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Chapter 1

Introduction

Nowadays we live in the world of the internet of things. More and more devices
are interconnected and communicate with each other. Devices connected to the
internet of things use wireless and wired connections and dozens of different
standards to communicate with each other. Each standard uses its own defined
protocol and protocols are stacked on top of existing protocols. This means
there are very many different protocols and implementations of those protocols
out there.

The complexity of the protocols varies greatly between them. From very
simple protocols like SPI and RS-232 to very complex protocols like TCP/IP.
The simple protocols can easily be implemented in a small hardware module.
But the most complex ones need software and a lot of processing power to
process them. Protocols can also be stacked on top of each other, like in the
OSI model [18].

When designing a new product which might use protocols or protocol stacks,
development can quickly become difficult. Because protocol implementation can
be so difficult, most designers use libraries or pre-build solutions to implement
protocols in their products. But in the internet of things world, where many
small devices are used, most devices don’t need fully supported complex proto-
col stacks, or they need to connect 2 completely different protocols. Standard
solutions are too complex, may require too much processing power, or do not
exist.

To find a solution for the difficult development of new protocols is the start-
ing point of this thesis. A new method to ease the development of new protocol
implementations is proposed. The hypothesis is that by using grammars the
development of new protocols can be made easier. Grammars can be checked
by formal methods for correctness of the protocol description, where normal
programming languages cannot. For normal programming languages test cases
are needed to verify compliance with a protocol description. When designing
test cases, rare occurrences in protocols can easily be missed, leading to errors.
Then the advantage of a grammar based approach becomes clear.

When a grammar is used for a protocol description, it still needs to be
compiled for implementation. While this is possible with the modern compilers,
the resulting code is often slower than a low-level code implementation. In
an environment such as embedded system, this is not desired. But what if a
small hardware parser, designed specifically for protocol parsing, can be used
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to parse the grammar? This would allow easier integration due to the grammar
description and good performance because of the hardware.

1.1 Current methods

In this section the 3 most used methods today are discussed. Also their per-
formance metrics are evaluated. At the end of this section, the 3 methods are
compared and the grammar based hardware parser is positioned relative to the
current methods.

The 3 methods of processing protocols used nowadays are:

1. Software processing, the protocols are parsed on a general purpose pro-
cessor (GPP)

2. Accelerators, the protocols are parsed on hardware

3. CAMs, the protocols are parsed on a special type of memory

Each of these methods will be discussed in the following sections.

1.1.1 Software processing

Most protocols are processed by software on a general purpose processor (GPP).
In most systems a generals purpose processor is used for controlling the main
task of a system and because modern processors are very powerful is it very
easy to include tasks like protocol processing on the same processor.

Advantages

The main advantage of software processing is the cost factor. If it is done prop-
erly the development costs of software are high, since programming and testing
of communications systems (which are usually considered critical) can take a
lot of time. But because software does not require any additional hardware on
a system with a GPP, the hardware costs are zero.

Software is also very flexible. Complex constructs can easily be implemented
in software. When a program is made in a high level language it can be ported
between hardware architectures if the suited compilers are available. However,
the flexibility is limited by the hardware it is implemented on. If a communi-
cation module only supports 8 bit transfers and you need 13 bit transfers, both
the hard- and soft-ware need extra operations, reducing the performance. In
theory any protocol can be implemented in software using bit-banging [20], but
this reduces the performance of the system a lot.

When libraries are used to develop software for protocol processing the time-
to-market can be very fast. When libraries are not available it will take consid-
erably longer.

If a GPP is programmed it makes no difference if a protocol implementation
is included in the programming file or not. The complexity of the programming
does not change and only the time to program the GPP increases. This makes
it very easy to integrate a protocol into a GPP.
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Disadvantages

The main disadvantage of a software solution is the low performance. For ex-
ample TCP/IP processing with software requires about 1 Hz/bit in processing
power [8]. Protocol parsing is not very efficient on a GPP, because for fast
interfaces a very powerful GPP is required. GPPs have problems when dealing
with:

• Multiple small data segments, smaller than the processors word width

• Pipeline flushes because of branches, of which there are a lot in protocols

• Low latency restrictions, if other software also runs on the GPP

• High power consumption when processing protocols (compared to hard-
ware solutions)

The power consumption and the performance make a GPP less ideal for pro-
tocol parsing, but still the GPP is the preferred component for parsing protocols
due to its versatility, ease of integration, and its low cost.

1.1.2 Accelerators

Besides processing a protocol in software on a GPP, processing can also be
done in hardware. Protocol parsers made in hardware are called accelerators.
Accelerators provide very good performance, because they can be tailor made
to a specific situation. The specialization of hardware to a specific function
allows the hardware to extract the most parallelism possible, and/or use the
least amount of power during processing.

The main disadvantage of accelerators is the cost of such devices. The low
sales volume and high development costs (for silicon) make them very expensive.
Because accelerators are custom made for each protocol they cannot be changed
or reconfigured, which gives them a relatively short lifetime. To compensate for
this, some accelerators have a programmable memory to allow a slight change
in function, increasing their lifetime, but also increasing the cost of a device.

The final hurdle for accelerators is the adaptation in systems. Most tasks for
which an accelerator is used, are tasks that are a heavy load on GPP resources.
The accelerators have to compete with the software implementation of the task,
which is less expensive in terms of money. However, when looking at GPP
load the cost of an accelerator is lower (obviously), but the cost of power is less
obvious. If an accelerator has a high workload, the reduction in power compared
to a software solution is large. But when an accelerator has a low workload,
it will consume static power when idle, and the power consumption could be
worse than a software solution. In practice only accelerators that provide a huge
performance gain (like graphics processors) or energy savings (bitcoin mining)
make it to the market.

1.1.3 CAM

Content Addressable Memories (CAM)[21] are a special class of accelerators.
CAMs are normal memories, but incoming data (content) from a protocol is
connected to the address lines of the memory. The CAM searches its entire
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content to check if a match of the data exits in memory, and then outputs
the address(es) where the matched data is stored. It is basically an indexing
machine.

The address returned from the CAM can be used by the GPP to load a
specific function, which executes only the required processing. For example, a
TCP header enters the system. The data from the TCP header is entered into
the CAM. The CAM outputs an offset address, which is used by the GPP to
load a function that is dedicated to process that type of header.

This method allows for very fast parsing of protocols and it is very flexible
(the memory contents can be changed). The downside of the CAM is you need to
program every possible input that you want to parse into the CAM. For small
protocols with only a few possible states this is not a problem, but for large
protocols like TCP/IP a very large memory is required. This causes the CAM
to become very expensive, because in order to search its contents quickly a CAM
needs a comparator for each memory location for input matching. Therefore a
CAM is expensive for all protocols, except the very small ones.

Only for very high performance or for small protocols CAMs are used. For
example CAMs are used in ethernet switches for MAC address lookup, where
a limited number of MAC address can be stored, and the switch gets the port
number to where the data has to be send to very fast.

1.1.4 Summary of current methods

Currently the 3 most used methods for parsing protocols are software parsing
and hardware accelerated parsing, by means of an accelerator or with CAMs.
Software processing has the lowest cost with the fastest time to market, how-
ever, the performance of accelerators and CAMs is much better than software
solutions (see Table 1.1). Software solutions are the most widely used option
for protocol processing, because of the low cost and short time to market. Only
when a large power or performance advantage can be achieved, accelerators or
CAMs are used.

Software Accelerator CAM
Hardware costs ++ - - -
Development costs - + +
Performance - - ++ ++
Flexibility + - +
Time to market + - +
Ease of integration + - -

Table 1.1: Protocol processing solutions

1.2 Scope of this thesis

Now that the current methods of protocol processing are known, the scope of
the thesis work can be determined. In this thesis work the main question to be
answered is:

• Can a hardware module be designed that processes different communica-
tion protocols like a grammar?
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This question leads to the following related research questions:

• How does the performance of the hardware module compare to a software
implementation?

• What is the cost of such a hardware module?

• What are the limitations of such a module?

The goal of this thesis is to design and implement a hardware parser pro-
cessor, that can process more than 1 protocol. This hardware module will be
called a Protocol Parsing Unit (PPU). The hardware parser should be targeted
for communication protocols. After implementation the module is evaluated
against a software implementation to determine the performance, the limita-
tions and the hardware size. The requirement for the ability to process more
than one protocol is important, because otherwise an accelerator is designed,
which has been done many times already.

The ultimate goal of the thesis work is to verify if an implementation of a
hardware parser leads to easier design of protocol and with fewer errors being
made compared to current solutions. However, to verify this would require a lot
of work and it is too much work for the allocated time.

Before a start can be made with designing a hardware parser some back-
ground information is required. In Chapter 2 all this information is presented
together with information about the document itself. In Chapter 3 the design
considerations are presented. Several different methods of solving the problem
are discussed and for each problem a method is chosen for implementation. The
implemented design will be discussed in detail in Chapter 4. The results of
the implementation are presented in Chapter 5, followed by the conclusion in
Chapter 6 where also future work is discussed.
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Chapter 2

Background

In this chapter all information that is needed to properly read this document
is presented. In section 2.1 the theory of grammars is discussed. But first the
diagram definitions are explained.

Compiler Parser 
core

Instruction
set

Protocol
data

Figure 2.1: Design blocks used in this document

In this thesis several diagrams are used to illustrate high level design ar-
chitectures. In figure 2.1 the different types of blocks shown in those figures
are shown. Circles indicate a description or a specification. These blocks do
not process or transform information, but they specify input for another block.
The hexagons are conversion blocks. In these blocks an information flow is con-
verted, but no new information is added (like a compiler performing code to
byte-code conversion). Squares indicate hardware modules. These blocks indi-
cate hardware blocks that store, process, or convert data. The diamond blocks
indicate blocks with IO data from an interface or another processor. All these
blocks are connected with arrows indicating the flow of information.

In this document a few risk analysis table are presented. In these tables
the exposure and the impact are rated on a scale from 1 to 10. The exposure
indicates the probability that during development something goes wrong and
disrupt or delay the development. A high exposure means that there is a high
probability that something is overlooked or that the design does not meet spec-
ifications. The impact indicates the severity of the problem if something goes
wrong. A low impact means that there is an easy work-around if one solution
fails.
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2.1 Grammars of protocols

A communication protocol is a form of language with certain properties. If these
properties are known, an efficient system can be implemented to process them.
In this section protocols will be reviewed from a linguistic point of view, to find
the properties of the grammar of protocols.

Chomsky [6] defines that a language can be captured with a grammar class.
In the first subsection of this chapter the grammar class of protocols will be
determined. The grammar classes are briefly introduced and it will be defined
in which of these classes protocols are found.

In the second section parsing algorithms for protocols will be discussed.
Parsing algorithms are used to define a structured way of decoding a grammar.
A suitable algorithm will be selected for implementation in the PPU. Hardware
restrictions will also be taken into account when selecting an algorithm. Detailed
hardware limitations and implementations can be found in chapters 3 and 4.

2.2 Grammar classes

Chomsky has defined 4 types of grammar classes for languages. Each class is
different from the next in terms of expressibility. However, expressibility comes
at a cost of being more difficult to parse. The following classes are defined by
Chomsky from the most expressible to the least:

• Type-0 grammars are unrestricted grammars. This grammar type can be
used to describe a Turing machine. It is the most expressive grammar
class, however, because of the decision problem [22] it is not used in prac-
tice for the creation of languages. There are no protocols to date that fall
into this type of grammar.

• Type-1 grammars are context-sensitive grammars. This grammar is known
by most persons as natural languages (the language we speak). Words fol-
low each other in a specific order, however, words can be different depend-
ing on the word before or after the current word. For example ‘walking’
changes to ‘walk’ if it the previous word is ‘I’ and ‘a’ changes to ‘an’ if the
word after starts with a spoken vowel.

• Type-2 grammars are context free grammars. In context free grammars
words do not change depending on their context, but they are in a pre-
defined order. For example in the programming language C a function
declaration is always followed by a ‘{’ independent of the name or com-
plexity of the function. Grammars in this class can be efficiently parsed
by computers, whereas grammars of type-1 or 0 cannot[19], which is why
type-2 grammars are used in most programming languages.

• Type-3 grammars are regular grammars. These grammars are the last
and most restrictive class of grammars. Regular grammars are the least
expressive grammars, there form allows on a relatively fixed sequence of
words. For example an address can be constructed with a regular gram-
mar. A fixed sequence of the street name, street number, postal code and
city name can be described with a regular grammar. Whilst the street
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name, street number etc can have an arbitrary value, the overall sequence
is fixed.

Type-0 grammars are of no interest for this research. Bloks [4] analysed
protocols and concluded that all protocols can be described with type-1,-2 or
-3 grammars. Full type-1 class protocols are not very common. Usually only
a select number of fields in a protocol are context-sensitive (like checksum and
length fields). The remainder of the protocol is a type-2 or type-3 grammar.

Most protocols can be described with a type-2 or -3 grammar if an extra
construct is used for the few context sensitive fields. This is also true for pro-
gramming languages, which use the same principle to deal with context sensitive
parts. For that reason the focus is on type-2 or -3 grammars. For both gram-
mar types different parsing algorithms are available, in the next section these
are reviewed and evaluated.

2.3 Parsing solutions

The main difference in processing type-2 or type-3 grammars is in the complexity
of the parsing algorithm. To process all type-2 grammars a non-deterministic
push-down automaton is required. But most type-2 parsing algorithms use a
deterministic push-down automaton, which have some restrictions. Regardless
of the chosen algorithm all push-down automata require a stack to operate.

Based on the contents of the stack, the input and the state of the automaton
a decision can be made to transfer between states. A few common algorithms for
context free grammar parsing are LL, LR and LALR [1]. For implementation
in hardware LALR is the most promising algorithm. This algorithm is very
expressive and still has a relative low complexity (compared to LR(1)).

For parsing type-3 grammars a Deterministic Finite Automaton (DFA) is
sufficient. These regular grammars are much more restrictive than context free
grammars, but the algorithm for parsing them is a lot less complex. A DFA is
very suitable for integration in hardware and thus type-3 grammars can easily
be implemented. In the next chapter the differences between both methods
are explored in more detail. The relations of algorithms and the hardware
implications are described in detail and with that information an algorithm is
also chosen.
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Chapter 3

Design considerations

In this chapter all design considerations are discussed. A structured approach
from a protocol specification to hardware design is taken. In Figure 3.1 the
overall architecture of the PPU is shown. In the left block the front end of the
system is shown. A protocol specification is described with an implementation
language. This language can be supplied to the compiler, which in turn gener-
ates byte-code for the PPU hardware. Section 3.1 is about the language used
to describe a protocol implementation. In Section 3.2 the compiler is discussed.

The core hardware is shown in the middle block. The memory and the parser
core are the blocks responsible for the protocol parsing. The instruction set and
the memory lay-out are key design specifications for functionality. The core
hardware is described in sections 3.3 and 3.4.

The last block is the IO of the PPU. The PPU has IO modules for proto-
col data (Section 3.5), but also an IO module for communication with other
hardware (like a GPP)(Section 3.6). The communication with other hardware
is done through the API.

Parser core

Implementation language front end

System interface

Figure 3.1: Overview of the PPU design
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3.1 Implementation language

Protocol 
specification

Imple-
mentation 
language

Compiler

Parser core

Implementation language front end

System interface

Figure 3.2: Front end of the PPU design

In a protocol specification the functionality of a system is described. This
description is often written in a natural language (like English) and such a
description cannot be used to program hardware. Because there are no compilers
that can translate a natural language to byte-code. An intermediate language
(the implementation language) is required to gap the bridge between the natural
language and the compiler. For regular software this language is a programming
language like C or JAVA. However, these languages are not designed for parser
programming. A suitable language has to be found which can gap the bridge
between a protocol specification and the compiler.

Language selection

With all different kinds of protocols and specifications a selection had to be made
to choose which protocols should be supported. A starting point was to support
protocols that could be described by Backus-Naur Form (BNF) [14]. BNF was
chosen based on the fact that it is a language used to implement context free
parsers. After a detailed evaluation BNF turned out to be unsuitable.

Several protocol related concepts cannot be expressed with BNF. A few other
languages are suitable, Augmented Backus-Naur Form (ABNF) [9], Prolac and
NetPDL. These 3 languages are designed for protocol description. But since
only ABNF is still in use and the other 2 languages are no longer supported,
ABNF was chosen for the implementation language. Thus the goal became to
implement a hardware parser that can support languages written in ABNF.

ABNF operations

After ABNF was selected as the implementation language, the operations that
can be implemented with this language were investigated. From ABNF a com-
piler must be able to generate byte code for the hardware and for that conversion
the operations in ABNF must be known. For the PPU hardware the operations
must also be known before they can be implemented.
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The core operation of ABNF is pattern matching. In ABNF there are con-
structs for single value patterns matches and ranged value ones, for example:

ze ro = %x00 ; s i n g l e va lue match
zeroToNine = %x00−09 ; ranged value match

Other operations for matching are available in ABNF (like concatenation), but
these operations can be reduced to single or ranged value matches by a compiler.

Besides the matching operations, there are supporting operations for flow
control and branches. The first is the alternative:

Fru i t = apple / pear

Both apple and pear are valid fruits according to this ABNF description. What
is not yet known is the state following the fruit state. This is important to
know, because in ABNF fruit might have a different state transition based on
the match. If there is no deeper level of one of the elements, the next state is
the same for both alternatives. for example:

apple = %x00 ; apple i s va lue 0
pear = %x01 ; pear i s va lue 1

However, if there is a deeper level available to one or both of the elements,
a different next state is present (eg a branch). In the example below apple
has red as first matching value. On the other hand pear has green as first
matching value. Both apple and pear have a different second matching value,
namely round and oval. Thus a branch has occurs when either red or green is
encountered on the input.

apple = red round
pear = green ova l

The last operation of the ABNF language is repetition. In ABNF there
is support for defined and undefined repetition. Defined repetition is a fixed
amount of repetition cycles, while undefined repetition repeats for a unknown
number of cycles.

In protocols defined repetition is used almost exclusively. Some protocols
use undefined repetition, but they have some symbol, flag or other method to
identify the end of a repetition. Unconditional repetition can be parsed with a
conditional branch. This means only defined repetition needs to be implemented
as an operation.

The operations defined by ABNF are:

• Single value match

• Ranged value match

• Alternative value match

• Branches

• Defined repetition
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Hardware operations

The operations above are the operations which are defined in ABNF. But if
actual protocols are examined some operation modifications are required to
build a working parser. Ethernet is used as an example, because in an ethernet
it is easy to show why certain modifications are useful.

Preamble SD Destination
address

Source 
address

Ethertype/ 
Length DSAP SSAP DataControl FCS

Figure 3.3: Ethernet header

The first field is the mac source field. The address of the source field is not
known before runtime, but a variable that can change during runtime. Matching
against such a variable should be possible, as well as storing such data. To
support this, a memory is required that can be used for these matching and
storing operations.

Another set of operation modifications are delayed branches and repetition
blocks. In the ethernet header, the ethertype field indicates which higher layer
protocol is used. Depending on the value of this field, a different parse branch
has to be taken. But if a jump is taken immediately after parsing the ethertype
field, all branches must include the remaining header section of the ethernet
header (the DSAP, SSAP and control field). With the delayed jump a branch
decision can be made at the ethertype field, but only after parsing the control
field it is executed, saving memory space. This is why it is useful to have a
delayed option on jumps and repetitions (which have the same problem).

Hardware actions

Not only modifications to the operations need to be made for a hardware im-
plementation, also actions have to be defined. To understand why actions are
required a quick look into Lex and Yacc [7] is made. Lex and Yacc are used
to parsing programming languages and create compilers. In Lex and Yacc a
construct called ‘actions’ is added to BNF. Actions define what must happen
when the parser matches a certain string. To improve performance the PPU
should have some basic actions available.

With the modifications to the operations many protocols can be parsed effi-
ciently. But the system still has to have support for actions. Some information
in a protocol may not be useful for the user. Information for flow control or
other low level information can often be discarded by the PPU without affecting
the user data. For example in a TCP packet only the IP address of the sender,
the port number and the packet data are useful for the user. The hardware
needs to know which data can be discarded after parsing and which data is
necessary, so a store action is required.

Another set of actions that will be included are transmit actions. While the
main focus of this work has been on data reception, the hardware should be
capable of transmitting data as well. With the transmission actions included,
the operations and actions required for the PPU are defined. While the number
of actions is very small, these are sufficient for a working PPU device.

The following list contains all the operations and actions required for the
hardware:
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• operations

– Single value match

– Ranged value match

– Alternative value match

– Branches (delayed)

– Defined repetition (delayed)

• actions

– Store

– Transmit

3.2 Compiler

The next step of the design is the process to translate the implementation lan-
guage to byte-code for the hardware with a compiler. Although no compiler is
implemented, it was not left out of scope of the project entirely. Compilation
for the PPU was done by hand, during evaluation and testing. This section is
for reference of what research already had be done, during the thesis work.

The compiler was planned to be implemented last, since it requires knowledge
of both the implementation language and the hardware platform. One aspect of
the compiler is considered, how to implement the language compilation. Since
pure ABNF is not capable of describing the context sensitive parts of a protocol,
an extension for ABNF is required for the context sensitive parts. Also actions
like making protocol data for storage or marking data as a variable are not
implemented in ABNF by default. One method of implementing these field are
by extending ABNF. For example:

Normal ABNF
t e s t = <l ength> <header> <l ength>∗<l ength><data>

How can the compi le r know that the l ength f i e l d
i s a l s o the s i z e o f the r e p e t i t i o n ?

Marked ABNF
t e s t 2 = @<l ength> <header> $<l ength>∗$<l ength><data>

@ i n d i c a t e s s t o r e in r e g i s t e r
$ i n d i c a t e s use from r e g i s t e r ( with same name)

There is a downside to this method. ABNF is very easy to read in its original
form. It is also very easy to keep track of the flow levels and thus in ABNF a
protocol can easily be checked manually for completeness and errors. With the
addition of the store and memory notations checking the protocol will require
more effort due to the reduced readability.

Another way of implementing these additions is by using a two-stage com-
pilation. The first stage of compilation will happen with pure ABNF. Then an
intermediate language will be created where a specification can be made which
fields are connected or which fields need to be stored etc. This method has the
advantage that the high level ABNF will remain readable, the downside is that
a second level of notation and compilation is required. Which method to use is
not determined, since there was not enough time to evaluate it.
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3.3 Parser core
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Figure 3.4: PPU core parts of the PPU design

In order to properly examine the PPU memory some information about the
parser core is required. In this section the parser core basis will be determined.

A parsing algorithms is required to base the parser core on. The parsing
algorithm should be relatively simple to allow it to be implemented in hardware.
Implementing a parser that can parse all protocols that can be described with
ABNF is not easy. ABNF is a rather expressive language, even with an LALR
parser algorithm [1], not all protocols that can be designed with ABNF can be
parsed. However, a LALR parser was the best fit since it is designed for parsing
context free languages and ABNF is a context free language. An LALR parser
is also much less complex than the more expressing LR(1) algorithm [1] and at
the same time much more powerful then LR(0).

But there is a problem with implementing a LALR parser in hardware,
which will can be described with the following example. An LALR parser can
reach a state where multiple compares, jumps and look ahead data are required.
When non-terminal symbols are encountered the amount of required operations
is even worse. This leads to memory and resource allocation problems, due to
the bursts of data. For example in one cycle the parser might only need one
specific token to advance to the next state and in the next state it will require
several compares, state information and look-ahead tokens. This can change
again in the cycle after that. For hardware implementation such behavior is
undesired. Also LALR requires one level of look-ahead and if real-time protocol
parsing is required the LALR system will always lag behind a little.

A DFA [3] on the other hand is much more restrictive in terms of protocol
expressiveness. To check how restrictive a DFA is, a survey was done based on
the TCP/IP protocol. In this survey several types of fields were identified:

• Type/setting fields indicate which protocol is active or which settings are
used. These fields can easily be processed with a both a LALR and a DFA
parser.

• Address fields are compares against variable data. For instance a computer
connected with ethernet can get an arbitrary IP address, which is only
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known at runtime. The parser should have an option to compare this
variable input data.

• Context sensitive fields like length and checksum fields are more of a prob-
lem. They cannot be parsed with a DFA, but a LALR parser cannot parse
them either.

• Data fields are of no concern, a parser just needs to accept them and
transfer them to the memory.

The data analysed from the TCP/IP protocol also has the advantage of being
regular. All internet protocols that were checked and some simple protocols like
SPI and I2C can be parsed with a DFA. It turns out that a DFA is a better
candidate for implementation 3.1, because it is less complex and it is suited for
the most important protocols today (the internet protocols). The LALR parser
is more powerful, but also more complex. And although the LALR parser can
handle more protocols, the protocols of focus can also be implemented with
the much less complex DFA algorithm. That is why the decision was made to
implement a parser with a DFA. To support all functionality of ABNF, some
extensions were added to the DFA algorithm. The extra functionality and the
requirements for this functionality are discussed in Chapter 4.

LALR DFA
Exposure 6 3
Impact 10 10
Risk 60 30

Table 3.1: Risk analysis for parser algorithm

3.4 PPU memory

After compilation a protocol specification is ready to be loaded into the memory
of the PPU, which holds the protocol implementation. The next step of the
design space is this memory. This memory has 2 aspects which determine its
properties, the instruction set and the memory layout. These two properties are
closely related to one another. For the memory system the parsing algorithm is
important, a LALR would have different requirements than the DFA algorithm.
Since in Section 3.3 it was determined that a DFA is going to be implemented,
the task is to have a compatible memory system for the DFA architecture.
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Figure 3.5: Basic DFA example

In Figure 3.5 an example state machine is given. Transition ‘1’ is a sim-
ple “match everything between and including a-z”. Translated to hardware
operations this becomes: compare greater-equal ‘a’ and compare lesser-equal
‘z’. If both statements are true go to state ‘X’. These operations can either be
performed in parallel or sequential.

Parallel vs sequential execution

Parallel execution has much better performance, especially when looking at
transition ‘2’. Here multiple ranged matches require 6 operations, which could
all be performed in parallel.

With branches in the protocol, performance differences are less obvious. In
state ‘Y’ transitions ‘3’ and ‘4’ both have a different end state. Depending on
the input data and the execution sequence, the performance can be the same as
the parallel solution, or 50% slower.

Parallel computation is much faster compared to sequential computation,
but parallel computation has its limits. For each compare a comparator is
required. If a state has for example 40 different branches one would need 40
comparators, but then many comparators will often be idle. And if suddenly a
new protocol is implemented and 41 compares are required the system would still
take multiple cycles. A limit must be set if parallel processing is implemented,
but the theoretical maximum throughput is increased by a factor of the number
of comparators. The problem is providing all these comparators with data.

Memory architectures

The first solution for a memory architecture that is capable of suppling multiple
comparators with data is to construct a memory with a very wide bus. On this
bus data for all comparators is present, eg the opcodes and the compare data.
For 8 comparators with a word size of 32 bits, this would result in a 256 bit
memory bus for the comparator data alone, not including opcodes. While this is
not a big problem, it is an inefficient method (in terms of memory utilization) if
only 1 compare is required. Only 32 out of 256 bits would have any meaningful
data.

The second solution was to use a variable instruction length approach. Some
overhead would be introduced due to the variable data size, but no memory
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space would be wasted. The performance of a variable instruction length ar-
chitecture is equal to that of the fixed word length solution. The downside is
that such an architecture requires a very large memory bandwidth (multiple in-
structions must be pre-fetched), and the instruction decoder for variable length
instructions is very large and complex. If all instructions would be equal in size
the problem would not be very big, but some instructions only need an 8 bit
opcode, while others need the 8 bit opcode with a 32 bit parameter. Also a field
indicating the length of the instructions is required, introducing another offset.
This complicates things a lot. A variable width architecture that can support
all of these instructions will consume a lot of power [5] compared to a sequential
or fixed parallel design.

The last solution was the sequential parsing architecture. Although the per-
formance would be significantly less than parallel parsing implementations, it
would have a smaller hardware size, lower power consumption and an efficient
memory usage. The hardware would also look more like a conventional pro-
cessor, which might be an advantage when programming the device. In Table
3.2 the different solutions are listed together and in Table 3.3 the instruction
configurations for the different architectures is given.

Fixed width parallel Variable width sequential
Performance + + -
Hardware size +/- - +
Memory efficiency - + +

Table 3.2: Architecture designs

Method Instruction composition
Fixed sequential opcode + parameter
Fixed parallel opcode + parameter, opcode + parameter ...
Variable parallel instruction size, opcode + parameter, opcode + ...

Table 3.3: Instruction sizes

The fixed width parallel solution has too many drawbacks to be a viable
candidate, so the choice for the PPU architecture is between the sequential and
the variable instruction width architecture. Although the power consumption
is higher when implementing a variable instruction length decoder, the total
energy consumption might be better off. Unfortunately there was not enough
time to evaluate this. The hardware size and complexity was the key factor
in determining the architecture of choice. Since a variable length instruction
decoder is very complex, the more basic design of the sequential architecture
was chosen. The limited amount of time available during the thesis work was
also a reason to choose for the more basic design 3.4.

sequential parallel
Exposure 2 8
Impact 10 10
Risk 20 80

Table 3.4: Risk analysis for the memory
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The sequential architecture determines the memory lay-out and the compat-
ible instruction set. The instruction set has to support all the operations listed
in Section 3.1. In Appendix 7.1 the instruction set is presented.

3.5 System interface

System
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Protocol
data

Protocol
interface

Parser core

Implementation language front end

System interface

Figure 3.6: IO part of the PPU design

In the previous sections a large part of the PPU has been determined. In
this section and the remaining parts will be examined, the input and output
of the system. The input and output of the PPU are divided into a system
interface for communication with other hardware and IO interfaces for protocol
input/output. This section describes the IO for the system interface.

The PPU is in the domain of accelerators. For connection with other systems
an interface is required for data exchange between the PPU and other processors.
However, a single universal bus for communication between different processors
does not exist. The system interface should be designed as such that it can easily
be interchanged with another module. This allows the PPU to be integrated
into different platforms, by only changing the system interface block. The main
disadvantage of such a system is that the API requires adjustment each time it
is applied to a different platform. To circumvent this problem a higher level API
is required. Building a higher level API in which the lower level routines are
automatically adjusted for each system bus will enable high level programmers
to use a unified API that can be adapted to the different environments.

3.6 Protocol interfaces

For the protocol data an interface module is required. Some interfaces have
single ended signaling, but others have differential, open drain, or other bus sig-
naling. To connect all these different types of interfaces to the PPU a conversion
module is required to translate these bus signals to signals for the PPU.

Two possible solutions were investigated, direct attached IO or with separate
IO modules. In the direct attach method all IO signals would be connected
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directly to the PPU. Only a small piece of hardware to translate interface signals
to internal signals is required. This would allow the PPU to be very flexible,
even multiple interfaces on the same IO pins could be implemented with this
method. However, the load on the PPU core will be very high in such an
architecture. Besides parsing the PPU would also become in charge of signal
level reading. For instance with a simple RS-232 connection, the core would
need to keep track of time, signal levels and signal level change, just to be able
to decode the signals on the bus.

The other method is to use separate IO modules which can translate and
buffer incoming data from connected interfaces and transfer this data to the
PPU. The advantage of this method is that a lot of overhead interface signaling
is handled by the specific modules. Verification if an interface is compliant with
a standard is easier, because software delays are no longer an issue. The mayor
downside is flexibility, with software controlled IO pins pretty much any protocol
could be connected to any pin configuration. With this method the supported
interfaces are fixed to the ones embedded in the module and the pin assignment
is usually also static (a pin mux/demux could be used for re-arrangeable pin
assignment).

direct attached separate modules
Exposure 7 4
Impact 4 4
Risk 28 16

Table 3.5: Risk analysis for IO interface

A combination of the two modules is also possible by using a dedicated pro-
cessor for the IO decoding. However, verifying if the module meets an interface
specification would still be a problem, especially for high speed interfaces. All
things considered (see Table 3.5), the architecture with separate modules for
the protocol interfaces proved to be the best option for implementation in the
PPU.

24



3.7 Conclusion
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Figure 3.7: The PPU design

For the hardware design of the PPU a lot of different aspects were evaluated and
decisions were made for the implementation. Figure 3.7 shows the global design
used to specify the system. The implementation language is the bridge between
the compiler and the protocol specification. ABNF is the language chosen for the
implementation language. The language has the right properties for a grammar
based parser, but it will require some extensions to support protocols. The focus
for the PPU will be protocols that have a regular grammar.

The implementation language is converted into byte-code by a compiler.
However, the compiler could not be finished and is left as a future project.
During this thesis work the task of the compiler was done by hand.

The parser core is where the protocols are actually processed. The protocol
grammar is loaded into the memory of the PPU. The memory architecture is
a single issue memory (one instruction per clock cycle). The parser core loads
the protocol specification from the memory and compares it with input from
the protocol interfaces. For parsing, the core has the following instructions
available:

• Single value match

• Ranged value match

• Alternative value match

• Branches (delayed)

• Defined repetition (delayed)

• Store

• Transmit

The IO of the PPU is handled by two modules, the protocol interface modules
and the system interface module. The protocol IO is handled by separate IO
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modules for each interface. The modules translate interface signal levels into
signal levels for the PPU core. They also buffer incoming data if the PPU is
busy. The system interface module is the connecting element between other
processors (like a GPP) and the PPU. The system interface module will be
designed such that it can be easily changed with another module. With this
design the PPU can be made compatible with new systems with relative ease.

26



Chapter 4

Hardware design

In the previous chapter the design considerations of the hardware architecture
were made. In this chapter the hardware for the chosen architecture will be
described. Detailed design information will be presented and specific design
choices for select components are described.

4.1 Hardware specification

Almost all hardware specifications are listed in 3.7. Here the most important
specifications and modules for the hardware are repeated:

• DFA based parser core

• Memory for protocols

• Memory for variables

• Supported instructions:

– Single value match

– Ranged value match

– Alternative value match

– Branches (delayed)

– Defined repetition (delayed)

– Store

– Transmit

• IO interface modules

• System interface module

• Multi protocol support

The multi protocol support was not discussed in the previous section. This
was done on purpose, because it is more related to the hardware design, than
the architectural design. However, some design considerations must be made,
before it can be implemented. In Section 4.2 the multiple protocol processing
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architecture is evaluated. In this section a system integration interface is also
chosen. While it is discussed in the previous chapter a selection still has to be
made for to implement one specific interface for the design that is implemented.
In Section 4.3 the actual hardware implementation of the various parts of the
PPU is described. After that section is a short recap on the compiler followed
by a conclusion of this chapter.

4.2 Architecture design

In this section several possible architectures for multiple protocol processing are
described. After the part on multiple protocol processing a section is devoted
to the system integration. In this section a hardware platform is chosen which
will be used for actual implementation of the PPU. This hardware platform will
have a direct consequence for the system interface and it will be determined
which interface is required.

4.2.1 Multiple protocol parsing

An important aspect of the PPU is the ability to parse multiple protocols si-
multaneously. Two methods for multiple processing were investigated:

• Thread switching, use time division multiplexing to process multiple pro-
tocols

• Multi core processing, use multiple parsing units to process multiple pro-
tocols

The main advantage of thread switching is that is requires a minimal hardware
adjustment to incorporate it into a design. For thread switching the thread
state must be saved and an arbiter is required to determine which thread is
assigned processing time. The disadvantage of this method is that the total
available processing resources are shared between protocols. If the processing
requirements exceed the systems capabilities, data loss will occur on one or more
protocols. To circumvent this problem the clock speed of the PPU cores can be
increased. However, this cannot be done without consequence. If a certain clock
speed is exceeded pipelining must be used to increase the clock speed further.
When pipelining is used extra hardware is needed and a lot of care must be
taken to divide the processing steps in equal parts.

Multi core processing is another method for allowing parallel processing. By
replication the execution hardware for each attached protocol the processing
power is easily increased and the performance is maintained. However, replicat-
ing the hardware increases the hardware size and the static power consumption.

For the PPU both multi core and thread switching are incorporated and
pipelining is not (see Table 4.1. In the basic design, for each protocol a parse core
was required. With thread switching a core is able to process multiple protocols
on a single core. However it does not enhance the processing capabilities of the
system. With many connected interfaces this will lead to performance issues. To
increase the performance extra cores can be added. A dual core design doubles
the peak processing power, compared to a single core system. By incorporating
both methods designers can easily adjust the PPU to their design criteria. This
makes the design flexible and ready for different processing environments.
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Multi core Thread switching Pipelining
Exposure 5 3 7
Impact 2 4 2
Risk 10 12 14

Table 4.1: Risk analysis for multiple protocol switching

4.2.2 System integration

The design of the system integration interface will be for the largest part in-
dependent from the rest of the PPU. This allows the PPU to be more easily
adjusted if it needs to be implemented for another bus. To show the capabili-
ties of the system the PPU will be designed with an interface for the AMBA 2
bus[2]. This bus was chosen because it is connected to the LEON3[10] processor.
This processor is a soft-core which is free of charge for educational goals and
experience with this soft-core was at hand.

4.3 Hardware implementation

In this section the implementation of the architecture is discussed. In Figure
4.1 the top level overview of the system is shown. This global structure is used
to describe all parts and components in detail in the following subsections. In
the first part the PPU cores are described. In the modules seen in the figure,
the protocol data is processed. The IO interfaces are discussed in the next part.
To ensure compatibilty of the IO interface with the PPU cores, the IO interface
properties need to be determined first. Both the PPU cores and the IO interfaces
are controlled by the arbiter. The arbiter governs the data flow inside the PPU.
It controls muxes and enables parts required for parsing. The last element that
is discussed is the AMBA interface. This unit is required for system integration.
It connects the PPU to a host processor and allows programming of the PPU
together with data transfer.

AHB + APB

AMBA interface

PPU
cores

IO
modules

IO 
data

Arbiter

Figure 4.1: High level architecture

4.3.1 PPU core

The PPU core is an implementation of a programmable sequential parsing DFA
(see section 3.3). A DFA drawn in figure 4.2 is used to illustrate the basic
requirements the core must be able to process. The transition from state ‘0’ to
‘1’ requires the match of the character ‘a’. Thus a comparator is required to

29



match the input and a state controller is required to keep track of the state the
DFA is currently in. Most state transitions are from one state to the next, to
simplify the design the state controller will automatically increment to the next
state and these transitions do not have to be programmed.

others

a0 1 a-z 2 a-z
0-9

a-z
0-9

3

Figure 4.2: Basic state machine diagram

For the second transition a ranged match is required. The value should be
equal or greater than ‘a’ and less or equal to ‘z’. In the sequential machine
these 2 operations cannot be computed simultaneously (because of the memory
bottleneck), thus and intermediate state is required. First equal or greater than
‘a’ must be matched, followed by equal or less than ‘z’ (or the other way around).
This could easily be done by introducing an intermediate state, however, would
not work with the 3rd transition without introducing complex extra states.
For these transitions the state controller must remain in the same state, and
wait until the comparator has executed all the required operations. After all
the required operations are completed, the state controller can decide if the
transition requirements are met and transition to the next state.

In the last state the state machine should stay in the same state, this conflicts
with the auto increment functionality of the state controller. For this purpose
an extra state needs to be added. In this fourth state a non conditional jump
is made to the third state.

There is one last functionality required for this DFA to work. If data is fed
into the machine that does not match any transition in the current state, the
DFA should return to its start state.

State transition implementation

The core functionality is designed so it can easily be mapped to hardware. A
state is equal to a memory address, each address contains one instruction and
the related parameter. The instruction field is 8 bits and the parameter field is
32 bits. The output of the memory is fed into an instruction decoder, which will
decode an instruction and drive the comparator and the state controller. The
comparator receives input data and the parameter to be matched and outputs
the result to the state controller. The basic core is shown in Figure 4.3. A short
description of the program of the DFA in Figure 4.2 is used to provide a more
detailed look into the operation of the PPU core.

• When activated the state controller loads the start state and sets the
memory to the start state address.
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• The memory outputs the first instruction, compare equal, and the param-
eter value ‘a’

• The instruction decoder flags a single match to the state controller and
sets the operation of the comparator to “equal match” and the parameter
value ‘a’

• The comparator will compare the input data with the parameter and signal
the state controller if a match or a mismatch has occurred.

• If the state controller receives a mismatch the next state will be the start
state, else the state controller will increment the protocol memory address
by one and the cycle repeats.

For ranged compares the sequence is a little bit different. The first operation
is a multiple compare instruction, this signals the state controller that a ranged
compare is coming. In this instruction the comparator is fed dummy data and it
does not load new input data. The next instruction looks like a normal compare
instruction, but the result is stored in the state controller. All other compares
are executed (up to a maximum of 8) and after all the compares are executed the
state controller decides if a match has occurred or not. If more than 8 compare
are needed, the selection must be broken down in several states of 8 compares,
this can be done by the compiler.

Jumps are also implemented with a special instruction. When a jump in-
struction is encountered the state controller is flagged that a jump is executed
and a jump vector is supplied to the state controller (the jump vector is the
parameter of the jump instruction). Instead of incrementing the state address
the jump vector will be loaded.

Comparator
Instruction 
decoderState controller

Protocol memory

Input
data 

Figure 4.3: Basic PPU core

To support more than one protocol per PPU core, each protocol state must
be stored. This is done in a special memory for this purpose. This memory is
addressed by the arbiter (which will be discussed in subsection 4.3.3) and used
to retrieve the correct state information. When the state controller is activated,
it will require 1 clock cycle to load the correct state address and address for
the protocol memory. When a protocol is deactivated the state controller needs
another cycle to store the state information. This causes an overhead of 2 clock
cycles every time a switch between interfaces takes place.

With these added components the module is also ready for multi core im-
plementation. For the multi core implementation to work, the state memory
and the protocol memory need to be shared between cores. This means that
the state memory needs to be a dual port memory when using 2 cores and a
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higher order port memory when using more cores. Multi port memory is re-
quired, because a protocol state needs to be coherent between PPU cores. Since
the protocol memory is basically a read only memory (it is only written during
programming), duplicate single port memories or a multi port memory can be
used for the protocol memory. With the state memory included the PPU core
schematic now looks like fig 4.4.
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memory
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State controller
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Figure 4.4: PPU core with multi protocol support

Core instructions

With the state memory the PPU core is not yet complete, but the overall struc-
ture is nearly finished. Four classes of instructions are still required for a func-
tional model. Delayed branches, repetition, and transmission instructions are
still needed. Delayed branches are implemented in almost the same manner
as direct branches, the only difference is that there is a separate branch setup
instruction (with the branch address) and an extra instruction for branch execu-
tion. The branch address is stored together in the state memory until a branch
is executed.

Repetition works slightly different, first a setup instruction is executed which
loads the repetition count, which is also stored in the state memory. When a
repetition start instruction is executed, the current address is stored too. The
PPU continues normal function until a repetition stop instruction is encoun-
tered. The repetition stop instruction will load the address of the repetition
start instruction. But when the repetition count is zero, the state controller will
increment the address and load the next instruction.

The transmit instruction loads the parameter from the protocol memory and
outputs them to the IO modules. Also a flag is set to signal the IO modules
that transmit data is coming and to signal the state controller to increment the
state address.

One last instruction that is required is the store enable/disable instruction.
This is used to mark data that needs to be transferred to the host processor.
By marking data, not all data needs to be stored in the main memory, reducing
the required memory space and bandwidth.

The last part added to the PPU core is a register memory. This multi-
port memory is used to store runtime variables. The compare, transmit and
repetition instructions can work from this memory. Data can be written by the
host processor and incoming protocol data can also be stored in that memory.
Read memory access is controlled by the instruction decoder and write access
is controlled by the state controller.

With these last adjustments the PPU core is completed and the resulting
schematic looks like fig 4.5. In this figure the programming interface is not
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shown, this is for clarity of the figure. The instruction-set is listed in appendix
7.1.
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Figure 4.5: Block diagram of implemented PPU core

With all the elements in place the PPU core is capable of processing most
DFA protocols. The limit for DFA protocols is their size. The combined size of
all implemented protocols must fit inside the protocol memory. If the protocols
exceed the size of this memory there is no support for fast swapping of the
protocol memory contents (it does not work like a cache). This may pose a
problem when implementing very large or a large number of protocols.

4.3.2 IO interfaces
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data

Figure 4.6: IO module overview

The IO interfaces are responsible for the IO of the protocol interfaces. Each
interface is connected to its own module. Each module manages the IO level
translation and buffers incoming data before it is send to the PPU. The basic
architecture of the IO modules is shown in Figure 4.6.

An important function of the IO modules is to provide the arbiter (see
Section 4.3.3) with information of processing requirement. The IO modules
indicate if they require processing. If they do, they will notify the arbiter and
wait until they are granted processing time. Basically the PPU is a slave to the
IO modules.

The data transmission handshake is fairly easy (see Figure 4.7). The inter-
face sets a ready signal to notify the PPU core that it is ready to receive new
data. The PPU core will assert a TX signal indicating the transmitted data on
the data bus is valid. The IO module can now load the data and transmit it
over its protocol interface.
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Figure 4.7: Transmit operation waveform

Reception of data is different (see Figure 4.8). When the IO module has
received data after turn on, it can assert the ready signal. The PPU core will
respond by asserting the newData signal and setting the dataLength bus. If
the IO module does not have the requested amount of bits ready, it will send
dummy data and de-assert the ready signal. The next clock cycle the PPU
core will repeat the dataLength signal and the module can wait until it has
sufficient data. When it has sufficient data it can assert the ready signal again
and transfer the data to the PPU core. The data sizes that can be requested
by the PPU cores are : 1,2,3,4,8,16,24 or 32 bits of data. These numbers are
chosen such that with a maximum of 3 instructions all bit sizes between 1 and
32 bits can be received. Not every module needs to support all these data sizes,
but the protocol implementation should take this into account.

Interface
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New
data

Data
length VVV

Figure 4.8: Receive operation waveform

The last requirement for an IO module is buffering. Every module needs
some buffer to allow some delay between receiving data and transfer to the
PPU. The size of the buffer is depending on speed of the interface and the data
rate, a fully utilized ethernet connection will require more buffering than an I2C
connection which is only used every now and then.

One limitation of the IO modules is that they do not support interrupts.
While it is not difficult to implement this, a problem is connecting the interrupts
to the output. Because different system busses can be connected to the PPU a
good universal way to handle interrupts was not implemented.

4.3.3 Arbiter

The arbiter is used to assign interfaces to a PPU core and controls the multi
core and the multi threading support (by time division multiplexing). The multi
threading support allows multiple protocols to run on a single PPU core, as long
as the combined data rate of the protocols does not exceed the bandwidth of
the PPU core. If it does require more processing power, or if two protocols are
active at the same time, the arbiter will utilize more cores (if available).

34



Arbitration algorithm

In the subsection on the IO module, it was stated that the IO modules request
processing time if they need it. The request can change every clock cycle,
therefore every clock cycle the arbiter computes for each available PPU core if
an interface can be assigned to a core. From this requirement it can be concluded
that the algorithm implemented for the selection of an interface must be fast
(linear or loglinear time). The algorithm must also be able to scale, because
multiple PPU cores and interfaces can be connected to it.

Several algorithms were evaluated, but the wavefront algorithm [12] (an
algorithm designed for matrix switches) was the most suitable. This algorithm
finds a solution in linear time and scales linear. It is both fast and flexible and
it requires only basic gates, making it small and cheap. The downside of this
algorithm is that every interface will be assigned a fixed priority, determined
during synthesis. The algorithm implementation could be adjusted for dynamic
priority selection, but this would require at least double the hardware and the
latency.

The wavefront algorithm output is one-hot encoded. If this output is used
in the PPU, a large and wide bus is required throughout the device. To reduce
the bus width a one-hot-to-binary converter is added. The drawback of this
converter is that it adds an extra delay and the output of the converter is 0
when no devices are requesting data, but also when the first entry is. Thus the
value 0 cannot be used anyone as an interface index.
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Figure 4.9: Wavefront algorithm

Wavefront algorithm

The wavefront algorithm is explained in Figure 4.9. The algorithm first checks
to see if column 0 (highest priority interface) requires attention and if row 0
(first PPU core) is available (solid line). If the interface requires attention and
the core is available then the two will be connected and the row will be closed.
This means no other interface can be connected to the first PPU core. When
the first core is already in use, or the first interface does not require processing,
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column 0 and row 1 and column 1 and row 0 are compared (dashed line). The
next step is column 0 and row 2, column 1 and row 1 and column 2 and row 0.
This continues until column N and row M have been processed. The algorithm
has a time complexity of O(N+M), but it could be improved to O(N).

The improvement is done by using a wrapped wavefront algorithm and al-
though it is faster, it will also be more complex to implement and the priorities
are not very clear any more. Also because the number of PPU cores will likely
be much lower than the number of attached interfaces. The speed gain obtained
with the wrapped wavefront algorithm will likely be minimal.

4.3.4 AMBA interface

The last part required to make it all work is an interface to a general purpose
processor. All data flagged by the PPU for storage needs to be stored some-
where. An interface to the main memory is needed for storing data. Also the
PPU needs an interface to program the memories and settings. To accommodate
these requirements an AMBA 2 [2] interface has been added to the PPU. On
the AMBA interface the Advanced High-performance Bus (AHB) is used for a
DMA interface. The Advanced Peripheral Bus (APB) is used for programming
the PPU.

DMA

The DMA unit is used to transfer all incoming data from a protocol to the system
memory. To separate the data of different protocols, the user can program the
memory range where the DMA unit may store its data per interface. Five
registers are available for this purpose, “Read start” and “Num words” are used
for read actions, “read start” indicates the address from where data will be
read, “num words” indicates how many consecutive locations from the address
are read.

“Write start”, “write current” and “write end” are used as the cyclic memory
boundaries for DMA write actions. The DMA unit will start writing data
to the “write start” address. After each write the “write current” address is
incremented and to the location of this address data will be written. If the end
address “write end” is reached the next write will be the start address. If a
single memory location is used all three addresses are the same. The DMA unit
does not have any flow control for the memory write locations. The software on
the general purpose processor must read the data before it is overwritten.

Programming

The PPU is programmed over the APB interface. This low speed interface is
sufficient for programming the device. The programming of the PPU is different
from normal APB devices. Normal APB devices are programmed with memory
mapped registers, with each register on a specific memory location. The mem-
ory and registers of the PPU are not memory mapped to the APB. This was
not possible, because the size of the memory, the registers and the number of
attached peripherals can change depending on the configuration.

To program the PPU a custom command sequence is required at the base
address of the PPU as depicted in Figure 4.10. This allows each module to have
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a specific programming sequence. For instance the protocol memory requires a
size command, then an address command followed by a sequence of instruction
and parameter data. The sequence for programming can be different for each
attached module and that is why this implementation was chosen.

Aside from the base address the remaining address space of the APB device
is used to program the AHB DMA controller. Each interface is assigned 8 32 bit
registers. In 5 of these registers the DMA configuration is stored (see Section
4.3.4), the other 3 are reserved. This allows a maximum of only 7 interface
devices attached to one PPU unit, but this can be expanded if required by
adjusting the APB device address space. However, for the first version of the
PPU support for 7 interfaces was sufficient.

APB address ≠ 0

Command = 1

Command = 3Command = 2

Command ≥ 4

Idle state Program AHB 
settings

Wait for 
command

APB address = 0

Protocol-memory
program state

PPU-core
program state

Register
program state

Interface
program state

Figure 4.10: Program flow of program-interface

4.4 Compiler revisited

After the hardware design the compiler could be revisited. First a start was
made to make some basic rewrite rules for a compiler. These rewrite rules are
listed in this section, unfortunately further development of the compiler has not
taken place due to lack of time. Single value matches, data store start and stop
instructions and unconditional jumps can be rewritten directly to byte code.
Ranged matches and conditional jumps require some rewrite rules. Ranged
matches (up to 4 ranges) require the following construct:

Or i g i na l :
<ASCII> = a−z
<ASCII> =/ A−Z
<ASCII> =/ 0−9

Rewritten as :
<ASCII> = <multipleCompare> <f i r s t V a l u e >

<otherValues> . . . . . <otherValues>

Branches can have a maximum of 8 different branch locations. If more than
8 different branch values are required a selection decomposition must take place.
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For instance an 8 bit word can be broken up into a 3 bit and a 5 bit sequence.
The 3 bit sequence can be evaluated first, followed by the remaining 5 bits
(which can in turn be broken up if it is required). Another option is to load the
8 bit value and program ranges. This allows the compiler to use binary search
(with 8 options at a time) to find the correct branch address.

Or i g i na l :
<ethertype> = <IP> / <ICMP> / <IPsec>

Rewritten as :
<ethertype> = <multipleCompare> <f i r s t V a l u e >

<secondValue > . . . . < l a s tValue>
<f i r s tBranch> <secondBranch>
. . . < lastBranch>

Repetition also needs to be rewritten.

Or i g i na l :
<r e p e t i t i o n > = <X>∗<X><r epet i t i onData>

Rewritten as :
<r e p e t i t i o n > = <r e p e t i t i o n S t a r t > <r epet i t i onData>

<repet i t ionEnd>

Something that has also got to be considered is the limitation of certain
IO modules. Some modules only support specific data sizes (see 4.3.2). With
options the compiler must be notified which protocols support which data sizes.
The compiler specification is far from complete. A lot of work is needed in this
area to make a working compiler, but some basic design decisions have been
made.

4.5 Conclusion

One of the core features of the design of the PPU is flexibility. The goal of
the project was to create a hardware module that can process a wide variety of
protocols like a grammar. The hardware design reflects this idea.

Protocol interface modules are required to connect physical interfaces with
the PPU. The design and connection for these interface is made such that the
number of connected interfaces can easily be scaled. To cope with a large number
of interfaces multiple parser cores can be added to increase performance of the
system. This is also designed to scale.

The main bottleneck for large systems will be the system interface unit.
However the limitation of this interface is very dependent on the system it
is integrated on. For this first design the PPU is connected to the AMBA 2
interface. But also here flexibility was important, the system interface unit is
designed such that it can easily be replaced by another interface, to allow the
PPU to be used in very different systems.
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Chapter 5

Results

After the hardware design the hardware was tested. To test the PPU a few
protocols were selected to be implemented. The selected protocols are:

• I2C

• SPI

• ethernet

• PWM

For these four protocols an IO modules was designed and first tested in sim-
ulations (see 5.1). After the simulations the hardware was implemented on a
FPGA and measured (see 5.2). With the data from both the simulations and
the hardware implementation a conclusion can be made about the PPU in 5.3.

5.1 Simulation

During the implementation of the PPU a lot of simulations were made to test
and verify the functionality of the PPU. Every module is tested separately with
its own testbench. After modules were verified they were connected to test
the functionality of the PPU core, and the AMBA interface combined with the
PPU core. Final tests were done with each interface module connected to the
complete PPU.

The LEON3 processor was not used in simulations. This restricted the
simulations somewhat, but even without the LEON3 many simulations could
be run. The largest problem was testing larger protocols, because they could
not be loaded from software, thus they had to be written in byte-code entirely
by hand.

For each of the 4 implemented protocols extensive testbenches were created.
For PWM, I2C and SPI this was not a problem. Ethernet with the TCP/IP
stack was another matter. Because ethernet is very complex a testbench where
many use cases were tested was not feasible. Therefor for ethernet only a limited
number of tests were written, excluding many aspects of TCP/IP. However,
the results from the simulation proved that the design works, and gives and
estimation of the performance of the system.
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5.2 Hardware implementation

After the simulation the four protocol modules were implemented in hardware.
With the hardware implementation several tests were conducted to evaluate the
performance of the PPU with different protocols. For each protocol the load
on the CPU was compared between the PPU and the CPU load. The load
is measured in C instructions for the CPU. All C code lines were counted as
a single instruction, except for for loops which were counted as 3 instructions
and function calls are not counted as they can be in-lined. The implemented
protocols and their results are described in detail below.

5.2.1 PWM results

While PWM [23] is not a communication protocol, it was used as an early test
module. It also shows that the PPU can be used for different functions other
than pure protocols. For the PWM test a very basic protocol was implemented.
The PWM module has to generate a 16 bit sine wave PWM with 16 steps. This
protocol was compared to a software solution with a standard PWM peripheral.

A GPP needs to program the protocol into the PPU memory. This takes
3 + 5 ∗ protocolSize C instructions. The protocol size for the PWM protocol is
34, so 173 instructions are required for programming. Another 5 instructions
are required for PPU core setup and the interface setup. For the PPU imple-
mentation a total of 178 C instructions are required to implement this protocol.
After this initialization, no more attention for the GPP is required.

For the software solution with a dedicated PWM module the load is very
different. To program a standard PWM peripheral somewhere in the order
of 5 settings need to be programmed [13]. After this initialization a PWM
values needs to be programmed after each completed PWM cycle. This will
only take one instruction (not including polling or interrupt overhead). This
method clearly requires less setup instructions, a PWM signal can be generated
with only 6 instructions. However, as time progresses the software solution has
to keep updating the PWM value. The break even point is after 173 PWM
values (almost 11 sine wave cycles). When more than 173 values are required
the software solution poses a higher overall load on the GPP than the PPU
would. The software solution has the advantage that the values of the PWM
cycle can be changed more easily, but if this happen less often than once per
11 cycles, the software solution still has a lower performance compared to the
PPU solution.

Another thing that was learned from this test is that a simple protocol is
not very efficient in terms of PPU core load. The PWM module receives a
transmit operation and will remain idle until the next PWM cycle starts. But
for every operation a start and stop cycle are needed. For the entire protocol
the efficiency measured in useful cycles of the PPU core is only 1/3.

5.2.2 SPI results

SPI [24] was the first real communications protocol implemented in the PPU.
In the SPI protocol the role of the PPU was to be a slave. The protocol and
hardware for a slave device are less complex than a master device, which is why
a slave function was chosen as a first communication test protocol.
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Protocol description

The protocol that was implemented in SPI was a very simple ’toUpper’ protocol.
The PPU was programmed only to accept “hello” as input string. The output
would be “HELLO” with 1 character delay between input and output. While
this was a very simple protocol it would test the receive, transmit and branch
operations of the PPU.

A second test was also done with the SPI protocol to send variable length
data. In this protocol a set of random data bytes was send, all with a different
length. This was used to test the ability of the PPU to receive variable width
data. No load measurement was done with this protocol, but data lengths of
1-32 bits were tested, and they could all be parsed without problem with at
most 3 clock cycles.

Load measurement

The software load for a toUpper program is very low, but again in time the
PPU will be more efficient. To run a similar program on a micro controller
only 5 instructions are needed for setup. The runtime load is much higher than
of the PWM test, not including polling or interrupt overhead. The software
needs to perform a compare on the received data, load the next transmit data
and increment to the next data point. After incrementing to the next data
point, it has to check if the end is reached and loop back. The total load in C
is 7 instructions per correctly received byte and 3 instructions per incorrectly
received byte.

The PPU fares better, it has an initial higher load of 63 instructions for
setup, but afterwards no CPU cycles are needed anymore. This means that
after only 9 bytes of correct data or 21 bytes of incorrect data the PPU is more
efficient compared to the software solution.

An advantage of the PPU is that the load of both the SPI and the PWM
protocol is very low, and that both protocols can run together without any
problem.

5.2.3 I2C results

I2C [15] is the third protocol tested on the PPU. For this protocol a master
module was implemented. I2C is a protocol with more checks and timing issues
than SPI has.

Protocol description

The protocol on the I2C connection is a little more complex, a connection is
initiated by the PPU and the address for the slave is send. After the slave
acknowledges the address command, 5 bytes are written from registers. Then
the PPU stops and restarts communication, again an address is written, but
this time with the read command. The bytes read from the bus and then stored
in the registers and the cycle starts over.

41



Load measurement

The difference between this protocol and software is just like the other two.
On initialization it requires much more CPU cycles, but during runtime it is
much more efficient. The software takes 5 cycles for each byte (send or receive)
and 3 more for each acknowledgement. To load the protocol into the PPU
memory takes 123 cycles. After cycling through the protocol twice the PPU
implementation is already more efficient.

5.2.4 Ethernet results

Ethernet together with the TCP/IP stack is one of the most used protocols
today. It is also one of the most complex ones to implement. For an ethernet
connection a separate PHY IC is required to translate the differential ethernet
signals to single ended signals for the FPGA. The connection between the FPGA
and the ethernet PHY is a GMII connection. This connection has its own
protocol so basically the PPU handles GMII as low level protocol layer instead
of ethernet. Fortunately this makes no difference for the PPU.

Performance

For ethernet an ARP request and an ICMP (ping) reply was implemented. How-
ever, comparing the performance of these protocols between a software and a
PPU implementation is very difficult. In the software implementation a full
TCP/IP stack is present. The full stack has many options that are checked
where the PPU implementation does not. The reason that the PPU implemen-
tation does not have the full stack, is time. Implementing a full TCP/IP stack
takes a huge amount of work and there simply was not enough time to do it
properly.

However, an estimation was made based on the results of the tests run. Soft-
ware can parse about 120000 ping packets on a 2.66 GHz Pentium-4 processor
[11]. Based on the measurements done on the PPU a comparison is made how
many packet could be parsed using the PPU. By using the same packet size as
in the paper, running a simulation yielded a 108 cycles per packet receive load.
This load is calculated with 24 supported ethertype fields, 24 IP protocols and
16 ICMP types. The only assumption made (which was not included in the
simulation), is the inclusion of a checksum offload module.

Based on this testbench the PPU requires 140 clock cycles to parse an incom-
ing packet and send the reply. The Pentium-4 processor requires 22166 cycles
per receive and response (on average). The PPU is much more efficient, but
a Pentium-4 processor is a very old processor. A modern high end Intel Core
i7-4790K processor performs about 44 times better [16]. The performance of a
modern CPU would be around 515 cycles for parsing a ping packet and sending
the reply. This would still favor the PPU as it requires about 3.5 timer less
clock cycles for the same amount of work.

But the absolute performance of the Intel processor is much higher, since the
PPU runs at a much lower clock frequency. Also when no offload module for the
checksum is available, the performance of the system would reduce very much.
This is because of two factors. The first and obvious one is that the GPP in the
system has to calculate the checksum twice (send and receive) before the reply
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can be transmitted. The second is because all data is required by the GPP for
calculating the checksum. When the checksum is offloaded no data transfer has
to take place, increasing the performance.

5.3 Conclusion

Several protocols were implemented and tested on the PPU. While some tests
were only done in simulation, most functionality was also tested on real hard-
ware. From these tests the following general conclusion were made:

• The PPU can parse different protocols and process them simultaneously.

• The PPU requires a relatively large setup overhead, but when it is running
the overhead is low and the performance is high.

• The PPU can work with data sizes from 1-32 bit without any problems.

• With a simple ICMP protocol the performance is 3.5 times higher than
the performance of a modern CPU, measured in clock cycles per packet,
assuming a hardware module for checksum offloading is available (which
is implemented in many ethernet PHY devices already).

For a first version of a new concept the performance results are promising.
The main performance bottleneck of the PPU is multiple branch calculations on
select protocol fields. For example the ethertype field in an ethernet header can
have many different values, each relevant for another protocol. Using multiple
parallel compares would greatly increase the performance of the PPU.

The hardware size of the PPU is 1669 LUTs and 700 registers in an Xilinx
Virtex-6 FPGA. This size is for a 2 core PPU design including a PWM, SPI,
I2C and a GMII (ethernet) module. Also a 2048x40 and a 1024x32 memory
block is used for the PPU. Compared to a LEON3 processor (15,693 LUTs and
12814 registers) the PPU is a very small device.

The use of a grammar to describe a protocol was intuitive to use. With a
protocol written in a grammar it is very easy to keep track in what state the
protocol is, what has to be done next and to find errors. However, with only
one person using this method it is hard to tell if other engineers would agree on
this subject.

The biggest improvement that can be made for the current system is to
design more hardware modules for various protocols. For each protocol a PHY
module had to be created and most errors during implementation came from
bugs in these hardware modules. For the PPU to be successful, many modules
for many different interfaces should be available. If this would be possible the
PPU can easily be used in new applications by just loading the correct modules
into the library.

The compiler should also have a high priority for future work. The current
version requires an engineer to program the PPU with byte-code. This takes a
lot of time and it is error prone.

The last improvement for future work is better configuration and control of
the PPU with the API. In the present state configuration registers can only be
written and not read by the GPP. Some other functions for the GPP would also
be welcome. For example it would be useful to allow the GPP to set the PPU
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in a certain state and let it execute from the state. This is useful in for example
a TCP/IP protocol where an “keep-alive” packet needs to be send every now
and then, issued by the GPP. Also the lack of interrupts cause a load on the
GPP for polling operations.
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Chapter 6

Conclusion

The design of the PPU started by examining the current processing methods.
Currently the 3 most used methods for parsing protocols are software parsing
and hardware accelerated parsing, by means of an accelerator or with Content
Addressable Memories. Software processing is the cheapest method with the
fastest time to market, however, the performance of accelerators and CAMs
is much better than software solutions (see Table 6.1). Software has another
advantage and that is its flexibility. This together with the low cost make
software solutions the most widely used option for protocol processing. Only
when a large power or performance advantage can be achieved, accelerators or
CAMs are used.

Software Accelerator CAM
Hardware costs ++ - - -
Development costs - + +
Performance - - ++ ++
Flexibility + - +
Time to market + - +
Ease of integration + - -

Table 6.1: Protocol processing solutions

The PPU is targeted between the accelerators and the software solutions.
The goal is to achieve good performance and a very flexible processor based on
parsing protocols like a grammar. This is the reference from which the design
started.
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Figure 6.1: The PPU design

For the hardware design of the PPU a lot of different aspects were evaluated and
decisions were made for the implementation. Figure 6.1 shows the global design
used to specify the system. The implementation language is the bridge between
the compiler and the protocol specification. ABNF is the language chosen for the
implementation language. The language has the right properties for a grammar
based parser, but it will require some extensions to support protocols. The focus
for the PPU will be protocols that have a regular grammar.

The implementation language is converted into byte-code by a compiler.
However, the compiler could not be finished and is left as a future project.
During this thesis work the task of the compiler was done by hand.

The parser core is where the protocols are actually processed. The protocol
grammar is loaded into the memory of the PPU. The memory architecture is
a single issue memory (one instruction per clock cycle). The parser core loads
the protocol specification from the memory and compares it with input from
the protocol interfaces. For parsing, the core has the following instructions
available:

• Single value match

• Ranged value match

• Alternative value match

• Branches (delayed)

• Defined repetition (delayed)

• Store

• Transmit

The IO of the PPU is handled by two modules, the protocol interface modules
and the system interface module. The protocol IO is handled by separate IO
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modules for each interface. The modules translate interface signal levels into
signal levels for the PPU core. They also buffer incoming data if the PPU is
busy. The system interface module is the connecting element between other
processors (like a GPP) and the PPU. The system interface module will be
designed such that it can be easily changed with another module. With this
design the PPU can be made compatible with new systems with relative ease.

Hardware design

One of the core features of the design of the PPU is flexibility. The goal of
the project was to create a hardware module that can process a wide variety of
protocols like a grammar. The hardware design reflects this idea.

Protocol interface modules are required to connect physical interfaces with
the PPU. The design and connection for these interface is made such that the
number of connected interfaces can easily be scaled. To cope with a large number
of interfaces multiple parser cores can be added to increase performance of the
system. This is also designed to scale.

The main bottleneck for large systems will be the system interface unit.
However the limitation of this interface is very dependent on the system it
is integrated on. For this first design the PPU is connected to the AMBA 2
interface. But also here flexibility was important, the system interface unit is
designed such that it can easily be replaced by another interface, to allow the
PPU to be used in very different systems.

Results

Several protocols were implemented and tested on the PPU. While some tests
were only done in simulation, most functionality was also tested on real hard-
ware. From these tests the following general conclusion were made:

• The PPU can parse different protocols and process them simultaneously.

• The PPU requires a relatively large setup overhead, but when it is running
the overhead is low and the performance is high.

• The PPU can work with data sizes from 1-32 bit without any problems.

• With a simple ICMP protocol the performance is 3.5 times higher than
the performance of a modern CPU, measured in clock cycles per packet,
assuming a hardware module for checksum offloading is available.

For a first version of a new concept the performance results are promising.
The main performance bottleneck of the PPU is multiple branch calculations on
select protocol fields. For example the ethertype field in an ethernet header can
have many different values, each relevant for another protocol. Using multiple
parallel compares would greatly increase the performance of the PPU.

The hardware size of the PPU is 1669 LUTs and 700 registers in an Xilinx
Virtex-6 FPGA. This size is for a 2 core PPU design including a PWM, SPI,
I2C and a GMII (ethernet) module. Also a 2048x40 and a 1024x32 memory
block is used for the PPU. Compared to a LEON3 processor (15,693 LUTs and
12814 registers) the PPU is a very small device.
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The use of a grammar to describe a protocol was intuitive to use. With a
protocol written in a grammar it is very easy to keep track in what state the
protocol is, what has to be done next and to find errors. However with only one
person using this method it is hard to tell if other engineers would agree on this
subject.

The biggest improvement that can be made for the current system is to
design more hardware modules for various protocols. For each protocol a PHY
module had to be created and most errors during implementation came from
bugs in these hardware modules. For the PPU to be successful, many modules
for many different interfaces should be available. If this would be possible the
PPU can easily be used in new applications by just loading the correct modules
into the library.

The compiler should also have a high priority for future work. The current
version requires an engineer to program the PPU with byte-code. This takes a
lot of time and it is error prone.

The last improvement for future work is better configuration and control of
the PPU with the API. In the present state configuration registers can only be
written and not read by the GPP. Some other functions for the GPP would also
be welcome. For example it would be useful to allow the GPP to set the PPU
in a certain state and let it execute from the state. This is useful in for example
a TCP/IP protocol where an “keep-alive” packet needs to be send every now
and then, issued by the GPP. Also the lack of interrupts cause a load on the
GPP for polling operations.

Review

Now the questions from the start of the thesis can be answered:

• Can a hardware module be designed that processes different communica-
tion protocols like a grammar?

– Yes, it is possible.

• How does the performance of the hardware module compare to a software
implementation?

– The initialization poses a higher load on the GPP with a PPU, com-
pare to an initialization without a PPU. During runtime the perfor-
mance of the PPU is higher (up to 3.5 X for ICMP) and the overhead
is lower.

• What is the cost of such a hardware module?

– 1669 LUTs and 700 registers and a block of memory. The cost of this
hardware is very low for modern IC processes.

• What are the limitations of such a module?

– Main limitation is the lack of an arithmetic unit for advanced protocol
fields. Another limitation is the requirement of hardware modules
for PHY interfaces. This can be a problem for programmers with no
experience with HDLs.
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To review the performance of the PPU compared to the current solutions,
table 1.1 is expanded with the a column for the PPU.

Software Accelerator CAM PPU
Hardware costs ++ - - - -
Development costs - + + +
Performance - - ++ ++ +
Flexibility + - + ++
Time to market + - + +
Ease of integration + - - +/-

Table 6.2: Protocol processing solutions

The PPU fits nicely between the current solutions as was intended. The
main disadvantage compared to software is that extra hardware is required.
However the hardware cost is low and development costs are lower because it
is easy to program the device. The performance will likely never reach the
level of an accelerator, but it can come close to it. The biggest advantage is it
flexibility. The hardware is able to deal with a large variety of protocols and
data sizes. This allows for fast development reducing the time-to-market. The
ease of integration is something that is subject to opinion. One has to select or
develop the required PHY modules and then load the correct software. Even in
the current state where there is no supporting software available, this process
is not difficult and easy to do.

6.1 Future work

In this thesis work not everything that is possible with the PPU could be done,
due to lack of time. This section is devoted to all things which are not finished
or started, but could improve the PPU.

The compiler is one of the most important things that has to be completed.
With a compiler, designing new protocols for the PPU will become a lot easier
and faster. This is a key component for the PPU and it is vital to have if the
PPU will be launched to the market.

Beside the compiler the main focus of improvement is with the hardware
design. One of the first additions that could be made to the PPU and be of
use are interrupts. The APB which is connected to the hardware has interrupt
support, integrating this would take some time, but should not be a very big
problem.

Another improvement is the addition of multiple comparators per PPU core.
In the current design only one comparator is used for parsing incoming data.
When branches with multiple entries are encountered the PPU has to parse all
of them sequentially. With multiple comparators, multiple entries (or at least
some of them) can be parsed in parallel. This does require an adjustment of
the memory interface and the PPU core input, but the hardware performance
could greatly benefit from this improvement.

The PPU could also be augmented with an accelerator. However a fixed
function accelerator will not be useful in the flexible design of the PPU. Therefor
improving the PPU with a Molen [17] accelerator would be much smarter. In the
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current design, the PPU is unable to cope with an arithmetic operation if it is
required by the protocol (for example checksum or offset calculations). Because
each protocol requires other types of calculations it is not efficient to implement
them all in the PPU core. The Molen architecture allows the PPU to have
a very wide range of accelerator support, with only a few added instructions.
Also because a protocol implementation is pretty much fixed during runtime, the
Molen reconfigurable core only needs to be programmed once. With this added
accelerator the performance gain of the PPU can be increased significantly.

With reconfigurable logic implemented with the PPU not only the back-end
(the Molen concept), but also the front-end can be improved. By adding a
reconfigurable logic section with the IO modules, support for various protocols
can be implemented during programming. With this method a system equipped
with a PPU can be adjusted to almost any protocol processing module. Another
advantage is that dynamic pin assignment becomes trivial. With the reconfig-
urable logic blocks at the front- and back-end the PPU design would become
like fig 6.2.
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Figure 6.2: PPU overview with reconfigurable logic
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Chapter 7

Appendix

7.1 Instruction-set

10xx yyyz Compare 32 bit compare value
11xx yyyz Compare from register 16 bit register address
01xx xyyy Multiple compares -
0010 0xxx Transmit 32 bit transmit value
0011 0xxx Transmit from register 16 bit register address

0000 0000 Nop -
0000 0001 Immediate jump 16 bit memory address
0000 0010 Delayed jump 16 bit memory address
0000 0011 Execute jump -
0000 0100 Store in register 16 bit memory address
0000 0101 Store in memory -
0000 0110 Repeat from register 16 bit register address
0000 0111 Repeat 16 bit repeat value
0000 1000 Repeat stop -

Table 7.1: Instruction set
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