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Abstract

The research field of autonomous vehicle technology has been growing at an accelerated pace.
Improved safety, fuel and commuting efficiencies are the motivating technical and social factors
to develop fully autonomous vehicles. Sensor technology, advanced software and intelligent
control are the different modules that work in unison to achieve the desired driving result.
The system architecture of autonomous vehicles is explored to establish a hierarchy with the
planning and control stages. This allows us to focus on the particular topic of intelligent
control for both levels of operation.

In this thesis, a hierarchical model predictive control is developed for trajectory generation
and tracking of on-road vehicles. The state of the art methods in planning and control are
predominantly developed in the robotics domain and the additional challenges of the vehicle
such as non-linear dynamics, sampling time and limited computational resources make it a
challenging problem. 10 DOF, six state model, and point mass vehicle dynamics models
was evaluated to sufficiently represent the dynamics of the systems and allow for efficient
operation in the controller development phase.

Model predictive control (MPC) is chosen because of its capability of systematically taking
into account non-linearities, future predictions, and operating constraints during the control
design stage. In the hierarchical approach, at the high-level, new trajectories are computed
on-line, in a receding horizon fashion, based on a simplified point-mass vehicle model in order
to avoid the obstacle. The formulation of the collision avoidance constraints to render a
quadratic programming (QP) problem from a non-convex optimization problem was crucial
in the trajectory generation phase. The parameter values involved in the forward and read
collision avoidance constraints defined the feasible driving regions. At the low-level an MPC
controller computes the vehicle control inputs steering and acceleration in order to best follow
the high level trajectory based on a higher fidelity non-linear vehicle model.

The simulation scenarios defined cases for static obstacle avoidance, car following and special
overtake manoeuvres. The effectiveness of the controllers were strongly affected by the pa-
rameter tuning of the vehicle, design constraints, and collision avoidance terms. The chosen
method implemented a hierarchical controller with a higher level deliberative paradigm and
lower level tracking controller to achieve the tasks with respect to highly automated driving.

Master of Science Thesis G. P. Reddy



ii

G. P. Reddy Master of Science Thesis



Table of Contents

Acknowledgements xi

1 Introduction 1
1-1 Aim and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 State of the art methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1-2-1 Control systems in automotive industry . . . . . . . . . . . . . . . . . . 4
1-2-2 Model predictive control methods . . . . . . . . . . . . . . . . . . . . . 4
1-2-3 Environment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1-3 Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1-4 Organisation of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 System model 9
2-1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2-2 Point Mass model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2-3 Tire model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2-4 Full Vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2-5 Vehicle model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Hierarchical control for planning and control 21
3-1 System architecture and Control Hierarchy . . . . . . . . . . . . . . . . . . . . . 21

3-1-1 Operational autonomous vehicles . . . . . . . . . . . . . . . . . . . . . . 24
3-2 Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3-2-1 Generic Model Predictive Control problem . . . . . . . . . . . . . . . . . 26
3-3 Hierarchical control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3-4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Master of Science Thesis G. P. Reddy



iv Table of Contents

4 Model predictive control methods for trajectory generation 31
4-1 Control Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4-1-1 Practical constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4-2 Collision avoidance constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4-2-1 Longitudinal distance from surrounding traffic . . . . . . . . . . . . . . . 34
4-2-2 Forward collision avoidance constraints . . . . . . . . . . . . . . . . . . . 34
4-2-3 Rear collision avoidance constraints . . . . . . . . . . . . . . . . . . . . 35
4-2-4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4-3 Optimal control problem formulation for trajectory generation . . . . . . . . . . 36
4-3-1 Prediction horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4-3-2 Tuning weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4-3-3 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4-3-4 Equality and box constraints . . . . . . . . . . . . . . . . . . . . . . . . 38

4-4 Constrained quadratic optimization problem . . . . . . . . . . . . . . . . . . . . 39
4-4-1 Implementation and Optimization solvers . . . . . . . . . . . . . . . . . 40

4-5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Model Predictive control for trajectory tracking 43
5-1 Tracking control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5-2 Control Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5-2-1 Practical constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5-2-2 Steering angle for lower level controller . . . . . . . . . . . . . . . . . . . 44
5-2-3 Lateral tire forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5-3 Optimal control problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 45
5-3-1 Prediction Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5-3-2 Cost function and tuning parameters . . . . . . . . . . . . . . . . . . . . 46
5-3-3 ∆u formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5-4 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5-5 Tracking controller simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5-5-1 Double lane change manoeuvre . . . . . . . . . . . . . . . . . . . . . . . 49
5-5-2 Implementation and Optimization . . . . . . . . . . . . . . . . . . . . . 49
5-5-3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5-6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Simulation Results 55
6-1 Simulation environment and controller tuning . . . . . . . . . . . . . . . . . . . 55
6-2 Scenario 1: Free driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6-2-1 Trajectory generation controller . . . . . . . . . . . . . . . . . . . . . . . 57
6-2-2 Hierarchical controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6-3 Scenario 2: Car following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6-3-1 Trajectory generation controller . . . . . . . . . . . . . . . . . . . . . . . 62

G. P. Reddy Master of Science Thesis



Table of Contents v

6-3-2 Hierarchical controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6-4 Scenario 3: Lane change manoeuvre . . . . . . . . . . . . . . . . . . . . . . . . 62

6-4-1 Trajectory generation controller . . . . . . . . . . . . . . . . . . . . . . . 64
6-4-2 Hierarchical controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6-5 Scenario 4: Static obstacle avoidance . . . . . . . . . . . . . . . . . . . . . . . . 68
6-5-1 Trajectory generation controller . . . . . . . . . . . . . . . . . . . . . . . 69
6-5-2 Hierarchical controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6-6 Scenario 5: Overtake manoeuvre with slow moving vehicle . . . . . . . . . . . . 69
6-6-1 Trajectory generation controller . . . . . . . . . . . . . . . . . . . . . . . 72
6-6-2 Hierarchical controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6-7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Conclusion 77
7-1 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7-2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7-2-1 Model mismatch uncertainties . . . . . . . . . . . . . . . . . . . . . . . 77
7-2-2 Alternative interfacing for Higher level and Lower level controllers . . . . 78
7-2-3 Non-convex search spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7-2-4 Computational time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7-2-5 Prediction model for system and surroundings . . . . . . . . . . . . . . . 78

A Appendix 79
A-1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A-2 Bicycle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B Appendix -2 83
B-1 Controller implementation in MATLAB . . . . . . . . . . . . . . . . . . . . . . . 83

B-1-1 Main code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B-1-2 Higher level controller function . . . . . . . . . . . . . . . . . . . . . . . 88
B-1-3 Lower level controller function . . . . . . . . . . . . . . . . . . . . . . . 90
B-1-4 Standalone lower level controller . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 99

Master of Science Thesis G. P. Reddy



vi Table of Contents

G. P. Reddy Master of Science Thesis



List of Figures

1-1 Number of fatalities and injuries in in EU area [1]. . . . . . . . . . . . . . . . . . 2
1-2 External costs per mile of driving [2]. . . . . . . . . . . . . . . . . . . . . . . . . 2

2-1 Co-ordinate system of the vehicle defining the longitudinal and lateral motion of
the vehicle [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2-2 Forces acting on tire model [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2-3 Lateral and longitudinal forces for different slip coefficient [3] . . . . . . . . . . . 15
2-4 Lateral forces and longitudinal forces variation with braking and cornering [4] . . 15
2-5 Friction circle curves [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2-6 Full vehicle model [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3-1 Modules involved in motion autonomy. . . . . . . . . . . . . . . . . . . . . . . . 23
3-2 Annieway from Karlsruhe University system architecture and sampling optimization

to decide optimal trajectories [6] . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3-3 Boss from Carnegie Mellon University system architecture in the vehicle.[6] . . . 25
3-4 Controller architecture for trajectory generation and tracking. . . . . . . . . . . . 29

4-1 Forward collision avoidance constraint [7]. . . . . . . . . . . . . . . . . . . . . . 35
4-2 Rear collision avoidance constraint [7]. . . . . . . . . . . . . . . . . . . . . . . . 36
4-3 Higher level control block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5-1 Lower level control block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5-2 Vehicle oversteer and understeer limits with respect to steering angle and lateral

acceleration [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5-3 Vehicle oversteer and understeer representation. [9] . . . . . . . . . . . . . . . . 48
5-4 Double lane change manoeuvre specifications [8]. . . . . . . . . . . . . . . . . . 49
5-5 Path following performance of vehicle entering at 10[m/s] . . . . . . . . . . . . 51

Master of Science Thesis G. P. Reddy



viii List of Figures

5-6 Path following performance of vehicle entering at 20[m/s] . . . . . . . . . . . . 51
5-7 Lateral position Y of the controller vehicle. . . . . . . . . . . . . . . . . . . . . 52
5-8 Steering and steering rate measures for the double lane change manoeuvre. . . . 52
5-9 Brake torques at the four wheels. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5-10 Yaw angle and yaw rate of the vehicle during the double lane change manoeuvre. 53

6-1 Trajectory generation in free highway cruising. . . . . . . . . . . . . . . . . . . . 58
6-2 Trajectory generation in free driving at higher speed. . . . . . . . . . . . . . . . 59
6-3 Time taken for controlled vehicle to reach different desired speeds. . . . . . . . . 60
6-4 Performance of the hierarchical controller. . . . . . . . . . . . . . . . . . . . . . 60
6-5 Performance of the hierarchical controller for non zero initial condition for lateral

position Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6-6 Car following ability when surrounding vehicle is travelling at desired highway velocity. 63
6-7 Car following ability when surrounding vehicle is travelling at desired highway velocity. 64
6-8 Hierarchical controller car following feature . . . . . . . . . . . . . . . . . . . . 65
6-9 Lane change manoeuvre for vehicle. . . . . . . . . . . . . . . . . . . . . . . . . 66
6-10 Lane change manoeuvre for vehicle with higher desired speed. . . . . . . . . . . 67
6-11 Lane change manoeuvre with trajectory generation and tracking. . . . . . . . . . 68
6-12 Overtake manoeuvre with static obstacle in desired lane. . . . . . . . . . . . . . 70
6-13 Overtake manoeuvre with static obstacle in desired lane with outside lane centre

reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6-14 Hierarchical controller performing overtake manoeuvre with static obstacle in de-

sired lane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6-15 Overtake manoeuvre with slow moving obstacle in desired lane. . . . . . . . . . . 73
6-16 Lane change manoeuvre with slow moving obstacle in desired lane. . . . . . . . . 74
6-17 Lane change manoeuvre with slow moving obstacle in desired lane. . . . . . . . . 75

A-1 Bicycle (one track) vehicle model for forces acting on a vehicle body fixed frame [5] 80

G. P. Reddy Master of Science Thesis



List of Tables

2-1 Packeja model coefficients for different road surfaces. . . . . . . . . . . . . . . . 14
2-2 Vehicle parameter values used to define the full vehicle model of the vehicle. . . 19

6-1 Computer hardware details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6-2 Controller tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Master of Science Thesis G. P. Reddy



x List of Tables

G. P. Reddy Master of Science Thesis



Acknowledgements

I would like to thank my supervisor Dr. Meng Wang for his assistance with extensive and
helpful feedback. Dr. R. Happee provided helpful insights to guide the direction of the study.

I would like to specially thank Prof. H. Hellendoorn for his support and accomodating nature
during the course of the study.

This thesis would not have been possible without the support and help of Lourdes Gallastegui
Pujana. It was a patient effort to help me achieve this goal.

Finally, I would like to thank all my friends who have helped me with the process.

Delft, University of Technology G. P. Reddy
April 14, 2016

Master of Science Thesis G. P. Reddy



xii Acknowledgements

G. P. Reddy Master of Science Thesis



Dedicated to my family.





Chapter 1

Introduction

Autonomous vehicle AV! (AV!) technology is set to revolutionize on-road transportation.
Vehicles that drive autonomously have the potential to reduce vehicular accidents, and energy
costs [2]. The ability of the vehicles to perform multiple automated functions allowing the
driver to monitor is a requisite step towards fully autonomous vehicles. There are several
promising research directions in the road towards complete autonomy, with respect to sensors,
advanced software and intelligent control [10].

The developments in the fields of sensors and control that contribute to the autonomous ve-
hicle technology has grown rapidly in the past decade. The synchronous operation of these
systems were evident in the DARPA challenges [11]. These demonstrations encouraged fur-
ther development of vehicles at universities and industry. The key factors would involve a
systematic implementation of autonomous driving functions based on current level of technol-
ogy. The current systems have been developed to have different system components such as
perception, planning, and control. Here, sensor technology is important with the perception
component. Another important component, intelligent control has advanced to bridge the gap
between lower level operational control towards higher level planning stages. The demands
for higher level control algorithms has grown linearly with AV technology.

Particularly interesting, are the planning and control systems of autonomous vehicle technol-
ogy. The planning systems is synonymous to the motion planning system where trajectory
generation is a key focus. The lower level controllers are responsible for tracking the planned
trajectory and directions where integrated longitudinal and lateral control take precedence.
Planning and control topics are explored in detail in this thesis study to develop a feasible
predictive control algorithm for the desired goal of generating safe trajectories and actuate
the vehicle to track the trajectory.

1-1 Aim and motivation

Driving technology for self-sufficient vehicles, can enhance the passenger safety, and provide
numerous other benefits [4]. The potential to reduce the number of accidents is a strong
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2 Introduction

Figure 1-1: Number of fatalities and injuries in in EU
area [1].

Figure 1-2: External costs per mile of driving [2].

motivating factor to pursue this research direction but the economic benefits are highlighted
as well. The advantages of increased mobility, substantial savings in traffic congestion cost,
which in turn have an impact on pollution levels.

The figure 1-1 indicate a significant 62% drop in fatalities since 1991 but the number of
accidents and injuries still remain high. This leaves sufficient room for development of safety
systems that accompany autonomous driving. Figure 1-2indicates the overall costs associated
with every mile of driving and amounts the congestion and accident costs as the highest
expenses with environmental costs following closely. These economic factors are a major
influence on speeding up the life cycle of autonomous vehicle technology.

In this research direction, vehicles capable of achieving autonomous driving feature in the
form of extended automated driving capability is important. Two broad areas that fall under
autonomous vehicle technology are non-cooperative and co-operative systems. The main
reasons to choose the direction of non co-operative systems would be the drawbacks associated
with telematics and communication. The need for advanced network protocols and the high
penetration rate required as stated in [12] strengthens the proposal. Some general issues with
communication networks include,
• Bandwidth
• Latency

• Reliability
• Cost

Vehicle cooperation is a growing field but vehicles that achieve self-sufficient operation is more

G. P. Reddy Master of Science Thesis



1-2 State of the art methods 3

crucial for AV technology implementation in real time. Another important factor would be
the redundancy measures that are meticulously planned in auto-mobiles. The vehicle must
be able to rely on technology that can be robust and operate when communication systems
are disrupted [13]. Since, non-cooperative vehicles only have sensors to depend on receiving
information; intelligent control must take a substantial role. The technology must be able to
partially compensate for the range, resolution, accuracy limitations of sensors [14].

One possible approach to compensate for IVC is environment modelling where structured
environments can be exploited to describe behaviour of surrounding vehicles. Augmenting
the control system with this information can potentially lead to reliable decision making
systems at the higher level controller. This is elaborated in the literature review section and
the advantages and limitations of such an approach is highlighted.

Another important approach, in the intelligent control section would be to develop reactive
control systems which can achieve autonomous driving capability. The current vehicles are
capable of automating some tasks, but availability of integrated features is limited. This is
represented in the scale of autonomous capability [15] at level 2. The previously described
components with sensing, software and control have to be examined closely. With the prob-
lems of high safety tolerance in vehicles, limited on board computation capacity pose the need
to develop control systems that can satisfy the requirements. Advanced controllers such as
MPC have been used in the process industry for several decades [16], [17], [18], but slowly
gaining traction with the automotive application. The ability to plan the task and execute
the task is noteworthy and a hierarchy can be established with respect to the planning and
control systems.

Finally, the problem of planning and control can be subdivided into higher level control with
path planning, trajectory generation and lower level trajectory tracking control. The layered
architecture with the autonomous vehicle systems is evident and different strategies can be
implemented especially with the advancement of control algorithms in the planning stage.
The advantages of this structure can be exploited while addressing the limitations.

1-2 State of the art methods

A literature survey was conducted to analyse the different topics under autonomous vehicle
technology with respect to vehicle dynamics, environment dynamics, control system architec-
ture, and hierarchical scheme for trajectory generation and tracking. Trajectory generation
and tracking problems have been commonly addressed as separate problems in literature.
More recently, the interest to combine these features has grown with control systems capa-
ble of handling higher level strategic tasks. In this section, the state of the art methods
for predictive control of autonomous vehicles are listed, allowing for a constructive problem
formulation. The methods for trajectory generation have evolved from robotics applications
and primitive with automotive application whereas, trajectory tracking problems have been
solved as seen in the widely used driver assistance systems. The additional challenges of our
application are the non-linear vehicle dynamics, limited computational resources and speed
of operation. The methods reviewed during the literature study were selected to meet the
requirements of the process.

Master of Science Thesis G. P. Reddy



4 Introduction

1-2-1 Control systems in automotive industry

Automotive control systems enhance vehicle efficiency and safety. Traditionally, the control
systems handled specific tasks in maintenance, diagnostic or operation. In vehicle dynamics
control, longitudinal and lateral control systems form the base technology for the foray into
integrated vehicle dynamics controllers. This technology has been implemented as seen in
the number of advanced driver assistance system (ADAS), in longitudinal and more recently
lateral control systems. PID controllers, feed-forward controllers, for longitudinal control
have been used as seen in [5]. Adaptive cruise control (ACC), anti brake system (ABS),
and traction control were first supportive systems operating in the forward moving direction.
Lateral direction controllers have been developed since [19] and gained more popularity in the
recent years [20]. Lane keep assist (LKA), lane departure warning (LDW) and active front
steering (AFS), have been implemented handling vehicle dynamics in the lateral direction.
Approaches towards integrated longitudinal and lateral controllers [21] [22] have also been
developed in parallel but with increased number of assumptions with respect to infrastructure
and vehicle dynamics.

The involvement of control for planning has increased with the demand for intelligent control
[23]. The evolution of vehicle control from task specific to including several tasks at once, is an
important study to understand the modelling of vehicle dynamics and the appropriate control
systems. The classification of autonomy allows for distinction between different features
and this thesis covers the semi-autonomous (Level 3) and highly automated levels (Level 4)
as stated in [15]. The vehicles capable of this higher level automation were developed for
[24], before commercial automotive manufacturers Volvo [25], BMW [26], Tesla [27] started
developing their own technology.

The topics of lower level control and higher level planning were reviewed to lay the groundwork
for the planning and control problem. Consequently, the model predictive control methods
are studied with respect to trajectory generation and tracking.

1-2-2 Model predictive control methods

The use of mathematical models in model based control design is a growing field. In that
direction, model predictive control has been implemented in a host of applications such as oil
and gas, petrochemical, chemical, paper manufacture [16], with the developments in theory
and computational capacity. The use of MPC in predominantly process industry to other
industries is fast growing [28]. Optimal control methods for automotive application traction
control [29], [30], due to feasible real time implementation.

The challenges now lie with the use of non-linear model predictive control(NMPC) where
non-linear systems can be used directly in to develop control laws. Works by [31], [32] and
[33] are great sources for theory on NMPC, problem formulation and potential applications.

Trajectory generation problem

Trajectory generation is a subset of motion planning and has been predominantly developed
in the robotics field. The distinction between path planning where a geometric path is the
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1-2 State of the art methods 5

focus whereas trajectory planning deals with the system states as it evolves in time or with
respect to the road geometry as seen in [34] .
Off-line and On-line methods are available under trajectory planning with each method car-
rying specific merits. Off-line trajectories primarily allow faster computational times. In this
thesis, on-line trajectory planning methods are incorporated as the trajectory might need
replanning and obstacles are dynamic in the driving environment. Spline based methods that
render smooth paths were studied starting with the [35] that developed time optimal contin-
uous trajectories for robot arms. Cost function based approaches have been used in the past
using newton optimization methods in [36]. Cubic and quintic spline based methods were
applied in [37] to obtain smooth trajectories during the planning phase. Another commonly
used method in robotics is the potential fields method [38] where the controlled system avoids
obstacles which are defined by a repulsive force and the target is defined by an attractive force.
Focusing on the automotive application is more complex with vehicle dynamics, fast paced
environment and high safety regulations. The recent works include for parametrized curve
based approach in [39], manoeuvre planning algorithm [40]. The optimization based ap-
proaches used in the study [41] and methods review in [42] are important.

Trajectory tracking problem

Trajectory tracking methods have been used for control of non-holonomic systems as studied
in [43] and achieve stabilization, and [44] have worked on methods to guarantee closed loop
stability.
In the past, the MPC problems have been formulated as regulation problems driving the
system towards the reference. This problem is complex with time varying references [45].
The tracking control problem is applicable with many applications characteristic of a varying
references and the especially interesting with constrained non-linear systems.
Nonlinear predictive control [46], system is partially linearized and set point are parametrized
but tracking control is given less importance. Many papers have worked with reference gov-
ernors to handle the constantly changing reference values. But the approach has been disre-
garded for lack of robustness.
The tracking problem of the vehicle dynamics control is solved employing model predictive
control approach that have been successfully tested in [47], [48]. Nonlinear MPC was tested
with nonlinear bicycle model in [49]. The conditions for a snowy road were navigated in [7].

Hierarchical control

System architecture for autonomous vehicles have been developed based on different strategies
to achieve the goal of autonomous driving. Researchers have leaned towards the deliberative
approach involving a higher level planning feature or a more reactive approach which resembles
a rule based behaviour scheme [50] . Each of the approaches brings along certain advantages
but a hybrid approach has been used to develop the three main modules of autonomous
vehicles; perception, planning and control.
A brief view on the system architecture used in autonomous vehicles[11]. The development of
GAT, Payton [51] introduced the different higher level planning techniques available. On the
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other approach, AuRa, SSS [51] architectures were used by vehicles to establish the different
manoeuvre based techniques available.

The hybrid approaches seen in Sharp [51] have been developed by different teams which can
combine the different modules to achieve the autonomous driving task.

1-2-3 Environment model

Several different approaches were taken to represent the dynamics of the environment. Firstly,
driver models [52] with respect to longitudinal, lateral control tasks and situation specific tasks
were studied. This approach although applicable in certain scenarios, is limiting due the
high variability of the driver behaviour. Although the environment considered is a structured
highway environment, nonetheless, driver models cannot be chosen as an appropriate approach
to model the surrounding vehicles. In the same direction, microscopic traffic models [53], [54]
were explored as they aim to represent the dynamics of the environment locally, and due to
the sensor range of the car, this as another potential approach to model the dynamics of the
surrounding vehicles. Finally, environment models were considered with respect to physics
based, manoeuvre based and interaction aware models [55].

The above methods were chosen in an attempt to represent the dynamics of the surround-
ing environment but proved to be challenging to model and validate the augmented model.
Rather, the rules defined under the studies were extracted to model the behaviour of the
controlled car with respect to the surroundings. The heuristic rules set the constraints for
acceleration and jerk bounds, car following rules, and lane change rules.

1-3 Research goals

The following research goals were formulated based on the literature survey and the methodol-
ogy followed during the thesis work. The two main components were environment prediction
and controller design, but the focus area of this study was dominated by the hierarchical
controller development. The objective to enable the vehicle to operate autonomously to per-
form lane changes and car following automation functions. The control system is designed
to include collision avoidance constraints to navigate safely among surrounding vehicles. The
main goal of the thesis is designing a hierarchical model predictive controller with higher level
trajectory generation and lower level trajectory tracking. The following way points guided
the thesis work during the controller development

• Formulation of the trajectory generation problem as a non-linear problem, and the use
of suitable solvers to obtain a collision free trajectory.

• Controller design for a minimal error path tracking controller, by obtaining the refer-
ences from the higher level planner.

• Analyse the implementation aspects of the hierarchical model predictive controller.

• Evaluate the performance of the trajectory generation and trajectory tracking controllers
individually and in the hierarchical scheme.
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1-4 Organisation of the report

The following report is structured to introduce the topics, describe the vehicle model, con-
troller development methods, and the simulation results.

Chapter 1 is used to introduce the thesis focus areas of autonomous vehicle technology . The
aim and motivation of the chosen topics are elaborated leading to a brief summary of the
state of the art methods. The role of control in autonomous vehicles is introduced and then
focusing on the model predictive control methods to achieve our control objective. These
methods are analysed to formulate the research goals.

Chapter 2 details the vehicle dynamics models with different degrees of freedom. The accuracy
of the model differs in the point mass and the full vehicle model. The states and the control
variables are clearly established. The non-linear tire model is also included which increases
the vehicle dynamic behaviour with the trajectory tracking controller.

Chapter 3 is used to introduce the system architecture of autonomous vehicles with examples
in literature and practical applications. Model predictive control theory and optimization
problem are highlighted along with the control hierarchy. The controller for the hierarchical
design and the method of connecting different controllers that influence the implementation
aspects.

The model based controller design is formulated in Chapter 4 with an emphasis placed on
model predictive control theory. The trajectory generation controller is described using the
objective function, trajectory planner and the obstacle avoidance constraints. The higher
level planner is in charge of the obstacle avoidance function to plan safe trajectories. The
linear collision avoidance constraints are used for collision free paths in the forward direction
and from rear direction. The bounds are also set with respect to the non drivable areas in
the highway scenario.

Chapter 5 is used to elaborate on the lower level tracking controller which is using a full vehicle
model. The advantages of using a split architecture are highlighted and the several constraints
are identified. The lower level controller satisfies the driving tasks at the operational level.

Chapter 6 is for the simulation results of the different scenarios tested to evaluate the perfor-
mance of the controllers. The selected scenarios evaluate the performance of the trajectory
generation controller and the trajectory tracking controller.

Chapter 7 concludes the final conclusion of the thesis with final results, and recommendations
of future work.
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Chapter 2

System model

This chapter details the vehicle dynamics model with respect to the point mass model and
the full vehicle model used for controller development in section 2-2 and 2-4 respectively.
The non-linear tire model described in section 2-3 is included in the full vehicle formulation
to increase the accuracy of the representation. The Pacejka magic formula model is chosen
among the available tire models. Finally, the chapter culminates with a analysis of the models
and the dynamics that can be reproduced for the simulations.

The vehicle model is highly complex and therefore traditionally, decomposed into different
components that represent the dynamics of the system. Longitudinal, lateral and vertical
direction can be chosen to analyse the behaviour of the system in that particular axis. Here,
the interaction component to be included is based on a select few parameters that will be
elaborated in the later section. For the purposes of decomposition, the co-ordinate system is
introduced that can follow one of two approaches.

2-1 Coordinate system

The dynamic equations can be modelled with two approaches, in the inertial frame or the
body centred frame. The body centered

The first approach using a Cartesian co-ordinate system as the reference frame. This is similar
to describing the vehicle position and heading angle with the body centred axis system. The
motion of the vehicle can be described using the X-Y co-ordinates. Here, the longitudinal
motion of the vehicle is along the X-axis and the lateral motion of the car is along the Y-
axis. This representation will be followed throughout the rest of the thesis and controller
development.

Another approach is using a curved linear coordinates to show the relative position of the
vehicle with respect to the curve. The difference between local vehicle axis and global axis
has to be recognised when deducing the equations. This representation is especially useful in
the spatial formulation of the problem and the situation when the road geometry is included.
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Figure 2-1: Co-ordinate system of the vehicle defining the longitudinal and lateral motion of the
vehicle [3].

The representation of the the points and vectors that define the motion or, using the Cartesian
coordinate system to define the position and movement with respect to a reference frame. The
advantage with the Cartesian coordinate system is seen with the ability to capture the position
and orientation essentially, denoting the all the available time derivatives. Any vector can be
assigned a space using the three axes system of the coordinate system. Reference frames are
helpful to understand the movements of vectors relative to each other.

Kinematic relations between vehicle components can be exploited to deduce key behaviours.
The Cartesian co-ordinate system positioned in the modelling space. This method can be
used to model orientation and position. The transformations from the wheels that can be
steered and relevant wheel velocities are challenging to map. The steer angle is determined
commonly as the Ackerman steering to obtain the degrees of freedom for steer.

Degrees of freedom

Vehicles behaviour can be represented with various degrees of freedom [56]. The simple dy-
namic model is a two DOF! (DOF!) bicycle model, representing the lateral and yaw motions.
The third degree includes the longitudinal acceleration to the model and can essentially de-
scribe a full vehicle. The five degree of freedom model including the wheel rotations enables
analysis of traction forces and useful for controller design of combined braking and steering.
Following this full vehicle model, with eight or nine degree of freedom are used for accu-
rate description of vehicle dynamics. The following subsections cover the vehicle dynamic
model that are feasible to use in the control architecture. The instance a model with lower
complexity is feasible, it can be used to save computational burden on the controller.

The choice of model for the model predictive controller is important as the approach uses a
model of the system, formulates a prediction model for use in the optimization procedure.
The main trade-off with using any model is between accuracy and complexity. This is crucial
with our application due to the safety regulation of the automotive industry and real life
implementation aspects. The difference in dynamics must be minimal for the controllers to
be feasible on a the vehicle. On the other hand, due to the use of advanced controllers that
rely on optimization approaches, model complexity greatly influences the speed of operation
and again the feasibility of real time implementation.
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Definitions

• Tire slip The small deviation between the the direction of heading and the direction
of the rolling wheel. Due to the deformation in the tire, this difference exists and plays
a huge role in the vehicle behaviour.

• Wheel slip The measure of the difference between the rotational speed of the wheel
and the translational velocity of the wheel centre. The equation to define wheel slip is,

S = −(V −Reω)
V

(2-1)

• Braking torque This is the torque required to bring the motor to a standstill. The
engine torque is translated into the motion of the vehicle and can be a powerful control
input when it comes to vehicle dynamics control.

Tb = Fb ∗ r, (2-2)

Here, Fb is the clamping force at the brake pads and r is the effective radius of the
wheel.

2-2 Point Mass model

The simplest of the vehicle model is in the form of point mass model, used to describe motion
in the lateral and in the longitudinal directions. The dynamical system is given as follows:

mẍ = Fx,

mÿ = Fy,

Ẋ = ẋ = Vscosφ,

Ẏ = ẏ = Vssinφ,

φ̇ = r,

(2-3)

where x represents position of the point mass vehicle model in the longitudinal direction,
y represents position of the point mass vehicle model in the lateral direction, and φ [rad]
represents angle between the longitudinal and the lateral directions of the model or steering
wheel angle and r denotes the commanded steering wheel turn rate [rad/sec].

The speed is set to a constant velocity. In fact, if the angle is zero, travelling along the x
direction only, we will end up with a first order differential equation in x. The tire forces for
this model can be constrained by the friction circle as F 2

x + F 2
y ≤ (µmg)2.

Finally, the compact representation is given as:

˙ξ(t) = fpm(ξ(t), u(t)) (2-4)
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Figure 2-2: Forces acting on tire model [3].

With the state vector ξ = [ẋ, ẏ, X, Y ] and input vector u = [Fx, Fy]′.

The point mass model described fails to capture yaw dynamics, vehicle direction and tire
dynamics. The relation between the behaviour of the states and the tire forces are not
accounted. Although this model has several drawbacks to represent the vehicle, it can be
used to represent vehicle motion and will be tested with the higher level controller. A higher
priority is placed for the computation time of the trajectory generation controller.

2-3 Tire model

Tire behaviour modelling has been a challenging field due to the highly non-linear behaviour
and transient characteristics. There are several different tyre models based on the modelling
method [3]. Three main classifications can be noticed from empiric models, developed using
data fitting regression techniques, to theoretical models, based on finite element analysis of
tire, and semi-empiric models combining the two methods. Empirical models depend on direct
data measurements which are hard to gather with transient vehicle dynamics. But they are
compact, and suitable for fast online calculations. Theoretical models describe the steady
state and transient dynamics of the tire, often rendering a computationally heavy model.
Semi-empiric models represent sufficient dynamics suitable for vehicle simulation. Data and
theoretical modelling approaches are combined thereby balancing accuracy and computational
efficiency.

Tires are an essential vehicle component as the only medium of vehicle interaction with the
road surface. The acceleration force to drive the vehicle forward (traction force) and the
force to reduce the speed (braking force) is achievable through the force interaction between
tire and road. The longitudinal and lateral forces are illustrated in 3-1 with respect to the
direction of travel.

Introducing the nomenclature in tire modelling, the following equations are used to calculate
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the front and rear tire speeds along the x-axis and y-axis:

vxi = vicosαi

vyi = visinαi
(2-5)

where vf and vr are the front and rear tire speed, αf and αr are the front and rear tire slip
angle. The correlation between tire speeds and controlled vehicle speed is given below:

vxf
= vhx

vxr = vhx

vyf
= vhy + lf ε̇

vyr = vhy − lrε̇

(2-6)

The slip angle represents the angle between the wheel velocity and the direction of the wheel
itself [57]. Then tire side-slip angles are computed as

αf = δf − arctan
vyf

vxf

αr = δr − arctan vyr

vxr

(2-7)

Side-slip values and friction component between tire and road influence the tire forces. Wheel
slip ratio in the longitudinal direction is the difference in angular speed between a purely
rolling and sliding wheel, is explained in the following conditional equation,

si =


rωi−vxi
vxi

, rωi < vxi Braking
rωi−vxi
rωi

, rωi > vxi Driving

where ωf and ωr and r are the angular velocities of front and rear tires, and the radius of
wheels respectively.

The function can be used to represent acceleration and braking descriptions. A slip ratio
value of zero indicates moving velocity and tire rolling speed are equal, thereby we can deduce
zero engine torque. Positive slip shows tire has positive rolling velocity and a positive forward
velocity. Negative slip shows there is equal or larger positive rolling velocity to that of forward
velocity. Here actuator saturation can defined where −1 or +1 indicates ’locked’ or ’spinning’
wheel at zero speed. Slip goes to infinity when tire and vehicle velocity are equal to zero, and
zero value assigned in simulations. Experiments to define friction characteristics between the
tire and road under different conditions have been analysed in [57].

An accurate non-linear tire model is required to capture the dynamics of the tire. This is
best achieved using a Pacejka model which is a complex semi-empirical one. The longitudinal
forces are assumed to depend on the normal force, surface friction, and longitudinal slip ratio
as shown [47] below;

Fxi = fx(si, µ, Fzi) (2-8)

The Pacejka model calculates the friction coefficient as a function of slip ratio:
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Table 2-1: Packeja model coefficients for different road surfaces.

Road Surface B_P C_P D_P E_P
Dry Tarmac 10 1.9 1 0.97
Wet Tarmac 12 2.3 0.82 1
Snow 5 2 0.3 1
Ice 4 2 0.1 1

µ(si) = DP sin(CP arctan(BP si − EP (BP si − arctan(BP si)))) (2-9)

The value of BP , CP , DP , EP for different road types are shown in 2-1. The values of the
model constants are determined using experimental data, and consequently the co-efficient
values BP , CP , DP , EP are derived.

Note that it has been concentrated on dry tarmac (asphalt) coefficients BP = 10, CP =
1.9, DP = 1, EP = 0.97 in compliance with previously made assumptions. Having the friction
coefficient µ(si) and the normal force Fzi exerting on the wheel, the longitudinal traction
force Fxi is then calculated as follows:

Fxi = µ(si)Fzi (2-10)

The non-linear nature of tire forces vary with multiple parameters and the handling stability
requirements vary as well. The lateral forces are important to handle lane change manoeuvres
and depend on normal force, friction and slip angle.

Fyi = fy(αi, µ, Fzi) (2-11)

The figure 2-3 shows the longitudinal force versus longitudinal slip. The next illustration
shows the slip angle variation. The values are representing the condition for the front wheel
with the one track model [47]. Figure 2-4 shows longitudinal motions of the vehicle are related
to the tire forces and the variation in values. The non-linear properties become too complex
hen the transient dynamics of longitudinal and lateral are coupled. Therefore, a decoupled
relationship is assumed for the control problem. Since manoeuvring capability of the vehicle is
limited at high speed in highways and slip angle commutes in linear region. Lateral tire forces
are linear functions of slip angles, cornering stiffness of the tire for the sake of simplification:

Fyi = αiCyi (2-12)

where Cyi are the cornering stiffness. The factor 2 in the one track model accounts for the
fact that there are 2 tires per axle in the bicycle model adopted [5].

Cyi = Cs
Fzi,static

2 (2-13)

where Cs is the cornering stiffness coefficient. Generally, typical values for the cornering
stiffness coefficient Cs varies between 0.12/deg to 0.16/deg according to type of tires [58] .
The longitudinal and lateral tire force Fxi , Fxi are limited physically by the adhesion limit
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Figure 2-3: Lateral and longitudinal forces for different slip coefficient [3]

Figure 2-4: Lateral forces and longitudinal forces variation with braking and cornering [4]
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Figure 2-5: Friction circle curves [3]

between tire and road. Because the forces are transmitted by friction as shown as in Figure
2-5. Therefore, during combined slip conditions the maximum transferred force is defined by
Kamm circle as given √

F 2
yi

+ F 2
xi
≤ µFzi (2-14)

2-4 Full Vehicle model

The full vehicle model is presented in this section where the dynamic equation is given by

˙ξ(t) = ffv(ξ(t), u(t)) (2-15)

where ξ(t) ∈ Ren is the state of the system with 10 states and u(t) ∈ Remr is the system
inputs with five available inputs. As discussed in [47], the ten states are lateral and longitu-
dinal velocities in the body frame, the yaw angle, yaw rate, lateral and longitudinal vehicle
coordinates in the inertial frame and the angular velocity on the four wheels. These are
denoted,

ξ = [ẏ, ẋ, ψ, ψ̇, Y,X, ωf,l, ωf,r, ωr,l, ωr,r]T (2-16)

Here, ωf,l, ωf,r, ωr,l, ωr,r are the angular velocity on the front left, front right, rear left and
rear right sides, respectively. For the simplicity of notation, later we will use the subscript
? ∈ f, r to denote the front or rear axles and • ∈ l, r to denote the left or right side of the
vehicle. The system inputs are

u = [δf , Tf,l, Tf,r, Tr,l, Tr,r]T (2-17)
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Figure 2-6: Full vehicle model [5].
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where δf is the front steering angle and T?,• gives the general braking and tractive torque on
the wheels. Positive T?,• indicates driving torque while negative T?,• indicates braking torque.

Figure 2-6 illustrates the notation for the full vehicle model. Importantly, Fc?,• and Fl?,•

are the lateral cornering and longitudinal tire forces in tire frame. Fy?,• and Fx?,• are the
components of the tire forces along the lateral and longitudinal vehicle axes. α?,• are the
wheel slip angles which are defined later in this section. δf is the front wheel steering angle.
a and b are the distances from the CoG to the front and rear axles and c is the distance from
the CoG to the left/right side at the wheels. The dynamic equations can be derived using
the vehicle motion about CoG and coordinate change between vehicle body and the inertial
frame:

mÿ = −mẋψ̇ + Fyf,l
+ Fyf,r

+ Fyr,l
+ Fyr,r

mẍ = mẋψ̇ + Fxf,l
+ Fxf,r

+ Fxr,l
+ Fxr,r

Iψ̈ = a(Fyf,l
+ Fyf,r

)− b(Fyr,l
+ Fyr,r ) + c(−Fxf,l

+ Fxf,r
− Fxr,l

+ Fxr,r )
Ẏ = ẋsinψ + ẏcosψ

Ẋ = ẋcosψ − ẏsinψ
Iwω̇f,l = −Flf,l

rw + Tf,l − bwω̇f,l
Iwω̇f,r = −Flf,r

rw + Tf,r − bwω̇f,r
Iwω̇r,l = −Flr,l

rw + Tr,l − bwω̇r,l
Iwω̇r,r = −Flr,rrw + Tr,r − bwω̇r,r

(2-18)

where the constant m is the vehicle mass. I is the vehicle rotational inertia about the z axis.
Iw includes the wheel and drive-line rotational inertias. rw is the radius of the wheel. bw is
the damping coefficient. The x and y components of tire forces, Fx?,•and Fy?,• , are computed
as follows:

Fy?,• = Fl?,•sinδ? + Fc?,•cosδ?

Fx?,• = Fl?,•cosδ? − Fc?,•sinδ?
(2-19)

where steering angle is restricted to front steer only, thereby giving by δf,l = δf,r = δf .

The longitudinal and lateral tire forces Fl? and Fc? are represented as in Pacejka tire model
[3]. The non-linear functions of the tire slip angles α?, slip ratios σ?, normal forces Fz,? and
friction coefficient between the tire and road µ?:

Fl?,• = flα?,• , s?,•, µ, Fz?,•

Fc?,• = fcα?,• , s?,•, µ, Fz?,•

(2-20)

where slip angles of tire, slip ratio, µ friction coefficient and Fz normal force are given by the
equation:

α?,• = arctan
vc?,•

vl?,•

(2-21)
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Table 2-2: Vehicle parameter values used to define the full vehicle model of the vehicle.

Parameter Symbol Value Unit
Distance from CoG to front axles a 1 [m]
Distance from CoG to rear axles b 1.4 [m]
Distance from CoG to left/right side of the wheel c 0.47 [m]
Mass of the vehicle m 2050 [Kg]
Vehicle rotational inertia about the z-axis J1 3344 [Kgm2/rad]
Vehicle wheel and driveline interia Jw 3951 [Kgm2/rad]
Radius of the wheel rw 0.41 [m]
Damping co-efficient bw 3.8
Cornering stiffness co-efficient Cs 0.12
Gravitational acceleration g 9.81 [m/s2]
Tire-road friction co-efficient µ 0.3

Here, tire lateral and longitudinal velocity components vc?,• and vl?,• are derived using,

vc?,• = vy?,• cos δ? − vx?,• sin δ?,
vl?,• = vy?,• sin δ? + vx?,• cos δ?,
vyf,• = ẏ + aψ̇vx?,l

= ẋ+ cψ̇

vyr,• = ẏ − bψ̇vx?,r = ẋ+ cψ̇

(2-22)

The slip ratios s? are approximated as follows:

s?,• =


rω?,•
vl?,•

− 1, if vl?,• > rω?,•, v 6= 0 for braking,
1− fracvl?,•rω?,•, if vl?,• < rω?,•, ω 6= 0 for driving,

(2-23)

The friction coefficient µ is taken from for the dry road surface from table . The normal force
on the wheel are estimated with the non load transfer assumption, Fz? . Finally, considering
g, g is the gravitational acceleration as well

Fzf,• = bmg

2(a+ b) , Fzr,• = bmg

2(a+ b) (2-24)

The tire forces Fx? and Fy? are normal forces acting on one wheel and combined forces of the
two wheels in the one track model.

2-5 Vehicle model parameters

The table 2-2 vehicle model parameters were chosen to represent a generic on road vehicle.
The

The different models are examined to choose the best available fit for the controller develop-
ment. Due to the computational burden of the higher level trajectory generation controller, a
simple model would suffice. The point mass model that describes the orientation and motion

Master of Science Thesis G. P. Reddy



20 System model

of the vehicle is suitable for the higher level path planner. This stage of the controller will
perform poorly with the complex dynamics of the vehicle model.

Another widely implemented choice for the vehicle model is the bicycle ’one track’ model of
the vehicle. This is a lumped parameter model where the left and right sides of the vehicle
are combined. The accurate description of the vehicle motion and the non-linear behaviour
is sufficiently captured with respect to our application. Nonetheless, the choice to use the
full vehicle model was made due to the potential to include test the controller with evasive
manoeuvres. The vehicle performs anomalously at the friction limits and thus more accurate
description of the vehicle is necessary.

The use of full vehicle model would would potentially test the feasibility of the controller and
provide scope to extend the controller operation to evasive manoeuvres. Full vehicle models
are high fidelity models representing the dynamics of the four wheels and accounts for the
asymmetric behaviour. Slip can vary at the different tires and thus tracking controllers which
employ an accurate model can better represent the dynamics and controller performance of
real life situations. The highly non-linear tire model is the most important consideration
because all the forces transmitted with the vehicle and control inputs are directly influenced.
The bicycle model is a one track model lumping the left and right wheels at the axles. This
represents the yaw dynamics as well and sufficient for tracking control.

The assumptions made with the models are elaborated in the control methods section of the
report. Due to the structured environment of the highway and limited scope of controller
performance in the highly automated feature scheme, vehicle dynamic assumptions are made
to allow for favourable controller performance.
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Chapter 3

Hierarchical control for planning and
control

The following chapter discusses the system architecture of autonomous systems and in par-
ticular on-road vehicles. Section 3-1 is used to highlight the planning and control modules.
Following, this the need for control systems is emphasized and the theory of model predictive
control is mentioned in section 3-2. The feasibility of the control architecture is highlighted
with the advantages and the relevant drawbacks in section 3-3. The chapter ends with the
concluding remarks provided in section 3-4.

3-1 System architecture and Control Hierarchy

Autonomy in systems is a vast research area comprising of different modules and several open
problems in the topics. Initially, autonomy was first explored the field of robotics to automate
motion tasks. The development of the fields has implications in other industrial process and
transport domains. The field to achieve autonomy in vehicles soon followed with an emphasis
on control architectures. Motion planning remains on of the significant open problem with
vehicles due to the complex nature of the process.

Traditionally, the two approaches which were deliberative and reactive in nature were used to
achieve autonomy. The deliberative paradigm primarily used a model of the world constructed
by priori information or using sensor data. The reactive approach was more functionally ori-
ented coupling the sensors and actuators of the systems. The different tasks were categorised
into smaller elementary behaviours and reflex action was constructed to deal with the tasks.
Each of these approaches were employed with different architectures focusing on a particular
performance benchmark.

A brief exploration of these topics is necessary to understand the different architectures used
and the relevant characteristics. The deliberative approach is synonymous with the sense-
model-plan-act strategies commonly seen in [59], [60]. The perception module of the system
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using the sensors receive data regarding the surroundings and aid in constructing topological
or grid based maps. The consequent planning stage is the decision module where motion
planning takes precedence. Finally, the chosen decision is executed satisfying the operational
tasks. To illustrate, two Stanford experiments using video camera sensor and 3D vision sensor
supported by AI decision making capability were used to control a robot vehicle and robot
cart respectively. The higher level decision making capacity was the attractive characteristic
of this approach. Nevertheless, this approach had several drawbacks including the inability to
deal with unpredicted events. The restricting factor being the time required in the modelling
and planning stage. The sensor based models were inaccurate, and led to uncertainties due
to model mismatch with the real world.

Secondly, the reactive approach was based on developing intelligent behaviours to handle
complex tasks. This behaviour based approach did not require the model of the system and
characteristic coupling between the sensors and actuators contributed to fast processing times.
The appropriate behaviours for the system during operation were identified and consequently
the competence layers were defined. Based on the conditions, the required behaviour would
be evoked and executed. The commonly used subsumption architecture created a hierarchy
of behaviours, each defined by a certain module. The activated module controlled the robot
motion. Several notable methods were developed such as potential fields method [38], neural
networks[] and Q-learning [61] in the pursuit of motion autonomy. The main drawback of
this approach was the lack of higher level reasoning and limitation of defining all the required
modules for the scope of operation.

The two approaches were combined in a hybrid scheme using the higher level reasoning
of the deliberative approach and the robustness of the reactive approach. Hybrid schemes
combined the two approaches but were predominantly deliberative based or reactive based
hybrid architecture. This inherently brought some of the demerits previously mentioned
with the methods. This led to the introduction of the three layer architecture where an
intermediate layer interfaced the higher level planner and the lower level reactive layer. Here
the behaviour of the reactive layer is instantiated by the intermediate sequencing layer subject
to the constraints of the planning module. Deriving from the approach strategy used in
Atlantis, 3T [62] and sharp schemes, it becomes clear that the two important modules are
the motion planner and the motion controller.

This insight led to the implementation in this thesis, to develop a trajectory generator and
trajectory tracking controller. The complex tasks of motion autonomy intrinsically requires
hierarchical modules to achieve the desired results. Hence the following architecture was
chosen to decompose the tasks in the planning and control modules.

Motion planner

The motion planner handles the task of generating and executing a motion plan for au-
tonomous vehicles. The requirement to generate collision free trajectories must also satisfy
the dynamic constraints of the vehicle and design constraints of the environment. The defi-
nition of the trajectory generation problem can be defined as,

"Given the present state of a single vehicle or team of vehicles and a map of the environment,
compute a trajectory towards a desired goal state or configuration in real-time that optimizes
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Figure 3-1: Modules involved in motion autonomy.

a certain objective function while respecting the kino-dynamic properties of the vehicle(s) and
avoiding obstacles and collisions [63] ."

The methods used to generate these trajectories either use a model of the environment,
construct one using sensor data or include behaviour logic for actions of the objects in the
surrounding. The sensing and perception module provides information to the planning module
and this information is assumed to be perfect for our system. From [], we can see that motion
planning has been divided into path, manoeuvre and trajectory planning. The path planning
task is to provide the geometric shape of the path to take whereas the manoeuvre planning
is reactive in nature, choosing the right manoeuvre based on the conditions.

The motion planner defined for this thesis is designed to generate the best trajectories in a
highway driving environment. The distinction is made with respect to the motion planner
that the specific task is trajectory generation.

The planning module also includes the collision avoidance constraints which are essential to
plan collision free trajectories. The methods available in literature dealing with static obstacle
and moving obstacles vary in implementation,

Motion controller

The motion controller in this application handles the operational tasks of the vehicle. This
involves tracking the reference trajectory by providing the appropriate control actions in the
form of steering and brake forces. The comfort margins are defined with respect to the control
gains in order to meet the comfortable driving standards.

The trajectory planning is taken care of in the higher level and the lower level controller
using a nonlinear model is designed purely to test the feasibility of tracking a trajectory
generated using a point mass vehicle model. The choice of the controller was evaluated
between simple feedback-feedforward controllers and more complex predictive controller. The
final implementation choice was MPC and the details are motivated in the tracking controller
chapter.
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3-1-1 Operational autonomous vehicles

In this subsection, the operational autonomous vehicles are discussed in detail with espe-
cially the planning stages. The system architecture discussed in the state-of-the-art methods,
highlighted the development of different approaches with respect to deliberative, reactive and
hybrid paradigms. Implementation of the these architectures with autonomous vehicles, uses
a combination of features from the available approaches.
The DARPA challenge [64] benchmarked the technical competence of autonomous vehicle in
practice. In particular, the vehicles Annieway from Karlsruhe, Boss from Carnegie Mellon
and Junior from Stanford deserve special attention. All the vehicles exhibited the common
architecture modules of perception, planning and control in different structures.
Team Annieway from Karlsruhe university, used a state machine in the higher level planner,
and A* search algorithm. The higher level planner included a situational awareness module
to enforce feasible manoeuvres. The cost function developed used a simple distance objective
with respect to obstacles close to the controlled vehicle. The trajectory was estimated as a
function of alignment with the reference path and the lateral offset from the lane centre, ft =
f(a, b). The drawbacks with using motion primitives was compensated using frenet frames
splitting the lateral and longitudinal controllers. The initial and terminal states were fixed
using quintic and quartic polynomials respectively to enable a sampling based optimization
as seen in 3-2 which achieved the final goal of generating collision free trajectories.
The vehicle from Carnegie Mellon used a different approach including a mission planning
and manoeuvre executive blocks as seen in 3-3 to support the motion planning module.
The global lane centre and local non-holonomic trajectory generator optimization goals were
defined with the on-road environment. The advantages of the winning vehicle, Boss were
the fast computation times for smooth operation and detailed global planning stages for
enhanced performance. The need for accurate vehicle models was highlighted in this winning
combination.
The last important example is the V-charge vehicle, that uses a hierarchical task decomposi-
tion framework to achieve the autonomous driving manoeuvres that are industry important
in terms of product life cycle. The on-line motion planning stage uses a tree search algo-
rithm. The common algorithms used in motion planning are the graph search methods, state
lattices, and randomized approaches (RRT, RRT?). The collision detection terms need spe-
cial attention and form an important segment of the planning modules. The methods used
in these papers were analysed to make available all the methods during the implementation
stage. The focus was shifted to model predictive control for planning and control stages with
the relevant advantages. The choice of MPC is chosen for the robust and constraint handling
capabilities. In accordance, the theory of MPC is explained in detail in the following section
before illustrating the hierarchical structure for the controllers.

3-2 Model predictive control

The core theme of the thesis dealing with model predictive control deserves detailed attention
with the advantages and theory for the implementation. This is additionally useful to imple-
ment the two level MPC which poses problems during implementations. The advantages of
MPC are listed to motivate the choice of controllers.
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Figure 3-2: Annieway from Karlsruhe University sys-
tem architecture and sampling optimization to decide
optimal trajectories [6]

Figure 3-3: Boss from Carnegie Mellon University sys-
tem architecture in the vehicle.[6]
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The advantages of using MPC:

• The ability to handle unstable, time variable, non-minimum phase systems,

• Built in feed-forward control to handle disturbances in the processes,

• Enhanced tuning features to achieve the best response including transient responses,

• Robustness feature with the uncertainties in the nonlinear systems

• Scope to include nonlinear equations for a nonlinear problem formulation

•

3-2-1 Generic Model Predictive Control problem

The theory of model predictive control is discussed in detail to highlight working principle.
Model predictive control or receding horizon control is a method to generate the required
control inputs are calculated at each sampling instance k, using the current state as initial
conditions to solve a finite optimal control problem. The number of prediction steps for the
control input are defined by the prediction horizon. The optimization process rendering the
resulting optimal control solution is used on the system. This control input is implemented for
the first step, and the sequence of control inputs is calculated by repeating the optimization
process at the next sampling instance. This includes the important feedback mechanism that
is built into the controllers. A brief introduction to the generic formulation is given and
the resulting nonlinear model predictive control problem in formulated. For a given discrete
system,

xk+1 = Axk +Buk (3-1)

where xk ∈ Ren and uk ∈ Rem are the state and control inputs subject to constraints,

xk ∈ χ, uk ∈ U, ∀k ≥ 0

where chi ∈ Ren and U ∈ Rem represent states and control inputs. The normal regulation
problem in control can be applied by deriving the solution to the optimal control problem at
the time instance k.

min
uk+i|k

p(xk+N |k) +
N−1∑
i=0

l(xk+i|k, uk+i|k)

s.t xk+i+1|k = Axxk+i|k +Buk+i|k, i = 0, . . . , N − 1

xk+i|k ∈ χ, uk+i|k ∈ U, i = 0, . . . , N − 1
xk+N |k ∈ χk
xk|k = xk

(3-2)

The MPC control problem accommodates, terminal cost p(xk+N |k) and state cost l(xk+i|k)
terms. At N th prediction step, the state constraint is a terminal cost. This feature is designed
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to ensure stable controller operation. The final constraint, on the initial condition is the
current state of the system. The k + 1th value of the state x, is obtained from the prediction
model that is used in the MPC controller. Control inputs are calculated over the prediction
horizon, from the current state to the N − 1th term. The control input uk|k is applied to the
plant at time k and the optimization problem of optimal control problem is solved again at
time k + 1 with initial state xk + 1|k + 1 = xk+1.

The important points of the optimization problem is the formulation of the convex optimal
cost function and the relevant constraints. Linear and quadratic formulations are feasible
using the 1-norm and 2-norm respectively. In this thesis, quadratic formulations are used in
structuring the optimal control problem. The property of the LTI system with respect to
time invariance can be exploited to reformulate the optimal control problem in the 2-norm
structure.

min
ui
xTNPxN +

N−1∑
i=0

xTi Qxi + uTi Rui

s.t xi+1 = Axi +Bui, i = 0, . . . , N − 1

xi ∈ χ, ui ∈ U, i = 0, . . . , N − 1
xN ∈ χk
x0 = xk

(3-3)

The tuning parameters in the MPC problem are weighting matrices Q, R and the prediction
horizon. The matrix Q is used to tune the states of the system whereas the matrix R is
used to tune the control gains. Hence they form the tuning parameters along with the
prediction horizon N. Tuning of these parameters are described in section ..... Now that a
brief explanation of MPC technique is provided, the constraints and MPC formulations for
our application are elaborated in the next chapters.

Model Predictive Controller tuning

The development of control systems to satisfy the control objectives of the system requires
tuning. Stable and conforming behaviour can be achieved by tuning the parameters. The
importance is tuning is paramount as the even the correct implementation might not render
feasible results. Discussing the tuning features available with MPC,

Tuning parameters Diagonal matrices Q and R can be used to weigh the system state
matrix and the control inputs respectively. Each individual value on the diagonal corresponds
to the individual states of the system such as position, or velocity, and control inputs such
as steering, or voltage for actuators. The response of the system that is too slow can be
influenced by adding high weighting values in the Q matrix, whereas the control gains are
damped with high weighing values in the R matrix. The important aspect of finding the
optimal trade-off is key to any controller behaviour with opposing objectives. Stability of
MPC controller

The tuning parameters enforce a limited horizon on the MPC problem and this affects the
stability of the controllers. The different techniques to tackle this problem is to set an infinite
horizon, impose end point constraints, terminal cost function, or terminal constraints.
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The terminal cost, prediction horizon and constraints can be tuned to obtain a stable con-
troller. The prediction horizon is limited by the computational cost in the chosen system. The
weights on the cost function can be set to obtain a stabilizing solution. Hard constraints on
the reachable sets might backfire and render an infeasible controller. Thus, with the current
system, the weights on the cost function and the prediction horizon are chosen parameters to
render stability.

Automotive application The application to vehicle trajectory generation and vehicle dy-
namics control have the issues with finding the right trade-off. The trajectory generation
must ensure the objectives of motion planning finding smooth and collision free trajectories.
The tracking controller has to be able to follow the reference but with constraints placed
to avoid aggressive gains. The tuning of the controller might seem appropriate with respect
to the individual controllers but due to the nonlinear nature of the system, system response
analysis is not straightforward. This is also reflected in the difference in behaviour with
the individual controller and the hierarchical controller implemented in this thesis. The use
of nonlinear model predictive control allows to incorporate the nonlinear dynamics model
equations directly into the problem formulation.

Nonlinear Model predictive control

Consider a discrete dynamical system represented using nonlinear equations, where xk ∈ Renx

is the differential state, zk ∈ Renz is the algebraic state which is uniquely determined by the
equality constraint once xk and uk are fixed, and uk ∈ Renu is the control at time step k.
The functions fk and gk are assumed to be twice differentiable.

xk+1 = fk(xk, zk, uk)gk(xk, zk, uk) = 0 (3-4)

The NMPC problem can then be given by where N is the prediction horizon

min
(x,z,u)

N−1∑
i=0

Li(xi, zi, ui) + E(xN )

subject to
x0 − x̄0 = 0

xi+1 − fi(xi, zi, ui) = 0
gi(xi, zi, ui) = 0
hi(xi, zi, ui) ≤ 0

r(xN ) ≤ 0

(3-5)

The differential state vector, algebraic state vector and the control vector are the decision vari-
ables or free variables considered at all discrete time points. The inclusion of the state vector,
and control variations in the optimization problem, accommodation of equality and inequal-
ity constraints allow for the formulation of the controller problems in the subsequent chapters.
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Figure 3-4: Controller architecture for trajectory generation and tracking.

3-3 Hierarchical control system

The introduction to system architecture for the problem of trajectory generation and tracking
establishes a baseline to implement a hierarchical controller. The model predictive control
approach and the theory provides motivation for the chosen approach for our application. The
implementation scheme is discussed to elaborate the challenges with respect to the controller
development.

The illustration in figure 3-4 illustrates the working of the implemented controller. The higher
level controller is responsible for generating a feasible trajectory. The lower level controller
is the tracking controller that receives the lateral position and velocity references from the
higher level controller.

The interaction between the controllers occurs when the lower level controller passes the
system states to the higher level controller. The two state vectors are x4ws and xPM for
the four wheel vehicle and the point mass model respectively. The construction allows for
mapping of the states as defined by the point mass model. This allows using the same value
for the prediction horizon in the both the controllers.



ẏ
ẋ
ψ

ψ̇
Y
X


⇒


y
vx
Vy

∆xj

 (3-6)

Another important feedback value for the controllers are the control inputs generated. The
higher level planner has control inputs for lateral acceleration (ay) and longitudinal acceler-
ation (ax). The values a time instance (k − 1) in uref is sent as feedback in the higher level
controller to produce smooth reference trajectories. The lower level controllers produce the
control input values for steering angle and braking forces. The feedback of these values at
time instance k − 1 is crucial for the calculation of the ∆u formulation.

The states passed from the lower level to the higher level is positionX. This creates a dilemma
between performance and theoretically proving the efficacy of the trajectory generation con-
troller with the position feedback alone. The motivation behind passing the state X and not
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the velocity ẋ or lateral position Y is to satisfy the objective of creating smooth reference
trajectories. The velocity and position values passed back to the higher level controller would
act as the initial conditions for the new optimization iteration. This would result in harsh
manoeuvres to meet the original lane centre reference.

3-4 Concluding remarks

The system architecture of control systems in autonomous vehicles reveals the importance of
different modules relating to perception, planning and control. These modules are arranged
in different approaches and the hybrid architecture combining the deliberative and reactive
paradigm occur in most autonomous systems. The motion planner and controller are ex-
plored in detail and defined with respect to the nonholonomic on-road vehicles. The different
operational vehicles are discussed to support the general architecture used while allowing
the scope to introduce MPC as a viable solution. The theory of model predictive control is
explored in detail to aid in the problem formulation of future sections. Finally, the implemen-
tation scheme of the hierarchical control system is illustrated in section 3-3. The conceptual
implementation of the controllers helps us to achieve the required hierarchical setup for the
trajectory generation and tracking problem.

The following chapters are dedicated to explain the implementation of the individual con-
trollers for the tasks of trajectory generation and trajectory tracking. The controller develop-
ment with constraints, optimal control problem formulation and the approach to obtain the
solution are detailed.
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Chapter 4

Model predictive control methods for
trajectory generation

In this chapter the methods for the controller for trajectory generation is discussed. The
control objectives and practical constraints for the controller are defined in section 4-1, and
4-2 respectively, to guide the controller development. The optimal control problem is for-
mulated in section 4-3 to form the core of the optimization based controller. Consequently,
the important part of the trajectory generation operation is elaborated with the collision
avoidance constraints. The approaches to formulate the collision avoidance constraints offer
insight into the working of the MPC based trajectory generator. Section 4-5 further explains
the optimization algorithm and choice of non-linear programming solver for the application.

4-1 Control Objectives

Trajectory generation with respect to automotive systems primarily deals with the safe tra-
jectory generation while satisfying the vehicle and environment constraints. The previously
described system architecture allows us to formulate the requirements of the controller. The
following control objectives were defined to form a framework for the controller development.
The controller needs to be able to,

• Generate safe trajectory reference in the motion planner level

• Maintain vehicle position with respect to the road boundary and surrounding vehicles

• Maintain the vehicle velocity as per the highway cruising speed.

The objectives broadly define the requirements of the higher level controller. The scenario
representative of the highway environment would require cars travelling with the road lane
boundaries. The condition for a two lane highway is considered for the thesis study. This
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is representative of the majority of the highway roads. The vehicle also needs to travel at
a speed normally maintained on highway roads. Lastly, the important objective to generate
safe collision free trajectory references for the vehicle to follow.

The automotive application brings along several physical constraints due to the nature of
the system. The factors of safety, comfort, actuator limits, legal driving limits, and driving
conditions have to be considered to have a realistic representation in the chosen scenario. As
discussed in the previous section, the higher level planner uses a point mass model of the
vehicle. The practical constraints are assigned appropriately.

4-1-1 Practical constraints

Position

The position of the vehicle on the road must comply with the road boundaries. Lane centre is
chosen as the trivial choice to traverse the right lane of the highway. The keep right directive
is followed in more two thirds of the countries in the world. The lateral position of the vehicle
is monitored and constrained. The lane width is chosen as 3.2[m] averaging the lane width
variation on highways. From this value the lane centre can be chosen accordingly. The CoG
of the vehicle must align with the lane centre and has to be accounted in the constraint
formulation.

Velocity

The speed objective is bounded by the legal speed limit taken at 120[kmph] limiting the
longitudinal velocity to 33[m/s]. A lower bound is set at 0 to avoid backward movement
of the vehicle on the highway. This also further defines the highway scenario as a one way
driving road with no oncoming traffic. The maximum velocity is kept slightly below the speed
limit in a conservative formulation. Vehicles are capable of travelling faster and there are also
many roads where the speed limit is higher at 130[kmph], but for the purposes of this study
a hard constraint is set between 0 and 30[m/s].

Lateral velocity is an important consideration due to the implications on passenger comfort.
The speed at which the vehicle position changes during a lane change scenario has effect on
the values of lateral velocity. Vehicle safety is also considered in the constraint as high values
of lateral velocity causes unstable vehicle behaviour. The conservative values ±3[m/s] was
used as a box constraint on the lateral velocity.

Acceleration

Acceleration limits mainly satisfy the consideration on passenger comfort and vehicle actuator
limits in real life. The studies on comfort, conclusively point to acceleration or jerk metrics.
Using bounds on the acceleration in the longitudinal direction can indicate the maximum
comfortable acceleration and threshold braking limit. Braking limit is important here as
−4[m/s2] indicates the threshold for comfortable braking in case a sudden stop is required.
Maximum acceleration is set for 1[m/s2].
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The acceleration in the lateral direction is also constrained for comfortable movement during
lane change manoeuvres. Here, ±0.5[m/s2] is set for the upper and lower bounds on lateral
acceleration.

Non-holonomic constraints

The relevant constraints implemented reflect the motion planner stage where a point mass
model is used. The model used does not satisfy the non-holonomic vehicle constraints. The
case where longitudinal acceleration is zero in the presence of lateral acceleration produces
a strict lateral movement. This is unrealistic for the vehicle. But there is a small angle
assumption made with respect to the vehicle side slip, and accordingly constrained lateral
and longitudinal velocity values using the equation β = arctan vy

vx
where β = 10 deg. The

constraint −0.17vx ≤ vy ≤ 0.17vx is used to enforce the assumption and compensate for holo-
nomic pure rolling property of the point mass model. This ensures a feasible path generated
in the global co-ordinate system for the vehicle to follow.

4-2 Collision avoidance constraints

The problem of collision avoidance occurs concurrently with trajectory generation because
the significant objective of safety. This is emphasized more in the automotive application
due to stringent safety measures. Highway driving is also characteristic of higher speeds
100− 130[kmph] where directly correlates to an increase in fatality rates.

The traditional methods reviewed for the application such as potential fields methods, grid/-
graph based methods are beneficial with the robotics applications but fail to provide a scal-
able solution. The force field characteristic defined in the potential fields method, defines
a repulsive force for obstacles, but is severely limited with closely spaced obstacles. The
grid/graph based approaches can provide feasible solutions but accuracy, grid resolution and
computational time are linearly related. The choice of using optimization based trajectory
generation carries the additional advantage of defining collision avoidance constraints in the
control problem.

The formulation of the collision avoidance constraints is a crucial step to generate collision free
trajectories. The behaviour of the trajectory generator is governed by the these methods. The
performance index of the optimal control problem is formulated to achieve the best desired
behaviour based on the objectives. The optimal control problem formulation to achieve the
best performance with the control objectives and the following practical constraints respect
the physical and design constraints of the vehicle. The additional constraints required to
achieve safe collision free trajectories are added to the optimization problem formulation. In
this section, the focus is placed on formulating the feasible region for the controlled vehicle to
travel in the driving scenario. The regions critical for the safety of the vehicle, road boundaries
and surrounding vehicles are avoided. This creates a non convex optimization problem with
respect to the safe search space for trajectory generation. The following section is designed
to simplify the optimization problem to a quadratic programming (QP) framework.

The simplest formulation of collision avoidance in the longitudinal direction is the time-to-
collision (TTC) which uses the relative position and velocity between the controlled vehicle

Master of Science Thesis G. P. Reddy



34 Model predictive control methods for trajectory generation

and surrounding vehicle in the same lane. This formulation is infeasible when road curvature
exists and characteristic drawback of the method. Nonetheless, it allows for a simple calcu-
lation of the relative distance between two vehicles on the road, and studies [65], indicate
the optimal time headway time. Time headway parameter determines the safety margins,
and significantly important with collision avoidance. The main assumption of the collision
avoidance constraints is the sensing system is perfectly capable of providing the position and
velocity of all the vehicles involved.

4-2-1 Longitudinal distance from surrounding traffic

The relative distance between vehicles on the road is an important measurement to use in
the safe operation of the controller. The relative distance is a benchmark safety feature that
enables linear collision avoidance systems to enforce a hard constraint. The longitudinal con-
trol of cruise control systems employ the commonly used time-to-collision (TTC) calculation
to assess the likelihood of the crash.

Time− to− collision = dmeasured
vrelatative

TTC = xs − xc
vs − vc

(4-1)

where, xstar is position of controlled and surrounding vehicle. vxstar is velocity of controlled
and surrounding vehicle, for ? = [c, s]

The time measure in seconds gives the probability of crash if TTC ≤ 2. The subjects of
automotive crash safety heavily depend on this measure to assign time scale to the Haddon
matrix [66]. The pre-crash and crash time frame activates the relevant safety measures for
warning or injury prevention.

Minimum distance between vehicles

The basic longitudinal safety constraint with respect to the crash avoidance is minimum
distance between vehicles which depends on vehicle velocity and safe minimum headway
time. Setting a minimum longitudinal distance between vehicles ensures a safety margin, and
in our application, the width of the surrounding vehicle is set at 5[m] to ensure an adequate
safety margin. This is a crude approach to implement due to the limited scalability to all
driving conditions but contributes to the comfort objective by reducing the chances of close
passing manoeuvres.

ddesired = d0 + vcxtheadway (4-2)

where d0 is the minimum distance at standstill (6m) thw is the time headway which is between
[0.5, 5] can be set to 2 seconds for safety measure.

4-2-2 Forward collision avoidance constraints

The forward collision avoidance constraints are designed to avoid collision with the front side
of the controlled vehicle. The optimization search space is designed such that the infeasible
non-convex region does not affect the quadratic programming (QP) formulation of the optimal
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Figure 4-1: Forward collision avoidance constraint [7].

control problem. As shown in figure 4-1, the optimization space is maintained as a convex
problem. This allows for the introduction of slack variables as seen in [7], which are

∆xj
Lf
± ∆yj

W
+ vεxjf

+
εyjf

φ
+ εjf (4-3)

where,
∆yj = ysi − y;
εyj = −∆yi − σ;
εxjf
≥ 0;

εjf ≥ 0;

(4-4)

The terms used in the collision avoidance constraints entail terms for the longitudinal, lateral
directions along with slack variables to improve the performance. The relative longitudinal
distance ∆xj and distance to the vehicle in front Lf , where Lf = vxθf + Lc is defined using
vehicle velocity, time headway and surrounding vehicle length. From the previous section,
the time headway is chosen to be 3[s] whereas margin is included for the length of the vehicle
at 5m. The relative lateral distance ∆yj is intricately related to the road boundary condition
using W = 0.5Wl + Wc where lane width Wl, surrounding vehicle width Wc are considered.
The last three terms include slack variables with respect to the behaviour in the longitudinal
direction, lateral direction and the overall equation.

In depth analysis of the defined slack variables was carried out to understand the boundary
regions that defined the feasible search space for the optimization problem. The terms εjf
and εjr were penalty terms placed to obtain feasible trajectories. The fourth term,

εyjf

φ was
important to relax the constraint after the controlled vehicle has passed the surrounding
vehicle. This term also relaxes the constraint when the relative longitudinal distance is too
large, avoiding lane change manoeuvres too quickly.

4-2-3 Rear collision avoidance constraints

The collision avoidance terms for the rear side prevent collisions with the rear end of the
vehicle. This terms are similar to the forward collision constraints. The main distinction is
the Lr = vxθr +Lc that defines the safe time headway at 2[s]. This parameter is determined
at the start of each optimization cycle.

∆xj
Lr
± ∆yj

W
+ vεxjr +

εyjr

φ
+ εjr (4-5)
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Figure 4-2: Rear collision avoidance constraint [7].

where,

∆yj = ysi − y;
εyj = −∆yi − σ;
εxrf ≤ 0;
εjr ≤ 0;

(4-6)

4-2-4 Limitations

The limitations of this approach extend to the inability to plan overtake manoeuvres irre-
spective of the horizon length. The collision avoidance in the forward direction is works well
wit this formulation but limits the tuning scope of the of the prediction horizon.

A general problem with slack variables âĂŞ they are a mathematical way of turning inequal-
ities into equalities. A common problem in many algorithms that have a stochastic working
(genetic algorithm) or deterministic methods that are not allowed to converge. The current
application is interrupted with maximum iteration limit and accept the currently best solu-
tion. This causes the slack variables to add further complexity. Here, the penalized variable
εjf is heavily penalized in the cost function in order to only affect the forward collision con-
dition when no feasible solution exists. The overall case does not allowed to converge, which
often creates suboptimal solutions.

4-3 Optimal control problem formulation for trajectory generation

The control objectives and practical constraints defined give an guideline for the objective
function and design constraints. The collision avoidance terms, define the optimization search
space for planning safe collision free trajectories. The cost function of the optimal control
problem reflects the main control objectives with respect to desired velocity and lateral posi-
tion. The following equation is the OCP problem formulation,
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min
H−1∑
k=0
‖Vx − Vx,des‖α2 + ‖Y − Yref‖κ2 + ‖Vy‖γ2 + ‖ax‖ϑ2 + ‖ay‖ϑ1

2

‖εjf ‖
A
2 + ‖εjr‖B2 + ‖εj2f

‖C2 + ‖εj2r‖D2

s.t − 0.17vx ≤ vy ≤ 0.17vx
Vxmin ≤ Vx(t) ≤ Vxmax

Vymin ≤ Vy(t) ≤ Vymax

axmin ≤ ax(t) ≤ axmax

aymin ≤ ay(t) ≤ aymax

Ymin ≤ Y (t) ≤ Ymax
εyjf ≥ 0
εyjr ≤ 0
εxjf ≥ 0
εxjr ≤ 0
εjf ≥ 0
εjr ≤ 0

ξ = [∆X1 Y ẋ ẏ X ∆Y1 ∆X2 ∆Y2 X2]T

u = [ax ay]

(4-7)

4-3-1 Prediction horizon

The prediction horizon determines the span of the system evolution for implementing the
control gains. It is an important tuning parameter in the model predictive controller. The
prediction horizon for path planning, would benefit from a long horizon to be able to cope with
the overtake manoeuvres. However, the tradeoff between computational load and controller
performance that can be scaled to real systems. The frequency of the system, sampling
time and average time required to execute driving manoeuvres are factors that can be used
to choose an appropriate prediction horizon. The sampling time of 0.1[s] is sufficient to
simulated for a prediction horizon of N = 30
Different simulation length and sampling times were employed during the simulations to
render the best possible trajectories.

4-3-2 Tuning weights

Here the weighting factors can be used to affect the performance of the different objective
terms in the cost function. The weights play an important role in controller tuning with

Master of Science Thesis G. P. Reddy



38 Model predictive control methods for trajectory generation

respect to the objectives and design constraints. The weights α, κ are associated with the
most important objectives of the controller. The following terms, γ, ϑ, ϑ1 are included to
represent the passenger comfort. Finally, A,B,C,D are the weighting factors for the collision
avoidance terms detailed in the following section.

4-3-3 Cost function

The cost function was analysed in the optimal control problem during the debugging phase of
the controller. The contributing costs of each of the objective terms were analysed to locate
the source of errors with respect to an infeasible trajectory.

The main objectives to reach desired velocity and keep lane centre were heavily influenced
by the non-linearities in the full vehicle model. The controllers developed are intrinsically
linked and the interaction between the controllers passing the states was a significant factor
in deciding the cost function.

The objective term for lateral velocity was considered to increase the comfort of the trajec-
tory generated. The choice to include lateral velocity was made as opposed to include the
acceleration control inputs generated by the higher level controller.

Finally, the presence of several slack variables in the collision avoidance constraints, demanded
for an optimal tradeoff between the slack variables themselves. The approach followed with
the current implementation, is inherently prone to fine tuning the parameters. An auto tuning
formulation was made with the need to find the optimal slack variable values and to find out
the tradeoff between them.

4-3-4 Equality and box constraints

The equality constraints for the optimal control problem entail the vehicle point mass model
relations. The relative longitudinal distance between the controlled vehicle and the surround-
ing vehicles, lateral velocity, longitudinal velocity, relative longitudinal distance between the
controlled vehicle and the surrounding vehicle, and velocities of the surrounding vehicles are
considered.

˙∆X1 = vs1− vx
˙∆X2 = vs2− vx
ẏ = vy

v̇x = ax

v̇y = ay

Ẋ = vx

˙∆Y1 = −vy
˙∆Y2 = −vy;
Ẋ1 = vs1;
Ẋ2 = vs2;

(4-8)
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The information about the surrounding vehicles is included in the system states due to the
linkage between the trajectory generator and the surrounding vehicles for collision avoidance
objectives.

Box constraints set on the velocity, acceleration, and jerk satisfy the design and comfortable
operational constraints of the vehicle.

4-4 Constrained quadratic optimization problem

The optimization problem that renders the solution to the MPC controller is a significant
topic. The efficiency of optimal control inputs required to achieve the desired control objec-
tives are influenced by the solution approach. Traditionally, model predictive control devel-
oped in the process industry with characteristic slow dynamics. The computational capacity
currently available allows for convergence even with systems with faster dynamics. Another
contributing factor are intelligent strategies developed to solve the optimization problems.
The efficiency of the solution directly correlates to increased MPC feasibility in automotive
systems.

The general form of the quadratic constrained non-linear programming problem is defined as,

min
x
f(x) = 1

2x
TFx+ dTx

s.t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(4-9)

where, x, xL, xU , d ∈ Ren, F ∈ Ren∗n, A ∈ Rem1∗n, bL, bU ∈ Rem1 , cL, c(x), cU ∈ Rem2 and
represent the nonliner constraint vectors, gradient matrix or Hessian to Langrangian function
depending on the problem type.

The structure of the problem formulation was referred during the controller development and
coding part to adhere to the correct syntax of the optimization suite. Here, the formulation
example for a constrained QP problem renders a convex optimization problem. These formu-
lations provide the advantage of a converging solution. The methods available to solve the
QP problem involve active set and interior point methods. The optimization problem is not
trivial with our nonlinear system. In that line of research, geometric optimization methods
are used, which are potential future recommendations for implementation.

Sequential quadratic programming

The SQP (sequential quadratic programming) SQP! (SQP!) methods split the problem into
sequence of subsets to find the optimal solution thereby reducing the augmented Lagrangians.
Here, the major iteration representing the number of subsets and the minor iterations that
determine active constraints in the subsets.

The method to solve the NLP problem by making a quadratic approximation of the La-
grangian function and linear approximation of the constraints. The resulting subproblem is
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Figure 4-3: Higher level control block.

a Quadratic Programming (QP) problem given as

min
y
FQPk (y)

subject toG(yk) +∇G(yk)T (y − yk) = 0
H(yk) +∇H(yk)T (y − yk) = 0

(4-10)

If the hessian matrix is positive semidefinite, then the resulting QP problem is convex and
solutions can be found reliably. Other variants of SQP are available, which approximate the
Hessian in the objective function giving rise to the quasi-newton methods. Quasi - Newton
methods are shown to converge superlinearly [67]. The most widely used approximation of the
Hessian is the Broyden-Fletcher-Goldfarb-Shanno method and the Davidon-Fletcher-Powell
method. The solution of this QP subproblem, is then used to find a new search direction and
the process is repeated until the solution converges. A good survey of SQP variants is given
in [32].

4-4-1 Implementation and Optimization solvers

The block illustration in figure 4-3 of the conceptual controller required an optimization
environment using the MATLAB interface.

The implementation scheme in the previous chapter motivated the choice to use TOMLAB
optimization suite for our application. The quadratic programming problem for the higher
level trajectory generation was solved using SNOPT solver where the problem in the form
of a quadratic equation with non-linear constraints. SNOPT solving a qpcon problem was
suitable with the optimization suite supplying the objective derivatives in the form of gradient
or Hessian matrices.
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The main consideration for the solvers is the ability to scale systems to real time implementa-
tion. The state of the art solver, seDumi, ACADO, NPSOL, SNOPT were considered for the
best approach. The solvers have an added advantage to use the cost function, constraints,
and initial conditions of the QP problem to generate a .cpp file. This can be a bridging tool
for hardware implementation.
The issues with optimal solver were experienced during the implementation phase. The
seDumi solver operating over semi-definite cones was unable to provide converging solutions.
In parallel, the ACADOToolkit as used for the integration routines. This approach yielded
suboptimal results and a bottleneck was identified with the compatibility when integrated into
MATLAB interface. Consequently, the seDumi solver was removed to favour a standalone
MPC controller defined in the ACADOToolkit.
ACADOToolkit followed a three layered approach to solving the system differential equation,
defining the optimal control problem with constraints and finally using the optimization
algorithm with initialization and integrator settings. In this approach, the MPC controller
comprised of a on-line control law to obtain the control inputs. The choice to setup up a
dynamic systems was forgone despite the ability to setup different system equations for the
simulation and optimization. The attempt to exploit this setup structure to formulate a
hierarchical controller was unsuccessful.
The implementation of TOMLAB was not chosen as a last resort due to the commercial
licensing limitation. This optimization offers multitude of solver for the nonlinear problems
but due to the limited time constraints of a DEMO license, this superior choice was excluded in
the initial approaches. The choice of optimization solver was introduced as SNOPT. However,
for the purposes of nonlinear programming, two solvers namely NPSOL and SNOPT were
evaluated.
SNOPT [68] for large scale constrained optimization is well suited for general nonlinear opti-
mization problems. The structure of the toolbox allows for special maintenance and building
tools while using the toolbox to test the performance of the controllers. Exit Flags were
monitored to find out the status of the iteration steps ie the quadratic programming prob-
lems that were solved at every iteration. Exit Flag with value 10 shows up in the case of
an infeasible solution. The general constraints for the general case Ax + s = 0, were not
satisfied with respect to A and s. Minor constraint violations are allowed as long as one of
the components in A and s are bounded. This makes it a problem with nonlinear systems
and constraints as source of infeasibility is hard to determine. The last resort is to enter an
elastic programming mode but this case will relax the nonlinear hard constraints and may
not be a feasible optimization problem.
In the case, the nonlinear problem could not find a converging results, the toolbox finds the
closest match to solve the problem linearizing the nonlinear constraints in the local region.
If possible, nonlinear constraint formulation must satisfy feasible solutions in locally linear
regions.

4-5 Concluding remarks

This chapter covered the important aspect of the higher level trajectory generating controller.
The prerequisites for controller development were defined in the form of control objectives,
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practical environment design and operational constraints. Consequently, the essential working
component of the higher level planner were introduced in section 4-2 with forward and rear
collision avoidance constraints. The slack variables that significantly influence the behaviour
of the controllers are introduced. The optimal control problem with all the contributing
cost terms, vehicle and boundary constraints, state vector and input vectors are stated. The
parameters that influence tuning the relevant terms is discussed. The chapter ends with the
details of the QP problem and the optimization suite and nonlinear solver SNOPT used to
obtain the optimal solution.
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Chapter 5

Model Predictive control for trajectory
tracking

This chapter details the working of the lower level MPC controller for trajectory tracking.
The control objectives are defined in section 5-1. The following section details the practical
constraints that have to be considered with respect to the vehicle actuators for steering and
braking. Section 5-3 describes the optimal control problem for the lower level controller. The
controller design is discusses in detail with the choice of acceleration and braking logic in
section 5-4. The final section 5-5 is used to illustrate simulation results for the lower level
controller.

5-1 Tracking control

The tracking control problem is one of the significant types in system control along with regu-
lation problems. Tracking control poses additional challenges when applied to the constrained
non-linear systems which represent most of the industrial processes. The real life applications
have characteristic non-linear properties, dynamic references, and constrained actuators. The
automotive application where the trajectory tracking feature is relevant, is challenging due
to the non-linear vehicle dynamics and complex environment.
In general, the tracking deals with steering the system state to a stable point by solving an
integral quadratic cost function. The supplied reference signal has to be followed as closely as
possible by the actual system. Asymptotic tracking is ideally desired where limt→inf [r−z(t)] =
0 drives the system under stability and detectability conditions of the system. Now, given
the scenario with disturbances, the problem increases in complexity to reach a stable point,
while rejecting disturbances. In the problem formulation for a disturbance rejection problem,
process noise, measurement noise and system load can contribute to the disturbances acting
on the system. Manipulating the control formulation, and equating to the system equation
allows for closed loop control of the system and the error trajectories can be analysed.
Distubance rejection as introduced is an augmented trajectory tracking problem, th
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Since the controller of choice is built to inherently handle disturbances, MPC is a fitting
choice for the given problem of trajectory tracking.

The terminology used in literature with path planning, trajectory planning, tracking and
motion planning are used interchangeably. Path following and trajectory tracking are two
distinct tasks where path following is a geometric link between start and terminal points
which avoids all possible collisions whereas trajectory planning is the on-line calculation of
the vehicle states from one instance while meeting all the constraints. For the rest of this study,
the tracking controller deals with following the reference trajectory with the set tolerances.

5-2 Control Objectives

The lower controller for trajectory tracking has to stabilize the system states with respect to
the reference value. The reference trajectory generated by the higher level controller repre-
sents a collision free trajectory along the highway. The trajectory can represent a number of
scenarios, such as highway cruising, static obstacle avoidance, car following, overtake manoeu-
vre and evasive manoeuvres. The lower level controller has to track the supplied trajectory
with minimal error.

• Track reference generated by the motion planner.

• Generate comfortable control (u) and deviation of control (∆u) inputs.

The safety and comfort aspects of driving are considered with respect to the formulation of the
cost function of the optimal control problem. The cost term minimizing the error in tracking
the reference trajectory bounded by physical and environment constraints, is designed to
ensure safety. The second objective is used to feedback output information and incremental
output information to the model to increase the performance of the controllers.

Input-output (IO) models and the incremental input-output (IIO) models are used to build
receding horizon controllers with improved performance.

5-2-1 Practical constraints

5-2-2 Steering angle for lower level controller

The steering angle output obtained from the controller is the gain obtained to travel the path
of the reference trajectory. This actuator is the common controlled choice in lane change
controllers. The maximum limit of the steering wheel turn depends the vehicle but block
constraints can be placed on he steering angle and steering rate to ensure smooth performance
and comfortable ride. The steering control action must be designed similar to a human
controlled vehicle in the highway environment. The constraint chosen at ±24[deg] on the
steering angle is lower with respect to the maximum actuator limit around 60 deg. Aggressive
response within the bounds of the steering angle is possible and constrained steering rate
provides better comfort during vehicle control. The steering rate was constrained at ±9[deg],
to avoid jerky steering actions.
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5-2-3 Lateral tire forces

The lateral tire forces are generated to control the braking via the brake torque. Yaw moment
stabilization is the common approach with vehicle dynamics control, and performance can be
evaluated. Tire forces are generated in the tire especially the contact patch. This is caused
friction and slipping of the tire. The lateral and longitudinal tire forces with relation to slip
are calculated in the modelling section. The brake torque distribution for the vehicle control
at the individual wheels are estimated using the algorithm in controller design section. The
complex model of the vehicle with the wheel render non integrable velocity constraints. The
constraints arise from the condition where pure rolling occurs without slip. The constraints
set on the front and rear lateral tire forces Fl, Fr were ±15000[N ]. The constraints on the
rate of change of lateral forces were also placed as a box constraint at ±10000[N ]. This is
expecting very capable actuators as the forces generated are much lower in real life. The
constraints had to be relaxed to achieve better vehicle response.

5-3 Optimal control problem formulation

The lower level predictive controller must satisfy the previously defined control objectives
and the constraints. The task of trajectory tracking is nothing but trivial due to the non-
holonomoic nature of the on-road vehicle. Thus, the simple case of the traversing in a straight
path without any obstacles is challenging. The ζ tracking cost term minimizes the error in
tracking whereas the cost term for control inputs ensures smooth vehicle response.

min
H−1∑
k=0

(‖ζt+k,t − ζreft+k,t
‖Q2 + ‖∆u‖S2 )

s.t Flmin
≤ Fl ≤ Flmax

Frmin ≤ Fr ≤ Frmax

0 ≤ ẋ
Ymin ≤ Y ≤ Ymax
δmax ≤ δ ≤ δmax

δ̇ ≤ δ̇ ≤ δ̇

ξ = [ẏ ẋ ψ ψ̇ Y X]

u = [δ Fl Fr]

(5-1)

5-3-1 Prediction Horizon

The prediction horizon defined for both the controllers, the length of the system predicted by
the controller. The following control horizon, implemented for a single step maintains the a
constant control input over this step. The prediction horizon for this controller was chosen
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based on the length of the reference trajectory. This ensured the correct response with the
high prediction horizon. The influence of the prediction horizon on the computation was lower
with respect to the iteration limit factors. Therefore the sacrifice was made to include a high
prediction horizon. In the case of the manoeuvre similar to double lane change, Hp = 170
was chosen.

5-3-2 Cost function and tuning parameters

The contributing objective terms minimizing the deviation from the reference state, control
input and deviations in control input. The main tracking term ζt+k,t−ζreft+k,t

, is the deviation
of the state ẋ, Y from the reference state vector ẋref , Yref .
The second and third terms in the objective function u and ∆u allows weighting large control
gains and large deviations in control gains. This will satisfy the comfort factor for vehicles
where abrupt control inputs, with respect to steering angle and braking are not desirable. The
box constraints set on the control inputs, also add to the comfort factor. These limitations
align with the physical and design constraints of the system. The important tuning variations
considered here were to include only ∆u term as opposed to using both control and control
deviation cost terms in the objective function. This allowed for sharper tuning and lower
tuning parameter values that can be influenced. The advantages of using only ∆u values
stood out as explained in the later subsection.
The weighting terms for the objectives Q, R, and S are essential in tuning an appropriate
response from the system. Here, diagonal matrix values of Q2,2, acting on the tracking
objective weights the velocity and position terms respectively. The tuning of diagonal matrices
R3,3 and S3,3 is challenging, as the control vectors u = [δ, Fl, Fr] and ∆u = [δ̇, Ḟl, Ḟr] that are
included in the objective plays a significant role in smoothing the trajectory tracking feature.
The parameter space for the tuning factors were influenced to obtain the optimal values for
the lower level controller.

5-3-3 ∆u formulation

The inclusion of the ∆u formulation is to exploit the use of change in control input ∆u(k),
as opposed to the control input u(k). It is beneficial to minimize the steady state error
mimicking an integral action. As explained in the feedback of control inputs in the controllers,
the variation in control inputs is included in the state vector.
An additional constraint can be imposed on the ∆u values called slew rate constraints. Since
the current controller formulation uses the ∆u in the objective function, the values are opti-
mized. Thus the additional constraints do not add any functional advantages. The control
input values at u(k − 1) can be used to estimate the ∆u given the plant model is sufficiently
accurate. Since the estimated values are based on the model of the plant, the issues with
model mismatch are carried over rendering a non-zero steady state value.
The efficiency of the MPC during a transient input at the start of the simulations is hindered
by the physical constraints. A possible solution would be to relax the constraints on the control
input the first implementation step to avoid infeasible solutions from the MPC controller.
Since the constraints on control inputs u and deviations of control input ∆u have been
defined, a strategic relaxation was employed during the controller tuning phase.
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Figure 5-1: Lower level control block

5-4 Controller design

The lower level controller gives the control inputs in the form of steering angle, brake forces
for the front and the rear wheels. The control block in 5-1, illustrates the components in
the operation of the lower level controller. The reference trajectory from the higher level
controller is fed for tracking purpose along with the predicted control input vector. This
forms the feedback loop for lower level controller and ∆u formulation.

The controller generates the tire lateral forces at the front and the back wheels whereas the
brake torque distribution logic is required The method behind the torque distribution can
be computed from the optimal values of the front and rear brake forces. The tire slip angles
determine the braking action on the wheels.

The commonly used single wheel braking logic is incorporated with respect to the dynamics
control. The braking yaw moment to control the vehicle is induced without drastic effect on
longitudinal dynamics. This can be explained by the concept of oversteer and understeer in
vehicle dynamics. It is preferred to have the vehicle in the oversteer region as there is an
understeer limit beyond which vehicle is uncontrollable. When the vehicle 5-3 turns more
than the desired amount on the curve, the vehicle is said to be oversteered. In the condition
when the amount of steer is insufficient to execute the turning manoeuvre, the vehicle is
understeered. This phenomena is plotted in the linear region as shown in 5-2. The desired
response can be determined based while keeping the vehicle stable and comfortable.

The pseudo algorithm 1 [69] explains the instances when the brake torque is distributed [8]. In
relation to 5-3, the outer wheels receive brake torque when understeer is required while inner
wheels receive brake torque when oversteer is required. This value depends on the slip angles
at the front and rear of the vehicle. The dynamics behind the front and rear distribution
which assumes an equal traction force ration between the rear and front side. The important
thing to notice here is the saturation of lateral tire forces required to control the vehicle.
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Figure 5-2: Vehicle oversteer
and understeer limits with re-
spect to steering angle and lateral
acceleration [8].

Figure 5-3: Vehicle oversteer
and understeer representation.
[9]

During aggressive manoeuvres, and fast control inputs that the vehicle has to adhere to, it is
possible the vehicle cannot be stabilized. Alternative formulations are possible for the brake
torque distribution but not considered in this thesis. The points highlighted in [69], show
the performance is better with the left/right brake distribution as opposed to the application
in our study. The preferred method to induce oversteer yaw moment, and understeer yaw
moment, would be to brake the rear inside and front outside wheels respectively.

Algorithm 1: Braking torque calculation

Input: Fll , Flr , αf , αr
Output: Tbf,l

, Tbf,r
, Tbr,l

, Tbr,r

begin
if Fll = 0 and Flr = 0 then

Tbf,l
= 0, Tbf,r

= 0, Tbr,l
= 0, Tbr,r = 0;

else
if αf − αr > 0, then
Tbf,l

= 0, Tbf,r
= 0, Tbr,l

= −rFll , Tbr,r = −rFlr ;
else

else
Tbf,l

= −rFll , Tbf,r
= −rFlr , Tbr,l

= 0, Tbr,r = 0;
end

end
end

5-5 Tracking controller simulation

The lower level tracking controller handles several non-linear design and physical constraints of
the vehicle model and tire. This produces less than optimal behaviour for simple manoeuvres.
The controller was tested for standard manoeuvres, double lane change. This test was used to
tune the lower level controller for the best performance when incorporated into the hierarchical
scheme.
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Figure 5-4: Double lane change manoeuvre specifications [8].

Primarily, different velocities were used to analyse the tracking controller performance with
a double lane manoeuvre. The performance of the controller was measured against standard
time domain performance metrics to avoid overshoot and reasonable setting and rise time to
converge to the reference.

5-5-1 Double lane change manoeuvre

The following tests were conducted to evaluate the individual performance of the lower level
tracking controller. A trajectory was constructed according to the rules stated per ISO 3888-1
for a double lane change manoeuvre.

The common driving manoeuvres used in testing vehicle dynamic control systems include
the double lane change manoeuvre. It approximates the vehicle behaviour changing lanes
from right lane to left and back again. The vehicle handling with understeer, oversteer
conditions that are caused by saturated tire forces and high lateral acceleration forces during
the execution. The stability in the lateral manoeuvres are especially tested with this case.

The test is defined by the International Standard ISO 3888-2 for double lane change ma-
noeuvre in the normal case. The entry lane, exit lane, lane width, lateral and longitudinal
lane offset are defined as shown in figure 5-4. The advantages of the test for autonomous
controllers is the objective results obtained, and the reproducibility of favourable results.

The vehicle must achieve the a smooth manoeuvre while avoiding the cones along the path.
The lateral distance between the cones are dependent on the width of the vehicle. This is
included in the ISO standard test which allows the width to be modified based on the vehicle.
The expression Wlargest = 2.1Wc + 2.25 where, Wc is the width of the vehicle.

5-5-2 Implementation and Optimization

Here, the parameters to tune the cost terms Q and S were intuitively tuned but to improve
the performance, an optimization using ′fminseach′ was carried out to search the parameter
space for the optimal values. This yielded a systematic approach to tuning the parameter
values for the desired response.
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The optimization solver SNOPT was used for the lower level tracking controller as well. The
ability to solve general nonlinear optimization problem with the scope to handle quadratically
constrained problems was a supporting factor in the choice. The lower level controller was
tuned with respect to the required objectives and the the contributing objectives were the
error tracking and the ∆u formulations. Another technique to evaluate the performance of
the setup dealt with the major iteration limit with respect to the SQP problem. The lower
limit allowed for faster optimization solutions and ability to test more parameter values. Once
acceptable results without response blow out, the iteration limit was increased to find optimal
tracking responses. The function cost and the parameter values were monitor during each
iteration to evaluate if the cost term was indeed converging to a minimum value.

The effect of the initial condition on velocity was noticed to affect the performance. The
lower velocity value, intuitively yields better response when the full optimization procedure
is completed. With the lower iteration limits, the parameter values were not robust posing
more search directions for the optimizer. Thus the higher velocity value had a more desirable
result with the current formulation. It is expected to change once the full optimization cycle
with higher iteration limit is set.

5-5-3 Results

The following results were obtained for the tracking controller subject to the standard double
lane change manoeuvre. The initial results obtained for the lower level controller shown in 5-5
rendered a smooth manoeuvre but violated the safety margin by colliding with the cones. This
was improved by optimizing the tuning parameters in the parameter search space. The figure
5-6 indicates the path following of the vehicle along the cones following a safe manoeuvre. The
initial lag can be attributed to the large entry speed 20[m/s]of the vehicle. The tests in [47]
test the vehicle upto 12[m/s] with constraints. This indicates the degradation in performance
with respect to the increase in vehicle velocity. But the tuning efficacy of the controllers
rendered a good result for the high speed entry. The ability of the vehicle to handle the
double lane change manoeuvre at high speeds qualifies as an evasive manoeuvre when tested
with the ISO 3888-1 manoeuvre.

The figure 5-7 shows the lateral position of the vehicle. This graph is indicative of the
smooth curves generated with respect to the lane change manoeuvre.The plot 5-8 indicates
the steering angle and steering rate while following devoid of any aggressive control inputs.
This plot upholds the feasible performance criteria with respect to smooth following with
comfortable control inputs. Finally the yaw rate and the brake torques are depicted in figures
5-10 and 5-9. The stability of the vehicle is maintained throughout the curve despite the high
entry velocity. The braking logic applied can be seen to induce the required turning action
as the vehicle traverses the curve.

5-6 Concluding remarks

The chapter details the tracking control problem and added complexity with disturbances.
Equipped with disturbance handling features, the control objectives are defined for the tra-
jectory tracking MPC controller. Here, the practical constraints are important due to the
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Figure 5-5: Path following performance of vehicle entering at 10[m/s]

Figure 5-6: Path following performance of vehicle entering at 20[m/s]
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Figure 5-7: Lateral position Y of the controller vehicle.

Figure 5-8: Steering and steering rate measures for the double lane change manoeuvre.
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Figure 5-9: Brake torques at the four wheels.

Figure 5-10: Yaw angle and yaw rate of the vehicle during the double lane change manoeuvre.
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immediate connection to the vehicle actuator from the lower level control inputs. The opti-
mal control problem is formulated with the relevant constraints and the tuning parameters
are discussed for the MPC controller. The braking logic is discussed with respect to vehicle
dynamics control to deduce the brake torque at all the wheels. Finally, the tracking controller
is tested with a double lane change manoeuvre to evaluate the performance of the controller.
The results obtained for the entry speed of 20[m/s] satisfied both the comfort and safety
criteria. The results showed reasonable tracking and potential scalability to the hierarchical
controller.
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Chapter 6

Simulation Results

Testing the hierarchical controller developed using the methods discussed in the previous
chapters evaluates the performance of the controller. This chapter presents the results for the
simulations carried out in certain scenarios. The critical analysis of the results, reveals the
conditions where the controller can satisfy the control objectives in the highway environment.
The limitations of the controllers can be observed here for further development. Controller
tuning remains one of the important tasks to calibrate for the best performance. General
trial and error methods are employed at the start, and the results analysed to improve them
accordingly.

The following chapter illustrates the performance of the controller with the chosen scenarios.
Section 7-1 is used to define the tuning values for the higher level and lower level controller.
These values were modified with respect to certain scenarios but the changes were kept to
a minimum to display controller robustness. In section 7-2, the scenario for free highway
driving is tested with respect to the higher level controller and the hierarchical controller.
The following sections were used to show simple driving manoeuvres of car following and lane
change. Section7-4 marked the complex problem of moving obstacles and the performance
of the controller under those conditions. Finally the initial results to show the limitations of
the problem formulation with overtake of moving obstacles. The problem added an evasive
manoeuvre requirement to the controller where the vehicle encounters a slow moving vehicle
in the desired lane.

6-1 Simulation environment and controller tuning

All simulations were carried on a HP ENVY Sleekbook with the system capacity listed in
table 6-1. The limited computational capacity of the computer increased the computation
time with respect to the optimization iterations.

The simulations were primarily executed in MATLAB 2014a and SIMULINK. The controller
implemented was overhauled several times as explained in section 5-3 with the methods cho-
sen. At final implementation, the ACADOToolkit was used to link the controller to the model.
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Table 6-1: Computer hardware details.

Component Specification
Processor Intel(R) Core(TM) i5-3317U, 1.70GHz, 1701 Mhz
RAM 4 GB
Processing cores 2 Core(s), 4 Logical Processor(s)

Table 6-2: Controller tuning parameters

Parameters Symbol value
Prediction horizon HpHL 10− 30
Prediction horizon HpHL 10− 30
Weight Q1,1 30− 60
Weight Q2,2 90− 120
Weight R1,1 0.1− 0.3
Weight R2,2 0.01− 0.03
Weight R3,3 0.01− 0.03
Weight S1,1 0.01− 0.03
Weight R2,2 0.01− 0.03
Weight R3,3 0.01− 0.03
Weight α 10− 30
Weight κ 2− 6
Weight γ 5− 15
Longitudinal velocity ẋref 30[m/s]
Sampling time Ts 0.1

TOMLAB was used to interface with MATLAB to gain access to the non-linear solvers avail-
able. This greatly improved the performance of the controller given the complex non-linear
behaviour of the system and problem of trajectory generation.

Another important factor with running simulation on the laptop is the windows priority
assessment for the tasks. The optimization routine running in MATLAB will take less priority
over the movement of the cursor. This is a minute detail compared to the host of other tasks
that are running which are assigned more priority by the windows 10 operating system.

The following controller tuning parameters were selected with the formulation of the MPC
problem. The optimal range of tuning parameters was found and adjusted according to the
required scenario.

Influence of tuning parameters are elaborated with respect to the particular scenarios. The
control goal is relatively modified with the addition of specific requirement of the scenario
and the tuning parameters are conservatively modified.

6-2 Scenario 1: Free driving

The first testing scenario was chosen to evaluate the operation of the controller. The simple
case was chosen to evaluate the performance of the controller and aid in the fine tuning
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situation with the other scenarios. The higher level controller and the combined controller
were tested with for the cruising scenario.

6-2-1 Trajectory generation controller

The trajectory generation for the simple case of highway cruising is illustrated in figures 6-1
and 6-2. The objectives for lane keeping and reaching desired velocity are satisfied for this
scenario. The lane keeping objective to maintain the vehicle CoG at the centre of the road
defined by yref = 0 is followed perfectly. The second objective to meet the desired velocity
can be seen to follow a smooth curve in the case where desired velocity is set at 15[m/s] in
figure 6-2. The initial conditions for the cases in 6-1 were set at 0 for the starting position
and 15[m/s]. In figure, 6-2, the performance was tested for a perturbed initial condition for
position from −1.1[m] and velocity 0[m/s] to simulate a vehicle starting from position away
from the lane centre from a standstill. The results indicate feasible performance with both
the objectives.
The speed objective is highlighted more in this scenario analysing the effect of desired velocity
on the performance of the vehicle. Figure 6-3 depicts the time taken for the vehicle to reach
desired velocities of 15[m/s] and 36[m/s] from an initial condition of 0[m/s]. The constraint
on longitudinal velocity (0 ≤ Vx ≤ 30) was relaxed for this test case. This simulation is used
to show the time taken to reach the average cruising speeds as per the NEDC [] driving cycle
and the maximum legal speed limit on highways. The results show that the vehicle takes 38%
more time to reach the legal speed limit of 36[m/s] in 11.2[s]. This can be attributed to the
constraints placed on velocity and acceleration for the longitudinal direction.
The performance of the trajectory generation is optimal with this case. As seen in the
previous section, the performance of the lower level tracking control was optimal for the given
trajectory. The next section is used to display the results for the hierarchical controller.

6-2-2 Hierarchical controller

Performance of the hierarchical controller was tested for similar scenarios. The figure 6-4
shows the performance of the combined controller for the simple case. The efficacy of the
lower level controller following the position reference of higher level trajectory Yref is not ideal.
The deviation of the lateral position does not exceed 0.7[m] in any instance. This is tolerable
deviation but unacceptable condition for smooth ride. The velocity profile ẋ indicates the
erratic change of speed due to the deviation of the lateral position.
The second case tested in figure 6-5 is chosen with the non zero initial condition for lateral
position (Y 0) at 1.1[m] and a higher starting velocity at 25[m/s]. The deviation from the
lane centre is minimal in this case, and the the velocity variation is smoother compared to
the first case in 6-4.

6-3 Scenario 2: Car following

The car following case is included to test the ability of the controller to maintain the lane in
case the desired velocity is met without need for a lane change. The non-holonomic nature
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Figure 6-1: Trajectory generation in free highway cruising.
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Figure 6-2: Trajectory generation in free driving at higher speed.
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Figure 6-3: Time taken for controlled vehicle to reach different desired speeds.

Figure 6-4: Performance of the hierarchical controller.
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Figure 6-5: Performance of the hierarchical controller for non zero initial condition for lateral
position Y .
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of the vehicle does not allow for a trivial trajectory generation and tracking solution even in
the straight path. The behaviour of the system for the car following provides insight into the
effect of the prediction horizon.

6-3-1 Trajectory generation controller

In figure 6-6, the car following function is simulated with a surrounding vehicle in the same
lane. The predefined motion of the surrounding vehicle is set with a starting position 80[m]
ahead of the controlled vehicle. The initial velocity of the controlled vehicle is set at 10[m/s].
The first observation with the results is the reduction in velocity as the along the length of
the road. Here, the main issue with respect to the prediction horizon where Hp = 30. The
controller takes into account the vehicle ahead, and initiates a slower trajectory following.
This result indicates the importance the prediction horizon tuning parameter in the current
approach.

The different parameters were tested while tuning, and the some results indicated that the
presence of the obstacle avoidance constraints is the single most influential factor in the
behaviour and performance of the controller. Thus the focus shifted to tuning the slack vari-
ables. In the figure 6-7, the lane keeping objective and the speed objective are satisfied. The
changes made with respect to initial condition on lateral position (Y 0) with a value of 0.001
rendered the required result. The slight perturbation to the optimization problem resolved
the issue. Due to the functioning of solver, this is a frequent occurrence in the optimization
processes. Usually, when the limiting value is taken as initial, due to algorithm setup the
optimizer fails to find a feasible initial solution, and the suboptimal out frequently violates
many constraints. Introducing perturbations in the right direction can be very beneficial in
obtaining the optimization results.

6-3-2 Hierarchical controller

The observation of suboptimal tracking can be observed with the hierarchical controller. The
build of control gain in the lower level controller, was evident in the result but the cause of
the anomaly was hard to pinpoint. The constant reduction in speed is followed by the vehicle
whereas the position tracking is satisfied until 250[m] on the longitudinal direction. The
larger deviation from the lane centre is observed which also reflects in the speed deviation.
The change in the direction of the vehicle causes the reduction on vehicle speed.

The observation with the steering angle is seen to change aggressively with the maximum and
minimum bounds set at 0.41[rad]. The steering rate constraint set at ±0.17[rad]to restrict
the aggressive changes is violated.

6-4 Scenario 3: Lane change manoeuvre

A lane change manoeuvre is one of the fundamental driving tasks along with the speed and
lane keeping tasks. The choice to obtain a lane change manoeuvre but not a complete overtake
manoeuvre can be motivated to test the ability of the controller to perform a lane change
operation. The smoothness of the trajectory generated to obtain the results was evaluated
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Figure 6-6: Car following ability when surrounding vehicle is travelling at desired highway velocity.
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Figure 6-7: Car following ability when surrounding vehicle is travelling at desired highway velocity.

in the trajectory generation controller. Consequently, the hierarchical controller was tested
with the lane change scenario.

6-4-1 Trajectory generation controller

The figure 6-9 is the simple case for the lane change manoeuvre with the lateral position
reference yref set to 3.2 to indicate the lane centre in the outside lane. The vehicle CoG
has to converge with the lateral reference position to meet the position objective and the
velocity response is desirable for the vehicle. The vehicle performs the manoeuvre to reach
the objective in 70[m]. This value is acceptable due to the average lane change distance
required lies between 60− 100[m] for a single lane change manoeuvre.

The two cases seen in 6-9 and 6-9 indicate the difference in performance with different veloc-
ities. Comparing the figures, it is evident the vehicle requires more than twice the distance
to reach the higher desired speed at 25[m/s] compared to 15[m/s].

6-4-2 Hierarchical controller

The hierarchical controller was tested for the lane change operation after obtaining the desired
result with the lane change trajectory generator. The vehicle performance test on the double
lane change as seen in the lower level controller was capable of following the trajectory. The
behaviour of the hierarchical controller combining the the two individual controllers shows a
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Figure 6-8: Hierarchical controller car following feature

Master of Science Thesis G. P. Reddy



66 Simulation Results

Figure 6-9: Lane change manoeuvre for vehicle.

G. P. Reddy Master of Science Thesis



6-4 Scenario 3: Lane change manoeuvre 67

Figure 6-10: Lane change manoeuvre for vehicle with higher desired speed.
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Figure 6-11: Lane change manoeuvre with trajectory generation and tracking.

desirable results at the beginning on the manoeuvre with the lower level sufficiently tracking
the higher level controller. The slight overshoot of the lower level during the lane change
manoeuvre quickly falls below satisfactory following condition. The undesirable behaviour at
x = 200[m] and x = 300[m] are compensated to return the vehicle to the original position
reference at yref = 3.2[m]. The unacceptable behaviour is seen in the drop in velocity due
to the drop in change in direction however the minimum velocity constraint set at 0 ≤ VX is
violated indicating a reverse direction. Physically, this is not acceptable. The steering angle
on the other hand reaches the saturation limits of the constraint, and is restricted to use a
higher control gain for the required result.

6-5 Scenario 4: Static obstacle avoidance

The static obstacle case depicts the capability of the controller to avoid static obstacles. The
case chosen here, represents a scenario where a car has stalled or come to an abrupt stop,
and the controlled vehicle has to successfully plan a path around the obstacle. The controlled
vehicle plans an overtake manoeuvre around the surrounding vehicle to return to the original
lane centre reference. The margins of safety on the obstacle, and the interaction of the two
collision avoidance constraints acting varies the ability to cope with the obstacle. The scenario
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is tested with the higher level trajectory generator first and the feasibility of the trajectory
generator is evaluated.

6-5-1 Trajectory generation controller

In figure 6-12 the case for the static obstacle positioned at a distance of 80[m] from the
starting position of the vehicle is detected and appropriate trajectory is planned. The lateral
position y curves around the static obstacle, and the first behaviour noticed is the path that
overshoots the lane centre of the outside lane. This behaviour can be attributed to the small
feasible region formed due to the collision avoidance constraints. This is also reflected in the
increase in velocity above the desired velocity. The tuning of the path back to the lateral
reference(yref = 0) follows a less than smooth path. This behaviour has been achieved by
extensive tuning of the slack variables (εjr , εxjr) despite the second spike at 130[m] which is
reflected in the velocity curve as well. The overtake manoeuvre completed in 200[m] is above
the average distance required for overtake manoeuvres on highways but the set desired speed
is set at 20[m/s] which is also lower than the limit for highway driving speed.

Another scenario with the obstacle avoidance ending in a lane change operation reflects a
situation where the controlled car would need to stay in the outside lane longer to anticipate
another slow moving car or other obstacles. The convergence to the lane centre on the outside
lane (yref = 0) is faster as opposed to returning to the left lane centre. The velocity profile
on the other and does not change with the new reference value. The overshoot of 0.3[m] from
the outside lane centre at 125[m], causes the spike in velocity to speed the reach to the lateral
reference.

6-5-2 Hierarchical controller

The hierarchical controller tested for the static obstacle case, achieves the convergence to the
lane centre after oscillating and violating the boundary constraint. The travel to the edge
of the road beyond the lane centre from 35 − 110[m] on the outside lane and at 160[m] and
230[m] on the right lane is the lane centre violation. Whereas the velocity profile is infeasible
with several undesirable behaviours seen with respect to the velocity reference. The nonlinear
characteristics of the vehicle and the inability to track the higher level trajectory formed using
the point mass model contribute to the unwanted behaviour. Steering angle variation reaches
the saturation limit during the first operation and then varies with respect to the change in
position.

6-6 Scenario 5: Overtake manoeuvre with slow moving vehicle

The scenario representing the overtake manoeuvre similar to vehicles passing in the presence
of a slower moving vehicle in the travelling lane. The controlled vehicle behaviour in the
presence of a slower moving vehicle, must overtake the slower moving vehicle and return to
original lateral position reference.

Master of Science Thesis G. P. Reddy



70 Simulation Results

Figure 6-12: Overtake manoeuvre with static obstacle in desired lane.
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Figure 6-13: Overtake manoeuvre with static obstacle in desired lane with outside lane centre
reference.
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Figure 6-14: Hierarchical controller performing overtake manoeuvre with static obstacle in de-
sired lane.

6-6-1 Trajectory generation controller

Figure 6-15 is the regular case where, the vehicle has to pass the slow moving surrounding
vehicle starting to move from initial position 80[m] and travelling at a slower speed of 10[m/s].
The behaviour noticed in this scenario highlights the issues with the trajectory generation in
the overtake case. The lane change manoeuvre initiated reaches the road boundary due to
the small feasible region in the optimization problem, and initiates a convergence to the lane
centre, at 120[m], this is changed due to the presence of the slower moving forward collision
avoidance boundary. The passing of the vehicle, at 230[m] avoids the slower moving vehicle
at a small margin. The surrounding vehicle starting at 80[m] reaches, 190[m] in 11[s] of the
simulation and trails behind the controlled vehicle. The rear collision avoidance constraint,
is violated due to the small relative distance between the two vehicles.

The influence of the rear collision avoidance constraints is not seen in figure 6-16 where the
controlled vehicle is the lateral position reference (yref = 0).

6-6-2 Hierarchical controller

The hierarchical controller for the original case degrades in performance with the infeasible
trajectory.

The condition where the vehicle as to stay in the left lane after passing the obstacle is show
in picture 6-17.

G. P. Reddy Master of Science Thesis



6-6 Scenario 5: Overtake manoeuvre with slow moving vehicle 73

Figure 6-15: Overtake manoeuvre with slow moving obstacle in desired lane.
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Figure 6-16: Lane change manoeuvre with slow moving obstacle in desired lane.
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Figure 6-17: Lane change manoeuvre with slow moving obstacle in desired lane.

Master of Science Thesis G. P. Reddy



76 Simulation Results

6-7 Concluding remarks

The problems that arose during the implementation phase of the hierarchical controller ren-
dered suboptimal results in the complex scenarios. The systematic problem decomposition
and different strategies of implementation were unable to resolve the issue. It would seem
that there is a build-up of control gain in the lower controller with an effective instability in
the upper controller for the proposed lower controller range. The attempt to search the hyper
parameter space was not a viable method, due to the slow function execution.

The simple scenarios displayed feasible results while the errors in the higher level controllers
can be accounted to the tuning parameters. The effectiveness of the approach with the
collision avoidance constraints are subject to tedious tuning process despite the inclusion of
the auto tuning feature in the cost function formulation of the higher level controller. The
development and testing process must be subject to alternative formulations and further
tuning procedures.
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Chapter 7

Conclusion

The main goal of the thesis was to implement an hierarchical model predictive controller for
trajectory generation and tracking in the highway driving environment. The motivation to
pursue the topic and choice of approach were elaborated in the chapter 1 supported by the
literature survey. The emphasis was placed on the performance of the controllers and test
the feasibility of the hierarchical scheme with the various manoeuvre scenarios as seen in the
previous chapter.

7-1 Thesis contribution

• Evaluating the issues with hierarchical controller setup for trajectory generation and
tracking.

• Testing the hypothesis of generating the reference trajectory with the position state
alone. The lower level controller passing a single state to the higher level controller
generates a feasible trajectory. The trajectory is subject to tuning and improvement
with adding one or more states in the feedback.

• Successfully developed a model predictive tracking controller capable of executing the
lane change manoeuvre at an entry speed of 20[m/s]

7-2 Future work

7-2-1 Model mismatch uncertainties

The model to describe the full vehicle was complex and represented the behaviour of the
system. This model yet does not capture, longitudinal dynamics during weight shift, coupled
longitudinal and lateral dynamics and suspension dynamics. The non-linear behaviour can
be better modelled and kinematic relations can be exploited to obtain a robust model with
tolerances for any mismatch with the real world.
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7-2-2 Alternative interfacing for Higher level and Lower level controllers

The controllers work well individually but linking the controllers adds additional complexity.
The system response is hard to analyse with the presence of nonlinear constraints. Thus an
interfacing layer to accommodate the smooth passing of instructions from higher level to lower
level and passing of feedback information from the lower to higher level must be incorporated.

7-2-3 Non-convex search spaces

The current formulation simplifies the feasible region for the vehicle trajectory to satisfy the
quadratic programming (QP) problem formulation, and maintain convexity. The lane keeping
objective was often violated due to the collision avoidance constraints and the cost function
including a non-convex objective term penalizing the vehicle travelling at the road edges might
render better lane keeping results.

7-2-4 Computational time

The initial goals of the controller development was real time implementation. Due to the
complexity of the non-linear vehicle model and interfacing limitations between the higher level
and lower controllers, the on-line optimization procedures required time. This optimization
time was infeasible for real time implementation, and further strategies need to be developed
to improve the speed of computation.

7-2-5 Prediction model for system and surroundings

The ability to detect the surrounding vehicles and environment are crucial to the operation of
autonomous vehicles. The topic was explored in depth with respect to driver models, traffic
models, and environment models to choose the best method to represent the dynamics of the
surrounding. The augmented model which needs to be validated by itself before implementing
with the controllers proved to be a vast research topic of the thesis. These methods could be
further analysed to choose the best possible gain.
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Appendix

A-1 Appendix A

A-2 Bicycle model

Bicycle model or Single track model is a simplified version of the full vehicle model by lumping
the wheels at the front and rear axles.

The dynamic equations of the bicycle model is compactly written as:

ξ̇ = fby(ξ(t), u(t)) (A-1)

Compact function fby is used for the bicycle model. ξ ∈ Ren is the state of the system and
u(t) ∈ Rem is the input. There are six states and three inputs in this model. As seen in [47]
The six states are lateral and longitudinal velocities in the body frame, the yaw angle, yaw
rate, lateral and longitudinal vehicle coordinates in the inertial frame are by state vector is
given by

ξ = [ẏ, ẋ, ψ, ψ̇, Y,X]′

. The input vector is given by
u = [δf , Tf , Tr]′

where δf is the front steering angle and T? is the braking and tractive torque on the wheel.
Positive T? denotes tractive torque while negative T? denotes braking torque.

Figure A-1 shows the modelling terms of the one track bicycle model. In particular, Fc?

and Fl? are the cornering and longitudinal tire forces in the tire frame. Fy? and Fx? are the
components of the tire forces along the lateral and longitudinal vehicle axes. Front steering
angle and distance between centre of gravity (CoG) to front and rear axles are given by δf ,
a and b respectively.

The detailed dynamic equations can be described by the following equations:
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Figure A-1: Bicycle (one track) vehicle model for forces acting on a vehicle body fixed frame [5]

mÿ = −mẋψ̇ + 2Fyf + 2Fyr
mẍ = mẋψ̇ + 2Fxf + 2Fxr
Iψ̈ = 2a(Fyf + 2Fyr)
Ẏ = ẋsinψ + ẏcosψ

Ẋ = ẋcosψ − ẏsinψ

(A-2)

where m is vehicle mass and I denotes yaw inertia. ẋ and ẏ denote the vehicle longitudinal
and lateral velocities, respectively, and ψ̇is the yaw rate around a vertical axis at the vehicle
CoG. Longitudinal position of the vehicle along the path is given by s. Fyf and Fyr are front
and rear tire forces acting along the vehicle lateral axis, Fxf and Fxr forces acting along the
vehicle longitudinal axis. The longitudinal and lateral tire force components Fx? and Fy? in
the vehicle body frame are modelled as follows:

Fy?,• = Fl?,•sinδ? + Fc?,•cosδ?Fx?,• = Fl?,•cosδ? − Fc?,•sinδ?,where? ∈ f, r (A-3)

where steering angle is restricted to front steer only, thereby giving δf = δ.

The longitudinal and lateral tire forces Fl? and Fc? are represented as in Pacejka model. The
non-linear functions of the tire slip angles α?, slip ratios σ?, normal forces Fz,? and friction
coefficient between the tire and road µ?:

Fl? = fl(α?, σ?, Fz,?, µ?) (A-4)
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where slip angles are given by the equation:

α? = arctan vc?

vl?
(A-5)

Here, tire lateral and longitudinal velocity components vc? and vl? are derived using,

vc? = vy? cos δ? − vx? sin δ?
vl? = vy? sin δ? + vx? cos δ?

(A-6)

where the tire lateral and longitudinal velocity components vy? and vx? can be derived from,

vyf
= ẏ + aψ̇, vxf

= ẋ

vyr = ẏ − bψ̇, vxr = ẋ
(A-7)

The slip ratios s? are approximated as follows:

s? =


rω?
vl?
, if vl? > rω?, v 6= 0 for braking,

1− vl?
rω?

, if vl? < rω?, ω 6= 0 for driving,

The friction coefficient µ is taken from for the dry road surface from table . The normal force
on the wheel are estimated with the non load transfer assumption, Fz? . Finally, considering
g, g is the gravitational acceleration as well

Fzf,• = bmg

2(a+ b) , Fzr,• = bmg

2(a+ b) (A-8)

The tire forces Fx? and Fy? are normal forces acting on one wheel and combined forces of the
two wheels in the one track model.

Models can be rendered less complex by making assumptions, such as constant longitudinal
velocity and small angle of deviation.
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Appendix -2

B-1 Controller implementation in MATLAB

B-1-1 Main code

1 clear , clc , close all
2 warning off
3 %%run ( ’ C : \ tomlab\startup . m ’ )
4 %% Parameters
5 a = 1 ; % Distance from CoG to the front axles
6 b = 1 . 4 ; % Distance from CoG to the rear axles
7 c = 0 . 4 7 ; % Distance from CoG to the left/right

side at the wheels
8 m = 2050 ; % Mass
9 J1 = 3344 ; % VehicleŠs rotational inertia about the

z axis
10 Jw = (m∗(1 .75^2+4.48^2) ) /12 ; % Wheel and driveline rotational inertias
11 rw = 0 . 4 1 ; % Radius of the wheel
12 bw = 3 . 8 ; % Damping coefficient
13 Cs = 0 . 1 2 ; % Cornering stiffness coefficient

( 0 . 1 2~0 . 1 6 )
14 g = 9 . 8 1 ;
15 mu = 0 . 3 ;
16 %% Packeja model coefficients for different road surfaces
17 % 1 : Dry Tarmac
18 % 2 : Wet Tarmac
19 % 3 : Snow
20 % 4 : Ice
21 Road = 1 ;
22 switch Road
23 case 1
24 Bp = 10 ; Cp = 1 . 9 ; Dp = 1 ; Ep = 0 . 9 7 ;
25 case 2
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26 Bp = 12 ; Cp = 2 . 3 ; Dp = 0 . 8 2 ; Ep = 1 ;
27 case 3
28 Bp = 5 ; Cp = 2 ; Dp = 0 . 3 ; Ep = 1 ;
29 case 4
30 Bp = 4 ; Cp = 2 ; Dp = 0 . 1 ; Ep = 1 ;
31 end
32 Param = [ a , b , c , m , J1 , Jw , rw , bw , rw , Cs , g , Bp , Cp , Dp , Ep , mu ] ’ ;
33 %% Initial Conditions
34 xD0 = 20 ;
35 yD0 = 0 ;
36 PsiD0 = 0 ;
37 Psi0 = 0 ;
38 X0 = 0 ;
39 Y0 = 0 .0001 ;
40 %% General Parameters
41 Hp = 30 ;
42 vs1 = 10 ; vsy1 = 0 ;
43 ys1 = 0 ; vsy2 = 0 ;
44 x1 = 80 ;
45 vs2 = 0 ;
46 ys2 = 3 . 2 ;
47 x2 = −100;
48 yref = 0 ;
49 vx_des = 20 ;
50 Ts = 0 . 1 ;
51 x_pm = [ x1−X0 , Y0 , xD0 , yD0 , X0 , ys1−Y0 , 0 , 0 , ys2−Y0 , x2−X0 ] ;
52 x_4w = [ yD0 , xD0 , Psi0 , PsiD0 , Y0 , X0 ] ;
53 Q = diag ( [ 3 0 , 1 2 0 ] ) ;
54 R = diag ( [ 0 . 0 1 , 0 . 0 1 , 0 . 0 1 ] ) ;
55 S = diag ( [ 0 . 0 1 , 0 . 0 0 1 , 0 . 0 0 1 ] ) ;
56 T = 18 ;
57 %% High Level MPC Parameters
58 alpha = 20 ;
59 k = 15 ;
60 gamma = 5 ;
61 eps_x1f = 1 ;
62 eps_1f = 5 ;
63 eps_x1r = 0 . 4 ;
64 eps_1r = 1 ;
65 eps_x2f = 1 ;
66 eps_2f = 5 ;
67 eps_x2r = 0 . 4 ;
68 eps_2r = 1 ;
69 Par = [ vs1 , ys1 , x1 , yref , vx_des , Hp , alpha , k , gamma , eps_x1f , eps_1f , eps_x1r ,

eps_1r , vs2 , ys2 , x2 , eps_x2f , eps_2f , eps_x2r , eps_2r , vsy1 , vsy2 ] ;
70 u_k = zeros ( 1 , 3 ) ;
71 % FromXLS = xlsread ( ’ Scenarios . xlsx ’ ) ; XLSSize = size ( FromXLS ) ; Count =

XLSSize (1 ) +1;
72 %% Simulation
73 % 1 : Fast Path Replanning Simulation
74 % 2 : Entire Simulation
75 SimType = 2 ;
76 % Scenarios
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77 % 1. No Obstacle ,
78 % 2. Car following
79 % 3. Lane change
80 % 4. Static Obstacle
81 % 5. Moving Obstacle
82 % 6. Two Obstacles ( optional )
83 Scenario = 5 ;
84 refmat = [ ] ;
85 tic
86 for i=1:T
87 switch SimType
88 case 1
89 [ w , w_x ] = MPC_HL ( x_pm (end , : ) ,Par , [ x1 ( end ) , x2 ( end ) , ys1 ( end ) ,

ys2 ( end ) ] , Scenario ) ;
90 x_pm = [ x_pm ; w ] ;
91 x1 = [ x1 ; w_x ( : , 1 ) ] ;
92 ys1 = [ ys1 ; w_x ( : , 3 ) ] ;
93 case 2
94 [ w , w_x ] = MPC_HL ( x_pm (end , : ) ,Par , [ x1 ( end ) , x2 ( end ) , ys1 ( end ) ,

ys2 ( end ) ] , Scenario ) ;
95 x_pm = [ x_pm ; w ] ;
96 x1 = [ x1 ; w_x ( : , 1 ) ] ;
97 x2 = [ x2 ; w_x ( : , 2 ) ] ;
98 ys1 = [ ys1 ; w_x ( : , 3 ) ] ;
99 ys2 = [ ys2 ; w_x ( : , 4 ) ] ;

100 ref = [ w ( : , 3 ) ,w ( : , 2 ) ] ;
101 refmat = [ refmat ; ref ] ;
102 [ w2 , u_con ] = MO_4w ( x_4w (end , : ) , u_k (end , : ) ,ref , Param , Hp , Ts , Q , R

, S ) ;
103 u_k = [ u_k ; u_con ] ;
104 x_4w = [ x_4w ; w2 ] ;
105 % x_pm = [ x1 ( end )−x_4w (end , 6 ) , x_4w (end , 5 ) , x_4w (end , 2 ) , x_4w (

end , 1 ) , x_4w (end , 6 ) ,ys1−x_4w (end , 2 ) , x_pm (end , 7 ) , x_pm (end , 8 ) ] ;
106 x_pm (end , 5 ) = x_4w (end , 6 ) ;
107 end
108 end
109 tim = toc ;
110 %%
111 if SimType == 1
112 Wid = 3 ;
113 Len = 5 ;
114 X = x_pm ( : , 5 ) ;
115 figure
116 subplot (211)
117 plot (x1 , ys1 , ’ g ∗ ’ )
118 hold on
119 plot (X , x_pm ( : , 2 ) , ’ LineWidth ’ , 2 )
120 hold on
121 plot (X , yref∗ones ( length (X ) ) , ’− .r ’ , ’ LineWidth ’ , 2 )
122 hold on
123 plot (X ,−1.6∗ones ( length (X ) , 1 ) , ’−black ’ , ’ LineWidth ’ , 3 )
124 hold on
125 plot (X , 4 . 8 ∗ ones ( length (X ) , 1 ) , ’−black ’ , ’ LineWidth ’ , 3 )
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126 hold on
127 plot (X , 1 . 6 ∗ ones ( length (X ) , 1 ) ,’−−black ’ , ’ LineWidth ’ , 2 )
128 hold on
129 plot (X , 0∗ ones ( length (X ) , 1 ) , ’− .black ’ , ’ LineWidth ’ , 1 )
130 hold on
131 plot (X , 3 . 2 ∗ ones ( length (X ) , 1 ) , ’− .black ’ , ’ LineWidth ’ , 1 )
132 hold on
133 ylim ([−2 7 ] )
134 xlim ( [ 0 150 ] )
135 legend ( ’ Surrounding vehicle ’ , ’ y ’ , ’ y_{ref } ’ , ’ location ’ , ’ northeast ’ )
136 xlabel ( ’ X [ m ] ’ )
137 ylabel ( ’ Y [ m ] ’ )
138 title ( strcat ( ’ High Level Controller Test with vx_{des} = ’ , num2str (

vx_des ) , ’ y_{ref} = ’ , num2str ( yref ) ) )
139 subplot (212)
140 plot (X , x_pm ( : , 3 ) , ’ LineWidth ’ , 2 )
141 hold on
142 plot (X , vx_des∗ones ( length (X ) ) ,’−−r ’ , ’ LineWidth ’ , 2 )
143 grid on
144 legend ( ’ vx ’ , ’ vx_{des } ’ , ’ location ’ , ’ southeast ’ )
145 xlabel ( ’ X [ m ] ’ )
146 ylabel ( ’ Vx [ m/s ] ’ )
147 break
148 end
149 %% Plotting
150 Yref = x_pm ( : , 2 ) ;
151 xDotref = x_pm ( : , 3 ) ;
152 X = x_4w ( : , 6 ) ;
153 Y = x_4w ( : , 5 ) ;
154 XDot = x_4w ( : , 2 ) ;
155 f1=figure ;
156 subplot ( 2 , 2 , [ 1 , 2 ] )
157 plot (X , Y )
158 hold on
159 plot (X , Yref , ’ r ’ )
160 hold on
161 plot (x1 , ys1 , ’ g ∗ ’ )
162 hold on
163 plot (x2 , ys2 , ’ g ∗ ’ )
164 hold on
165 plot (X ,−1.6∗ones ( length (X ) , 1 ) , ’−black ’ , ’ LineWidth ’ , 3 )
166 hold on
167 plot (X , 4 . 8 ∗ ones ( length (X ) , 1 ) , ’−black ’ , ’ LineWidth ’ , 3 )
168 hold on
169 plot (X , 1 . 6 ∗ ones ( length (X ) , 1 ) ,’−−black ’ , ’ LineWidth ’ , 2 )
170 hold on
171 plot (X , 0∗ ones ( length (X ) , 1 ) , ’− .black ’ , ’ LineWidth ’ , 1 )
172 hold on
173 plot (X , 3 . 2 ∗ ones ( length (X ) , 1 ) , ’− .black ’ , ’ LineWidth ’ , 1 )
174 ylim ([−2 7 ] )
175 xlabel ( ’ X [ m ] ’ )
176 ylabel ( ’ Y [ m ] ’ )
177 % grid on
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178 legend ( ’ Y ’ , ’ Y_{ref } ’ , ’ location ’ , ’ northwest ’ )
179 subplot (224)
180 plot ( u_k ( : , 1 ) )
181 xlabel ( ’ Time [ s ] ’ )
182 ylabel ( ’ Steering Angle [ rad ] ’ )
183 grid on
184 subplot (223)
185 plot ( XDot )
186 hold on
187 plot ( xDotref , ’ r ’ )
188 legend ( ’ xdot ’ , ’ xdot_{ref } ’ , ’ location ’ , ’ southeast ’ )
189 xlabel ( ’ Time [ s ] ’ )
190 ylabel ( ’ Amplitude ’ )
191 grid on
192 %%
193 f2=figure ;
194
195 Wid = 3 ;
196 Len = 5 ;
197 for i = 1 : T∗Hp
198 if i ~=T∗Hp
199 hold off
200 end
201 h1=plot (X ,−1.6∗ones ( length (X ) , 1 ) , ’−black ’ , ’ LineWidth ’ , 3 ) ;
202 hold on
203 h2=plot (X , 4 . 8 ∗ ones ( length (X ) , 1 ) , ’−black ’ , ’ LineWidth ’ , 3 ) ;
204 hold on
205 h3=plot (X , 1 . 6 ∗ ones ( length (X ) , 1 ) ,’−−black ’ , ’ LineWidth ’ , 2 ) ;
206 hold on
207 h4=plot (X , 0∗ ones ( length (X ) , 1 ) , ’− .black ’ , ’ LineWidth ’ , 1 ) ;
208 hold on
209 h5=plot (X , 3 . 2 ∗ ones ( length (X ) , 1 ) , ’− .black ’ , ’ LineWidth ’ , 1 ) ;
210 xlim ( [ 0 max (X ) +120])
211 ylim ([−4 10 ] )
212 h6=plot (X ( 1 : i ) ,Y ( 1 : i ) , ’∗ ’ ) ;
213 hold on
214 h7=plot (X ( 1 : i ) , Yref ( 1 : i ) , ’ r ∗ ’ ) ;
215 hold on
216 h8 = rectangle ( ’ Position ’ , [ x1 (i )−Len /2 , ys1 (i )−Wid /2 ,Len , Wid ] , ’

EdgeColor ’ , ’ green ’ ) ;
217 hold on
218 h9 = rectangle ( ’ Position ’ , [ x2 (i )−Len /2 , ys2 (i )−Wid /2 ,Len , Wid ] , ’

EdgeColor ’ , ’ green ’ ) ;
219 legend ( [ h6 , h8 , h9 ] , { strcat ( [ ’ v_x=’ ,num2str (X (i ) ) ] ) , strcat ( [ ’ x_1=’ ,

num2str (x1 (i ) ) ] ) , strcat ( [ ’ x_2=’ ,num2str (x2 (i ) ) ] ) })
220 pause ( 0 . 0 5 )
221 F = getframe (f2 ) ;
222
223 end
224 %% Scenarios XLS
225 %
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226 ToXLS = [ xD0 , vx_des , x1 (1 ) ,vs1 , x2 (1 ) ,vs2 , Hp , Q ( 1 , 1 ) ,Q ( 2 , 2 ) ,R ( 1 , 1 ) ,R ( 2 , 2 ) ,R
( 3 , 3 ) ,S ( 1 , 1 ) ,S ( 2 , 2 ) ,S ( 3 , 3 ) , alpha , k , gamma , eps_x1f , eps_1f , eps_x1r , eps_1r
, eps_x2f , eps_2f , eps_x2r , eps_2r , T∗Hp , tim ] ;

227 print (f1 , strcat ( num2str ( Count ) , ’ _1 ’ ) , ’−dpng ’ )
228 print (f2 , strcat ( num2str ( Count ) , ’ _2 ’ ) , ’−dpng ’ )
229 xlswrite ( ’ Scenarios . xlsx ’ , [ Count , ToXLS ] , strcat ( ’ A ’ , num2str ( Count+1) , ’ : AC

’ , num2str ( Count+1) ) ) ;

B-1-2 Higher level controller function

1 function [ w , Obs ] = MPC_HL (x , Par , xobs , Scenario )
2 vs1 = Par (1 ) ; vs2 = Par (14) ; vsy1 = Par (21) ;
3 ys1 = Par (2 ) ; ys2 = Par (15) ; vsy2 = Par (22) ;
4 yref = Par (4 ) ;
5 vx_des = Par (5 ) ;
6 x1 = Par (3 ) ; x2 = Par (16) ;
7 alpha = Par (7 ) ; %Weight on desired velocity
8 k = Par (8 ) ; %Weight on lane centre
9 gamma = Par (9 ) ;

10 Wl = 3 . 2 ; %Length of the lane
11 Wc = 3 ; %Width of surrounding vehicle
12 Lc = 5 ; %Lenght of surrounding vehicle
13 sigma = 3 . 2 ; %Lane centre adjacent to surrounding vehicle current lane
14 psi = 30 ; %Yaw angle
15 v_sym = 1 ; g = 1 ; x_sym = 5e4 ; o_sym = 5e4 ;
16 theta_r = 1 ; %Time headway rear
17 theta_f = 2 ; %Time headway forward
18 c = 0 . 4 7 ; % Distance from CoG to the left/right side at the wheels
19 toms t
20 Hp = Par (6 ) ;
21 Ts = 0 . 1 ;
22 p1 = tomPhase ( ’ p1 ’ , t , 0 , Hp∗Ts , Hp ) ;
23 setPhase (p1 ) ;
24 tomStates DX1 y vx vy X1 X DY1 DX2 DY2 X2 Y1 Y2
25 tomControls ax ay
26 W = 0.5∗ Wl+Wc ;
27 % ++
28 eps_x1f = Par (10) ; eps_x2f = Par (17) ;
29 eps_1f = Par (11) ; eps_2f = Par (18) ;
30 % −−
31 eps_x1r = Par (12) ; eps_x2r = Par (19) ;
32 eps_1r = Par (13) ; eps_2r = Par (20) ;
33 ceq = collocate ({ dot ( DX1 ) == vs1 − vx ;
34 dot ( DX2 ) == vs2 − vx ;
35 dot (y ) == vy ;
36 dot (vx ) == ax ;
37 dot (vy ) == ay ;
38 dot (X ) == vx ;
39 dot ( DY1 ) == vsy1 − vy ;
40 dot ( DY2 ) == vsy2 − vy ;
41 dot (X1 ) == vs1 ;
42 dot (X2 ) == vs2 ;
43 dot (Y1 ) == vsy1 ;
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44 dot (Y2 ) == vsy2 ;
45 }) ;
46 % DY1 = ys1−collocate (y ) ;
47 Lf = collocate (vx ) ∗theta_f+Lc ;
48 Lr = collocate (vx ) ∗theta_r+Lc ;
49 x0 = {icollocate ({vx == x (3 ) ; vy == x (4 ) ; y == x (2 ) ; DX1 == x (1 ) ; X == x

(5 ) ; ax == x (7 ) ; ay == x (8 ) ; DY1 == x (6 ) ; DY2 == x (9 ) ; X1 == xobs (1 ) ;
X2 == xobs (2 ) ; Y1 == xobs (3 ) ; Y2 == xobs (4 ) ; DX2 == x (10) }) } ;

50 cbnd = initial ({vx == x (3 ) ; vy == x (4 ) ; y == x (2 ) ; DX1 == x (1 ) ; X == x (5 )
; ax == x (7 ) ; ay == x (8 ) ; DY1 == x (6 ) ; DY2 == x (9 ) ; X1 == xobs (1 ) ; X2
== xobs (2 ) ; Y1 == xobs (3 ) ; Y2 == xobs (4 ) ; DX2 == x (10) }) ;

51 cbox = {
52 −0.17∗collocate (vx )<=collocate (vy ) <=0.17∗collocate (vx ) ;
53
54 −5 <= collocate (vy ) <= 5 ;
55 −1.6+c <= collocate (y ) <= 4.8−c ;
56 −4 <= collocate (ax ) <= 4 ;
57 −2 <= collocate (ay ) <= 2 ;
58 −3 <= collocate ( dot (ax ) ) <= 1 . 5 ;
59 −0.5 <= collocate ( dot (ay ) ) <= 0 . 5 ;
60 } ;
61 if Scenario ~=1 && Scenario ~=3
62 if Scenario == 2
63 cbox = {cbox ;
64 0 <= collocate (vx ) <= 30} ;
65 else
66 cbox = {cbox ;
67 0 <= collocate (vx ) <= 30 ;
68 1 <= collocate ( DX1 ) . / Lf−collocate ( DY1 ) . / W−collocate ( DX1 ) .∗

eps_x1f+((−collocate ( DY1 )−sigma ) . / max (psi , abs ( collocate ( DX1 ) )
) )+eps_1f } ;

69 if yref == 0
70 cbox = {cbox ;
71 collocate ( DX1 ) . / Lr+collocate ( DY1 ) . / W+collocate ( DX1 ) .∗ eps_x1r−((−

collocate ( DY1 )−sigma ) . / max (psi , abs ( collocate ( DX1 ) ) ) )+eps_1r
<= −1};

72 end
73 end
74 if Scenario == 6
75 cbox = {cbox ;
76 1 <= collocate ( DX2 ) . / Lf+collocate ( DY2 ) . / W−collocate ( DX2 ) .∗

eps_x2f+((−collocate ( DY2 )−sigma ) . / max (psi , abs ( collocate ( DX2 ) )
) )+eps_2f ;

77 collocate ( DX2 ) . / Lr−collocate ( DY2 ) . / W+collocate ( DX2 ) .∗ eps_x2r−((−
collocate ( DY2 )−sigma ) . / max (psi , abs ( collocate ( DX2 ) ) ) )+eps_2r
<= −1};

78 end
79 end
80 % objective = sum ( norm (k∗( collocate (vx )−vx_des ) )+norm (k∗( collocate (y )−

yref ) )+norm ( gamma∗collocate (vy ) )+norm ( v_sym∗collocate (ax ) )+norm (g∗
collocate (ay ) )+norm ( x_sym∗eps_1f )+norm ( o_sym∗eps_1r ) )
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81 objective = norm ( alpha ∗( collocate (vx )−vx_des ) )+norm (k∗( collocate (y )−yref )
)+norm ( gamma∗collocate (vy ) )+norm ( v_sym∗collocate (ax ) )+norm (g∗collocate
(ay ) ) ;

82 options = struct ;
83 options . derivatives = ’ numerical ’ ;
84 options . use_H = 1 ;
85 options . use_d2c = 1 ;
86 Prob = sym2prob ( objective , { cbox , cbnd , ceq } ,x0 , options ) ;
87 Prob . ADObj = 1 ;
88 Prob . ConsDiff = 1 ;
89 Result = tomRun ( ’ SNOPT ’ , Prob , 1) ;
90 solution = getSolution ( Result ) ;
91 w = [ solution . DX1_p1 ( 2 : end ) , solution . y_p1 ( 2 : end ) , solution . vx_p1 ( 2 : end ) ,

solution . vy_p1 ( 2 : end ) , solution . X_p1 ( 2 : end ) , solution . DY1_p1 ( 2 : end ) ,
solution . ax_p1 , solution . ay_p1 , solution . DY2_p1 ( 2 : end ) , solution . DX2_p1
( 2 : end ) ] ;

92 Obs = [ solution . X1_p1 ( 2 : end ) , solution . X2_p1 ( 2 : end ) , solution . Y1_p1 ( 2 : end ) ,
solution . Y2_p1 ( 2 : end ) ] ;

93 tomCleanup ( Prob ) ;

B-1-3 Lower level controller function

1 function [ x , u_con ] = MO_4w ( States , u_k , ref , Param , Hp , Ts , Q , R , S )
2 tf = Hp∗Ts ;
3 toms t
4 p = tomPhase ( ’ p ’ , t , 0 , tf , Hp ) ;
5 setPhase (p ) ;
6 tomStates yDot xDot Psi PsiDot Y X
7 tomControls u Fl Fr
8 a = Param (1 ) ;
9 b = Param (2 ) ;

10 c = Param (3 ) ;
11 m = Param (4 ) ;
12 J = Param (5 ) ;
13 Jw = Param (6 ) ;
14 r = Param (7 ) ;
15 bw = Param (8 ) ;
16 rw = Param (9 ) ;
17 Cs = Param (10) ;
18 g = Param (11) ;
19 Bp = Param (12) ;
20 Cp = Param (13) ;
21 Dp = Param (14) ;
22 Ep = Param (15) ;
23 mu = Param (16) ;
24 vy1 = yDot+a∗PsiDot ;
25 vy2 = yDot+a∗PsiDot ;
26 vy3 = yDot−b∗PsiDot ;
27 vy4 = yDot−b∗PsiDot ;
28 vx1 = xDot−c∗PsiDot ;
29 vx2 = xDot+c∗PsiDot ;
30 vx3 = xDot−c∗PsiDot ;
31 vx4 = xDot+c∗PsiDot ;
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32 vc1 = vy1∗cos (u )−vx1∗sin (u ) ;
33 vc2 = vy2∗cos (u )−vx2∗sin (u ) ;
34 vc3 = vy3∗cos (0 )−vx3∗sin (0 ) ;
35 vc4 = vy4∗cos (0 )−vx4∗sin (0 ) ;
36 vl1 = vx1∗cos (u )+vy1∗sin (u ) ;
37 vl2 = vx2∗cos (u )+vy2∗sin (u ) ;
38 vl3 = vx3∗cos (0 )+vy3∗sin (0 ) ;
39 vl4 = vx4∗cos (0 )+vy4∗sin (0 ) ;
40 Fz1 = (b∗m∗g ) /(2∗a+2∗b ) ;
41 Fz2 = (b∗m∗g ) /(2∗a+2∗b ) ;
42 Fz3 = (a∗m∗g ) /(2∗a+2∗b ) ;
43 Fz4 = (a∗m∗g ) /(2∗a+2∗b ) ;
44 Cy1 = Cs∗Fz1 /2 ;
45 Cy2 = Cs∗Fz2 /2 ;
46 Cy3 = Cs∗Fz3 /2 ;
47 Cy4 = Cs∗Fz4 /2 ;
48 alpha1 = atan ( vc1 /( vl1 ) ) ;
49 alpha2 = atan ( vc2 /( vl2 ) ) ;
50 alpha3 = atan ( vc3 /( vl3 ) ) ;
51 alpha4 = atan ( vc4 /( vl4 ) ) ;
52 % Tfl = ifThenElse (u>0,0,−r∗Fl ) ;
53 % Tfr = ifThenElse (u>0,0,−r∗Fr ) ;
54 % Trl = ifThenElse (u>0,−r∗Fl , 0 ) ;
55 % Trr = ifThenElse (u>0,−r∗Fr , 0 ) ;
56 % omega_fl = (1/( Jw+bw ) )∗(−mu∗Fz1∗rw+Tfl ) ;
57 % omega_fr = (1/( Jw+bw ) )∗(−mu∗Fz2∗rw+Tfr ) ;
58 % omega_rl = (1/( Jw+bw ) )∗(−mu∗Fz3∗rw+Trl ) ;
59 % omega_rr = (1/( Jw+bw ) )∗(−mu∗Fz4∗rw+Trr ) ;
60 % s1 = ifThenElse (r∗omega_fl<vl1 , ( r∗omega_fl/vl1 )−1,1−(vl1 /(r∗omega_fl ) ) )

;
61 % s2 = ifThenElse (r∗omega_fr<vl2 , ( r∗omega_fr/vl2 )−1,1−(vl2 /(r∗omega_rl ) ) )

;
62 % s3 = ifThenElse (r∗omega_rl<vl3 , ( r∗omega_rl/vl3 )−1,1−(vl3 /(r∗omega_fr ) ) )

;
63 % s4 = ifThenElse (r∗omega_rr<vl4 , ( r∗omega_rr/vl4 )−1,1−(vl4 /(r∗omega_rr ) ) )

;
64 % mu1 = Dp .∗ sin (Cp .∗ atan (Bp .∗ s1−Ep ∗(Bp .∗ s1−atan (Bp .∗ s1 ) ) ) ) ;
65 % mu2 = Dp .∗ sin (Cp .∗ atan (Bp .∗ s2−Ep ∗(Bp .∗ s2−atan (Bp .∗ s2 ) ) ) ) ;
66 % mu3 = Dp .∗ sin (Cp .∗ atan (Bp .∗ s3−Ep ∗(Bp .∗ s3−atan (Bp .∗ s3 ) ) ) ) ;
67 % mu4 = Dp .∗ sin (Cp .∗ atan (Bp .∗ s4−Ep ∗(Bp .∗ s4−atan (Bp .∗ s4 ) ) ) ) ;
68 mu1 = 0 . 3 ; mu2 = 0 . 3 ; mu3 = 0 . 3 ; mu4 = 0 . 3 ;
69 Fl1 = mu1∗Fz1 ;
70 Fl2 = mu2∗Fz2 ;
71 Fl3 = mu3∗Fz3 ;
72 Fl4 = mu4∗Fz4 ;
73 Fc1 = alpha1∗Cy1 ;
74 Fc2 = alpha2∗Cy2 ;
75 Fc3 = alpha3∗Cy3 ;
76 Fc4 = alpha4∗Cy4 ;
77 Fy1 = Fl1∗sin (u )+Fc1∗cos (u ) ;
78 Fy2 = Fl2∗sin (u )+Fc2∗cos (u ) ;
79 Fy3 = Fl3∗sin (0 )+Fc3∗cos (0 ) ;
80 Fy4 = Fl4∗sin (0 )+Fc4∗cos (0 ) ;
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81 % Fx1 = Fl1∗cos (u )−Fc1∗sin (u ) ;
82 % Fx2 = Fl2∗cos (u )−Fc2∗sin (u ) ;
83 % Fx3 = Fl3∗cos (0 )−Fc3∗sin (0 ) ;
84 % Fx4 = Fl4∗cos (0 )−Fc4∗sin (0 ) ;
85 ceq = collocate ({ dot ( yDot ) == (1/m )∗(−m∗xDot∗PsiDot+Fy1+Fy2+Fy3+Fy4 ) ;
86 dot ( xDot ) == (1/m ) ∗(m∗yDot∗PsiDot+Fl+Fr ) ;
87 dot ( Psi ) == PsiDot ;
88 dot ( PsiDot ) == (1/J ) ∗(a∗( Fy1+Fy2 )−b∗( Fy3+Fy4 )+c∗(−Fl+Fr ) ) ;
89 dot (Y ) == xDot∗sin ( Psi )+yDot∗cos ( Psi ) ;
90 dot (X ) == xDot∗cos ( Psi )−yDot∗sin ( Psi ) }) ;
91 %%
92 cbox = {
93 −15e3 <= collocate (Fl ) <= 15e3 ;
94 −15e3 <= collocate (Fr ) <= 15e3 ;
95 % −10e3 <= collocate ( dot (Fl ) ) <= 10e3 ;
96 % −10e3 <= collocate ( dot (Fr ) ) <= 10e3 ;
97 −1.6+c <= collocate (Y ) <= 4.8−c ;
98 deg2rad (−24) <= collocate (u ) <= deg2rad (24) ;
99 −0.17 <= collocate ( dot (u ) ) <= 0 . 1 7 ;

100 } ;
101 x0 = {icollocate ({ yDot == States (1 ) ; xDot == States (2 ) ; Psi == States (3 ) ;

PsiDot == States (4 ) ; Y == States (5 ) ; X == States (6 ) ; u == u_k (1 ) ; Fl
== u_k (2 ) ; Fr == u_k (3 ) }) } ;

102 cbnd = initial ({ yDot == States (1 ) ; xDot == States (2 ) ; Psi == States (3 ) ;
PsiDot == States (4 ) ; Y == States (5 ) ; X == States (6 ) ; u == u_k (1 ) ; Fl
== u_k (2 ) ; Fr == u_k (3 ) }) ;

103 objective = sum ( norm ( ( [ collocate ( xDot ) , collocate (Y ) ]−ref ) ∗Q )+norm ( ( [
collocate (u ) , collocate (Fl ) , collocate (Fr ) ]∗ R ) )+norm ( ( [ collocate ( dot (u ) )
, collocate ( dot (Fl ) ) , collocate ( dot (Fr ) ) ]∗ S ) ) ) ;

104 %objective = sum ( norm ( ( [ collocate ( xDot ) , collocate (Y ) ]− [xd ’ , tr ’ ] ) ∗Q )+norm
( ( [ collocate ( dot (u ) ) , collocate ( dot (Fl ) ) , collocate ( dot (Fr ) ) ]∗ S ) ) ) ; %+
norm ( ( [ collocate (u ) , collocate (Fl ) , collocate (Fr ) ]∗ R ) ) ) ; \

105 options = struct ;
106 Prob = sym2prob ( objective , { cbox , cbnd , ceq } ,x0 , options ) ;
107 Prob . SOL . optPar (30) = 20000 ;
108 Prob . SOL . optPar (35) = 8000 ;
109 Prob . SOL . optPar (36) = 3500 ;
110 Result = tomRun ( ’ SNOPT ’ , Prob , 1 ) ;
111 solution = getSolution ( Result ) ;
112 u_con = [ solution . u_p , solution . Fl_p , solution . Fr_p ] ;
113 x = [ solution . yDot_p ( 2 : end ) , solution . xDot_p ( 2 : end ) , solution . Psi_p ( 2 : end ) ,

solution . PsiDot_p ( 2 : end ) , solution . Y_p ( 2 : end ) , solution . X_p ( 2 : end ) ] ;

B-1-4 Standalone lower level controller

1 clear , clc , close all
2
3 % Vehicle parameters
4 a = 1 ; % Distance from CoG to the front axles
5 b = 1 . 4 ; % Distance from CoG to the rear axles
6 c = 0 . 4 7 ; % Distance from CoG to the left/right

side at the wheels
7 m = 2050 ; % Mass
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8 J1 = 3344 ; % VehicleŠs rotational inertia about the
z axis

9 Jw = (m∗(1 .75^2+4.48^2) ) /12 ; % Wheel and driveline rotational inertias
10 rw = 0 . 4 1 ; % Radius of the wheel
11 bw = 3 . 8 ; % Damping coefficient
12 Cs = 0 . 1 2 ; % Cornering stiffness coefficient

( 0 . 1 2~0 . 1 6 )
13 g = 9 . 8 1 ;
14 mu = 0 . 3 ;
15 Ts = 0 . 1 ;
16 %tr = [ zeros (1 , 10 ) ,5∗ tanh ( 0 : 0 . 0 1 : 0 . 4 9 ) , 2 . 3∗ ones (1 , 50 ) ,5∗ tanh

( 0 . 49 : −0 . 01 : 0 ) , zeros (1 , 10 ) ] ; %double lane change
17 % tr = [ zeros (1 , 10 ) ,5∗ tanh ( 0 : 0 . 0 1 : 0 . 4 9 ) , 2 . 3∗ ones (1 ,110) ] ;

%single lane change
18 %tr = [ zeros (1 ,170) ] ; %straight line
19 %tr = sin
20 dl=0.5; % sampling of trajectory
21 tr=[zeros (1 ,12/ dl+1) , ( dl : dl : 1 3 . 5 ) ∗4/13 .5 ,4∗ ones (1 ,11/ dl ) ,4−(dl : dl : 1 2 . 5 )

∗4/12 .5 , zeros (1 ,12/ dl ) ] ;
22
23 %% Packeja model coefficients for different road surfaces
24 % 1 : Dry Tarmac
25 % 2 : Wet Tarmac
26 % 3 : Snow
27 % 4 : Ice
28 Road = 1 ;
29 switch Road
30 case 1
31 Bp = 10 ; Cp = 1 . 9 ; Dp = 1 ; Ep = 0 . 9 7 ;
32 case 2
33 Bp = 12 ; Cp = 2 . 3 ; Dp = 0 . 8 2 ; Ep = 1 ;
34 case 3
35 Bp = 5 ; Cp = 2 ; Dp = 0 . 3 ; Ep = 1 ;
36 case 4
37 Bp = 4 ; Cp = 2 ; Dp = 0 . 1 ; Ep = 1 ;
38 end
39 Param = [ a , b , c , m , J1 , Jw , rw , bw , rw , Cs , g , Bp , Cp , Dp , Ep , mu ] ’ ;
40 xD0 = 20 ;
41 yD0 = 0 ;
42 PsiD0 = 0 ;
43 Psi0 = 0 ;
44 X0 = 0 ;
45 Y0 = 0 ;
46
47 %% General Parameters
48
49 Hp = length (tr ) ;
50 States = [ yD0 , xD0 , Psi0 , PsiD0 , Y0 , X0 ] ;
51 u_k = zeros ( 3 , 1 ) ;
52 Q = diag ( [ 4 7 . 9 , 7 1 . 9 6 ] ) ;
53 R = diag ( [ 0 . 3 , 0 . 1 , 0 . 1 ] ) ;
54 S = diag ( [ 0 . 1 0 2 8 , 0 . 0 0 9 8 , 0 . 0 1 5 4 ] ) ;
55 xd = 20∗ones (1 , Hp ) ;
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56
57 %%
58 tf = Hp∗Ts ;
59 toms t
60 p = tomPhase ( ’ p ’ , t , 0 , tf , Hp ) ;
61 setPhase (p ) ;
62 tomStates yDot xDot Psi PsiDot Y X
63 tomControls u Fl Fr
64 a = Param (1 ) ;
65 b = Param (2 ) ;
66 c = Param (3 ) ;
67 m = Param (4 ) ;
68 J = Param (5 ) ;
69 Jw = Param (6 ) ;
70 r = Param (7 ) ;
71 bw = Param (8 ) ;
72 rw = Param (9 ) ;
73 Cs = Param (10) ;
74 g = Param (11) ;
75 Bp = Param (12) ;
76 Cp = Param (13) ;
77 Dp = Param (14) ;
78 Ep = Param (15) ;
79 mu = Param (16) ;
80 vy1 = yDot+a∗PsiDot ;
81 vy2 = yDot+a∗PsiDot ;
82 vy3 = yDot−b∗PsiDot ;
83 vy4 = yDot−b∗PsiDot ;
84 vx1 = xDot−c∗PsiDot ;
85 vx2 = xDot+c∗PsiDot ;
86 vx3 = xDot−c∗PsiDot ;
87 vx4 = xDot+c∗PsiDot ;
88 vc1 = vy1∗cos (u )−vx1∗sin (u ) ;
89 vc2 = vy2∗cos (u )−vx2∗sin (u ) ;
90 vc3 = vy3∗cos (0 )−vx3∗sin (0 ) ;
91 vc4 = vy4∗cos (0 )−vx4∗sin (0 ) ;
92 vl1 = vx1∗cos (u )+vy1∗sin (u ) ;
93 vl2 = vx2∗cos (u )+vy2∗sin (u ) ;
94 vl3 = vx3∗cos (0 )+vy3∗sin (0 ) ;
95 vl4 = vx4∗cos (0 )+vy4∗sin (0 ) ;
96 Fz1 = (b∗m∗g ) /(2∗a+2∗b ) ;
97 Fz2 = (b∗m∗g ) /(2∗a+2∗b ) ;
98 Fz3 = (a∗m∗g ) /(2∗a+2∗b ) ;
99 Fz4 = (a∗m∗g ) /(2∗a+2∗b ) ;

100 Cy1 = Cs∗Fz1 /2 ;
101 Cy2 = Cs∗Fz2 /2 ;
102 Cy3 = Cs∗Fz3 /2 ;
103 Cy4 = Cs∗Fz4 /2 ;
104 alpha1 = atan ( vc1 /( vl1 ) ) ;
105 alpha2 = atan ( vc2 /( vl2 ) ) ;
106 alpha3 = atan ( vc3 /( vl3 ) ) ;
107 alpha4 = atan ( vc4 /( vl4 ) ) ;
108 % Tfl = ifThenElse (u>0,0,−r∗Fl ) ;
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109 % Tfr = ifThenElse (u>0,0,−r∗Fr ) ;
110 % Trl = ifThenElse (u>0,−r∗Fl , 0 ) ;
111 % Trr = ifThenElse (u>0,−r∗Fr , 0 ) ;
112 % omega_fl = (1/( Jw+bw ) )∗(−mu∗Fz1∗rw+Tfl ) ;
113 % omega_fr = (1/( Jw+bw ) )∗(−mu∗Fz2∗rw+Tfr ) ;
114 % omega_rl = (1/( Jw+bw ) )∗(−mu∗Fz3∗rw+Trl ) ;
115 % omega_rr = (1/( Jw+bw ) )∗(−mu∗Fz4∗rw+Trr ) ;
116 % s1 = ifThenElse (r∗omega_fl<vl1 , ( r∗omega_fl/vl1 )−1,1−(vl1 /(r∗omega_fl ) ) )

;
117 % s2 = ifThenElse (r∗omega_fr<vl2 , ( r∗omega_fr/vl2 )−1,1−(vl2 /(r∗omega_rl ) ) )

;
118 % s3 = ifThenElse (r∗omega_rl<vl3 , ( r∗omega_rl/vl3 )−1,1−(vl3 /(r∗omega_fr ) ) )

;
119 % s4 = ifThenElse (r∗omega_rr<vl4 , ( r∗omega_rr/vl4 )−1,1−(vl4 /(r∗omega_rr ) ) )

;
120 % mu1 = Dp .∗ sin (Cp .∗ atan (Bp .∗ s1−Ep ∗(Bp .∗ s1−atan (Bp .∗ s1 ) ) ) ) ;
121 % mu2 = Dp .∗ sin (Cp .∗ atan (Bp .∗ s2−Ep ∗(Bp .∗ s2−atan (Bp .∗ s2 ) ) ) ) ;
122 % mu3 = Dp .∗ sin (Cp .∗ atan (Bp .∗ s3−Ep ∗(Bp .∗ s3−atan (Bp .∗ s3 ) ) ) ) ;
123 % mu4 = Dp .∗ sin (Cp .∗ atan (Bp .∗ s4−Ep ∗(Bp .∗ s4−atan (Bp .∗ s4 ) ) ) ) ;
124 mu1 = 0 . 3 ; mu2 = 0 . 3 ; mu3 = 0 . 3 ; mu4 = 0 . 3 ;
125 Fl1 = mu1∗Fz1 ;
126 Fl2 = mu2∗Fz2 ;
127 Fl3 = mu3∗Fz3 ;
128 Fl4 = mu4∗Fz4 ;
129 Fc1 = alpha1∗Cy1 ;
130 Fc2 = alpha2∗Cy2 ;
131 Fc3 = alpha3∗Cy3 ;
132 Fc4 = alpha4∗Cy4 ;
133 Fy1 = Fl1∗sin (u )+Fc1∗cos (u ) ;
134 Fy2 = Fl2∗sin (u )+Fc2∗cos (u ) ;
135 Fy3 = Fl3∗sin (0 )+Fc3∗cos (0 ) ;
136 Fy4 = Fl4∗sin (0 )+Fc4∗cos (0 ) ;
137 % Fx1 = Fl1∗cos (u )−Fc1∗sin (u ) ;
138 % Fx2 = Fl2∗cos (u )−Fc2∗sin (u ) ;
139 % Fx3 = Fl3∗cos (0 )−Fc3∗sin (0 ) ;
140 % Fx4 = Fl4∗cos (0 )−Fc4∗sin (0 ) ;
141 ceq = collocate ({ dot ( yDot ) == (1/m )∗(−m∗xDot∗PsiDot+Fy1+Fy2+Fy3+Fy4 ) ;
142 dot ( xDot ) == (1/m ) ∗(m∗yDot∗PsiDot+Fl+Fr ) ;
143 dot ( Psi ) == PsiDot ;
144 dot ( PsiDot ) == (1/J ) ∗(a∗( Fy1+Fy2 )−b∗( Fy3+Fy4 )+c∗(−Fl+Fr ) ) ;
145 dot (Y ) == xDot∗sin ( Psi )+yDot∗cos ( Psi ) ;
146 dot (X ) == xDot∗cos ( Psi )−yDot∗sin ( Psi ) }) ;
147 %%
148 cbox = {
149 −15e3 <= collocate (Fl ) <= 15e3 ;
150 −15e3 <= collocate (Fr ) <= 15e3 ;
151 % −10e3 <= collocate ( dot (Fl ) ) <= 10e3 ;
152 % −10e3 <= collocate ( dot (Fr ) ) <= 10e3 ;
153 −1.6+c <= collocate (Y ) <= 4.8−c ;
154 deg2rad (−24) <= collocate (u ) <= deg2rad (24) ;
155 −0.17 <= collocate ( dot (u ) ) <= 0 . 1 7 ;
156 } ;
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157 x0 = {icollocate ({ yDot == States (1 ) ; xDot == States (2 ) ; Psi == States (3 ) ;
PsiDot == States (4 ) ; Y == States (5 ) ; X == States (6 ) ; u == u_k (1 ) ; Fl

== u_k (2 ) ; Fr == u_k (3 ) }) } ;
158 cbnd = initial ({ yDot == States (1 ) ; xDot == States (2 ) ; Psi == States (3 ) ;

PsiDot == States (4 ) ; Y == States (5 ) ; X == States (6 ) ; u == u_k (1 ) ; Fl
== u_k (2 ) ; Fr == u_k (3 ) }) ;

159 objective = sum ( norm ( ( [ collocate ( xDot ) , collocate (Y ) ]− [xd ’ , tr ’ ] ) ∗Q )+norm
( ( [ collocate ( dot (u ) ) , collocate ( dot (Fl ) ) , collocate ( dot (Fr ) ) ]∗ S ) ) ) ; %+
norm ( ( [ collocate (u ) , collocate (Fl ) , collocate (Fr ) ]∗ R ) ) ) ;

160 options = struct ;
161 Prob = sym2prob ( objective , { cbox , cbnd , ceq } ,x0 , options ) ;
162 Prob . SOL . optPar (30) = 80000 ;
163 Prob . SOL . optPar (35) = 8000 ;
164 Prob . SOL . optPar (36) = 3500 ;
165 Result = tomRun ( ’ SNOPT ’ , Prob , 1 ) ;
166 solution = getSolution ( Result ) ;
167 u_con = [ solution . u_p , solution . Fl_p , solution . Fr_p ] ;
168 x = [ solution . yDot_p ( 2 : end ) , solution . xDot_p ( 2 : end ) , solution . Psi_p ( 2 : end ) ,

solution . PsiDot_p ( 2 : end ) , solution . Y_p ( 2 : end ) , solution . X_p ( 2 : end ) ] ;
169
170 %% plotting
171
172 % Y
173 figure
174 plot ( ( 0 : length (tr )−1)∗dl , x ( : , 5 ) )
175 xlabel ( ’ Lateral position [ m ] ’ )
176 ylabel ( ’ Longitudinal position [ m ] ’ )
177 title ( ’ Position ’ )
178
179 % Psi
180 figure
181 subplot (211)
182 plot ( ( 0 : length (tr )−1)∗dl , x ( : , 3 ) )
183 xlabel ( ’ Lateral position [ m ] ’ )
184 ylabel ( ’ \ psi ’ )
185 title ( ’ Yaw ’ )
186 subplot (212)
187 plot ( ( 0 : length (tr )−1)∗dl , x ( : , 4 ) )
188 xlabel ( ’ Lateral position [ m ] ’ )
189 ylabel ( ’ d\psi ’ )
190 title ( ’ Yaw rate ’ )
191
192 % Steering
193 figure
194 subplot (211)
195 plot ( ( 0 : length (tr )−1)∗dl , solution . u_p∗180/pi )
196 xlabel ( ’ Lateral position [ m ] ’ )
197 ylabel ( ’ deg ’ )
198 title ( ’ Steering ’ )
199 subplot (212)
200 plot ( ( 0 : length (tr )−1)∗dl , gradient ( solution . u_p ) ∗180/pi )
201 xlabel ( ’ Lateral position [ m ] ’ )
202 ylabel ( ’ deg/s ’ )
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203 title ( ’ Steering rate ’ )
204
205 % Breaking
206 figure
207 Tfl = zeros ( size ( solution . Fl_p ) ) ;
208 Tfr = zeros ( size ( solution . Fl_p ) ) ;
209 Trl = zeros ( size ( solution . Fl_p ) ) ;
210 Trr = zeros ( size ( solution . Fl_p ) ) ;
211 [ a1 , a2 , a3 , a4 ]=generate_breaks ( Param , x , solution . u_p ) ;
212 af=(a1+a2 ) /2 ;
213 ar=(a3+a4 ) /2 ;
214 for i=1:length ( Tfl )
215 if solution . Fl_p (i )==0 && solution . Fr_p (i )==0
216 Tfl (i )=0;Tfr (i )=0;Trl (i )=0;Trr (i )=0;
217 else
218 if af (i )−ar (i )>0
219 %understeering
220 Tfl (i )=0;Tfr (i )=0;Trl (i )=−rw∗solution . Fl_p (i ) ; Trr (i )=−rw∗

solution . Fr_p (i ) ;
221 else
222 %oversteering
223 Tfl (i )=−rw∗solution . Fl_p (i ) ; Tfr (i )=−rw∗solution . Fr_p (i ) ; Trl (i

)=0;Trr (i )=0;
224 end
225 end
226 end
227 subplot (411)
228 plot ( ( 0 : length (tr )−1)∗dl , abs ( Tfl ) )
229 xlabel ( ’ Lateral position [ m ] ’ )
230 ylabel ( ’ Torque [ Nm ] ’ )
231 title ( ’ Front left breaking ’ )
232 subplot (412)
233 plot ( ( 0 : length (tr )−1)∗dl , abs ( Tfr ) )
234 xlabel ( ’ Lateral position [ m ] ’ )
235 ylabel ( ’ Torque [ Nm ] ’ )
236 title ( ’ Front right breaking ’ )
237 subplot (413)
238 plot ( ( 0 : length (tr )−1)∗dl , abs ( Trl ) )
239 xlabel ( ’ Lateral position [ m ] ’ )
240 ylabel ( ’ Torque [ Nm ] ’ )
241 title ( ’ Back left breaking ’ )
242 subplot (414)
243 plot ( ( 0 : length (tr )−1)∗dl , abs ( Trr ) )
244 xlabel ( ’ Lateral position [ m ] ’ )
245 ylabel ( ’ Torque [ Nm ] ’ )
246 title ( ’ Back right breaking ’ )
247
248 figure
249 plot ( ( 0 : length (tr )−1)∗dl , x ( : , 5 ) )
250 hold on
251 plot ( ( 0 : length (tr )−1)∗dl , tr , ’ r ’ )
252 legend ( ’ Y ’ , ’Y_{ref } ’ )
253 xlabel ( ’ Lateral position [ m ] ’ )
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254 ylabel ( ’ Longitudinal position [ m ] ’ )
255 ylim ( [ −5 ,10 ] )
256 % hold on
257 % plot (170 ,−1.6∗ ones (170 ,1 ) , ’−black ’ , ’ LineWidth ’ , 3 )
258 % hold on
259 % plot (170 ,4 . 8∗ ones (170 ,1 ) , ’−black ’ , ’ LineWidth ’ , 3 )
260 % hold on
261 % plot (170 ,1 . 6∗ ones (170 ,1 ) ,’−−black ’ , ’ LineWidth ’ , 2 )
262 % hold on
263 % plot (170 ,0∗ ones (170 ,1 ) , ’− .black ’ , ’ LineWidth ’ , 1 )
264 % hold on
265 % plot (170 ,3 . 2∗ ones (170 ,1 ) , ’− .black ’ , ’ LineWidth ’ , 1 )
266 title ( { [ ’ No . iter : ’ , num2str ( Prob . SOL . optPar (30) ) , ’ , Parameters : ’ ] ;

num2str ( [ diag (Q ) ’ , diag (S ) ’ ] ) })
267
268 %Cone additions
269
270 % Cones in segment 1
271 mw=5; %marker width
272 yl1=−1.5; %y−location of markers in first segment
273 plot ( [ 2 , 2 , 7 , 7 , 1 2 , 1 2 ] , yl1 ∗ [−1 ,1 ,−1 ,1 ,−1 ,1] , ’ko ’ , ’ LineWidth ’ , 1 , ’

MarkerEdgeColor ’ , ’ k ’ , . . .
274 ’ MarkerFaceColor ’ , [ 1 . 5 0 ] , ’ MarkerSize ’ , 8 )
275
276 % Cones in segment 2
277 yl2=−1.5; %y−location of markers in second segment
278 plot ( [ 2 5 . 5 , 2 5 . 5 , 3 1 , 3 1 , 3 6 . 5 , 3 6 . 5 ] , max (tr )+yl2 ∗ [−1 ,1 ,−1 ,1 ,−1 ,1] , ’ko ’ , ’

LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ k ’ , . . .
279 ’ MarkerFaceColor ’ , [ 1 . 5 0 ] , ’ MarkerSize ’ , 8 )
280
281 % Cones in segment 3third segment
282 yl3=−1.5; %y−location of markers in second segment
283 plot ( [ 4 9 , 4 9 , 5 5 , 5 5 , 6 1 , 6 1 ] , yl3 ∗ [−1 ,1 ,−1 ,1 ,−1 ,1] , ’ko ’ , ’ LineWidth ’ , 1 , ’

MarkerEdgeColor ’ , ’ k ’ , . . .
284 ’ MarkerFaceColor ’ , [ 1 . 5 0 ] , ’ MarkerSize ’ , 8 )
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