Again, we refer to the first qubit as the control qubit, and the second qubit as the target
qubit.

For these conditional operations, we also have some shorthand notation. We denote C(U) as follows:

C(U) =
U

Similarly to the graphical depiction of the CNOT -gate, again the black dot is placed on the horizontal line
that denotes the control qubit, and the U -gate is placed on the horizontal line denoting the target qubit.

With controlled single-qubit operations, we can again reverse the roles of the control and target qubits. The
resulting gates, we again refer to as C(U). The reader is encouraged to check that the controlled-X operation
is identical to the CNOT -gate, that is, to check that C(X) = CNOT . Similarly, we can also check that
C(X) = CNOT .

Up until now, we have only considered special 2-qubit gates. We can easily form multiple-qubit gates by
adding more control qubits though. For instance, we can consider the following gate, which is known as the
Toffoli gate:

Toffoli =

Now we have two control qubits. Hence, a NOT-operation is now only applied to the target qubit whenever
both of the control qubits are 1. Thus, this 3-qubit quantum gate maps |000〉 to |000〉, and also for example
|101〉 to |101〉. Only when both of the control qubits are 1, the last qubit is flipped, e.g. |110〉 is mapped
to |111〉. Writing out the action of this gate on all the computational basis states allows us to construct the
matrix representation of this Toffoli gate, which becomes:

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


32

Similarly, we can create single-qubit gates controlled on n-qubits, yielding (n+ 1)-qubit gates. For instance,
we could consider the C(C(U))-gate, which implements a single-qubit gate U whenever the first two control
qubits are set to |1〉. This, we would denote as follows:

C(C(U)) =

U

And the corresponding matrix representation would look like this:

C(C(U)) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

U


Finally, we can also define the reverse of multiple-qubit gates, similarly to how we defined them in the single-
qubit case. That is, for every multiple-qubit gate U , we define its reverse gate U∗ to be the gate such that
UU∗ = I. For the controlled operations, we can easily check that (C(U))∗ = C(U∗). Finally, we also leave
it to the reader to check that C(C(X)) = Toffoli.

This completes our discussion on multiple-qubit gates. The next sections will expand on how sequences of
quantum gates can be built to obtain quantum circuits, that can subsequently be used in quantum algorithms.

3.3 Quantum circuits

In this section, we will elaborate on how we can combine the quantum gates introduced in the previous
section to build quantum circuits. Afterwards, we introduce the complexity measures on quantum circuits,
which we refer to as the elementary gate complexity and the query complexity.

Suppose we have a two-qubit system, and suppose that we want to apply a T -gate to the first qubit, followed
by a CNOT -gate, where the first qubit is used as the control qubit, and the second qubit is used as the
target qubit. The entire recipe for applying this sequence of two quantum gates, we refer to as a quantum
circuit. A fundamental property of any quantum circuit is the number of qubits it acts on, just as this is a
fundamental property of any quantum gate.

We can always depict quantum circuits using the graphical representations of the quantum gates that we
introduced in the previous section. We draw a number of horizontal lines, which we refer to as wires, equal
to the number of qubits the quantum circuit acts on, and we attach the gates that we want to apply to the
qubits to the corresponding wires. The order of application is given in the graphical representation from left
to right. See Figure 3.4 for the graphical representation of the circuit we discussed above.

We can also always calculate the matrix representation that is associated to the action of any quantum
circuit, by simply multiplying the matrix representations corresponding to the individual gates. One thing
to keep in mind here is to always reverse the order of the matrix multiplication. To see why this is necessary,
suppose that A and B are matrices, and that v is a vector. Then, if we calculate ABv, we see that B acts
on v first, and only then we calculate the matrix-vector product A with Bv. So, the combined action of
AB consists of first of all applying B to the vector, and afterwards A. In a quantum circuit, though, the
left-most gate is applied first to the state of the system, and afterwards the gates that are to the right of it.
So, in order to make sure that in our matrix representation, the action of the left-most gate is applied to

33

Q = T

Figure 3.4: Example of a quantum circuit acting on two qubits. First, a T -gate is applied to the first qubit.
Afterwards, a CNOT -gate is applied, where the first qubit serves the role of the control qubit, and the
second qubit is used as the target qubit. We refer to this circuit by Q, and we will use the abbreviated
notation shown on the left-hand side.

the state vector first, we must make sure that we put the matrix corresponding to the left-most gate in the
right-most position in the matrix multiplication.

To clarify, if we consider the circuit from Figure 3.4, we obtain the following matrix representation:

Q = CNOT · (T ⊗ I) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · ([1 0

0 e
πi
4

]
⊗
[
1 0
0 1

])

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


1 0 0 0

0 e
πi
4 0 0

0 0 1 0

0 0 0 e
πi
4

 =


1 0 0 0

0 e
πi
4 0 0

0 0 0 e
πi
4

0 0 1 0


In many respects, we can consider quantum circuits just like quantum gates. We already saw that both act
on a fixed number of qubits, and both have a fixed matrix representation. In addition to that, we can also
nest quantum circuits, i.e., we can use quantum circuits in definitions of new quantum circuits. For example,
we can incorporate the circuit from Figure 3.4, Q, in a bigger circuit acting on three qubits, R, shown in
Figure 3.5. Here, we say that Q is a subcircuit in R, and that R queries Q.

R =

H
Q

Q
=

H T

T

Figure 3.5: Example of a quantum circuit R, defined using nesting of quantum circuits. The Q blocks
represents the quantum circuit introduced in Figure 3.4. So, in R, we first of all apply a Hadamard gate
to the first qubit, and then apply the circuit from Figure 3.4 twice, once on the first and second qubit, and
subsequently on the second and third qubit. We say that R queries the quantum circuit Q twice, and that
Q is a subcircuit in R. The unwrapped version of R, i.e., the version in which all subcircuits are expanded
into elementary gates, is shown on the right hand side.

Again, we can easily obtain the matrix representation of this larger circuit, similarly to how we determined
the matrix representation of Q. In fact, we can use this matrix representation of Q to calculate the matrix
representation of the quantum circuit R in Figure 3.5, without having to use the unwrapped version of R,
i.e., the version that is shown on the right-hand side. Again, as this is a common mistake, we emphasize
that one must reverse the order of the gates and subcircuits before calculating the matrix product.

It sometimes comes in handy to indicate the action of a quantum circuit on some input state in the graphical
depiction. We can do this by indicating the input state of each qubit on the left side of its corresponding
wire, and similarly the output state of each qubit on the right side of its corresponding wire. An example of
such a circuit is shown in Figure 3.6.

34

|0〉 |1〉
|1〉 |1〉

|b2〉 |b2 ⊕ b1〉
|b1〉 |b1〉

Figure 3.6: Exemplary usage of input and output states on both sides of the circuit. Both circuits in this
figure consist only of one CNOT -gate. On the left, we show what the action of this circuit is on the initial
state |1〉 ⊗ |0〉. On the right, we show what the action of the CNOT -gate is on the state |b1b2〉, where
b1, b2 ∈ {0, 1}. As we can write all computational basis states of a two-qubit system in this form for some
choice of b1 and b2, we have concisely described the action of this circuit on all computational basis states of
a two-qubit system on the right-hand side of this figure. Here, the ⊕-symbol must be interpreted as addition
modulo 2.

We can also indicate the input state of multiple qubits at once, by bundling wires on the left with a bracket.
Similarly, we can bundle output wires by a bracket on the right of the quantum circuit. Figure 3.7 shows
how this works.

|0〉
|+〉1√

2
(|00〉+ |11〉)

|0〉
|+〉 1√

2
(|00〉+ |11〉)

Figure 3.7: These two circuits show how one can specify multiple-qubit input and output states. On the left,
we can see a two-qubit input state being supplied to a circuit containing just one CNOT -gate. The reader is
encouraged to check that this circuit indeed turns the entangled input state into the indicated unentangled
output state. Similarly, we see on the right how we can indicate the output state of two entangled qubits.

It can alslo be useful to bundle multiple qubits into a single horizontal wire. For instance, this can be used
to reduce the apparent size of the circuit, and it allows us to give circuits where the number of qubits used is
variable. Whenever we bundle multiple qubits into a single wire, we indicate this by an oblique line segment
which crosses the horizontal line, above which we denote the number of qubits that are bundled. An example
of such a circuit is shown in Figure 3.8.

|b1〉 ⊗ |b2〉 |b1〉 ⊗ |b2 ⊕ b1〉
2

CNOT

Figure 3.8: Example of two qubits bundled into one horizontal wire. Note that the input and output
states are now two-qubit states, where we take b1, b2 ∈ {0, 1}, and again interpret ⊕ as addition modulo 2.
The circuit shown here is equal to the circuit used in Figure 3.6 and Figure 3.7, even though its graphical
representation looks very different at first glance.

Frequently, we will encounter quantum circuits that make use of one or multiple auxiliary qubits, all of which
are required to be in state |0〉 prior to execution of the circuit, and all of which are returned into state |0〉
at the end of the circuit. These qubits, we refer to as auxiliary qubits, or ancilla qubits4. We allow ourselves
to leave out these ancilla qubits in shorthand notations of the quantum circuit. Moreover, when we say that
a circuit acts on n qubits, we do not count the ancilla qubits. If necessary, we also mention the number of
ancilla qubits that is used by a specific circuit. Figure 3.9 elaborates on the concept of an ancilla qubit by
means of an example.

Just as it is possible to reverse any quantum gate, it is also possible to reverse any given quantum circuit. To
find the reverse of a quantum circuit, one can replace all the gates by their reverse, and subsequently reverse
the order. For example, the reverse of the circuit Q, introduced in Figure 3.4, is shown in Figure 3.10.

It is natural to measure the complexity of a quantum circuit by the number of elementary operations that it
implements. To formalize this idea, though, we must first of all establish this set of elementary operations.

4Ancilla is Latin for slave girl.

35

|b〉 (−1)b |b〉P =
|0〉 |0〉
|b〉 (−1)b |b〉

X H H X

Figure 3.9: Exemplary usage of an ancilla qubit. In the circuit on the right-hand side, we use the second
qubit as an ancilla qubit. Hence, we require that the input state of this qubit is |0〉, and that its state is
set back to |0〉 at the end of the circuit. The reader is encouraged to check that this is indeed the case in
the circuit shown on the right-hand side. In the abbreviated notation, shown on the left-hand side, we allow
ourselves to omit the wire of the ancilla qubit. So, P does represent a circuit that requires two qubits to
run, even though only 1 qubit is shown. We say that P acts on 1 qubit, and that it uses 1 additional ancilla
qubit. As a final note, the reader is encouraged to check that the matrix representation of P is equal to that
of Z.

2
Q∗ = T ∗

Figure 3.10: The reverse of the quantum circuit Q, introduced in Figure 3.4. Note that the gate order is
reversed, and that all the gates are replaced by their reversed counterpart. In particular, observe that the
CNOT -gate is self-inverse (i.e., CNOT 2 = I), and so reversing it does not have any effect.

This is what the next definition achieves.

Definition 3.3.1: Elementary gates
An elementary quantum gate, or simply an elementary gate, is a single-qubit gate, possibly controlled
by a single other qubit, whose matrix representation is different from the identity matrix.

For example, the gates T , H, X, and the controlled versions of these gates, C(T), C(H) and C(X), are all
elementary quantum gates. In particular, as we remarked before that CNOT = C(X), we find that the
CNOT -gate is an elementary gate.

Now that we have established what the elementary operations are, we can now formalize how we can measure
the complexity of a quantum circuit. We refer to this measure as the elementary gate complexity.

Definition 3.3.2: Elementary gate complexity of a quantum circuit
The elementary gate complexity of a quantum circuit Q is the number of elementary gates it consists of.
We denote this quantity by egc(Q).

By the excerpt the number of elementary gates a circuit implements, we mean the number of gates that are
present in the circuit, after all nested quantum circuits are unwrapped until only elementary gates remain.
So, for example, the circuit Q defined in Figure 3.4 has an elementary gate complexity of 2, because both of
its components, i.e., T and CNOT , are elementary gates. Similarly, the elementary gate complexity of the
circuit P , defined in Figure 3.9, is 5. We write:

egc(Q) = 2 and egc(P) = 5

At this point, it is instructive to observe that in principle, every unitary matrix of size 2n × 2n defines a
valid operation on an n-qubit system. We say that a set of quantum gates is universal if, for any 2n × 2n

unitary matrix U , we can build a quantum circuit acting on n qubits whose matrix representation equals U ,
only using gates from this set. Such sets of gates, we refer to as universal gate sets.

The question now naturally arises whether the set of elementary gates defined in Definition 3.3.1 is univer-
sal. The answer to this question turns out to be yes, but its proof is not trivial. Moreover, the gate set

36

{H,T,CNOT} is approximately universal, meaning that one can build a circuit using these gates whose
matrix representation is arbitrarily close to any given unitary 2n × 2n matrix U in operator norm. We refer
the interested reader to [NC00], where these results are proven in chapter 4. In addition, this proof can also
be found in [Cor16], Chapter 4.

The attentive reader may have noted that not all quantum circuits have a well-defined elementary gate
complexity. In particular, circuits using non-elementary gates, like the Toffoli gate, indeed do not have
a well-defined elementary gate complexity. Usually, however, we can give an implementation of a non-
elementary gate by means of a quantum circuit using only elementary gates. Now, we can unwrap these
nested quantum circuits, and count the resulting number of elementary gates in order to calculate the
elementary gate complexity of the original circuit. Hence, in order for the elementary gate complexity of a
circuit to be well-defined, we must provide an implementation of each non-elementary gate that appears in
this circuit, consisting only of elementary gates.5

Additionally, similarly to the elementary gate complexity, we can also measure how often a specific subcircuit
is queried. This we refer to as the query complexity of a specific subcircuit in a larger circuit. For instance,
the circuit R, defined in Figure 3.5 makes 2 queries to the subcircuit Q, defined in Figure 3.4. We say that
the Q-query complexity of R is 2. Sometimes, we abbreviate this simply to the query complexity of R when
confusion about which subcircuit is meant is unlikely.

Finally, observe that we did not introduce a measurement-gate, or a similar operation that involves performing
a measurement that we can represent within quantum circuits. Some sources, e.g., [NC00], do introduce
auxiliary symbols such that they can represent measurement operations in the graphical representation of
quantum circuits. We, however, will ensure that quantum circuits do not contain measurement operations,
for two reasons.

First of all, we remarked that, similar to quantum gates, we can write down the matrix representation of
a quantum circuit. In particular, this implies that every quantum circuit acts as a linear operator on the
state space of the physical system it is executed on. If we were to allow measurements in quantum circuits,
though, we would break this linearity property, complicating analyses later on in this text considerably.

Secondly, recall from our discussion in Subsection 3.1.1 that measurements can break the superposition.
However, if we want to use quantum circuits as a subcircuit in larger circuits, we sometimes don’t want to
break the superposition of the larger circuit by simply executing the smaller circuit. Not allowing ourselves
to perform any measurements in any quantum circuit circumvents having to deal with this problem at all,
motivating the exclusion of measurement operations from quantum circuits.

This concludes our discussion on quantum circuits. In the next section, we will investigate what role quantum
circuits play in quantum algorithms.

3.4 Quantum algorithms

In this section, we will introduce the notion of quantum algorithms. Specifically, we will elaborate on how
quantum circuits, introduced in the previous section, fit into quantum algorithms, and how we can use
the complexity metrics that we defined for quantum circuits to measure the complexity of these quantum
algorithms.

In mathematics, we often deal with problems. These can usually be expressed as an imperative sentence, i.e.,
“Find the prime factorization of 196883,” or “Prove Fermat’s last theorem or provide a counterexample.”
Solutions to problems vary enormously in length, as “47 · 59 · 73” is a valid solution for the first problem,
whereas the first known solution for the second problem was over 100 pages long. Note that solutions to

5In Subsection 3.5.2, we will explicitly provide such an implementation for the Toffoli gate.

37

problems are not necessarily unique, as different proofs of Fermat’s last theorem can be equally valid as the
one first published by Andrew J. Wiles.

Oftentimes, we encounter many problems with a very similar structure. For example, we can have the
problems: “Find the greatest common divisor of 2 and 3,” “Find the greatest common divisor of 2 and 4”
and “Find the greatest common divisor of 2 and 5.” We can bundle all these problems in a particular class
of problems: “Find the greatest common divisor of a and b, where a, b > 0 are integers.” For every particular
choice for a > 0 and b > 0, we obtain one specific instance of the problem which is contained in the class
of problems. We say that the pair (a, b) is an input to the class of problems, and hence every input gives
rise to one instance of the class of problems. The output corresponding to a given input, we define to be the
solution to the instance of the class of problems generated by the input. So, for example, let’s take a = 1517
and b = 1599. Then, the instance generated by the input (1517, 1599) is “Find the greatest common divisor
of 1517 and 1599.” The output corresponding to this input becomes the solution to this instance, which
happens to be 41.

An algorithm that solves a given class of problems, now, is an unambiguous specification of the steps that we
can perform in order to find the output corresponding to any input to this class of problems. For example,
Euclid’s algorithm is the well-known algorithm that solves the class of problems that we introduced in the
previous paragraph: “Find the greatest common divisor of a and b, where a, b > 0 are integers.” We say
that any pair (a, b) where a, b > 0 is an input to Euclid’s algorithm, and that this algorithm yields the
corresponding output gcd(a, b). So, under the input (1517, 1599), Euclid’s algorithm yields the output 41.

Now, suppose that we have an algorithm which solely prescribes the execution of steps that could be executed
on a universal Turing machine. Then, we refer to such an algorithm as a classical algorithm. All operations
that we can perform on any modern-day computer could in principle be performed on a universal Turing
machine, and hence every algorithm that we can implement in a classical computer is by definition a classical
algorithm.

On the other hand, suppose that we have an algorithm that, aside from operations that could be performed
on a universal Turing machine, for at least some inputs also prescribes the execution of one or multiple
quantum circuits, and possibly the performance of one or multiple measurements. Then, we refer to such
an algorithm as a quantum algorithm. The part of the algorithm that could be implemented on a universal
Turing machine, we refer to as the classical part of the quantum algorithm.

Note that in principle, the quantum circuit that the algorithm prescribes, can depend on the input that
is being supplied to the algorithm. Moreover, some quantum algorithms only prescribe the execution of a
quantum circuit for some, but not all, inputs. A quantum algorithm that has both these features is Shor’s
algorithm, which solves the class of problems “For any composite positive integer N , find a non-trivial divisor
of N .” We refer the interested reader to [NC00], Chapter 5, or [Cor16], Chapter 5.

For every input that is supplied to a quantum algorithm, though, we can calculate the total elementary gate
complexity of the quantum algorithm corresponding to this input, which is the sum of the elementary gate
complexities of the quantum circuits that the quantum algorithm prescribes for the given input. This total
elementary gate complexity of the quantum algorithm, we generally simply refer to as the elementary gate
complexity of the quantum algorithm. Note that this quantity is dependent on the input that is supplied
to the quantum algorithm. In other words, the elementary gate complexity of the quantum algorithm is a
function that maps any input that can be supplied to the quantum algorithm to a number indicating the
total elementary gate complexity corresponding to this input. For example, for Shor’s algorithm, the input
is a positive integer N , and the total elementary gate complexity is O(log3(N)), as is shown in [NC00],
Chapter 5, and [Cor16], Chapter 5.

Additionally, we can also have a quantum algorithm whose input consists of a quantum circuit. For example,
let’s consider the class of problems: “Given any quantum circuit implementing |j〉⊗|b〉 7→ |j〉⊗|b⊕ xj〉, where
j ∈ {0, 1, . . . , 2n−1} and x0, x1, . . . , x2n−1, b ∈ {0, 1}, find a j ∈ {0, 1, . . . , 2n−1} such that xj = 1 or output
that no such j exists.” For this class of problems, the input is a quantum circuit, and hence any quantum

38

algorithm that solves this class of problems will somehow need to prescribe one or more quantum circuits
that call this input circuit as a subcircuit at least once. For these circuits prescribed by the algorithm, we
can meaningfully calculate the input circuit query complexity, which we defined to be the number of times
the input circuit is queried by the circuit. The total query complexity corresponding to the given input, or the
oracle query complexity corresponding to the given input, is the number of times the input circuit is being
queried in total, throughout all the circuits that are prescribed by the quantum algorithm. This is again a
function mapping any input circuit to a number, as the total number of queries that are being performed
can depend on the input circuit that is supplied. For the class of problems that we defined earlier on in this
paragraph, there exists a quantum algorithm6 which solves this class of problems. The query complexity of
this algorithm is O(2n/2).

Finally, recall from both Section 2.2 and Section 3.1 that the outcome of measurements is determined by
probabilistic events. Hence, if we run a quantum algorithm that prescribes at least one quantum measure-
ment, twice with the same input, then we might obtain different results. More precisely, for every input to a
quantum algorithm, the output is selected according to a probability distribution. Hence, it can happen that
the probability of the quantum algorithm yielding a valid solution to the instance of the problem generated
by the input is not 1, but somewhat less than that. We refer to this probability as the success probability
of the quantum algorithm, corresponding to the given input. This success probability can depend on the
input that is supplied to the quantum algorithm, so we again consider this success probability of the quantum
algorithm as a function mapping the input to a number in the interval [0, 1]. For example, if the input integer
to Shor’s algorithm is even, the success probability corresponding to this input integer is 1. Similarly, if the
input integer to Shor’s algorithm is a pure power, i.e., it can be written as ab, with a and b integers and
b > 1, then the success probability is 1 as well. If, on the other hand, the input integer is neither of the above
two, then the success probability is at least 2

3 , as shown in [NC00], chapter 5, or [Cor16], chapter 5. So, we
say that the success probability of Shor’s algorithm is lower bounded by 2

3 , i.e., the success probability of
Shor’s algorithm associated to any input is at least 2

3 .

This concludes our discussion on quantum algorithms. In the next section, we will present several examples
of quantum circuits and quantum algorithms, so the reader can get a bit more familiar with the notions
introduced in the last two sections.

3.5 Examples of quantum circuits and quantum algorithms

In this section, we will cover some examples of quantum circuits and quantum algorithms. Partially, we do
this to provide the reader with some examples, such that the reader can get accustomed to analyzing these
quantum circuits and quantum algorithms. Simultaneously, though, the techniques that we introduce here
often play a central role in the algorithms that we will develop in subsequent chapters, and hence a thorough
understanding of the ideas presented here is indispensible to fully grasp the ideas behind the algorithms that
we introduce in the remainder of this text.

3.5.1 SWAP

The first quantum circuit that we introduce here, is the SWAP-circuit. It can be used to swap the state of
two n-qubit systems. For clarity, we will first introduce the 1-qubit variant, and subsequently, we will make
the obvious generalization to n-qubit systems.

So, first of all, we consider the following problem. Suppose that we have a two-qubit system, and that the
state of this system is |φ〉 ⊗ |ψ〉, where |φ〉 and |ψ〉 are single-qubit states. Next, suppose that we want to

6This is a modified version of Grover’s algorithm, which we introduce in Subsection 3.5.6.

39

swap the states of both qubits, i.e., we want to get the two-qubit system into the state |ψ〉 ⊗ |φ〉. This is
what the SWAP-circuit achieves.

As a first step towards the development of the SWAP-circuit, we note that it is sufficient to determine what
we want the action of the SWAP-circuit to be on the computational basis states. As any quantum circuit
acts as a linear operator on the state space, we deduce from linearity that the desired behavior extends to
all separable input states.

Obviously, we want the SWAP-circuit not to modify the states |00〉 and |11〉, as swapping the qubits has
no effect when they are in these states. On the other hand, if the initial state, before application of the
SWAP-circuit, is |01〉 or |10〉, then we want the final state to be |10〉 or |01〉, respectively. Hence, we can
now write down what we want the matrix representation of the SWAP-circuit to be (with respect to the
computational basis {|00〉 , |01〉 , |10〉 , |11〉}, as always):

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Now, observe that this matrix is very similar to the matrices corresponding to the CNOT- and CNOT-
gates. In fact, we can obtain the matrix representation of the SWAP-gate by multiplying these matrices
corresponding to the CNOT- and CNOT-gates together, as such:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ·


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = CNOT ·CNOT · CNOT

Thus, we have now found a way to construct the SWAP-circuit: we can simply apply a CNOT-gate, a
CNOT-gate and a CNOT-gate in sequence. This is summarized in Circuit 3.5.1. In addition, we also supply
two different shorthand notations for the SWAP-circuit there, that we will use throughout the remainder of
this text.

Circuit 3.5.1: SWAP
Description: This quantum circuit swaps the state of two qubits.
Elementary gate complexity: 3.
Circuit: Here, |φ〉 and |ψ〉 are single-qubit states.

|ψ〉 |φ〉
|φ〉 |ψ〉

Shorthand notation:

|φ〉 ⊗ |ψ〉 |ψ〉 ⊗ |φ〉
2

SWAP =
|ψ〉 |φ〉
|φ〉 |ψ〉

Now that we have formally introduced the SWAP-circuit, we can use it as a subcircuit in larger quantum
circuits. We will use this right away in the generalization of the SWAP-circuit that swaps the state of two
n-qubit systems, which we refer to as the SWAPn-circuit.

If we want to devise a circuit SWAPn that swaps the role of two n-qubit systems, then we must simply
devise a circuit that swaps the role of n two-qubit pairs. One can easily observe this by looking at the
computational basis states of the 2n-qubit system, just as we did for the simpler SWAP-circuit. Hence, we
obtain the SWAPn-circuit in a straightforward manner, as shown in Circuit 3.5.2.

40

Circuit 3.5.2: SWAPn
Description: This quantum circuit swaps the states of two n-qubit registers.
Elementary gate complexity: 3n.
Circuit: Here |φ〉 and |ψ〉 are n-qubit states.

|φ〉

|ψ〉

|ψ〉

|φ〉

Shorthand notation:

|φ〉 ⊗ |ψ〉 |ψ〉 ⊗ |φ〉
2n

SWAPn
=

|ψ〉 |φ〉
|φ〉 |ψ〉

n

n

For additional clarity, we give here the SWAP2 circuit, with both SWAP-subcircuits expanded:

|ψ〉 |φ〉
|φ〉 |ψ〉

2

2 =

|φ〉

|ψ〉

|ψ〉

|φ〉

This completes our discussion of the SWAP-circuit. We will encounter it frequently in subsequent sections.

3.5.2 Toffoli gate

Earlier on in this chapter, we introduced the Toffoli-gate. Afterwards, when we introduced the elementary
gates, we remarked that the Toffoli-gate is not an elementary gate. We can, however, construct a circuit
consisting solely of CNOT-gates and single-qubit gates, that has the same matrix representation as the
Toffoli-gate that we introduced in Subsection 3.2.2. We refer to this circuit as the Toffoli-circuit, and it is
presented in Circuit 3.5.3.

Circuit 3.5.3: Toffoli
Description: The matrix representation of this circuit is identical to the matrix representation of the
Toffoli-gate, and hence this circuit essentially implements this gate solely using elementary gates.
Elementary gate complexity: 16.
Circuit: In the circuit below, we have b1, b2, b3 ∈ {0, 1}:

|b3〉 |b3 ⊕ (b1b2)〉
|b2〉 |b2〉
|b1〉 |b1〉

H T ∗ T T ∗
T ∗

T H

T ∗
T

S

Shorthand notation:

|b3〉 |b3 ⊕ (b1b2)〉
|b2〉 |b2〉
|b1〉 |b1〉

We have taken the construction of Circuit 3.5.3 from [NC00], page 182. Proving that the matrix represen-
tation of this circuit indeed coincides with the matrix representation of the Toffoli-gate that we introduced

41

in Subsection 3.2.2 is straightforward, as we can just multiply together the matrix representations of the
elementary gates that appear in the Toffoli-circuit. We leave the details to the reader as they do not provide
any additional relevant insight for the remainder of this text.

3.5.3 Quantum Fourier transform

The Fourier transform is used in many different branches of science. Ever since the introduction of the Fast
Fourier Transform (FFT) in the 60’s by Cooley and Tukey [CT65], it has become a basic building block in
many applications, e.g., in sound analysis and optical imaging, but also in implementing a fast multiplication
of polynomials of high degree.

In this subsection, we elaborate on how we can implement the Fourier transform on a quantum computer.
Later on, we will see that the circuit we devise here, is a very important building block in many more
quantum algorithms, as it is frequently used as a subcircuit in much larger quantum circuits.

There exist many different definitions of the Fourier transform, though, as every branch of science in which
the Fourier transform is used tends to use its own definition. In that respect, quantum computing is no
different, as the definition of the Fourier transform used in quantum computing is subtly different from
the definitions found in other areas. The version of the Fourier transform used in quantum computing is
referred to as the quantum Fourier transform.7 We will spend the next part of this section on introducing
this transform and after that, we will elaborate on how this transform can be implemented in a quantum
circuit.

For every natural number n, the n-qubit quantum Fourier transform implements the linear extension of the
following mapping on the n-qubit computational basis states. Here, j is some integer in {0, 1, . . . , 2n − 1}:

|j〉 7→ 1√
2n

2n−1∑
k=0

e
2πijk

2n |k〉 (3.5.1)

We refer to this mapping by QFT2n . As the above relation is already expressed in terms of computational
basis states, we can easily write down an expression for the entries of the matrix representation of this
mapping. For notational convenience, we will assume that all our vectors and matrices are 0-indexed, like
we did in Section 3.1. Now, observe that for all j, k ∈ {0, 1, . . . , 2n − 1}:

(QFT2n)jk =
1√
2n
· e

2πijk
2n =

1√
2n
· ωjk2n with ω2n = e

2πi
2n (3.5.2)

The matrix representation of the n-qubit quantum Fourier transform can now concisely be expressed as
follows:

QFT2n =
1√
2n


1 1 1 . . . 1

1 ω2n ω2
2n · · · ω2n−1

2n

1 ω2
2n ω4

2n · · · ω
2(2n−1)
2n

...
...

...
...

1 ω2n−1
2n ω

2(2n−1)
2n · · · ω

(2n−1)(2n−1)
2n

 =
1√
2n


1 1 1 . . . 1
1 ω2n ω2

2n · · · ω−1
2n

1 ω2
2n ω4

2n · · · ω−2
2n

...
...

...
...

1 ω−1
2n ω−2

2n · · · ω2n


In the last equality, we used that ω2n

2n = 1. Next, in order to check that the n-qubit quantum Fourier
transform is unitary, we can simply check that the above matrix is unitary. To that end, we first of all from

7In this text, we will only be using the Abelian quantum Fourier transform. Generalizations to the non-Abelian case, albeit
having very interesting and powerful properties, are left for another time. The interested reader is referred to [Bea97] or [Har05].

42

Equation 3.5.2 derive the following relation for the matrix entries of the Hermitian transpose of the matrix
we found above, where again j, k ∈ {0, 1, . . . , 2n − 1}:

(QFT∗2n)jk =
1√
2n
· ωkj2n =

1√
2n
· e 2πi

2n ·kj =
1√
2n
· e 2πi

2n ·−jk =
1√
2n
· ω−jk2n

Using this relation, we can now concisely express the matrix QFT∗2n . Note that it is very similar to the
matrix QFT2n , and that the only difference is the minus signs in the exponents.

QFT∗2n =
1√
2n


1 1 1 . . . 1
1 ω−1

2n ω−2
2n · · · ω2n

1 ω−2
2n ω−4

2n · · · ω2
2n

...
...

...
...

1 ω2n ω2
2n · · · ω−1

2n


Now, in order to check that QFT2n is unitary, we must check that QFT2n QFT∗2n = I2n , i.e., the 2n × 2n

identity matrix. To that end, we can simply calculate the matrix entries of the matrix product QFT2n QFT∗2n .
Hence, observe that for all j, k ∈ {0, 1, . . . , 2n − 1}:

(QFT2nQFT∗2n)jk =

2n−1∑
`=0

(QFT2n)j` (QFT∗2n)`k =
1

2n

2n−1∑
`=0

ω
`(j−k)
2n (3.5.3)

Now if j = k, all the terms in the summation on the right-hand side reduce to ω0
2n = 1. Hence, then we

obtain:

(QFT2nQFT∗2n)jk =
1

2n

2n−1∑
`=0

ω
`(j−k)
2n =

1

2n

2n−1∑
`=0

ω0
2n =

1

2n

2n−1∑
`=0

1 =
2n

2n
= 1 (3.5.4)

On the other hand, if j 6= k, then we must do some more work to rewrite the summation on the right-hand
side of Equation 3.5.3. To that end, we use the following relation, for all n ∈ N and r ∈ C \ {1}, which can
easily be proven by long division of 1− rn by 1− r:

n−1∑
k=0

rk =
1− rn

1− r

Indeed, if j 6= k, then ωj−k2n 6= 1, and hence the right-hand side of Equation 3.5.3 reduces to:

(QFT2nQFT∗2n)jk =
1

2n

2n−1∑
`=0

(
ωj−k2n

)`
=

1

2n
· 1− ω2n(j−k)

2n

1− ωj−k2n

=
1

2n
· 1− 1j−k

1− ωj−k2n

=
0

2n(1− ωj−k2n)
= 0 (3.5.5)

Hence, combining Equation 3.5.4 and Equation 3.5.5, we obtain, for all j, k ∈ {0, 1, . . . , 2n − 1}:

(QFT2n QFT∗2n)jk = δjk

This indeed implies that QFT2n QFT∗2n = I, indicating that the n-qubit quantum Fourier transform is indeed
a unitary operation.

Now, we will have a look at the implementation of the quantum Fourier transform. It so happens that
the crucial observation that Cooley and Tukey made in the 1960s which allowed them to devise the FFT
algorithm, also plays a central role in the design of a quantum circuit that implements the quantum Fourier
transform. This observation, in the context of quantum computing, is that we can rewrite the definition of
the n-qubit quantum Fourier transform in terms of the (n − 1)-qubit quantum Fourier transform. In other

43

words, the right-hand side of Equation 3.5.1 can be rewritten as follows. Here, we have j ∈ {0, 1, . . . , 2n− 1}
and we let jn−1jn−2 . . . j1j0 be the binary expansion of j. That is, j = (jn−1jn−2 . . . j1j0)2.

QFT2n |j〉 =
1√
2n

2n−1∑
k=0

e
2πijk

2n |k〉 =
1√
2n

2n−1−1∑
k=0

e
2πij·2k

2n |2k〉+
1√
2n

2n−1−1∑
k=0

e
2πij·(2k+1)

2n |2k + 1〉

=
1√
2n

2n−1−1∑
k=0

e
2πijk

2n−1 |k〉 ⊗ |0〉+
e

2πij
2n

√
2n

2n−1−1∑
k=0

e
2πijk

2n−1 |k〉 ⊗ |1〉

=

 1√
2n−1

2n−1−1∑
k=0

e
2πijk

2n−1 |k〉

⊗ 1√
2

(
|0〉+ e

2πij
2n |1〉

)

=

 1√
2n−1

2n−1−1∑
k=0

e
2πi(jn−2jn−3...j1j0)2k

2n−1 |k〉

⊗ 1√
2

(
|0〉+ e

2πij
2n |1〉

)
= QFT2n−1 |(jn−2jn−3 . . . j1j0)2〉 ⊗

1√
2

(
|0〉+ e

2πij
2n |1〉

)
Thus, we have now expressed the action of the n-qubit quantum Fourier transform on a computational basis
state in terms of the (n− 1)-qubit quantum Fourier transform on a computational basis state. We can now
recursively apply this identity, which allows us to obtain the following expression:

QFT2n |j〉 =
1√
2

(
|0〉+ e

2πi(j0)2
2 |1〉

)
⊗ 1√

2

(
|0〉+ e

2πi(j1j0)2
4 |1〉

)
⊗ · · · ⊗ 1√

2

(
|0〉+ e

2πi(jn−1jn−2...j1j0)2
2n |1〉

)
(3.5.6)

From this expression, we readily observe that the quantum Fourier transform of a computational basis state
is not an entangled state, as we have expressed it as a pure tensor of single-qubit states. This, in itself, is
a remarkable result, and in essence is where the computational speed-up of the Cooley-Tukey classical FFT
algorithm originates from.

Now, we are in good position to describe a quantum circuit that implements the n-qubit quantum Fourier
transform. To that end, again suppose that our starting state is |j〉, where j ∈ {0, 1, . . . , 2n − 1}. We can
rewrite this state as follows:

|j〉 = |jn−1〉 ⊗ |jn−2〉 ⊗ · · · ⊗ |j1〉 ⊗ |j0〉

Now, we take a look at the right-most tensor in the right-hand side of Equation 3.5.6. Observe that we can
construct this state from |j〉 in the left-most single-qubit state, as follows. First of all, we apply a Hadamard
gate to the first qubit, to obtain the following state:

1√
2

(
|0〉+ (−1)jn−1 |1〉

)
⊗ |jn−2〉 ⊗ · · · ⊗ |j1〉 ⊗ |j0〉 =

1√
2

(
|0〉+ e

2πi·2n−1jn−1
2n |1〉

)
⊗ |jn−2〉 ⊗ · · · ⊗ |j1〉 ⊗ |j0〉

Next, we apply an R 1
4

gate to the first qubit, controlled on the second qubit. This leaves us with the following
state:

1√
2

(
|0〉+ e

2πi·(2n−1jn−1+2n−2jn−2)

2n |1〉
)
⊗ |jn−2〉 ⊗ · · · ⊗ |j1〉 ⊗ |j0〉

Next, we apply R 1
8

to the first qubit, controlled on the third qubit, R 1
16

controlled on the fourth qubit, etc,
up until R 1

2n
controlled on the nth qubit. After all these gates, we end up with the following state:

1√
2

(
|0〉+ e

2πi·
∑n−1
k=0

2kjk
2n |1〉

)
⊗|jn−2〉⊗· · ·⊗|j1〉⊗|j0〉 =

1√
2

(
|0〉+ e

2πi(jn−1jn−2...j1j0)2
2n

)
⊗|jn−2〉⊗· · ·⊗|j1〉⊗|j0〉

Hence, we have constructed the right-most single-qubit tensor in Equation 3.5.6, in the left-most qubit of our
n-qubit system. Now, we take a look at the second to last single-qubit state in Equation 3.5.6. Here, we have

44

(jn−2jn−3 . . . j1j0)2 in the exponent, so we no longer need the value of jn−1 to construct this state. Hence,
using the last n− 1 qubits, we can construct this single-qubit state in the second qubit of our system, using
the exact same method as for the first qubit. Thus, we first apply a Hadamard gate to the second qubit,
and then we apply the R 1

4
-gate to the second qubit, controlled on the third qubit, followed by a R 1

8
-gate

controlled on the fourth qubit, etc. Then, we end up with the following state:

1√
2

(
|0〉+ e

2πi(jn−1jn−2...j1j0)2
2n

)
⊗ 1√

2

(
|0〉+ e

2πi(jn−2jn−3...j1j0)2

2n−1 |1〉
)
⊗ |jn−3〉 ⊗ · · · ⊗ |j1〉 ⊗ |j0〉

Next, we iterate this procedure to construct similar states in the remaining qubits. Then, we have put our
system into the following state:

1√
2

(
|0〉+ e

2πi(jn−1jn−2...j1j0)2
2n

)
⊗ 1√

2

(
|0〉+ e

2πi(jn−2jn−3...j1j0)2

2n−1 |1〉
)
⊗ · · · ⊗ 1√

2

(
|0〉+ e

2πi(j0)2
2 |1〉

)
Finally, we can swap the nth qubit with the first qubit, the (n − 1)th qubit with the second qubit, etc., to
obtain the state displayed in Equation 3.5.6. This, then, completes our description of the implementation
of the quantum Fourier transform as a quantum circuit. The entire process is summarized and depicted in
Circuit 3.5.4.

Circuit 3.5.4: n-qubit quantum Fourier transform
Description: This circuit implements the n-qubit quantum Fourier transform.
Elementary gate complexity: (n+ 1)n/2 + 3bn/2c = O(n2).
Circuit: Here, j ∈ {0, 1, . . . , 2n − 1}:

H R 1
4

R 1

2n−1
R 1

2n

H R 1

2n−2
R 1

2n−1

H R 1
4

H

|j〉
2n−1∑
k=0

e
2πijk

2n |k〉

Shorthand notation:

|j〉
2n−1∑
k=0

e
2πijk

2n |k〉
n

QFT2n

For extra clarification, let us write out the full quantum circuit implementing the three-qubit quantum
Fourier transform QFT23 :

H R 1
4
R 1

8

H R 1
4

H

|j〉
7∑
k=0

e
2πijk

8 |k〉

Recall from Subsection 3.2.1 that the R1/4 and R1/8 gates are equal to the S and T gates. Hence, we can
rewrite the circuit as follows:

H S T

H S

H

Here, we have also expanded the SWAP-circuit, to obtain the representation of this circuit in elementary
gates. Now, we can also easily observe that the elementary gate complexity is equal to 9, which is equal to

45

the expected number when n = 3:

(n+ 1)n/2 + 3bn/2c = 4 · 3/2 + 3 · 1 = 6 + 3 = 9

In this section, we have shown how to implement the mapping QFT2n exactly, using a number of elementary
gates that grows quadratically in n. Note that the number of CNOT-gates and the number of Hadamard
gates grows only linearly in n, though, and that only the number of controlled-R-gates grows quadratically
in n. More precisely, observe that we use exactly n − k + 1 controlled applications of R 1

2k
. In addition,

observe:

∥∥∥C (R 1

2k

)
− I
∥∥∥ =

∥∥∥∥∥∥∥∥


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
2πi

2k

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 e
2πi

2k − 1


∥∥∥∥∥∥∥∥

=
∣∣∣e 2πi

2k − 1
∣∣∣ = 2

∣∣∣sin(π
2k

)∣∣∣ ≤ 2π

2k

In other words, the controlled R 1

2k
-gates where k is big, are very close to the identity gate in operator norm,

indicating that their action is almost negligible. Hence, we might just as well leave out these controlled-R-
gates where k is big. This idea allows us to obtain a significant reduction in the elementary gate complexity.
We can implement the quantum Fourier transform up to some error ε in operator norm, using onlyO(n log(n))
elementary gates. In [BEST96], this construction is made explicit.

This completes our discussion of the quantum Fourier transform. In subsequent subsections, we will see how
the quantum Fourier transform is used in a variety of different quantum circuits.

3.5.4 Quantum Fourier adder

In the last subsection, we have introduced the n-qubit quantum Fourier transform, where n could be any
natural number. In this section, we will see the first application of the quantum Fourier transform, in a
rather unexpected setting. We will show how we can add two n-bit integers a and b modulo 2n, using two
applications of the n-qubit quantum Fourier transform. The construction presented here is due to [Dra00].

So, suppose that we have two n-bit integers a and b, hence a, b ∈ {0, 1, . . . , 2n − 1}. The goal is to construct
a 2n-qubit quantum circuit, where the first n qubits constitute the first register, and the second n qubits
form the second register, implementing the following mapping:

|a〉 ⊗ |b〉 7→ |a〉 ⊗ |a+ b〉

The idea is to first apply the quantum Fourier transform on the second register. Then, we obtain the
following state, according to Equation 3.5.6, where an−1an−2 . . . a1a0 and bn−1bn−2 . . . b1b0 are the binary
expansions of a and b, respectively:

|an−1〉 ⊗ · · · ⊗ |a0〉 ⊗
1√
2

(
|0〉+ e

2πi(b0)2
2 |1〉

)
⊗ · · · ⊗ 1√

2

(
|0〉+ e

2πi(bn−1bn−2...b1b0)2
2n |1〉

)
It now becomes apparent that the integer b is stored in the phases of the |1〉 states of the final n qubits.
More precisely, we find that the (n+ j)th qubit is in state:

1√
2

(
|0〉+ e

2πi(bj−1bj−2···b1b0)2

2j |1〉
)

We will now methodically modify this state until the integer a+ b is stored in these phases in the exact same
way, i.e., until the (n+ j)th qubit is in the following state:

1√
2

(
|0〉+ e

2πi((aj−1aj−2···a1a0)2+(bj−1bj−2···b1b0)2)

2j |1〉
)

46

This comes down to shifting the phase of the amplitude of the |1〉 state in the (n+j)th qubit by the following
amount:

2πi(aj−1aj−2 · · · a1a0)2

2j

Such a phase shift can be obtained using consecutive controlled rotations. For instance, for the (n + 1)st
qubit, we must shift the phase by 2πia0/2. Recall that the state of the nth qubit is |a0〉. Hence, if we apply
a R1/2-gate, controlled on the nth qubit, then nothing happens if a0 = 0, which amounts to a phase shift of
0 = 2πia0/2. On the other hand, if a0 = 1, we again obtain a phase shift of 2πi/2 = 2πia0/2.

Similarly, for the (n+ 2)nd qubit, we must shift the phase by the following amount:

2πi(a1a0)2

4
=

2πia1

2
+

2πia0

4

Hence, we can use two controlled rotations, a R1/2-gate controlled on the (n − 1)st qubit, and a R1/4-gate
controlled on the nth qubit. If we recall that the states of these (n− 1)st and nth qubits are |a1〉 and |a0〉,
respectively, we obtain by the same logic as before that we implement the correct phase shifts.

We can repeat this process for all (n + j)th qubits, where j runs from 1 to n, until we have successfully
rotated in the necessary phases in the final n qubits. The resulting state becomes:

|an−1〉⊗· · ·⊗|a0〉⊗
1√
2

(
|0〉+ e

2πi((a0)2+(b0)2)
2 |1〉

)
⊗· · ·⊗ 1√

2

(
|0〉+ e

2πi((an−1an−2...a1a0)2+(bn−1bn−2...b1b0)2)

2n |1〉
)

Equation 3.5.6 tells us that the state of the second register is now the image of |a+ b〉 under the n-qubit
quantum Fourier transform. So, we can apply the n-qubit quantum Fourier transform in reverse, to obtain
the following state:

|a〉 ⊗ |a+ b〉

This is the state we were after, and hence we have found a way to add two numbers on a quantum computer.
We summarize this construction in Circuit 3.5.5, and also provide a graphical depiction of the resulting
quantum circuit there.

Circuit 3.5.5: n-qubit quantum Fourier adder
Description: This circuit calculates the sum of two n-bit numbers modulo 2n.
Elementary gate complexity:

3(n+ 1)n/2 + 3bn/2c = O(n2)

Circuit: Here, a, b ∈ {0, 1, . . . , 2n − 1}:

QFT2n

R 1
2

R 1
4

R 1

2n−1

R 1
2n

R 1
2

R 1

2n−2

R 1

2n−1

R 1
2

R 1
4
R 1

2

QFT∗2n

|a〉

|b〉

|a〉

|a+ b mod 2n〉

Observe that the elementary gate complexity of this circuit scales quadratically with the number of qubits,
n. However, again we are using many controlled rotation gates whose action is almost negligible. Hence,

47

using a similar argument as with the quantum Fourier transform, we can obtain a significant reduction in
the elementary gate complexity by leaving out some of the controlled R-gates that have little effect. If we,
in addition, also replace the quantum Fourier transform circuits by their approximate versions, then we can
reduce the entire elementary gate complexity to O(n log(n)).

As a final remark, we note that it is also possible to add two numbers modulo 2n using only O(n) elementary
gates, by translating a reversible classical circuit to the quantum setting using Toffoli gates. The interested
reader is referred to [VBE96], or [Cor16], Section 5.3.2. However, in this construction, one requires n auxiliary
qubits, which are not needed in the construction presented in Circuit 3.5.5. Thus, if adding a number of
qubits is more expensive than adding a number of elementary gates to a quantum circuit, then Circuit 3.5.5
might still have some practical value.

This completes our discussion of the quantum Fourier adder. This was the first application of the quantum
Fourier transform that we encountered. In the next subsection, we will see another application of the
quantum Fourier transform, in a circuit known as the phase estimation circuit.

3.5.5 Phase estimation

In the previous subsection, we have seen one application of the quantum Fourier transform, namely the
quantum Fourier adder. In this subsection, we will see another, arguably more important application of the
quantum Fourier transform. We will use the quantum Fourier transform to recover eigenvalues of quantum
circuits, with an algorithm known as the phase estimation algorithm.

First of all, we will introduce what we mean by eigenstates and eigenvalues of quantum circuits. After that,
we will elaborate on how the quantum Fourier transform can be used to find such eigenvalues of quantum
circuits. Finally, we will summarize this method in the phase estimation algorithm, and we will prove a
lower bound on the success probability of this algorithm.

Suppose that we have a quantum circuit, U , acting on n qubits. Then, its matrix representation is a 2n× 2n

unitary matrix, as we argued in Section 3.3, which we also refer to as U . Next, suppose that we have an
eigenvector of this matrix U , which we call u. As U is unitary, we have that the eigenvalue corresponding
to the eigenvector u has modulus 1, and as such it can be written as e2πiφ, for φ ∈ [0, 1). Hence, we find
Uu = e2πiφu. Moreover, recall that u is identified with a quantum state |u〉, which is a vector in the state
space of an n-qubit system. Now, if we apply the circuit U to an n-qubit system which is prepared in the
state vector |u〉, we obtain:

U |u〉 = e2πiφ |u〉

Hence, the state of the system is only changed by a global phase factor, which cannot be measured, as we
argued in Section 2.2. We refer to |u〉 as an eigenstate of the quantum circuit U . Corresponding to this
eigenstate |u〉, we have the eigenvalue of the quantum circuit U , e2πiφ.

Next, suppose that we have been given a quantum circuit U , and an eigenstate |u〉 of this quantum circuit U .
Then, we know that corresponding to this eigenstate |u〉, there exists an eigenvalue of the quantum circuit
U , which can be written as e2πiφ with φ ∈ [0, 1). Given the quantum circuit U and the eigenstate |u〉, our
goal is now to find an approximation to the value of φ. That is, for some ε > 0, we want to find a value φ̃
such that φ and φ̃ are at most ε apart. Here, we consider the endpoints of [0, 1) to be connected, i.e., we say
that 0.99 and 0.01 are only separated by a distance of 0.02.

As a first step towards developing a method to obtain such an approximation to φ, we first of all introduce
a constant. Let m = dlog

(
1
ε

)
e, where we take the logarithm in base 2. This is the number of bits that we

will use to express φ̃. Next, we make a simplifying assumption, namely, we assume that 2mφ is an integer.
This assumption will make sure that the algorithm succeeds with success probability 1, which simplifies the
analysis considerably. Later on, we will relax this assumption, and show that the algorithm still works with
some reasonable success probability if 2mφ is not integer.

48

As 2mφ is an integer, and as φ ∈ [0, 1), we obtain that 2mφ ∈ {0, 1, . . . , 2m − 1}. Hence, we find that the
m-qubit state |2mφ〉 is a computational basis state. Moreover, its image under the m-qubit quantum Fourier
transform is given by:

QFT2m |2mφ〉 =
1√
2m

2m−1∑
k=0

e
2πi·2mφk

2m |k〉 =
1√
2m

2m−1∑
k=0

e2πiφk |k〉 (3.5.7)

Let φm−1φm−2 . . . φ1φ0 be the binary expansion of 2mφ, i.e., 2mφ = (φm−1φm−2 . . . φ1φ0)2. Similarly to
what we did before in the derivation of Equation 3.5.6, we can write the right-hand side of Equation 3.5.7
as a pure tensor of single-qubit states:

QFT2m |2mφ〉 =
1√
2

(
|0〉+ e

2πi(φ0)2
2 |1〉

)
⊗ 1√

2

(
|0〉+ e

2πi(φ0φ1)2
4 |1〉

)
⊗· · ·⊗ 1√

2

(
|0〉+ e

2πi(φn−1φn−2...φ1φ0)2
2m |1〉

)
This can easily be rewritten into the following form (the terms that are added in the exponents are all
multiples of 2πi):

QFT2m |2mφ〉 =
1√
2

(
|0〉+ e2πi·2m−1φ |1〉

)
⊗ 1√

2

(
|0〉+ e2πi·2m−2φ

)
⊗ · · · ⊗ 1√

2

(
|0〉+ e2πi·20φ |1〉

)
(3.5.8)

But now, we can see how this state can be constructed. We can take an (n+m)-qubit system, and prepare
the first m qubits in the state |0〉⊗m, and the last n qubits in the state |u〉, i.e., the eigenstate of the quantum
circuit U that we have been given. So, the initial state is |0〉⊗m ⊗ |u〉. Next, we apply a Hadamard-gate to
the first m qubits. The resulting state is:(

1√
2

(|0〉+ |1〉)
)⊗m

⊗ |u〉 (3.5.9)

Now, we can construct the state displayed in Equation 3.5.8 in the first m qubits of this (n + m)-qubit
system. To that end, we first of all consider what happens if we do a controlled application of the quantum
circuit U . The action of a controlled application of the quantum circuit U can be expressed as follows:

|0〉 ⊗ |u〉 C(U)7→ |0〉 ⊗ |u〉 (Nothing happens, as the control qubit is 0)

|1〉 ⊗ |u〉 C(U)7→ |1〉 ⊗ U |u〉 = |1〉 ⊗ e2πiφ |u〉 = e2πiφ |1〉 ⊗ |u〉 (The quantum circuit U is applied)

So, by linearity, we obtain that C(U) has the following action if the control qubit is in a superposition of |0〉
and |1〉:

1√
2

(|0〉+ |1〉)⊗ |u〉 =
1√
2
|0〉 ⊗ |u〉+

1√
2
|1〉 ⊗ |u〉

C(U)7→ 1√
2
|0〉 ⊗ |u〉+

1√
2
· e2πiφ |1〉 ⊗ |u〉 =

1√
2

(
|0〉+ e2πiφ |1〉

)
⊗ |u〉

Hence, if we have our (n+m)-qubit system in the state described by Equation 3.5.9, then we can apply the
quantum circuit U to the last n qubits, controlled on the mth qubit, in order to obtain the following state:(

1√
2

(|0〉+ |1〉)
)⊗(m−1)

⊗ 1√
2

(
|0〉+ e2πiφ |1〉

)
⊗ |u〉

Next, we can apply the quantum circuit U twice to the last n qubits, controlled on the (m − 1)st qubit.
That is, we apply C(U2), where the control qubit is the (m− 1)st qubit, and the target qubits are the last n

qubits of the system. Now, the |1〉-state in the (m− 1)st qubit picks up a phase factor of e2πi·2φ =
(
e2πiφ

)2
,

49

i.e., one phase factor e2πiφ for every time that U is applied. Thus, the (n+m)-qubit system ends up in the
following state: (

1√
2

(|0〉+ |1〉)
)⊗(m−2)

⊗ 1√
2

(
|0〉+ e2πi·2φ |1〉

)
⊗ 1√

2

(
|0〉+ e2πiφ |1〉

)
⊗ |u〉

Continuing in this manner, i.e., applying a C(U4)-operation with the control qubit being the (m − 2)nd

qubit, etc., all the way to applying a C(U2m−1

)-operation where the first qubit is the control qubit, allows
us to construct the following state:

1√
2

(
|0〉+ e2πi·2m−1φ |1〉

)
⊗ 1√

2

(
|0〉+ e2πi·2m−2φ |1〉

)
⊗ · · · ⊗ 1√

2

(
|0〉+ e2πi·20φ |1〉

)
(3.5.10)

But this state is equal to QFT2m |2mφ〉, as shown in Equation 3.5.8. Hence, if we apply the inverse of the
m-qubit quantum Fourier transform to this state, we obtain the state |2mφ〉. We can measure this state in
the computational basis to recover 2mφ, from which we can easily calculate φ. Thus, under our simplifying
assumption, i.e., when 2mφ is an integer, we have constructed a quantum circuit that allows us to recover φ
exactly.

Next, we drop the assumption that 2mφ is an integer and give an indication why the above procedure will
still yield a reasonable approximation of φ. We can, namely, apply the exact same procedure as we have
described above. Just before applying the inverse quantum Fourier transform, it remains valid that the
system is in the state described by Equation 3.5.10, even though this time it is not necessarily the image of
a computational basis state under the m-qubit quantum Fourier transform. We can consider the function
mapping the value of φ to this state:

φ 7→ 1√
2

(
|0〉+ e2πi·2m−1φ |1〉

)
⊗ 1√

2

(
|0〉+ e2πi·2m−2φ |1〉

)
⊗ · · · ⊗ 1√

2

(
|0〉+ e2πi·20φ |1〉

)
Note that this mapping is continuous, due to the continuous nature of all its constituents. Hence, intuitively,
if 2mφ is close to some integer 2mφ̃, then the resulting state just before applying the inverse quantum Fourier

transform is close to the state QFT2m

∣∣∣2mφ̃〉. Hence, upon measurement in the computational basis after

the quantum Fourier transform, we will with reasonable probability obtain the outcome 2mφ̃, and as 2mφ̃
was close to 2mφ, this gives rise to a close approximation of φ. This argument is made rigorous below.

The quantum algorithm that we have described in this section is summarized in Algorithm 3.5.6. Here, we
also present an entirely rigorous analysis of the case when 2mφ is not an integer.

50

Algorithm 3.5.6: Phase estimation
Input:

1. A positive real number ε > 0, indicating the precision with which we want to approximate φ.
2. A positive real number δ > 0, indicating the maximally tolerated failure probability.
3. A quantum circuit U acting on n qubits, with corresponding n-qubit eigenstate |u〉.
4. For all j ∈ {0, 1, . . . ,m − 1}, an oracle circuit C(U2j), i.e., a circuit that applies U2j conditioned

on one qubit (where m is one of the derived constants).
Derived constants:

1. m = dlog(
1
δ+4

ε)e.
2. φ ∈ [ε, 1− ε) such that e2πiφ is the eigenvalue corresponding to |u〉.

Output: A number φ̃ ∈ [0, 1) such that φ and φ̃ are at most ε apart, i.e., min{|φ− φ̃|, 1− |φ− φ̃|} < ε.
Success probability: Lower bounded by 1− δ.
Number of qubits: n+m.
Oracle query complexity: One oracle query to C(U2j), for all j ∈ {0, 1, . . . ,m− 1}.
Elementary gate complexity:

m+

m−1∑
j=0

egc
(
C
(
U2j

))
+ (m+ 1)m/2 + 3bm/2c =

m−1∑
j=0

egc
(
C
(
U2j

))
+O(m2)

Algorithm:
1. Prepare the (n+m)-qubit system in the state |0〉⊗m ⊗ |u〉.
2. Apply the phase estimation circuit:

|u〉 |u〉
n

H

H

H

U20

U21

U2m−1

QFT∗2m|0〉⊗m |ψ〉

3. Measure the first register (i.e., the first m qubits) in the computational basis. Interpret the
resulting bitstring as an integer, and denote this integer by j.

4. Return φ̃ = j/2m.

Proof of the lower bound on the success probability of Algorithm 3.5.6. We will track what happens to the
state throughout the circuit. The initial state is |0〉⊗m ⊗ |u〉. After the application of the m Hadamard
gates, the resulting state is:

(H⊗m ⊗ I2n)(|0〉⊗m ⊗ |u〉) = (H |0〉)⊗m ⊗ |u〉 =
1√
2m

(|0〉+ |1〉)⊗m ⊗ |u〉 =
1√
2m

2m−1∑
j=0

|j〉 ⊗ |u〉

Now, for the second part, i.e., all the controlled applications of powers of U , suppose that the first register
is in state |j〉. Let jm−1jm−2 . . . j1j0 be the binary representation of j. Then, we have:

j = (jm−1jm−2 . . . j1j0)2 =

m−1∑
k=0

2kjk

Also, observe that the following operations are applied to the last n qubits:(
U2m−1

)jm−1

·
(
U2m−2

)jm−2

· · · · ·
(
U21

)j1
·
(
U20

)j0
= U

∑m−1
k=0 2kjk = U j

51

Hence, by linearity, we obtain that the second part performs the following action on the state of the system:

1√
2m

2m−1∑
j=0

|j〉 ⊗ |u〉 7→ 1√
2m

2m−1∑
j=0

|j〉 ⊗ U j |u〉 =
1√
2m

2m−1∑
j=0

|j〉 ⊗ e2πiφj |u〉

where in the last inequality, we used that |u〉 is an eigenstate of U , with eigenvalue e2πiφ. Next, the inverse
quantum Fourier transform is applied to the first m qubits, and hence the resulting output state is:

1√
2m

2m−1∑
j=0

1√
2m

2m−1∑
k=0

e−
2πijk
2m |k〉 ⊗ e2πijφ |u〉 =

1

2m

2m−1∑
k=0

2m−1∑
j=0

e
2πij(2mφ−k)

2m |k〉 ⊗ |u〉

So, we now obtain that:

|ψ〉 =
1

2m

2m−1∑
k=0

2m−1∑
j=0

e
2πij(2mφ−k)

2m |k〉

Next, we obtain, for all ξ ∈ { 1
2m b2

mφc − 1
2 + 1

2m ,
1

2m b2
mφc − 1

2 + 2
2m , . . . ,

1
2m b2

mφc+ 1
2}:

〈2mξ|ψ〉 =
1

2m

2m−1∑
j=0

e
2πij(2mφ−2mξ)

2m =
1

2m

2m−1∑
j=0

e2πij(φ−ξ) =
1

2m

2m−1∑
j=0

(
e2πi(φ−ξ)

)j
If 2mφ is an integer, then we find that 〈2mφ|2mψ〉 = 1, and hence the probability that the algorithm outputs
exactly φ is 1. Hence, we only have to consider the case when 2mφ is not integer, in which case we can
rewrite the above inner product in terms of a geometric series:

〈2mξ|ψ〉 =
1

2m
· 1− e2πi·2m(φ−ξ)

1− e2πi(φ−ξ)

Taking the modulus on both sides yields, using |1 − e2iφ| = 2 sin |φ| for all φ ∈ R, and sin(x) ≥ 2
πx, for all

x ∈ (0, π/2):

|〈2mξ|ψ〉| = 1

2m

∣∣∣∣1− e2πi·2m(φ−ξ)

1− e2πi(φ−ξ)

∣∣∣∣ =
sin(π · 2m|φ− ξ|)
2m sin(π|φ− ξ|)

≤ 1

2m · 2
π · π|φ− ξ|

=
1

2m+1|φ− ξ|

Next, take a = d2mε− 2e. Observe that whenever k ∈ b2mφc − a, . . . , b2mφc+ a+ 1, we have:

−(a+ 1) ≤ 2mφ− b2mφc − (a+ 1) ≤ 2mφ− k ≤ 2mφ− b2mφc+ a ≤ a+ 1

Moreover, we then have:

|φ− 2−mk| ≤ 2−m(a+ 1) ≤ 2−m · (2mε− 1 + 1) = ε

And so, we find:

P[φ̃ 6∈ (φ− ε, φ+ ε)] ≤
−(a+1)∑
k=−2m

|〈b2mφc+ k|ψ〉|2 +

2m−1∑
k=a+2

|〈b2mφc+ k|ψ〉|2

≤
−(a+1)∑
k=−2m

1

4|φ− b2mφc − k|2
+

2m−1∑
k=a+2

1

4|φ− b2mφc − k|2

≤
−(a+1)∑
k=−2m

1

4|k|2
+

2m−1∑
k=a+2

1

4|k − 1|2
≤ 1

2

∫ ∞
a

1

x2
dx =

1

2

[
− 1

x

]∞
a

=
1

2a

≤ 1

2(2mε− 2)
≤ 1

2(1
2 ·

1
δ+4

ε · ε− 2)
= δ

Hence the success probability is lower bounded by 1− δ. This completes the proof.

52

As a final remark, we will take a closer look at the circuit presented in step 2 of Algorithm 3.5.6. Suppose
that we prepare an (n+m)-qubit system in a state |0〉⊗m⊗ (α1 |u1〉+ · · ·+ αs |us〉), where |u1〉 through |us〉
are different eigenstates of a quantum circuit U , corresponding to not necessarily distinct eigenvalues e2πiφ1

through e2πiφs . If we now apply the phase estimation circuit to this initial state, then by linearity we obtain
the following state:

α1 |ψ1〉 |u1〉+⊗+ αs |ψs〉 |us〉

The analysis of Algorithm 3.5.6 show that measuring |ψr〉, yields a close approximation of 2mφr with prob-
ability at least 1 − δ. Now, though, as we are dealing with a superposition with amplitudes α1, . . . , αs,
we obtain a close approximation of 2mφr with probability lower bounded by |αr|2(1 − δ). Summing these
probabilities and noting that |α1|2 + · · · + |αs|2 = 1 yields that we obtain a close approximation to some
eigenvalue of the quantum circuit U , with probability at least 1 − δ. Hence, we do not have to construct a
precise eigenstate of U in the second register before the start of the phase estimation algorithm, but instead
we can start with a superposition of eigenstates. Then, we don’t know which eigenvalue we will be approx-
imating, but we do know that we will obtain an approximation of some eigenvalue, which is sometimes all
that we’re after. In fact, this is the key observation in Shor’s algorithm, as can be found in [NC00], Chapter
5, or [Cor16], Chapter 5.

This concludes our discussion on the phase estimation algorithm. We will encounter this algorithm again in
Subsection 3.5.7, when we will use some specific circuits C(U2j) to estimate the amplitude of one particular
state in a superposition state.

3.5.6 Amplitude amplification

In this subsection, we will consider the amplitude amplification algorithm. Its principal application is to
search in large unstructured data sets, with a quadratic reduction in the number of queries to the data over
the optimal classical search algorithms, as long as the data can be put into superposition efficiently. This
specific database search algorithm is due to Grover and first appeared in [Gro96]. The generalized amplitude
amplification algorithm is due to Brassard et al. [BHMT00]

Suppose that we have two orthogonal n-qubit states, |G〉 and |B〉, which we will refer to as the good and the
bad state, respectively. Suppose that we want to approximately construct the good state, |G〉, and that we
can use the following two oracle circuits to do so:

1. A circuit Q, acting on n qubits, that has the following action, for some θ ∈ (0, π2):

|0〉⊗n Q7→ |U〉 = sin θ |G〉+ cos θ |B〉 (3.5.11)

2. A circuit R, acting on n qubits, that has the following action for all α, β ∈ [−1, 1] for which |α|2+|β|2 =
1 holds:

α |G〉+ β |B〉 R7→ −α |G〉+ β |B〉

The amplitude amplification circuit constructs the state |G〉 approximately, i.e., the Hilbert space norm of
the difference of the state that the circuit constructs and the state |G〉 is small. How this is done can be
very concisely represented in the following visualization.

Consider states of the form sinφ |G〉+cosφ |B〉, where φ ∈ [0, 2π). Now, we make the following identification:

sinφ |G〉+ cosφ |B〉 ↔
[
cosφ
sinφ

]
Hence, in other words, we picture all of the states sinφ |G〉 + cosφ |B〉 as lying on the unit circle in R2.
Specifically, we find that |G〉 points straight up, |B〉 points to the right, and |U〉 = sin θ |G〉 + cos θ |B〉 is

53

|B〉

|G〉

|U〉
θ

Figure 3.11: Visual interpretation of the three states that are available at the start of the amplitude ampli-
fication circuit.

located somewhere in between |B〉 and |G〉, as θ ∈ (0, π/2) by assumption. We have graphically depicted
these three states in Figure 3.11.

Now, we start in the state |U〉, so we define |ψ0〉 = |U〉. Next, we reflect through |B〉, and the resulting
state, we denote by |ψ1〉. After that, we reflect through |U〉, and the state that results from that operation,
we denote by |ψ2〉. These states are shown in Figure 3.12.

|B〉

|G〉

|U〉, |ψ0〉

|ψ1〉

|ψ2〉

θ
θ

3θ

Figure 3.12: Visual interpretation of one Grover’s iterate. The system starts out in the state |ψ0〉. Then, the
state is reflected through |B〉, and hence the state |ψ1〉 is obtained. After that, the state is reflected through
|U〉, which results in the state |ψ2〉. One can prove that this combined action comes down to a rotation
over an angle of 2θ counterclockwise, i.e., to get from |ψ0〉 to |ψ2〉, one must rotate along the circle in the
counterclockwise direction over an angle of 2θ.

It can be seen that in order to get from |ψ0〉 to |ψ2〉, one must rotate along the circle by an angle of 2θ. If
one were to reflect through |B〉 and |U〉 again, then one would rotate another 2θ along the circle. Such a
rotation we refer to as a Grover iterate. The entire angle between |U〉 and |G〉 is π

2 − θ, and hence a Grover
iterate, i.e., a rotation over the angle 2θ counterclockwise, must be applied the following number of times to
arrive at |G〉 exactly:

π
2 − θ

2θ
=

π

4θ
− 1

2
However, we can only apply the Grover iterate an integer number of times. Hence, we apply it a total
number of k = [π/4θ − 1/2] times, where [x] denotes x rounded to the nearest integer, and arrive at an
approximation of |G〉 instead of precisely at |G〉. Note:

k =

[
π

4θ
− 1

2

]
=
⌊ π

4θ

⌋
(3.5.12)

54

This is the idea behind the amplitude amplification circuit. How one reflects through |B〉 is clear, as the
circuit R, which we assumed to have access to, does exactly this. How one reflects through |U〉, though, is
not clear at first glance. To that end, we introduce the circuit R0, which reflects the entire state space of an
n-qubit system through the subspace spanned by the state |0〉⊗n. It is displayed in Circuit 3.5.7.

Circuit 3.5.7: Reflection through the all-zero state
Description: This circuit reflects any state through the subspace spanned by the all-zero state.
Number of qubits: This circuit acts on n qubits, but it uses n ancilla qubits as well.
Elementary gate complexity:a If n ≥ 3, 2n+ 6 + 16 · (2n− 2) + 1 = 34n− 25 = O(n).
Circuit: Here, |ψ〉 is an n-qubit state.

X

X

X

X

X

X

X H H

X

X

X

X

X

X

X

|ψ〉

|0〉⊗n

(2(|0〉 〈0|)⊗n − I2n) |ψ〉

|0〉⊗n

Shorthand notation:

|ψ〉 (2(|0〉 〈0|)⊗n − I2n) |ψ〉
n

R0

aNote that the elementary gate complexity of a Toffoli gate is 16.

Proof of the reflective action of Circuit 3.5.7. Suppose that |ψ〉 is a computational basis state. One can
easily observe that the middle CNOT-gate performs an X-operation on the bottom qubit if and only if the
initial state |ψ〉 is |0〉⊗n. The state of the bottom qubit, prior to this middle Toffoli gate, is:

HX |0〉 = H |1〉 =
1√
2

(|0〉 − |1〉) = |−〉

Hence, we now observe that an X-operation on this state introduces an overall sign flip, as:

X |−〉 =
1√
2

(X |0〉 −X |1〉) =
1√
2

(|1〉 − |0〉) = − |−〉

Thus, if |ψ〉 is a computational basis state, we see that only a sign flip is introduced if |ψ〉 is |0〉⊗n. By
linearity, we now deduce that this circuit implements the desired action, completing the proof.

Now that we have defined the circuit R0, we can use it to construct the Grover iterate. It turns out, namely,
that QR0Q

∗ is a reflection through the state |U〉. Thus, we easily obtain that the circuit QR0Q
∗R is an

implementation of the Grover iterate. Circuit 3.5.8 elaborates on the details of this circuit.

55

Circuit 3.5.8: Grover iterate
Description: This circuit rotates any state in Figure 3.11 counterclockwise over an angle of 2θ.
Requirements:

1. Two orthogonal n-qubit states |G〉 and |B〉.
2. A setup circuit Q, which implements the following mapping, for some θ ∈ (0, π2):

|0〉⊗n Q7→ sin θ |G〉+ cos θ |B〉

3. A reflection circuit R, which implements a reflection through |B〉, i.e., implements the following
mapping where α, β ∈ [−1, 1] satisfy |α|2 + |β|2 = 1:

α |G〉+ β |B〉 R7→ −α |G〉+ β |B〉

Number of qubits: This circuit acts on n qubits, but at least n ancilla qubits are required, apart from
those required by Q and R.
Oracle query complexity: One call to Q, one to its inverse, and one call to R.
Elementary gate complexity:

2egc(Q) + egc(R) + 34n− 25 (n ≥ 3)

Circuit:

sinφ |G〉+ cosφ |B〉 sin(φ+ 2θ) |G〉+ cos(φ+ 2θ) |B〉
n

R Q∗ R0 Q

Shorthand notation:

sinφ |G〉+ cosφ |B〉 sin(φ+ 2θ) |G〉+ cos(φ+ 2θ) |B〉
n

G(Q,R)

Proof of the action of Circuit 3.5.8. Let’s trace the state throughout the application of the circuit. Sup-
pose that we start with the initial state sinφ |G〉 + cosφ |B〉. Then, after applying R, we obtain the state
− sinφ |G〉+ cosφ |B〉. Now, observe that we can rewrite this state, using some trigonometry:

− sinφ |G〉+ cosφ |B〉 = sin(−φ) |G〉+ cos(−φ) |B〉 = sin(−φ− θ + θ) |G〉+ cos(−φ− θ + θ) |B〉
= [sin(−φ− θ) cos θ + cos(−φ− θ) sin θ] |G〉 = [cos(−φ− θ) cos θ − sin(−φ− θ) sin θ] |B〉
= sin(−φ− θ)[cos θ |G〉 − sin θ |B〉] + cos(−φ− θ)[sin θ |G〉+ cos θ |B〉]

Now, we can easily observe what happens when we apply Q∗ to this state. We obtain:

sin(−φ− θ)Q∗[cos θ |G〉 − sin θ |B〉] + cos(−φ− θ) |0〉⊗n

We don’t know much about the state Q∗[cos θ |G〉 − sin θ |B〉], but we do know that cos θ |G〉 − sin θ |B〉 is
orthogonal to sin θ |G〉 + cos θ |B〉. From this and the unitarity of Q∗, we can deduce that Q∗[cos θ |G〉 −
sin θ |B〉] must be orthogonal to Q∗[sin θ |G〉 + cos θ |B〉] = |0〉⊗n. Hence, it picks up a minus sign when R0

is applied to it. And so, after the application of R0, we have that the system is in the following state:

− sin(−φ−θ)Q∗[cos θ |G〉−sin θ |B〉]+cos(−φ−θ) |0〉⊗n = sin(φ+θ)Q∗[cos θ |G〉−sin θ |B〉]+cos(φ+θ) |0〉⊗n

Now, after applying the final subcircuit, Q, we obtain the final state:

sin(φ+ θ)[cos θ |G〉 − sin θ |B〉] + cos(φ+ θ)[sin θ |G〉+ cos θ |B〉]

This, we can again rewrite, using some trigonometry, into:

[sin(φ+θ) cos θ+cos(φ+θ) sin θ] |G〉+[− sin(φ+θ) sin θ+cos(φ+θ) cos θ] |B〉 = sin(φ+2θ) |G〉+cos(φ+2θ) |B〉

which is indeed the resulting state we claimed in Circuit 3.5.8.

56

In the proof above, we have observed that Grover’s iterate has the following action on any state which can
be written as sinφ |G〉+ cosφ |B〉, for φ ∈ [0, 2π):

G(Q,R)[sinφ |G〉+ cosφ |B〉] = sin(φ+ 2θ) |G〉+ cos(φ+ 2θ) |B〉

We can also rewrite this in matrix-vector notation, using the identification that we made earlier in this
subsection:

G(Q,R)

[
cosφ
sinφ

]
=

[
cos(φ+ 2θ)
sin(φ+ 2θ)

]
=

[
− sinφ sin(2θ) + cosφ cos(2θ)
sinφ cos(2θ) + cosφ sin(2θ)

]
=

[
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

] [
cosφ
sinφ

]
In the middle equality, we used some trigonometric identities. Hence, we recover the matrix representation
of G(Q,R):

G(Q,R) =

[
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

]
(3.5.13)

Note that indeed, this is a matrix that rotates 2-dimensional vectors over an angle 2θ about the origin in
the counterclockwise direction. Thus, the algebraic derivation above indeed agrees with the geometrical
interpretation shown in Figure 3.12.

Now that we have an implementation for Grover’s iterate, we only have to apply it several times in a row
to construct an approximation of |G〉 from |U〉, as can be seen in Figure 3.12. So, in order to construct an
approximation of |G〉 from |0〉⊗n, we must first of all apply Q once to obtain the state |U〉, and subsequently
apply the Grover iterate a total number of k times, where k was defined in Equation 3.5.12. This circuit is
known as the amplitude amplification circuit, and the details are shown in Circuit 3.5.9.

Circuit 3.5.9: Amplitude Amplification
Description: This circuit approximately constructs the state |G〉 from the state |0〉⊗n.
Requirements:

1. Two orthogonal n-qubit states |G〉 and |B〉.
2. A setup circuit Q, which implements the following mapping, for some known θ ∈ (0, π2):

|0〉⊗n Q7→ sin θ |G〉+ cos θ |B〉

3. A reflection circuit R, which implements a reflection through |B〉, i.e., implements the following
mapping where α, β ∈ [−1, 1] satisfy |α|2 + |β|2 = 1:

α |G〉+ β |B〉 R7→ −α |G〉+ β |B〉

Derived constants: k = b π4θ c.
Number of qubits: The circuit acts on n qubits, and excluding the oracle circuits, at least n auxiliary
qubits are required, possibly more due to the circuits Q and R.
Oracle query complexity: 2k+1 queries are performed to Q or its inverse, and k queries are performed
to R.
Elementary gate complexity:

(2k + 1) egc(Q) + k egc(R) + k(34n− 25) (n ≥ 3)

Circuit: The Grover iterate is applied k times in the circuit below. The output state satisfies | 〈ψ|G〉 | ≥
1
2

√
2.

|0〉⊗n |ψ〉
n

Q G(Q,R) G(Q,R) G(Q,R)

Proof of the property of the output state |ψ〉 in Circuit 3.5.9. We trace the state of the system throughout
application of the circuit. After the application of Q, the system is in state |U〉 = sin θ |G〉+ cos θ |B〉. Next,

57

according to the properties provided by Circuit 3.5.8, the final state of the system, |ψ〉, after k applications
of the Grover iterate, is:

|ψ〉 = sin((2k + 1)θ) |G〉+ cos((2k + 1)θ) |B〉
So, we find:

〈ψ|G〉 = sin((2k + 1)θ)

Now, observe that we defined k = bπ/4θc. Hence, we obtain:

π

4θ
− 1 ≤ k ≤ π

4θ

Hence, multiplying by 2 and adding 1, yields:

π

2θ
− 1 ≤ 2k + 1 ≤ π

2θ
+ 1

And finally, multiplying by θ yields:

0 <
π

2
− θ ≤ (2k + 1)θ ≤ π

2
+ θ < π

Hence, we obtain 〈ψ|G〉 = sin((2k + 1)θ) > 0. Moreover, if θ ∈ (0, π/4], we have:

〈ψ|G〉 = sin((2k + 1)θ) ≥ sin
(π

2
− θ
)
≥ sin

(π
4

)
=

1

2

√
2

On the other hand, if θ ∈ (π/4, π/2), then we find that k = bπ/4θc = 0 and hence:

〈ψ|G〉 = sin((2k + 1)θ) = sin(θ) > sin
(π

4

)
=

1

2

√
2

So, in both cases, | 〈ψ|G〉 | = 〈ψ|G〉 ≥ 1
2

√
2, proving the claim stated in the box.

So, now we have fully developed the amplitude amplification circuit. The curious reader might wonder
what this circuit is useful for. A prototypical application for this circuit is Grover’s algorithm, which aims at
searching among an unstructured set of things for an element of that set that satisfies a certain property. For
instance, suppose that we have a finite set S, whose elements we identify with distinct n-qubit computational
basis states, that is, for all s ∈ S, there is a computational basis state |s〉 and for all s, t ∈ S, 〈s|t〉 = δst.
Next, suppose that every element s ∈ S either satisfies some property p, in which case p(s) = 1, or does
not satisfy some property p, in which case p(s) = 0, and that we know the number of elements s ∈ S that
have property p. Suppose that we are looking for any element s ∈ S that satisfies property p, and suppose,
in addition, that we have a quantum circuit P , which implements the following action, for all s ∈ S and
b ∈ {0, 1}:

|s〉 ⊗ |b〉 7→ |s〉 ⊗ |b⊕ p(s)〉
Now, we can define SG ⊆ S to be the set containing all elements that have property p, i.e., s ∈ SG ⇔ p(s) = 1,
and similarly we define SB = S \ SG. Observe that we know the value of |SG|. We can now define the good
and bad state as follows:

|G〉 =
1√
|SG|

∑
s∈SG

|s〉 and |B〉 =
1√
|SB |

∑
s∈SB

|s〉

If we can now construct the good state, |G〉, we can measure it in the computational basis and obtain an
element s which has property p, i.e., for which p(s) = 1. So, we aim to use the amplitude amplification
circuit to construct |G〉. To that end, we need a setup circuit Q, and a reflection circuit R. We can construct
the setup circuit easily, because we know what elements are in the set S:

Q : |0〉⊗n 7→ |U〉 =
1√
|S|

∑
s∈S
|s〉 = sin θ |G〉+ cos θ |B〉

58

where θ = arcsin(
√
|SG|/|S|). We can also easily construct the reflection circuit, acting on n qubits and

using one auxiliary qubit, as follows, where α, β ∈ C such that |α|2 + |β|2 = 1:

R = (I2n ⊗ (XH))P (I2n ⊗ (HX)) : α |G〉+ β |B〉 7→ −α |G〉+ β |B〉

Now, we have satisfied all conditions that are necessary for implementing the amplitude amplification circuit,
and hence we can (approximately) construct |G〉. The number of times we execute P , now, is given by
Circuit 3.5.9 as the oracle complexity of R, as we execute P once every time we execute R:

k =
⌊ π

4θ

⌋
≈ π

4
· 1

arcsin(
√
|SG|/|S|)

≈ π

4
·

√
|S|
|SG|

(as |SG| � |S|)

Finally, once we have constructed the n-qubit state |G〉, we can simply measure these n qubits in the
computational basis, and then we will obtain an element s ∈ SG, i.e., an element that has property p. In doing
so, we only queried P a number of times proportional to the square root of the inverse fraction of elements
that have property p, namely approximately

√
|S|/|SG| times. In contrast, in a classical implementation,

we would on average need to check |S|/|SG| elements in S before finding one that has property p. Hence,
Grover’s algorithm quadratically reduces the number of queries to the routine that checks whether an element
in S has a certain property, and so if this routine computationally dominates all the other operations, this
implies a quadratic speed-up of the algorithm.

There is of course an obvious catch to this method, though. We require that we know |SG|, i.e., the number
of elements that satisfy the property p, beforehand, and it is not clear how we would proceed if we do not
know |SG| before the algorithm starts. This is where the algorithm in the next subsection comes in, known
as amplitude estimation.

3.5.7 Amplitude estimation

In the previous section, we have seen how the amplitude amplification circuit is implemented. Moreover, we
mentioned an application of this amplitude amplification circuit, known as Grover’s algorithm, which allows
us to find an element in an unstructured set satisfying some property, if we know how many elements satisfy
this property beforehand.

The quantum algorithm that we introduce in this section, though, deals with this if statement, i.e., it
provides a way to figure out the number of elements that satisfy the given property. The algorithm is
known as the amplitude estimation algorithm, and it combines the Grover iterate with the phase estimation
algorithm. Its goal is to estimate θ, as defined in Equation 3.5.11, and with it the amplitude of the good state
|G〉 in the state |U〉, in the framework of the amplitude amplification circuit. The algorithm first appeared
in [BHMT00].

Recall from Equation 3.5.13 that we can write Grover’s iterate as a matrix, acting on the subspace of the
state space of the n-qubit system, spanned by |G〉 and |B〉. Using this matrix representation, it is not difficult
to find two eigenvalue-eigenvector pairs of the Grover iterate G(Q,R). One can easily check using ordinary
matrix-vector multiplication that these are:

|S+〉 =
1√
2

(|G〉+ i |B〉) with G(Q,R) |S+〉 = e2iθ |S+〉

|S−〉 =
1√
2

(|G〉 − i |B〉) with G(Q,R) |S−〉 = e−2iθ |S−〉

59

Moreover, observe that we have:

i√
2

(
−eiθ |S+〉+ e−iθ |S−〉

)
=
i

2

(
−eiθ(|G〉+ i |B〉) + e−iθ(|G〉 − i |B〉)

)
=
i

2

([
−eiθ + e−iθ

]
|G〉+ i

[
−eiθ − eiθ

]
|B〉
)

=
eiθ − e−iθ

2i
|G〉+

eiθ + e−iθ

2
|B〉 = sin θ |G〉+ cos θ |B〉 = |U〉

So, we have that |U〉 is a superposition of |S+〉 and |S−〉 and the moduli of the amplitudes of both |S+〉 and
|S−〉 are equal. Moreover, both |S+〉 and |S−〉 are eigenstates of the Grover iterate, G(Q,R), with eigenvalues
e2iθ and e−2iθ, respectively. Hence, the idea is to run the phase estimation algorithm, Algorithm 3.5.6,
substituting Grover’s iterate for the unknown quantum circuit U , and using |U〉 as a superposition of two
eigenstates of the oracle quantum circuit U = G(Q,R). The result will be an approximation of either θ/π
or −θ/π, with success probability at least 1 − δ. But we ensured in Circuit 3.5.8 that θ ∈ (0, π/2 − ε),
and hence we can simply discard the sign. After that, we can simply multiply the result by π to obtain an
approximation of θ.

In order to be able to apply the phase estimation circuit, though, we must be able to implement controlled
versions of powers of Grover’s iterate. To that end, we first of all introduce the controlled version of the
R0-circuit, Circuit 3.5.7, in Circuit 3.5.10.

Circuit 3.5.10: Controlled reflection through the all-zero state.
Description: This circuit reflects any state through the subspace spanned by the all-zero state, con-
trolled on a single qubit. This is the controlled version of Circuit 3.5.7.
Number of qubits: This circuit acts on n+ 1 qubits, but uses n ancilla qubits.
Elementary gate complexity: If n ≥ 3, 2n+ 6 + 16 · (2n− 1) = 34n− 10 = O(n).
Circuit:

X

X

X

X

X

X

X H H

X

X

X

X

X

X

X

|ψ〉

|0〉⊗n

(|1〉 〈1| ⊗ (2(|0〉 〈0|)⊗n − I2n)
+ |0〉 〈0| ⊗ I2n) |ψ〉

|0〉⊗n

Shorthand notation:

n
R0

|ψ〉 (|1〉 〈1| ⊗ (2(|0〉 〈0|)⊗n − I2n) + |0〉 〈0| ⊗ I2n) |ψ〉

Proof of the reflective action of Circuit 3.5.10. If the control qubit is in state |0〉, then the middle Toffoli
circuit will act as the identity operation. But as the circuit on the right side of the middle Toffoli gate is

60

the reverse of the circuit that is on shown on the left side of the middle Toffoli gate, the entire circuit acts
as the identity gate if the control qubit is in state |0〉, as expected.

On the other hand, if the control qubit is in state |1〉, then the action of this circuit on all the qubits except
the first one is the same as the action of the circuit shown in Circuit 3.5.7. So, we find that the circuit shown
here indeed implements a controlled version of Circuit 3.5.7. This completes the proof.

Now, recall that Grover’s iterate can be concisely written as G(Q,R) = RQ∗R0Q. Hence, in order to
construct a controlled version of Grover’s iterate, we only have to implement the R- and R0-circuits in a
controlled manner, because the Q∗- and Q-circuits undo each other’s action. Circuit 3.5.11 exploits this
observation, and also shows some additional properties of this controlled implementation of Grover’s iterate.

Circuit 3.5.11: Controlled Grover iterate
Description: This circuit is a controlled version of Circuit 3.5.8. Controlled on a single qubit, it rotates
any state on the circle shown in Figure 3.11 counterclockwise over an angle of 2θ.
Requirements:

1. Two orthogonal n-qubit states |G〉 and |B〉.
2. A setup circuit Q, which implements the following mapping, for some θ ∈ (0, π2):

|0〉⊗n Q7→ sin θ |G〉+ cos θ |B〉

3. A controlled reflection circuit C(R), which implements a reflection through |B〉 controlled on a
single qubit, i.e., implements the following mapping where α, β ∈ [−1, 1] satisfy |α|2 + |β|2 = 1 and
b ∈ {0, 1}:

|b〉 ⊗ (α |G〉+ β |B〉) C(R)7→ |b〉 ⊗ ((−1)bα |G〉+ β |B〉)

Number of qubits: This circuit acts on n+ 1 qubits, but it requires n ancilla qubits, not taking into
account those required by Q and C(R).
Oracle query complexity: One call to Q, one to its inverse and one to C(R).
Elementary gate complexity:

2 egc(Q) + egc(C(R)) + 34n− 10 (n ≥ 3)

Circuit: Here, b ∈ {0, 1} and φ ∈ [0, 2π).

sinφ |G〉+ cosφ |B〉 sin(φ+ 2bθ) |G〉+ cos(φ+ 2bθ) |B〉
|b〉 |b〉

n
R Q∗ R0 Q

Shorthand notation:

sinφ |G〉+ cosφ |B〉 sin(φ+ 2bθ) |G〉+ cos(φ+ 2bθ) |B〉
|b〉 |b〉

n
G(Q,R)

Finally, now that we have introduced the controlled version of the Grover iterate, we can describe how the
amplitude estimation algorithm works. This is done in Algorithm 3.5.12.

61

Algorithm 3.5.12: Amplitude estimation
Description: This algorithm approximates θ in the context of Grover’s iterate.
Input:

1. A real number ε > 0, indicating the accuracy of the approximation θ.
2. A real number δ > 0, indicating the maximal tolerable probability of failure.
3. Two orthogonal n-qubit states |G〉 and |B〉.
4. An n-qubit circuit Q that has the following action, for some θ ∈ [0, π/2− ε):

|0〉⊗n Q7→ sin θ |G〉+ cos θ |B〉

5. An controlled n-qubit reflection circuit C(R) that performs the following action, for all α, β ∈ C
satisfying |α|2 + |β|2 = 1 and b ∈ {0, 1}:

|b〉 ⊗ (α |G〉+ β |B〉) C(R)7→ |b〉 ⊗ ((−1)bα |G〉+ β |B〉)

Derived constants:
1. m = dlog(π(1/δ + 4)/ε)e, indicating the number of qubits required to obtain a sufficiently close

approximation to θ.
Output: A number θ̃ ∈ [0, π/2] such that |θ − θ̃| ≤ ε.
Number of qubits: m + n qubits are acted upon, and at least n auxiliary qubits are required, not
taking into account those that are required by Q and C(R).
Success probability: Lower bounded by 1− δ.
Query complexity: 2m queries to Q are performed, and 2m − 1 queries to its inverse. Furthermore,
2m − 1 queries are performed to C(R).
Elementary gate complexity:

(22m − 1) egc(Q) + (2m − 1) egc(C(R)) + (2m − 1)(34n− 10) + (m+ 3)m/2 + 3bm/2c (n ≥ 3)

Algorithm:

1. Prepare the m+ 2n qubit system in the state |0〉⊗(m+2n)
.

2. Apply the Q-circuit to qubits m+ 1 through m+ n.
3. Run the phase estimation algorithm on qubits 1 through m+ n. The accuracy parameter is ε/π.

The oracle circuit is G(Q,R). The controlled applications of the oracle circuit are implemented by

C(G(Q,R)2j) = C(G(Q, r))2j , for all j ∈ {0, 1, . . . ,m− 1}. Denote the output by ξ, and if ξ > 1
2 ,

subtract one from ξ.
4. Return θ̃ = |ξ| · π.

As a final remark, suppose that we have access to a controlled version of P , where P is the circuit that
checks whether a given element of s ∈ S has some property p. Then, we can build the circuits Q and C(R),
just like we did in the previous subsection, and we can supply these circuits to the amplitude estimation
algorithm. This allows us to obtain an approximation of θ, which we can subsequently use in the amplitude
amplification circuit to approximately construct |G〉. This solves the problem that we pinpointed at the end
of the previous subsection.

This concludes our discussion of the amplitude estimation algorithm, and with it, we also conclude the
discussion of the most important techniques in quantum computing. In subsequent chapters, we will apply
these techniques to the gradient estimation problem, and afterwards we will use the gradient estimation
algorithm to solve the quantum reinforcement learning problem.

62

4 Quantum gradient estimation

In the previous chapters, we have introduced quantum computing in a very general setting. Chapter 2 elabo-
rated on the fundamentals of quantum mechanics, and Chapter 3 introduced the field of quantum computing.
In this chapter, we will specialize towards one specific problem that can be solved with quantum computing,
which is estimating gradients of high-dimensional functions using function evaluations. In particular, we
will develop the necessary tools in order to implement such a quantum gradient estimation algorithm. In
Chapter 5, we will prove that the algorithm presented in this chapter is essentially optimal in the number
of function evaluations. Afterwards, in the last chapter, Chapter 6, we will see how this can be applied to
construct quantum gradient descent algorithms, and then we will apply this technique to develop the basics
of quantum reinforcement learning.

The first quantum gradient estimation algorithm was presented by Jordan in [Jor05]. This algorithm relied
solely on the quantum Fourier transform. Subsequently it was improved by Gilyén et al. in [GAW17], who
added a numerical method to improve the accuracy. Here, we present a slightly more generalized version of
Gilyén et al.’s algorithm, which also allows for estimating gradients with respect to general `p norms.

This chapter will be subdivided into several parts. First of all, we will fix some notation, in Section 4.1.
Afterwards, in Section 4.2, we develop the theory necessary to implement fractional phase queries, based
on [GSLW18]. These fractional phase queries are used in the quantum gradient estimation algorithm that
was developed by Gilyén et al. in [GAW17]. The complete algorithm we present in Section 4.3.

4.1 Nomenclature

In this section, we first of all fix some terminology, mainly to avoid confusion in the remainder in this
chapter. As we are discussing gradients of multidimensional functions, we start by fixing the notation for
differentiating real-valued functions that are defined on a multidimensional domain, in Subsection 4.1.1.
Then, in Subsection 4.1.2, we define some function classes, which we can use to denote spaces of input
functions to quantum gradient estimation algorithms. Subsequently, in Subsection 4.1.3, we discuss how we
can generalize the classical notion of “performing a function evaluation” to the quantum computing setting.
Finally, in Subsection 4.1.4, we formally define what we mean by a quantum gradient estimation algorithm.

4.1.1 Derivatives

Throughout this chapter, we will frequently be dealing with derivatives of multidimensional functions. There
exist many different ways to express these derivatives concisely, so to avoid confusion, we will precisely define
which notations we will be using here. These notations might take some getting used to at first, but they
greatly reduce the cumbersomeness of the expressions in the remainder of this chapter.

First of all, for all n ∈ N, we let [n] denote {1, 2, . . . , n}. Hence, for all k, n ∈ N, the set [n]k is the set that
contains all finite sequences of length k whose entries are elements from [n] = {1, 2, . . . , n}.

Next, suppose that d ∈ N, and that f is a function mapping the open set Ω ⊆ Rd into R, i.e., f : Ω→ R. We
let j ∈ [d]. Then, we define ∂jf to be the function f , differentiated with respect to the jth variable. Note
that again ∂jf : Ω→ R. Furthermore, we define ∂kj f to be the function f differentiated to the jth variable
k times.

Now, let k ∈ N and α ∈ [d]k. For all j ∈ {1, 2, . . . , k}, we have that αj ∈ {1, 2, . . . , d}. We let ∂αf =
∂α1

∂α2
· · · ∂αkf . Hence, ∂αf is a kth order derivative of f , and δαf : Ω → R. Hence, every entry of α

corresponds to a differentiation operation of f to the coordinate specified by this entry. Furthermore, for
some vector x ∈ Rd, we define xα to be xα1xα2 · · ·xαd ∈ R.

63

We also introduce another notation for the derivative of f . Let β ∈ Nd0. Then, we say that Dβf =

∂β1

1 ∂β2

2 · · · ∂
βd
d f .1 Both notations we will use throughout the remainder of this chapter, as one is sometimes

more convenient than the other and vice versa. Furthermore, we define |β| = β1 + β2 + · · · + βd. Finally,

for all x ∈ Rd, we also define x(β) = xβ1

1 xβ2

2 · · ·x
βd
d ∈ R, where the parentheses distinguish the notation from

the one introduced in the previous paragraph.

Let’s illustrate these notations by means of an example. Suppose that f : R3 → R, with f(x, y, z) = x2yz.
Then:

∂1f(x, y, z) = 2xyz ∂2f(x, y, z) = x2z ∂3f(x, y, z) = x2y
∂(1,1)f(x, y, z) = 2yz ∂(1,2)f(x, y, z) = 2xz ∂(2,1,1)f(x, y, z) = 2z

D(1,0,0)f(x, y, z) = 2xyz D(2,1,0)f(x, y, z) = 2z D(2,1,1)f(x, y, z) = 2

In the next subsection, we will use the notation introduced in this subsection to introduce classes of functions
whose elements’ derivatives satisfy certain smoothness conditions.

4.1.2 Gevrey function classes

Consider the set of all differentiable functions f : Rd → R, for some d ∈ N. This set contains a wide range
of functions. Some are very well-behaved, for example the linear functions fv for some v ∈ Rd, defined by
x 7→ v · x. However, others behave in a very wild manner, for instance the function x 7→ (x2

j · sin(1/xj))
d
j=1.

For this huge set of functions, one cannot hope to develop an algorithm that accurately estimates the gradient,
simply because the behavior of some of these functions is too wild to cope with. Hence, when one develops
a gradient estimation algorithm, it is indispensable to impose some restrictions on the set of functions for
which the algorithm is supposed to yield accurate results.

In this subsection, we introduce one such set of restrictions on the class of functions for which we want the
gradient estimation algorithm to yield accurate results. This we do in the following definition. The resulting
class of functions is in the literature referred to as a Gevrey function class.

Definition 4.1.1: Gevrey function classes
Let d ∈ N, Ω ⊆ Rd open, M > 0, c > 0 and σ ∈ R. Now, we define the Gevrey function class Gσd,Ω,M,c

to be the set containing all functions f : Ω→ R satisfying the following conditionsa:
1. f must be smooth (i.e., all derivatives must exist, f ∈ C∞(Ω)).
2. The power series of f around any point x ∈ Ω must converge on all of Ω.
3. For all multi-indices α ∈ Nd0, we have:

‖Dαf‖∞ ≤Mc|α|(|α|!)σ

aCondition 2 actually implies condition 1, but we included condition 1 for extra clarity. Furthermore, if σ < 1, then
condition 3 implies condition 2.

It is not difficult to see that when one increases M , c or σ, the restrictions defined in this definition become
weaker. Moreover, if one shrinks the set Ω, the condition becomes weaker as well. These statements are
made precise in the following theorem.

1Note that if f is sufficiently smooth, the order of differentiation does not matter. These smoothness conditions are auto-
matically satisfied by the assumptions made in Subsection 4.1.2, and hence we will not worry about the order of differentiation
in the remainder of this text.

64

Theorem 4.1.2: Properties of Gevrey function classes
Let d ∈ N, Ω ⊆ Rd open, M > 0, c > 0 and σ ∈ R. The Gevrey function classes satisfy the following
properties:

1. For all open sets Ω1 ⊆ Ω2 ⊆ Rd, we have f ∈ Gσd,Ω2,M,c ⇒ f |Ω1
∈ Gσd,Ω1,M,c.

2. For all M1 ≥M2 > 0, we have Gσd,Ω,M2,c
⊆ Gσd,Ω,M1,c

.
3. For all c1 ≥ c2 > 0, we have Gσd,Ω,M,c2

⊆ Gσd,Ω,M,c1
.

4. For all σ1 ≥ σ2, we have Gσ2

d,Ω,M,c ⊆ G
σ1

d,Ω,M,c.

Proof. The statements in this theorem follow immediately from the restrictions in Definition 4.1.1.

According to the previous theorem, the class of functions Gσd,Ω,M,c becomes bigger when we increase M , c or
σ. Hence, for some function f : Ω→ R, it is sensible to wonder what is the minimal σ such that f ∈ Gσd,Ω,M,c

for some values of M and c. This value of σ, we refer to as the Gevrey-type of f . We formalize this idea in
the definition below.

Definition 4.1.3: Gevrey-type of functions
Let d ∈ N and Ω ⊆ Rd open. Let f ∈ Gσd,Ω,M,c for some M > 0, c > 0 and σ ∈ R. Next, we define:

GT(f) = inf{σ ∈ R : ∃M, c > 0 : f ∈ Gσd,Ω,M,c}

We refer to this quantity as the Gevrey-type of the function f . Additionally, we say that f is of Gevrey-
type GT(f).

Finally, it is interesting to figure out how the Gevrey function classes are related under elementary modifi-
cations of their elements. The following theorem provides these relations.

Theorem 4.1.4: Modifications of Gevrey functions
Let d ∈ N, Ω ⊆ Rd open, M > 0, c > 0, σ ∈ R and f ∈ Gσd,Ω,M,c. Then, the following statements hold.

1. We define the following function, with 0 6= M ′ ∈ R:

g : Ω→ R, g(x) =
f(x)

M ′

Then g ∈ Gσd,Ω,M/M ′,c.

2. We define the set Ω′ and function h as follows, where 0 6= c′ ∈ R:

Ω′ = {c′x : x ∈ Ω}, and h : Ω′ → R, h(x) = f(c′x)

Then h ∈ Gσd,Ω′,M,cc′ .

Proof. The proofs are immediate from the restrictions provided in Definition 4.1.1.

As a final note on Gevrey function classes, we will determine the Gevrey-type of some typical functions.
First of all, we will consider polynomials defined on a bounded set.

Example 4.1.5: Let Ω ⊆ Rd be bounded, p : Ω → R be a multivariate polynomial, and let deg(p) be its
total degree. Then, we find that all kth order derivatives of p vanish whenever k > deg(p). Hence, we can
simply take, for all σ ∈ R:

Mσ = sup
k∈{0,1,...,deg(p)}

sup
α∈[d]k

sup
x∈Ω
|∂αp(x)| · (deg(p)!)−σ

Then, we find that Mσ < ∞ and p ∈ Gσd,Ω,Mσ,c
. Thus, we find that GT(p) = −∞. This does not hold

for polynomials that are defined on unbounded regions Ω, however, as the partial derivatives blow up at
infinity.

65

In the example we just considered, we remarked that having a bounded region on which the polynomial is
defined is of crucial importance for its Gevrey type. It is natural to wonder whether there exist functions
whose Gevrey types do not exhibit this dependence on their domain. Below, we will give an example of such
a function. We will again encounter this function in Section 5.1.

Example 4.1.6: Let c > 0 and consider the function f : R → R, f(x) = sin(cx). The derivatives of this
function are given by, with n ∈ N0:

f (n)(x) = cn ·

{
(−1)(n−1)/2 cos(cx), if n is odd

(−1)n/2 sin(cx), if n is even

Hence, we find, for all n ∈ N0:
|f (n)(x)| ≤ cn = cn(n!)0

So, f ∈ G0
1,R,1,c. Moreover, for every n ∈ N0, equality is reached in the above inequality for some values of

x, and hence there does not exist a σ < 0 such that f is of Gevrey-type σ. Thus, we find GT(f) = 0.

This concludes the introduction of the Gevrey function classes. In the next subsection, we will have a look
at how we can evaluate functions from these function classes in the quantum computing setting.

4.1.3 Phase oracle queries

In classical computing, performing a function evaluation of f comes down to executing a procedure that
yields the value f(x) for some input value x. Generally, the input value of x has to satisfy some condition
such that it lies in the domain of f .

In order to develop the quantum gradient estimation algorithm and analyze the number of function eval-
uations it performs, we have to precisely define what we mean by performing a function evaluation of f
within the framework of quantum computing. To that end, we introduce a phase oracle, which calculates
the function value at some predefined point in the domain and outputs the result by means of a phase shift.
We say that we perform one function evaluation of f if we query the oracle quantum circuit presented in the
next definition once.

Definition 4.1.7: Phase oracle
Let f : Ω→ R, G ⊆ Ω and n ∈ N. Let {|x〉 : x ∈ G} be an orthogonal set of n-qubit states. Then Of,G
is a phase oracle of f on G if it is a quantum circuit acting on n qubits that implements the following
mapping:

Of,G : |x〉 7→ eif(x) |x〉

Moreover, we require Of,G to act as the identity on all the states that are in the orthogonal complement
of {|x〉 : x ∈ G}. We refer to G as the grid corresponding to the phase oracle Of,G, even though the
layout of G in Rd does not necessarily resemble a grid at all.

Note that in the above definition, we must have that |G| ≤ 2n, because the n-qubit state space is 2n-
dimensional.

As a final note, observe that if we want to obtain the value of f(x) for some x ∈ G, then in general we cannot
find this value using one call to Of,G. This is because the function value is only stored in the phase of the
amplitude of the state |x〉. In order to extract this phase information, we can execute the phase estimation
algorithm of Subsection 3.5.5, but this involves multiple calls to Of,G. In this sense, the function evaluation
model in quantum computing is weaker than the one in classical computing, where we can obtain the value
of f(x) using just one function evaluation.

This concludes the introduction of the phase oracle. In the next subsection, we will use these phase oracles
to define what exactly we mean by a quantum gradient estimation algorithm.

66

4.1.4 Quantum gradient estimation algorithms

The goal of this chapter is to develop a quantum algorithm that, given a phase oracle of some function,
calculates an approximation of its gradient at some point. We should, however, specify what exactly we
mean by “an approximation”, and when we deem this approximation to be close enough to the true value
for the algorithm to have terminated successfully. The following definition formalizes all such details.

Definition 4.1.8: Quantum gradient estimation algorithms
Let d ∈ N, Ω ⊆ Rd open, a ∈ Ω, G ⊆ Ω, ε > 0, p ∈ [1,∞] and P ∈ [0, 1]. Let F be a class of
functions, whose elements map Ω to R in an at least once differentiable manner. Then an ε-precise
`p-approximate quantum gradient estimation algorithm for F in a on G with success probability P is a
quantum algorithm that satisfies the following properties:

1. For every f ∈ F , the input is a phase oracle of f on G, controlled on one qubit, denoted by
C(Of,G).

2. For every input C(Of,G) where f ∈ F , with probability at least P , the algorithm calculates a
vector v ∈ Rd such that:

‖v −∇f(a)‖p ≤ ε

Loosely speaking, a quantum gradient estimation algorithm solves problems of the following form with
constant probability: “Given a controlled phase oracle C(Of,G), where f ∈ F , find an approximation of
∇f(a) which differs from the true value by at most ε in `p-norm.”

Note that the above definition closes some obvious loopholes. For instance, if we want to calculate the
gradient of f , we must use the controlled phase oracle C(Of,G), and we cannot use the circuit Og,G for some
other function g ∈ F , simply because it is not part of the input.

This completes the formal definition of a quantum gradient estimation algorithm. In the next section, we
will set the first step towards developing such an algorithm.

4.2 Fractional phase queries

In this section, we will develop one of the building blocks of Gilyén et al.’s quantum gradient estimation
algorithm that we will present in the next section. More precisely, we explain how we can build a quantum
circuit that implements a fractional phase query. This is a quantum circuit that approximately implements
the following operation, for some ξ ∈ R:

Oξf,G : |x〉 7→ eiξf(x) |x〉

For the most part, we follow the construction provided by [GSLW18], and provide a construction of a
quantum circuit that implements this operation approximately using a number of calls to the controlled
phase oracle C(Of,G) only logarithmic in the precision.

This section is subdivided in four subsections. First of all, we introduce the concept of block-encodings, in
Subsection 4.2.1. Next, we build a circuit that implements a block-encoding of the sine of a function, in
Subsection 4.2.2. After that, we construct polynomial approximations to the functions x 7→ sin(t arcsin(x))
and x 7→ cos(t arcsin(x)) in Subsection 4.2.3. Next, we explain how we can implement block-encoded
polynomials of arbitrary operators in Subsection 4.2.4. Subsequently, we describe how we can add two
polynomials in Subsection 4.2.5. Finally, we merge all ideas together in a complete quantum circuit, which
we provide in Subsection 4.2.6.

67

4.2.1 Block-encodings

First of all, we introduce the concept of block-encodings. The approach presented here is taken from
[GSLW18].

Definition 4.2.1: Block-encodings
Let U be a unitary operator acting on the n-qubit state space. Suppose that A is another unitary
operator, acting on (n + a)-qubits, where a ≥ 0. Furthermore, let δ ≥ 0 and α ∈ C. We say that A is
an (α, a, δ)-block-encoding of U if:∥∥∥A− α(〈0|⊗a ⊗ I2n)U(|0〉⊗a ⊗ I2n)

∥∥∥ ≤ δ
By {U}(α,a,δ), we denote the set of all (α, a, δ)-block-encodings of U .

We can easily see that A and U as in the definition above are very concretely related. Consider, namely,
the matrix representation of A, which is a 2n+a× 2n+a unitary matrix. As such, its layout can be viewed as
2a × 2a blocks, all of which have dimension 2n × 2n. If A is an (α, a, ε)-block-encoding of U , then, according
to Definition 4.2.1, the top-left block of A almost equals αU . More precisely, the matrix αU and the top-left
2n × 2n block of A differ only by δ in operator norm. Thus, we can think of the matrix representation of A
as being approximately equal to:

A ≈


αU · · · · ·
· · · · · ·
...

...
. . .

...
· · · · · ·


where all the single dots (the ·’s) represent other, unimportant, 2n×2n-blocks. Thus, we find that the matrix
representation of U is somehow encoded in the upper-left block of the matrix representation of A, hence the
name. Rather trivially, we find that every unitary operator is a (1, 0, 0)-block-encoding of itself.

At this point, it is not obvious why block-encodings are useful. The following definition, though, will provide
us with a very natural application of block-encodings.

Definition 4.2.2: Implementation of function compositions
Let f : Ω → R, G ⊆ Ω and {|x〉 : x ∈ G} be an orthonormal set of n-qubit states. Furthermore, let U
be a (not necessarily unitary) operator acting on the n-qubit state space, and let h : img(f) → C. We
say that U implements h ◦ f on G if:

U =
∑
x∈G

h(f(x)) |x〉〈x|

We write U = h(f)G.

Specifically, observe that we can write the phase oracle Of,G as follows:

Of,G =
∑
x∈G

eif(x) |x〉〈x|

and hence we can write Of,G =
(
eif
)
G

. Similarly, suppose that we had an operator U that implements the
following mapping:

U =
∑
x∈G

f(x) |x〉〈x|

Then we would write U = fG, because the function h in this case would simply be the identity function.

Note that if not all function values f(x) are located on the unit disc in the complex plane, then the operator
U = fG defined above is not unitary. Hence, we cannot hope to implement this operator U in a quantum

68

circuit directly. However, we can hope to implement a block-encoding of U , because the upper-left block of
a unitary matrix is not necessarily unitary itself. This is what we will primarily be using block-encodings
for, namely implementing non-unitary operators as part of bigger unitary operators.2

This concludes the introduction of the concept of block-encodings. In the next subsection, we will construct
the first quantum circuit that is a block-encoding of a non-unitary operator.

4.2.2 Implementation of a (1, 1, 0)-block-encoding of sin(f)G

In this subsection we will construct a quantum circuit that is a block-encoding of the unitary operator that
implements sin(f) on G. Moreover, we will construct this circuit by only making calls to the controlled phase
oracle C(Of,G).

We start by giving the circuit, and subsequently we will prove that the action is as claimed.

Circuit 4.2.3: Block-encoding of the operator that implements sin ◦f on G
Description: This quantum circuit is a (1, 1, 0)-block-encoding of i sin(f)G.
Requirements: A controlled version of a phase oracle Of,G, denoted by C(Of,G), acting on n qubits.
Number of qubits: This circuit acts on n+ 1 qubits, but possibly Of,G requires some extra auxilliary
qubits.
Oracle query complexity: One call to C(Of,G) and one to its inverse.
Elementary gate complexity: 2 egc(C(Of,G)) + 4.
Circuit:

n
H

Of,G

X Z
O∗f,G

H

Shorthand notation:
n+ 1

[i sin(f)G](1,1,0)

Proof that the circuit in Circuit 4.2.3 is a (1, 1, 0)-block-encoding of i sin(f)G. Let’s consider the matrix rep-
resentation of Circuit 4.2.3. By simply writing out the matrix representation of the elements in the quantum
circuit, we find:

[i sin(f)G](1,1,0) = (H ⊗ I2n)C(O∗f,G)(Z ⊗ I2n)(X ⊗ I2n)C(Of,G)(H ⊗ I2n)

=
1

2

[
I2n I2n

I2n −I2n

] [
I2n 0
0 O∗f,G

] [
I2n 0
0 −I2n

] [
0 I2n

I2n 0

] [
I2n 0
0 Of,G

] [
I2n I2n

I2n −I2n

]
=

1

2

[
I2n O∗f,G
I2n −O∗f,G

] [
0 I2n

−I2n 0

] [
I2n I2n

Of,G −Of,G

]
=

1

2

[
I2n O∗f,G
I2n −O∗f,G

] [
Of,G −Of,G
−I2n −I2n

]
=

1

2

[
Of,G −O∗f,G −Of,G −O∗f,G
Of,G +O∗f,G −Of,G +O∗f,G

]
=

1

2

[(
eif
)
G
−
(
e−if

)
G
−
(
eif
)
G
−
(
e−if

)
G(

eif
)
G

+
(
e−if

)
G
−
(
eif
)
G

+
(
e−if

)
G

]
=

[
i sin(f)G − cos(f)G
cos(f)G −i sin(f)G

]
Hence, indeed, we note that [i sin(f)G](1,1,0) is a (1, 1, 0)-block-encoding of i sin(f)G, and so we write
[i sin(f)G](1,1,0) ∈ {i sin(f)G}(1,1,0). This completes the proof.

2In the area of functional analysis, the method of embedding operators that are not necessarily unitary in unitary operators
acting on larger spaces, is referred to as the transference principle. The space of operators acting on this larger space is
sometimes referred to as operator heaven. [Haa18]

69

Note that we can quite easily modify this circuit such that it is controlled on a single extra qubit. We can,
namely, simply control the application of the X and Z gates in the middle on the extra qubit. This does
not have any influence on the elementary gate complexity, or the oracle query complexity.

Using Circuit 4.2.3, we can now implement the function x 7→ i sin(f(x)), using only calls to the controlled
phase oracle C(Of,G). In the next subsections, we will use this circuit as a subcircuit in constructing the
fractional phase query.

4.2.3 Approximation of the function exp(it arcsin(x))

In the previous subsection, we have constructed a quantum circuit which implements the function x 7→
sin(f(x)). The next step will be to choose some t ∈ [0, 1/48], and construct quantum circuits that implement
the functions x 7→ cos(tf(x)) and x 7→ sin(tf(x)). To that end, we observe, for all x ∈ G:

cos(tf(x)) = cos(t arcsin(sin(f(x)))) and sin(tf(x)) = sin(t arcsin(sin(f(x))))

We already know how to implement x 7→ sin(f(x)), so if we find a way to compose this function with the
functions x 7→ cos(t arcsin(x)) and x 7→ sin(t arcsin(x)), we are done. This, we will achieve by finding poly-
nomial approximations to x 7→ cos(t arcsin(x)) and x 7→ sin(t arcsin(x)), and subsequently finding circuits
that implement these polynomials. This section focuses on finding the polynomial approximations, and the
next subsection is devoted to developing the quantum circuit that implements these polynomials.

The main result that we reach in this section is the following theorem:

Theorem 4.2.4: Polynomial approximations of x 7→ sin(t arcsin(x)) and x 7→ cos(t arcsin(x))
Let t ∈ [0, 1/48] and δ > 0. Define N = max{dlog(1/δ)e, 1} + 1. Let, for all integer n satisfying
0 ≤ n ≤ N − 1:

bn =

{
(2k)!

(2kk!)2 , if n = 2k with k ∈ N0

0, otherwise
and a(t)

n =


1, if n = 0

it

n
·
n−1∑
k=0

a
(t)
k bn−k−1, otherwise

Next, we define:

C(x) =

N−1∑
n=0

Re
(
a(t)
n

)
xn and S(x) =

N−1∑
n=0

Im
(
a(t)
n

)
xn

Then, we find for all x ∈ [−1/2, 1/2]:

|cos(t arcsin(x))− C(x)| ≤ δ and |sin(t arcsin(x))− S(x)| ≤ δ

Moreover, we have that C and S are even and odd, respectively, and for all x ∈ [−1, 1]: C(x), S(x) ∈
[−1, 1].

Before we give the proof of Theorem 4.2.4, we will first of all provide some lemmas. We start with a bound
on the sequence (bn)∞n=0 that we defined in the theorem above.

Lemma 4.2.5: Bound on the coefficients bn
Let n ∈ N. Then, we find:

0 ≤ bn ≤
1√
n

Proof. We trivially find that bn ≥ 0, which proves the lower bound on the bn’s. For the upper bound, we

70

employ Stirling’s approximation and obtain, for all n ∈ N:

b2n ≤
(2n)!

(2nn!)2
≤ (2n)2n · e−2n ·

√
2n · e

(2n · nn · e−n ·
√
n ·
√

2π)2
≤
√

2ne

2πn
=
e

π
· 1√

2n
≤ 1√

2n

Hence, for all even n ∈ N, the result holds. For odd n ∈ N, the result is trivial, and hence this completes the
proof.

In the next lemma, we show how the sequence (bn)∞n=0 is related to the function 1/
√

1− x2.

Lemma 4.2.6: Taylor series of x 7→ 1/
√

1− x2

Let (bn)∞n=0 be defined as in Theorem 4.2.4. Then, for all x ∈ (−1, 1), we have:

1√
1− x2

=

∞∑
n=0

bnx
n

Proof. Let’s define g(t) = 1/
√

1 + t = (1 + t)−1/2. We easily obtain, for all n ∈ N0:3

dng

dtn
(t) =

(
−1

2
− n+ 1

)
n

(1 + t)−
1
2−n =

(
1

2
− n

)
n

(1 + t)−
1
2−n

So, filling in t = 0 yields:

dng

dtn
(0) =

(
1

2
− n

)
n

= (−1)n
(

1

2

)
n

= (−1)n · 1 · 3 · · · · · (2n− 1)

2n
= (−1)n · (2n)!

22nn!

Hence, the Taylor series formally becomes the following expression:

1√
1 + t

=

∞∑
n=0

dng
dtn (0)

n!
tn =

∞∑
n=0

(−1)n
(2n)!

(2nn!)2
tn (4.2.1)

Substituting t with −x2 leaves us with:

1√
1− x2

=

∞∑
n=0

(2n)!

(2nn!)2
x2n =

∞∑
n=0

bnx
n

Now, it remains to check the radius of convergence of this Taylor series. We obtain, for all x ∈ (−1, 1), using
Lemma 4.2.5:

∞∑
n=0

|bnxn| ≤ b0 +

∞∑
n=1

|x|n√
n
≤ 1 +

∞∑
n=1

|x|n <∞

Hence the Taylor series converges for all x ∈ (−1, 1), and so by Taylor’s theorem is also converges to
f(x).4

Similarly to the bn’s in Lemma 4.2.5, we can also obtain a bound for the a
(t)
n ’s. This, we achieve in the

lemma below.

Lemma 4.2.7: Bound on the coefficients a
(t)
n

Let t ∈ [0, 1/12], and let (a
(t)
n)∞n=0 be defined as in Theorem 4.2.4. Then, we find, for all n ∈ N:

0 ≤
∣∣∣a(t)
n

∣∣∣ ≤ 12t

n
3
2

3Here, (a)n denotes the Pochhammer symbol, which for a ∈ C and n ∈ N is defined as (a)n = a ·(a+1) ·(a+2) · · · · ·(a+n−1).
4One can also employ Abel’s lemma to the holomorphic function z 7→ 1/

√
1− z2.

71

Proof. The lower bound is clear. We prove the upper bound using the principle of mathematical induction.
For the induction basis, we must prove that the statement holds for n = 1 and n = 2. This follows easily, as:

∣∣∣a(t)
1

∣∣∣ =
t

1
·

∣∣∣∣∣
0∑
k=0

a
(t)
k b1−k−1

∣∣∣∣∣ = t · 1 · |b0| = t ≤ 1 =
1

1
3
2

Similarly, we find: ∣∣∣a(t)
2

∣∣∣ ≤ t

2
·
(∣∣∣a(t)

0 b1

∣∣∣+
∣∣∣a(t)

1 b0

∣∣∣) =
t

2
· (0 + 1) ≤ 1

2
· 1

12
≤ 1

2
3
2

Hence, we have established the basis for induction. Now, for the induction step, we assume that the statement
holds for all integer k satisfying 1 ≤ k ≤ n, where n ≥ 2. We find:

∣∣∣a(t)
n+1

∣∣∣ =
t

n+ 1
·

∣∣∣∣∣
n∑
k=0

a
(t)
k bn−k

∣∣∣∣∣ ≤ t

n+ 1
·

(∣∣∣a(t)
0 bn

∣∣∣+
∣∣∣a(t)

1 bn−1

∣∣∣+
∣∣∣a(t)
n−1b1

∣∣∣+
∣∣∣a(t)
n b0

∣∣∣+

n−2∑
k=2

a
(t)
k bn−k

)

Filling in the bounds that we know from the induction hypothesis and from Lemma 4.2.5, leaves us with:

∣∣∣a(t)
n+1

∣∣∣ ≤ t

n+ 1
·

(
1√
n

+
t√
n− 1

+ 0 +
1

n
√
n

+

n−2∑
k=2

1

k
√
k
· 1√

n− k

)

≤ t

n+ 1
·

1 +
√

2t+ 1
2√

n
+ 2

bn/2c∑
k=2

1

k
√
k(n− k)

 ≤ t

n+ 1
·

 2√
n

+ 2

bn/2c∑
k=2

1

k
√
k(n− k)


Observe that for all y ∈ [0, 1/2]:

y(1− y) = y − y2 ≥ y − 1

2
y =

1

2
y

Hence, we find for all k ∈ [0, n/2]:

k(n− k) = n2 · k
n

(
1− k

n

)
≥ n2 · k

2n
=
kn

2

Thus, we obtain:

∣∣∣a(t)
n+1

∣∣∣ ≤ t

n+ 1
·

 2√
n

+

bn/2c∑
k=2

1

k
√
k(n− k)

 ≤ t

n+ 1
·

 2√
n

+
2
√

2√
n

bn/2c∑
k=2

1

k
√
k


≤ 2t

√
2

(n+ 1)
√
n
·

(
1 +

∞∑
k=2

1

k
√
k

)
≤ 2t

√
2

(n+ 1)
√
n
·
(

1 +

∫ ∞
1

1

x
3
2

dx

)
=

2t
√

2

(n+ 1)
√
n
·
(

1 +

[
− 2√

x

]∞
1

)

=
2t
√

2

(n+ 1)
√
n
· (1 + 2) =

6t
√

2

(n+ 1)
√
n
≤ 12t

(n+ 1)
√
n+ 1

This completes the induction step, and hence, by the principle of mathematical induction, we obtain the
result that we were after. This completes the proof.

Observe that the derivative of the function arcsin(x) is 1/
√

1− x2. Hence, we can use the Taylor series of
1/
√

1− x2 to derive a Taylor series of exp(it arcsin(x)), for t ∈ [0, 1/12]. This, we achieve in the following
lemma.

72

Lemma 4.2.8: Taylor series of x 7→ exp(it arcsin(x))

Let t ∈ [0, 1/12], and let (a
(t)
n)∞n=0 be as in Theorem 4.2.4. Then, we find, for all x ∈ (−1, 1):

exp(it arcsin(x)) =

∞∑
n=0

a(t)
n xn

Here, arcsin : [−1, 1]→ [−π/2, π/2].a

aAnother way to approximate x 7→ exp(it arcsin(x)) is by approximating x 7→ arcsin(x) and x 7→ exp(itx) separately,
and then composing the polynomials. This does add another factor that is logarithmic in the precision to the query
complexity of Circuit 4.2.18, though.

Proof. First of all, observe that for all x ∈ [−π/2, π/2], we have that cos(x) ≥ 0. Hence, we find:

d

dx
sin(x) = cos(x) =

√
1− sin2(x)

Now we can apply the inverse function theorem, which yields, for all x ∈ (−1, 1):

d

dx
arcsin(x) =

1
d

dx sin(arcsin(x))
=

1√
1− sin2(arcsin(x))

=
1√

1− x2

Next, we formally write the Taylor series of exp(it arcsin(x)) as follows, which is allowed as the function
x 7→ exp(it arcsin(x)) is smooth around x = 0:

exp(it arcsin(x)) =

∞∑
n=0

c(t)n xn

We now check that the coefficients c
(t)
n defined through this Taylor series agree with the coefficients a

(t)
n

defined in Theorem 4.2.4. To that end, we differentiate both sides and observe:

∞∑
n=0

(n+ 1)c
(t)
n+1x

n =
d

dx
exp(it arcsin(x)) =

it√
1− x2

exp(it arcsin(x)) = it

(∞∑
n=0

bnx
n

)(∞∑
n=0

c(t)n xn

)

= it

∞∑
n=0

(
n∑
k=0

c
(t)
k bn−k

)
xn

As the above relation holds for all x ∈ (−1, 1), we obtain the following recurrence relation:

c0 = 1 and c
(t)
n+1 =

it

n+ 1

n∑
k=0

c
(t)
k bn−k

Thus, we readily check that the coefficients c
(t)
n indeed are in agreement with the coefficients a

(t)
n defined on

Theorem 4.2.4.

Now, it remains to check that the radius of convergence of the Taylor series is indeed at least 1. To that
end, observe that for all x ∈ [−1, 1], we have, using Lemma 4.2.7:

∞∑
n=0

∣∣∣a(t)
n xn

∣∣∣ ≤ 1 +

∞∑
n=1

|x|n

n
√
n
≤ 1 +

∞∑
n=1

1

n
√
n

= 1 + ζ

(
3

2

)
<∞

Hence, the Taylor series converges for all x ∈ [−1, 1], and so it converges to exp(it arcsin(x)) by Taylor’s
theorem. Thus, we find that the radius of convergence is at least 1, completing the proof.

73

Now, we are finally in good position to give the proof of Theorem 4.2.4.

Proof of Theorem 4.2.4. From Lemma 4.2.8, we find, for all t ∈ [0, 1/12]:

exp(it arcsin(x)) =

∞∑
n=0

a(t)
n xn

Hence, taking the real and imaginary parts yields:

cos(t arcsin(x)) =

∞∑
n=0

Re
(
a(t)
n

)
xn = C(x) and sin(t arcsin(x)) =

∞∑
n=0

Im
(
a(t)
n

)
xn = S(x)

So, for all δ > 0 and x ∈ [−1/2, 1/2], using the bound from Lemma 4.2.7:∣∣∣∣∣cos(t arcsin(x))−
N−1∑
n=0

Re
(
a(t)
n

)
xn

∣∣∣∣∣ ≤
∞∑
n=N

∣∣∣a(t)
n xn

∣∣∣ ≤ ∞∑
n=N

|x|n

n
√
n
≤
(

1

2

)N
·
∞∑
n=2

1

n
√
n
≤ 2−N

∫ ∞
1

1

x
3
2

dx

≤ 2−N
[
− 2√

x

]∞
1

= 2−N+1 ≤ 2− log(1/δ) = δ

The claim for sin(t arcsin(x)) is proven in the exact same way. Moreover, we easily find using mathematical

induction that for all even n, a
(t)
n is real, and for all odd n, a

(t)
n is purely imaginary. Hence, we readily find

that C is even and S is odd.

Finally, we must prove that for all x ∈ [−1, 1], we have C(x), S(x) ∈ [−1, 1]. For all x ∈ [−1, 1], we readily

find, using Im(a
(t)
0) = 0 and Lemma 4.2.7:

|S(x)| ≤
∞∑
n=1

∣∣∣Im(a(t)
n)
∣∣∣ |x|n ≤ 1

4

∞∑
n=1

1

n
√
n
≤ 1

4
+

1

4

∫ ∞
1

1

x
3
2

dx =
1

4
+

1

4

[
− 2√

x

]∞
1

=
1

4
+

1

2
< 1

So, it remains to show that C(x) ∈ [−1, 1], for all x ∈ [−1, 1]. To that end, we prove that for all n ∈ N,

we have a
(t)
2n ≤ 0 and −ia(t)

2n+1 ≥ 0. This is clear for n = 1, and moreover, we have, for all n ∈ N, by the
induction hypothesis:

a
(t)
2n =

it

2n− 1

2n−1∑
k=0

a
(t)
k b2n−k−1 = − t

2n+ 1

n−1∑
k=0

(−ia(t)
2k+1)b2(n−1)−2k ≤ 0

And on the other hand, as t ≤ 1/48:

−ia(t)
2n+1 =

t

2n+ 1

n∑
k=0

a
(t)
2k b2n−2k =

t

2n+ 1

(
a

(t)
0 b2n +

n∑
k=1

a
(t)
2k b2n−2k

)

≥ t

2n+ 1

(
b2n −

n∑
k=1

12t

2k
√

2k(2n− 2k)

)
≥ t

(2n+ 1)
√
n

(
1

2
√

2
− 12t

√
2

)
≥ 0

So, we find that C(x) ≤ 1 for all x ∈ [−1, 1]. That it is lower bounded by −1 can be seen from the same
argument as the one used for S(x). This completes the proof.

In [GSLW18], a similar result is reached, but for t ∈ [0, 2/π]. The proof is much more involved, though, and
hence we will refer the interested reader there. Their result allows for a speed-up of a constant factor of the
query complexity of C(Of,G) in the construction of the fractional phase query circuit, i.e., Circuit 4.2.18.

As a final note, C(x) and S(x) are depicted in Figure 4.1.

74

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−0.0005

−0.0004

−0.0003

−0.0002

−0.0001

0.0000

y

+1 Approximation of cos(t*arcsin(x))
true
approx

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

y

Approximation of sin(t*arcsin(x))
true
approx

Figure 4.1: The approximations of x 7→ sin(t arcsin(x)) and x 7→ cos(t arcsin(x)) with t = 1/48 and N = 10.

4.2.4 Implementation of block-encodings of polynomials of arbitrary operators

In this subsection, we will attempt to solve the following problem. Suppose that we have an operator U ,
acting on the n-qubit state space, and suppose that we have a quantum circuit which implements a block-
encoding of this operator. The goal is to construct a quantum circuit that implements a block-encoding of
P (U), where P is a polynomial, and P (U) is defined in the obvious way. It turns out that this is possible if
the block-encoding of U and P satisfy certain properties.

As a first step towards achieving this goal, we define a helper polynomial, which will help us during the
construction of the quantum circuit.

Definition 4.2.9: Helper polynomial
Let P ∈ R[x] be a real polynomial. Then, we define the helper polynomial of P to be the following
polynomial:

1− P 2 ∈ R[x]

In particular, observe that the helper polynomial of an even or odd polynomial is always even. Next, we
define the notion of an implementation pair :

Definition 4.2.10: Implementation pair
Let P ∈ R[x] be an odd or even polynomial such that for all x ∈ [−1, 1], we have |P (x)| ≤ 1. We say
that P̃ , Q̃ ∈ C[x] is an implementation pair of P if:

1. Re(P̃) = P .
2. deg(Q̃) < deg(P̃).
3. ∀x ∈ [−1, 1], |P̃ (x)|2 + (1− x2)|Q̃(x)|2 = 1.
4. P̃ and Q̃ have opposite parity, i.e., either P̃ is even and Q̃ is odd, or vice versa.

We now prove that for real any polynomial that is either even or odd, and that on the interval [−1, 1] is
bounded in absolute value by 1, we can always construct such an implementation pair.

75

Theorem 4.2.11: Construction of an implementation pair
Let P ∈ R[x] be either even or odd, such that for all x ∈ [−1, 1], we have |P (x)| ≤ 1. Let R be the set
of roots of the helper polynomial of P , i.e., 1− P (r)2 = 0 if and only if r ∈ R. Moreover, for all r ∈ R,
let mr be the multiplicity of the root r. Then, we can write, for some K̃ ∈ R:

1− P (x)2 = K̃
∏
r∈R

(x− r)mr

Next, we define:
1. R0 = {r ∈ R : r = 0} (and m0 = 0 if R0 = ∅).
2. R(0,1) = {r ∈ R : r ∈ (0, 1)}.
3. R[1,∞) = {r ∈ R : r ∈ [1,∞)}.
4. RI = {r ∈ R : Re(r) = 0, Im(r) > 0}.
5. RC = {r ∈ R : Re(r) > 0, Im(r) > 0}.

Furthermore, we formally define:
1. Ar(x) =

√
r2 − 1x+ ir

√
1− x2.

2. Br(x) =
√
|r|2 + 1x+ i|r|

√
1− x2.

3. Ca,b(x) = cx2 − (a2 + b2) + i
√
c2 − 1x

√
1− x2 where c = a2 + b2 +

√
2(a2 + 1)b2 + (a2 − 1)2 + b4.

Moreover, we formally define:

W (x) =
√
Kx

m0
2

∏
r∈R(0,1)

(
x2 − r2

)mr
2

∏
r∈R[1,∞)

Ar(x)mr
∏
r∈RI

Br(x)mr
∏

a+bi∈RC

Ca,b(x)mr

Factoring out the above expression yields unique B,C ∈ R[x] such that W (x) = B(x) + i
√

1− x2C(x).
Next we define P̃ = P + iB and Q̃ = iC. Then P̃ , Q̃ is an implementation pair of P .

Proof. First of all, observe that the helper polynomial is even and real. Hence if r is a root of 1− P 2, then
so are −r, r∗ and −r∗, and the multiplicities of these roots are equal. Thus, we find that we can write, for
some K ∈ R:

1− P (x)2 = K̃
∏
r∈R

(x− r)mr

=Kxm0

∏
r∈R(0,1)

(x2 − r2)mr
∏

r∈R[1,∞)

(r2 − x2)mr
∏
r∈RI

(x2 + |r|2)mr
∏

a+bi∈RC

(x4 + 2x2(b2 − a2) + (a2 + b2)2)mr

Moreover, as |P (x)| ≤ 1 for all x ∈ [−1, 1], we find that 1 − P (x)2 ≥ 0 for all x ∈ [−1, 1]. In particular,
1− P (0)2 ≥ 0. Hence, plugging in x = 0 into the above equation allows us to conclude that m0 is even and
K ≥ 0. Moreover, plugging in r ∈ R(0,1) shows that mr is even for all r ∈ R(0,1) as well.

Now, observe that all factors of W are polynomials of the form5 B′(x) + i
√

1− x2C ′(x), with B′, C ′ ∈ R[x]
having opposite parity and deg(C ′) < deg(B′). The product of two such expressions is again of that form:(

B1(x) + i
√

1− x2C1(x)
)(

B2(x) + i
√

1− x2C2(x)
)

= B1(x)B2(x)− (1− x2)C1(x)C2(x) + i
√

1− x2(B1(x)C2(x) +B2(x)C1(x))

where B1(x)B2(x)− (1− x2)C1(x)C2(x) is again of opposite parity from B1(x)C2(x) +B2(x)C1(x), and:

deg(B1(x)B2(x) + (1− x2)C1(x)C2(x)) = max(deg(B1) + deg(B2),deg(C1) + deg(C2) + 2)

= deg(B1) + deg(B2)

> max(deg(B1) + deg(C2),deg(B2) + deg(C1))

= deg(B1(x)C2(x) +B2(x)C1(x))

5B′ and C′ are not the derivatives of B and C in this context.

76

So we can write W (x) = B(x)+i
√

1− x2C(x) with B,C ∈ R[x] having opposite parity and deg(B) > deg(C).
Moreover, we have, for real x:

B(x)2 + (1− x2)C(x)2 = |W (x)|2 = W (x)W (x)

= K2xm0

∏
r∈R(0,1)

(x2 − r2)mr
∏

r∈R[1,∞)

(|Ar(x)|2)mr
∏
r∈RI

(|Br(x)|2)mr
∏

a+bi∈RC

(|Ca,b(x)|2)mr = 1− P (x)2

because we have:

|Ar(x)|2 = (r2 − 1)x2 + r2(1− x2) = r2 − x2

|Br(x)|2 = (|r|2 + 1)x2 + |r|2(1− x2) = x2 + |r|2
|Ca,b(x)|2 = (cx2 − (a2 + b2))2 + (c2 − 1)x2(1− x2)

= c2x4 − 2(a2 + b2)c2x2 + (a2 + b2)2 + (1− c2)x4 + (c2 − 1)x2

= x4 + (c2(1− 2(a2 + b2))− 1)x2 + (a2 + b2)2

= x4 + 2(b2 − a2)x2 + (a2 + b2)2

Now, we check that P̃ and Q̃ satisfy the properties of an implementation pair of P . First of all, we observe
that Re(P̃) = Re(P + iB) = P , and hence the first property is satisfied. Furthermore, we have:

deg(P̃) = max(deg(P),deg(B)) ≥ deg(B) > deg(C) = deg(Q̃)

and so the second property is satisfied as well. The third property is satisfied because:

|P̃ (x)|2 + (1− x2)|Q̃(x)|2 = P (x)2 +B(x)2 + (1− x2)C2(x) = P (x)2 + 1− P (x)2 = 1

which implies that the third property is also satisfied. Finally, observe that B(x)2+(1−x2)C(x)2 = 1−P (x)2,
and deg(B) > deg(C), so 2 deg(B) = 2 deg(P)⇔ deg(B) = deg(P). So B is of the same parity as P , and of
opposite parity from C, implying that P̃ and Q̃ are indeed of opposite parity. This completes the proof.

Next, we introduce the concept of an implementing phase vector:

Definition 4.2.12: Phase vector
Let P,Q ∈ C[x] be polynomials that satisfy the following requirements:

1. P and Q are both either even or odd, and they are of opposite parity.
2. deg(Q) < deg(P).
3. For all x ∈ [−1, 1], we have |P (x)|2 + (1− x2)|Q(x)|2 = 1.

Then, a vector Φ ∈ Rdeg(P)+1 is an implementing phase vector of the pair P,Q with global constant
α ∈ C, if: deg(P)∏

k=1

eiφkZR(x)

 eiφdeg(P)+1Z = α

[
P (x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P ∗(x)

]
where:

eiφZ =

[
eiφ 0
0 e−iφ

]
and R(x) =

[
x

√
1− x2

√
1− x2 −x

]
We show that using an implementation pair of P , we can always find an implementing phase vector of P .
We will do this using the principle of mathematical induction in Theorem 4.2.14, but we first of all provide
the induction step in Lemma 4.2.13.

77

Lemma 4.2.13: Induction step in the construction of an implementing phase vector
Let P,Q ∈ C[x] be a pair of polynomials satisfying the requirements of Definition 4.2.12. Let deg(P) =
k ≥ 1. Then we can find a φ ∈ R such that e2iφ = Pk/Qk−1. We define the following polynomials:

P (x) = e−iφ
(
xP (x) +

Pk
Qk−1

(1− x2)Q(x)

)
and Q(x) = e−iφ

(
Pk
Qk−1

xQ(x)− P (x)

)
Then the pair P ,Q satisfies the requirements of Definition 4.2.12 as well, and we have k− 1 = deg(P) <
deg(P) = k. Moreover, suppose that Ψ ∈ Rk is an implementing phase vector of P ,Q. Define Φ =
(ψ1, . . . , ψk−1, ψk − π

4 , φ −
π
4). Then Φ is an implementing phase vector for P , Q with global constant

−iα.

Proof. First of all, we have that |P (x)|2 + (1− x2)|Q(x)|2 = 1, and hence:

2 deg(P) = deg(|P (x)|2) = deg(1− (1− x2)|Q(x)|2) = 2 + 2 deg(Q)

So, we have deg(Q) = deg(P)− 1, and hence Qk−1 6= 0. Moreover, the highest-degree term of |P (x)|2 + (1−
x2)|Q(x)|2 must vanish, hence |Pk|2 = |Qk−1|2. So, indeed, we can find a φ ∈ R such that e2iφ = Pk/Qk−1.
We can also easily observe that the highest-degree term of P vanishes as well, which implies that deg(P) <
deg(P). The parities of P and Q are the opposite of those of P and Q, respectively. Furthermore, observe:

e−i
π
4 ZR(x)e−i

π
4 Z =

[
e−i

π
4 0

0 ei
π
4

] [
x

√
1− x2

√
1− x2 −x

] [
e−i

π
4 0

0 ei
π
4

]
=

[
−ix

√
1− x2

√
1− x2 −ix

]
= −i

[
x i

√
1− x2

i
√

1− x2 x

]
Then, we find: k∏

j=1

eiφjZR(x)

 eiφk+1Z =

k−1∏
j=1

eiψjZR(x)

 ei(ψk−π4)ZR(x)ei(φ−
π
4)Z

= −i

k−1∏
j=1

eiψjZR(x)

 eiψkZ [x i
√

1− x2

i
√

1− x2 x

]
eiφZ

= −iα
[

P (x) iQ(x)
√

1− x2

iQ
∗
(x)
√

1− x2 P
∗
(x)

] [
x i

√
1− x2

i
√

1− x2 x

] [
eiφ 0
0 e−iφ

]
= −iα

[
P (x) iQ(x)

√
1− x2

iQ
∗
(x)
√

1− x2 P
∗
(x)

] [
eiφx ie−iφ

√
1− x2

ieiφ
√

1− x2 e−iφx

]
= −iα

[
eiφxP (x)− eiφQ(x)(1− x2) i(e−iφP (x) + e−iφxQ(x))

√
1− x2

i(eiφxQ
∗
(x) + eiφP

∗
(x))
√

1− x2 −e−iφQ∗(x)(1− x2) + e−iφxP
∗
(x)

]
= −iα

[
P (x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P ∗(x)

]
The last equality follows from simply writing out the top-left and top-right entry, and next observing that
the lower-left and lower-right simply follow from taking conjugates. Finally, we find that |P (x)|2 + (1 −
x2)|Q(x)|2 = 1 from the unitarity of the above matrices. The matrix equation also implies that deg(P) ≥
k − 1, completing the proof.

78

Theorem 4.2.14: Construction of the implementing phase vector
Let P ∈ R[x] be an even or odd real polynomial such that for all x ∈ [−1, 1], we have |P (x)| ≤ 1. Let
P̃ , Q̃ ∈ C[x] be an implementation pair of P . Then P̃ , Q̃ satisfies the requirements of Definition 4.2.12.
If deg(P̃) = 0, then P = eiφ for some φ ∈ R and Q̃ = 0 and hence an implementing vector for P̃ , Q̃ with
global constant 1 is Φ = (φ). If deg(P̃) ≥ 1, then we can use Lemma 4.2.13 inductively to obtain an
implementing phase vector Φ ∈ Rdeg(P)+1 with global constant (−i)deg(P).

Proof. The only real thing that is left to prove is the induction basis, but this is clear.

Now, all that is left to show is how we can use these implementing phase vectors to implement block-encodings
of real polynomials applied to operators. To that end, we denote, for all normal operators U with ‖U‖ ≤ 1:

R(U) =

[
U (I − U2)

1
2

(I − U2)
1
2 −U

]
Note that R(U) is unitary if U is self-adjoint, as we then have:

R(U)R(U)∗ = R(U)∗R(U) = R(U)2 =

[
U (I − U2)

1
2

(I − U2)
1
2 −U

]2

=

[
U2 + (I − U2) U(I − U2)

1
2 − U(I − U2)

1
2

U(I − U2)
1
2 − U(I − U2)

1
2 I − U2 + U2

]
=

[
I 0
0 I

]
It now feels logical to replace all the R(x)’s with R(U)’s in Definition 4.2.12. This is exactly what the next
circuit is all about.

Circuit 4.2.15: Real polynomial implementation
Description: This circuit implements a real polynomial P ∈ R[x] of degree k, satisfying |P (x)| ≤ 1
for all x ∈ [−1, 1], using an implementing phase vector Φ ∈ Rk+1 of an implementation pair of P with
global constant (−i)deg(P).
Oracle circuit: A circuit implementing R(U), which acts on n+ 1 qubits.
Query complexity: The query complexity to R(U) is k = deg(P).
Number of qubits: n+ 2.
Circuit:

H

n

ei
π
2 deg(P)

eiφk+1Z

R(U)
eiφ2Z

R(U)
eiφ1Z

H

Shorthand notation:
n+ 2

[P (U)](1,2,0)

Proof. Let Φ be the implementing phase vector of the pair P̃ , Q̃, with global constant (−i)deg(P). Then, we
find, by Definition 4.2.12: k∏

j=1

eiφjZR(x)

 eiφk+1Z = (−i)deg(P)

[
P̃ (x) iQ̃(x)

√
1− x2

iQ̃∗(x)
√

1− x2 P̃ ∗(x)

]
Taking conjugations everywhere yields: k∏

j=1

e−iφjZR(x)

 e−iφdeg(P)+1Z = ideg(P)

[
P̃ ∗(x) −iQ̃(x)

√
1− x2

−iQ̃∗(x)
√

1− x2 P̃ (x)

]

79

and hence we find that −Φ is an implementing phase vector of the pair P̃ ∗,−Q̃, with global constant ideg(P).

Now, observe that on the first two qubits, we iteratively apply an operation with the following matrix
representation:

CNOT
(
I2 ⊗ eiφZ

)
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



eiφ 0 0 0
0 e−iφ 0 0
0 0 eiφ 0
0 0 0 e−iφ




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



=


eiφ 0 0 0
0 e−iφ 0 0
0 0 e−iφ 0
0 0 0 eiφ

 =

[
eiφZ 0

0 e−iφZ

]

Between these operations, we interlace the application of R(U) on the last n + 1 qubits. The matrix
representation of R(U) applied to full n+ 2-qubit system is given by:

I2 ⊗R(U) =

[
R(U) 0

0 R(U)

]
Both operations are diagonal, which simplifies taking their matrix products. Hence, we find that the total
action of the circuit, without both of the Hadamard gates, can be expressed with the following matrix
representation:

k∏
j=1

[
eiφjZR(U)

]
eiφk+1Z 0

0

k∏
j=1

[
e−iφjZR(U)

]
e−iφk+1Z


[
ei
π
2 deg(P) 0

0 e−i
π
2 deg(P)

]

=


ideg(P)

k∏
j=1

[
eiφjZR(U)

]
eiφk+1Z 0

0 (−i)deg(P)
k∏
j=1

[
e−iφjZR(U)

]
e−iφk+1Z



=


P̃ (U) iQ̃(U)(I − U2)

1
2 0 0

iQ̃∗(U)(I − U2)
1
2 P̃ ∗(U) 0 0

0 0 P̃ ∗(U) −iQ̃(U)(I − U2)
1
2

0 0 −iQ̃∗(U) P̃ (U)


Finally, we take into account the Hadamard gates. Observe, with A,B matrices of appropriate sizes:

H

[
A 0
0 B

]
H =

1

2

[
I I
I −I

] [
A 0
0 B

] [
I I
I −I

]
=

1

2

[
I I
I −I

] [
A A
B −B

]
=

1

2

[
A+B A−B
A−B A+B

]
And hence in the top-left 2n×2n-block of the matrix representation of the circuit, we find 1

2 (P̃ (U)+P̃ ∗(U)) =

Re(P̃)(U) = P (U). This completes the proof.

As a final note, observe that we can implement this circuit in a controlled manner pretty easily as well,
provided that we have access to a controlled version of R(U). We can simply use controlled versions of all
of the eiφZ gates and the R(U)-gates, and what is left will cancel out if the control qubit is in state |0〉.

80

4.2.5 Addition of real and complex parts

In the previous section, we showed how we can implement a block-encoding of P (U), where U is an operator
on the n-qubit state space, and P is a real polynomial that is either even or odd such that for all x ∈ [−1, 1],
we have |P (x)| ≤ 1. If we, on top of that, know how we can add two polynomials, then this is sufficient to
implement block-encodings of P (U) for all polynomials P ∈ C[x] satisfying |P (x)| ≤ 1 for all x ∈ [−1, 1],
simply because we can decompose P into its even real, odd real, even imaginary and odd imaginary parts.

The function that we are trying to approximate, though, which is the function x 7→ exp(it arcsin(x)), is
special in the sense that its odd real part and its even imaginary part vanish. This was reflected in the
approximating polynomials that we constructed in Theorem 4.2.4. Hence, in this section, we only need to
add two polynomials together, whereas in the most general case, one would have to add four polynomials
together. In an attempt not to digress too much from the roadmap to implementing fractional phase oracles,
we will present the special case of vanishing odd real and even complex polynomials here, and refer the
interested reader to [GSLW18] for the general case.

The next circuit shows us how we can obtain a block-encoding of P (U) + iQ(U), if we have circuits imple-
menting block-encodings of P (U) and Q(U).

Circuit 4.2.16: Addition of real and imaginary parts
Description: Let P ∈ C[x] be a polynomial, such that Re(P) is either odd or even, and so is Im(P), and
such that for all x ∈ [−1, 1], we have |Re(P)(x)| ≤ 1 and |Im(P)(x)| ≤ 1. Then, this circuit implements
P (U), given a controlled version of R(U), for some self-adjoint operator U , acting on n qubits.
Query complexity: The query complexity to C(R(U)) is 2 deg(P).
Circuit:

n+ 2 H S X

[Re(P)(U)](1,2,0)

X

[Im(P)(U)](1,2,0)

H

Shorthand notation:
n+ 3

[P (U)](1
2 ,3,0)

Proof that the circuit implements a (1
2 , 3, 0)-block-encoding of P (U). Observe that if the first qubit is in state

|1〉 after the S-gate, then the action of the circuit up to but excluding the final Hadamard gate reduces to
a (1, 3, 0)-block-encoding of Im(P)(U). Similarly, if the first qubit is in state |0〉 after the S-gate, then the
action of this part of the circuit reduces to a (1, 3, 0)-block-encoding of Re(P)(U). The S introduces an i for
the imaginary part, and the Hadamards add the two block-encodings, at the cost of a constant factor of 1

2 .
This completes the proof.

As mentioned before, Circuit 4.2.16 is not as generic as possible, but general enough to suit our needs. In
the following subsection, we will show how we can use this circuit to implement fractional phase queries.

4.2.6 Quantum circuit of the fractional phase query

Using the polynomial approximations provided in Theorem 4.2.4, and the circuit provided in Circuit 4.2.16,
we are almost ready to present the circuit that implements a block-encoding of the fractional phase query.
The final ingredient that we need is a circuit that implements C(R(sin(f)G)), because such a circuit is
required as a subcircuit in Circuit 4.2.16.

Luckily, we can construct a circuit C(R(sin(f)G)) easily from the controlled version of Circuit 4.2.3, which
we introduced all the way back in Subsection 4.2.2. The details are shown in the circuit below.

81

Circuit 4.2.17: Implementation of a controlled R(sin(f)G)
Description: This circuit implements C(sin(f)G). We require that ‖f‖∞ ≤ π/2 on G, such that
cos(f)G ≥ 0.
Query complexity: The query complexity to C(Of,G) is 2.
Circuit:

n

S∗

ei
π
4 Z

[i sin(f)G](1,1,0)
e−i

π
4 Z

Shorthand notation:
n+ 1

R(sin(f)G)

Proof. Recall the matrix representation of [i sin(f)G](1,1,0) from the proof of Circuit 4.2.3. We find that the
matrix representation of Circuit 4.2.17, for the moment disregarding the control qubit altogether, can be
calculated as follows:[

e−i
π
4 0

0 ei
π
4

] [
i sin(f)G − cos(f)G
cos(f)G −i sin(f)G

] [
ei
π
4 0

0 e−i
π
4

]
= i

[
sin(f)G cos(f)G
cos(f)G − sin(f)G

]
Now, if the control qubit is in the state |0〉, then nothing happens. However, if it is in the state |1〉, then first of
all a global factor of−i is induced by S∗, and subsequently the operation given in the equation above is applied

to the last n+ 1 qubits. Hence, the −i and the i cancel, and we also have that cos(f)G =

(√
1− sin2(f)

)
G

,

because ‖f‖∞ ≤ π/2. Thus, indeed this circuit implements a controlled version of R(sin(f)G).

Now, finally, we are able to merge the approximation in Theorem 4.2.4, and both circuits, Circuit 4.2.16 and
Circuit 4.2.17, to obtain a fractional phase query. The details are provided in the circuit displayed below.

Circuit 4.2.18: Fractional phase query for t ∈ [0, 1/48]
Description: Let ‖f‖∞ ≤

1
2 on G. Let t ∈ [0, 1/48] and δ > 0. Let C, S as in Theorem 4.2.4, and let

P = C + iS. Then this circuit is (1, 3, 6δ)-encoding of Otf,G.
Parameters: A precision parameter, δ > 0.
Derived constants: N = 1 + max{dlog(1/δ)e, 1}.
Oracle circuit: A controlled phase oracle C(Of,G), acting on n qubits.
Number of qubits: n+ 3, plus the auxiliary qubits used by Of,G.
Query complexity: The query complexity to C(Of,G) is 3 · 2 · 2N = 12 + 12 max{dlog(1/δ)e, 1}.
Circuit:

3

n [P (sin(f)G)](1
2 ,3,0)

R0 [P (sin(f)G)]∗
(1

2 ,3,0)

R0 [P (sin(f)G)](1
2 ,3,0)

Shorthand notation:
3

n [Otf,G](1,3,3δ)

Proof that this circuit is a (1, 3, 6δ)-block-encoding of Otf,G. First of all, observe that sin(f)G only has real
eigenvalues in the interval [−1/2, 1/2]. Moreover, observe that P (x) approximates exp(it arcsin(x)) on
[−1/2, 1/2] with supremum distance bounded above by 2δ. Hence, we find that the operator norm be-
tween P (sin(f)G) and exp(it arcsin(sin(f)G)), which is the maximum of the difference in eigenvalues, is
bounded above by 2δ. Hence, [P sin(f)G](1

2 ,3,0) is a (1
2 , 3, 2δ)-block-encoding of Otf,G.

82

Neglecting these 2δ-errors for the moment, we find that if we apply [P sin(f)G](1
2 ,3,0) to |0〉⊗3 ⊗ |ψ〉, where

|ψ〉 is an n-qubit state, then we obtain a state:

1

2
|0〉⊗3 ⊗Otf,G |ψ〉+

√
3

2

∣∣ψ⊥〉
where for any n-qubit state |φ〉, we have

(
〈0|⊗3 ⊗ 〈φ|

) ∣∣ψ⊥〉 = 0. We define:

|G〉 = |0〉⊗3 ⊗Otf,G |ψ〉 and |B〉 =
∣∣ψ⊥〉

And so we have the state:
sin
(π

6

)
|G〉+ cos

(π
6

)
|B〉

Now, in a similar manner as we did with the amplitude estimation circuit, Circuit 3.5.9, i.e., by splitting the
sine and cosine using trigonometric formulas, we can deduce that the final state is equal to:

sin
(π

2

)
|G〉+ cos

(π
2

)
|B〉 = |0〉⊗3 ⊗Otf,G |ψ〉

There are 3 places where an error of norm at most 2δ is introduced, and hence the resulting error is bounded
by 6δ. So, this circuit is a (1, 3, 6δ)-block-encoding of Otf,G.

Circuit 4.2.18 is the main result of this section. We can apply it repeatedly to implement any real power of
Of,G.6 This will be particularly useful in constructing quantum gradient estimation algorithms, as we will
show in the subsequent section.

4.3 Gilyén et al.’s quantum gradient estimation algorithm

In the previous section, we have seen how we can implement a quantum circuit that performs a fractional
phase query. In this section, we will elaborate on how we can use this quantum circuit to estimate the
gradient of a high-dimensional function. The approach taken in this section is a generalization of the one
presented in [GAW17] to different `p-norms and larger Gevrey-classes of functions.

On high level, the idea of Gilyén et al.’s quantum gradient estimation algorithm, which estimates the gradient
of some function f at some points a, is to use a numerical method to approximately calculate the values of
∇f(a) · (x − a), where the vectors x are taken from some grid that is centered around a, and store these
approximately calculated values in the phase of the amplitudes corresponding to the state |x〉. Then, the
inverse quantum Fourier transform can be employed to obtain an approximation of the gradient of f at a,
which was already observed by Jordan in 2005 [Jor05].

In Subsection 4.3.1, we will first of all introduce the grid of points on which Gilyén et al.’s gradient estimation
algorithm performs function evaluations. Secondly, we will elaborate on which numerical method is used to
approximate the values of ∇f(a) · (x−a), in Subsection 4.3.2. Finally, in Subsection 4.3.3, we will show how
we can use fractional phase queries and the inverse quantum Fourier transform to arrive at an approximation
of ∇f(a).

6This construction is reminiscent of the method of continuity that one encounters when studying elliptic partial differential
operators. [Kry08], Theorem 1.4.4.

83

4.3.1 Grid

Intuitively, it is clear that every algorithm that estimates the gradient based on function evaluations must
somehow describe a set of points on which the function is to be evaluated. Subsequently, from the function
values on this set of points, the gradient is to be estimated. Gilyén et al.’s quantum gradient estimation
algorithm is no different, and in this subsection, we describe this set of points, which we will refer to as the
grid.

Definition 4.3.1: Grid used in Gilyén et al.’s quantum gradient estimation algorithm
Let d, n ∈ N, a ∈ Rd and r > 0. Then, we define:

Gn,r,a =
d×
j=1

{
aj +

r

2n
·
(
k +

1

2

)
: k ∈ {−2n−1, . . . , 2n−1 − 1}

}
⊆ Rd

We refer to Gn,r,a as the grid around a with side length r. Moreover, whenever it is clear that we are
talking about vectors that are elements of Gn,r,a, then we use the following shorthand notation. For all
j ∈ {−2n−1, . . . , 2n−1 − 1}d, we define:

xj = a +
r

2n

(
j +

1

2

)
∈ Gn,r,a

Note that there are 2nd points in this grid. They are arranged in a square lattice with side length r, centered
around the point a ∈ Rd. Below, in Figure 4.2, we show an example of such a grid.

−1 0 1 2

−1

0

1

2

a

r

Figure 4.2: This figure portrays an example grid, namely Gn,r,a ⊆ R2, where a = (1, 1), r = 3/2 and n = 3.
We can see that the side length of the lattice is approximately r, and that the lattice has 2n = 8 points in
each direction.

If we just calculated the function values of f at all these points of Gn,r,a in superposition, and subsequently
applied the inverse Fourier transform, then we would recover Jordan’s algorithm, described in [Jor05]. How-
ever, we proceed using Gilyén et al.’s approach, portrayed in [GAW17], which entails using a numerical
method to extend the region of approximate linearity.7 In the next subsection, we elaborate on this numeri-
cal method.

4.3.2 Numerical method

As already described at the end of the previous subsection, we will use a numerical method to extend the
region of approximate linearity of f . Another way to think about it is to smooth out the highly oscillatory
ripples of f by canceling the higher-order derivative terms in its Taylor series. This is achieved by employing
the numerical method described in this section.

7Quoted literally from [GAW17].

84

The numerical method that we describe here is a central difference scheme of some fixed order. The coeffi-
cients of this scheme are given in the definition below.

Definition 4.3.2: Coefficients of the 2mth order central difference scheme
Let m ∈ N. For all ` ∈ {−m,−m+ 1, . . . ,m− 1,m}, we define:

a
(2m)
` =


(−1)`−1

` · (m|`|)
(m+|`|
|`|)

, if ` 6= 0

0, otherwise

We can prove that these are indeed the coefficients of the 2mth order central difference scheme. This is
achieved in the following lemma.

Lemma 4.3.3: Sums of the coefficients of the 2mth order central difference scheme
Let m ∈ N and k ∈ {0, 1, . . . , 2m}. We find:

m∑
`=−m

a
(2m)
` `k =

{
1, if k = 1

0, otherwise

Proof (based on lemma 21 of [GAW17]). Suppose that P is a polynomial of degree at most 2m. Then, we
find, by Lagrange’s interpolation formula:

P (x) =

m∑
`=−m

P (`)

m∏
j=−m
j 6=`

x− j
`− j

Taking the derivative on both sides yields:

P ′(x) =

m∑
`=−m

P (`)

m∑
j=−m
j 6=`

1

`− j

m∏
k=−m
k 6=j,k 6=`

x− k
`− k

Plugging in x = 0 leaves us with:

P ′(0) =

m∑
`=−m

P (`)

m∑
j=−m
j 6=`

1

`− j

m∏
k=−m
k 6=j,k 6=`

−k
`− k

Observe that if ` 6= 0 and j 6= 0, then one of the factors in the product on the right-hand side becomes 0,
and hence the term vanishes. Moreover, if ` = 0, then j 6= 0 as well. So, the contribution of ` = 0 is 0, and
if ` 6= 0, then we must have that j = 0 in order to obtain non-zero terms. Thus, we obtain:

P′(0) =

m∑
`=−m
` 6=0

P (`) · 1

`
·

m∏
k=−m
k 6=0,k 6=`

−k
`− k

For all ` 6= 0, we obtain: ∣∣∣∣∣∣∣
m∏

k=−m
k 6=0,k 6=`

−k
`− k

∣∣∣∣∣∣∣ =
(m!)2

(m− `)!(m+ `)!

Moreover, the product shown in the above equation picks up a sign for every k that is in between 0 and `,
which is satisfied for exactly |`| − 1 choices of k. Hence, we obtain:

P ′(0) =

m∑
`=−m
` 6=0

P (`)

`
· (−1)|`|−1 · (m!)2

(m− `)!(m+ `)!

85

From elementary rewriting, we obtain:

P ′(0) =

m∑
`=−m
` 6=0

P (`) · (−1)`−1

`
· m!

(m− |`|)!
· m!

(m+ |`|)!
=

m∑
`=−m
` 6=0

P (`) · (−1)`−1

`
·

(
m
|`|
)(

m+|`|
`

) =

m∑
`=−m
` 6=0

P (`) · a(2m)
`

Finally, choosing P (x) = xk, where k is an integer between 0 and 2m, yields:

m∑
`=−m

a
(2m)
` `k =

m∑
`=−m
` 6=0

a
(2m)
` `k =

{
1, if k = 1

0, otherwise

This completes the proof.

Next, we prove some bounds on these coefficients.

Lemma 4.3.4: Bounds on the coefficients of the 2mth order central difference scheme
Let m ∈ N. Then for all ` ∈ {−m, . . . ,m} \ {0}:∣∣∣a(2m)

`

∣∣∣ ≤ 1

|`|

We also have:
m∑

`=−m

∣∣∣a(2m)
`

∣∣∣ ≤ 2 ln(m) + 2

And for all k ≥ 2m+ 1, we have:

m∑
`=−m

∣∣∣a(2m)
` `k

∣∣∣ ≤ 6e−
7m
6 mk+ 1

2

Proof. First of all, observe, for all ` ∈ {−m, . . . ,m} \ {0}:

∣∣∣a(2m)
`

∣∣∣ =
1

|`|
·

(
m
|`|
)(

m+|`|
|`|
) =

1

|`|
· m · · · · · (m− |`|+ 1)

|`| · · · · · 1
· |`| · · · · · 1

(m+ |`|) · · · · · (m+ 1)
=

1

|`|

|`|∏
j=1

m− |`|+ j

m+ j
≤ 1

|`|

This implies, using the fact that x 7→ 1/x is decreasing on (0,∞):

m∑
`=−m

∣∣∣a(2m)
`

∣∣∣ ≤ 2

m∑
`=1

1

`
≤ 2 + 2

∫ m

1

1

x
dx = 2 ln(m) + 2

The last statement is Lemma 32 of [GAW17].

Next, we provide a lemma that will help us determine a good bound on the error that we make when using
this numerical method to estimate the gradient of a high-dimensional function.

Lemma 4.3.5: Error induced by calculating the function values symmetrically on the grid
Let d, n, k ∈ N, q ∈ [0, 1], and H : [d]k → R, such that for all α ∈ [d]k, |H(α)| ≤ 1. For at least a
(1− 1/16k)-fraction of points x ∈ Gn,1,0, where 0 ∈ Rd, we have:∣∣∣∣∣∣

∑
α∈[d]k

H(α)xα

∣∣∣∣∣∣ ≤ 4k

√
2qkqk

(
d

2

)2k−qk

86

Proof (based on Lemma 34 in [GAW17]). Suppose that X1, . . . , Xd are independent identically distributed
random variables, taking values in [−1/2, 1/2], and whose distribution is symmetric around 0. Let X =
(X1, . . . , Xd) be the vector of all these random variables. Then, we obtain, using the linearity of the expec-
tation and some elementary rewriting:

E


 ∑
α∈[d]k

H(α)Xα

2
 = E

 ∑
α,β∈[d]k

H(α)H(β)XαXβ

 =
∑

α,β∈[d]k

H(α)H(β)E
[
XαXβ

]

≤
∑

α,β∈[d]k

E
[
XαXβ

]
= E

 ∑
α,β∈[d]k

XαXβ

 = E

 ∑
α∈[d]2k

Xα


= E

[
(X1 + · · ·+Xd)

2k
]

This, now, we can rewrite as follows, which can be proven writing out the definitions and using Fubini’s
theorem:

E
[
(X1 + · · ·+Xd)

2k
]

=

∫ ∞
0

P
[
(X1 + · · ·+Xd)

2k ≥ t
]

dt

Plugging this into the relation above, we find:

E


 ∑
α∈[d]k

H(α)Xα

2
 ≤ ∫ ∞

0

P
[
(X1 + · · ·+Xd)

2k ≥ t
]

dt =

∫ ∞
0

P
[
|X1 + · · ·+Xd| ≥ t

1
2k

]
dt

Now, we can invoke the Hoeffding bound. [Hoe63] As all the Xj ’s are bounded in the interval [−1/2, 1/2]
and E(Xj) = 0 for all j ∈ [d], we obtain, for all s > 0:

P [|X1 + · · ·+Xd| ≥ s] ≤ 2e−
2s2

d

Plugging in s = t
1
2k yields:

E


 ∑
α∈[d]k

H(α)Xα

2
 ≤ 2

∫ ∞
0

e−2 t
1
k
d dt

Next, we perform the substitution y = 2t
1
k /d. We find t = (yd/2)k and hence dt = (d/2)kkyk−1dy, so:

E


 ∑
α∈[d]k

H(α)Xα

2
 ≤ 2k

(
d

2

)k ∫ ∞
0

e−y · yk−1 dy = 2

(
d

2

)k
kΓ(k) = 2

(
d

2

)k
k!

Finally, we can rewrite this using Stirling’s approximation:

E


 ∑
α∈[d]k

H(α)Xα

2
 ≤ 2

(
d

2

)k
k! ≤ 2

(
d

2

)k
· e1−k

√
kkk ≤ 2

(
dk

2

)k

But, we also trivially have the following estimate, because all the Xj ’s are bounded by the interval [−1/2, 1/2]:

E


 ∑
α∈[d]k

H(α)Xα

2
 ≤ E

[
(X1 + · · ·+Xd)

2k
]
≤
(
d

2

)2k

87

So, we can geometrically average the last two equations as follows, where q ∈ [0, 1]:

E


 ∑
α∈[d]k

H(α)Xα

2
 ≤ [2

(
dk

2

)k]q
·
(
d

2

)2k(1−q)

= 2qkqk
(
d

2

)2k−qk

Hence, by Markov’s inequality, we obtain:

P

∣∣∣∣∣∣
∑
α∈[d]k

H(α)Xα

∣∣∣∣∣∣ ≥ 4k ·

√
2qkqk

(
d

2

)2k−qk
 = P


∣∣∣∣∣∣
∑
α∈[d]k

H(α)Xα

∣∣∣∣∣∣
2

≥ 16k2qkqk
(
d

2

)2k−qk


≤
E
[∣∣∣∑α∈[d]k H(α)Xα

∣∣∣2]
16k · 2qkqk

(
d
2

)2k−qk ≤
2qkqk

(
d
2

)2k−qk
16k · 2qkqk

(
d
2

)2k−qk =
1

16k

Finally, let X be the random variable uniformly distributed on Gn,1,0. Then, we find that the components
of X indeed are independently identically distributed random variables bounded in the interval [−1/2, 1/2].
So, the final displayed equation tells us that for at most a 1/16k-fraction of the points in x ∈ Gn,1,0, we
have: ∣∣∣∣∣∣

∑
α∈[d]k

H(α)xα

∣∣∣∣∣∣ ≥ 4k

√
2qkqk

(
d

2

)2k−qk

Hence the reverse inequality must hold for at least a (1−1/16k)-fraction of points x ∈ Gn,1,0. This completes
the proof.

Using Lemma 4.3.3, Lemma 4.3.4 and Lemma 4.3.5, we can prove a bound on the error that arises from
using this numerical method.

Theorem 4.3.6: Error induced by the numerical method
Let d,m, n ∈ N, f ∈ Gσd,Rd,M,c, a ∈ Rd and r > 0. Then, for at least a 999/1000-fraction of the points
x ∈ Gn,r,a, we have:∣∣∣∣∣∇f(a) · (x− a)−

m∑
`=−m

a
(2m)
` f(a + `(x− a))

∣∣∣∣∣ ≤
∞∑

k=2m+1

(8rcmdσ)
k

Proof (based on theorem 23 in [GAW17]). Observe that f is an element from the Gevrey-class of functions.
Recall from Definition 4.1.1 that this implies that we must have that the Taylor series of f around a converges
on all of Rd. Thus, for all x ∈ Rd, we can write:

f(a + x) =

∞∑
k=0

∑
α∈[d]k

∂αf(a) · xα

k!

Hence, by simply plugging in the above series and rearranging, we obtain:

m∑
`=−m

a
(2m)
` f(a + `(x− a)) =

m∑
`=−m

a
(2m)
`

∞∑
k=0

1

k!

∑
α∈[d]k

∂αf(a) · `k(x− a)α

=

∞∑
k=0

1

k!

 ∑
α∈[d]k

∂αf(a)(x− a)α

 · [m∑
`=−m

a
(2m)
` `k

]

88

Now, we can use Lemma 4.3.3, we obtain that the right-most factor in the sum vanishes for k = 0 and all
k ∈ {2, 3, . . . , 2m}. Moreover, the term where k = 1 exactly equals ∇f(a) · (x− a). Hence, we are only left
with the terms where k ≥ 2m+ 1 in the following relation:∣∣∣∣∣∇f(a) · (x− a)−

m∑
`=−m

a
(2m)
` f(a + `(x− a))

∣∣∣∣∣ ≤
∞∑

k=2m+1

1

k!

∣∣∣∣∣∣
∑
α∈[d]k

∂αf(a) · (x− a)α

∣∣∣∣∣∣ ·
∣∣∣∣∣

m∑
`=−m

a
(2m)
` `k

∣∣∣∣∣
We can bound the right-most factor by Lemma 4.3.4. Moreover, observe that for all k ≥ 2m+1, Lemma 4.3.5
implies that for at least a (1− 1/16k)-fraction of the vectors x ∈ Gn,r,a, we have the following bound, where
we have picked q = 2(1− σ):∣∣∣∣∣∣

∑
α∈[d]k

∂αf(a) · (x− a)α

rkckkσk

∣∣∣∣∣∣ ≤ 4k

√
22(1−σ)k2k(1−σ)

(
d

2

)2k−2k(1−σ)

= 4k21−σkkk−σk
(
d

2

)σk

Here, we used that for all k ∈ N, ∂αf(a) ≤ ck(k!)σ ≤ ckkσk. We can use this bound for all terms where
k ≥ 2m+ 1, for at least the following fraction of points:

1−
∞∑

k=2m+1

1

16k
≥ 1−

∞∑
k=3

(
1

16

)k
= 1− 1

163
· 1

1− 1
16

= 1− 1

163 − 162
≥ 999

1000

So, we obtain, for at least a 999/1000-fraction of points x ∈ Gn,r,a:∣∣∣∣∣∇f(a) · (x− a)−
m∑

`=−m

a
(2m)
` f(a + `(x− a))

∣∣∣∣∣
≤

∞∑
k=2m+1

1

k!

∣∣∣∣∣∣
∑
α∈[d]k

∂αf(a) · (x− a)α

rkckkσk

∣∣∣∣∣∣ · rkckkσk ·
∣∣∣∣∣

m∑
`=−m

a
(2m)
` `k

∣∣∣∣∣
≤

∞∑
k=2m+1

4k21−σkkk−σk
(
d
2

)σk
rkckkσk · 6e− 7m

6 mk+ 1
2

√
2πe−kkk

√
k

=

∞∑
k=2m+1

ek4k21−σ (d
2

)σk
rkck · 6e− 7m

6 mk
√
m

√
2π
√
k

=

∞∑
k=2m+1

6 · 21−σe−
7m
6
√
m√

2πk

(
4ercmdσ

2σ

)k
≤

∞∑
k=2m+1

(8rcmdσ)k

In the last step, we used that 4e/
√

2 ≤ 8 and:

6 · 21−σ · e−−7m
6 ·
√
m√

2π(2m+ 1)
≤ 6 ·

√
2 · e− 7m

6

√
4π

≤ 6
√

2√
4π · e

≤ 1

This completes the proof.

Now that we have developed a numerical method, and proved a bound on the error that arises from using
this numerical method, we can proceed to describe how Gilyén et al.’s algorithm implements this numerical
method. This is the main objective of the next subsection.

89

4.3.3 Algorithm

Now, we are finally in good position to state Gilyén et al.’s quantum gradient estimation algorithm, and
prove that it indeed correctly estimates the gradient of a multidimensional function with the indicated
success probability. The algorithm presented here is essentially the same algorithm as described in [GAW17].
However, some generalizations are made. Most notably, one can now choose to approximate the gradient
with respect to an arbitrary `p-norm, and one can estimate the gradient of functions whose Gevrey-type is
1 or smaller, instead of 1

2 or smaller. Moreover, the extra (necessary) requirement that ‖f‖∞ ≤
1
2 has been

explicitly stated here.

Gilyén et al.’s gradient estimation algorithm makes use of a phase oracle via which we can query f on a grid
G ⊆ Rd. We require the states {|x〉 : x ∈ G} ⊆ C2q to form an orthonormal set of q-qubit states, however
we do not specify exactly what these states should be. In general, we can think of these states to somehow
encode vectors in Rd in an approximate manner, just like tuples of floating point numbers can represent
vectors in Rd approximately in a classical computer.

In contrast, what we do require is to have access to a circuit that generate these states. In particular, given a
grid G = Gn,r,a ⊆ Rd, defined in Definition 4.3.1, we require that we have a circuit CG, acting on nd qubits,
which implements the following action for all j ∈ {−2n−1, . . . , 2n−1 − 1}d:

CG : |j〉 |0〉⊗q 7→ |j〉 |xj〉 where |j〉 = |j1〉 |j2〉 · · · |jd〉

Hence, we can think of the nd-qubit states |j〉 to be the indices, or labels, of the points xj ∈ G.

In the algorithm, it will be required to perform some basic arithmetic operations on these labels. In particular,
we have to multiply a vector j by some predefined integer `. Hence, we must construct a multiplication by `
quantum circuit, which has the following action for all j ∈ {−2n−1, . . . , 2n−1 − 1}d:

M` : |j〉 |0〉⊗(n+dlog(`)e)d 7→ |j〉 |`j〉

Here, the vectors |j〉 are encoded as before, in nd qubits, but in order to make sure that the result does not
overflow, we must reserve (n+ dlog(m)e)d qubits to store the resulting vector, where m ≥ `.

Luckily, the construction of such a circuit is not all that difficult. We present its construction in the box
below.

90

Circuit 4.3.7: Mutliplication by `
Description: This circuit implements multiplication by a constant 0 ≤ ` ≤ m for the labels that we
will encounter in Gilyén et al.’s gradient estimation algorithm.
Qubit layout: Three registers. The first one is nd qubits in size, and the last two are (n+ dlog(m)e)d
qubits in size. The middle register is to be considered auxiliary.
Elementary gate complexity: O(((n+ dlog(m)e)d)2)
Circuit: The idea is to write the constant |`| in its binary form: |`| = (`dlog(m)e−1 · · · `0)2. Then, for
every k for which `k is non-zero, we perform the following three actions:

1. First of all, we perform the following action on the first two registers:

|j〉 |0〉 7→ |j〉
∣∣2kj〉

This can be implemented using at most nd CNOT-gates.
2. Next, we call the quantum Fourier adder to add the second register to the third one. This takes
O(((n+ dlog(m)e)d)2) elementary gates.

3. Finally, we uncompute the result that we temporarily stored in the second register, which again
takes at most nd CNOT-gates.

In the third register, the resulting value |`|j = ((`0 + 2`1 + · · ·+ 2dlog(m)e−1`dlog(m)e−1)j accumulates. If
` is negative, then the final part of the circuit is to multiply the last circuit with −1. This can be done
by exploiting the two’s complement notation of the integer states, hence by applying an X to all qubits
of the last register, preparing a vector (1)d in the second register, again applying the quantum Fourier
adder, and finally reverting the second register back to (0)d.
Shorthand notation: Here, N = n+ dlog(m)e:

|0〉 |`j〉
|j〉 |j〉

n

N M`

Now, we have developed all the ingredients necessary to state the full circuit that we will be using in Gilyén
et al.’s algorithm. The circuit will construct a state that upon measurement yields an approximation to the
gradient of the function that is being called by the phase oracle.

The idea is that the fractional phase queries can be used to obtain linear combinations of function values in
the exponents. In particular, the circuit uses fractional phase queries to construct the following state:

1√
2nd

∑
j∈{−2n−1,...,2n−1−1}d

eiS
∑m
`=−m a

(2m)
` f(x`j) |j〉

The details of the circuit are shown in the box below.

91

Circuit 4.3.8: The main routine in Gilyén et al.’s quantum gradient estimation algorithm
Description: This is the central quantum circuit in the Gilyén et al.’s quantum gradient algorithm.
Input: The input consists of a controlled phase oracle C(Of,G), where G = Gn+dlog(m)e,2dlog(m)er,a.
Parameters: The following parameters can be adjusted:

1. S > 0.
2. δ > 0.
3. m > 0.

Qubit layout: Three registers. The first register consists of nd qubits and is able to contain labels of
points in G. The second one is (n+ dlog(m)e)d qubits in size, and can hold constant multiples of labels
of points in G. The third one consists of q qubits, and can hold the actual states that correspond to the
vectors in G. On top of that, at least (n+ dlog(m)e)d+ 3 auxiliary qubits are required, plus some extra
if they are required by C(Of,G).
Circuit: The circuit consists of the following parts.

1. First of all, nd Hadamard gates are applied to the first register to obtain a uniform superposition
of the labels of the points in Gn,r,a.

2. Next, for all ` ∈ {−m, . . . ,m} \ {0}, the following steps are performed:
(a) First of all, the multiplication circuit M` is applied to the first two registers.
(b) Then the state construction circuit CG is applied to the second and third registers.
(c) Next, a fractional phase query is applied, where the third register indicates the point at which

the function f is to be evaluated. The power of the fractional phase query is given by a
(2m)
` S,

and the precision parameter is δ.
(d) Finally, steps (b) and (a) are reversed.

3. Finally, the d-dimensional inverse quantum Fourier transform is applied to the first nd qubits, i.e.,
the n-qubit inverse quantum Fourier transform is applied d times, to the d sets of n qubits that
comprise the first register.

Query complexity: The number of queries to C(Of,G) is upper bounded by:

48S

m∑
`=−m

(∣∣∣a(2m)
`

∣∣∣+
1

48

)
· 12(max{dlog(1/δ)e, 1}+ 1)

Next, we show how the quantum circuit introduced in Circuit 4.3.8 is used in Gilyén et al.’s quantum gradient
estimation algorithm.

92

Algorithm 4.3.9: Gilyén et al.’s quantum gradient estimation algorithm
Description: This algorithm is an ε-precise `p-approximate quantum gradient estimation algorithm for
Gσ
d,Rd, 12 ,c

in a on G = Gn+dlog(m),2dlog(m)er,a, with success probability 2/3.

Parameters:
1. ε > 0. The accuracy with which we want to find an approximation of the gradient.
2. c > 0. One of the parameters that determines the class of functions for which we want the

algorithm to work.
3. d ∈ N. The dimension of the domain of the function.
4. σ ∈ [1/2, 1]. An upper bound on the Gevrey-type of the function.
5. a ∈ Rd. The point where we want to estimate the gradient.
6. p ∈ [1,∞]. The norm with which we want to measure the accuracy.

Derived constants:
1. ε′ = ε

d
1
p

.

2. m = dlog
(
cdσ

ε′

)
e.

3. r = (81·8·42πcmdσ/ε′)−
1

2m

9cmdσ .

4. S = 2π · 2dlog(4
rε′)e.

5. n = dlog(4
rε′)e+ dlog(3rc)e.

6. δ = 1
2000·(12mS+288S(2 ln(m)+2)) .

7. N = d 2 log(3d)
log(3) e.

Input: A (dlog(m)e+ n)-qubit phase oracle of f on G, controlled on one qubit, denoted by C(Of,G).
Output: A vector v ∈ Rd such that ‖v −∇f(a)‖p ≤ ε.
Success probability: Lower bounded by 2/3.
Number of qubits: nd + (dlog(m)e + n)d, plus the auxilliary qubits that are required by C(Of,G).
Query complexity: The query complexity to C(Of,G) is upper bounded by:

SN [2m+ 48 · (2 ln(m) + 2)] · [12 + 12 max{dlog(1/δ)e, 1}] = Õ(S) = Õ

(
1

ε′r

)
= Õ

(
cdσ+ 1

p

ε

)

Algorithm:
1. Repeat N times:

(a) Run Circuit 4.3.8.
(b) Measure the first nd qubits, and interpret the result as h ∈ {−2n−1, . . . , 2n−1 − 1}d.
(c) Denote g = 2π

Srh.
2. Let v be the coordinate-wise mean of the N vectors g obtained in the previous step.
3. Return v.

Proof of the lower bound on the success probability in Algorithm 4.3.9. Note that in total, we have to imple-
ment at most the following number of calls to a fractional phase query circuit shown in Circuit 4.2.18:

48 · S ·
m∑

`=−m
` 6=0

(∣∣∣a(2m)
`

∣∣∣+
1

48

)
≤ 2mS + 48S · (2 ln(m) + 2)

Every fractional phase query introduces a norm error of 6δ. Hence, from Lemma B.2, we can deduce that the
total error introduced by all the imperfect implementations of the fractional phase queries, is upper bounded
by:

[2mS + 48S · (2 ln(m) + 2)] · 6δ ≤ 12mS + 288S(2 ln(m) + 2)

2000 · (12mS + 288S(2 ln(m) + 2))
≤ 1

2000

If we ignore this error introduced by the fractional phase queries, observe that the state of the first nd qubits
in the quantum system, after application of the circuit, but before application of the Quantum Fourier

93

Transform, is given by:

|ψ〉 =
1√
2nd

∑
j∈{2n−1,...,2n−1−1}d

eiS
∑m
`=−m a

(2m)
` f(a+`(xj−a)) |j〉

We now calculate the difference in norm to the state:∣∣∣ψ̃〉 =
1√
2nd

∑
j∈{−2n−1,...,2n−1−1}d

eiS∇f(a)·(xj−a) |j〉

Next, let R ⊆ Gn,r,a be the set of points for which the bound of Theorem 4.3.6 holds. Then, we find
|R| ≥ 999/1000 · |Gn,r,a| = 999/1000 ·2nd. Hence, the number of points for which the bound of Theorem 4.3.6
does not hold is at most 2nd/1000. We obtain:∥∥∥|ψ〉 − ∣∣∣ψ̃〉∥∥∥2

≤ 1

2nd

∑
x∈Gn,r,a

∣∣∣∣eiS(∇f(a)·(x−a)−
∑m
`=−m a

(2m)
` f(a+`(x−a))

)
− 1

∣∣∣∣2

≤ 1

2nd

∑
x∈R

S2

∣∣∣∣∣∇f(a) · (x− a)−
m∑

`=−m

a
(2m)
` f(a + `(x− a))

∣∣∣∣∣
2

+
4

1000

≤ S2 ·

(∞∑
k=2m+1

(8rcmdσ)k

)2

+
1

250
=

(
S

∞∑
k=2m+1

(8rcmdσ)k

)2

+
1

250

Now, we bound the expression within parentheses. Observe that we have:

8rcmdσ =
8

9
· (81 · 8 · 42πcmdσ/ε′)

−1/2m

And as ε′ < c, we find 8rcmdσ ≤ 8
9 . Hence:

∞∑
k=2m+1

(8rcmdσ)k = (8rcmdσ)2m+1
∞∑
k=0

(8rcmdσ)k

≤
(

8

9
· (81 · 8 · 42πcmdσ/ε′)

−1/2m
)2m+1

·
∞∑
k=0

(
8

9

)k
=

(
8

9

)2m+1

· ε′

81 · 8 · 42πcmdσ
· (81 · 8 · 42πcmdσ/ε′)

−1/2m · 9

≤ 1 · ε′

8 · 42π
· (81 · 8 · 42πcmdσ/ε′)

−1/2m

9cmdσ
=

ε′r

8 · 42π

So, we obtain:

S

∞∑
k=2m+1

(8rcmdσ)k ≤ 2π · 2dlog(4
rε′)e · ε′r

8 · 42π
≤ 2π · 8

ε′r
· ε′r

8 · 42π
=

1

21

Thus: ∥∥∥|ψ〉 − ∣∣∣ψ̃〉∥∥∥2

≤
(

1

21

)2

+
1

250

Furthermore, we have:∣∣∣ψ̃〉 =
1√
2nd

∑
j∈{0,1,...,2n−1}d

eiS∇f(a)· jr2n |j〉 =
1√
2nd

∑
j∈{0,1,...,2n−1}d

e
2πi
2n ·

Sr
2π ·∇f(a)·j |j〉

94

Observe, for all j ∈ [d]:

Sr

2π · 2n
· |∇f(a)j | =

2π · 2dlog(4
rε′)er

2π · 2dlog(4
rε′)e+dlog(3rc)e

· |∇f(a)j | ≤
r

3rc
· 1

2
c =

1

6

Hence, we find that the value that is to be approximated is bounded away from the edge of the spectrum that
can be reached with the Fourier transform, which would have been 1

2 in the above equation. In particular,
it follows from well-known theory, which can for example be found in [NC00], Equation 5.34, that (where∣∣∣ψ̃j〉 denotes the state of the jth set of n qubits in |ψ〉, which is well-defined because these sets of n qubits

are not entangled): ∑
k∈{−2n−1,...,2n−1−1}
|k−Sr∇f(a)j/2π|>4

∣∣∣〈k|QFT∗2n
∣∣∣ψ̃j〉∣∣∣2 ≤ 1

6

But the real state of the quantum system just before the application of the inverse quantum Fourier transform

is not exactly
∣∣∣ψ̃〉, but another state |φ〉 instead. We have, according to the triangle inequality:

∥∥∥|φ〉 − ∣∣∣ψ̃〉∥∥∥ ≤ ‖|φ〉 − |ψ〉‖+
∥∥∥|ψ〉 − ∣∣∣ψ̃〉∥∥∥ ≤ 1

2000
+

√(
1

21

)2

+
1

250

And hence, using Lemma B.1, we find that the probability that |hj − Sr∇f(a)/2π| ≥ 4 is bounded above
by:

1

6
+
∥∥∥|φ〉 − ∣∣∣ψ̃〉∥∥∥ ≤ 1

6
+

√(
1

21

)2

+
1

250
+

1

2000
≤ 1

3

Now, we obtain that gj is likely to approximate ∇f(a)j well, as:

P [|gj −∇f(a)j | > ε′] = P
[∣∣∣∣Sr2π

gj −
Sr

2π
∇f(a)j

∣∣∣∣ > Srε′

2π

]
= P

[∣∣∣∣hj − Sr

2π
∇f(a)j

∣∣∣∣ > 2π · 2dlog(4
rε′)erε′

2π

]

≤ P
[∣∣∣∣hj − Sr

2π
∇f(a)j

∣∣∣∣ > 4rε′

rε′

]
= P

[∣∣∣∣hj − Sr

2π
∇f(a)j

∣∣∣∣ > 4

]
≤ 1

3

But our final result can only differ by more than ε′ from ∇f(a) in the jth coordinate if more than half of
the gj ’s are located outside of the interval [∇f(a)j − ε′,∇f(a)j + ε′]. This probability we denote by P , and
we can bound it as follows:

P ≤
(
N

N/2

)(
1

3

)N/2
≤ NN+ 1

2 e−Ne[
(N/2)

N/2+ 1
2 e−N/2

√
2π
]2 · (1

3

)N/2
≤ e

2π
√
N
·
(

1

3

)N/2
≤ 3−N/2

Hence, we obtain that the probability that all coordinates of the gradient are well-estimated (i.e., with error
at most ε′) is lower bounded by:

(1− P)d ≥ 1− dP ≥ 1− d3−N/2 ≥ 1− d · 3−
2 log(3d)
2 log(3) = 1− d · 3− log3(3d) = 1− d

3d
=

2

3

Thus, with probability at least 2/3, we find that the `∞-norm error is at most ε′ = ε/d1/p. But we also have
for all x ∈ Rd and p ∈ [1,∞), by Hölder’s inequality:

‖x‖p ≤ d
1
p ‖x‖∞

And hence with probability at least 2/3, the result differs at most ε from the true gradient, measured in
`p-norm.

95

As a final note, let’s take a step back and ponder over the properties of the algorithm that we presented in
this section. We developed a quantum gradient estimation algorithm which perform the following number
of function evaluations:

Õ

(
cdσ+ 1

p

ε

)
(4.3.1)

From a classical point of view, it is intuitively clear that we can never obtain a query complexity smaller
than linear in d, simply because we have d entries of the gradient to determine. The algorithm presented
here, though, can in certain cases have a query complexity that is better than linear in d. Especially in
fields where estimating derivatives of high-dimensional functions occurs, this algorithm has the potential to
provide a quadratic reduction of the query complexity, e.g., by taking σ = 1

2 and p =∞.

The most prominent of these fields is machine learning, as this field essentially revolves around fitting
functions with a large number of parameters. This is why in Chapter 6, we will investigate whether we
can combine this algorithm with other “quantum tricks”, to obtain speed-ups within the field of quantum
machine learning.

96

5 Optimality of Gilyén et al.’s quantum gradient estimation algo-
rithm

Now that we have developed an algorithm that estimates gradients and discussed its query complexity, in
Chapter 4, the natural question that arises is whether we can improve on this query complexity, or whether
we have reached an optimal algorithm. In this chapter, we will show that under certain conditions, Gilyén et
al.’s algorithm is essentially optimal, i.e., we can only improve the query complexity by at most logarithmic
factors. [GAW17] gives the proof for the case σ = 1

2 and p =∞, but we generalize their approach to give a
proof for all σ ∈ [0, 1

2] and p ∈ [1,∞].

The proof will be given in several parts. First of all, we will prove that the result holds for σ = [0, 1
2]

and p = 1, in Section 5.1. Subsequently, we will use reduction arguments to deduce that optimality is also
reached for all choices for p ∈ [1,∞), in Section 5.2. Finally, we will put all this in perspective and discuss
circumstances for which optimality has either not yet been attained or proven, in Section 5.3.

5.1 Lower bound of specific cases

Before we start with proving a lower bound on the query complexity of quantum gradient estimation algo-
rithms, we first of all fix some auxiliary notation. Throughout this section, we will frequently use the random
variable that describes the outcome of a quantum gradient estimation algorithm A. We say that whenever
we estimate the gradient of a function f with algorithm A, then A(f) is the random variable that denotes
the output of the algorithm A under input f . Hence, A(f) is a random variable taking values in Rd. We
also introduce TA(f), which denotes the number of calls the algorithm A makes to the controlled version of
the phase oracle Of,G, when the input function is f .

Now, it is time to present the key result of this section. One can directly compare the query complexity in
this result with the one that is found by plugging in p = 1 and σ = 1

2 into Equation 4.3.1, and observe that
they are essentially equal.

Theorem 5.1.1: Lower bound on query complexity of special cases of quantum gradient
estimation algorithms
Let c,M > 0, d ∈ N, 0 < 73ε < cM , G ⊆ Ω ⊆ Rd and a ∈ Ω. Suppose that A is an ε-precise
`1-approximate quantum gradient estimation algorithm for G0

d,Ω,M,c in a on G with success probability

17/18. Then, on every input controlled phase oracle C(Of,G), where f ∈ G0
d,Ω,M,c, the query complexity

of the controlled phase oracle C(Of,G), denoted by TA(f), satisfies:

TA(f) ≥ cd
3
2

876ε

We will postpone the proof of this theorem to the end of this section. Instead, we will first of all introduce
and prove several lemmas and theorems before turning to the proof of this theorem.

In order to arrive at a good lower bound on the query complexity of a quantum gradient estimation algorithm,
we find functions whose function values are close together, but whose gradients are not. Intuitively, we can
think of these functions as being relatively hard to distinguish from one another, but simultaneously we
require the algorithm to be able to distinguish them. We provide such functions in the following definition.

97

Definition 5.1.2: Test functions
Let c,M > 0, d ∈ N, 0 < 73ε < cM and a ∈ Rd. For all b ∈ {−1, 1}d, we define:

fb,ε,c,a : Rd → R, fb,ε,c,a(x) =

d∑
j=1

73εbj
cd

sin(c(xj − aj))
∏

k∈[d]\{j}

cos(c(xk − ak))

These functions we refer to as the test functions. Moreover, we define the set of test functions on an
open set Ω ⊆ Rd as follows:

FΩ,ε,c,a = {fb,ε,c,a|Ω : b ∈ {−1, 1}d}

These functions will only be of use to us if they are in the class of functions that we have required our
algorithm to perform well for. The next theorem tells us that they are.

Theorem 5.1.3: Test functions are contained in the Gevrey-class G0
d,Rd,M,c

Let c,M > 0, d ∈ N, 0 < 73ε < cM and a ∈ Rd. Then for all open Ω ⊆ Rd, FΩ,ε,c ⊆ G0
d,Ω,M,c.

Proof. The proof is rather straightforward. Let α ∈ Nd0. Then, we find by simply differentiating the test
functions, for all b ∈ {−1, 1}d and x ∈ Rd:

Dαfb,ε,c,a(x) =

d∑
j=1

73εbj
cd
· c|α|(Dαj sin)(c(xj − aj)) ·

∏
k∈[d]\{j}

(Dαk cos)(c(xk − ak)) (5.1.1)

Taking absolute values on both sides yields:

|Dαfb,ε,c,a(x)| ≤
d∑
j=1

73ε|bj |
d

· c|α|−1 = 73εc|α|−1 < Mc|α|

Hence, we find that fb,ε,c,a ∈ G0
d,Rd,M,c, which by Theorem 4.1.2 implies that fb,ε,c,a|Ω ∈ G0

d,Ω,M,c. This
completes the proof.

Furthermore, we can very conveniently express the derivative of the test functions at a, as is shown in the
next theorem:

Theorem 5.1.4: Gradient of test functions
Let c,M > 0, d ∈ N, 0 < 73ε < cM , a ∈ Rd and b ∈ {−1, 1}d. Then, we find:

∇fb,ε,c,a(a) =
73ε

d
b

Proof. Follows from plugging in singleton sequences in Equation 5.1.1 and observing that most terms vanish
at a.

When we estimate the gradient of a function accurately in `1-norm, say up to accuracy ε, then the average
of the error in the individual coordinates can be at most ε/d. We make this idea rigorous in the following
theorem, where we show that there is always a relatively large set of coordinates where the gradients of most
of the test functions are well-approximated.

98

Theorem 5.1.5: Coordinate-wise performance
Let c,M > 0, d ∈ N, 0 < 73ε < cM , G ⊆ Ω ⊆ Rd and a ∈ Ω. Suppose that A is an ε-precise
`1-approximate quantum gradient estimation algorithm for G0

d,Ω,M,c in a on G with success probability

17/18. Then, there is a set S ⊆ [d] such that |S| ≥ 3
4d, and for all j ∈ S, there is a set Gj ⊆ FΩ,ε,c,a,

with |Gj | ≥ 2
3 · 2

d and for all f ∈ Gj :

P
[
|A(f)j −∇f(a)j | ≤

72ε

d

]
≥ 2

3

Proof. For every f ∈ FΩ,ε,c,a, we know that the algorithm A satisfies the following condition:

P [‖A(f)−∇f(a)‖1 ≤ ε] ≥
17

18

We call the event above Sf , so P(Sf) ≥ 17/18. Now, observe trivially that the following holds:

E

 d∑
j=1

|A(f)j −∇f(a)j |

∣∣∣∣∣∣Sf
 = E [‖A(f)−∇f(a)‖1| ‖A(f)−∇f(a)‖1 ≤ ε] ≤ ε

Using the linearity of the expectation, we can take the sum out, and obtain the following relation:

d∑
j=1

E [|A(f)j −∇f(a)j | | Sf] ≤ ε

The above relation holds for all f ∈ FΩ,ε,c,a, and hence we find:

1

2d

∑
f∈FΩ,ε,c,a

d∑
j=1

E [|A(f)j −∇f(a)j | | Sf] ≤ ε

But of course we are only dealing with finite sums, and hence we can swap both summations, such that we
obtain:

d∑
j=1

1

2d

∑
f∈FΩ,ε,c,a

E [|A(f)j −∇f(a)j | | Sf] ≤ ε

Now, as we are summing d non-negative real numbers in the summation above, we cannot have that more
than 1

4d of these real numbers exceed 4ε/d, because then the total would exceed ε. Hence, there exists a set
S ⊆ [d] such that |S| ≥ 3

4d and such that for all j ∈ S, we have:

1

2d

∑
f∈FΩ,ε,c,a

E [|A(f)j −∇f(a)j | | Sf] ≤ 4ε

d

We now fix this j ∈ S. Next, we invoke Markov’s inequality to obtain:

1

2d

∑
f∈FΩ,ε,c,a

P
[
|A(f)j −∇f(a)j | ≥

72ε

d

∣∣∣∣Sf] ≤ 1

2d

∑
f∈FΩ,ε,c,a

E [|A(f)j −∇f(a)j | |Sf]
72ε
d

≤
4ε
d

72ε
d

=
1

18

99

Now, using Bayes’ rule, we obtain:

1

2d

∑
f∈FΩ,ε,c,a

P
[
|A(f)j −∇f(a)j | ≥

72ε

d

]

=
1

2d

∑
f∈FΩ,ε,c,a

[
P
[
|A(f)j −∇f(a)j | ≥

72ε

d

∣∣∣∣Sf]P(Sf) + P
[
|A(f)j −∇f(a)j | ≥

72ε

d

∣∣∣∣Scf]P(Scf)

]

≤ 1

2d

∑
f∈FΩ,ε,c,a

[
P
[
|A(f)j −∇f(a)j | ≥

72ε

d

∣∣∣∣Sf] · 1 + 1 · 1

18

]

=
1

2d

∑
f∈FΩ,ε,c,a

P
[
|A(f)j −∇f(a)j | ≥

72ε

d

∣∣∣∣Sf]+
1

18
≤ 1

18
+

1

18
=

1

9

Next, we find that the average of 2d non-negative real numbers must be smaller than or equal to 1
9 . This

implies that at most 1
3 · 2

d of these non-negative real numbers can be greater than or equal to 1
3 , because

otherwise the average would exceed 1
9 . Hence, we find that there exists a set Gj ⊆ FΩ,ε,c,a such that

|Gj | ≥ 2
3 · 2

d, and such that for all f ∈ Gj , we have:

P
[
|A(f)j −∇f(a)j | ≥

72ε

d

]
≤ 1

3

Thus, we obtain, for all such f ∈ Gj :

P
[
|A(f)j −∇f(a)j | ≤

72ε

d

]
≥ 2

3

This completes the proof.

Now that we know that for many coordinates, there are many test functions whose gradients are well-
approximated in that coordinate, we can use this theorem to show that there always exists one particular
test function that is distinguished from many of its neighbors just by looking at the one coordinate in which
its gradient differs. We will refer to this test function as the central test function. The following theorem
makes this precise.

Theorem 5.1.6: Test function center selection
Let c,M > 0, d ∈ N, 0 < 73ε < cM , G ⊆ Ω ⊆ Rd and a ∈ Ω. Suppose that A is an ε-precise
`1-approximate quantum gradient estimation algorithm for G0

d,Ω,M,c in a on G with success probability

17/18. Then, there exists a vector b∗ ∈ {−1, 1}d and a set U ⊆ [d] such that |U | ≥ 1
4d, and such that

for all j ∈ U :

P
[
|A(fb∗,ε,c,a|Ω)j −∇fb∗,ε,c,a(a)j | ≤

72ε

d

]
≥ 2

3

and:

P
[
|A(fb(j),ε,c,a|Ω)j −∇fb(j),ε,c,a(a)j | ≤

72ε

d

]
≥ 2

3
where b(j) = b∗ − 2b∗jej

i.e., where b(j) ∈ {−1, 1}d is the vector that differs from b∗ only in the jth position.

Proof. From Theorem 5.1.5, we know that there exists a set S ⊆ [d] such that |S| ≥ 3
4d and for all j ∈ S,

there exists a Gj ⊆ FΩ,ε,c,a such that |Gj | ≥ 2
3 · 2

d and such that for all f ∈ Gj :

P
[
|A(f)j −∇f(a)j | ≤

72ε

d

]
≥ 2

3

100

Let’s develop some intuitive picture for what the result of Theorem 5.1.5 entails. To that end, picture the
cube in d dimensions, whose vertices are located at {−1, 1}d. Next, suppose that every vertex itself is made
of a small, solid cube. An example is shown in Figure 5.1.

Figure 5.1: Sketch of the three-dimensional cube, whose vertices are smaller three-dimensional cubes.

For every j ∈ [d], we easily observe that there are 2d−1 edges in the jth direction in this cube. Hence, for
every j ∈ S ⊆ [d], we have 2d−1 edges parallel to the ej vector. Next, for every f ∈ Gj , we can find a
b ∈ {−1, 1}d such that f = fb,ε,c,a. In other words, we can associate a set of at least 2

3 · 2
d vertices in

this cube to the set Gj . For all these vertices, we mark the two faces of the smaller cube that faces the
jth direction, (i.e., we can picture ourselves coloring these two faces blue). Note that a marked (i.e., blue)
face indicates that the corresponding coordinate of the gradient of the function associated to this vertex is
relatively well-approximated.

Next, we wonder how many edges are enclosed between two marked faces. For every j ∈ S, we find that the
number of vertices that have marked faces in the jth direction is at least 2

3 · 2
d. So, there are only 1

3 · 2
d

vertices who do not have marked faces in the jth direction, which implies that there are at most 1
3 · 2

d edges
in the jth direction which at least on one end connect to unmarked faces. Thus, we find that the number of
edges in the jth direction which are enclosed between two marked faces is lower bounded by:

2d−1 − 1

3
· 2d =

(
1

2
− 1

3

)
2d =

1

6
· 2d =

1

3
· 2d−1

This holds for all j ∈ S. There are at least 3
4 · d such j, and hence the total number of edges that is between

two marked faces in the cube is at least:

1

3
· 2d−1 · 3

4
d =

1

4
d2d−1

As in total there are d2d−1 edges in the cube, we have that at least a quarter of all the edges is enclosed
between two marked vertices. But this implies that there is at least one vertex who connects to at least 1

4d
of these edges. Denote this vertex by b∗, and let U ⊆ [d] be the set of coordinates that correspond to the
directions of the edges that connect to b∗ and are enclosed between two marked faces. Then, we find that
|U | ≥ 1

4d, and we also have that the edges starting from b∗ in the directions of U are enclosed between two
marked vertices. Now, recall that if a face is marked, then this indicates that the corresponding vertex is
well-approximated in this coordinate corresponding to the normal vector of this face. Writing out what this
means in probabilities completes the proof.

Next, we need one of the standard techniques within quantum computing to relate the above observation
to query complexities of quantum algorithms. We state this result in the theorem below. The proof of the
theorem, we postpone to Appendix C, specifically Theorem C.2.1.

101

Theorem 5.1.7: Hybrid method
Suppose that O0, O1, . . . , ON are unitary operators acting on the n-qubit state space. Let A be a
quantum algorithm whose input consists of one of the oracles Oj , with j ∈ {0, 1, . . . , N}. For all
j ∈ {1, . . . , N}, let Rj , R

∗
j be sets of outcomes of the algorithm A such that Rj ∩R∗j = ∅. Suppose that

for all j ∈ {1, . . . , N}, we have:

P(A(Oj) ∈ Rj) ≥
2

3
and P(A(O0) ∈ R∗j) ≥

2

3

Then the worst case query complexity of A to the input oracle, denoted by TA, satisfies:

N

9
≤ T 2

A · sup
|ψ〉∈C2n+1

‖|ψ〉‖=1

N∑
j=1

‖(Oj −O0) |ψ〉‖2

Finally, we can combine the previous two results to give a proof of Theorem 5.1.1, which is what we do
below.

Proof of Theorem 5.1.1. Observe that according to Theorem 5.1.6, we can find a b∗ ∈ {−1, 1}d and a U ⊆ [d]
such that |U | ≥ 1

4 , and for all j ∈ U , we have that:

P
[
|A(fb∗,ε,c,a|Ω)j −∇fb∗,ε,c,a(a)j | ≤

72ε

d

]
≥ 2

3

and:

P
[
|A(fb(j),ε,c,a|Ω)j −∇fb(j),ε,c,a(a)j | ≤

72ε

d

]
≥ 2

3
where b(j) = b∗ − 2b∗jej

But now we can plug in the result from Theorem 5.1.4, and obtain that for all j ∈ U :

P
[∣∣∣∣A(fb∗,ε,c,a|Ω)j −

73εb∗j
d

∣∣∣∣ ≤ 72ε

d

]
≥ 2

3
and P

[∣∣∣∣A(fb(j),ε,c,a|Ω)j −
73ε(b(j))j

d

∣∣∣∣ ≤ 72ε

d

]
≥ 2

3

Next, we define the following sets:

R∗ =

{
g ∈ Rd :

∣∣∣∣gj − 73εb∗j
d

∣∣∣∣ ≤ 72ε

d

}
and R(j) =

{
g ∈ Rd :

∣∣∣∣gj − 73ε(b(j))j

d

∣∣∣∣ ≤ 72ε

d

}
Suppose that g ∈ R∗ ∩R(j). Then, we find, using that |b∗j − (b(j))j | = 2:

146ε

d
=

73ε

d
· |b∗j − (b(j))j | =

∣∣∣∣73εb∗j
d
−

73ε(b(j))j

d

∣∣∣∣ ≤ ∣∣∣∣gj − 73εb∗j
d

∣∣∣∣+

∣∣∣∣gj − 73ε(b(j))j

d

∣∣∣∣ ≤ 72ε

d
+

72ε

d
=

144ε

d

But this is a contradiction, and hence we find that R∗ ∩R(j) = ∅. Moreover, we have that:

P(A(fb∗,ε,c,a) ∈ R∗) ≥ 2

3
and P(A(fb(j),ε,c,a) ∈ R(j)) ≥

2

3

Hence, we can now apply the hybrid method, Theorem 5.1.7. Let n ∈ N be the number of qubits that the
phase oracles that form the input of the algorithm act on. Then, the controlled phase oracles act on n + 1
qubits, and hence we find:

|U |
9
≤ T 2

A sup
|ψ〉∈C2n+1

‖|ψ〉‖=1

∑
j∈U

∥∥∥(C(Ofb∗,ε,c,a,G)− C(Ofb(j),ε,c,a
,G)
)
|ψ〉
∥∥∥2

(5.1.2)

102

The left-hand side is clearly greater than or equal to d/36, as |U | ≥ d/4. On the other hand, we can rewrite

the supremum of the right-hand side as well, as follows. For all |ψ〉 ∈ C2n+1

with ‖|ψ〉‖ = 1, we have:∑
j∈U

∥∥∥(C(Ofb∗,ε,c,a,G)− C(Ofb(j),ε,c,a
,G)
)
|ψ〉
∥∥∥2

=
∑
j∈U

∥∥∥∥∥∥
[∑
x∈G

(|0〉〈0|+ |1〉〈1|)⊗ |x〉〈x|

](
C(Ofb∗,ε,c,a,G)− C(Ofb(j),ε,c,a

,G)
)∑

y∈G
(|0〉〈0|+ |1〉〈1|)⊗ |y〉〈y|

 |ψ〉
∥∥∥∥∥∥

2

=
∑
j∈U

∥∥∥∥∥∥
∑
x∈G

∑
y∈G

(|0〉〈0|+ |1〉〈1|)⊗ |x〉〈x|
(
C(Ofb∗,ε,c,a,G)− C(Ofb(j),ε,c,a

,G)
)

(|0〉〈0|+ |1〉〈1|)⊗ |y〉〈y|ψ〉

∥∥∥∥∥∥
2

As the controlled phase oracles act as the identity when the first qubit is in state |0〉, we find that their
difference vanishes. Hence, we can disregard these terms in the expression above. Moreover, the phase
oracles are diagonal operators, so we find that one of the sums drops out as well. What we are left with, is
displayed below:

∑
j∈U

∥∥∥(C(Ofb∗,ε,c,a,G)− C(Ofb(j),ε,c,a
,G)
)
|ψ〉
∥∥∥2

=
∑
j∈U

∥∥∥∥∥∑
x∈G
〈x|ψ〉

[
〈x|
(
Ofb∗,ε,c,a,G −Ofb(j),ε,c,a

,G

)
|x〉
]
|x〉

∥∥∥∥∥
2

=
∑
j∈U

∥∥∥∥∥∑
x∈G
〈x|ψ〉

(
eifb∗,ε,c,a(x) − eifb(j),ε,c,a

(x)
)
|x〉

∥∥∥∥∥
2

As the set {x : x ∈ G} forms an orthonormal set, this immediately rewrites to:∑
j∈U

∥∥∥(Ofb∗,ε,c,a,G −Ofb(j),ε,c,a
,G

)
|ψ〉
∥∥∥2

=
∑
j∈U

∑
x∈G
| 〈x|ψ〉 |2

∣∣∣eifb∗,ε,c,a(x) − eifb(j),ε,c,a
(x)
∣∣∣2

≤
∑
x∈G
| 〈x|ψ〉 |2

∑
j∈U

∣∣fb∗,ε,c,a(x)− fb(j),ε,c,a(x)
∣∣2

where in the last inequality, we swapped the summations, and used that |eiφ − eiψ| ≤ |φ − ψ|, for all real
φ and ψ. We have constructed our test functions to be very close to each other everywhere, and hence it
makes sense to bound this quantity in the following manner:

∑
j∈U

∥∥∥(Ofb∗,ε,c,a,G −Ofb(j),ε,c,a
,G

)
|ψ〉
∥∥∥2

≤

[∑
x∈G
| 〈x|ψ〉 |2

]
·

sup
x∈G

∑
j∈U

∣∣fb∗,ε,c,a(x)− fb(j),ε,c,a(x)
∣∣2

The first factor is upper bounded by 1, because |ψ〉 is a unit vector. But now, the right-hand side no longer
depends on |ψ〉, and hence:

sup
|ψ〉∈C2n

‖|ψ〉‖=1

∑
j∈U

∥∥∥(Ofb∗,ε,c,a,G −Ofb(j),ε,c,a
,G

)
|ψ〉
∥∥∥2

≤ sup
x∈G

∑
j∈U

∣∣fb∗,ε,c,a(x)− fb(j),ε,c,a(x)
∣∣2

Hence, we now obtain, plugging the last displayed equation into Equation 5.1.2:

dT 2
A · sup

x∈G

∑
j∈U
|fb∗,ε,c,a(x)(x)− fb(j),ε,c,a(x)|2 ≥ 36 (5.1.3)

So, it remains to find a good upper bound on the supremum to obtain a good lower bound on TA. To that
end, we plug in the definition of the test functions, and observe that almost all terms vanish:

sup
x∈G

∑
j∈U
|fb∗,ε,c,a(x)−fb(j),ε,c,a(x)|2 ≤ sup

x∈G

∑
j∈U

(
73ε|b∗j − (b(j))j |

cd

)2

sin2(c(xj−aj)) ·
∏

k∈[d]\{j}

cos2(c(xj−aj))

103

Again, we use that for all j ∈ U , |b∗j − (b(j))j | = 2. Moreover, we replace G by Rd and U by [d], simply
because we don’t need to use these extra restrictions any longer. We obtain:

sup
x∈G

∑
j∈U
|fb∗,ε,c,a(x)− fb(j),ε,c,a(x)|2 ≤ sup

x∈Rd

d∑
j=1

(
146ε

cd

)2

sin2(c(xj − aj)) ·
∏

k∈[d]\{j}

cos2(c(xk − ak))

Finally, observe that the sum on the right-hand side contains terms that are products with one sin2 factor, and
many other cos2 factors. Rather counter-intuitively, we add many more factors, with all other combinations
of cos2 and sin2 factors. Then, we obtain:

sup
x∈Rd

∑
j∈U
|fb∗,ε,c,a(x)− fb(j),ε,c,a(x)|2 ≤

(
146ε

cd

)2

sup
x∈Rd

∑
A⊆[d]

∏
j∈A

sin2(c(xj − aj))
∏

k∈[d]\A

cos2(c(xk − ak))

=

(
146ε

cd

)2

· sup
x∈Rd

d∏
j=1

(
sin2(c(xj − aj)) + cos2(c(xj − aj))

)
=

(
146ε

cd

)2

Hence, plugging this into Equation 5.1.3, yields:

dT 2
A ·
(

146ε

cd

)2

≥ 36

And so, we find:

TA ≥
cd

3
2

876ε

This completes the proof.

In this section, we did a lot of hard work, to prove a lower bound on the query complexity of a quantum
gradient estimation algorithm for one special case of parameters. In the next section, we will exploit this
result to prove a similar lower bound for a much broader class of parameters.

5.2 Lower bound of more general cases

Now that we have proven a lower bound on the query complexity of quantum gradient estimation algorithms
for one special case, in Theorem 5.1.1, we can use reduction arguments to prove similar lower bounds for
more general cases as well. This is the aim of this section, and in particular the aim of the following theorem.

Theorem 5.2.1: Lower bound on query complexity of quantum gradient estimation algo-
rithms
Let c,M > 0, d ∈ N, σ ≥ 0, G ⊆ Ω ⊆ Rd, a ∈ Ω, p ∈ [1,∞], P ∈ (1

2 , 1] and 0 < 146ε < cMd−1/p.
Suppose that A is an ε-precise `p-approximate quantum gradient estimation algorithm for Gσd,Ω,M,c in
a on G with success probability P . Then, for every input controlled phase oracle C(Of,G), where
f ∈ Gσd,Ω,M,c, the query complexity of C(Of,G), denoted by TA(f), satisfies:

TA(f) ≥ min

{
1,

1

2N

}
cd

1
2 + 1

p

876ε
where N =

⌈
18(1− P)

(P − 1
2)2

⌉

104

Proof. We prove this in several cases. First of all, suppose that p = 1 and P ≥ 17/18. Then, we know by
Theorem 5.1.1 that the statement holds, and hence we are done.

Next, suppose that p = 1 and 1
2 < P < 17/18. Then, we have:

N =

⌈
18(1− P)

(P − 1
2)2

⌉
≥ 18(1− P)

(P − 1
2)2

> 0

Suppose that for some f ∈ Gσd,Ω,M,c, we want to determine the gradient in a. We run algorithm A a total
number of N times, and denote all the resulting vectors g1, . . . ,gN . We let Xj be the random variable that
is 1 if ‖gj −∇f(a)‖1 ≤ ε, and 0 otherwise. Then, we find P(Xj = 1) ≥ P , and hence E(X2

j) = E(Xj) =
P(Xj = 1) ≥ P .

Observe that all Xj ’s are independent random variables. Using the linearity of the expectation, we obtain:

E

 N∑
j=1

Xj

 =

N∑
j=1

E[Xj] ≥ NP

Moreover, we have:

Var

 N∑
j=1

Xj

 =

N∑
j=1

Var(Xj) =

N∑
j=1

(
E(X2

j)− E(Xj)
2
)

=

N∑
j=1

P(Xj = 1) · (1− P(Xj = 1)) ≤ N(1− P)

Now, we can employ Chebyshev’s inequality to obtain:

P

 N∑
j=1

Xj ≤
N

2

 ≤ P

∣∣∣∣∣∣
N∑
j=1

Xj − E

 d∑
j=1

Xj

∣∣∣∣∣∣ ≥ E

 d∑
j=1

Xj

− N

2



≤ P


∣∣∣∣∣∣
N∑
j=1

Xj − E

 d∑
j=1

Xj

∣∣∣∣∣∣ ≥
[
NP − N

2

]
·

√
Var

(∑d
j=1Xj

)
√

Var
(∑d

j=1Xj

)


≤
Var

(∑d
j=1Xj

)
N2
(
P − 1

2

)2 ≤ N(1− P)

N2
(
P − 1

2

)2 =
1

N
· 1− P(
P − 1

2

)2 ≤
(
P − 1

2

)2
18(1− P)

· 1− P(
P − 1

2

)2 =
1

18

So, with probability at least 17/18, we obtain that more than half of the vectors g1, . . . ,gN are within
`1-distance ε of ∇f(a). If this is the case, even though we don’t know this vector ∇f(a), we know that we
must be able to find some vector g̃ ∈ Rd such that g̃ is within `1-distance ε of more than half of the vectors
g1, . . . ,gN , simply because ∇f(a) is one such vector g̃. But then, by the pigeonhole principle, we find that
there is at least one vector gj that is within `1-distance ε of both ∇f(a) and g̃, and hence we obtain:

‖g̃ −∇f(a)‖1 ≤ ‖g̃ − gj‖1 + ‖gj −∇f(a)‖1 ≤ ε+ ε = 2ε

So, we have now described a 2ε-precise `1-approximate quantum gradient estimation algorithm for Gσd,Ω,M,c in
a on G with success probability 17/18. By Theorem 5.1.1, we find that the query complexity of this algorithm

must be at least cd
3
2

876·2ε . But the query complexity of this algorithm was NTA, because we executed A a total
number of N times. Hence, we find:

NTA ≥
cd

3
2

876 · 2ε
And so:

TA ≥
1

2N
· cd

3
2

876ε

105

This completes the proof of the case where p = 1 and P ∈ (1/2, 17/18).

Finally, we suppose that p ∈ (1,∞] and P ∈ (1
2 , 1]. Then, for every f ∈ Gσd,Ω,M,c, the algorithm A outputs a

vector g ∈ Rd such that ‖g −∇f(a)‖p ≤ ε with probability at least P . Hence, with probability at least P ,

it outputs a vector g ∈ Rd that satisfies, using Hölder’s inequality:

‖g −∇f(a)‖1 ≤ d
1−1/p ‖g −∇f(a)‖p ≤ d

1−1/pε

But then, we obtain, by what we have just proven for the case p = 1:

TA ≥ min

{
1,

1

2N

}
· cd

3
2

876 · d1−1/pε
= min

{
1,

1

2N

}
· cd

1
2 + 1

p

876ε

This completes the proof.

As a final note in this section, observe that the query complexity of this result is essentially equal to the
query complexity portrayed in Equation 4.3.1 for σ = 1

2 . Hence, when σ ∈ [0, 1
2], we have proven essential

optimality of Gilyén et al.’s quantum gradient estimation algorithm, for all values of p ∈ [1,∞].

In the next and last section, we will summarize these results, and put them into perspective.

5.3 Essential optimality of Gilyén et al.’s algorithm and further
research

In the previous section, we have proven that for any ε-precise `p-approximate quantum gradient estimation
algorithm for some class of functions with Gevrey-type at most 0, with success probability at least 1

2 , is at
least:

Ω

(
cd

1
2 + 1

p

ε

)
However, in Section 4.3, we developed a ε-precise `p-approximate quantum gradient estimation algorithm
for a class of functions with Gevrey-type at most σ ∈ [1/2, 1], with success probability at least 2/3, whose
query complexity satisfies:

Õ

(
cdσ+ 1

p

ε

)
If we have a function whose Gevrey-type is smaller than 1

2 , then it is an element of the appropriate G 1
2 -class,

though. Hence, the lower and upper bound match for all function classes Gσ, where σ ∈ [0, 1/2]. This can
also be viewed in Figure 5.2.

Whenever σ > 1
2 , however, the upper and lower bounds do not match. Hence, it is not obvious whether

Gilyén et al.’s algorithm is optimal in this regime and the lower bound can be improved, or whether the
lower bound can be improved to prove optimality of Gilyén et al.’s algorithm for this range of σ as well.

Finally, observe that using phase estimation, Algorithm 3.5.6, we can quite easily evaluate the function
f : Rd → R at a point x ∈ Rd up to ε precision with O(1/ε) queries to Of . Hence, using Õ(d/ε) queries to
Of , we can approximate the gradient of f at some point in `∞-norm up to ε accuracy by employing a simple
classical algorithm. This is especially relevant as in the field of quantum reinforcement learning, which we
delve into in the next chapter, we naturally encounter functions whose Gevrey-type is 1. Hence, closing the
optimality gap for σ = 1 is a very interesting topic of further research.

106

`∞-approximate algorithms `1-approximate algorithms

σ

Optimal d-dependence

−1/2 0 1/2 1 3/2

1/2

1

3/2

2

5/2

Lower bound

Upper bound

σ

Optimal d-dependence

−1/2 0 1/2 1 3/2

3/2

1/2

1

2

5/2

Lower bound

Upper bound

Figure 5.2: Graphical depiction of the results obtained in this chapter. On the horizontal axis, the Gevrey
type σ is displayed. The dashed line represents the upper bound on the d-dependence of the optimal query
complexity of a quantum gradient estimation algorithm for a class of functions whose Gevrey type is at most
σ, where the value on the vertical axis should be interpreted as the power of d. Similarly, the dotted line
represents the lower bound on this optimal query complexity. On the left, these bounds for `∞-approximate
quantum gradient estimation algorithms are shown, and on the right for `1-approximate ones. We can see
that in both cases, the upper and lower bounds coincide in the interval σ ∈ [0, 1/2], and that in both cases,
there still is an optimality gap for σ ∈ (1/2, 1].

107

6 Quantum reinforcement learning

In Chapter 4, we have developed a quantum algorithm that is capable of estimating the gradient of a high-
dimensional function, given a phase oracle of this function. Subsequently, in Chapter 5, we have proven
that this algorithm is essentially optimal in the number of calls to this phase oracle, as long as the input
functions satisfy certain smoothness conditions. In this final chapter, we will look at applications of this
quantum gradient estimation algorithm. Specifically, we will look at how we can employ this algorithm to
do reinforcement learning on a quantum computer.

It is important to note that the application elaborated upon in this chapter, namely quantum reinforcement
learning, is not the only application of quantum gradient estimation algorithms. [GAW17] mention a couple
of applications of their algorithm in their paper, but their method can be used to implement virtually any
algorithm which numerically estimates the gradient on a quantum computer, most notably gradient-based
optimization algorithms like gradient descent. However, the application in this chapter is in some aspects
more interesting, as it involves more “quantum tricks” than simply using the gradient estimation algorithm
as a subroutine in a gradient descent algorithm.

Quantum reinforcement learning is a very new field, but there are some papers by Dunjko et al. that discuss
the subject. We explicitly mention [DTB16], [DB17] and [DLWT18]. First of all, these works explore the
agent-environment paradigm (or AE paradigm for short) in some detail. We have this paradigm encoded in
the oracles we assume to have access to.

Furthermore, these papers consider rewards that come from some discrete set, and the authors assume to
have access to these rewards via binary oracles. We assume to have access to the rewards via phase oracles,
and hence for our purposes, rewards do not have to come from a discrete set. It is instructive to note that
their ideas can be transformed to our setting using the phase kickback trick.1

Moreover, these papers explore specific instances of reinforcement learning that could be sped up using
quantum computing methods, whereas we investigate whether it is possible to devise quantum algorithms
that speed up general reinforcement learning methods.

Another recent paper is from Montanaro [Mon15]. He essentially shows how one can perform function
values from a probability oracle using the phase estimation algorithm, which is something we do as well in
Algorithm 6.2.7.

To the best of our knowledge, combining the ideas of reinforcement learning with the results obtained by
Gilyén et al. [GAW17], especially the interconvertibility between phase and probability oracles, is new. The
core idea is to perform multiplication using probability oracles, and to perform addition using phase oracles,
both in an analog way.

Section 6.1 will provide a short introduction into reinforcement learning. It will introduce the basic concepts
of this relatively new research field in a concise manner. Afterwards, Section 6.2 will cover how we can
perform quantum value evaluation using quantum computing. Then, we will show how the technique of
quantum value evaluation can be used to perform quantum policy evaluation, in Section 6.3. Finally, we will
use the quantum gradient estimation routine from Gilyén et al. in Section 6.4 to perform quantum policy
optimization.

6.1 Introduction to reinforcement learning

In this section, we will review the basic concepts of reinforcement learning. All the relevant terminology from
this upcoming field that we will need in subsequent sections will be introduced in this section. However, this

1This is the same technique that transforms Jordan’s algorithm [Jor05] to Gilyen et al.’s setting [GAW17].

108

section is meant to be a concise introduction into the field. For a more complete introduction into the field,
we refer to the reinforcement learning course taught by David Silver [Sil15], or the book that is commonly
referred to as the reinforcement learning bible, which at the time of writing still is under development [SB18].

Within reinforcement learning, oftentimes a distinction is made between discrete and continuous state and
action spaces. Before we introduce these concepts formally, we remark that in this chapter we will only
consider the discrete case. Generalization to the continuous case probably is possible using similar methods,
but this is left for another time.

Subsection 6.1.1 provides the definitions of the state and action spaces, and the state reward function. Next,
in Subsection 6.1.2, we elaborate on how these state spaces, action spaces and reward functions combine
into a Markov reward process. Furthermore, we outline how the notion of Markov reward processes can be
generalized to Markov decision processes, and we also define policies and value functions there.

6.1.1 State spaces, action spaces and rewards

In this section, we will introduce the most basic concepts of reinforcement learning, namely the state and
action spaces, and the reward function.

Throughout this section, we will use a running example to illustrate the definitions that we provide. To
that end, suppose that we have a robot which moves around in a maze. Let’s say that the maze consists of
N ×N squares, just like the one shown in Figure 6.1 where N = 10. The robot starts out at one entrance of
the maze, at the square labeled S, and it can move by hopping from one square to an adjacent one, without
passing through the walls of the maze, indicated by the solid lines. Its goal is to get to the final square, F ,
where it can exit the maze, in the fewest number of moves. To make things more interesting, we require the
robot to first pass through the square labeled by X, though, before it can successfully exit the maze (we can
think of the robot picking up a key located at X which it needs to open the final door).

S

F

X1

2

3

4

5

6

7

8

9

10

A B C D E F G H I J

Figure 6.1: An arbitrary maze of size 10 × 10. A robot starts in the starting square, S, and its goal is to
move through the maze, via the square X, to the finish square, F , in the fewest number of moves.

Whilst playing the game, the robot progresses through different states. These states are complete descriptions
of the position of the game that the robot is playing. For example, we can define a state to be a tuple of
two pieces of information, namely the position of the robot, and whether it has already passed through X
or not. Hence, an example state could be (D4,No), indicating that the robot is currently at square D4, and
that it has not passed through the square labeled by X yet.

The set of all states, we refer to as the state space. We could for example associate the following state space

109

to the game that we described above:

S = (({A,B,C,D,E, F,G,H, I, J} × {1, 2, 3, 4, 5, 6, 7, 8, 9, 10})× {Yes,No}) ∪ {Done}

Hence, all the elements of the state space S, we refer to as states. For future convenience, we included the
state Done to indicate that the game is finished.

Now that we have built some intuition for the state space, let’s formalize the idea below. In the formal
picture, we will consider states to be very abstract mathematical objects, whose interpretation should come
from context, such as the robot moving through the maze described above.

Definition 6.1.1: State space
A state space is a finite set,a whose members we refer to as states.

aIn the field of reinforcement learning, it is also very common to have state spaces that have an infinite number of
members. However, we will not consider such state spaces in this text.

Now, suppose that the robot is completely uncontrollable, i.e., it drives around randomly even if that causes
it to run into walls. Suppose furthermore that it is in a cell which has two adjacent walls, and two adjacent
cells where it can go to. Then, about a quarter of the time it will go to one of the adjacent cells, about
a quarter of the time it will move to the other of the adjacent cells, and about half of the time it will run
into one of the walls, causing it to not move to a different cell. Hence, it has a probability of 1

2 to move to
another cell, and a probability of 1

2 to stay in the current cell.

These dynamics, we can concisely abbreviate in a matrix, where the rows are indexed by the current state of
the robot, and the columns indicate the new states. Hence the dimensions of this matrix is |S| × |S|, where
|S| denotes the number of elements in the state space S. The entries of this matrix indicate the probability
that the robot moves from the state indexed by the row to the state indexed by the column. Such a matrix
we refer to as a state transition probability matrix, which we formally define below.

Definition 6.1.2: State transition probability matrix
Let S be a state space, and P : S × S → [0, 1], such that:

∀s ∈ S,
∑
s′∈S

Pss′ = 1

Then we refer to P as a state transition probability matrix.

So, if P is a state transition probability matrix, then Pss′ indicates the probability that from state s, we
transition to state s′.

Ideally, though, the robot does not move in an uncontrollable fashion, but rather it has some idea of what it
is doing. In this case, whenever a robot is in a particular state, it can choose to perform one of four actions,
i.e., to move either up, left, down or right. The set of all actions we refer to as the action space, i.e., the
action space in this context is:

A = {Move up,Move left,Move down,Move right}

We can again formalize this idea:

Definition 6.1.3: Action space
An action space is a finite set,a whose members we refer to as actions.

aAgain, it is perfectly legitimate to have infinite action spaces as well, but we will leave this for another time.

How these actions affect the state that the robot is in, is described by the state-action probability matrix.
This is a matrix whose rows are indexed by all state-action pairs, i.e., the set S × A. The columns, on
the other hand, are indexed by the new states, and the entries again indicate the probability that the state

110

indexed by the row transitions into the state indexed by the column, when the action indexed by the row is
performed.

Definition 6.1.4: State-action transition probability matrix
Let S be a state space and A be an action space. Let P : S ×A× S → [0, 1], such that:

∀(s, a) ∈ S ×A,
∑
s′∈S

Psas′ = 1

Then, we refer to P as a state-action transition probability matrix.

So, when we start in state s and perform action a, Psas′ denotes the probability that we end up in state s′.

At first sight, it might seem like the formal definitions provided here are not very well-suited to describe
the maze problem introduced earlier. For example, it could happen that we pick an action that causes us
to run into a wall, e.g., when we are in square D1 and choose the action Move down. We can however, just
say that the state does not change when this happens, i.e., P(D1,b),Move down,(D1,b) = 1, where b ∈ {Yes,No},
hence this does not pose any difficulties.

Finally, now, we want to add some incentive for the robot to reach the final square as fast as possible. We do
this by giving a reward every time the robot transitions to a new state. How big the reward is, is determined
by the state reward function.

Definition 6.1.5: State reward function
Let S be a state space and R : S → R. Then we refer to R as a state reward function. Moreover, for all
states s ∈ S, we refer to R(s) as the reward obtained upon exiting state s.

In the example of the maze, we could give a reward of −1, every time the robot moves from one square to
another, i.e., R(s) = −1 for all s ∈ {A, . . . , J} × {1, . . . , 10} × {Yes,No} and R(Done) = 0. Then, the robot
has an incentive to transition to the Done state as fast as possible, because it does not get any negative
reward anymore whenever it is in the Done state.

Similarly, we can define a state-action reward function.

Definition 6.1.6: State-action reward function
Let S be a state space and A be an action space. Let R : S×A→ R. Then we refer to R as a state-action
reward function. Moreover, for all (s, a) ∈ S×A, we refer to R(s, a) as the reward obtained upon exiting
state s after performing action a.

This allows us to add incentive for taking certain actions as well.

6.1.2 Markov processes

We have introduced the state space, action space, and reward functions in the previous subsection. In this
section, we will provide a way to abbreviate all these notions into a single mathematical object.

First of all, let’s revisit the example in which the robot is uncontrollably moving through the maze. We can
abbreviate all the defining properties of this example into one mathematical object, which we refer to as a
Markov reward process.

Definition 6.1.7: Markov reward process
Let S be a state space, R : S → R be a state reward function, P : S × S → [0, 1] be a state transition
probability matrix and γ ∈ (0, 1). We say that (S, P,R, γ) is a Markov reward process, and we refer to
γ as the discount factor.

111

Given the Markov reward process describing the robot randomly moving through the maze and the starting
state s0 ∈ S, we would like to define the expected reward that the robot will obtain throughout the process.
This quantity, however, might not be finite as there could be an infinite number of steps still to come. This
is why, instead, we introduce the expected discounted reward, which intuitively values the rewards obtained
in the near future more than the rewards obtained in the distant future. We will refer to this expected
discounted reward as the value of the Markov reward process starting at s0. Its formal definition is given
below.

Definition 6.1.8: Value of a Markov reward process
Let M = (S, P,R, γ) be a Markov reward process. Let that s0 ∈ S be a state. We define the random
variables S0, S1, S2, . . . taking values in S such that for all t ∈ N:

P[S0 = s] = δss0 and P[St = s′] =
∑
s∈S

Pss′P[St−1 = s]

Then:

VM (s0) = E

[∞∑
t=0

γtR(St)

]
We refer to VM : S → R as the value function of the Markov reward process M , and this function
evaluated at some state s is the value of the Markov reward process M starting from s.

So, in the example of the randomly moving robot, VM (s0) indicates the reward that the robot on average
obtains, when it wanders randomly through the maze.

On the other hand, we can also encode the action space and the state-action reward function into a single
mathematical object. We refer to such objects as Markov decision processes. Their formal definition is
provided below.

Definition 6.1.9: Markov decision process
Let S be a state space and A be an action space. Let R : S ×A→ R be a state-action reward function,
and P : S ×A× S → [0, 1] be a state-action transition probability matrix. Finally, let γ ∈ (0, 1). Then
we say that (S,A, P,R, γ) is a Markov decision process, and we refer to γ as the discount factor.

Whenever we have such a Markov decision process M = (S,A, P,R, γ), we can define a function that, given
a state s ∈ S and an action a ∈ A, outputs the probability that when in state s, the action a is performed.
Such a function, we call a policy for M .

Definition 6.1.10: Policy for a Markov decision process
Let M = (S,A, P,R, γ) be a Markov decision process. Let π : S ×A→ [0, 1], satisfying:

∀s ∈ S,
∑
a∈A

πsa = 1

Then, we say that π is a policy for M .

Given a policy for M , we can again define the expected discounted reward under the policy. This is formalized
in the definition below.

112

Definition 6.1.11: Value of a Markov decision process
Let M = (S,A, P,R, γ) be a Markov reward process and let π be a policy for M . Let s0 ∈ S be a state.
We define the random variables S0, S1, S2, . . . and A1, A2, . . . , taking values in S and A, respectively,
such that for all t ∈ Na:

P[S0 = s] = δss0 , P[St = s′] =
∑
s∈S

∑
a∈A

Psas′P[At−1 = a∧ St−1 = s] and P[At−1 = a|St−1 = s] = πsa

Then:

V
(π)
M (s0) = E

[∞∑
t=0

γtR(St, At)

]

We refer to V
(π)
M : S → R as the value function of M under π. Specifically, we refer to V

(π)
M (s0) as the

value of M under π starting from s0.

aWe use the convention that N = {1, 2, . . . , }.

The idea of reinforcement learning is, given a Markov decision process, to find the policy for it that maximizes
the value of this Markov decision process under this policy. If we translate this to the example of the robot
moving around in the maze, this boils down to finding the quickest route for the robot to exit the maze. In a
similar manner, the framework provided in this section can be used to formulate a wide variety of problems
in a similar way, i.e., to find the optimal policy for some given Markov decision process, where the specifics
of the problem are somehow encoded into the Markov decision process. Hence, if we can find an algorithm
that determines or approximates optimal policies, then we can use this framework to solve a wide variety of
different problems. In the remainder of this chapter, we will investigate whether we can achieve this using
quantum computing.

As a final note, observe that there is a very natural way to summarize a Markov decision process together
with its policy into a Markov reward process. This, we do in the definition below:

Definition 6.1.12: Markov reward process generated by Markov decision process and policy
Let M = (S,A,R, P, γ) be a Markov decision process and let π be a policy for M . We define the
state-action space:

S′ = S ×A

Now, observe that R : S′ → R. Moreover, we define:

P (π) : S ×A→ S ×A, P
(π)
(sa),(s′a′) = Psas′πs′a′

which implies:

∀(s, a) ∈ S ×A,
∑

(s′,a′)∈S×A

P
(π)
(sa),(s′a′) =

∑
s′∈S

Psas′
∑
a′∈A

πs′a′ =
∑
s′∈S

Psas′ · 1 = 1

So, P (π) is a state transition probability matrix with respect to the state space S′ and hence M (π) =
(S′, R, P (π), γ) is a Markov reward process. We refer to M (π) as the Markov reward process M under π.

The following theorem motivates this embedding of the space of Markov decision processes into the space of
Markov reward processes:

113

Theorem 6.1.13: Value of Markov reward processes under policies
LetM = (S,A,R, P, γ) be a Markov decision process and π be a policy forM . LetM (π) = (S′, R, P (π), γ)
be the Markov reward process M under π. Then, we obtain, for all s0 ∈ S:

V
(π)
M (s0) =

∑
a∈A

πs0aVM(π)(s0, a)

Note that the left-hand side is defined in Definition 6.1.11, and the right-hand side is defined in Defini-
tion 6.1.8.

Proof. Let S0, S1, S2, . . . and A1, A2, . . . be the random variables taking values in S and A, respectively, as

defined in Definition 6.1.11. Similarly, let S
(a)
0 , S

(a)
1 , S

(a)
2 , . . . be random variables taking values in S′, as

defined in Definition 6.1.8 with starting state (s0, a). We obtain:

V
(π)
M (s0) = E

[∞∑
t=0

γtR(St, At)

]
=

∞∑
t=0

γtE [E [R(St, At) | A0]] =

∞∑
t=0

γt
∑
a∈A

πs0aE [R(St, At) | A0 = a]

Similarly, we have: ∑
a∈A

πs0aVMπ (s0, a) =

∞∑
t=0

γt
∑
a∈A

πs0aE(R(S
(a)
t))

So, it is sufficient to show that P [(St, At) = (s′, a′) | A0 = a] = P
[
S

(a)
t = (s′, a′)

]
. To that end, observe that

for t = 0, this result is trivial, because both sides are one if and only if s′ = s0 and a′ = a. On the other
hand, suppose that it holds for some t ∈ N. Then, we find:

P [(St+1, At+1) = (s′, a′) | A0 = a]

= P [At+1 = a′ | St+1 = s′, A0 = a] · P [St+1 = s′ | A0 = a]

= πs′a′ ·
∑

(s′′,a′′)∈S×A

P [St+1 = s′ | St = s′′, At = a′′, A0 = a]P [St = s′′, At = a′′ | A0 = a]

= πs′a′ ·
∑

(s′′,a′′)∈S×A

Ps′′a′′s′P
[
S

(a)
t = (s′′, a′′)

]
=

∑
(s′′,a′′)∈S×A

P
(π)
(s′′a′′),(s′a′)P

[
S

(a)
t = (s′′, a′′)

]
=

∑
(s′′,a′′)∈S×A

P
[
S

(a)
t+1 = (s′, a′) | S(a)

t = (s′′, a′′)
]
P
[
S

(a)
t = (s′′, a′′)

]
= P

[
S

(a)
t+1 = (s′, a′)

]
And hence we complete the proof by induction.

6.2 Quantum value evaluation

In the previous section, we have introduced the standard concepts in reinforcement learning, most notably
the Markov reward and Markov decision processes. In this section, we will look at how we can approximate
the value function of a Markov reward process. Then, in Section 6.3, we will see how we can use the theory
developed in this section to approximate the value function of the Markov reward process generated by a
Markov decision process under some policy. And finally, in Section 6.4, we will use this theory to develop a
way to iteratively find better and better policies for some given Markov reward process.

In this section, though, we only look at Markov reward processes. In Subsection 6.2.1, we will consider
how one approximates the value function of a Markov reward process in a classical manner, and then in
Subsection 6.2.2, we will use some “quantum tricks” to speed up this process using a quantum computer.
Finally, in Subsection 6.2.3, we will prove that the approach presented in this section is essentially optimal
in the query complexity.

114

6.2.1 Classical Monte-Carlo methods

Let M = (S,R, P, γ) be a Markov reward process, and s0 ∈ S be an arbitrary state. A well-studied question
in the field of reinforcement learning is how we can estimate the value of M starting from s0, i.e., how we can
find an estimate of VM (s0). Many methods exist, but the most notable ones are the Monte-Carlo method,
the temporal difference method, and the TD(λ)-method [Sil15,SB18].

The Monte-Carlo method is the easiest of these methods. It randomly simulates paths through the state
space, where the dynamics are governed by the state probability matrix. For all paths that are simulated,
the cumulative discounted reward is calculated, and afterwards the average of all these sampled rewards
provides an estimate of VM (s0). Using this method, one always has to simulate the process through the
state space until some kind of termination state has been reached, and then one looks all the way back to
the starting node to update its estimate of the value function.

The temporal-difference method works in a different way. It keeps track of estimates of the value function
evaluated in all states s ∈ S, i.e., VM (s). Next, it makes use of the observation that:

VM (s) = R(s) +
∑
s′∈S

Pss′γVM (s′)

And so one can use the estimates for VM (s′) to update the estimate for VM (s). In this way, one updates the
estimate for VM (s) by looking moving to the state s′, looking back one step to figure out from which state
it came, and then updating the estimate of the value function of this previous state.

Hence, summarizing, we see that Monte-Carlo methods always look back all the way to the starting node,
whereas temporal-difference methods always look only one step back. TD(λ)-methods average the behavior
of these two methods. λ ∈ [0, 1] is a parameter that can be freely chosen, and the number of states it looks
back to is roughly 1/(1 − λ). Hence, TD(1) recovers Monte-Carlo learning, and TD(0) recovers temporal-
difference learning.

In general, TD(λ)-methods converge more quickly to a good estimate of VM (s0) then Monte-Carlo methods.
However, it is not clear how one could use TD(λ)-methods in a quantum computing setting. This would
be a very interesting direction of research. For now, though, we will simply state the less-efficient Monte-
Carlo algorithm here, simply because we can use it in the next subsection to develop an essentially optimal
quantum algorithm in the subsection thereafter.

115

Algorithm 6.2.1: Monte-Carlo simulation
Description: This classical algorithm estimates the value function of a Markov reward process.
Input: Markov reward process M = (S, P,R, γ), an initial state s0 ∈ S and an accuracy parameter
ε > 0.
Derived constants:

1. |R|max = maxs∈S |R(s)|.

2. T =

⌈
log(ε(1−γ)

2|R|max
)

log(γ)

⌉
.

3. N =
⌈

12|R|2max

ε2(1−γ)2

⌉
.

Output: An approximation Ṽ for VM (s0), satisfying |Ṽ − VM (s0)| ≤ ε.
Success probability: Lower bounded by 2/3.
Algorithm:

1. For i = 1, . . . , N :
(a) Simulate a path of length T through the state space, starting from s0, where the dynamics

are described by P . Denote the path by s0, s1, s2, . . . , sT−1.
(b) Calculate the cumulative discounted reward of this path:

ri =

T−1∑
t=0

γtR(st)

2. Return the average of all ri’s:

Ṽ =
1

N

N∑
i=1

ri

Proof of the lower bound on the success probability. Let S0, S1, . . . , ST−1 be random variables whose dynam-
ics are governed by P , i.e., which satisfy the following recurrence relation:

P(S0 = s) = δss0 and ∀t ∈ N,P(St = s) =
∑
s′∈S

Ps′sP(St−1 = s′)

Then, we find: ∣∣∣∣∣
T−1∑
t=0

γtR(St)

∣∣∣∣∣ ≤
T−1∑
t=0

γt|R(St)| ≤
T−1∑
t=0

γt|R|max =
|R|max

1− γ

So, using Popoviciu’s inequality of variances [Pop35]:

Var[ri] = Var

[
T−1∑
t=0

γtR(St)

]
≤ 1

4

(
2|R|max

1− γ

)2

=
|R|2max

(1− γ)2

Moreover, all the individual runs of step 1 are independent, and hence:

Var
[
Ṽ
]

=
1

N2

N∑
i=1

Var[ri] ≤
|R|2max

N(1− γ)2

Thus, using Chebyshev’s inequality, we obtain:

P
[∣∣∣Ṽ − E

[
Ṽ
]∣∣∣ ≥ ε

2

]
≤ 4 Var[Ṽ]

ε2
≤ 4|R|2max

ε2N(1− γ)2
≤ 4

12
=

1

3

116

Moreover, we have:

∣∣∣E [Ṽ]− VM (s0)
∣∣∣ = |E[ri]− VM (s0)| =

∣∣∣∣∣E
[
T−1∑
t=0

γtR(St)

]
− E

[∞∑
t=0

γtR(St)

]∣∣∣∣∣ =

∣∣∣∣∣
∞∑
t=T

γtE[R(St)]

∣∣∣∣∣
≤ γT |R|max

1− γ
≤ γ

log(ε(1−γ)
2|R|max

)
log(γ) |R|max

1− γ
=

ε(1−γ)
2|R|max

|R|max

1− γ
=
ε

2

Hence, we obtain:

P
[∣∣∣Ṽ − VM (s0)

∣∣∣ ≥ ε] ≤ P
[∣∣∣Ṽ − E

[
Ṽ
]∣∣∣ ≥ ε

2

]
≤ 1

3

Thus, the probability of the estimate being ε-precise is at least 2/3, completing the proof.

This completes our discussion of classical algorithms that estimate the value function of Markov reward
processes. In the next subsection, we will investigate how we can use Algorithm 6.2.1 to devise a quantum
algorithm that performs the same task.

6.2.2 Quantum speed-ups

In this subsection, we will develop a quantum algorithm that estimates the value function of a Markov reward
process. To that end, we again assume that we have a Markov reward process M = (S,R, P, γ) and an initial
state s0 ∈ S. The algorithm will be similar to Algorithm 6.2.1, but translated into the quantum computing
framework.

The first step that we take in order to translate the problem to the quantum computing framework, is
to encode the state space S of the Markov reward process into the state space of the quantum computer,
C2n , where n ∈ N is the number of qubits. To that end, we must choose a set of orthonormal states
{|s〉 ∈ C2n : s ∈ S}. Note that this implies that we have to use n ≥ dlog(|S|)e qubits to encode the
states of the Markov reward process as quantum states. How exactly one chooses the set of states is heavily
problem-dependent, and hence we will not specify how this is done in the general setting presented in this
subsection.

Next, we want to be able to access the dynamics of the Markov reward process in the quantum computing
setting. This, we will do by assuming that we have access to a state transition oracle, P, which acts on 2n
qubits and has the following properties:

∀s ∈ S,P : |s〉 ⊗ |0〉⊗n 7→ |s〉 ⊗

[∑
s′∈S

√
Pss′ |s′〉

]
(6.2.1)

The square-root is introduced to make sure the resulting state is always properly normalized.

Similarly, we want to be able to access the reward function. We assume here that we have access to the
reward function by means of a phase oracle, like the one introduced in Definition 4.1.7. Hence, we assume
that we have access to a controlled reward oracle C(R), where R acts on n qubits and has the following
action:

∀s ∈ S,R : |s〉 7→ eiR̃(s) |s〉 where R̃(s) =
(1− γ)R(s)

2|R|max
(6.2.2)

With these assumptions, we can construct an algorithm that approximates the value of the Markov decision
process starting from s0, i.e., VM (s0). Before we do this, we construct a necessary ingredient, namely a
subroutine which converts a phase oracle into a probability oracle. This routine is based on appendix B
of [GAW17].

117

First of all, we will approximate the function x 7→ arcsin(x) by a polynomial. This is done in the following
theorem.

Theorem 6.2.2: Approximations of arcsin(x)
Let ε > 0, N = dlog(1

ε)e and let (bn)∞n=0 be as in Theorem 4.2.4. Then we find for all x ∈ [− 1
2 ,

1
2]:∣∣∣∣∣12 arcsin(x)− 1

2

N∑
n=0

bn
n+ 1

xn+1

∣∣∣∣∣ ≤ ε

2

Furthermore, we have for all x ∈ [−1, 1]:∣∣∣∣∣12
N∑
n=0

bn
n+ 1

xn+1

∣∣∣∣∣ ≤ 1

Proof. Let x ∈ [− 1
2 ,

1
2]. From Lemma 4.2.6, we know that:

1√
1− x2

=
∞∑
n=0

bnx
n

Hence, integrating on both sides and observing that arcsin(0) = 0 yields:

arcsin(x) =

∫ x

0

1√
1− x2

dx =

∞∑
n=0

bn
n+ 1

xn+1

So, we find, by Taylor’s theorem and Lemma 4.2.5:∣∣∣∣∣arcsin(x)−
N∑
n=0

bn
n+ 1

xn+1

∣∣∣∣∣ ≤
∞∑

n=N+1

|bn| · |x|n+1

n+ 1
≤

∞∑
n=N+1

|x|n+1 =
|x|N+1

1− |x|
≤ |x|

1− |x|
·
(

1

2

)N
≤ ε

which completes the proof of the first claim of the theorem. For the second claim, we observe that for all
odd n, we have that bn = 0, and hence, using Lemma 4.2.5:∣∣∣∣∣

N∑
n=0

bn
n+ 1

xn+1

∣∣∣∣∣ ≤
∞∑
n=0

bn
n+ 1

|x|n+1 ≤ 1 +
1

2

∞∑
n=2

1

n
√
n
≤ 1 +

1

2

∫ ∞
1

1

x
3
2

dx = 1 +
1

2

[
− 2√

x

]∞
1

= 2

Dividing by 2 on both sides yields the desired result, completing the proof.

Next, we will show how we can approximate the function x 7→
√

1
2 + 1

4x with a polynomial. This is done in

the following theorem.

118

Theorem 6.2.3: Approximation of x 7→
√

1
2 + 1

4x

Let ε > 0 and N = dlog(1
ε)e. Define (cn)∞n=0 in R, as follows:

∀n ∈ N0, cn =

{
1√
2
, if n = 0
(−1)n−1(2(n−1))!

2
√

2·(2n−1(n−1)!)2·n2n
, otherwise

Then, we find, for all x ∈ [−1, 1]: ∣∣∣∣∣
√

1

2
+

1

4
x−

N∑
n=0

cnx
n

∣∣∣∣∣ ≤ ε

4

Moreover, we find that for all x ∈ [−1, 1]: ∣∣∣∣∣
N∑
n=0

cnx
n

∣∣∣∣∣ ≤ 1

Proof. Recall from Equation 4.2.1 that we have:

1√
1 + x

=

∞∑
n=0

(−1)n(2n)!

(2nn!)2
xn

Moreover, we found that this series converges for all x ∈ (−1, 1). Now, we can integrate on both sides, which
yields:

2
√

1 + x = 2 +

∞∑
n=0

(−1)n(2n)!

(2nn!)2(n+ 1)
xn+1

From complex analysis, it is known that this power series has the same radius of convergence as its derivative,
which implies that it converges for all x ∈ (−1, 1). Moreover, by dividing by 2

√
2, we obtain:√

1

2
+

1

4
x =

1

2
√

2
· 2
√

1 +
1

2
x =

1√
2

+
1

2
√

2

∞∑
n=0

(−1)n(2n)!

(2nn!)2(n+ 1) · 2n+1
xn+1 =

∞∑
n=0

cnx
n

And hence this converges for all x ∈ (−2, 2) ⊇ [− 3
5 ,

3
5]. Thus, we find, for all x ∈ [−1, 1]:∣∣∣∣∣

√
1

2
+

1

4
x−

N∑
n=0

cnx
n

∣∣∣∣∣ ≤
∞∑

n=N+1

|cn||x|n ≤
∞∑

n=N+1

(2(n− 1))!

2
√

2 · (2n−1(n− 1)!)2 · n2n

=
1

2
√

2

∞∑
n=N+1

b4(n−1)

n
·
(

1

2

)n
≤ 1

4

∞∑
n=N+1

1

n
√

2(n− 1)

(
1

2

)n
≤ 1

4

∞∑
n=N+1

(
1

2

)n
=

1

4

(
1

2

)N
≤ ε

4

Finally, if ε < 4− 2
√

3, we have for all x ∈ [−1, 1]:∣∣∣∣∣
N∑
n=0

cnx
n

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
n=0

cnx
n −

√
1

2
+

1

4
x

∣∣∣∣∣+

∣∣∣∣∣
√

1

2
+

1

4
x

∣∣∣∣∣ ≤ ε

4
+

√
3

2
≤ 4− 2

√
3 + 2

√
3

4
= 1

Otherwise, if ε ≥ 4− 2
√

3 ≥ 1
2 , then

N =

⌈
log

(
1

ε

)⌉
≤ log

(
1

ε

)
+ 1 ≤ log(2) + 1 = 1 + 1 = 2

119

But then we have, for all x ∈ [−1, 1]:∣∣∣∣∣
N∑
n=0

cnx
n

∣∣∣∣∣ ≤ 1√
2

+
|x|

4
√

2
+
|x|2

32
√

2
≤ 41

32
√

2
< 1

This completes the proof.

Finally, now, we show how we can merge both approximations in the above theorems to approximate the

function x 7→
√

1
2 + 1

4 arcsin(x).

Theorem 6.2.4: Approximation of x 7→
√

1
2 + 1

4 arcsin(x)

Let ε > 0 and N = dlog(1
ε)e. Let (bn)∞n=0 and (cn)∞n=0 be as defined as in Theorem 6.2.2 and Theo-

rem 6.2.3, respectively. Define (dn)
N(N+1)
n=0 as follows:

N(N+1)∑
n=0

dnx
n =

N∑
n=0

cn

(
N∑
k=0

bk
k + 1

xk+1

)n

Then, we find, for all x ∈ [− 1
2 ,

1
2]:∣∣∣∣∣∣
√

1

2
+

1

4
arcsin(x)−

N(N+1)∑
n=0

dnx
n

∣∣∣∣∣∣ ≤ ε

2

And moreover, we find for all x ∈ [−1, 1]: ∣∣∣∣∣∣
N(N+1)∑
n=0

dnx
n

∣∣∣∣∣∣ ≤ 1

Proof. From Theorem 6.2.2, observe that for all x ∈ [− 1
2 ,

1
2], we have:∣∣∣∣∣arcsin(x)−

N∑
k=0

bk
k + 1

xk+1

∣∣∣∣∣ ≤ ε

4

Moreover, observe, by the mean-value theorem, that for all −1 ≤ x < y ≤ 1, there is a ξ ∈ (x, y) ⊆ [−1, 1]
such that: ∣∣∣∣∣

√
1

2
+

1

4
x−

√
1

2
+

1

4
y

∣∣∣∣∣ =

∣∣∣∣∣∣ 1

8
√

1
2 + 1

4ξ

∣∣∣∣∣∣ |x− y| ≤ |x− y|8 ·
√

1
4

=
|x− y|

4

Moreover, let x ∈ [− 1
2 ,

1
2] arbitrarily. We have | arcsin(x)| ≤ π

6 < 1, and by Theorem 6.2.2, we also have∣∣∣∑N
k=0

bk
k+1x

k+1
∣∣∣ ≤ 1. We abbreviate:

a(x) =

N∑
k=0

bk
k + 1

xk+1

120

and hence a(x) ∈ [−1, 1]. Now, using Theorem 6.2.3, we find:∣∣∣∣∣∣
√

1

2
+

1

4
arcsin(x)−

N(N+1)∑
n=0

dnx
n

∣∣∣∣∣∣ ≤
∣∣∣∣∣
√

1

2
+

1

4
arcsin(x)−

√
1

2
+

1

4
a(x)

∣∣∣∣∣+

∣∣∣∣∣
√

1

2
+

1

4
a(x)−

N∑
n=0

cn(a(x))n

∣∣∣∣∣
≤ | arcsin(x)− a(x)|

4
+
ε

4
≤ ε

8
+
ε

4
<
ε

2

Finally, observe that as a(x) ∈ [−1, 1], we have, according to Theorem 6.2.3:∣∣∣∣∣∣
N(N+1)∑
n=0

dnx
n

∣∣∣∣∣∣ =

∣∣∣∣∣
N∑
n=0

cn(a(x))n

∣∣∣∣∣ ≤ 1

This completes the proof.

Now, finally, as we have built a polynomial approximation of the function x 7→
√

1
2 + 1

4 arcsin(x), we can

use it to construct a probability oracle. Here, we use techniques from Section 4.2.

121

Circuit 6.2.5: Probability oracle from a phase oracle
Description: This circuit constructs a probability oracle from a phase oracle. In other words, given a
phase oracle Of , where ‖f‖∞ ≤

1
2 :

Of : |x〉 7→ eif(x) |x〉

this circuit implements a probability oracle Qf approximately, i.e., with norm error at most 3δ/2:

Qf : |x〉 ⊗ |0〉⊗3 7→ |x〉 ⊗ (
√
f(x) |0〉⊗3

+
√

1− f(x) |ψ(x)〉 |1〉)

where |ψ(x)〉 is some arbitrary 2-qubit state, dependent on x.
Parameters: δ > 0 is the accuracy.
Derived constants: N = dlog(1

δ)e.
Oracle circuit: A phase oracle Of acting on n qubits.
Number of qubits: n+ 3.
Oracle query complexity: Of is queried the following number of times:

4N(N + 1) ≤ 4

(
log

(
1

δ

)
+ 1

)(
log

(
1

δ

)
+ 2

)
Circuit: We take the polynomial P , where (dn)

N(N+1)
n=0 is as in Theorem 6.2.4, as follows:

P (x) =

N(N+1)∑
n=0

dnx
n

and let Q(x) and R(x) be its even and odd parts, respectively. We first of all build the circuit Q1 acting
on n qubits, which implements this polynomial using Circuit 4.2.16, where we omit the S-gate such that
we implement Q(x) + R(x) instead of Q(x) + iR(x). We can construct implementing phase vectors for
Q and R using Theorem 4.2.14 and an implementation pair for both, which in turn are found using
Theorem 4.2.11. The circuit C(R(U)) that is required by Circuit 4.2.15 is provided in Circuit 4.2.17.
Next, we build the circuit Q2, acting on n+ 3 qubits, as follows:

n
Q1

X

X

X

X

X

X

Note that Q2 performs the following mapping, up to error δ
2 in norm:

Q2 : |0〉⊗3 ⊗ |x〉 7→
(

1

2

√
f(x) |0〉⊗3

+
1

2

√
4− f(x) |1〉 |φ(x)〉

)
|x〉

where |φ(x)〉 is some arbitrary 2-qubit state. Finally, we can simply use one step of amplitude ampli-
fication, Circuit 3.5.9, where Q2 is the setup circuit, and the reflection circuit is XZX, acting on the
first qubit. During this process, Q2 is executed 3 times, and hence the total error is no more than 3δ/2
in norm, as can be seen from Lemma B.2. Finally, moving the first three qubits to the end yields the
desired mapping Qf .

Now that we have shown how we can construct a probability oracle from a phase oracle, we can show how
we can approximate the value of a Markov reward process on a quantum computer. First of all, we will write
down a quantum circuit that we will need in the algorithm, and afterwards we will present the algorithm
itself.

122

Circuit 6.2.6: Markov reward process simulation
Description: Given a Markov reward process M = (S, P,R, γ) and an initial state s0 ∈ S, prepares a
state where an estimate of

√
VM (s0) is encoded in one of the amplitudes.

Parameters:
1. An orthogonal set of n-qubit states {|s〉 : s ∈ S}.
2. An absolute bound on the reward function, |R|max > 0.
3. A discount factor γ ∈ [0, 1).
4. An accuracy parameter ε > 0.
5. Circuit 6.2.5’s accuracy parameter δ > 0.

Derived constants:

1. T =

⌈
log(ε(1−γ)

2|R|max
)

log(γ)

⌉
.

2. δ′ = δ
48T (log(1/δ)+1)(log(1/δ)+2) .

Oracle circuits:
1. A quantum circuit P that allows us to access the state transition probability matrix:

∀s ∈ S,P : |s〉 ⊗ |0〉⊗n 7→ |s〉 ⊗
∑
s′∈S

√
Pss′ |s′〉

2. A controlled reward oracle C(R), where R has the following action:

∀s ∈ S,R : |s〉 7→ eiR̃(s) |s〉 where R̃(s) =
(1− γ)R(s)

2|R|max

Number of qubits: Tn+ 3, not taking into account auxiliary qubits needed by P or C(R).
Oracle query complexity: The number of queries to P is T − 1, and the number of queries to C(R)
is O(T log(1

δ)2).
Circuit:

1. Apply a circuit to the first register of n qubits, such that |0〉⊗n 7→ |s0〉.
2. Apply P to the first two registers of n qubits, then to the second and third register of n qubits,

then to the third and fourth, and so on until it is applied to the (T − 2)nd and (T − 1)st.
3. Define the following circuit to be R, acting on all of the Tn qubits:

(a) Apply R to the first register, then apply Rγ to the second, then Rγ2

to the third, etc. These

Rγt are fractional phase oracles that can be constructed using Circuit 4.2.18. Use δ′ as the
accuracy parameter for the fractional phase query circuit.

Note that R is a phase-oracle, implementing the function (s0, s1, . . . , sT−1) 7→
∑T−1
t=0 γtR̃(st). In

this step, though, we implement this function as a probability oracle using Circuit 6.2.5 with
accuracy parameter δ, where we use the final qubit as the target qubit of the probability oracle.

Suppose that we start with the state |0〉⊗(Tn+1)
, and apply the circuit above. Then, after step 1, we obtain

the following state:

|s0〉 ⊗ |0〉⊗((T−1)n+3)

Now, after applying P to the first and second register of n qubits, we obtain:[∑
s1∈S

√
Ps0s1 |s0〉 |s1〉

]
⊗ |0〉⊗((T−2)n+3)

Next, after applying P to the second and third register of n qubits, we have that the system is in the following
state:  ∑

(s1,s2)∈S2

√
Ps0s1Ps1s2 |s0〉 |s1〉 |s2〉

⊗ |0〉⊗((T−3)n+3)

123

Hence, after T − 1 such applications of P, we have the following state: ∑
(s1,s2,...,sT1

)∈ST−1

√
Ps0s1Ps1s2 · · ·PsT−2sT−1

|s0〉 |s1〉 |s2〉 · · · |sT−1〉

⊗ |0〉⊗3

Now, we apply the probability oracle. Observe that we implement the phase oracleR fewer than the following
number of times:

4

(
log

(
1

δ

)
+ 1

)(
log

(
1

δ

)
+ 2

)
Every application of R in turn calls a fractional phase query of R at most T times, and each of these
fractional phase queries induces an error of at most 6δ′. Hence, using Lemma B.2, we observe that the total
error introduced by these fractional phase oracles is upper bounded by:

T · 4
(

log

(
1

δ

)
+ 1

)(
log

(
1

δ

)
+ 2

)
· 6δ′ =

δ · 24T

48T
=
δ

2

The probability oracle also induces a norm error of 3δ/2. Hence, again using Lemma B.2 which shows that
we can add the error norms, up to a total norm error of 2δ, we find that we obtain the following state after
the probability oracle is applied:∑

(s1,...,sT−1)∈ST−1

√
ξ(s0, s1, . . . , sT−1) |s0〉 |s1〉 · · · |sT−1〉 |0〉⊗3

+
√

1− ξ(s0, s1, . . . , sT−1) |ψ〉 |1〉 (6.2.3)

where |ψ〉 is some (Tn+ 2)-qubit state and:

ξ(s0, s1, . . . , sT−1) = Ps0s1Ps1s2 · · ·PsT−2sT−1
·

(
1

2
+

1

4

T−1∑
t=0

γtR̃(st)

)

The only thing that is left for us to check here is that
∥∥∥∑T−1

t=0 γtR̃(st)
∥∥∥
∞
≤ 1

2 , as this is a requirement in

Circuit 6.2.5. But note that we have, for all (s0, s1, . . . , sT−1) ∈ ST :∣∣∣∣∣
T−1∑
t=0

γtR̃(st)

∣∣∣∣∣ ≤
T−1∑
t=0

γt|R̃(st)| =
1− γ

2|R|max
·
T−1∑
t=0

γt|R(st)| ≤
1

2
· (1− γ)

T−1∑
t=0

γt =
1

2
(1− γT) ≤ 1

2

Now, we are finally ready to present the quantum value estimation algorithm:

124

Algorithm 6.2.7: Quantum value estimation
Description: Given a Markov reward process M = (S, P,R, γ) and an initial state s0 ∈ S, this
algorithm estimates the value of this Markov reward process starting from the given initial state.
Parameters:

1. An orthogonal set of n-qubit states {|s〉 : s ∈ S}.
2. An absolute bound on the reward function, |R|max > 0.
3. The discount factor γ ∈ [0, 1).
4. An accuracy parameter ε > 0.

Derived constants:
1. m = dlog(160|R|maxπ

ε(1−γ))e.

2. T =

⌈
log(ε(1−γ)

2|R|max
)

log(γ)

⌉
.

3. δ = ε(1−γ)
384|R|maxπ

.

Oracle circuits:
1. A quantum circuit P that allows us to access the state transition probability matrix:

∀s ∈ S,P : |s〉 ⊗ |0〉⊗n 7→ |s〉 ⊗
∑
s′∈S

√
Pss′ |s′〉

2. A controlled reward oracle C(R) where R has the following action:

∀s ∈ S,R : |s〉 7→ eiR̃(s) |s〉 where R̃(s) =
(1− γ)R(s)

2|R|max

Output: An ε-precise approximation to VM (s0).
Number of qubits: Tn + 3 + m, and at least Tn + 3 auxilliary qubits are needed, not counting the
auxilliary qubits necessary to impleemnt P and C(R).
Success probability: Lower bounded by 2/3.
Oracle query complexity: The number of queries to Circuit 6.2.6 is 2m+1 − 1. Consequently, the
query complexity to C(R) and P satisfies:

Õ
(
(2m+1 − 1)T

)
= Õ

(
|R|max

ε(1− γ)2

)
Algorithm:

1. Run the amplitude estimation algorithm, Algorithm 3.5.12, with the following settings:
(a) Let the accuracy parameter be ε(1− γ)/(16|R|max).
(b) Let the maximal fault-tolerance probability be 1

6 .
(c) Let the controlled reflection circuit be the circuit that reflects through the last qubit being in

state |0〉. This controlled reflection circuit can be built by implementing a controlled Z-gate,
whose control qubit is the control qubit of the reflection circuit, and whose target qubit is
the (Tn + 1)st qubit. This is off by a sign, hence we must compensate by a Z-gate applied
to the control qubit.

(d) Furthermore, let the setup circuit be Circuit 6.2.6. Take as accuracy parameter ε, and let the
accuracy parameter of Circuit 6.2.5 be δ.

Denote the output by θ̃.
2. Return the following output:

Ṽ =
(sin2(θ̃)− 1

2) · 8|R|max

1− γ

Proof of the lower bound on the success probability. Observe that the setup circuit, i.e., Circuit 6.2.6, turns
the all-zero state into the state displayed in Equation 6.2.3, up to an error of at most 2δ. This circuit is

125

invoked 2m+1 − 1 times, so the total norm error induced is upper bounded by:

2δ · (2m+1 − 1) ≤ 2δ · 2 · 16|R|maxπ

ε(1− γ)
=

64|R|maxπ

ε(1− γ)
· δ =

64|R|maxπ

ε(1− γ)
· ε(1− γ)

384|R|maxπ
=

1

12

Thus, this norm error induces a change in probability of at most 1
6 , as is proven in Lemma B.1, and hence

it is sufficient to show that the success probability is lower bounded by 5
6 if we assume that the output state

of Circuit 6.2.5 is exactly the one displayed in Equation 6.2.3.

Under this assumption, the analysis of the amplitude estimation algorithm indicates that θ̃ satisfies with
probability at least 1− 1

6 = 5
6 :∣∣∣∣∣∣θ̃ − arcsin

√ ∑
(s1,...,sT−1)∈ST−1

ξ(s0, s1, . . . , sT−1)

∣∣∣∣∣∣ ≤ ε(1− γ)

16|R|max

Hence, we find, with probability at least 5
6 :2∣∣∣∣∣∣sin(θ̃)−

√ ∑
(s1,...,sT−1)∈ST−1

ξ(s0, s1, . . . , sT−1)

∣∣∣∣∣∣ ≤ ε(1− γ)

16|R|max

But notice that we can rewrite the summation as follows:

∑
(s1,...,sT−1)∈ST−1

ξ(s0, . . . , sT−1) =
∑

(s1,...,sT−1)∈ST−1

Ps0s1Ps1s2 · · ·PsT−2sT−1
·

(
1

2
+

1

4
·
T−1∑
t=0

γtR̃(st)

)

=
1

2
+

1

4
·
T−1∑
t=0

∑
(s1,...,st)∈St

Ps0s1Ps1s2 · · ·Pst−1stγ
tR̃(st)

=
1

2
+

1

4
E

[
T−1∑
t=0

γtR̃(St)

]
=

1

2
+

1− γ
8|R|max

E

[
T−1∑
t=0

γtR(St)

]

=
1

2
+

(1− γ)VM (s0)

8|R|max

Thus, we obtain:

∣∣∣Ṽ − VM (s0)
∣∣∣ =

∣∣∣∣∣ (sin2(θ̃)− 1
2) · 8|R|max

1− γ
− VM (s0)

∣∣∣∣∣ =
8|R|max

1− γ
·
∣∣∣∣sin2(θ̃)− 1

2
− (1− γ)VM (s0)

8|R|max

∣∣∣∣
=

8|R|max

1− γ
·

∣∣∣∣∣∣sin2(θ̃)−
∑

(s1,...,sT−1)∈ST−1

ξ(s0, s1, . . . , sT−1)

∣∣∣∣∣∣
≤ 8|R|max

1− γ
· 2 ·

∣∣∣∣∣∣sin(θ̃)−
√ ∑

(s1,...,sT−1)∈ST−1

ξ(s0, s1, . . . , sT−1)

∣∣∣∣∣∣
≤ 16|R|max · ε(1− γ)

16|R|max · (1− γ)
= ε

Hence, with probability at least 2
3 , Ṽ indeed is an ε-precise approximation of VM (s0). This completes the

proof.

2Proof via mean value theorem.

126

Proof of the query complexity of the Algorithm 6.2.7. The number of calls to Circuit 6.2.6 is 2m+1 − 1, as
this is the number of calls to the setup circuit in Algorithm 3.5.12. Circuit 6.2.6 makes T − 1 calls to P, and
Õ(T) to R. Hence, the query complexity of both is indeed:

Õ
(
(2m+1 − 1)T

)
(6.2.4)

We can pretty easily substitute m, as we find:

2m+1 = 2 ·
⌈

160|R|max

ε(1− γ)

⌉
= O

(
|R|max

ε(1− γ)

)
Now, let’s focus on T . We have by definition:

T =


log
(
ε(1−γ)
2|R|max

)
log (γ)


We write out what is in the ceil in terms of ζ = 1/(1− γ), where we note that γ = 1− 1/ζ:

log
(
ε(1−γ)
2|R|max

)
log (γ)

=
ln
(
ε(1−γ)
2|R|max

)
ln (γ)

=
− ln

(
2|R|max

ε(1−γ)

)
ln(γ)

=
− ln

(
2|R|max

ε ζ
)

ln(1− 1
ζ)

=
ln
(

2|R|max

ε ζ
)

1
ζ +O(1

ζ2)
=
ζ ln

(
2|R|max

ε ζ
)

1 +O(1
ζ)

= (ζ +O(1)) ln

(
2|R|max

ε
ζ

)
= ζ ln

(
2|R|max

ε
ζ

)
+O

(
ln

(
2|R|max

ε
ζ

))
= Õ(ζ) = Õ

(
1

1− γ

)
And hence, we find:

T = Õ

(
1

1− γ

)
Thus, substituting into Equation 6.2.4 yields:

Õ

(
|R|max

ε(1− γ)2

)
This completes the proof.

Finally, we can take a step back and put the properties of the algorithm that we just described into perspec-
tive. In the classical algorithm, Algorithm 6.2.1, we can see that the number of samples from the Markov
reward process, N , scales quadratically in |R|max, 1/ε and 1/(1−γ). Its quantum counterpart, however, i.e.,
Algorithm 6.2.7, scales only linearly in ε and |R|max, but still quadratically in 1/(1 − γ), aside from some
logarithmic factors. With respect to the precision parameter ε, though, we can clearly see that the quantum
value estimation algorithm provides a quadratic speed-up over the Monte Carlo method. This quadratic
speed-up can be attributed to the use of Grover’s iterate in the amplitude estimation step.

In the next subsection, we will prove that we cannot hope to achieve a quantum algorithm with similar input
circuits which has a better scaling than linear in ε and |R|max, and quadratic in 1/(1− γ).

6.2.3 Essential optimality of query complexity

In the last subsection, we have developed a quantum value estimation algorithm, Algorithm 6.2.7, which
estimates the value of a Markov reward process starting at some initial state. We obtained that the scaling
in the parameters 1/ε, 1/(1− γ) and |R|max was linear. In this subsection, we will prove that this scaling is

127

essentially optimal, i.e., that up to factors that scale logarithmically in these parameters, we cannot improve
Algorithm 6.2.7.

We will again use methods introduced in Section 5.1 to arrive at this result. Specifically, we will be using
the Hybrid method, i.e., Theorem 5.1.7. To that end, we should identify some examples of Markov reward
processes that we want our algorithm to be able to distinguish, but which at the same time are hard to
distinguish. This, we do in the definition below.

Definition 6.2.8: Test Markov reward processes
Let S = {s0, s1}, δ ∈ [0, 1], η ≥ 0, R0 > 0 and γ ∈ [0, 1) be arbitrary parameters. Let the state transition
probability matrix Pδ and the state reward function RR0,δ,η be defined as follows:

Pδ =

[
1− δ δ

0 1

]
and RR0,δ,η =

[
η
R0

]
Here, the matrix and vector are indexed by (s0, s1), so e.g., (Pδ)s0s1 = δ. Finally, define the Markov
reward process MR0,δ,η,γ = (S, Pδ, RR0,δ,η, γ). We refer to these Markov reward processes as the test
Markov reward processes.

In order to get some intuition for the Markov reward processes that we defined in this way, we have graphically
depicted the dynamics of this Markov reward process in Figure 6.2.

s0 s1

R = η R = R0

δ
1− δ 1

Figure 6.2: The Markov reward process MR0,δ,η,γ . The states are shown as nodes in the directed graph
above, and the possibly non-zero probability matrix entries are shown as arcs in this graph, and they are
annotated with the corresponding probability. Moreover, the rewards that one obtains upon exiting the
states are displayed.

Next, let’s determine the value of the test Markov reward processes MR0,δ,η,γ starting at s0.

Lemma 6.2.9: Value of the test Markov reward processes, starting at s0

Let δ ∈ [0, 1], R0 > 0, η ≥ 0 and γ ∈ [0, 1). Then:

VMR0,δ,η,γ
(s0) =

η

1− γ(1− δ)
+

R0

1− γ
− R0

1− γ(1− δ)

Proof. Let (St)
∞
t=0 be the random variables taking values in S, such that P[St = s] denotes the probability

that we arrive at state s after t steps in the Markov reward process. Observe that we start in state s0, hence
P[S0 = s] = δss0 . Whenever we traverse to s1, we will stay there forever, hence in order for us to be in s0 at
time step t, we must have stayed in s0 throughout all time steps before t. Thus, P[St = s0] = (1− δ)t, and
then automatically, we find P[St = s1] = 1− (1− δ)t. Thus:

VMR0,δ,η,γ
(s0) = E

[∞∑
t=0

γtR(St)

]
=

∞∑
t=0

γt
[
(1− δ)tη + (1− (1− δ)t)R0

]
= η

∞∑
t=0

(γ(1− δ))t +R0

∞∑
t=0

γt −R0

∞∑
t=0

(γ(1− δ))t

=
η

1− γ(1− δ)
+

R0

1− γ
− R0

1− γ(1− δ)

128

This completes the proof.

In the remainder of this subsection, we will denote ε-precise quantum value estimation algorithms with
maximal reward |R|max, and discount factor γ to be algorithms that use the circuits P and R, as described
by Equation 6.2.1 and Equation 6.2.2, to produce, with probability at least 2/3, an ε-precise estimation
of the value of a given Markov reward process whose reward is absolutely bounded by |R|max and whose
discount factor is γ. Now, we can provide lower bounds on the query complexities of such algorithms to P
and R. This we do in the following theorems.

Theorem 6.2.10: Lower bound on the query complexity of a quantum value estimation
algorithm to R
Let γ ∈ [0, 1), |R|max > 0 and 0 < ε < |R|max

2(1−γ) . Let TR be the query complexity to the oracle circuit

R, which acts on n qubits, of an ε-precise quantum value estimation algorithm with maximal reward
|R|max and discount factor γ. Then:

TR ≥
|R|max

3ε(1− γ)2

Proof. Let η = 2ε(1− γ), R0 = |R|max > η and δ = 0. We find, according to Lemma 6.2.9:

VMR0,0,0,γ
(s0) = 0 and VMR0,0,η,γ

(s0) =
η

1− γ
=

2ε(1− γ)

1− γ
= 2ε

Hence, the algorithm should be able to distinguish between the two Markov reward processes. But the oracle
circuit P is equal for both Markov reward processes. We let RR0,δ,η be the reward oracle R associated to
the Markov reward process MR0,δ,η,γ . Then, using the hybrid method, Theorem 5.1.7, we find that:

1

9T 2
R
≤ sup
|ψ〉∈C2n

‖|ψ〉‖=1

‖(RR0,0,0 −RR0,0,η) |ψ〉‖2 = ‖RR0,0,0 −RR0,0,η‖
2

= sup
s∈S

∣∣∣eiR̃R0,0,0
(s) − eiR̃R0,0,η

(s)
∣∣∣2 ≤ sup

s∈S

∣∣∣R̃R0,0,0(s)− R̃R0,0,η(s)
∣∣∣2

=
(1− γ)2

4|R|2max

· sup
s∈S
|RR0,0,0(s)−RR0,0,η(s)|2 =

(1− γ)2

4|R|2max

· |η|2 =
ε2(1− γ)4

|R|2max

Hence, we find:

TR ≥
|R|max

3ε(1− γ)2

This completes the proof.

Theorem 6.2.11: Lower bound on the query complexity of a quantum value estimation
algorithm to P
Let γ ∈ [1

2 , 1), |R|max > 0 and 0 < ε < 1
32R0γ. Let TP be the query complexity to the oracle circuit

P, which acts on 2n qubits, of an ε-precise quantum value estimation algorithm with maximal reward
|R|max and discount factor γ. Then:

TP ≥
R0√

2 · 96ε(1− γ)2

Proof. Let η = 0, R0 = |R|max and:

δ =
16(1− γ)2ε

R0γ

129

Then, we find, according to Lemma 6.2.9, we have VMR0,0,γ
(s0) = 0 and:

VMR0,δ,0,γ
(s0) =

R0

1− γ
− R0

1− γ(1− δ)
= R0 ·

(1− γ(1− δ))− (1− γ)

(1− γ)(1− γ(1− δ))
=

γδR0

(1− γ)2 + δγ(1− γ)

=
γ · 16(1−γ)2ε

R0γ
·R0

(1− γ)2 + 16(1−γ)2ε
R0γ

· γ(1− γ)
=

16ε

1 + 16ε
R0γ
· γ(1− γ)

≥ 16ε

1 + 16 · 1
32 ·

1
4

=
16ε

1 + 1
8

≥ 2ε

Hence, the algorithm should be able to distinguish the Markov reward processes MR0,0,0,γ and MR0,δ,0,γ .
But the oracles R are the same, and hence we must use the P oracles to distinguish the two. So, let’s denote
by P0 and Pδ the P oracles of MR0,0,0,γ and MR0,δ,0,γ , respectively. Now, we can invoke the hybrid method,
i.e., Theorem 5.1.7, to deduce that:

1

9T 2
P
≤ sup
|ψ〉∈C22n

‖|ψ〉‖=1

‖(Pδ − P0) |ψ〉‖2 = ‖Pδ − P0‖2 =

∥∥∥∥[−δ δ
0 0

]∥∥∥∥2

= 2δ2 = 2

(
16(1− γ)2ε

R0γ

)2

Hence, we obtain:

TP ≥
R0γ√

2 · 48ε(1− γ)2
≥ R0√

2 · 96ε(1− γ)2

This completes the proof.

Hence, we have proven that Algorithm 6.2.7 is an essentially optimal quantum value estimation algorithm in
all its parameters, meaning that it is optimal up to logarithmic factors. This also means that attempting to
transport other classical value evaluation algorithms, such as temporal difference learning and TD(λ), will
not result in a better algorithm.

This concludes our discussion on quantum value estimation algorithms. In the next section, we will show
how we can use the theory developed here to evaluate policies for a Markov decision process.

6.3 Quantum policy evaluation

In this section, we will show how we can use the quantum value estimation algorithm to perform policy
evaluation. This means that given a Markov decision process M = (S,A, P,R, γ), an initial state s0 ∈ S,

and a policy π for M , we will determine the value function of M under π starting from s0, i.e., V
(π)
M (s0).

The key ingredient will be Theorem 6.1.13, which states that for all such choices of M , s0 and π, we have:

V
(π)
M (s0) = VM(π)(s0)

Hence, we might just as well perform quantum value evaluation on the Markov reward process generated by
the Markov decision process and the policy π, i.e., M (π).

So, suppose that we have a Markov decision process M = (S,A, P,R, γ) and a policy π for it. Suppose that
we have two orthogonal sets of nS- and nA-qubit states, respectively, which we label by the elements from
the state and action space of the Markov decision process M :

{|s〉 ∈ C2nS : s ∈ S} and {|a〉 ∈ C2nA : a ∈ A}

Next, suppose that we have access to the state-action transition probability matrix by means of the following
oracle circuit, acting on 2nS + nA qubits:

P : |s〉 ⊗ |a〉 ⊗ |0〉⊗nS 7→
∑
s′∈S

√
Psas′ |s〉 ⊗ |a〉 ⊗ |s′〉

130

Similarly as before, suppose that we have access to the state-action reward function by means of a phase
oracle acting on nS + nA qubits, defined as follows:

R : |s〉 ⊗ |a〉 7→ eiR̃(s,a) |s〉 ⊗ |a〉 where R̃(s, a) =
1− γ

2|R|max
R(s, a)

where again |R|max = max(s,a)∈S×A |R(s, a)|. Finally, suppose that we have access to the policy via the
following oracle, acting on nS + nA qubits:

Π : |s〉 ⊗ |0〉⊗nA 7→
∑
a∈A

√
πsa |s〉 ⊗ |a〉

Now, consider the Markov reward process generated by M under π, which we denote by M (π) = (S′, P ′, R, γ).
Recall that S′ = S ×A, and hence we can define the following orthonormal set of (nA + nS)-qubit states:

{|s〉 ⊗ |a〉 ∈ C2nA+nS
: (s, a) ∈ S ×A} = {|s〉 : s ∈ S} ⊗ {|a〉 : a ∈ A}

So, there is a very natural embedding of the state space S′ = S × A into the (nS + nA)-qubit state space.
Moreover, we can construct the following circuit P ′, acting on 2(nS + nA) qubits:

P ′ = (I
⊗(nS+nA)
2 ⊗Π)P : |s〉 ⊗ |a〉 ⊗ |0〉⊗(nS+nA) 7→

∑
(s′,a′)∈S′

√
Psas′πs′a′ |s〉 ⊗ |a〉 ⊗ |s′〉 ⊗ |a′〉

But this is the circuit that implements the state probability matrix for the Markov reward process M (π).
Hence, we have supplied all the ingredients necessary to use the quantum value estimation algorithm, Algo-
rithm 6.2.7, to estimate VM(π)(s0), which equals V πM (s0) according to Theorem 6.1.13.

Note that in order to implement P ′, we use P and Π once. Hence, the query complexity to P and Π will be
equal to the query complexity of P ′.

For convenience, the full algorithm is stated below.

131

Algorithm 6.3.1: Quantum policy evaluation
Description: Given a Markov decision process M = (S,A, P,R, γ), a starting state s0 ∈ S and a policy
π for it, this algorithm returns an ε-precise approximation to the value of the Markov decision process
M under π starting from s0.
Parameters:

1. Orthogonal sets of nA- and nS-qubit states, {|s〉 : s ∈ S} and {|a〉 : a ∈ A}, respectively.
2. An absolute bound on the reward function, |R|max > 0.
3. The discount factor, γ ∈ [0, 1).
4. An accuracy parameter, ε > 0.

Derived constants:
1. m = dlog(160|R|maxπ

ε(1−γ))e.

2. T =

⌈
log(ε(1−γ)

2|R|max
)

log(γ)

⌉
.

Oracle circuits:
1. A quantum circuit P that implements the state-action probability matrix:

P : |s〉 ⊗ |a〉 ⊗ |0〉⊗nS 7→
∑
s′∈S

√
Psas′ |s〉 ⊗ |a〉 ⊗ |s′〉

2. A controlled quantum circuit C(R), where R implements the state-action reward function as a
phase oracle:

R : |s〉 ⊗ |a〉 7→ eiR̃(s,a) |s〉 ⊗ |a〉 where R̃(s, a) =
1− γ

2|R|max
R(s, a)

3. A quantum circuit Π that implements the policy, as follows:

Π : |s〉 ⊗ |0〉⊗nA 7→
∑
a∈A

√
πsa |s〉 ⊗ |a〉

Number of qubits: T (nS + nA) + 3 +m.
Success probability: Lower bounded by 2/3.
Oracle query complexity: The oracle query complexity to P, C(R) and Π satisfies:

Õ

(
|R|max

ε(1− γ)2

)
Algorithm: Run the quantum value estimation algorithm, Algorithm 6.2.7, with the following settings:

1. The state probability matrix circuit is P ′ = (I
⊗(nS+nA)
2)P.

2. The controlled reward oracle is just C(R).
3. Use the same values for the parameters ε, γ and |R|max.

The only modification one should make is in Circuit 6.2.6. Here, in step 1, one should not only map the
all zeros-state to |s0〉, but one should call the circuit Π afterwards as well, such that the state of the
first two registers after step 1 of the circuit becomes:

|s0〉 ⊗
∑
a∈A

√
πsa |a〉

This concludes our discussion of quantum policy evaluation. In the next and final section of this chapter,
we will use this algorithm as one of the steps in performing quantum policy optimization.

132

6.4 Quantum policy optimization

In this section, we will elaborate on how we can use the theory from the previous section to perform quantum
policy optimization. This means that given a Markov decision process and an initial state, we try to find a
policy for this Markov decision process such that its value under this policy starting from the given initial
state is maximized. In the notation introduced in Section 6.1, this can be concisely expressed as given some
Markov decision process M = (S,A, P,R, γ) and initial state s0 ∈ S, finding a policy π for M such that

V
(π)
M (s0) is maximized.

Recently, many classical policy optimization algorithms have been developed. The most notable ones are
SARSA, Q-learning and the policy gradient method [Sil15, SB18]. With SARSA and Q-learning it is not
clear how these can be implemented in a quantum algorithm in an efficient way, as they are in some respects
similar to temporal difference methods for quantum value evaluation. That’s why in this chapter, we will
develop a quantum algorithm that can be viewed as the quantum analogue of the policy gradient method.
For this algorithm, we will need to estimate gradients of high-dimensional functions, and this is where the
gradient estimation algorithm of Gilyén et al. that we covered in the previous chapters comes into play.

It must be noted in advance that the algorithm presented in this chapter is not necessarily better than a
classical version of this algorithm. This is because we will be using Gilyén et al.’s algorithm, Algorithm 4.3.9,
with the parameter σ = 1, which has a query complexity that is linear in the dimension of the domain of
the function. There exist classical algorithms that also have a query complexity linear in the dimension,
and hence the method presented here does not necessarily provide a speed-up. However, we have not proven
optimality of Algorithm 4.3.9 with σ = 1, and hence it might be possible to improve it. If this is indeed
possible, then as a result the ideas in this section provide a speed-up over the classical case.

In Subsection 6.4.1, we will first of all have a look at how the partial derivatives of a composition of high-
dimensional functions can be rewritten into the partial derivatives of the individual functions. We arrive at
a generalization of Faà di Bruno’s formula, and subsequently use it to prove that compositions of functions
that are of Gevrey-type at most 1 are again of Gevrey-type at most 1. Then, in Subsection 6.4.2, we prove
that the function π 7→ V πM (s0) is of Gevrey-type 1 if it is composed with some natural embedding into the
space of policies. This result allows us to find the gradient of this function through Gilyén et al.’s gradient
estimation algorithm, which we prove in Subsection 6.4.3. We also describe how this gradient estimation
procedure can be used to perform policy optimization. Finally, in Subsection 6.4.4, we briefly discuss in
what kind of applications we can usefully employ the algorithm developed in this section.

6.4.1 The class of functions of Gevrey-type 1 is closed under composition

In this section, we will very frequently encounter high-dimensional functions, i.e., functions acting on a
high-dimensional domain. To get a better grip on these functions, we first of all prove how the partial
derivatives of compositions of these kind of functions can be expressed in terms of the partial derivatives of
the individual functions. We achieve this in the following lemma, which is a generalization of Faà di Bruno’s
formula [dB55]. It is not a very well-known formula, but it’s not new either, as it can for example be found
in [Gzy86].

Lemma 6.4.1: Multidimensional Faà di Bruno’s formula
Let d, n ∈ N, Ω ⊆ Rd, Ψ ⊆ Rn open, and let f : Ω→ Ψ and g : Ψ→ R be smooth functions. Moreover,
let k ∈ N and α ∈ [d]k. Let Π|α| be the set of all partitions of {1, 2, . . . , |α|} and let απ be the subsequence
of α indexed by the set π ⊆ {1, 2, . . . , |α|}. Then, we have for all x ∈ Ω:

∂α(g ◦ f)(x) =
∑

π∈Π|α|

n∑
`1=1

· · ·
n∑

`|π|=1

∂(`1,...,`|π|)g(f(x)) ·
|π|∏
j=1

∂απj f`j (x)

133

Proof. We will prove this by means of induction to k. To that end, first of all, suppose that k = 1. Then,
we find α = (i) for some i ∈ [m]. We find, using the chain rule:

∂α(g ◦ f)(x) = ∂i(g ◦ f)(x) =

n∑
`=1

∂`g(f(x))∂if`(x)

Now observe that Π|α| = Π1 = {{{1}}}, and hence in the outermost summation on the right-hand side in
the statement of the theorem, we obtain just one term, where π = {{1}}. Then we directly find that |π| = 1,
and hence the right-hand side reduces to:

n∑
`=1

∂`g(f(x)) · ∂if`(x)

which is exactly equal to the expression for ∂α(g ◦ f)(x) we obtained above. Hence, the formula holds when
k = 1.

Now suppose that the formula holds for some k ∈ N. Take α ∈ [d]k, i ∈ [d], and define β = (α, i) ∈ [d]k+1.
Then, we obtain, again invoking the chain rule:

∂β(g ◦ f)(x) = ∂i∂α(g ◦ f)(x) = ∂i

 ∑
π∈Π|α|

n∑
`1=1

· · ·
n∑

`|π|=1

∂(`1,...,`|π|)g(f(x)) ·
|π|∏
j=1

∂απj f`j (x)


=

∑
π∈Π|α|

n∑
`1=1

· · ·
n∑

`|π|=1

 n∑
`|π|+1=1

∂(`1,...,`|π|+1)g(f(x)) · ∂i∂`|π|+1
f(x) ·

π∏
j=1

∂απj f`j (x)

+ ∂(`1,...,`|π|)g(f(x)) ·
π∑

j′=1

∂i∂απ
j′
f`j (x) ·

|π|∏
j=1
j 6=j′

∂απj f`j (x)


In the last expression of the above equation, the terms on the top line can be obtained by making partitions
π′ ∈ Π|β| = Π|α|+1, by adding a new set to the partition, i.e., setting π′ = π ∪ {|β|}. The terms on the
bottom line can be obtained by adding |β| to the j′th set in the partition π. As all partitions π ∈ Π|β| can
be constructed in this way, we obtain that we can rewrite the above equation into:

∂β(g ◦ f)(x) =
∑

π∈Π|β|

n∑
`1=1

· · ·
n∑

`|π|=1

∂(`1,...,`|π|)g(f(x)) ·
|π|∏
j=1

∂βπj f`j (x)

And hence the formula also holds for all β ∈ [d]k+1. We can now complete the proof with induction.

The formula we derived in the previous lemma can be used to analyze the smoothness properties of compo-
sitions of functions of Gevrey-type at most 1. This is done in the following theorem.3

Theorem 6.4.2: Composition of functions of Gevrey-type at most 1
Let d, n ∈ N, Ω ⊆ Rd, Ψ ⊆ Rn open, and let f : Ω → Ψ and g : Ψ → R be smooth functions. Let
A,B,C,D ≥ 0. Suppose that for all j ∈ [n], fj ∈ G1

d,Ω,A,B , and that g ∈ G1
n,Ψ,C,D. Then, we find:

g ◦ f ∈ G1
d,Ω,C,B(1+nAD)

3This theorem is at the moment not used in the remainder of this document. However, it is quite likely that it might become
useful in further research on this topic. Moreover, it is a theorem that is not easily found in literature, especially not with the
constants explicitly written out, so this is why it is included here.

134

Proof. Take k ∈ N, α ∈ [d]k and x ∈ Ω arbitrarily. According to Lemma 6.4.1, we have:

∂α(g ◦ f)(x) =
∑

π∈Π|α|

n∑
`1=1

· · ·
n∑

`|π|=1

∂(`1,...,`|π|)g(f(x)) ·
|π|∏
j=1

∂απj f`j (x)

Hence, by taking absolute values on both sides, we can bound the right-hand side as follows:

|∂α(g ◦ f)(x)| ≤
∑

π∈Π|α|

n∑
`1=1

· · ·
n∑

`|π|=1

|∂(`1,...,`|π|)g(f(x))| ·
|π|∏
j=1

|∂απj f`j (x)|

≤
∑

π∈Π|α|

n∑
`1=1

· · ·
n∑

`|pi|=1

CD|π||π|! ·
|π|∏
j=1

AB|πj ||πj |!

=
∑

π∈Π|α|

n|π|CD|π||π|! ·A|π|B
∑|π|
j=1 |πj | ·

|π|∏
j=1

|πj |!

= CB|α|
∑

π∈Π|α|

(nAD)|π||π|! ·
|π|∏
j=1

|πj |!

Now, we rewrite the right-hand side of the last equation. To that end, we consider all partitions in Π|α| that
have r sets, and then sum over r. This results in the following inequality:

|∂α(g ◦ f)(x)| ≤ CB|α|
|α|∑
r=1

∑
π∈Π|α|
|π|=r

(nAD)rr! ·
r∏
j=1

|πj |!

Next, we fix r ∈ {1, . . . , |α|}, and we take a sequence (k1, . . . , kr) ∈ Nr such that k1 + k2 + · · · + kr = |α|.
If we now want to distribute all the elements of |α| over r sets with sizes k1, k2, . . . , kr, then we know that

there are
(|α|
k1 k2 ··· kr

)
ways to do this if the order of the sets matters. However, in a partition, the order of

the sets do not matter, and hence the total number of partitions with sets that have sizes k1, k2, . . . , kr is
given by: (

|α|
k1 k2 · · · kr

)
· 1

r!

Using this, we can rewrite the last inequality in the following form:

|∂α(g ◦ f)(x)| ≤ CB|α|
|α|∑
r=1

∑
(k1,...,kr)∈Nr
k1+···+kr=|α|

(
|α|

k1 k2 · · · kr

)
· 1

r!
· (nAD)rr! ·

r∏
j=1

kj !

= CB|α|
|α|∑
r=1

∑
(k1,...,kr)∈Nr
k1+···+kr=|α|

|α|! · (nAD)r

Next, observe that in order to find a sequence (k1, k2, . . . , kr) ∈ Nr such that k1 + k2 + · · · + kr = |α|, we

have to divide |α| − r units in r boxes. Thus, we can find
(|α|−r+r−1

r−1

)
such vectors (k1, k2, . . . , kr) ∈ Nr.

135

Hence, the inequality can be rewritten as follows:

|∂α(g ◦ f)(x)| ≤ CBk
|α|∑
r=1

(
|α| − r + r − 1

r − 1

)
|α|!(nAD)r = CB|α||α|! ·

|α|∑
r=1

(
|α| − 1

r − 1

)
(nAD)r

= CB|α||α|! ·
|α|−1∑
r=0

(
|α| − 1

r

)
(nAD)r+1 = nACDB|α||α|! · (1 + nAD)|α|−1

=
nACD

1 + nAD
(B(1 + nAD))|α||α|! ≤ C(B(1 + nAD))|α||α|!

Finally, observe trivially that |g(f(x))| ≤ C. Hence, we find that g ∈ G1
d,Ω,C,B(1+nAD). This completes the

proof.

The above theorem proves that whenever we compose two functions that are of Gevrey-type at most 1, then
the resulting composition is again of Gevrey-type at most 1. The interested reader might wonder whether
similar results hold true for functions that are of at most Gevrey-type σ as well, where σ ∈ [0, 1). The answer
is no, as one can for example take the function f : R → R, f(x) = ex. This is a function of Gevrey-type 0,
but f ◦ f is a function of Gevrey-type 1, providing a counterexample for all choices of σ ∈ [0, 1).

This completes our discussion on the composition of two functions of Gevrey-type 1.

6.4.2 Smoothness properties of the policy evaluation function of a Markov de-
cision process

Suppose that we have some Markov decision process M = (S,A, P,R, γ) and an initial state s0 ∈ S. In this

section, we will look at the function π 7→ V
(π)
M (s0), i.e., the function that maps a policy for M to the value

of M under the policy, starting from state s0. We call this function the policy evaluation function, denoted

by EM,s0(π) = V
(π)
M (s0). We formally define it in the definition below.

Definition 6.4.3: Policy evaluation function
Let M = (S,A, P,R, γ) be a Markov decision process and s0 ∈ S. We define EM,s0 : X → R, where
X ⊆ RS×A is defined as follows:

X =

{
π ∈ [0, 1]S×A : ∀s ∈ S,

∑
a∈A

πsa = 1

}

and EM,s0 sends a policy π ∈ X to the value of M under π:

EM,s0(π) = V
(π)
M (s0)

We will refer to X as the policy space and EM,s0 as the policy evaluation function of M from s0.

The goal of this subsection is to prove some smoothness properties of this policy evaluation function EM,s0 .
As a first step towards this goal, we prove that it is bounded in the lemma below.

Lemma 6.4.4: Boundedness of the policy evaluation function
Let M = (S,A, P,R, γ) be a Markov decision process and s0 ∈ S. Moreover, define |R|max =
max(s,a)∈S×A |R(s, a)|. Then, for all policies π ∈ X:

|EM,s0(π)| ≤ |R|max

1− γ

136

Proof. Let π ∈ X be a policy for M , and let (Sπt)∞t=0 be random variables taking values in S, which model
the dynamics of the Markov decision process under π. Then, we find:

|EM,s0(π)| = |V (π)
M (s0)| =

∣∣∣∣∣E
[∞∑
t=0

γtR(Sπt)

]∣∣∣∣∣ ≤
∞∑
t=0

γt|R|max =
|R|max

1− γ

This completes the proof.

Next, note that X is a closed set, whose interior is empty. In particular, if S = {s0} and A = {a0, a1}, we
can sketch X as in Figure 6.3. Due to X not having any interior, it is not trivial to meaningfully define
derivatives of EM,s0 . So, if we want to say something about the smoothness of EM,s0 , we will have to do a
little bit more work.

πs0a0

πs0a1

0 1

1

Figure 6.3: The policy space X, for S = {s0} and A = {a0, a1}, is depicted as the thick oblique line. The
endpoints are included in this set.

In the example portrayed in Figure 6.3, we can see that it is enough to specify the horizontal coordinate,
πs0a0

, to uniquely determine where we are in the space X. Hence, we can create a function κ, which takes
πs0a0

as input, and outputs the corresponding point in X, i.e., (πs0a0
, 1− πs0a0

).

We can generalize this idea when S and A are larger, where our function κ acts on higher-dimensional spaces.
To that end, we pick one particular action a∗ ∈ A arbitrarily, and we choose all the coefficients of π that
do not involve a∗, i.e., the coefficients πsa where (s, a) ∈ S × (A \ {a∗}), such that they are located in the
interval [0, 1], and such that for all s ∈ S, the sum of the coefficients πsa over all a in A \ {a∗} is also located
in [0, 1]. Then, for all s ∈ S, we can define πsa∗ ∈ [0, 1] to be such that the coefficients of π, for every s ∈ S,
sum to 1. In this context, we let κ be the function that sends the π without a∗ to the π with a∗. Hence, κ
is the function that appropriately normalizes the policy π by setting the policy parameters involving a∗.

We formalize the function κ in the definition below.

Definition 6.4.5: Canonical embedding in the policy space
Let M = (S,A, P,R, γ) be a Markov decision process. We let a∗ ∈ A and define:

Ω ∈

x ∈ [0, 1]S×(A\{a∗}) : ∀s ∈ S, 1−
∑

a∈A\{a∗}

xsa ∈ [0, 1]


Then, we define κ : Ω→ X as follows, for all s ∈ S:

∀a ∈ A \ {a∗}, κ(x)sa = xsa and κ(x)sa∗ = 1−
∑

a∈A\{a∗}

xsa

We refer to κ as the canonical embedding in the policy space of M .

137

It can easily be seen that κ indeed maps into X, as for all s ∈ S and x ∈ Ω, we have:∑
a∈A

κ(x)sa =
∑

a∈A\{a∗}

κ(x)sa + κ(x)sa∗ =
∑

a∈A\{a∗}

κ(x)sa + 1−
∑

a∈A\{a∗}

κ(x)sa = 1

Furthermore, it is not difficult to show that κ is infinitely smooth, as the derivatives are very easy to calculate.
Note that as the coefficients of a vector x ∈ (0, 1)S×A\{a

∗} are indexed by elements from S × (A \ {a∗}),
we have derivatives with respect to these indices, i.e., derivatives ∂sa where sa ∈ S × (A \ {a∗}). These
derivatives of κ are calculated in the lemma below.

Lemma 6.4.6: Smoothness of the canonical embedding in the policy space
Let M = (S,A, P,R, γ) be a Markov decision process, and let κ be the canonical embedding in the
policy space of M . Then, we find, for all (s, a), (s′, a′) ∈ S × (A \ {a∗}):

∂sa(κs′a′) = δss′δaa′ and ∂sa(κs′a∗) = −δss′

and moreover, for all k ∈ N\{1} and α ∈ (S×(A\{a∗}))k, we find for all (s, a) ∈ S×A that ∂α(κsa) = 0.

Proof. Observe that for all x ∈ (0, 1)S×(A\{a∗}), and (s, a) ∈ S× (A\{a∗}), we have κ(x)sa = xsa, and hence
∂sa(κs′a′) is only non-zero if s = s′ and a = a′, in which case it is 1. On the other hand, if s, s′ ∈ S and
a ∈ A \ {a∗}, then xsa appears in κ(x)s′a∗ with a minus sign if and only if s = s′, and hence ∂sa(κs′a∗) is −1
if s = s′, and 0 otherwise. Finally, as all components of κ are linear functions, all higher-order derivatives
vanish, completing the proof.

Hence, we have shown that κ provides us with a smooth embedding of Ω into X. Moreover, Ω does have an
open interior, and hence it makes sense to look at the derivatives of EM,s0 ◦κ, and investigate the smoothness
of this function. In order to do this, we need to explicitly express EM,s0 in terms of its policy parameters,
which is what we do in the following lemma.

Lemma 6.4.7: Dependence of the policy evaluation function on the policy parameters
Let M = (S,A, P,R, γ) be a Markov decision process, and let s0 ∈ S. For every policy π for M , let
(Sπt)∞t=0 and (Aπt)∞t=0 be random variables taking values in S and A, modeling the dynamics of the
Markov decision process under the policy π. We define the following shorthand notation, for all t ∈ N0,
s ∈ S and a ∈ A:

Pπ,t,s,a = P[Sπt = s,Aπt = a]

Then:

EM,s0(π) =
∑

(s,a)∈S×A

R(s, a)

∞∑
t=0

γtPπ,t,s,a

Moreover, for all t ∈ N0, s ∈ S and a ∈ A, Pπ,t,s,a is a multivariate polynomial in the coefficients of π
of total degree t+ 1.

Proof. Let π ∈ X. The first claim is easily verified:

EM,s0(π) = V
(π)
M (s0) = E

[∞∑
t=0

γtR(Sπt)

]
=

∞∑
t=0

γt
∑

(s,a)∈S×A

R(s, a)P [Sπt = s,Aπt = a]

=
∑

(s,a)∈S×A

R(s, a)

∞∑
t=0

γtPπ,t,s,a

Next, observe that we have, for all s ∈ S and a ∈ A:

Pπ,0,s,a = P [Sπ0 = s,Aπ0 = a] = δss0πsa

138

Hence, Pπ,0,s,a is indeed a polynomial in the coefficients of π, of total degree 1. Moreover, we can rewrite
Pπ,t,s,a recursively, as follows, for all t ∈ N, s ∈ S and a ∈ A:

Pπ,t,s,a = P [Aπt = a, Sπt = s] = P [Aπt = a|Sπt = s] · P [Sπt = s]

= πsa ·
∑

(s′,a′)∈S×A

P
[
Sπt = s|Sπt−1 = s′, Aπt−1 = a′

]
· P
[
Sπt−1 = s′, Aπt−1 = a′

]
= πsa ·

∑
(s′,a′)∈S×A

Ps′a′s · Pπ,t−1,s′,a′

And so by induction, we find that Pπ,t,s,a is a polynomial in terms of the coefficients of π of total degree
t+ 1 for all t ∈ N0.

We can use this last lemma to prove some smoothness bounds on EM,s0 ◦ κ. However, in order for these
smoothness bounds to hold globally, we must shrink the domain of this function. Specifically, we must make
sure that the coefficients of the resulting policy are bounded away from 0 and 1. This is why we formally
introduce the following set, where η ≥ 0:

Ωη =

x ∈ (η, 1− η)S×(A\{a∗}) : ∀s ∈ S, 1−
∑

a∈A\{a∗}

xsa ∈ (η, 1− η)


Note that Ω0 recovers the set Ω used in Definition 6.4.5. Now, we can prove some smoothness properties of
EM,s0 ◦ κ, in the following theorem:

Theorem 6.4.8: Smoothness properties of the policy evaluation function under the canon-
ical embedding in the policy space
Let M = (S,A, P,R, γ) be a Markov decision process and s0 ∈ S. Moreover, let κ be the canonical
embedding of Ω0 in the policy space X. Let η ∈ (0, 1

2). For all x ∈ Ωη, k ∈ N0 and α ∈ (S×(A\{a∗}))k,
we have:

|∂α(EM,s0 ◦ κ)(x)| ≤ |S||A||R|max

γ(1− γ)
·
(

2γ

η(1− γ)

)k
· k!

In other words, we find:
EM,s0 ◦ κ ∈ G1

S×(A\{a∗}),Ωη, |S||A||R|max
γ(1−γ)

, 2γ
η(1−γ)

Proof. Take x ∈ Ωη arbitrarily, and let k ∈ N0 and α ∈ (S × (A \ {a∗}))k. We take s1, . . . , s|α| ∈ S and
a1, . . . , a|α| ∈ A such that for all j ∈ {1, . . . , |α|}, we have the state-action pair sjaj = αj ∈ S ×A. We find,
using Lemma 6.4.7:

∂α(EM,s0 ◦ κ)(x) = ∂α

 ∑
(s,a)∈S×A

R(s, a)

∞∑
t=0

γt(Pπ,t,s,a ◦ κ)(x)

 =
∑

(s,a)∈S×A

R(s, a)

∞∑
t=0

γt∂α(Pπ,t,s,a ◦ κ)(x)

Next, due to Lemma 6.4.1, observe that for all t ∈ N0, s ∈ S and a ∈ A:

∂α(Pπ,t,s,a ◦ κ)(x) =
∑

π∈Π|α|

∑
`1∈S×A

· · ·
∑

`|π|∈S×A

∂(`1,...,`|π|)Pπ,t,s,a(κ(x)) ·
|π|∏
j=1

∂απj κ`j (x)

Recall from Lemma 6.4.6 that all second and higher-order derivatives of κ vanish, and hence the only term
of the outermost summation that does not vanish is the term where π only contains singletons. Hence, we
obtain:

∂α(Pπ,t,s,a ◦ κ)(x) =
∑

s′1a
′
1∈S×A

· · ·
∑

s′ka
′
k∈S×A

∂(s′1a
′
1,...,s

′
ka
′
k)Pπ,t,s,a(κ(x)) ·

|α|∏
j=1

∂sjajκs′ja′j (x)

139

The only terms that remain are the ones where for all j ∈ {1, . . . , |α|}, s′ja′j = sjaj , and s′ja
′
j = sja

∗. Hence,
we find:

∂α(Pπ,t,s,a ◦ κ)(x) =
∑

a′1∈{a1,a∗}

· · ·
∑

a′k∈{ak,a∗}

∂(s1a′1,...,ska
′
k)Pπ,t,s,a(κ(x)) ·

|α|∏
j=1

∂sjajκsja′j

Taking the absolute value on both sides and using the triangle inequality yields, using Lemma 6.4.6:

|∂α(Pπ,t,s,a ◦ κ)(x)| ≤
∑

a′1∈{a1,a∗}

· · ·
∑

a′k∈{ak,a∗}

|∂(s1a′1,...,ska
′
k)Pπ,t,s,a(κ(x))| · 1

But now observe that Pπ,t,s,a is a polynomial in the coefficients of π of total degree at most t+ 1, according
to Lemma 6.4.7. Hence, we find for all β ∈ (S ×A)k and y ∈ κ(Ωη):4

|∂βPπ,t,s,a(y)| ≤ (t+ 2− k)k ·
|Pπ,t,s,a(y)|∏k

j=1 yβj
≤ (t+ 2− k)k|Pπ,t,s,a(y)|

ηk
≤ (t+ 2− k)k

ηk

Plugging this in yields:

|∂α(Pπ,t,s,a ◦ κ)(x)| ≤ 2k · (t+ 2− k)k
ηk

And so, plugging this into the expression for the derivatives of EM,s0 ◦ κ, we obtain:

|∂α(EM,s0 ◦ κ)(x)| ≤
∑

(s,a)∈S×A

R(s, a)

∞∑
t=0

γt|∂α(Pπ,t,s,a ◦ κ)(x)|

≤
∑

(s,a)∈S×A

R(s, a)

∞∑
t=0

γt ·
(

2

η

)k
· (t+ 2− k)k

≤ |S||A||R|max ·
(

2

η

)k
·
∞∑
t=0

(t+ 2− k)kγ
t

But the summation we can calculate, as follows:

∞∑
t=0

(t+ 2− k)kγ
t = γk−1

∞∑
t=0

(t+ 2− k)kγ
t+1−k = γk−1 dk

dγk

[∞∑
t=0

γt+1

]
= γk−1 dk

dγk

[
γ

1− γ

]
= γk−1 · dk

dγk

[
1

1− γ
− 1

]
= γk−1 ·

[
k!

(1− γ)k+1
− δk0

]
=

1

γ(1− γ)
·
(

γ

1− γ

)k
· k!− δk0

γ

And hence, we obtain:

|∂α(EM,s0 ◦ κ)(x)| ≤ |S||A||R|max

γ(1− γ)
·
(

2γ

η(1− γ)

)k
· k!− δk0|S||A||R|max

γ

If k = 0, we can simplify the expression, which implies:

|EM,s0 ◦ κ)(x)| ≤ |S||A||R|max

γ

[
1

1− γ
− 1

]
=
|S||A||R|max

γ
· γ

1− γ
=
|S||A||R|max

1− γ
≤ |S||A||R|max

γ(1− γ)

4Here, we use the Pochhammer symbol. For every a ∈ C and k ∈ N, this is defined as (a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1).

140

And so, for all k ∈ N0, we have:

|∂α(EM,s0 ◦ κ)(x)| ≤ |S||A||R|max

γ(1− γ)
·
(

2γ

η(1− γ)

)k
· k!

This completes the proof.

The attentive reader might wonder why it is necessary to bound the coefficients of the policy away from 0
and 1 in the definition of Ωη. It appears to be hard to provide an example of a Markov decision process for
which the derivatives blow up near the boundary of Ω0, indicating that bounding the coefficients away from
0 and 1 might not be necessary. Hence, it is very well possible that the above result can be improved upon,
however doing so does not appear to be an easy task. This is why we will stick to this result for now, but
improving on this result would be a very interesting topic of further research.

So, to recap, in this subsection we introduced the policy evaluation function, EM,s0 , and we composed it with
a function κ that naturally embeds a set with non-empty interior in the policy space. Then we investigated
the smoothness of the composition EM,s0 ◦κ, and we found the particular Gevrey-class of which the function
is a member, whenever we restrict it to a smaller domain that bounds away the coefficients of 0 and 1.

Note that the image of κ : Ωη → X does not cover all of X, but it does cover all policies whose coefficients
are in the interval (η, 1 − η). Hence, optimizing the function EM,s0 ◦ κ over Ωη should still yield a good
approximation of the optimal policy for M starting from s0. In the next subsection, we will attempt to use a
gradient ascent algorithm to perform this optimization procedure. To that end, though, we have to estimate
the gradient, which we will do using Gilyén et al.’s gradient estimation algorithm, Algorithm 4.3.9.

6.4.3 Quantum algorithm for quantum policy optimization

In this section, we will devise the quantum policy optimization algorithm. Its main component will be the
gradient estimation algorithm, i.e., Algorithm 4.3.9, applied to the function EM,s0 ◦ κ, introduced in the
previous subsection. The smoothness bounds proven there indicate that we will need to use σ = 1 in this
algorithm.

The gradient estimation algorithm requires a phase oracle implementation of the objective function, though.
Recall that in Section 6.3, we have already constructed a quantum circuit that evaluates the value function
as a probability oracle. Hence, we will first of all construct a circuit that converts a probability oracle into
a phase oracle.

Gilyén et al. state a way to convert a probability oracle into a phase oracle in [GAW17], Chapter 4. Our
construction will be mainly based on theirs, and hence will also include techniques from [CKS17]. The first

step is a polynomial approximation of the function x 7→ ei sin2(x), provided in the lemma below.

141

Lemma 6.4.9: Approximation of x 7→ ei sin2(x)

Let ε > 0 and N = dmax{2e, log(1
ε)}e. Define:

βn =

N∑
k=|n|

(
2k

k + n

)
(−1)nik

k!22k

Then, we find, for all x ∈ [−π2 ,
π
2]: ∣∣∣∣∣ei sin2(x) −

N∑
n=−N

βne
2inx

∣∣∣∣∣ ≤ ε
Moreover:

N∑
n=−N

|βn| ≤ 2(1 + ee/2)e1/4

Proof. For all y ∈ R, we have:

eiy =

∞∑
n=0

inyn

n!

Hence, we obtain, for all y ∈ [−1, 1]:∣∣∣∣∣eiy −
N∑
n=0

inyn

n!

∣∣∣∣∣ ≤
∞∑

n=N+1

|y|n

n!
≤

∞∑
n=N+1

1

n!
≤ 1

N !
·
∞∑
n=1

(
1

2

)n
=

1

N !
≤ 1√

2πNN+ 1
2 e−N

≤
(e
N

)N
≤
(

1

2

)log(1/ε)

= ε

And so, for all x ∈ [−π2 ,
π
2], we have: ∣∣∣∣∣ei sin2(x) −

N∑
n=0

in sin2n(x)

n!

∣∣∣∣∣ ≤ ε
Moreover, we have, by elementary rewriting:

N∑
n=0

in sin2n(x)

n!
=

N∑
n=0

in

n!

(
eix − e−ix

2i

)2n

=

N∑
n=0

in

n!(2i)2n

2n∑
k=0

(
2n

k

)
eikx · (−1)2n−ke−i(2n−k)x

=

N∑
n=0

(−i)n

22nn!

2n∑
k=0

(
2n

k

)
(−1)ke(−2n+2k)ix =

N∑
n=0

in

2nn!

n∑
k=−n

(
2n

k + n

)
(−1)ke2kix

=

N∑
k=−N

e2ikx
N∑

n=|k|

(
2n

n+ k

)
(−1)kin

22nn!
=

N∑
k=−N

βke
2ikx

And so, putting everything together, we obtain:∣∣∣∣∣ei sin2(x) −
N∑

n=−N
βne

2inx

∣∣∣∣∣ ≤ ε
Finally, recall that for all binomial coefficients, we have the following upper bound, for all a, b ∈ N0:(

a

b

)
≤
(ea
b

)b
142

Hence, for the non-negative integers k, n ∈ N0 with k > n, we find:(
2k

k + n

)
· 1

k!22k
=

(
2k

k − n

)
· 1

k!22k
≤
(

2ek

k − n

)k−n
· 1

k!22k
=

(
2e

1− n
k

)k−n
· 1

k!22k
≤ (2e)−n · (e/2)k

k!

Thus, we obtain, for all n ∈ {−N,−N + 1, . . . , N − 1, N}:

|βn| ≤
N∑

k=|n|

(
2k

k + |n|

)
· 1

k!22k
≤ 1

|n|! · 22|n| +

N∑
k=|n|+1

(e/2)k

(2e)|n|k!
≤ 1

|n|!22|n| +
(e/2)|n|

|n|!(2e)|n|
∞∑
k=0

(e/2)k

k!

=
1

|n|!4|n|
+

ee/2

4|n||n|!
=

1 + ee/2

|n|!4|n|

And so, we have:

N∑
n=−N

|βn| ≤ 2

N∑
n=0

|βn| ≤ 2(1 + ee/2)

N∑
n=0

1

n!
·
(

1

4

)n
= 2(1 + ee/2)e1/4

This completes the proof.

Now, we show how we can use this approximation to construct a phase oracle from a probability oracle. This
result is due to [GAW17], Chapter 4, and it uses techniques from [CKS17], specifically Lemma 6.

143

Circuit 6.4.10: Phase oracle from a probability oracle
Description: This circuit approximately implements a phase oracle, using a number of queries to a
probability oracle that is logarithmic in the precision.
Parameters: δ > 0.
Derived constants:

1. N = dmax{2e, log(21
δ)}e.

2. (βk)Nk=−N , as defined in Lemma 6.4.9.
Oracle circuits: A probability oracle P , acting on n+ 1 qubits, having the following action:

P : |0〉⊗(n+1) 7→ √p |ψ〉 |0〉+
√

1− p |φ〉 |1〉

where |φ〉 and |ψ〉 are arbitrary n-qubit quantum states.
Number of qubits: 2N + n+ 2.
Oracle query complexity: P is queried a total number of 4N · 21 times.
Circuit: Denote the following circuit by Q, acting on all of the 2N + n+ 2 qubits.

1. We implement the following mapping on the first 2N qubits.

V : |0〉⊗(2N) 7→ 1√
‖β‖1

N∑
k=−N

√
βk

{
|1〉⊗k ⊗ |0〉⊗(2N−k)

, if k ≥ 0

|0〉⊗(2N+k) ⊗ |1〉⊗(−k)
, otherwise

2. Next, we define the following circuit, acting on n + 1 qubits, and controlled by one extra qubit,
which we denote by C(G):
(a) Apply the probability oracle, P .
(b) Apply XZX to the last qubit, where the Z is controlled by the control qubit.
(c) Apply the circuit of step (a) in reverse.
(d) Apply the circuit C(R0), Circuit 3.5.10, to all of the n + 1 qubits, controlled by the control

qubit.
Now, apply C(G) to the last n+ 1 qubits, controlled by the first qubit. Repeat this on the second,
third, etc., up to the Nth qubit. Do the same for the second batch of N qubits, but now implement
the reverse, C(G)∗.

3. We rotate in the phases, i.e., conditional on the first k qubits being in state |1〉, we multiply by
a factor eiArg(βk), and similarly for the last k qubits of the first 2N qubits being in state 1, we
multiply by a factor eiArg(β−k).a

4. Apply the reverse of V to the first 2N qubits.
5. Apply the following mapping to the (2N + 1)st qubit:

R : |0〉 7→ sin
(π

42

)
‖β‖1 |0〉+

√
1−

(
sin
(π

42

)
‖β‖1

)2

|1〉

We use this circuit as the setup circuit in the amplitude amplification algorithm, Circuit 3.5.9, and we
run it with k = 10. The reflection circuit, we take to be R0, applied to the first 2N + 1 qubits.

aFor all z ∈ C \ {0}, Arg(z) denotes the principle value of the argument of z, i.e., if we write z = reiφ, with r > 0 and
φ ∈ (−π, π], then Arg(z) = φ.

Proof that this indeed implements a phase oracle. Define θ = arcsin(
√
p). We observe that P implements

the following mapping:

P : |0〉⊗(n+1) 7→ sin(θ) |ψ〉 |0〉+ cos(θ) |φ〉 |1〉

Hence, G = R0P
∗(I⊗n2 ⊗XZX)P has the following mapping, for all φ ∈ R:

G : P ∗(sin(φ) |ψ〉 |0〉+ cos(φ) |φ〉 |1〉) 7→ P ∗(sin(φ+ 2θ) |ψ〉 |0〉+ cos(φ+ 2θ) |φ〉 |1〉)

144

which we can prove in exactly the same way as in the proof of Circuit 3.5.8. But this implies that G is a
rotation operator on the subspace of the (n + 1)-qubit state space, spanned by the vectors P ∗(|ψ〉 |0〉) and
P ∗(|φ〉 |1〉). Hence, with respect to a suitable basis in this subspace, we can rewrite G as follows:

G =

[
e2iθ 0
0 e−2iθ

]
The terms in the state after step 1 of circuit Q, when applied to the state |0〉⊗(2N+n+2)

, have some interesting
properties. If k is positive, then the first k qubits are set to state |1〉, and if k is negative, then the last k
qubits of the first 2N qubits are set to |1〉. Hence, we can implement Gk by calling either C(G) or C(G)∗,
which is what we do in step 2. Hence, the state of the entire system after step 2 is given by:

1√
‖β‖1

N∑
k=−N

√
βk

[{
|1〉⊗k ⊗ |0〉⊗(2N−k)

, if k ≥ 0

|0〉⊗(2N+k) ⊗ |1〉⊗(−k)
, otherwise

]
⊗ |0〉 ⊗Gk |0〉⊗(n+1)

Now, after step 3, the state becomes:

1√
‖β‖1

N∑
k=−N

√
βk · ei arg(bk)

[{
|1〉⊗k ⊗ |0〉⊗(2N−k)

, if k ≥ 0

|0〉⊗(2N+k) ⊗ |1〉⊗(−k)
, otherwise

]
⊗ |0〉 ⊗Gk |0〉⊗(n+1)

And after step 4, we obtain:

1

‖β‖1

N∑
k=−N

βk |0〉⊗(2N) ⊗ |0〉 ⊗Gk |0〉⊗(n+1)
+ |Ψ〉

where
∥∥∥((|0〉 〈0|)⊗(2N+1) ⊗ I⊗(n+1)

2) |Ψ〉
∥∥∥ = 0. Finally, observe that sin(π/42) ‖β‖1 ≤ sin(π/42) · 2(1 +

ee/2)e1/4 < 1 and hence step 5 is legitimate. The final state of the system becomes, after step 5:

sin
(π

42

)
|0〉⊗(2N+1) ⊗

N∑
k=−N

βkG
k |0〉⊗(n+1)

+ |Ψ〉

But note that in the appropriate subspace, where |0〉⊗(n+1)
is located in, we can write G as a diagonal matrix

with entries e2iθ and e−2iθ. But this implies that we can rewrite, with respect to this basis:

N∑
k=−N

βkG
k =

N∑
k=−N

βk

[
e2iθ 0
0 e−2iθ

]k
=

[∑N
k=−N βke

2ikθ 0

0
∑N
k=−N βke

−2ikθ

]

Up to operator norm δ/21, this is equal to:

N∑
k=−N

βkG
k ≈

[
ei sin2(θ) 0

0 ei sin2(−θ)

]
= eipI

But that means that, up to operator norm δ/21, this summation equals the identity operator, shifted by p
in phase. Hence the resulting state of the system after step 5 is:

sin
(π

42

)
eip |0〉⊗(2N+1) ⊗ |0〉⊗(n+1)

+ |Ψ〉

So, we have shown that the circuit Q has the following action, up to norm error δ/21:

Q : |0〉⊗(2N+n+2) 7→ sin
(π

42

)
eip |0〉⊗(2N+1) ⊗ |0〉⊗(n+1)

+ |Ψ〉

145

This circuit, we can now use in the amplitude amplification circuit. As we take 10 steps, we query Q a total
of 21 times. Thus, we obtain that the resulting circuit has the following action, up to norm error δ:

|0〉⊗(2N+n+2) 7→ sin

(
(2 · 10 + 1)π

42

)
eip |0〉⊗(2N+n+2)

= eip |0〉⊗(2N+n+2)

This completes the proof.

Note that we can very easily implement the above quantum circuit in a controlled manner. The idea is to
implement the circuits V and R in a controlled manner, which does not influence the oracle query complexity.

Note that step 2 does not do anything if step 1 does not modify the state |0〉⊗(2N)
. Step 3 only adds an

extra phase exp(iβ0), and hence we will have to correct for this phase at the control qubit. This is enough
to implement Q in a controlled manner.

In order to perform the amplitude amplification in a controlled manner as well, we can use a controlled
version of Q in the setup step of the amplitude amplification algorithm. Then, in the amplification step,
we can repeatedly use controlled versions of the Grover iterate, which we provided in Circuit 3.5.11. These
modifications do not increase the number of times we call the probability oracle, and hence the oracle query
complexity shown in Circuit 6.4.10 remains valid in the controlled case as well.

Now that we have shown how we can implement a phase oracle query from a probability oracle query, we
can use it to build a phase oracle that evaluates our objective function EM,s0 ◦κ. This we do in the quantum
circuit below.

146

Circuit 6.4.11: Phase oracle of a composition of the policy evaluation function
Description: Given a Markov decision process M = (S,A, P,R, γ) and an initial state s0 ∈ S, this
circuit implements a phase oracle of the function

x 7→ 1

2
+

1− γ
8|R|max

(EM,s0 ◦ κ)(x)

Parameters:
1. The accuracy parameter of the resulting state, δ > 0.
2. The accuracy parameter of the function to evaluate, ε > 0.
3. The discount factor γ ∈ [0, 1).
4. An absolute bound on the reward function, |R|max.
5. The bound on the parameters of the policy, η > 0.
6. A set of orthogonal K-qubit states {|x〉 : x ∈ G ⊆ Ωη}.
7. Orthogonal sets of nS-qubit states {|s〉 : s ∈ S} and nA-qubit states {|a〉 : a ∈ A}.

Derived constants:
1. N = dmax{2e, log(42

δ)}e.

2. T =

⌈
log(ε(1−γ)

2|R|max
)

log(γ)

⌉
.

Oracle circuits:
1. A quantum circuit P that implements the state-action probability matrix:

P : |s〉 ⊗ |a〉 ⊗ |0〉⊗nS 7→
∑
s′∈S

√
Psas′ |s〉 ⊗ |a〉 ⊗ |s′〉

2. A controlled quantum circuit C(R), where R implements the state-action reward function as a
phase oracle:

R : |s〉 ⊗ |a〉 7→ eiR̃(s,a) |s〉 ⊗ |a〉 where R̃(s, a) =
1− γ

2|R|max
R(s, a)

3. A quantum circuit Π, acting on K + nS + nA qubits, that implements the policy κ(x) for all
x ∈ G ⊆ Ω, as follows:

Π : |x〉 ⊗ |s〉 ⊗ |0〉⊗nA 7→ |x〉 ⊗
∑
a∈A

√
κ(x)sa |s〉 ⊗ |a〉

Number of qubits: K + 2N + T (nS + nA) + 4.
Oracle complexity: The query complexity of all three circuits satisfies:

Õ(T) = Õ
(

1

1− γ

)
Circuit: Circuit 6.4.10, with the following settings.

1. Let the probability oracle circuit be Circuit 6.2.6, with the following settings:

(a) Let the state probability oracle P in that circuit be the operation (I
⊗(nS+nA)
2 ⊗Π)(P⊗I⊗nA2).

(b) Let the reward circuit R be the same as in this circuit.
(c) Modify step 1. Instead of constructing |s0〉 from the all-zero state, construct |s0〉 ⊗∑

a∈A
√
κ(x)sa |a〉 instead. This can be done using one call to Π.

(d) Let the accuracy parameter of Circuit 6.2.5 be δ/(168N). Furthermore, use the same ε, γ
and |R|max.

2. Let accuracy parameter be δ/2.

147

Proof that the error induced is no more than δ. Observe that N is the same constant as the one that is being
chosen in Circuit 6.4.10, when the accuracy parameter is set to δ/2. Hence, Circuit 6.2.6 is called 42N times
and hence from Lemma B.2, we can deduce that the total error there is upper bounded by:

2 · δ

168N
· 42N =

δ

2

And the error induced by Circuit 6.4.10 itself is also upper bounded by δ/2. Hence, again using Lemma B.2,
the total error is upper bounded by δ. This completes the proof.

Proof of the oracle query complexity. The circuits P and R and Π are called Õ(T) times in Circuit 6.2.6.
Circuit 6.4.10 only introduces extra logarithmic factors, hence the total query complexity to all oracle circuits
is Õ(T). We have proven in the analysis of the query complexity of Algorithm 6.2.7 that Õ(T) = Õ(1/(1−γ)),
which completes the proof.

Proof that Circuit 6.4.11 indeed implements the function that is stated in the description. Observe that we
have proven before that Circuit 6.4.10 indeed implements a phase oracle from a probability oracle. The
probability oracle supplied is Circuit 6.2.6, and this process implements the following function up to accuracy
ε:

1

2
+

1

4

∞∑
t=0

γt
∑

(s,a)∈S×A

P [St = s,At = a] R̃(s, a) =
1

2
+

1− γ
8|R|max

E

[∞∑
t=0

γtR(St, At)

]
=

1

2
+

1− γ
8|R|max

V
(κ(x))
M (s0)

Hence, indeed, the function that was stated in the description of the quantum circuit is indeed implemented
up to accuracy ε, up to δ-norm. This completes the proof.

Note that this circuit is essentially an implementation of Circuit 6.4.10. Hence, with the modifications
provided directly after the introduction of that circuit, we can implement this circuit in a controlled fashion
as well, without changing the oracle query complexity from the one presented in the box above.

Rather than the function EM,s0 ◦ κ, the quantum circuit above implements the following function:

x 7→ 1

2
+

1− γ
8|R|max

(EM,s0 ◦ κ)(x)

This phase oracle, we can now use in Gilyén et al.’s quantum gradient estimation algorithm, Algorithm 4.3.9.
The details are shown in the following box.

148

Algorithm 6.4.12: Gradient estimation of composition of policy evaluation function
Description: Given a Markov decision process M = (S,A, P,R, γ) and a starting state s0 ∈ S, this
algorithm determines the gradient of the function EM,s0 ◦ κ in some point a ∈ Ωη up to ε accuracy in
the `∞-norm.
Parameters:

1. The dimension of the space input, d > 0.
2. The accuracy of the gradient estimate, ε > 0.
3. The discount factor, γ ∈ [1

2 , 1).
4. The point where the gradient is to be evaluated, a ∈ Ωη.
5. The bound on the parameters of the policy, η > 0.
6. An absolute bound on the reward function, |R|max.
7. Orthogonal sets of K-, nS- and nA-qubit states {|x〉 : x ∈ G ⊆ Ω}, {|s〉 : s ∈ S} and {|a〉 : a ∈ A}.

Derived constants:

1. c = 4γ
η(1−γ) , ε′ = γ(1−γ)ε

8|R|max|S||A| , m = dlog(cdε′)e, r = (81·8·42πcmd/ε)−
1

2m

9cmd .

2. S = 2π · 2dlog(4
rε′)e, δ = 1

2000·(12mS+288S(2 ln(m)+2)) , N = d 2 log(3d)
log(3) e.

3. n = dlog
(

4
rε′

)
e+ dlog(3rc)e, δ′ = 1

12S[2m+48·(2 ln(m)+2)]·[12+12 max dlog(1/δ)e,1] .

4. δ1 = δ′

4(12+12 max{dlog(1/δ3)e,1}) , δ2 = δ′

4(12+12 max{dlog(1/δ3)e,1}) , δ3 = δ′

12 .

5. N0 = dmax{2e, log(42
δ1

)}e, T =

⌈
log(ε(1−γ)

2|R|max
)

log(γ)

⌉
.

Oracle circuits: The same ones as in Circuit 6.4.11.
Output: A vector g ∈ Rd such that ‖g −∇(EM,s0 ◦ κ)(a)‖∞ ≤ ε.
Number of qubits: nd+ (dlog(m)e+ n)d+K + 2N0 + T (nS + nA) + 4.
Oracle complexity: The number of times P, R and Π are queried satisfies:

Õ

(
|S|2|A|2|R|max

εη(1− γ)3

)
Success probability: Lower bounded by 7/12.
Algorithm: We use the gradient estimation algorithm, Algorithm 4.3.9, with the following settings:

1. The controlled phase oracle circuit is the fractional phase query circuit, Circuit 4.2.18, run with
the following settings:
(a) The controlled phase oracle circuit is Circuit 6.4.11, implemented in a controlled manner,

with the following settings:
i. The phase is altered by a factor e−i/2, to get rid of the term 1

2 in the description of
Circuit 6.4.11. This can for example be achieved by adding a gate that acts as |j〉 7→
eij/2 |j〉 for all j ∈ {0, 1}, to the control qubit of the controlled phase oracle circuit.

ii. The accuracy parameter of the resulting state is δ1.
iii. The accuracy parameter of the function to evaluate is δ2.
iv. Use the same values for the discount factor γ and the absolute bound on the reward

function |R|max.
(b) The multiplication factor is γ

|S||A| .

(c) The accuracy parameter to the resulting state is δ3.
2. Use the parameters p =∞, σ = 1. Use the same values for c, d, and a, and take for the value of ε

in Algorithm 4.3.9 the value ε′ defined here.

Multiply the output vector by 8|S||A||R|max

γ(1−γ) and return the result.

Proof of the oracle complexity. According to Algorithm 4.3.9 with p =∞ and σ = 1, the number of calls to
the fractional phase query circuit satisfies:

Õ

(
cd

ε′

)
= Õ

(
γ|S|(|A| − 1)|R|max|S||A|

εηγ(1− γ)2

)
= Õ

(
|S|2|A|2|R|max

εη(1− γ)2

)

149

Every fractional phase query queries the phase oracle a number of times that scales only logarithmically in the
input parameters. Moreover, the phase oracle is implemented using only Õ(T) = Õ(1/(1− γ)) applications
of P, R and Π. Hence, their total query complexity becomes:

Õ

(
|S|2|A|2|R|max

εη(1− γ)3

)
This completes the proof.

Proof of the lower bound on the success probability of Algorithm 6.4.12. Note that the probability oracle im-
plements the following function:

x 7→ 1

2
+

1− γ
8|R|max

EM,s0(κ(x))

But the term 1
2 is removed in part (a). Hence, the resulting phase oracle implements the function:

x 7→ 1− γ
8|R|max

EM,s0(κ(x))

And so the fractional phase query implements the following function:

x 7→ γ(1− γ)

8|R|max|S||A|
EM,s0(κ(x))

Thus, if Algorithm 4.3.9 succeeds, then it returns a vector h which differs from the gradient of the above

function evaluated in a by at most ε′ = γ(1−γ)ε
8|R|max|S||A| in the `∞-norm. Hence, the resulting vector g =

8|R|max|S||A|
γ(1−γ) h differs from the gradient of EM,s0 ◦ κ by at most ε in the `∞-norm.

We already observed that EM,s0 ◦κ ∈ G1

S×(A\{a∗}),Ω η
2
,
|S||A||R|max

γ(1−γ)
, 4γ
η(1−γ)

. Hence, using Theorem 4.1.4, we find

that the above function is an element of G1
S×(A\{a∗}),Ω η

2
, 18 ,c

. Moreover, observe, as γ ≥ 1
2 :

r =
(81 · 8 · 42πcmd/ε)−

1
2m

9cmd
≤ 1

9cmd
=
η(1− γ)

36mdγ
≤ η

36md

Hence, the function will be only be evaluated at points in a square lattice with side length η/(36d) around a.
This means that the points x where the function is evaluated satisfy ‖x− a‖1 ≤ η/36 < η/2, and hence
a ∈ Ωη ⇒ x ∈ Ωη/2, which is in the domain of EM,s0 ◦ κ for which the appropriate smoothness bound holds.

Now, observe that the controlled phase oracle circuit, Circuit 6.4.11, is called 12 + 12 max{dlog(1/δ3)e, 1}
times by the fractional phase oracle circuit. Every time it is called, it introduces a norm error of δ1 + δ2, as
the error in the function value can just as well be viewed as a norm error. Hence, the total error introduced
by the fractional phase oracle circuit is, using Lemma B.2:

(12 + 12 max{dlog(1/δ3)e, 1}) · (δ1 + δ2) + 6δ3 =
δ′

4
+
δ′

4
+ 6 · δ

′

12
= δ′

=
1

12S[2m+ 48 · (2 ln(m) + 2)] · [12 + 12 max dlog(1/δ)e, 1]

This fractional phase query is called a total number of S[2m+ 48 · (2 ln(m) + 2)] · [12 + 12 max dlog(1/δ)e, 1]
times. So, the total additive norm error is, again using Lemma B.2:

S[2m+ 48 · (2 ln(m) + 2)] · [12 + 12 max dlog(1/δ)e, 1]

12S[2m+ 48 · (2 ln(m) + 2)] · [12 + 12 max dlog(1/δ)e, 1]
≤ 1

12

150

And hence, using Lemma B.1, we observe that the success probability of Algorithm 4.3.9 is altered by at
most 1

12 , which implies that the success probability is lower bounded by:

2

3
− 1

12
=

7

12

This completes the proof.

Hence, the above quantum algorithm, Algorithm 6.4.12, provides us with a way to estimate the gradient of
the function EM,s0 ◦ κ, up to precision ε in `∞-norm. Moreover, the query complexity is polynomial in the
cardinality of the state and action spaces.

Note that in order for the domain, Ωη, to be non-empty, we must choose η ≤ 1/(|S||A|). Hence, we will
obtain an oracle query complexity that scales at least as follows:

Õ

(
|S|3|A|3|R|max

ε(1− γ)3

)
Recall that at the end of Subsection 6.4.2, we argued that it might be possible to improve the bounds on
the higher-order derivatives of EM,s0 ◦κ. This means that it might be possible to remove the dependence on
η from the above query complexity, and it would also allow for an algorithm that is capable of estimating
the gradient on the entire domain of EM,s0 ◦ κ. Moreover, it would decrease the dependence of the query
complexity of the algorithm on |S| and |A| by one order.

Now that we have a quantum algorithm that estimates the gradient of the function EM,s0 ◦ κ, we can use
this algorithm as a subroutine in a gradient ascent algorithm. The idea is to randomly select a vector x in
Ω0. Next, one can invoke the gradient estimation algorithm, Algorithm 6.4.12, to estimate the direction of
steepest ascent in Ω0, say g ∈ RS×(A\{a∗}). Then, one can adjust x into this direction, i.e., set x := x +αg,
where α is some small parameter, commonly referred to as the learning rate. This procedure can be iterated,
to obtain policies π that yield higher and higher values of M under π.

In every step, though, as x moves one can choose η again. With this approach, whenever x converges closer
to the boundary of the domain Ωη, the number of oracle queries will increase in the gradient estimation step.
On the other hand, one can choose to stay in the domain Ωη, and look for the optimal policy that one can
find by selecting vectors x in this domain.

In addition, one has the option of composing the function EM,s0 ◦ κ with another function, say λ : Φ→ Ωη,
where Φ ⊆ Rd with d ∈ N. Then, one can employ Theorem 6.4.2 to obtain smoothness conditions for
this composite function. For example, one could pick λ to be some neural-network type of function, which
achieves high non-linearity with a sharp decrease in the number of variables, i.e., d. The chances of this
being very beneficial are debatable, though, as neural networks are very convenient for calculating gradients
analytically, but in this algorithm, we substitute the gradient estimation step by a numerical quantum
algorithm anyway. However, it might be that choosing a very specific problem-dependent λ increases the
learning time, but this will have to be investigated separately for the different problems.

Finally, one can combine the algorithm outlined here with other quantum tricks to speed up the search for an
optimal policy. For example, one can use a number of initial policies, and apply the optimization algorithm
in superposition. Then, Grover’s search can be applied to find the optimization procedure that terminated
with the best value of the objective function. This is equivalent to performing a number of random restarts
in a classical setting, say N , but with a query complexity that scales just with

√
N . This technique cannot

be combined with choosing η depending on where the current vector x is located, though.

The theory of the quantum optimization procedure is not quite complete. We already mentioned that it
might be possible to remove the scaling of 1/η from the query complexity of Algorithm 6.4.12. However, it
is also unclear if the resulting dependence is anywhere near optimal. It would be nice to apply the hybrid
method, i.e., Theorem 5.1.7, to the gradient estimation problem of the policy evaluation problem as well,

151

and prove some lower bounds on the query complexity, in the same sense as we proved lower bounds on the
query complexity of the quantum value evaluation algorithm in Subsection 6.2.3. Finding an algorithm that
achieves such a lower bound would be ideal and this would be a very interesting topic of further research.

Furthermore, observe that the gradient estimation procedure provided here uses Algorithm 4.3.9 with the
parameter σ = 1. At the end of Chapter 5, we remarked that we have proven optimality whenever σ ∈ [0, 1/2],
but that it is still an open question whether Algorithm 4.3.9 is optimal in the case σ ∈ (1/2, 1].

If Algorithm 4.3.9 is optimal, then Algorithm 6.4.12 does not provide any speed-up over using Algorithm 6.2.7
in conjunction with some numerical classical gradient estimation technique. However, we might be able to
use the Markov decision process framework to construct example functions that have Gevrey-type 1 and are
difficult to distinguish, such that we can prove optimality of Algorithm 4.3.9. Whether this is feasible is
hard to predict in advance.

On the other hand, if Algorithm 4.3.9 is not optimal for σ = 1, though, we might be able to improve it, and
hence we could improve Algorithm 6.4.12 as well. Using all the ideas from this section, but with a more
efficient gradient estimation subroutine, we could then reduce the query complexity of Algorithm 6.4.12,
such that it scales sublinearly in d. As every classical algorithm scales at least linearly in d, as it has to
do at least d+ 1 function evaluations, we then obtain a provable speed-up over classical algorithms. Hence,
closing the optimality gap portrayed at the end of Chapter 5 remains an important open question in this
field of research.

This concludes our discussion of the quantum policy optimization algorithm. In the following and final
subsection, we will briefly elaborate on some of the settings in which we can apply this algorithm.

6.4.4 Applications

Reinforcement learning has become a very fast-growing field of research in the last decade, especially since the
amount of computational power available has increased and its cost has decreased dramatically. A few major
breakthroughs have been reached recently, most notably the defeat of one of the world-leading Go players,
Lee Sedol, by Google Deep Mind’s program Alpha Go in March 2016 [SSS+17], which was trained using
reinforcement learning techniques, and more recently the defeat of chess engine Stockfish 8 by AlphaZero in
December 2017 [SHS+17]. These results were obtained by making a computer play against itself, and learn
from these games. Here, we show how a similar technique can be employed using the algorithm presented
in the previous section.

Let’s take the game of chess as a running example. We can take the positions on the board as elements in
the state space. As for every piece, it can be either on or off the board, and there are 64 squares on the board
where it can be placed, we can encode the position on the chess board into 32·(log(64)+1) = 32·(6+1) = 224
qubits. We will need to store some extra information as well, e.g., whether castling and taking en passant
is possible, but even taking these things into account, we should be able to encode the elements of the state
space in less than 500 qubits.

The action space consists of moving one of the 32 pieces to one of the 64 squares. Hence, we can simply
store which piece we want to move, i.e., a number between 1 and 32, and to which square we want to move
it. This takes log(32) + log(64) = 5 + 6 = 11 qubits.

We will give a player a reward of 1 if the player makes a move which checkmates the opponent. Otherwise,
the reward will be 0 and we will give a reward of 1

2 to either player when one of the players makes a drawing
move. This way, we will value policies that eventually lead to checkmating the opponent more than those
that don’t, and we will value the policies that lead to drawing the opponent more than those that lead to
defeat.

The idea is to play against a given strategy. Suppose that black plays according to some not necessarily
deterministic strategy, and that we want to optimize white’s strategy. We can do so by applying quantum

152

policy optimization, specifically using the gradient estimation algorithm Algorithm 6.4.12. We can encode
black’s strategy into the input oracle P. Moreover, if white picks an action that corresponds to an illegal
move, we can simply not modify the state, or penalize this by some negative reward.

In principle, we could simply take this algorithm, described in the previous paragraph, and update the vector
x according to the gradients that this gradient estimation algorithm outputs. However, the state and actions
spaces are very large in this case, leading to very large oracle complexities. Below, we will elaborate on some
considerations that aim at decreasing the number of oracle queries.

Observe that the relation between the state and action spaces in chess is somewhat more specific than the
framework that we introduced in Section 6.1. From any arbitrary state, namely, there is only a small section
of the action space that constitutes a legal move. Hence, we can impose extra restrictions on the policy,
enforcing that the probability of selecting any of the illegal moves is 0. The maximum number of legal moves
from any given position appears to be 218.5 If we enforce the policy oracle Π to only select legal moves,
then we can replace |A| by 218 in the query complexity.

Moreover, if we select two states from the state space at random, it is probably not possible to move from
one to the other immediately; if possible at all, it generally takes a lot of moves to do so. Hence, if we
consider the state space to be a directed graph, connected by arcs that correspond to legal moves, then the
degree of the states is far lower than the number of vertices. Of course if the number of legal moves is upper
bounded by 218, then the out-degree is also upper bounded by 218. If we take this into account in the query
complexity analysis, then we can replace the quantity |S| in the query complexity by 218 as well.

We can also use that a chess game can be at most 6000 moves in length. Hence, we can set T = 6000, which
drops one of the 1− γ factors in the denominator of the query complexity. Moreover, we can drop the 1− γ
factor in the denominator of the scaling of the objective function, as the total reward throughout the entire
game cannot exceed 1.

With all of these optimizations, we can significantly reduce the query complexity of the gradient estimation
step. It would be nice to figure out the exact elementary gate complexity for this algorithm. It would
be pretty involved, but it would provide better insight in the number of elementary operations and qubits
necessary to implement Algorithm 6.4.12 in a meaningful setting on a quantum computer.

Finally, once we can optimize white’s strategy, given black’s strategy, we can terminate the optimization
procedure once white wins, say, 90% of its games. Then, we can fix white’s strategy and optimize black’s
strategy, until it wins 90% of its games over white. Determining these percentages can be done using
the policy evaluation algorithm, Algorithm 6.3.1. Iterating this process hopefully yields better and better
strategies for both players6, allowing us to learn to play chess well using a quantum computer.7

The ideas presented here can be used to generate policies for other games as well, like Go. Perhaps it
might be possible to build a proof of concept that learns tic-tac-toe once the first quantum computers with
a reasonable number of qubits are built. In any case, it would be fruitful to figure out how many qubits
and elementary operations are needed to learn the game of tic-tac-toe using the algorithm presented in this
chapter.

As a final note, observe that the hard work in this chapter, was to convert phase oracles to probability oracles
and back, which was invented by Gilyén et al. [GAW17]. In addition, note that by repeated applications of
phase oracles, we can perform addition of phases, and with repeated applications of probability oracles, we
can perform multiplication of amplitudes. As these addition and multiplication operations do not depend on
binary representations of the values that are being added or multiplied, we could refer to these operations

5This has never been formally proven, so it might be that this number must be increased by a few units. This is not
particularly interesting for the discussion here, though.

6It could also be that whenever one of the strategies learns how to beat the other, it forgets the previous things it learned,
hence there might be some trial and error process here in trying to get the quantum computer to actually learn.

7A tiny remark is that it is not necessarily very hard to come up with good initial strategies, as with complete random play,
numerical analysis shows that white and black win about 7% of their games.

153

as “analog operations”. As [GAW17] showed that there is a way to convert between these addition and
multiplication oracles, we can multiply and add in an analog manner, which forms the basic idea of the
gradient estimation algorithm, [GAW17], and also of the algorithm described in this chapter. These methods
of analog computation may have far bigger applications than just these two used in this document, and it
would probably be very fruitful to standardize these kind of conversions into some easy well-documented
circuits.

All in all, the algorithm presented in this section consists of many individual components. Of some of these
components, we have proven optimality, but of others we have not. Hence, there are still a lot of points where
the theory can be improved, but in essence this algorithm shows that it is possible to port reinforcement
learning techniques to a quantum computing setting, and hence that the field of quantum reinforcement
learning might become a very interesting field in the decades to come.

154

7 Conclusion

This report covers two main research directions. The first one concerns solving the gradient estimation
problem with a quantum computer. First of all, the ideas of Gilyén et al.’s gradient estimation algorithm,
[GAW17], are expanded upon. Specifically, the algorithm is extended such that larger function classes, whose
elements satisfy less stringent regularity constraints, can be used as input. Moreover, optimality of Gilyén
et al.’s algorithm has been proven for classes of functions satisfying more stringent regularity constraints,
and for approximating gradients with respect to different `p-norms, where p ∈ [1,∞], rather than just the
`∞-norm.

The main open question in this direction of research is whether the extension of Gilyén et al.’s gradient
estimation algorithm, presented in this document, can be improved upon. Specifically, there remains an
optimality gap when functions whose Gevrey-type is bigger than 1/2, are used as input to the gradient
estimation algorithm. Especially function classes containing functions of Gevrey-type 1 are of special interest,
as they arise naturally in the field of quantum reinforcement learning.

The second research direction investigates how reinforcement learning can be performed on a quantum
computer. It is shown that extensions of Montanaro’s ideas for quantum Monte-Carlo simulation, [Mon15],
in the setting of quantum reinforcement learning are essentially optimal in the query complexity to all
input oracles, giving rise to essentially optimal quantum value estimation and quantum policy evaluation
algorithms. Finally, it is shown how these ideas can be used as subroutines in Gilyén et al.’s quantum
gradient estimation algorithm, to obtain a policy optimization algorithm.

There remain some very important open questions in this direction of research. First of all, the regularity
bounds that are proven on the policy evaluation function are not known to be tight, and it is not known
whether shrinking the domain to exclude the edges is necessary in the proof of these bounds either. Improving
these two results would directly improve the query complexity of the resulting quantum policy optimization
algorithm, such that it is better than using a classical gradient estimation step with the quantum policy
evaluation routine. Hence, it would be interesting to figure out whether such improvements are feasible.

Finally, both the gradient estimation algorithm and the quantum algorithms that are used in quantum
reinforcement learning in some sense rely on techniques that collectively can be referred to as “analog
computation”, as they do not use binary representations of numbers to perform mathematical operations.
As these methods are very general, they have the potential to be applicable in a wide variety of settings,
and hence a very interesting topic of future research would be to find other use cases of these techniques.

155

Bibliography

[AB98] Charalambos D. Aliprantis and Owen Burkinshaw. Principles of real analysis. Acadamic Press,
3rd edition edition, 1998.

[BBBV97] Charles H. Bennet, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weak-
nesses of quantum computing. SIAM journal on computing, 26(5):1510–1523, 1997. arXiv:quant-
ph/9701001.

[Bea97] Robert Beals. Quantum computation of fourier transforms over symmetric groups. Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing, pages 48–53, May 1997.
10.1145/258533.258548.

[BEST96] Adriano Barenco, Artur Ekert, Kalle-Antti Suominen, and Päivi Törmä. Approximate quantum
fourier transform and decoherence. Physical Review A, 54(139), 1996. arXiv:quant-ph/9601018.

[BHMT00] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification
and estimation. Proceedings of 5th Israeli symposium on Theory of Computing and Systems, pages
12–23, May 2000. arXiv:quant-ph/0005055.

[CKS17] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. Quantum linear systems algorithm
with exponentially improved dependence on precision. SIAM Journal on Computing, 46:1920–
1950, 2017. arXiv:1511.02306.

[Cor16] Arjan Cornelissen. Quantum computation - shor’s algorithm, July 2016. Bachelor’s Thesis, Delft
University of Technology repository uuid:79ca8e64-d05e-4d0d-b77b-c72faa885490.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19:297–301, September 1965.

[dB55] Francesco Faà di Bruno. Sullo sviluppo delle funzioni. Annali di Scienze Matematiche e Fisiche,
6:479–480, 1855.

[DB17] Vedran Dunjko and Hans J. Briegel. Machine learning & artificial intelligence in the quantum
domain. September 2017. arXiv:1709.02779.

[DLWT18] Vedran Dunjko, Yi-Kai Liu, Xingyao Wu, and Jacob M. Taylor. Exponential improvements for
quantum-accessible reinforcement learning. August 2018. arXiv:1710.11160.

[Dra00] Thomas G. Draper. Addition on a quantum computer. August 2000. arXiv:quant-ph/0008033.

[DTB16] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. Quantum-enhanced machine learning.
Physical Review Letters, 117, October 2016. arXiv:1610.08251.

[GAW17] András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. Optimizing quantum optimiza-
tion algorithms via faster quantum gradient computation. November 2017. arXiv:1711.00465v2
[quant-ph].

[Gri16] David J. Griffiths. Introduction to Quantum Mechanics. Cambridge University Press, August
2016. 2nd edition.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. Proceedings of 28th
ACM STOC, pages 212–219, May 1996. arXiv:quant-ph/9605043.

[GSLW18] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value trans-
formation and beyond: exponential improvements for quantum matrix arithmetics. June 2018.
arXiv:1806.01838v1 [quant-ph].

156

[Gzy86] Henryk Gzyl. Multidimensional extension of faa di bruno’s formula. Journal of Mathematical
Analysis and Applications, 116(2):450–455, June 1986.

[Haa18] Markus Haase. The Dore Venni theorem. Internet Seminar on Functional Calculus 21
Proceedings, 2018. https://www.math.uni-kiel.de/isem21/en/course/phase1/isem21-2018-02-02-
chapter13.

[Har05] Aram W. Harrow. Applications of coherent classical communication and the Schur transform to
quantum information theory. PhD thesis, Massachusetts Institute of Technology, August 2005.
arXiv:quant-ph/0512255.

[Hoe63] Wassily Hoeffing. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

[Jor] Stephen P. Jordan. Quantum algorithm zoo. http://math.nist.gov/quantum/zoo. Accessed:
August 20th, 2018.

[Jor05] Stephen P. Jordan. Fast quantum algorithm for numerical gradient estimation. Physical Review
Letters, 95:050501, January 2005. arXiv:quant-ph/0405146.

[Kry08] Nikolai W. Krylov. Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. The American
Mathematical Society, August 2008.

[Mon15] Ashley Montanaro. Quantum speedup of monte carlo methods. Proceedings of the Royal Society
of London A, 417(2181), April 2015. arXiv:1504.06987.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[Ng13] Chi-Keung Ng. On genuine infinite algebraic tensor products. Revista Matemática Iberoameri-
cana, 29(1):329–356, January 2013. arXiv:1112.3128 [math.RA].

[Pop35] Tiberiu Popoviciu. Sur les quations algbriques ayant toutes leurs racines relles. Mathematica
(Cluj), 9:129–145, 1935.

[Rya02] Raymond A. Ryan. Introduction to Tensor Products of Banach Spaces. Springer, 2002.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, 2nd edition, 2018. http://incompleteideas.net/book/the-book-2nd.html.

[SHS+17] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Denis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. December 2017. arXiv:1712.01815.

[Sil15] David Silver. Ucl course on rl, 2015. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lil-
licrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis.
Mastering the game of go without human knowledge. Nature, 550:354–359, October 2017.

[Tas13] Steven Taschuk. A short introduction to tensor products of vector spaces, 2013.
www.amotlpaa.org/math/vecten.pdf.

[VBE96] Vlatko Vredal, Adriano Barenco, and Artur Ekert. Quantum networks for elementary arithmetic
operations. Physical Review A, 54:147–153, July 1996. arXiv:quant-ph/9511018.

157

http://math.nist.gov/quantum/zoo

A Mathematical background of tensor products of Hilbert spaces

In this section, we give a rigorous definition of the Hilbert space tensor product. The construction that we
present in this section is quite involved, and will first of all require the introduction of the vector space
tensor product (sometimes also called the algebraic tensor product). It is important to note in advance that
these are two different concepts. Generally, they are both denoted by ⊗, but here, in an attempt to avoid
confusion, we will explicitly differentiate between them. We will denote the vector space tensor product by
⊗V S and we will write ⊗ only whenever we refer to the Hilbert space tensor product.

In this section we explicitly construct the Hilbert space tensor product, because that is the mathematical
concept that we need in the other parts of this text. The construction presented here, though, can be easily
modified to construct, e.g., the Banach space tensor product. At the point where this modification has to
take place, we will hint on how this can be done.

Note that the construction presented here is not the only way in which we can define the Hilbert space
tensor product. Another method considers the Hilbert space dual of the space of bilinear functions. Some
additional references include [Tas13], who elaborates on both ways in the vector space setting, and [Rya02],
who uses a bilinear approach to define the Banach space tensor product.

We kick off the construction of the vector space tensor product with the introduction of the free vector space.

Definition A.1: Free vector space
Let S be a set and F be a field. We define F (S) to be the set of all functions from S to F that have
finite support. That is, if f ∈ F (S), then f : S → F , where |f−1(F \ {0F })| < ∞. Here 0F is the
additive identity element of F .
The addition operation on F (S) adds two functions mapping S to F pointwise. The scalar multiplication
of an element of F (S) with a scalar from F is defined to act pointwise on the function mapping S to F
as well. This turns the free vector space F (S) into a vector space over F .

The attentive reader might note that we did not specifically prove here that F (S) becomes a vector space.
This, however, comes down to simply checking that the vector space axioms are satisfied, which we leave as
an exercise for the reader.

Interestingly, there is a very convenient way to associate all the elements of the set S with elements of the
free vector space F (S). We will refer to this association mapping as the canonical embedding of S in F (S).
Below, we give its definition.

Definition A.2: Canonical embedding in the free vector space
Let S be a set and F a field. We identify every element s ∈ S with the function δs ∈ F (S), defined by:

δs : S → F with δs(t) =

{
1F , s = t

0F , s 6= t

Here, 0F is the additive identity element of F , and 1F is the multiplicative identity element of F . We
refer to the resulting mapping s 7→ δs as the canonical embedding of S in F (S).

So, informally speaking, we identify every element s ∈ S with a Dirac delta function mapping S into F ,
where the peak is located at s.

At this point, it is important to remark that in general free vector spaces are huge. For example, if we were
to consider R(R), this is the set of all functions mapping R to R, which is a space bigger than Rn for any
n ∈ N. Tensor product spaces are much smaller quotient spaces of free vector spaces. Intuitively, one can
think of the tensor product space of two vector spaces as the quotient space of the free vector space of their
Cartesian product in which all the unnecessary degeneracy is removed, effectively reducing the number of
elements. The following definition makes that precise.

158

Definition A.3: Vector space tensor product
Let V and W be vector spaces over a field F . We define a subset D of the free vector space F (V ×W)
such that x ∈ D if and only if at least one of the following conditions is satisfied:

1. There exist v1, v2 ∈ V and w ∈W such that x = δ(v1,w) + δ(v2,w) − δ(v1+v2,w).
2. There exist v ∈ V and w1, w2 ∈W such that x = δ(v,w1) + δ(v,w2) − δ(v,w1+w2).
3. There exist v ∈ V , w ∈W and f ∈ F such that x = fδ(v,w) − δ(fv,w).
4. There exist v ∈ V , w ∈W and f ∈ F such that x = fδ(v,w) − δ(v,fw).

Let N = Span(D) ⊆ F (V ×W). Then, we define the tensor product space of V and W to be quotient
space of F (V ×W) divided by N , i.e.

V ⊗V S W = F (V ×W)/N

Moreover, for any v ∈ V and w ∈ W , we define v ⊗V S w to be the image of δ(v,w) under the quotient
map ξ : F (V ×W)→ F (V ×W)/N . Hence v ⊗V S w ∈ V ⊗V S W . Conversely, we refer to the elements
of V ⊗V S W that can be written as v ⊗V S w, for some vectors v ∈ V and w ∈ W , as simple tensors,
pure tensors, or elementary tensors.

Before we move on to define the Hilbert space tensor product, we will first of all prove some results about
the vector space tensor product.

Theorem A.4: Vector space tensor product properties
Let V and W be vector spaces over some field F . Then, their vector space tensor product space V ⊗V SW
satisfies the following properties.

1. V ⊗V S W is a vector space over F .
2. For all v1, v2 ∈ V and w ∈W , we have v1 ⊗V S w + v2 ⊗V S w = (v1 + v2)⊗V S w.
3. For all v ∈ V and w1, w2 ∈W , we have v ⊗V S w1 + v ⊗V S w2 = v ⊗V S (w1 + w2).
4. For all v ∈ V , w ∈W and f ∈ F , we have f(v ⊗V S w) = (fv)⊗V S w = v ⊗V S (fw).
5. The mapping A×B → A⊗V S B, defined by (a, b) 7→ a⊗V S b is bilinear.

Proof. First, we prove statement 1. To that end, observe that V ⊗V S W is defined as the quotient space of
the free vector space F (V ×W), which is itself a vector space over F . Hence, the vector space structure of
F (V ×W) carries over to V ⊗V S W . This completes the proof of statement 1.

For statement 2, suppose that v1, v2 ∈ V and w ∈ W . Then, we find, by property 1 in Definition A.3, that
δ(v1,w)+δ(v2,w)−δ(v1+v2,w) ∈ N . But trivially 0 ∈ N , and hence the image of δ(v1,w)+δ(v2,w)−δ(v1+v2,w) under
the quotient map is 0 ∈ V⊗V SW . But the quotient map is linear, hence v1⊗V Sw+v2⊗V Sw−(v1+v2)⊗V Sw =
0. Rearranging yields v1 ⊗V S w + v2 ⊗V S w = (v1 + v2)⊗V S w, completing the proof of statement 2.

The proof of property 3 is very similar to the proof of property 2. The only difference is that now one has
to use property 2 of Definition A.3, instead of property 1.

Next, we turn to the proof of property 4. To that end, take v ∈ V , w ∈ W and f ∈ F arbitrarily. Then,
we find that fδ(v,w) − δ(fv,w) ∈ N , by property 3 in Definition A.3. Again using 0 ∈ N and invoking the
linearity of the quotient map, allows us to deduce that f(v⊗V S w)− (fv)⊗V S w = 0. Rearranging yields the
first equality. The second equality can be obtained in a similar manner, but then one has to use property 4
of Definition A.3. This completes the proof of statement 4.

Finally, observe that statements 2, 3 and 4 imply statement 5. This completes the proof.

159

Lemma A.5: Bilinear operators on vector spaces
Let V , W , D and N be as in Definition A.3. Let φ : V → F and ψ : W → F be linear maps. Define
Fφ,ψ to be the linear extension of the following mapping:

Fφ,ψ(δ(v,w)) = φ(v)ψ(w)

Then, any x ∈ N satisfies Fφ,ψ(x) = 0F .

Proof. First of all, suppose that v1, v2 ∈ V and w ∈W . Then, we find:

Fφ,ψ(δ(v1,w) + δ(v2,w) − δ(v1+v2,w)) = Fφ,ψ(δ(v1,w)) + Fφ,ψ(δ(v2,w))− Fφ,ψ(δ(v1+v2,w))

= φ(v1)ψ(w) + φ(v2)ψ(w)− φ(v1 + v2)ψ(w) = [φ(v1 + v2)− φ(v1 + v2)]ψ(w) = 0F

If v ∈ V and w1, w2 ∈W , then we completely analogously check that:

Fφ,ψ(δ(v,w1) + δ(v,w2) − δ(v,w1+w2)) = Fφ,ψ(δ(v,w1)) + Fφ,ψ(δ(v,w2))− Fφ,ψ(δ(v,w1+w2))

= φ(v)ψ(w1) + φ(v)ψ(w2)− φ(v)ψ(w1 + w2) = φ(v)[ψ(w1 + w2)− ψ(w1 + w2)] = 0F

Furthermore, if v ∈ V , w ∈W and f ∈ F , we find:

Fφ,ψ(fδ(v,w)−δ(fv,w)) = Fφ,ψ(fδ(v,w))−Fφ,ψ(δ(fv,w)) = fφ(v)ψ(w)−φ(fv)ψ(w) = [fφ(v)−fφ(v)]ψ(w) = 0F

Similarly, we check:

Fφ,ψ(fδ(v,w)−δ(v,fw)) = Fφ,ψ(fδ(v,w))−Fφ,ψ(δ(v,fw)) = fφ(v)ψ(w)−φ(v)ψ(fw) = φ(v)[fφ(w)−fφ(w)] = 0F

So, we find that for all x ∈ D, we have Fφ,ψ(x) = 0F . By linearity, we find that for all x ∈ N , we have
Fφ,ψ(x) = 0, as required.

Lemma A.6: Additive identity of the vector space tensor product
Let V and W be vector spaces over some field F . Then, v ⊗V S w = 0 if and only if v = 0 or w = 0.

Proof. Let V , W , D and N be as in Definition A.3. First of all, suppose that v = 0. Then, we find, using
property 3 of Definition A.3:

δ(v,w) = δ(0·v,w) − 0δ(v,w) ∈ D ⊆ N
Similarly, suppose that w = 0. Then, we find, using property 4 of Definition A.3:

δ(v,w) = δ(v,0·w) − 0δ(v,w) ∈ D ⊆ N

This proves the “if” part.

For the “only if” part, let δ(v,w) ∈ N . Furthermore, let φ : V → F and ψ : W → F be linear. We find, with
Fφ,ψ as in Lemma A.5:

0F = Fφ,ψ(δ(v,w)) = φ(v)ψ(w) = ψ(φ(v)w)

This holds for all linear functions ψ : W → F . So, we find that φ(v)w = 0. So, either w = 0, or φ(v) = 0F .
But if w = 0, we are done, and if w 6= 0, we find that φ(v) = 0F for all φ : V → F . This implies that v = 0,
and hence we are done too. This completes the proof.

Theorem A.7: Basis of the vector space tensor product space
Let V and W be vector spaces over a field F . Suppose that BV and BW are bases for V and W . Let:

BV⊗V SW = {a⊗V S b : a ∈ BV , b ∈ BW }

Then BV⊗V SW is a basis for V ⊗V S W .

160

Proof. As in the statement of the theorem, suppose that BV and BW are bases of the vector spaces V and
W , respectively. Now, in order to prove that BV⊗V SW is a basis of V ⊗V S W , we will first prove that every
vector in V ⊗V S W can be written as a linear combination of vectors in BV⊗V SW , and secondly that every
finite subset of BV⊗V SW is a set of linearly independent vectors.

So, first of all, we prove that every element in V ⊗V SW can be written as a linear combination of BV⊗V SW .
To that end, take x ∈ V ⊗V S W arbitrarily. Next, take any element y ∈ F (V ×W) in the pre-image of the
element x under the quotient map. Observe that we can write this element y as follows. We can take a finite
sequence of vectors a1, . . . , aN ∈ V and b1, . . . , bN ∈W and a finite sequence of scalars f1, . . . , fN ∈ F , such
that:

y =

N∑
i=1

fiδ(ai,bi) (A.0.1)

Now, take i ∈ {1, . . . , N} arbitrarily. As BV and BW are bases for V and W , respectively, we can find sets
of vectors {v1, . . . , vn} ⊆ BV and {w1, . . . , wm} ⊆ BW and finite sequences of scalars gi1, . . . , gin ∈ F and
hi1, . . . , him ∈ F , such that:

ai =

n∑
j=1

gijvj and bi =

m∑
k=1

hikwk (A.0.2)

Next, we make the following crucial observation. For any vectors v1, v2 ∈ V and w ∈W , we have, according
to property 1 of Definition A.3, the following relation, where ∆ is some element of N :

δ(v1+v2,w) = δ(v1,w) + δ(v2,w) + ∆

Similarly, we can employ the other properties of Definition A.3 to obtain other useful relations of this form.
Moreover, as N , being a linear subspace of F (V ×W), is a vector space in its own right, we can iteratively
apply these relations and merge all the resulting ∆5s into one. Plugging Equation A.0.2 into Equation A.0.1,
and using the described relations, we obtain, for some ∆ ∈ N :

y =

N∑
i=1

fiδ(ai,bi) =

n∑
i=1

fiδ(
∑m
i=1 gijvj ,

∑m
k=1 hikwk)

=

n∑
i=1

n∑
j=1

m∑
k=1

figijhikδ(vj ,wk) + ∆

Now, we can apply the quotient map on both sides. Note that this map is linear, and that it maps all
elements in N to 0. In particular, this means that ∆ vanishes. Thus, we obtain:

x =

n∑
j=1

m∑
k=1

[
N∑
i=1

figijhik

]
(vj ⊗V S wk)

Note that we also changed the order of summation here, to make it apparent that x ∈ Span(BV⊗V SW). Hence,
indeed, we can write every element of V ⊗V SW as a finite linear combination of elements in V ⊗V SW . This
completes the first part of the proof.

Now, it remains to prove that every finite subset B ⊆ BV⊗V SW is a linearly independent subset of V ⊗V SW .
Then, we can find finite subsets {v1, . . . , vn} ⊆ BV and {w1, . . . , wm} ⊆ BW such that B ⊆ {vi ⊗V S wj : i ∈
{1, . . . , n}, j ∈ {1, . . . ,m}} = C. We prove the slightly stronger result that C is linearly independent, which
trivially implies that B is linearly independent as well.

To that end, for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, let λij ∈ F and suppose:

n∑
i=1

m∑
j=1

λij(vi ⊗V S wj) = 0

161

In order to prove that C is linearly independent, we must prove that all λijs are 0. As a first step towards
proving this, we deduce from the definition of V ⊗W :

n∑
i=1

m∑
j=1

λijδ(vi,wj) ∈ N

Now, we apply Lemma A.5. To that end, let φ : V → F and ψ : W → F be linear functions. Then, we find:

Fφ,ψ

 n∑
i=1

m∑
j=1

λijδ(vi,wj)

 = 0

Now, using the linearity of Fφ,ψ and its definition, we obtain:

0 = Fφ,ψ

 n∑
i=1

m∑
j=1

λijδ(vi,wj)

 =

n∑
i=1

n∑
j=1

λijFφ,ψ
(
δ(vi,wj)

)
=

n∑
i=1

m∑
j=1

λijφ(vi)ψ(wj)

But now we can invoke the linearity of ψ to obtain:

0 =

n∑
i=1

m∑
j=1

λijφ(vi)ψ(wj) = ψ

 n∑
i=1

m∑
j=1

λijφ(vi)wj


It is important to remark that the above relation holds for all linear functions ψ : W → F . This implies
that the expression within the parentheses is 0. Hence, after changing the order of summation, we obtain:

m∑
j=1

n∑
i=1

λijφ(vi)wj = 0

But recall that the wj ’s form a subset of BW , and hence they are linearly independent. So, by definition of
linear independence, we find that, for all j ∈ {1, . . . ,m}, we have:

n∑
i=1

λijφ(vi) = 0

This time, we can invoke the linearity property of the mapping φ : V → F , to obtain that for all such linear
mappings φ, we have:

φ

(
n∑
i=1

λijvi

)
= 0

This time, the above holds for all linear functions φ : V → F . So, again we obtain:

n∑
i=1

λijvi = 0

Now, finally, recall that all vi’s are elements of BV , and hence they are linearly independent. Thus, we find
that for all i ∈ {1, . . . , n}, we have λij = 0. Thus, in summary, we have found:

∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m}, λij = 0

This is exactly what we set out to prove. Hence, we find that C is indeed a set of linearly independent
vectors. Thus, we have completed the second part of the proof as well, and can now conclude that BV⊗V SW
is indeed a basis of V ⊗V S W .

162

Now, we are ready to define the Hilbert space tensor product.

Definition A.8: Hilbert space tensor product
Let A and B be Hilbert spaces over a field K, where K ∈ {R,C}. Let 〈·, ·〉A and 〈·, ·〉B be their
corresponding inner products, respectively. On the vector space tensor product A⊗V S B, we now define
the following inner product 〈·, ·〉A⊗V SB , which we define for all a1, a2 ∈ A and b1, b2 ∈ B:

〈a1 ⊗V S b1, a2 ⊗V S b2〉A⊗V SB = 〈a1, a2〉A · 〈b1, b2〉B

and subsequently extend linearly in the second variable, and conjugate-linearly in the first. Next, we
define the Hilbert space tensor product to be the completion of the vector space tensor product A⊗V SB,
with respect to the norm induced by the inner product 〈·, ·〉A⊗V SB . The resulting space we denote by
A⊗B, and the resulting inner product we define as 〈·, ·〉A⊗B . We refer to the resulting Hilbert space as
the Hilbert space tensor product of A and B.

Proof of well-definedness of Definition A.8. At this point, we should check that A⊗B is indeed well-defined.
To that end, we must check whether the inner product that we define here, 〈·, ·〉A⊗V SB , is a well-defined
inner product.

First of all, we will check whether 〈·, ·〉A⊗V SB is a well-defined mapping from A ⊗V S B → K. To that end,
we note that 〈·, ·〉A⊗V SB is defined as the extension of its action on the pure tensors, where its action on the
second variable is extended linearly, and its action on the first variable is extended conjugate linearly. So,
suppose that:

I∑
i=1

ei(pi ⊗V S qi) =

J∑
j=1

fj(rj ⊗V S sj) and

K∑
k=1

gk(tk ⊗V S uk) =

L∑
`=1

h`(v` ⊗V S w`)

for some finite sequences

(ei)
I
i=1, (fj)

L
j=1, (gk)Kk=1, (h`)

L
`=1 in K, (pi)

I
i=1, (rj)

J
j=1, (tk)Kk=1, (v`)

L
`=1 in A,

and (qi)
I
i=1, (sj)

J
j=1, (uk)Kk=1, (w`)

L
`=1 in B

Now, we make the following observations. We have:

I∑
i=1

eiδ(pi,qi) −
J∑
j=1

fjδ(rj ,sj) ∈ N

Moreover, let k ∈ {1, . . . ,K}. Then, we find that the following maps are linear (note that if K = R, the
conjugation is redundant):

φ : a 7→ 〈a, tk〉A and ψ : b 7→ 〈b, uk〉B
So, we obtain, by Lemma A.5:

Fφ,ψ

 I∑
i=1

eiδ(pi,qi) −
J∑
j=1

fjδ(rj ,sj)

 = 0

Thus, writing out the definitions, we obtain:

I∑
i=1

ei〈pi, tk〉A〈qi, uk〉B =

J∑
j=1

fj〈rj , tk〉A〈sj , uk〉B

So, we find, taking the complex conjugate on both sides:

I∑
i=1

ei〈pi ⊗V S qi, tk ⊗V S uk〉A⊗V SB =

J∑
j=1

fj〈rj ⊗V S sj , tk ⊗V S uk〉A⊗V SB

163

We could have also taken ` ∈ {1, . . . , L} to obtain:

I∑
i=1

ei〈pi ⊗V S qi, t` ⊗V S u`〉A⊗V SB =

J∑
j=1

fj〈rj ⊗V S sj , t` ⊗V S u`〉A⊗V SB

Similarly, we have that:
K∑
k=1

gkδ(tk,uk) −
L∑
`=1

h`δ(v`,w`) ∈ N

and this implies, using the same argument as before, that for all i ∈ {1, . . . , I}:

K∑
k=1

gk〈pi ⊗V S qi, tk ⊗V S uk〉A⊗V SB =

L∑
`=1

h`〈pi ⊗V S qi, v` ⊗V S w`〉A⊗V SB

Putting everything together, we obtain:

I∑
i=1

K∑
k=1

eigk〈pi ⊗V S qi, tk ⊗V S uk〉A⊗V SB =
J∑
j=1

K∑
k=1

fjgk〈rj ⊗V S sj , tk ⊗V S uk〉A⊗V SB

=

I∑
i=1

L∑
`=1

eih`〈pi ⊗V S qi, v` ⊗V S w`〉A⊗V SB =

J∑
j=1

L∑
`=1

fjh`〈rj ⊗V S sj , v` ⊗V S w`〉A⊗V SB

Hence, we now obtain the last vertical equality for free. Thus the mapping we defined is indeed linear in
the second variable and conjugate linear in the first one. Hence, the mapping 〈·, ·〉A⊗V SB is well-defined,
without any ambiguity.

Now, it remains to check that this mapping 〈·, ·〉A⊗V SB is indeed an inner product. This is not very hard,
though, as we have the linearity in the first variable and the conjugate linearity by construction. The
conjugate symmetry carries over directly from the inner products that we used to define this new inner
product. Moreover, we also get immediately from the definition that 〈x, x〉A⊗V SB ≥ 0 for all x ∈ A⊗V S B.
So, all that is left is to check that 〈x, x〉A⊗V SB = 0⇔ x = 0. The direction to the left follows directly from
e.g. the linearity in the second variable (and the well-definedness). The direction to the right is also obvious,
once we take the result of Lemma A.6 into account. This completes the proof of the well-definedness of
A⊗B.

Now that we know that A⊗B is well-defined, let’s prove some of its properties.

Theorem A.9: Properties of the Hilbert space tensor product space
Let A and B be Hilbert spaces over K ∈ {R,C}. Then, we find:

1. A⊗B is a Hilbert space.
2. For all a ∈ A and b ∈ B, we have ‖a⊗ b‖A⊗B = ‖a‖A · ‖b‖B .
3. The map A×B → A⊗B, given by (a, b) 7→ a⊗ b is jointly continuous.
4. For all a1, a2 ∈ A and b ∈ B, we have a1 ⊗ b+ a2 ⊗ b = (a1 + a2)⊗ b.
5. For all a ∈ A and b1, b2 ∈ B, we have a⊗ b1 + a⊗ b2 = a⊗ (b1 + b2).
6. For all a ∈ A, b ∈ B and k ∈ K, we have k(a⊗ b) = (ka)⊗ b = a⊗ (kb).
7. The map A×B → A⊗B, given by (a, b) 7→ a⊗ b is bilinear.
8. Let BA and BB be orthonormal bases of A and B, respectively. Then, BA⊗B = {a⊗ b : a ∈ BA, b ∈
BB} is an orthonormal basis of A⊗B.

9. dim(A⊗B) = dim(A) dim(B).

164

Proof. Statement 1 is true by construction. For statement 2, take a ∈ A and b ∈ B arbitrarily. We find:

‖a⊗ b‖2A⊗B = 〈a⊗ b, a⊗ b〉A⊗B = 〈a, a〉A · 〈b, b〉B = ‖a‖2A · ‖b‖
2
B

This proves statement 2. Statement 3 follows trivially from 2. Statements 4 through 7 all directly follow
from Theorem A.4. Statement 8 follows directly from Theorem A.7. Statement 9 follows directly from 8.

As A⊗B is again a Hilbert space, of course we could tensor it again with another Hilbert space C, to obtain
the composite tensor product space (A ⊗ B) ⊗ C. But we could of course also first tensor B ⊗ C and then
tensor it with A to obtain A⊗ (B ⊗C). As these spaces are not equal as sets, they are not equal as Hilbert
spaces. However, they are isomorphic, as we prove in the following theorem.

Theorem A.10: Associative isomorphism of Hilbert space tensor product spaces
Let A, B and C be Hilbert spaces over K ∈ {R,C}. Then (A⊗B)⊗ C ' A⊗ (B ⊗ C).

Proof. We define ψ : (A⊗B)⊗C → A⊗ (B⊗C) by the linear extension of its action on the simple tensors:

ψ : (a⊗ b)⊗ c 7→ a⊗ (b⊗ c)

This map is well-defined and obviously linear. Moreover, it preserves the inner product, as:

〈(a1 ⊗ b1)⊗ c1, (a2 ⊗ b2)⊗ c2〉(A⊗B)⊗C = 〈a1, a2〉A · 〈b1, b2〉B · 〈c1, c2〉C
= 〈a1 ⊗ (b1 ⊗ c1), a2 ⊗ (b2 ⊗ c2)〉A⊗(B⊗C) = 〈ψ((a1 ⊗ b1)⊗ c1), ψ((a2 ⊗ b2)⊗ c2)〉A⊗(B⊗C)

Thus, we have explicitly constructed an isomorphism between (A⊗B)⊗ C and A⊗ (B ⊗ C), proving that
they are isomorphic.

Now that we know that A⊗ (B⊗C) and (A⊗B)⊗C are isomorphic, we can identify them with each other.
In principle, namely, as an artifact of our construction, the tensors (a⊗ b)⊗ c and a⊗ (b⊗ c) are not equal,
and neither are the tensor product spaces in which they live, (A⊗B)⊗C and A⊗ (B⊗C). These spaces are
isomorphic, though, and the explicit isomorphism is given by (a⊗ b)⊗ c 7→ a⊗ (b⊗ c). So, we can identify
the spaces (A⊗B)⊗ C and A⊗ (B ⊗ C) with each other, and simply drop the parentheses to obtain:

(A⊗B)⊗ C = A⊗B ⊗ C = A⊗ (B ⊗ C)

Similarly, we will identify the tensors (a⊗ b)⊗ c and a⊗ (b⊗ c) with each other and again we will drop the
parentheses. So, we write:

(a⊗ b)⊗ c = a⊗ b⊗ c = a⊗ (b⊗ c)

Similarly, we can write a⊗ b⊗ c⊗ d for a⊗ (b⊗ c⊗ d) and (a⊗ b⊗ c)⊗ d. Continuing in this manner, we
obtain arbitrary finite tensor products, a1 ⊗ · · · ⊗ an.

165

B Error-propagation lemmas

Throughout this document, we use little arguments to bound the propagation of errors in norms and proba-
bilities. We included the arguments here for convenience. Note that they are special cases of more well-known
theorems, but we don’t need the more general theorems anywhere in this document.

We start with how an error in norm of a quantum state influences the probability distribution of a measure-
ment. We phrase it in terms of n-qubit states, but the result holds in a more general setting as well, where
the quantum system is not necessarily made up of qubits.

Lemma B.1: Relation between the probability distribution and the norm error
Let ε > 0 and δ ∈ (0, 1). Suppose that we have two n-qubit states, |ψ〉 and |φ〉, with ‖|ψ〉 − |φ〉‖ ≤ ε.
Moreover, suppose that if we measure |ψ〉 in the computational basis, then the probability of obtaining
an outcome in the set A ⊆ {0, 1}n is lower bounded by δ. Then the probability of obtaining an outcome
in the set A by measuring |φ〉 in the computational basis is lower bounded by δ − ε.

Proof. We define, for all a ∈ {0, 1}n, the following constants:

ψa = 〈a|ψ〉 and φa = 〈a|φ〉

Then, we find, as the states |ψ〉 and |φ〉 are normalized:∑
a∈{0,1}n

|ψa|2 =
∑

a∈{0,1}n
|φa|2 = 1

And so: ∑
a∈{0,1}n\A

|ψa|2 −
∑

a∈{0,1}n\A

|φa|2 =
∑

a∈{0,1}n
|ψa|2 −

∑
a∈A
|ψa|2 −

∑
a∈{0,1}n

|φa|2 +
∑
a∈A
|φa|2

= 1−
∑
a∈A
|ψa|2 − 1 +

∑
a∈A
|φa|2 =

∑
a∈A
|φa|2 −

∑
a∈A
|ψa|2

We can use the above relation in the following way:∣∣∣∣∣∑
a∈A
|ψa|2 −

∑
a∈A
|φa|2

∣∣∣∣∣ =
1

2

∣∣∣∣∣∑
a∈A
|ψa|2 −

∑
a∈A
|φa|2

∣∣∣∣∣+
1

2

∣∣∣∣∣∑
a∈A
|ψa|2 −

∑
a∈A
|φa|2

∣∣∣∣∣
=

1

2

∣∣∣∣∣∑
a∈A
|ψa|2 −

∑
a∈A
|φa|2

∣∣∣∣∣+
1

2

∣∣∣∣∣∣
∑

a∈{0,1}n\A

|ψa|2 −
∑

a∈{0,1}n\A

|φa|2
∣∣∣∣∣∣

≤ 1

2

∑
a∈{0,1}n

∣∣|ψa|2 − |φa|2∣∣ =
1

2

∑
a∈{0,1}n

| |ψa| − |φa| | · | |ψa|+ |φa| |

Now, we can employ the reversed triangle inequality, Cauchy-Schwarz and the triangle inequality to obtain:∣∣∣∣∣∑
a∈A
|ψa|2 −

∑
a∈A
|φa|2

∣∣∣∣∣ ≤ 1

2

∑
a∈{0,1}n

|ψa − φa| · (|ψa|+ |φa|)

≤ 1

2

√ ∑
a∈{0,1}n

|ψa − φa|2 ·
√ ∑
a∈{0,1}n

(|ψa|+ |φa|)2

≤ 1

2
‖|ψ〉 − |ψ〉‖ ·

√ ∑
a∈{0,1}n

|ψa|2 +

√ ∑
a∈{0,1}n

|φa|2


≤ 1

2
· ε · [‖|ψ〉‖+ ‖|φ〉‖] =

1

2
· ε · 2 = ε

166

And so, we find: ∑
a∈A
| 〈a|φ〉 |2 ≥

∑
a∈A
| 〈a|ψ〉 |2 −

∣∣∣∣∣∑
a∈A
|ψa|2 −

∑
a∈A
|φa|2

∣∣∣∣∣ ≥ δ − ε
This completes the proof.

The next statement is a very simple corollary of the triangle inequality.

Lemma B.2: Error-propagation of multiple consecutive errors
Let δ1, δ2 ≥ 0. Suppose that |ψ〉 and |φ〉 are quantum states, and that U and V are unitary that act
on the state space of which |ψ〉 and |φ〉 are members. Moreover, suppose that we have the following
properties:

‖|ψ〉 − |φ〉‖ ≤ δ1 and ‖U − V ‖ ≤ δ2
Then we have:

‖U |ψ〉 − V |φ〉‖ ≤ δ1 + δ2

Hence, consecutive errors accumulate in an additive manner.

Proof. The result follows easily from the triangle inequality:

‖U |ψ〉 − V |φ〉‖ = ‖U |ψ〉 − V |ψ〉+ V |ψ〉 − U |φ〉‖ ≤ ‖(U − V) |ψ〉‖+ ‖V (|ψ〉 − |φ〉)‖
≤ ‖U − V ‖ ‖|ψ〉‖+ ‖V ‖ ‖|ψ〉 − |φ〉‖ ≤ δ2 · 1 + 1 · δ1 = δ1 + δ2

This completes the proof.

167

C Hybrid method

In Chapter 5, we make use of the hybrid method. As this is a very general result in quantum computing,
whose proof is unrelated to the problem of gradient estimation, we prove the validity of this method in this
appendix.

The method was first introduced in [BBBV97]. Subsequently, the method has been generalized, and the
approach taken here follows the one given in [GAW17], but we highlight a few more details.

First of all, we will provide the proof of a version of the principle of deferred measurement, in Section C.1.
Afterwards, we will prove the main result that we need in the main body of this text, namely the hybrid
method, in Section C.2.

C.1 Principle of deferred measurement

The principle of deferred measurement is a result that shows that for every quantum algorithm, we can
construct an algorithm with equal success probability, which only prescribes measurements after all quantum
circuits have been executed. In order to prove this result, we first of all prove a lemma, Lemma C.1.1, which
provides the induction step of the main result, Theorem C.1.2.

In the lemma below, we use the following shorthand notation, where U is an arbitrary unitary operator
acting on n qubits:

n
U

= n
X

U

X

Recall that in Section 3.3, we introduced the controlled version of U , denoted by C(U), which was denoted
as follows:

n C(U) = n
U

and recall that the action of C(U) was as follows:

C(U) = I⊗n2 ⊗ |0〉〈0|+ U ⊗ |1〉〈1|

i.e., if the state of the first qubit is |1〉, the operator U is applied to the lower n qubits, and if the state of
the first qubit is |0〉, then it acts as the identity.

Now, we are ready to present the lemma, which we do below.

168

Lemma C.1.1: Principle of deferred measurement - induction step
Suppose that we have a quantum algorithm, acting on n+ 1 qubits with n ∈ N, which makes queries to
an oracle O′ acting on m ≤ n qubits. We denote:

O = O′ ⊗ I⊗(n−m)
2

and hence, O acts on n qubits. Suppose now that the quantum algorithm performs one intermediate
measurement of the (n + 1)st qubit in the computational basis, and bases the circuit that is applied
after the measurement on the outcome of the measurement. Without loss of generality, we can say that

it starts in the state |0〉⊗(n+1)
, and first executes the circuits U1 through UK , alternating with O ⊗ I2

before the measurement. Then, if the measurement returned 0, we can similarly say without loss of
generality that it applies the circuits V1 through VL, alternating with O, and otherwise it applies W1

through WM , alternating with O, to the remaining n qubits, before measuring them. We can graphically
depict this algorithm as follows:

b

n

U1
O O

UK|0〉⊗(n+1)

a
n

V1 O O VL

a
n

W1 O O WM

b = 0

b = 1

Then, assuming that L ≥M , the following algorithm, using 2n+1 qubits, has the same query complexity
of O and the outcomes of the measurements have the same probability distribution:

b

a
n

n

U1
O O

UK
V1 W1 O O VM WM O VM+1 O O VL

|0〉⊗(2n+1)

If M ≥ L, one can do a similar construction. If M = L, we do not need any auxiliary qubits at all. If
we have access to a controlled version of O, we only have to add the number of auxiliary qubits required
to implement this controlled oracle query.

Proof. First of all, we prove that we can without loss of generality assume that the oracle O′ acts on the
first m qubits. If it does not, then we can always conjugate the oracle with some appropriate SWAP-gates,
i.e., directly precede and succeed it with appropriate SWAP-gates, such that it can be applied to the first m
qubits. If we now summarize all unitary operations that are being performed in between the oracle queries
into one unitary operation, then we obtain the form UK(O ⊗ I2) · · · (O ⊗ I2)U1. Finally, we can absorb a

circuit setting up the initial state from |0〉⊗(n+1)
in U1, which completes the proof of the first claim in the

theorem.

Next, we prove that the probability distributions of the measurements are equal for both algorithms. To
that end, we first of all focus on the first circuit. Let |ψ〉 be the state prior to the intermediate measurement.
Then, we find:

|ψ〉 = UK(O ⊗ I2) · · · (O ⊗ I2)U1 |0〉⊗(n+1)

Thus, we obtain the following probability distribution of the outcomes of the intermediate measurement:

P[b = 0] =
∥∥(I⊗n2 ⊗ |0〉〈0|

)
|ψ〉
∥∥2

and P[b = 1] =
∥∥(I⊗n2 ⊗ |1〉〈1|

)
|ψ〉
∥∥2

Moreover, given the value of b, the initial state for the next part of the algorithm, denoted by
∣∣ψ(b)

〉
is:∣∣∣ψ(b)

〉
=

(
I⊗n2 ⊗ |b〉〈b|

)
|ψ〉∥∥(I⊗n2 ⊗ |b〉〈b|
)
|ψ〉
∥∥

169

And hence, we find that the state before the final measurement, given the value of b, which we denote by∣∣∣ψ(b)
f

〉
, is given by:

∣∣∣ψ(b)
f

〉
=


(VL⊗I2)(O⊗I2)···(O⊗I2)(V1⊗I2)(I⊗n2 ⊗|0〉〈0|)|ψ〉

‖(I⊗n2 ⊗|0〉〈0|)|ψ〉‖ , if b = 0

(WM⊗I2)(O⊗I2)···(O⊗I2)(W1⊗I2)(I⊗n2 ⊗|1〉〈1|)|ψ〉
‖(I⊗n2 ⊗|1〉〈1|)|ψ〉‖ , if b = 1

=


((VLO···OV1)⊗|0〉〈0|)|ψ〉
‖(I⊗n2 ⊗|0〉〈0|)|ψ〉‖ , if b = 0

((WMO···OW1)⊗|1〉〈1|)|ψ〉
‖(I⊗n2 ⊗|1〉〈1|)|ψ〉‖ , if b = 1

And so, the probability of measuring some output a0 ∈ {0, . . . , 2n − 1}, given some value for b, can be
calculated as follows:

P [a = a0 | b] =
∥∥∥(|a0〉〈a0| ⊗ I2)

∣∣∣ψ(b)
f

〉∥∥∥2

=


‖(|a0〉〈a0|⊗|0〉〈0|)((VLO···OV1)⊗I2)|ψ〉‖2

‖(I⊗n2 ⊗|0〉〈0|)|ψ〉‖2 , if b = 0

‖(|a0〉〈a0|⊗|1〉〈1|)((WMO···OW1)⊗I2)|ψ〉‖2

‖(I⊗n2 ⊗|1〉〈1|)|ψ〉‖2 , if b = 1

Hence, we can write down our final probability distribution as:

P[a, b] = P[a|b]P[b] =

{
‖(|a〉〈a| ⊗ |0〉〈0|)((VLO · · ·OV1)⊗ I2) |ψ〉‖2 , if b = 0

‖(|a〉〈a| ⊗ |1〉〈1|)((WMO · · ·OW1)⊗ I2) |ψ〉‖2 , if b = 1

Now, we have to check that the probability distribution of the measurement outcomes of the second algorithm
is equal to the one of the first algorithm. To that end, we track the state through the second algorithm.
Again, we have that after the application of the circuit UK , the state of the system is:

(UK ⊗ I⊗n2)(O ⊗ I⊗(n+1)
2) · · · (O ⊗ I⊗(n+1)

2)(U1 ⊗ I⊗n2) |0〉⊗(2n+1)
= |ψ〉 ⊗ |0〉⊗n

We rewrite |ψ〉 as follows:

|ψ〉 = ((I⊗n2 ⊗ 〈0|) |ψ〉)⊗ |0〉+ ((I⊗n2 ⊗ 〈1|) |ψ〉)⊗ |1〉 = |ψ0〉 ⊗ |0〉+ |ψ1〉 ⊗ |1〉

where |ψb〉 = (I⊗n2 ⊗〈b|) |ψ〉 are not necessarily normalized, but we do have ‖|ψ0〉‖2 + ‖|ψ1〉‖2 = 1. Now, the
application of V1 controlled on the (n+ 1)st qubit being in state |0〉 brings the system in the following state:

[(V1 |ψ0〉)⊗ |0〉+ |ψ1〉 ⊗ |1〉]⊗ |0〉⊗n

Afterwards, we apply the circuit W1 controlled on the (n+ 1)st qubit being in the state |1〉. This yields the
following state of the system:

[(V1 |ψ0〉)⊗ |0〉+ (W1 |ψ1〉)⊗ |1〉]⊗ |0〉⊗n

Next, we apply O to the first n qubits. Hence, we obtain the following state of the system:

[(OV1 |ψ0〉)⊗ |0〉+ (OW1 |ψ1〉)⊗ |1〉]⊗ |0〉⊗n

Iterating this procedure, we find that after the application of the controlled version of WM , we have:

[(VMO · · ·OV1 |ψ0〉)⊗ |0〉+ (WMO · · ·OW1 |ψ1〉)⊗ |1〉]⊗ |0〉⊗n

Now, we implement the controlled SWAP, which yields the following state:

(VMO · · ·OV1 |ψ0〉)⊗ |0〉 ⊗ |0〉⊗n + |0〉⊗n ⊗ |1〉 ⊗ (WMO · · ·OW1 |ψ1〉)

Now, the remaining applications of the oracle O and the circuits VM+1, . . . , VL yield the following state:

(VLO · · ·OV1 |ψ0〉)⊗ |0〉 ⊗ |0〉⊗n + (VLO · · ·VM+1O |0〉⊗n)⊗ |1〉 ⊗ (WMO · · ·OW1 |ψ1〉)

170

And finally, the remaining controlled SWAP brings the system into the final state before measurement:

(VLO · · ·OV1 |ψ0〉)⊗ |0〉 ⊗ |0〉⊗n + (WMO · · ·OW1 |ψ1〉)⊗ |1〉 ⊗ (VLO · · ·VM+1O |0〉⊗n)

So, we obtain:

P [a, b] =
∥∥(|a〉〈a| ⊗ |b〉〈b| ⊗ I⊗n2) |ψf 〉

∥∥2
=

{
‖|a〉〈a|VLO · · ·OV1 |ψ0〉‖2 , if b = 0

‖|a〉〈a|WMO · · ·OW1 |ψ1〉‖2 , if b = 1

Substituting back for |ψ0〉 and |ψ1〉, we obtain:

P [a, b] =

{
‖(|a〉〈a| ⊗ |0〉〈0|)((VLO · · ·OV1)⊗ I2) |ψ〉‖2 , if b = 0

‖(|a〉〈a| ⊗ |1〉〈1|)((WMO · · ·OW1)⊗ I2) |ψ〉‖2 , if b = 1

Hence, we obtain that both probabilities are equal, which completes the second part of the proof.

If M ≥ L, the construction can very easily be modified, in several ways. We could perform the SWAP
operation controlled on the (n + 1)st qubit being in the state |0〉 instead of |1〉, and replace the circuits Vj
between the controlled SWAP’s with Wj ’s. Or, we could apply X-gates to the (n + 1)st qubit after the
circuit UK and just before the final measurement, and reverse the roles of V and W in between these two
X-gates.

If M = L, we can see from the above constructions that the two SWAP-operations are executed directly
after each other, rendering them redundant. Hence, we can simply remove them, removing the need for the
n auxiliary qubits as well.

Finally, if we have access to a controlled version of O, there is no need to use the SWAP-gates, because we
can simply execute all the final circuits Vj and oracle calls O controlled on the (n+ 1)st qubit being in state
|0〉. This completes the proof.

Theorem C.1.2: Principle of deferred measurement
Suppose that we have a quantum algorithm which queries an oracle O, and which performs intermediate
measurements. Then, we can construct a quantum algorithm with equal success probability, with the
same worst-case query complexity to O, and without any intermediate measurements.

Proof. First of all, we start with the last intermediate measurement. We can move it all the way to the
end using the construction used in Lemma C.1.1. Then, we have a new quantum algorithm, with 1 fewer
intermediate measurements. This procedure, we can repeat until there are no intermediate measurements
left. Moreover, the probabilities of the final measurements equal the ones of the original algorithm, as proven
in Lemma C.1.1, and hence the success probability of the algorithm is left unchanged. This completes the
proof.

Note that the construction presented in Lemma C.1.1 essentially doubles the number of qubits necessary to
run the algorithm, every time an intermediate measurement is removed. So, intermediate measurements can
still be very beneficial in keeping the number of qubits required small, but the point of this section is that
it can never be used to reduce the number of queries necessary to an oracle circuit.

C.2 Hybrid method

Now that we have introduced the principle of deferred measurement, we can use it to prove the hybrid
method. This is what we do below.

171

Theorem C.2.1: Hybrid method
Suppose that O0, O1, . . . , ON are unitary operators acting on the n-qubit state space. Let A be a
quantum algorithm whose input consists of one of the oracles Oj , with j ∈ {0, 1, . . . , N}. For all
j ∈ {1, . . . , N}, let Rj , R

∗
j be sets of outcomes of the algorithm A such that Rj ∩R∗j = ∅. Suppose that

for all j ∈ {1, . . . , N}, we have:

P(A(Oj) ∈ Rj) ≥
2

3
and P(A(O0) ∈ R∗j) ≥

2

3

Then the worst case query complexity of A to the input oracle, denoted by TA, satisfies:

N

9
≤ T 2

A · sup
|ψ〉∈C2n+1

‖|ψ〉‖=1

N∑
j=1

‖(Oj −O0) |ψ〉‖2

Proof. Using Theorem C.1.2, without loss of generality we can assume that A consists of one quantum circuit,
acting on say m ∈ N qubits, a measurement in the computational basis, and a classical post-processing step.
Without loss of generality, we can also assume that the oracle circuit supplied to the algorithm, which we refer
to as O, is only applied to the first n qubits, because we can conjugate it with appropriate SWAP-circuits
to move it to the first n qubits if necessary. Hence, we can write the action of this circuit as:

UTA(O ⊗ I⊗(m−n)
2)UTA−1 · · ·U1(O ⊗ I⊗(m−n)

2)U0

where U0, U1, . . . , UTA are quantum circuits acting on m qubits that do not query the oracle circuit O.

Suppose that the initial state of the algorithm is |ψ〉 ∈ C2n . For all j ∈ {0, . . . , N}, we define the shorthand

notation O′j = Oj ⊗ I⊗(m−n)
2 , and we define the final states prior to measurement of the algorithm:

|ψj〉 = UTAO
′
jUTA−1 · · ·U1O

′
jU0 |ψ〉

Moreover, for all j ∈ {1, . . . , N}, let Aj be the random variable that has the probability distribution of
the outcome of the final measurement, when the input is the oracle circuit Oj . Note that we have, for all
j ∈ {1, . . . , N}:

P
(
A(O0) ∈ R∗j

)
≥ 2

3
, P (A(Oj) ∈ Rj) ≥

2

3
and Rj ∩R∗j = ∅

Hence, there are corresponding sets S∗j and Sj which are subsets of the space of possible outcomes of the
final measurement, such that:

P
(
A0 ∈ S∗j

)
≥ 2

3
, P (Aj ∈ Sj) ≥

2

3
and Sj ∩ S∗j = ∅

In other words, we obtain:

P
(
A0 ∈ S∗j

)
=
∥∥∥projS∗j |ψ0〉

∥∥∥2

≥ 2

3
and P (Aj ∈ Sj) =

∥∥∥projSj |ψj〉
∥∥∥2

≥ 2

3

And so, as S∗j and Sj are disjoint:

‖|ψj〉 − |ψ0〉‖2 ≥
∥∥∥(projS∗j + projSj

)
(|ψj〉 − |ψ0〉)

∥∥∥2

=
∥∥∥projS∗j (|ψj〉 − |ψ0〉)

∥∥∥2

+
∥∥∥projSj (|ψj〉 − |ψ0〉)

∥∥∥2

≥
(∥∥∥projS∗j |ψ0〉

∥∥∥− ∥∥∥projS∗j |ψj〉
∥∥∥)2

+
(∥∥∥projSj |ψj〉

∥∥∥− ∥∥∥projSj |ψ0〉
∥∥∥)2

≥

(√
2

3
−
√

1

3

)2

+

(√
2

3
−
√

1

3

)2

= 2

(
2

3
+

1

3
− 2 ·

√
2

3

)
= 2− 4

√
2

3
>

1

9

172

On the other hand, we define for all j ∈ {0, . . . , N} and t ∈ {0, 1, . . . , TA}:∣∣∣ψ(t)
j

〉
= UtO

′
jUt−1 · · ·U1O

′
jU0 |ψ〉

We find, for all j ∈ {1, . . . , N}: ∥∥∥∣∣∣ψ(0)
j

〉
−
∣∣∣ψ(0)

0

〉∥∥∥ = ‖U0 |ψ〉 − U0 |ψ〉‖ = 0

Moreover, for all j ∈ {1, . . . , N} and t ∈ {1, . . . , TA}, we find using the triangle inequality:∥∥∥∣∣∣ψ(t)
j

〉
−
∣∣∣ψ(t)

0

〉∥∥∥ =
∥∥∥UtO′j ∣∣∣ψ(t−1)

j

〉
− UtO′0

∣∣∣ψ(t−1)
0

〉∥∥∥ =
∥∥∥O′j ∣∣∣ψ(t−1)

j

〉
−O′0

∣∣∣ψ(t−1)
0

〉∥∥∥
=
∥∥∥O′j (∣∣∣ψ(t−1)

j

〉
−
∣∣∣ψ(t−1)

0

〉)
+
(
O′j −O′0

) ∣∣∣ψ(t−1)
0

〉∥∥∥
≤
∥∥∥O′j (∣∣∣ψ(t−1)

j

〉
−
∣∣∣ψ(t−1)

0

〉)∥∥∥+
∥∥∥(O′j −O′0) ∣∣∣ψ(t−1)

0

〉∥∥∥
=
∥∥∥∣∣∣ψ(t−1)

j

〉
−
∣∣∣ψ(t−1)

0

〉∥∥∥+
∥∥∥(O′j −O′0) ∣∣∣ψ(t−1)

0

〉∥∥∥
Hence, by induction, we obtain:

‖|ψj〉 − |ψ0〉‖ ≤
TA∑
t=1

∥∥∥(O′j −O′0) ∣∣∣ψ(t−1)
0

〉∥∥∥
Squaring on both sides and using Cauchy-Schwarz’s inequality yields:

1

9
≤ ‖|ψj〉 − |ψ0〉‖2 ≤

(
TA∑
t=1

∥∥∥(O′j −O′0) ∣∣∣ψ(t−1)
j

〉∥∥∥)2

≤ TA ·
TA∑
t=1

∥∥∥(O′j −O′0)
∣∣∣ψ(t−1)
j

〉∥∥∥2

This holds for all j ∈ {1, . . . , N}, and hence we can sum the above expression over j. This implies:

N

9
≤ TA

TA∑
t=1

N∑
j=1

∥∥∥(O′j −O′0) ∣∣∣ψ(t−1)
j

〉∥∥∥2

≤ T 2
A sup
|ψ〉∈C2m

‖|ψ〉‖=1

N∑
j=1

∥∥(O′j −O′0) |ψ〉∥∥2

Finally, let’s take |ψ〉 ∈ C2m arbitrarily. Using the Schmidt decomposition, we can find some M ∈ N, (αk)Mk=1

in C and orthonormal vectors (|φk〉)Mk=1 in C2n and (|χk〉)Mk=1 in C2n−m such that:

|ψ〉 =

M∑
k=1

αk |φk〉 ⊗ |χk〉

Then, we find:

N∑
j=1

∥∥(O′j −O′0) |ψ〉∥∥2
=

N∑
j=1

∥∥∥∥∥
M∑
k=1

αk (Oj −O0) |φk〉 ⊗ |χk〉

∥∥∥∥∥
2

=

N∑
j=1

M∑
k=1

|αk|2 · ‖(Oj −O0) |φk〉‖2

≤ sup
|φ〉∈C2n

‖|φ〉‖=1

N∑
j=1

‖(Oj −O0) |φ〉‖2 ·
N∑
k=1

|αk|2 = sup
|φ〉∈C2n

‖|φ〉‖=1

N∑
j=1

‖(Oj −O0) |φ〉‖2

And so, we obtain:

N

9
≤ T 2

A sup
|ψ〉∈C2n

‖|ψ〉‖=1

N∑
j=1

‖(Oj −O0) |φ〉‖2

This completes the proof.

This completes our discussion of the hybrid method.

173

	Abstract
	Preface
	Introduction
	Introduction to quantum mechanics
	Mathematical background
	Notation
	Hilbert spaces
	Tensor products

	The postulates of quantum mechanics
	Projective measurements

	Quantum computing
	Qubits
	Single-qubit systems
	Multiple-qubit systems

	Quantum gates
	Single-qubit gates
	Multiple-qubit gates

	Quantum circuits
	Quantum algorithms
	Examples of quantum circuits and quantum algorithms
	SWAP
	Toffoli gate
	Quantum Fourier transform
	Quantum Fourier adder
	Phase estimation
	Amplitude amplification
	Amplitude estimation

	Quantum gradient estimation
	Nomenclature
	Derivatives
	Gevrey function classes
	Phase oracle queries
	Quantum gradient estimation algorithms

	Fractional phase queries
	Block-encodings
	Implementation of a (1,1,0)-block-encoding of sin(f)G
	Approximation of the function exp(itarcsin(x))
	Implementation of block-encodings of polynomials of arbitrary operators
	Addition of real and complex parts
	Quantum circuit of the fractional phase query

	Gilyén et al.'s quantum gradient estimation algorithm
	Grid
	Numerical method
	Algorithm

	Optimality of Gilyén et al.'s quantum gradient estimation algorithm
	Lower bound of specific cases
	Lower bound of more general cases
	Essential optimality of Gilyén et al.'s algorithm and further research

	Quantum reinforcement learning
	Introduction to reinforcement learning
	State spaces, action spaces and rewards
	Markov processes

	Quantum value evaluation
	Classical Monte-Carlo methods
	Quantum speed-ups
	Essential optimality of query complexity

	Quantum policy evaluation
	Quantum policy optimization
	The class of functions of Gevrey-type 1 is closed under composition
	Smoothness properties of the policy evaluation function of a Markov decision process
	Quantum algorithm for quantum policy optimization
	Applications

	Conclusion
	Bibliography
	Mathematical background of tensor products of Hilbert spaces
	Error-propagation lemmas
	Hybrid method
	Principle of deferred measurement
	Hybrid method

