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Abstract

Topology optimization has seen increased interest with the development of additive manufacturing (AM) as a manu-
facturing method, because of its ability to utilize the geometric complexity that AM offers. However AM still imposes
some restrictions on the design, most notably on its minimum feature size, overhang, and enclosed voids. Enclosed
voids are problematic because for most AM methods it is impossible to remove supports from them, additionally for
powder-based AM these enclosed voids trap unmelted powder adding parasitic mass. In this thesis, two new methods
have been investigated to alleviate this issue, the eigenfrequency method and the flood fill method. The eigenfrequency
method utilizes the eigenfrequency of an inverted density field, which changes enclosed voids to floating masses.
These floating masses have rigid body modes, which can then be prevented by applying a minimum eigenfrequency
constraint. The eigenfrequency method encountered a large problem in the form of intermediate densities, which were
used to satisfy the eigenfrequency constraint instead of the elimination of enclosed voids. The flood fill method utilizes
a modified flood fill algorithm, which is a filter with a resulting density field where every enclosed void element is
changed to solid. The flood fill method did successfully eliminate enclosed voids in both 2D and 3D problems, at the
cost of very little additional computational effort. It also allows for direct control over the location, amount, and size of
the void elimination features by varying boundary elements, running additional flood fills, and morphologic operators,
respectively.
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1 | Introduction

1.1 Background
Before presenting the problem statement, this section briefly discusses the two main background topics for this thesis,
namely topology optimization and additive manufacturing (AM). Topology optimization has seen increased interest
with the development of AM as a manufacturing method, because of its ability to utilize the geometric complexity that
AM offers [1].

1.1.1 Topology Optimization
Topology optimization is a computational process aimed at finding the optimal material distribution for a given struc-
tural optimization problem, the considered optimization problems can be denoted using the following general form:

min
x∈Ω

f (x)

s.t. gi(x)≤ 0 i = 1, . . . ,m
h j(x) = 0 j = 1, . . . , p
xlower ≤ x≤ xupper

. (1.1)

Here the objective function f (x) denotes the main property to be optimized, e.g. minimizing compliance, minimizing
or maximizing the first eigenfrequency or maximizing surface area. This optimization is then subject to different
constraints to make sure the final result of the optimized structure meets certain conditions, e.g. a maximum mass
or a maximum stress. These constraints are subdivided into two groups: gi denotes inequality constraints and h j
denotes equality constraints. Finally the optimization is performed using the design variables x, which can represent
the material used, the cross-section of a beam or in the case of topology optimization: the material distribution. Most
common optimization methods use sensitivity information to determine how changing the design variable affects the
objective or constraints, which is then used to perform the next optimization iteration. Topology optimization generally
uses the finite element method to calculate the current performance of the design and necessary sensitivities.

Topology optimization can be implemented with different methods, the most common of which are listed below [2]:

• The solid isotropic material with penalization (SIMP) method is the most commonly used method. It adds
a density variable to each element, optimization is then done by changing these density variables to achieve
an optimized design. The density variables are continuous over a prespecified range, which makes it possible
to determine gradients that indicate the influence changing the density has on the objective or constraints. It
suppresses intermediate densities by adding penalization to them and with sufficient penalization the optimizer
then gets forced towards a solution with strictly void and solid elements, resulting in an interpretable design.

• The level set method uses a function depending on multiple variables to define the boundaries of the part. It does
this by considering any region where the function is larger than zero as solid and smaller than zero as void.

• The evolutionary structural optimization (ESO) method is based on considering any material that is below a
certain sensitivity threshold as redundant and removing it.

• The bi-directional evolutionary structural optimization (BESO) method is an extension of the ESO method in
that in addition to removing material it can also add material where necessary.

While topology optimization on its own has complete freedom in possible resulting geometries, the final design still
needs to be manufacturable. Therefore additional constraints or filters are necessary to comply with the restrictions of
the chosen manufacturing method.
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1.1.2 Additive Manufacturing
The main subject of this report is on topology optimization in combination with AM methods, as topology optimization
has seen increased interest with the development of AM as a manufacturing method, because of its ability to utilize the
geometric complexity that AM offers [1]. Multiple AM techniques have been developed, of which the main focus in
this thesis is on powder bed fusion. Powder bed fusion follows the basic process [3] of first depositing a new layer of
powder, then guiding a laser beam to scan the desired shape of the layer. This process is repeated until the complete
part is finished.

Due to the layer-by-layer approach of AM it has a large advantage over conventional manufacturing methods in the
ability to manufacture complex structures, for example some of these complex structures are shown in Figure 1.1.
Additionally, compared to subtractive manufacturing methods like milling and turning an advantage can be the reduced
material waste, as subtractive methods take material away from a larger block to manufacture the part. Forming
manufacturing methods like casting and injection molding also have little material waste, but here AM has a different
advantage in terms of a lower lead-time. For every new design a forming method needs a new mould, while AM could
immediately start producing the new design.

(a) (b)

Figure 1.1: Two examples of complex optimized structures manufactured by 3D printing.

Despite these advantages AM is still not widely applied as a manufacturing method, although its usage is growing
[4]. It is currently mostly used as a way to quickly manufacture prototypes due to its size restrictions, relatively slow
production speed and high cost [4]. However this does not mean that AM is only being used for this purpose, e.g. Liu
et al. [5] found that in the aerospace industry AM is already being used to manufacture parts with complex geometry,
expensive materials, small production runs or parts that need quick turnaround time. Additionally, AM can also be
used to aid conventional manufacturing methods, e.g. Hawaldar and Zhang [6] found that using AM to fabricate a sand
casting mould yielded advantages in terms of weight and surface quality over conventional methods.

Even though AM has the ability to make very complex shapes that conventional methods are unable to make, it still
places some restrictions on the design. The main restrictions are minimum feature size, maximum overhang angle and
the presence of enclosed voids [7].

The restriction on minimum feature size comes from the fact that material is either deposited by an extruder, or in the
case of powder based methods the fact that powder is melted by a laser. The extruder and laser have a finite diameter,
therefore features made by them can not be smaller than this diameter.

The restriction on overhang is caused by the fact that AM works on a layer by layer basis. Any new layer needs to be
sufficiently supported by the previous layers, otherwise the new structure could collapse or sag. Generally an angle of
45 degrees is considered as the minimum overhang angle [8], but this angle can both be larger or smaller depending on
different manufacturing conditions.

The last restriction is on enclosed voids, because for most AM methods the main issue with these is that it is impossible
to remove supports from them, additionally for powder-based AM there is another problem in the form of trapped
unmelted powder adding unnecessary mass. For example, Reddy et al. [9] found that in a part with a volume of 175
cm3, more than 82 cm3 of loose powder was trapped in the part and between supports. This is currently remedied
either by manually removing the voids in post-processing once the optimization is finished or by drilling holes in the
manufactured part, which adds unnecessary compliance and either more design or more manufacturing time.
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1.2 Problem statement

1.2.1 Motivation and Aim
As seen in the previous section, AM has the ability to manufacture complex geometries designed by topology opti-
mization, however the discussed restrictions still apply. Enclosed voids are sometimes present in the optimal shape for
a given problem and can thus be generated by topology optimization, an example of such a design is shown in Figure
1.2. Therefore the aim of this research is to develop a method which can successfully eliminate enclosed voids during
the topology optimization process. This method should either fill up any enclosed void or create a pathway to connect
it to the boundary, while adding little compliance and computational effort. Additionally, the method should allow for
sufficient control over the size of these pathways.

(a) (b)

Figure 1.2: Topology optimized design with enclosed voids, images provided by Arnoud Delissen. (a) Bottom view of design; (b)
Cut view of design with enclosed voids outlined in blue.

1.2.2 Scope
Topology optimization can be implemented with a wide range of choices for different optimization approaches, i.e.
which optimization algorithm to use or which type of physical problem to solve. In this research the focus lies solely
with density-based topology optimization, which is then used to solve compliance minimization problems. The opti-
mization algorithm used for this is the Method of Moving Asymptotes (MMA) [10]. This combination of the SIMP
method with MMA is the most common topology optimization approach, which makes it a good choice to investigate
the new enclosed void prevention methods.

1.2.3 Approach
Two new methods are considered for this thesis: The first method is based on the fact that rigid body modes, which
occur when a body is not connected to a base, correspond to an eigenfrequency of zero. This phenomenon could
then be utilized when applied to an inverted density field, where this low eigenfrequency indicates the presence of an
enclosed void. The second method utilizes a flood fill algorithm to fill up any enclosed voids present in the design
every iteration. The only way these voids can then exist in the design is if the optimizer makes a path of void elements
towards it.

1.3 Outline
As mentioned in Section 1.2.1 and 1.2.3 the main focus of this research is the investigation of two new methods to
eliminate enclosed voids during or after the topology optimization process. This thesis is divided into chapters: Chapter
2 discusses the current state of the art when it comes to the elimination of enclosed voids for topology optimization.
Chapter 3 discusses the working principle, parameters to choose and results of the eigenfrequency method and Chapter
4 discusses these topics for the flood-fill method. Chapter 5 evaluates specific aspects of the two methods in detail.
Chapter 6 contains the conclusions and recommendations for further research.
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2 | State of the art

2.1 Casting and Machining Methods

2.1.1 Casting constraints
It is impossible to produce a part designed with enclosed voids using a mold, therefore multiple studies have been
done to prevent enclosed voids from forming in cast parts. Wang and Kang [11] presented a level set based method for
preventing enclosed voids by adding a constraint to the optimization called the moldability condition. The moldability
condition states that the normal of every point on the surface of the structure cannot deviate from the predefined parting
direction of the molds by more than 90 degrees. Figure 2.1 shows the moldability condition applied to a cast part, where
any surface that does not comply with the condition is coloured red. It is impossible for an enclosed void to comply
with the moldability condition and therefore implementing it will succesfully prevent enclosed voids from forming.
Xia et al. [12] use a similar approach to Wang and Kang, based on the level set method again but with a small change
in formulation. They instead constrain every point on the boundary to only be able to move in the parting direction,
this makes undercuts and enclosed voids impossible because these features require at least one part of the boundary to
move in a different direction.

Figure 2.1: The moldability condition applied to an example part, image based on work by Wang and Kang [11].

Lu and Chen [13] proposed a SIMP-based method to ensure the optimization does not produce enclosed voids. It does
this by forcing the optimizer to prefer material close to the mold interface by gradually reducing the maximum density
of elements based on their distance from this interface. In combination with the SIMP method this essentially penalizes
any material that is further away from the mold interface, which forces the optimizer to fill up an enclosed void rather
than add material to the outside.

In addition to preventing enclosed voids, these casting methods also prevent undercuts from forming. This is a necessity
for casting as having undercuts makes removal of the molds impossible, or would necessitate the use of complex inserts.
However when AM is concerned this feature becomes a major drawback, because it is too restrictive.
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2.1.2 Machining constraints
Next to casting other conventional manufacturing methods are the machining methods, milling and turning. It is also
impossible to produce enclosed voids with machining methods, as any void needs to be reachable by the machining tool
for the part to be manufacturable. For this reason multiple methods to ensure topology optimized part is manufacturable
with machining have been proposed.

Langelaar [14] proposed a density-based filter to convert any input design into a manufacturable geometry. This filter
has as main working mechanism that densities are cumulatively summed up in the insertion direction of the machining
tool. Meaning that a void element which is blocked by any number of solid elements will automatically have a density
of one or more in the filter. Additional steps of the filter can also be utilized to account for tool length and tool shape.
This process is repeated for all possible tool insertion directions, where the geometry is rotated to accommodate the
new insertion direction using a affine transformation to obtain the mapped density field. The filter finally combines all
directions by first reverse mapping the density fields to the original mesh, then only taking the intersection of remaining
solid elements to find the geometry of the final part.

Vatanabe et al. [15] proposed a projection based method that maps the design variables domain to a pseudo density
domain by using a max function in the insertion direction. This mapping achieves the same result as the filter proposed
by Langelaar, where any void element in the design variables domain that is blocked by any number of solid elements
will have a density of one.

Liu and Ma [16] use a feature-based approach with the level set method. They achieve a machinable design by making
the optimization about fitting features known to be machinable to the design. The method uses a virtual velocity field
derived from the sensitivity analysis, after which the least squares method is used to minimize the difference between
the feature velocity field and the virtual velocity field.

While the manufacturable geometries with machining are more complex than casting, there are still significant restric-
tions on complexity that AM does not have. This is still a large drawback when considering the complex geometries
that are possible with topology optimization and AM.

2.2 Virtual temperature Method
An AM oriented method for detecting enclosed voids designed for topology optimization is the virtual temperature
method proposed by Liu et al. [17]. In this method any voids are replaced with a virtual heat source of high conductivity
and the solids replaced with virtual thermally insulating material. In addition to this the external boundaries of the
design space are defined as heat dissipation boundaries with a temperature of 0. The heat generated in any enclosed
void then cannot be transferred to the dissipation boundary effectively, which results in a high local temperature.
However, if a void is connected to the external boundary the heat will easily be transferred to the dissipation boundary
and therefore the local temperature remains low. Enclosed voids can then be detected by looking at which elements
of the structure have the highest temperature. A visual representation of this method is shown in Figure 2.2. The

(a) (b)

Figure 2.2: Visual representation of the virtual temperature method. (a) Structure with an enclosed void; (b) structure without
enclosed voids. Images taken from [17].

virtual temperature method has also been implemented as a void prevention technique by utilizing its characteristic
that any enclosed void will have a high maximum temperature. This is done by adding a constraint for the maximum
temperature during the optimization process. The constraint temperature is found by first finding the maximum steady
state temperature if all elements were void elements, then this maximum temperature is multiplied with a variable
chosen by the designer to get the constraint temperature [18].
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The advantages of this method are that calculating the temperature field does not require a large computational effort
and that the possible geometric complexity of designs is unaltered. However the method also has its drawbacks, the
first drawback is that the maximum temperature constraint has to be chosen by the designer and its influence is difficult
to determine by hand. Different chosen values for the maximum temperature constraint result in large differences in
the final design, this phenomenon is visible in Figure 2.3 for a beam torsion problem. The second drawback of this
method is its tendency to make a void elimination channel as close to the void elements as possible, this is also the
reason for the unnecessary amount of void elimination channels seen in Figure 2.3b. Yunfeng et al. [19] proposed a
slight alteration to the method where the heat source is temperature-dependent, which is then used to make the local
temperature of enclosed voids as uniform as possible. This alteration mitigates the issue of the first drawback of the
method by making the local temperature more predictable, although whether this temperature could then be used to
directly control void elimination features is still unknown.

(a) (b)
(c)

Figure 2.3: Different solutions to a torsion beam problem depending on different temperature constraints [17]. (a) No constraint,
enclosed void in middle; (b) constraint is 10 times maximum steady state temperature and (c) constraint is 6 times maximum steady
state temperature, solid in middle.

2.3 Adjacent Element Method
Another method for detecting enclosed voids is the neighboring element method presented by Xiong et al [20]. This
method works by defining all neighbouring elements with the same density as either a void or solid set, then any
enclosed void set can be detected by determining whether or not the set is connected to the boundary. For determining
which neighboring elements should be added to a set the method utilizes a modified floodfill algorithm, where any
element without a set is compared with its neighboring elements one by one until one with a matching density is found.
The decision tree for a single element is shown in Figure 2.4.

Figure 2.4: Decision tree for set determination in the neighbouring element method[20].

Once the enclosed voids are identified a path can be generated for powder removal. To generate the shortest powder
removal path Xiong et al. [20] first convert the element based model into graphs in order to utilize existing shortest
path algorithms. However performing this conversion for large amounts of elements requires a large computational
effort, therefore they also propose to use a hierarchical graph scheme to do the computation. The hierarchical graph
scheme works by having sets of elements at the upper levels and individual elements only at the lowest level, which is
shown for two levels in Figure 2.5. Afterwards Dijkstra’s shortest path algorithm is used for every graph level to find
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the shortest path from an enclosed void to the outside. The resulting 2D structure is shown in Figure 2.6, additionally
this method applied to a 3D platform problem is shown in Figure 2.7.

(a) (b) (c)

Figure 2.5: Example of the hierarchical graph scheme. (a) Division of element sets, (b) top level graph of element sets with the
green, yellow, red and purple dots as void regions and (c) lowest level graph of element set outlined in red.

Figure 2.6: Solution of 2D problem [20].

(a) (b) (c)

Figure 2.7: Path generation in a 3D problem [20] (a) Description of platform problem; (b) cross-section of free-form solution and
(c) cross-section of solution with generated paths.

This method costs little computational effort and uses the free-form topology optimized structure as starting point, but
it has two large drawbacks. The first drawback is that it assumes the shortest path will automatically have the least
negative impact on the compliance of the structure, while this will not always be the case. The second drawback is
that the void detection is done by a non-differentiable operation, which makes integration into topology optimization
difficult. A final minor drawback is that the different hierarchical levels have to be chosen and its effect on computation
time is difficult to determine by hand.

2.4 Side constraint Method
The side constraint method proposed by Zhou et al. [21] uses the level set material model to define void features,
which are predetermined before the optimization. The optimization is carried out by changing the size and shape
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of the existing void features, which are restricted to the shape of a super-ellipse. A super-ellipse can be seen as a
generalized representation of a circle, ellipse, square and rectangle, therefore the optimization can be summarized as
finding the optimal width, height, location, shape and angle of every super ellipse. Because additional voids cannot
be nucleated during the optimization process, enclosed voids can be prevented by restricting the centerpoints of all
predetermined voids to be outside the design domain. Figure 2.8 shows an example of a 2D problem optimized using
the side constraint methods, where all predefined voids are denoted with red outlines. Figure 2.9 shows a 3D torsion
beam problem optimized with this method. These methods do have a major issue, restricting voids to the outside of
the design space can prove too restrictive in combination with the super ellipse shape. Furthermore all voids being
predefined makes it so that some initial calculation or choice is required on a sufficient number of voids.

(a) (b)

Figure 2.8: Compliance problem optimized using the side constraint method [21]. (a) Initial void configuration; (b) Final result.

(a) (b) (c)

Figure 2.9: Torsion problem optimized using the side constraint method [21]. (a) Cross-section of free-form solution; (b) Initial
void configuration and (c) cross-section of final result.

Gaynor and Johnson [22] used a similar approach in the void projection method, which is based on the SIMP material
model and the Heaviside projection method. The Heaviside projection method is used to solve the issue of minimum
feature size, by taking a weighted average density for a predefined region and using this weighted density to determine
the density of all elements in that region. The void projection method changes the design problem to determining
where the void should exist, which is restricted to nucleating from a designated surface by the program. Additionally
the method is integrated with the overhang projection method [23] to also comply with the overhang restrictions of
AM. The solution to the torsion problem found with this method is visible in Figure 2.10.

(a) (b) (c)

Figure 2.10: The void projection method applied to a beam torsion problem [22]. (a) free form solution; (b) solid solution with
void projection method and (c) cut view of solution with void projection method.
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This technique solves most of the previous drawbacks for the side constraint method, as only a surface needs to be
predefined and the shape of the void features is not restricted to a super ellipse. However some issues are still present:
the void projection method used produces rounded corners, which in certain cases means that the design space is not
utilized fully. Furthermore the algorithm is unable to produce more complex void pathways, which are useful in heat
exchanger design for example. Figure 2.10 also shows this issue where the algorithm produced four holes, while one
or two holes would be sufficient to get rid of trapped powder.

2.5 Comparison of current methods
Table 2.1 shows a comparison of all methods discussed in this chapter, rated on five basic criteria:

• User control is a measure of how much control a potential user has over the properties of the void elimination
features.

• Computational effort shows how computationally expensive the method is.

• Ease of use measures how much additional user effort is needed to implement the method.

• Mechanical performance rates the method on how many unnecessary void elimination pathways are created.

• Geometric complexity is a measure of the additional geometric restrictions that the method imposes.

The given ratings are based on advantages and drawbacks discussed in the papers themselves and this chapter.

Method User Computational Ease of Mechanical Geometric
Control Effort Use Performance Complexity

Casting Constraint [11][12][13] − ++ + −− −−
Machining Constraint [14][15][16] +− ++ + − −−
Shortest path [20] + ++ +− − ++
Virtual Temperature Method [17][18] −− + −− +− ++
Side Constraint Method [21] − + − − −
Void Projection Method [22] ++ + +− + −

Table 2.1: Comparison of new methods with current void elimination methods

The table clearly reiterates that while some methods are performing quite well, there is no method that performs well
on every criteria. Additionally only four methods have been found that are specifically designed for AM, of which
the most promising method is the Void projection method by Gaynor et al. [22], but it still has its drawbacks. A new
method is succesful when it performs well on each of the five criteria.
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3 | Eigenfrequency Method

3.1 Working principle
The first method to be investigated is the eigenfrequency method. It is based on the fact that the eigenfrequency of a
body is zero when it is not connected to a boundary, because then it can translate freely. This principle can then be
used on the inverted density field during the topology optimization process to recognize any enclosed voids, where a
low eigenfrequency indicates the presence of an enclosed void. Enclosed voids can then be prevented from forming
during the optimization by adding a minimum constraint to the eigenfrequency. This eigenfrequency is calculated
with a generalized eigenvalue problem involving the stiffness and mass matrix, which requires a large amount of
computational effort for larger meshes. Therefore degrees of freedom corresponding to a specific direction can be
omitted from the stiffness and mass matrices, essentially locking a direction in place to reduce the size of the problem.
The working principle of this method can be summarized by the following basic process:

1. Invert current density field

2. Use inverted density field to determine stiffness and mass matrix

3. Optionally lock certain directions to save on computation time

4. Determine eigenfrequencies of inverted density field by solving an generalized eigenvalue problem involving
stiffness and mass matrix.

5. Add constraint on determined eigenfrequencies to prevent enclosed voids from forming.

3.2 Problem formulation

3.2.1 Optimization problem
Using the working principle of the eigenfrequency method it is possible to update the optimization problem:

min
ρ∈Ω

fT u

s.t. K(ρe)u = f
∑

e∈Ω

ρeve

Vcons
−1≤ 0

λcons

λinv
−1≤ 0

0 < ρmin ≤ ρe ≤ 1

(3.1)

Here fT u is the compliance (c) minimized during the optimization, with element densities ρ as design variables with
their maximum and minimum described in the final constraint. Compliance is calculated by multiplying the transposed
force vector f with the displacement vector u. The first constraint the optimization is subject to is the equilibrium
equation for a static object discretized using finite elements, which also uses the previously described force and dis-
placement vector as well as the global stiffness matrix K. This constraint is inherently satisfied every iteration as the
objective is determined using the same relation. The second constraint is the volume constraint, where ρeve denotes
the volume per element and Vcons the imposed volume constraint. The third constraint is this method’s eigenfrequency
constraint, which is calculated in the steps described in Section 3.1 and uses the imposed eigenfrequency constraint
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λcons and the eigenfrequency of the inverted density field λinv. Since λinv is part of the new method to be investigated
its definition will be explained further using the following equations:

ρinv = 1+ρmin−ρe (3.2)

(K(ρinv)−λ j,invM(ρinv))Φ j = 0 (3.3)

Here the inverted densities ρinv are used to determine the inverted stiffness Kinv and mass Minv matrices, which are
subsequently used to calculate their generalized eigenvalues λinv and eigenmodes Φ. These eigenvalues are then the
square of the actual eigenfrequency ωinv. The eigenmodes are also mass-normalized using the following equation:

Φ
T
i M(ρinv)Φ j = δi j, (3.4)

in which δi j describes the Kronecker delta.

In reality the density used for the calculation of the inverted stiffness matrix is slightly more complex, as it also uses
some additional penalization on intermediate densities as proposed by Zhu et al. [24]. In order to make the use of
intermediate densities to satisfy the eigenfrequency constraint more costly, the densities used in the stiffness matrix
calculation are defined as:

ρK = (1− γ)ρinv + γρ
3
inv (3.5)

Here γ denotes the penalization factor used, where for γ = 1 a full SIMP penalization is applied to the densities and
for γ = 0 the unchanged densities are used. At γ = 1 Zhu et al. [24] found that a problem arises where the stiffness for
low density areas is so low that internal modes will start dominating the lowest eigenfrequencies. This means that the
constraint will be active on these low density internal modes instead of the rigid body modes of enclosed void areas.
Because of this a γ of 0.9 is used in all results.

These constraints are not the only addition to the optimization, a density filter with a radius of two elements as proposed
by Bruns and Tortorelli [25] is also used to prevent checkerboarding and impose a minimum lengthscale. Furthermore
as already discussed in the scope the optimization algorithm used is MMA [10] and is then used for density based
topology optimization with SIMP.

3.2.2 Sensitivity analysis
Eigenvalue optimization is not a new topic and the derivation of its sensitivities can be found in literature [26][27],
where the sensitivity of an eigenfrequency λ j with respect to an element density ρK is equal to:

∂λ j

∂ρK,e
= Φ

T
j

∂K
∂ρK,e

Φ j−λ jΦ
T
j

∂M
∂ρK,e

Φ j. (3.6)

In this method however the eigenfrequency calculation is done on the inverted and penalized density field, therefore
for it to apply to this method additional steps are necessary:

∂λ j

∂ρe
=

∂λ j

∂ρK,e

∂ρK,e

∂ρinv,e

∂ρinv,e

∂ρe
=

(
λ jΦ

T
j

∂M
∂ρe

Φ j−Φ
T
j

∂K
∂ρe

Φ j

)
(3γρ

2
e − γ +1). (3.7)

3.3 Constraint limit
Determining the constraint limit is an important step in the implementation of the eigenfrequency method. A constraint
that is too loose would result in designs where some enclosed voids are still present, but making the constraint too strict
could result in a sub-optimal design. However this is not a trivial task, because eigenfrequencies are determined with
an eigenvalue problem that is difficult to solve by hand. Therefore numerical testing is required to determine whether
or not it is possible to directly influence the void elimination features by changing the eigenfrequency constraint.

3.3.1 Simple beam model
A preliminary way to determine the correct eigenfrequency constraint in 2D is to equate the problem to a simple
mass-spring system, where the mass is determined by the size of the void and the spring stiffness is determined by
the cross-section and length of the void elimination feature. For this study both were assumed to be rectangular in
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shape. The stiffness of the spring can be subdivided into two categories: the translational stiffness of the spring and
the rotational stiffness of the spring. Both these properties can be determined from basic rules-of-thumb on beam
mechanics, while keeping in mind the basic relation of F = Ku for translational and M = Kθ :

Ktrans =
EA
l

=
Eht

l
, (3.8)

Krot =
EI
l

=
Eth3

12l
(3.9)

These equations show how the stiffness of the beam is influenced by the Young’s modulus of its material E, width h,
length l and thickness t. The translational mass of the system is rather straightforward, as it is simply the mass of the
block on the end of the beam. However the rotational mass is a bit more complex, as it is more accurately described
by the moment of inertia of the mass around the base of the beam. The two masses can then be determined with the
following equations:

Mtrans = ρV = ρLHt, (3.10)

Mrot = ρV r2 = ρLHt (l +0.5L)2 , (3.11)

where ρ is the density of the material, L denotes the length of the mass, H its width, t its thickness and r the distance
between the center of the mass and the base of the beam. Here uppercase letters are used to differentiate the mass
variables from the beam variables, of which a more clear definition is shown in Figure 3.1a. Furthermore since this is
a 2D problem the thickness t does not vary between the mass and beam. These equations can then be combined to get
a general formula for any rectangular beam-mass combination:

ωtrans =

√
Ktrans

Mtrans
=

√
Eh

lρLH
, (3.12)

ωrot =

√
Krot

Mrot
=

√
Eh3

12lρLH (l +0.5L)2 . (3.13)

These equations do show that there is a relation between the mass of the void and the dimensions of the void elimination
feature, where for instance a larger mass or a mass that is further away from the boundary will require a wider channel
than a smaller mass or a mass that is close to the boundary. This could be beneficial in that in situations where there
is more powder to be removed or a longer channel to remove it through the width of the channel is automatically
increased to accommodate that. However, it could also be a disadvantage as it makes the specific shape and size of a
void elimination feature more difficult to directly control. Using the dimensions of the test case depicted in Figure 3.1b
and the material properties of Ti-6Al-4V, we can now determine an eigenfrequency from these equations. All input
variables and their corresponding output eigenfrequencies are shown in Table 3.1.

(a) (b)

Figure 3.1: Test case for beam model with (a) the explanation of variables and (b) Test case in elements where one element is
2.5mm by 2.5mm.

3.3.2 Beam model comparison with test cases
The beam model gives an initial guess for the true value of the eigenfrequency constraint, but it is now necessary to
validate that calculation by performing tests on different cases with the finite element method. The example from the
beam model is the first test case and the results for ωtrans and ωrot are 1.53 ·104 and 7.20 ·102, respectively.

From these results it is clear that while the analytically determined rotational eigenfrequency closely resembles its
computational counterpart, there is a discrepancy between the two translational eigenfrequencies. For this discrepancy
two main reasons can be identified. Firstly, the necessity of a minimum density value in the finite element method to

16



Property Symbol Value Unit

Young’s Modulus E 113.8 ·109 Nm−2

Density ρ 4.43 ·103 kgm−3

Beam Width h 0.015 m
Beam Length l 0.03 m
Mass Width H 0.075 m
Mass Length L 0.25 m

Translational Eigenfrequency ωtrans 2.62 ·104 rads−2

Rotational Eigenfrequency ωrot 7.32 ·102 rads−2

Table 3.1: First test case for beam model

prevent singular matrices envelops the mass spring system in low stiffness material which increases the eigenfrequency.
Secondly and more importantly in the model the beam is only considered to add stiffness and the inverted void region
is only considered to add mass. In reality the case is more complex where the beam and the void region both add to the
stiffness and mass matrix. The test case used has a rather slender mass and because of this the actual length of the void
removal feature is underestimated, this can be tested by varying the length of the void elimination feature.

The discrepancy between analytical and computational translational eigenfrequency values on the initial test necessi-
tates additional tests to get a better understanding on how different void removal features affect the eigenfrequency and
also to determine if the analytically determined rotational eigenfrequency still resembles its computational counterpart
when parameters are varied. Four main variables of interest can be identified: the mass of the void and the length,
width and density of the void removal feature. These variables were implemented both analytically and using finite
elements in Figure 3.2, which shows how the eigenfrequency changes with respect to the four variables.

The first observation that can be made from this figure is that rotational eigenfrequencies are generally always lower
than its translational counterpart, although an increased width of the void elimination feature reduces the difference
between the two eigenfrequencies. This is explained by how the eigenfrequencies scale with regards to the feature
width in equation 3.8 and 3.9, where the rotational eigenfrequency scales with a power of 3, while the translational
eigenfrequency scales linearly. Another observation is that the analytical translational results consistently overestimate
the eigenfrequency because of the discrepancy between the models, except for when the inverted void area shows
rigid body modes, because then the minimum densities add some stiffness. The analytical rotational eigenfrequencies
show similar behaviour, but instead they mostly closely resemble their computational counterpart, except for when the
minimum densities start having a significant contribution to the stiffness.

Finally, the figures show that multiple possible combinations of void size and feature width, length or density can be
found for any given eigenfrequency, which indicates that it will be difficult to directly choose the properties of the void
elimination feature and void size by changing the eigenfrequency constraint.

3.4 Aggregation of eigenfrequencies
When only the single lowest eigenfrequency is considered several issues arise for the optimization algorithm. Multiple
voids could not be sufficiently dealt with as only one enclosed void is considered every iteration. This results in a
phenomenon that any time the method deals with a void for an iteration, then at the next iteration a new void gets
considered, for which sensitivities are still unknown and this allows the original void to open up again. It is therefore
necessary to calculate multiple eigenfrequencies for every iteration, which can be implemented in different ways. The
simplest way would be to introduce a separate constraint for every calculated eigenfrequency, but this would result in
the constraints constantly switching around as the optimization is running and new voids nucleate or existing voids get
smaller or larger. Constraints switching around is problematic because MMA uses information from the two previous
iterations to determine a new linear sub-problem, which would then be incorrect for any switched constraint. This
could possibly be fixed by mode tracking, but this requires additional computational effort. For this reason there is a
need for a way to aggregate multiple eigenfrequencies into a single constraint. Several techniques for aggregation have
been proposed in literature, the most common techniques consisting of the p-norm and the Kreisselmeier-Steinhauser
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(a) (b)

(c) (d)

Figure 3.2: Eigenfrequency with respect to (a) volume of the void, (b) length of the void removal feature, (c) width of the void
removal feature and (d) density of the void removal feature.

function [28], which can be described using the following equations:

Ψp =

(
n

∑
i=1

xp
i

) 1
p

, (3.14)

ΨKS =
1
p

ln

(
n

∑
i=1

epxi

)
. (3.15)

Here a higher absolute value of p means a closer approximation to the true maximum or minimum function, while
a positive and negative p describe a maximum and minimum function, respectively. In this case the lowest eigenfre-
quency should get the most attention, while still keeping track of the higher eigenfrequencies and their sensitivities.
Therefore the p-factor used in these techniques should remain negative and quite small, while it would normally be
larger to more closely represent the true minimum or maximum value. The total amount of modes considered should
also be taken in consideration, as it is very inefficient to determine all modes when only a few low frequency modes are
actually important. Furthermore the choice of technique matters less than in for instance stress constraints, where an
underestimation could mean failure of the part. In this case an underestimation or overestimation would mean a slight
alteration in the size of the void or void removal feature, which is not an issue. In the end the choice was made to use
p-norm aggregation with p =−4 to aggregate thirty modes with the lowest eigenfrequency. This slightly changes the
sensitivities determined in Section 3.2.2, as the following additional term has to be added:

∂λag

∂λ j
= λ

p−1
j

(
n

∑
i=1

λ
p
i

) 1
p−1

, (3.16)

where λag denotes the aggregated eigenfrequency and n denotes the total amount of eigenfrequencies calculated. λag
is the value that actually gets used in Equation 3.1 for the eigenfrequency constraint.
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3.5 Results and Discussion

3.5.1 2D geometric optimization
To test the effectiveness of the newly proposed method a geometric approach is first considered. This approach takes an
already optimized design for a given problem and only considers the eigenfrequency constraint on this design, while
leaving compliance out of the equation. This allows us to get a better look solely at how the new method handles
enclosed voids and possible issues that arise are then easier to analyze. Instead of compliance the optimization is done
on the least squares error between the input design and the current design. The formulation for the constraint can be
found in Section 3.2.1, but the objective is new and can be described using the following equation:

min
ρ∈Ω

Ω

∑
i=1

(ρi−ρi,in)
2 . (3.17)

The method was first tested on a simple 2D cantilever beam problem, which has a supported edge on the left and
a downward force applied on the right with a maximum volume fraction of 0.5. The full problem definition and its
solution using only the volume constraint is found in Figure 3.3.

(a)

(b)

Figure 3.3: Cantilever problem divided into 120x40 elements; (a) Cantilever beam problem description, with L = 0.1m and (b)
Optimization with only volume constraint with cre f = 100.

From Figure 3.3 we can deduct that there are a total of six enclosed voids present in the unconstrained solution, which
makes this problem a suitable test for the eigenfrequency method to eliminate these.

The results of the geometric approach for different eigenfrequency constraints are visible in Figure 3.4. Here the
main issue with the new method becomes abundantly clear, as these designs had their constraints satisfied by utilizing
intermediate densities, which are not desirable as they can not be related to a real world design. This happened even
though additional penalization on the inverted stiffness matrix was used as discussed in Section 3.1.2. Additionally the
designs show some checkerboard patterns, as these have been known to have an artificially high stiffness and a density
filter is not applied.

Next to the penalization already present in the eigenfrequency calculation itself, another remedy would be to add an
additional penalization on intermediate densities to the objective, in this geometric case by raising the objective to the
power of a penalization factor ζ , with ζ larger than 0 and smaller than 0.5. The effect of this additional penalization
is that smaller differences are more expensive to use than complete differences, rather than the other way around as in
Equation 3.15. Figure 3.5a shows a penalization of 0.1 does force the method to create channels of void material, but
at the cost of adding considerable noise visible in Figure 3.5b. This noise is caused by the fact that this penalization
causes gradients of the objective to both go to infinite and change sign at a difference of zero, which is not something
the optimizer can deal with.

Effect of Locking DOFs

The computational effort necessary to calculate the eigenfrequencies gets exponentially larger when increasing the
amount of elements, which is why restricting a direction of these elements can become a necessity to curb the compu-
tational effort required. Performing this on a geometric optimization first allows us to see how locking different degrees
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(a) (b)

(c) (d)

Figure 3.4: Geometric optimization with increasing eigenfrequency constraint. (a) ω2
cons = 107; (b) ω2

cons = 107 with inverted and
logarithmically scaled density field; (c) ω2

cons = 108; (d) ω2
cons = 109.

(a) (b)

Figure 3.5: Geometric optimization with an eigenfrequency constraint of ω2
cons = 109 and extra penalization on intermediate

densities. (a) Normal result; (b) the noise present, visualized by subtracting the result from the original input design.

of freedom for the eigenfrequency calculation will impact the way enclosed voids are dispersed. In this case all previ-
ously discussed methods to penalize intermediate densities were applied and the eigenfrequency constraint was set to
ω2

cons = 109. Figure 3.6 shows the geometric optimization with the x-direction and y-direction locked, respectively.

(a) (b)

Figure 3.6: Geometric optimization with different degrees of freedom locked. (a) x-direction; (b) y-direction.

For these results the computational effort was considerably less, as the time required for the optimization reduced by a
factor of at least two. They also show how locking a specific degree of freedom causes the void pathways to be formed
in the remaining unlocked degree of freedom, so when the horizontal x-direction is locked the void pathways will all
be orientated vertically and vice-versa. This is because when a degree of freedom is locked movement is only possible
in the direction of the remaining degree of freedom, for which adding a void elimination feature loaded in tension is
the option that adds the most stiffness. Another interesting thing to note is how the void pathways are smaller and
less numerous than when all degrees of freedom are considered, because locking degrees of freedom also removes
rotational eigenfrequencies. Rotational eigenfrequencies are almost universally the lowest eigenfrequency as shown in
Section 3.3.2 and thus locking degrees freedom causes a slight relaxation of the eigenfrequency constraint.

3.5.2 2D compliance problem

Intermediate densities

The geometric tests clearly show the main Achilles’ heel of this method, where intermediate densities are often enough
to satisfy the eigenfrequency constraint. The next tests will now also consider compliance, which could exacerbate this
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problem due to the large increase in compliance enclosed void elimination causes.

Three options to alleviate the problem of intermediate densities will be considered. The first option is to simply increase
the eigenfrequency constraint, which could force the channels of intermediate densities to be so wide that the optimizer
eventually prefers to get rid of the void. The second option is to increase the SIMP penalization on the compliance to
make any intermediate density highly expensive in terms of compliance, making it a less desirable option than simply
closing enclosed voids. Finally, the third option is to utilize the robust formulation proposed by Wang et. al [29] which
uses a smooth Heaviside projection to change densities and force them to a binary state.

Regular SIMP penalization

Before going through the trouble to alleviate the issue of intermediate densities the method was first tested with regular
SIMP settings, to see if the suspected problems actually do occur. For this the method was implemented with the
eigenfrequency values found in Section 3.3, which resulted in the topology found in Figure 3.7a. At first sight this
topology seems to be similar to the topology found in the unconstrained optimization, which should not be possible
with the eigenfrequency constraint. Inspecting the topology further by inverting the density field and applying a
logarithmic scaling to it in Figure 3.7b is what shows the expected outcome. The optimizer did manage to satisfy
the eigenfrequency constraint by having each enclosed void connected to the boundary with a band of lower density
elements, even with SIMP penalization this is favourable for compliance when compared to completely getting rid of
enclosed voids.

(a) (b)

Figure 3.7: Cantilever problem with tested eigenfrequency constraint of ω2
cons = 107. (a) Regular density field and (b) Inverted

logarithmic density field.

The first option discussed above is to increase the eigenfrequency constraint and resulting designs for that are shown
in Figure 3.8. These still clearly show the same issue found with a lower eigenfrequency constraint, albeit in a more
obvious manner. In other words, the optimizer still manages to satisfy the eigenfrequency constraint by utilizing
elements with intermediate densities to connect enclosed voids to the boundaries.

(a) (b)

Figure 3.8: Cantilever problem with increased eigenfrequency constraint of (a) ω2
cons = 108.5 and (b) ω2

cons = 109.

Extreme SIMP penalization

Even with larger eigenfrequency constraint values the intermediate density problem still persists with regular SIMP
penalization, therefore the second option to further increase the penalization factor from q = 3 to q = 10 is now
studied. The first test of this solution is to once again use the eigenfrequency determined in Section 3.3, of which
the results are shown in Figure 3.9. Again the optimizer finds a way to satisfy the eigenfrequency constraint by using
intermediate densities even with increased penalization.

The next step is to combine this increased SIMP penalization with a higher constraint limit to see if this forces the
optimizer to truly get rid of enclosed voids. This is where the method finally seems to achieve the desired result as
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(a) (b)

Figure 3.9: Cantilever problem with tested eigenfrequency constraint (ω2
cons = 107) and q = 10. (a) Regular density field and (b)

Inverted logarithmic density field.

shown in Figure 3.10. The optimizer does initially open up voids in the structure, but these quickly get closed to satisfy
the eigenfrequency constraint.

(a) (b)

(c)

Figure 3.10: Cantilever problem with high eigenfrequency constraint ω2
cons = 6 ·109, q = 10 and

c
cre f

= 268.7%; (a) iteration 15,

(b) iteration 30 and (c) iteration 100.

Unfortunately when inspecting this result more thoroughly by looking at its shape, compliance and the inverted and
logarithmic density field it becomes clear that this result still leaves a lot to be desired. The compliance has seen an
increase that is much larger than could be expected when eliminating enclosed voids [21] and this can be attributed to
two main causes. The first cause is simply that the shape is suboptimal even when considering the removal of enclosed
voids, as the optimal shape is considered to be a large sideways arch shown in Figure 2.8 rather than a short arch with
one single beam towards the load. The second cause for this large increase becomes clear when once again inspecting
the inverted density field in Figure 3.11. The densities of the design are less uniform than the initial result would
suggest, with many elements having a density of slightly less than one. This occurrence combined with the heavy
penalization on intermediate densities is the cause of the large increase in compliance. Now what is left unanswered
is how the optimizer again opts to use these intermediate densities even though there are no enclosed voids for which
they could have been used. Figure 3.12 shows how it turns out that the design without an eigenfrequency constraint
is exactly the same as with the tested eigenfrequency constraint in Figure 3.9, meaning that this behaviour is caused
by the high penalization itself rather than any change in the eigenfrequency constraint. One possible cause of this
behaviour is that the sensitivities near high densities are so high that the step size used by the optimizer becomes very
small, therefore causing the result to get stuck in this suboptimal shape.

Robust formulation

As described at the start of this section, the robust formulation proposed by Wang et al. [29] could also be used to force
the design towards a binary solution by applying a smooth Heaviside projection to the regular and inverted densities,
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Figure 3.11: Inverted and logarithmic density field for high penalization and high eigenfrequency constraint.

(a) (b)

Figure 3.12: Unconstrained cantilever problem at high penalization (a) Normal result and (b) inverted logarithmic density field.

which can be described as:

H(ρ) = ρmin +
tanh(βη)+ tanh(β (ρ−η))

tanh(βη)+ tanh(β (1−η))
. (3.18)

Here β controls the steepness of the function and η defines the point at which the function steps. Figure 3.13 shows
how the function behaves for these two parameters. The method works by always considering a worst case design
to optimize, which is achieved by eroding the stiffness matrix and dilating the mass matrix. Erosion and dilation is
done by either lowering η to dilate the design or increasing η to erode the design. In practice this method utilizes a
continuation in β , which means that as the iterations increase the projection gets sharpened up to a predetermined limit.
This is done to avoid convergence to a local minimum early in the optimization and can be implemented in various
ways, but in the studies in this thesis β starts at 0.5 and is increased by 5% every iteration. Due to constantly changing
the input value needed to output a specific intermediate density this method could make it too difficult for the optimizer
to use these to satisfy the eigenfrequency constraint. For all robust results the radius of the density filter [25] was also
increased to three elements.

(a) (b)

Figure 3.13: Smooth Heaviside function when varying (a) β and (b) η .

First the robust formulation was applied using a β limit of 20 and the tested eigenfrequency constraint. The results are
visible in Figure 3.14 and they once again show how the optimizer opts to utilize intermediate densities to satisfy the
constraint.

The next step is to once again increase the eigenfrequency constraint to see how it will affect the design, which is done
in Figure 3.15. This result has less voids than the unconstrained design and the shape seems to tend towards a sideways
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(a) (b)

Figure 3.14: Robust formulation with a β limit of 20 and the tested eigenfrequency constraint of ω2
cons = 107, with (a) Regular

density field and (b) inverted and logarithmic density field.

arch, which has been found to be an optimal solution [21]. Unfortunately though some voids are simply deemed too
important to eliminate and the method still utilizes intermediate densities for these.

(a) (b)

Figure 3.15: Robust formulation with a β limit of 20 and an eigenfrequency constraint of (a) ω = 108 and (b) ω = 109.

Another possibility is to increase the limit on β in the formulation, which could finally make it impossible to find the
correct density to utilize intermediate densities. This is however not common practice because, as shown in Figure
3.13, increasing β subsequently decreases sensitivity values at densities close to 0 or 1. The results for different
eigenfrequency constraints for a β limit of 40 are shown in Figure 3.16. The tested eigenfrequency constraint still
utilizes small channels of intermediate densities and has a design which is relatively similar to the unconstrained
design. This is in stark contrast to the result with a high eigenfrequency constraint, which is a perfect example of why
a high limit on β is generally not utilized. While the design does not have any enclosed voids, it is clear that this design
is far from anything that could be construed as optimal and the compliance of 971.3 reinforces that point.

(a) (b)

Figure 3.16: Robust formulation with a β limit of 40 with an eigenfrequency constraint of (a) ω = 106 and (b) ω = 108.

Now that the robust formulation also has not achieved the elimination of enclosed voids, it is safe to say that it is
very difficult to eliminate enclosed voids in 2D with the eigenfrequency method. The method’s main Achilles heel of
intermediate densities has been found to be too much of a problem for it to work properly. Some other combination of
specific settings could still be enough to remedy this, but finding these settings is not a trivial task.

3.5.3 3D compliance problem

Problem definition

It is also necessary to test the effectiveness of the method in a 3D environment, this is to see if the method could still be
applied to real design cases. Even though the method failed to achieve the desired result in 2D, it has been documented
in literature that 3D designs without enclosed voids more closely resemble free-form designs as the optimizer has more
directions in which to eliminate these enclosed voids [22].
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The test case chosen for this is the torsion beam problem, because it is a rather simple case where the free form solution
is known to have a large enclosed void in the middle. Additionally this case is also used in previous work on enclosed
voids [17][18][20][21][22], allowing for some comparison between different methods. The full test problem is and
its free-form solution is visible in Figure 3.17. All other 3D results will use the same orientation and colour map for
densities, unless specified otherwise.

(a)

(b)

Figure 3.17: Torsion beam problem, divided into 48x16x16 elements, (a) problem description with L = 0.1m and (b) Free form
solution with cre f = 100.0.

Effect of constraint values

The first test is to apply different eigenfrequency constraints to the torsion beam to see whether or not the resulting
design has a pathway towards the enclosed void. To achieve this the boundary conditions for the eigenvalue problem
are on the entire outside surface of the beam depicted in Figure 3.17a, which excludes the surface in contact with the
baseplate. Figure 3.18 contains the resulting design for three different eigenfrequency constraints, starting at the tested
constraint value from Section 3.3. These results show that once more the tested eigenfrequency constraint value is too
low to properly create void elimination pathways. At a constraint value of ω2

cons = 108.5 a void pathway does finally
form near the base plate and at ω2

cons = 109 additional holes are also present at several locations along the beam.

In terms of compliance the first beam shows barely any difference, once again confirming that the tested eigenfrequency
constraint is simply too forgiving to have any impact on enclosed voids. Because the stricter constraints do have holes
the compliance for them is also increased, which is to be expected. It does show how finding the right choice for a
constraint is paramount in this method, as all these unnecessary holes can heavily increase the compliance without
adding any additional value.

The average computation effort when applying this method is about 1.43 times higher than the unconstrained optimiza-
tion, this makes this method a very expensive option to use when eliminating enclosed voids. As discussed before one
way to reduce this additional time is to lock certain degrees of freedom in the eigenfrequency calculation.

Effect of Locking DOFs

Now that a constraint value has been found that works to eliminate enclosed voids in 3D and that there is a reference
design for this constraint value, it is possible to see how locking degrees of freedom affects the final design and
computational effort. For this purpose two tests have been conducted for both ω2

cons = 108.5 and ω2
cons = 109, shown in

Figure 3.20. These tests are to see what effect locking a single direction has. It is important to note that the problem is
symmetric along the y- and z-axis and that any duplicate tests because of this symmetry were omitted.

The results confirm the conclusion from the initial geometric tests done in Section 3.5.1. Firstly it is observed that
locking a degree of freedom slightly relaxes the eigenfrequency constraint due to the removal of some rotational
eigenfrequencies, which were found to be the lowest in Section 3.3. This can be seen in both the reduced amount of
void pathways created as well as the reduced compliance. Additionally void removal features that would add stiffness
for the eigenfrequency calculation in the direction that was locked are no longer present, most notably seen in Figure
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(a) (b) (c)

Figure 3.18: Solutions to the torsion beam problem for different eigenfrequency constraints. (a) ω2
cons = 106 with

c
cre f

= 100.0%;

(b) ω2
cons = 108.5 with

c
cre f

= 103.2%; (c) ω2
cons = 109 with

c
cre f

= 113.7%.

(a)
(b)

(c) (d)

Figure 3.19: Solutions to the torsion beam problem for different eigenfrequency constraints and locked degrees of freedom. (a)
ω2

cons = 108.5 and x locked with
c

cre f
= 100.8%; (b) ω2

cons = 108.5 and y locked with
c

cre f
= 102.3%; (c) ω2

cons = 109 and x locked

with
c

cre f
= 108.2%; (d) ω2

cons = 109 and y locked with
c

cre f
= 111.7%.

3.19b, where holes that would add stiffness in the y-direction are removed. For the x-direction this effect is more
nuanced, as the two surfaces where a channel would add the most stiffness in this direction are not designated as
boundary conditions for the eigenfrequency calculation anyway.

The computation effort was successfully reduced to 1.3 times the unconstrained optimization, this is still a considerable
increase and warrants a new test that locks additional degrees of freedom. The advantages of locking certain degrees

26



of freedom are clear, as it reduces some of the additional computation time required for this method. Additionally the
slight relaxation of the constraint improves the compliance slightly, although as shown in Figure 3.19a this could have
the adverse effect of no longer eliminating enclosed voids.

Finally another test is to simultaneously lock two directions, of which results are shown in Figure 3.20, where again
symmetry causes some tests to be duplicates and those were omitted. Here the trend that locking a single degree of
freedom sets gets continued, where the void elimination pathways are smaller and subsequently the compliance is also
slightly lower. The effect on computation effort is also very noticable, as that is now reduced to just 1.1 times the
unconstrained computation effort.

(a) (b)

(c) (d)

Figure 3.20: Solutions to the torsion beam problem for different eigenfrequency constraints and multiple locked degrees of freedom.
(a) ω2

cons = 108.5 and x free with
c

cre f
= 101.8%; (b) ω2

cons = 108.5 and y free with
c

cre f
= 100.0%; (c) ω2

cons = 109 and x free with

c
cre f

= 109.3%; (d) ω2
cons = 109 and y free with

c
cre f

= 103.9%.

Combining the results of all tests done on locking degrees of freedom shows that in the case of the torsion beam locking
the x-direction has the largest effect on how the void pathways are generated. This is mostly caused by the previously
discussed reason that there are no boundary surfaces in the eigenfrequency calculation where void elimination features
that add the most stiffness in the x-direction can be added, which means that when the x-direction is unlocked multiple
void elimination channels are necessary. In some cases where the x direction was locked the eigenfrequency constraint
was even satisfied with the enclosed void still present. In a relatively simple problem like the torsion beam an educated
guess could be made on what direction could be locked without heavily impacting void pathways. However for more
complex problems this decision may not be as straightforward, which could pose a problem because it is strongly
advisable to utilize the locking of degrees of freedom to reduce computational effort.

Feature location control

A final test for the method is to see if the location of void elimination features could be controlled in some way. In
the case of the eigenfrequency constraint this is done by simply setting the boundary conditions used in the eigensolve
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to the desired location of the void elimination feature. The first tested location puts the desired location of the void
elimination features in the middle of the beam for the x- and y-axis and at the two edges for the z-axis. The second
tested location is the same for the y- and z-axis, but changes it for the x-axis so that one feature is located at the base of
the beam and the other feature is located at the end of the beam. As seen in the previous section the computational effort
can be cut down without heavily interfering with the void pathways by locking both the y- and z-direction, therefore
these two tests only have the x-direction free.

The result and problem description of the first test location for an eigenfrequency constraint of ω2
cons = 108.5 is shown

in figure 3.21, which shows that the location of the void elimination feature can be directly controlled by changing
the boundary conditions. However with regards to the size of this feature the second test provides more insight. As
expected the compliance increased slightly, which does mean that it is recommendable to leave the feature location to
the optimizer when possible.

(a)

(b) (c)

Figure 3.21: Torsion beam subdivided into 48x16x16 elements with hole boundaries at same location along x-axis and
c

cre f
=

105.0%. (a) Problem description with L = 0.1m; (b) Regular view and (c) view cut at hole location.

The second test, depicted in Figure 3.22 shows similar results to the first test, as the optimizer deals well with the
different boundary conditions and creates two holes to eliminate the enclosed void. However the hole is larger near the
base where it has less impact on compliance, for this reason the compliance is slightly lower. This could either be seen
as an advantage, where locations with little impact on the compliance automatically will carry more of the enclosed
void elimination duties. On the other hand this could also be seen as a disadvantage, because hole sizes are difficult to
control directly.

(a)

(b) (c)

Figure 3.22: Torsion beam subdivided into 48x16x16 elements with hole boundaries at different locations along x-axis and
c

cre f
=

103.8%. (a) Problem description with L = 0.1m; (b) Regular view and (c) view of beam flipped 180° around x-axis.
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4 | Flood-fill Method

4.1 Working principle
The second proposed method is a more geometrical approach to eliminate enclosed voids, it utilizes a modified flood-
fill algorithm to fill up any void in the design. A flood fill algorithm is commonly used for image editing purposes
to change certain attributes for connected areas of pixels, most notable example of which is the ’bucket’ tool. The
unaltered algorithm works by starting at a pixel with a specific target attribute that should be changed and then checking
neighboring pixels for this same attribute and subsequently changing it to the desired state. These new pixels are then
added to a queue of pixels to process and are then processed in the same way as the starting pixel, this is then repeated
until all pixels in the queue have been processed.

Changing the formulation by replacing pixels with elements would already allow us to identify enclosed voids in
any design as demonstrated by Xiong et al. [20], but for full incorporation into density based topology optimization
three key alterations are necessary. The first alteration is that the algorithm should take all possible elements into
consideration, instead of only running the algorithm until no elements of the target attribute remain. This leads us to
the next alteration which is that instead of changing these new elements to a prescribed value, they are changed by a
performing a smooth maximum with the element currently being processed. The final alteration changes the order in
which elements are processed, where the element with the lowest density is always processed first.

The effect of this algorithm on the density field is that any enclosed void element gets its density increased to a
value which corresponds with the lowest density path towards it from the prescribed boundary. Figure 4.1 is a visual
representation of how the flood fill algorithm affects an input density field with starting elements at the boundary,
although in this case a true maximum function is utilized. The test clearly demonstrates how the algorithm fills up any
void disconnected from the boundary and how it is able to deal with any complexity in void elimination feature.

(a) (b)

Figure 4.1: Visual representation of the flood fill working principle (a) input design and (b) output design.

The previously discussed working principle of this method can then also be converted into a pseudo code in Algorithm
1, which changes input densities ρ into flood filled densities ξ .
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Algorithm 1: Flood fill pseudo code

1 Initialize arrays Queue, Result;
2 Add prescribed boundary elements to Queue and Result;
3 while Queue ∃ do
4 Current element ξk = min(Queue);
5 Find elements ρi adjacent to ξk;
6 Filter out elements from ρi already in Result;
7 Change density of elements in ρi: ξi = smoothmax(ρi, ξk);
8 Add new adjacent elements ξi to Queue and Result;
9 Remove current element ξk from Queue;

end
10 Return Result

4.2 Smooth Maximum Function
The floodfill method has a large dependence on the smooth maximum function chosen to approximate the new element
densities, as it is called many times per iteration and any error will have a knock-on effect for the next element. In
contrast to the eigenfrequency method the flood fill therefore needs more careful consideration of an aggregation or
smooth maximum function. The smooth maximum function is chosen based on two criteria: maximum error and ease
of implementation. From literature multiple different smooth max functions were taken and evaluated on these criteria,
including the p-norm, KS-norm, two unit softmax functions and multiple more complex variants [30][31][32][33][34].

The more complex variants use splines [31][32], large equations [33] or additional optimization algorithms [34] to
create a smooth maximum function, which do not satisfy the requirement for a function that is easy to implement.
Therefore these complex variants will no longer be considered when considering the maximum error criterion. The
remaining smooth maximum functions can be described using Equation 4.1 through 4.4.

p-norm Ψp (x1,x2, ...,xn) =

(
n

∑
i=1

xp
i

) 1
p

(4.1)

KS-function ΨKS (x1,x2, ...,xn) =
1
m

ln

(
n

∑
i=1

emxi

)
(4.2)

Unit softmax Ψso f t (x1,x2, ...,xn) =
n

∑
i=1

xi
xp

i

∑
n
j=1 xp

j
(4.3)

Euler softmax Ψso f te (x1,x2, ...,xn) =
n

∑
i=1

xi
ewxi

∑
n
j=1 ewx j

(4.4)

Comparing these functions on their maximum error is best done graphically, as it gives a more complete and clear
overview of how these functions behave for different inputs. However the parameters m and w have a different role in
the KS-function and Euler softmax than p in p-norm and unit softmax. For the two latter functions a specific value of
p changes the relative error of the smooth maximum function, but to achieve this same effect for the former functions
m and w would have to scale dynamically with the input variables. Therefore the comparison of the smooth maximum
error is done with p = 15 for p-norm and unit softmax, but with m and w scaled for the KS-function and Euler softmax.
This scaling is done so that the maximum value of the second derivative of the function is the same as their regular
counterparts, essentially equalizing the non-linearity of the functions. Furthermore all smooth maximum functions
were tested with only two inputs, reflecting how the functions are utilized in the algorithm.

The full comparison of the smooth maximum function is done in Figure 4.2. The first observation that can be made
is that the softmax functions have zero error when the two element densities are the same and underestimate the true
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(a) ρ = 0.1, m = 148.2, w = 150.7 (b) ρ = 0.5, m = 29.6, w = 30.15 (c) ρ = 1, m = 14.8, w = 15.05

Figure 4.2: Errors of smooth maximum function where specific values of ρ are compared with ξ .

maximum for slightly different densities. The p-norm and KS-norm are quite the opposite of this, as their error is
largest when both densities are the same and they overestimate the true maximum. Furthermore from this comparison
it becomes clear that there is very little difference between the smooth maximum functions with the scaled m and
w. But scaling them required additional calculations just to determine their values, making it unnecessarily complex.
Therefore the main two smooth maximum functions to be investigated for their viability in this method are p-norm
and the unit softmax. Both these functions can be converted to how they will be used in practice, where they only use
two inputs. Then the new density of the element ξi can be calculated using equations 4.5 when p-norm is used and 4.6
when unit softmax is used.

ξi =
(
ρ

p
i +ξ

p
k

) 1
p (4.5)
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ρ
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ρ
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p
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p
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(4.6)

Here ρi denotes the new element to be altered, ξk denotes the element currently being processed.

4.3 Implementation Methods
The flood fill algorithm is currently written as a filter, this opens up multiple ways to actually implement the method.
In this case three different options will be considered: only using it as a filter, only using the filtered densities for the
volume constraint and adding a geometric constraint to limit the difference between the filtered and regular densities.

Only using the algorithm as a filter is the simplest option, but in its simplicity could be too easy for the optimizer to
circumvent. For instance by again utilizing intermediate densities like with the eigenfrequency method.

Only using the filtered densities in the volume constraint mimics the main issue with enclosed voids in powder based
methods. It basically means that any enclosed void filled up by the flood fill only adds unnecessary mass to the result,
while offering nothing in terms of extra stiffness. This will at least force the optimizer to fill up any enclosed void with
material, although once again intermediate densities could still be preferable for it. Furthermore this implementation
only works when adding more mass always results in a better objective, as is the case with compliance. In optimization
problems where this is not necessarily the case, for example an eigenfrequency maximization, this implementation
could be abused by the optimizer to take more material away than allowed.

Finally adding a geometric constraint between the filtered and regular densities is the strictest and most controllable
option of the three. It works by imposing a maximum total amount of elements that the regular and filtered density
field are allowed to differ. Just as in the geometric optimization in Section 3.5.1 one way to implement this could be the
least squares error, however this means that intermediate differences between elements are unjustly favoured because
of the quadratic term. One option could be to once again add additional penalization in the form of a square root, but
this would cause a discontinuity around zero. Therefore a smooth approximation of the absolute value is needed, where
the most important property of the approximation is that there should be no error when the difference is zero. For that
reason a slightly altered softmax formulation is implemented, shown in the following equation:

sA = x
epx

epx + e−px − x
e−px

epx + e−px (4.7)
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Plots for different values of p, as well as sensitivity analysis on this smooth absolute value can be found in Appendix
B.1. For all results in this thesis a value of p = 15 is used. The main issue in this implementation arises from the
smooth maximum function used for the flood fill, which adds an unpredictable error to the filtered density field.

4.4 Problem formulation

4.4.1 Optimization Problem
With all the different implementation methods known it is now possible to formulate the different optimization prob-
lems with them in Table 4.1.

Filter Volume constraint Geometric constraint

min
ρ∈Ω

fT u min
ρ∈Ω

fT u min
ρ∈Ω

fT u

s.t. K(ξe)u = f s.t. K(ρe)u = f s.t. K(ρe)u = f
1

Vcons
∑

e∈Ω

(ξeve)−1≤ 0
1

Vcons
∑

e∈Ω

(ξeve)−1≤ 0
1

Vcons
∑

e∈Ω

(ρeve)−1≤ 0

0 < ρmin ≤ ρe ≤ 1 0 < ρmin ≤ ρe ≤ 1 0 < ρmin ≤ ρe ≤ 1
∑

e∈Ω

(sA(ρe−ξe))−χ ≤ 0

Table 4.1: Optimization problem for all three implementation methods

The optimization problem for the flood fill method is largely the same as for the eigenfrequency method in Section
3.2.1, with a few key differences. The first difference is that, depending on which implementation is used, the input
used for certain constraints is the flood filled density field ξ rather than the regular density field ρ. Furthermore the
eigenfrequency constraint is no longer utilized in this method, which in the case of the geometric constraint implemen-
tation is replaced by a different constraint on the difference between the regular and flood filled density fields. In this
constraint the total amount of elements the two density fields are allowed to differ is denoted with χ .

The other additions to the optimization are unaltered, which means that a density filter [25] with a radius of two
elements is still used, as well as MMA [10] and a density based SIMP approach.

4.4.2 Sensitivity Analysis
As seen above either the objective or one of the constraints of the optimization depends on the flood filled density field
ξ, which in turn depends on the actual design variables ρ. The sensitivities of the objective or constraint to the flood
filled density field are known, but to the actual design variables are still unknown. These can be determined using the
chain rule, which is depicted for any response f , such as compliance or volume, in the following equation:

∂ f
∂ρ

=
∂ f
∂ξ

∂ξ

∂ρ
. (4.8)

In this equation the unknown dependence of the response on the design variables is depicted by ∂ f
∂ρ

. As noted before

the dependence of the response on the flood filled density field ∂ f
∂ξ

is already known. The key unknown here is the

jacobian matrix describing dependence of the flood filled density field on the design variables ∂ξ
∂ρ

. This matrix for n
elements is set up as follows:

∂ξ

∂ρ
=


∂ξ1
∂ρ1

∂ξ1
∂ρ2

. . . ∂ξ1
∂ρn

∂ξ2
∂ρ1

∂ξ2
∂ρ2

. . . ∂ξ2
∂ρn

...
...

. . .
...

∂ξn
∂ρ1

∂ξn
∂ρ2

. . . ∂ξn
∂ρn

 . (4.9)

Any row of this matrix contains the dependence of one flood filled element on the input density field. This can be
calculated directly and determined quite trivially with the fact that the density of a new element added to the queue
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only depends on the element currently being processed and its own density. From there a general formula for the
sensitivities of any flood filled element ξi can be determined as shown the following equation:

∂ξi

∂ρ
=

∂ξi

∂ρi
+

∂ξi

∂ξk

∂ξk

∂ρ
. (4.10)

Here the term ∂ξk
∂ρ

is the key term, as it shows that sensitivities of the current element are carried over to the new
element. This means that the order of the flood fill is indirectly saved in the sensitivities. When the order of the flood
fill changes, which is prone to happen in early iterations, the sensitivities are no longer correct for the subsequent
iteration. Another property is that if the sensitivities for any new element contain the sensitivities for all elements flood
filled before it, the matrix is densely packed. For larger meshes this could possibly make the sensitivity calculation
very expensive.

The terms ∂ξi
∂ρi

and ∂ξi
∂ξk

both depend on the smooth maximum function chosen and can be calculated using regular
differentiation methods:
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Here Equations 4.11 and 4.12 contain the derivatives of the p-norm from Equation 4.5 with respect to ρi and ξk, while
Equations 4.13 and 4.14 contain the derivatives of the unit softmax function from Equation 4.6 with respect to ρi and
ξk.

4.5 Feature control
The way the method is currently set up, an access channel of only one element wide is necessary for a void to not get
filled up. This is a major issue when extremely fine meshes are considered, because then one element may not be wide
enough to properly remove trapped powder. Therefore some way to control the size of the access channel needs to be
added to the method, for which there are three candidates.

The first candidate is applying the floodfill to a coarser mesh, which would have the added benefit of also reducing
computational effort. However multiple drawbacks could also be identified. The coarser mesh would reduce the
geometric complexity and could be difficult to implement depending on the mesh. Additionally the density of a coarse
element would need to be determined, either by a maximizing, averaging or minimizing function, all of which will
have their drawbacks.

Expanding the window of the flood fill to consider all elements within a radius is the second candidate. However it
has two large drawbacks, the first of which is that the error of the smooth maximum increases when more elements are
considered at the same time. The second drawback is that this expansion would also unnecessarily fill up low density
elements near edges.

Finally the morphologic operators, as proposed by Sigmund [35], would utilize a dilation of the density field before the
flood fill and a erosion after. The dilation operation changes an element that has any solid element within a predefined
radius around it to also be solid, whereas erosion does the opposite and changes an element with any void elements
in that radius to also be void. The effect of these two operations on a given input design can be seen in Figure 4.3.
Applying a dilation before an erosion is essentially adding a minimum feature size on void areas, which also means
that any void elimination channel must at least be larger than the prescribed range of the morphologic operators. This
method does use a smooth approximation of the maximum and minimum function, which will cause some slight errors
in the output densities.

From the three candidates the morphologic operators have the least impactful drawback and will therefore be used as a
way to control feature size.
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(a) (b) (c)

Figure 4.3: The effect of morphologic operators for a given input [35]. (a) Input design; (b) Dilation and (c) Erosion.

4.6 Results

4.6.1 2D Geometric optimization
The first step of testing the floodfill method is, similarly to the eigenfrequency method, to first only consider the
geometric optimization of a problem. This again allows us to solely look at how the method handles enclosed voids
and analyze possible issues easier. It is important to note that only the filter implementation can be tested with this
because the geometric optimization is not compatible with the other two implementations. The geometric optimization
will once again be done on the cantilever problem from Chapter 3, for which the problem description and unconstrained
result are shown in Figure 4.4 as a reminder. The objective is also once gain described by the least squares error:

min
ρ∈Ω

Ω

∑
i=1

(ρi−ρi,in)
2 . (4.15)

(a)

(b)

Figure 4.4: 2D cantilever of 120x40 elements with (a) problem description with L = 0.1 and (b) unconstrained optimization with
cre f = 100.0.

The first test is to perform the geometric optimization with the difference between the input design and the flood filled
densities as objective with the two selected smooth maximum functions.

Unit Softmax

The first smooth maximum function to test is the unit softmax function in Equation 4.6. While it has a smaller error than
the p-norm, its underestimation of the true maximum could pose problems. The results of geometric optimization with
the unit softmax are shown in Figure 4.5 and it is immediately clear that the suspected problem did indeed occur. The
optimizer kept some material in the supposed void elimination channels and then used the underestimating property of
the softmax function to simultaneously keep the void areas empty.

P-norm function

With the optimizer taking advantage of the error in the softmax function it is necessary to see if the same occurs for
the p-norm, of which the results are shown in Figure 4.6a. It shows how the method successfully creates channels
of one element wide every for every enclosed void. It behaves similarly to the shortest path method in this case,
where the location and orientation of the channel is simply chosen so that the distance to the boundary is the shortest.
The optimizer does use some intermediate densities to avoid the error in the smooth maximum function, because as
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Figure 4.5: Geometric optimization using the unit softmax function with p = 12.

shown in Figure 4.2 the error when comparing a density of one and a lower intermediate density is much smaller.
This phenomenon is visible using the unfiltered result in Figure 4.6b, where all internal elements have intermediate
densities, which then get flood filled to achieve the design in Figure 4.6a.

(a) (b)

Figure 4.6: Geometric optimization using p-norm and least squares error with p = 15. (a) Filtered densities and (b) unfiltered input
densities.

Another observation is that the two smallest enclosed voids have slightly higher density, this is caused by the least
squares error used, as the squaring operation unjustly slightly favors element differences below one. This can be easily
prevented by using the smooth approximation for the absolute value from Section 4.5, which results in the following
objective:

min
ρ∈Ω

Ω

∑
i=1

sA (ρi−ρi,in) . (4.16)

Results with this formulation are shown in Figure 4.7 and all further geometric optimizations will be done with it as
well.

Figure 4.7: Geometric optimization using p-norm and smooth approximation of the absolute value.

The method works well when just the flood fill filter is applied, so now the next step is to add the morphologic operators
and see if the method still works. The results with four different morphologic operator radii are shown in Figure 4.8.
The first observation is that the use of morphologic operators successfully controls the void elimination feature size.
However the smooth approximation used in the morphologic operator does cause some slight errors on elements close
to void areas, where increasing the morphologic operator radius also increases the amount of elements included in the
error. Increasing the radius also blunts features, most notable with a radius of r = 3. Finally an issue this method
may encounter is also quite clear for radii r = 1 and r = 1.5. For these two cases the method opted to create multiple
void elimination features through a wide group of elements, as opposed to connecting all void areas together through
smaller groups of elements. Larger morphologic operator radii seem to solve this issue, possibly because sensitivities
of a specific channel then depend on a larger group of elements around it.
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(a) (b)

(c) (d)

Figure 4.8: Geometric optimization with increasing morphologic operator radius. (a) r = 1; (b) r = 1.5; (c) r = 2 and (d) r = 3.

4.6.2 2D cantilever problem
Now that the filter implementation has been confirmed to work well in the geometric optimization the next step is to
start studying the method when compliance is considered. For this all three options discussed in Section 4.5 will be
studied, with the possibility of also applying the robust formulation when necessary.

Filter

The filter implementation has been found to successfully create void pathways with geometric optimization, but just as
the eigenfrequency method this is no guarantee that it works when compliance is considered. For that same reason the
unit softmax function will also be considered once again, even though it did not have the desired result in geometric
optimization. The first results with the filter implementation when compliance is considered are shown in Figure 4.9
for the unit softmax functions for different values of p. The results show that the error of the unit softmax function has
once again been abused by the optimizer to have extra material in between enclosed voids. The unit softmax function
has therefore been written off as a possible smooth maximum function and all future optimizations will only use the
p-norm.

(a) (b)

Figure 4.9: Cantilever compliance optimization results for unit softmax with (a) p = 12 and (b) p = 20.

Results when using the p-norm smooth maximum are visible in Figure 4.10, they show how all voids are interconnected
and have been filled up with intermediate densities, with one single exit hole in the top right. Elements around the exit
hole also have increased width, creating a larger surface area with the intermediate densities of the exit hole and thereby
mitigating its effect on compliance.

Since the filter implementation encountered the well known problem of intermediate densities, the next step is to try
and remedy that with the robust formulation. Results for the robust formulation are shown in Figure 4.11 and they show
how, similar to the regular optimization, all void areas are entirely filled up with low density elements. Furthermore
the p used in the flood fill is 15 for this and all further results.

Slightly increasing the penalization on intermediate densities to q = 4 or q = 5 could possibly be enough to push the
optimizer to stop using them, extreme penalization like q = 10 will not be considered as Chapter 3 has shown it to
not be a viable option. Results for slightly increased penalization combined with the robust formulation are visible
in Figure 4.12, which both manage to deal with enclosed voids and create the sideways arch design considered to be
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(a) (b)

Figure 4.10: Cantilever compliance optimization results for p-norm with (a) p = 12 and (b) p = 20.

(a) (b)

Figure 4.11: Cantilever compliance robust optimization results with different β limits (a) βmax = 15 and (b) βmax = 20.

the optimal solution. This shows that the filter implementation can work when combined with the robust formulation
and slightly increased penalization, although converging to this solution took two to four times as many iterations as
normal robust optimization. This issue still necessitates additional tests with the other implementations to see if those
can reduce the amount of necessary iterations.

(a) (b)

Figure 4.12: Cantilever compliance robust optimization results with β limit 15 and an increased SIMP penalization of (a) q = 4 and
(b) q = 5.

Volume constraint

Results from the filter implementation show how the optimizer opts to fill up the entire void area with intermediate
densities when regular penalization is used, which still add some stiffness to the structure. This was remedied using the
robust formulation in combination with slightly increased penalization on intermediate densities, at the cost of a large
increase in the amount of iterations. The volume implementation aims to avoid the first problem, which would avoid
increasing penalization and subsequently the large amount of additional iterations required.

Even though the robust formulation has proven to be a necessity for the filter implementation, the volume constraint
implementation is first tested using regular optimization. Results for regular and slightly increased penalization with
this implementation are shown in Figure 4.13, where intermediate densities once again fill up all void areas.

The robust formulation should be able to remedy that issue, as seen before with the filter implementation. Here the
biggest challenge is to see whether or not additional penalization on intermediate densities is necessary and whether or
not that fixes the large iteration counts issue. Results when using the robust formulation are shown in Figure 4.14 with
different β limits. It shows that for any normal β limit the volume constraint implementation succeeds in eliminating
enclosed voids while generating an optimal shape. As the limit increases the compliance slightly decreases, this
can be attributed to the amount of intermediate densities being lower for higher limits. The main problem of the filter
implementation has also been remedied, as the amount of iterations required is no longer any higher than unconstrained
optimization.
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(a) (b)

Figure 4.13: Cantilever compliance optimization results using the volume constraint implementation with varied SIMP penalization.
(a) q = 3 and (b) q = 5.

(a) (b)

(c) (d)

Figure 4.14: Cantilever compliance robust optimization results using the volume constraint implementation with different β limits
(a) βmax = 10 with

c
cre f

= 133.2%; (b) βmax = 12 with
c

cre f
= 132.6%; (c) βmax = 15 with

c
cre f

= 132.1% and (d) βmax = 20 with

c
cre f

= 131.5%.

Geometric Constraint

The volume constraint has successfully eliminated enclosed voids while maintaining an optimal design, however be-
cause of the reasons stated in Section 4.5 the geometric constraint should also be tested. The first tests will once again
first be on regular optimization, even though both the filter and volume constraint implementation the robust formula-
tion was necessary. The main challenge of this method with regular optimization stems from the combination of the
smooth maximum error and geometric constraint, because the error makes the difference between the flood filled and
regular density field hard to predict. The total error depends on multiple different factors which differ per problem,
most notable of which are mesh size and member width. A constraint value that is too strict would therefore cause the
optimization to only be done to minimize the error between the two density fields, while a loose constraint value would
allow enclosed voids to be generated.

Results with regular optimization are shown in Figure 4.15 for different constraint values. They show that for a
low constraint value the optimization is mostly done to minimize the error in the smooth maximum function, while
for a higher constraint value the extra leeway also partly goes to this minimization but also to already allow some
enclosed void to exist. Most of the void area is again filled with intermediate densities however, which means that extra
penalization might be enough to force the optimizer to a interpretable solution.

Figure 4.16 shows the geometric constraint with extra penalization on intermediate densities for two similar constraint
values. This result does get close to the optimal arch shape, but unfortunately also has a patch of intermediate densities
in the middle. The design with the higher constraint value also has a small patch of completely void elements, while the
lower constraint design still only utilizes intermediate densities. This means that rather than using the slightly relaxed
constraint to fill up the remaining intermediate densities, the optimizer opted to open up an enclosed void instead. This
ultimately shows that there is no constraint value which could force the optimizer to completely get rid of enclosed
voids, therefore disqualifying this implementation when regular optimization is considered.

The robust formulation has proven itself to be a necessity for the filter and volume constraint implementation and the
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(a) (b)

Figure 4.15: Cantilever compliance optimization results using the geometric constraint implementation with varied constraint value.
(a) χ = 5 elements and (b) χ = 100 elements.

(a) (b)

Figure 4.16: Cantilever compliance optimization results using the geometric constraint implementation with SIMP penalization
increased to q = 5 and a varied constraint value. (a) χ = 95 and (b) χ = 100.

geometric constraint is no different. It also remedies the issue of the smooth maximum error, as all values above one
simply get projected back to one. The constraint value can then be as low as possible to avoid enclosed voids, which in
this case could just be one element. Figure 4.17 shows the results using the geometric constraint implementation with
different β limits, additionally Figure 4.18 shows what happens when the constraint is relaxed slightly. It shows that
the geometric constraint implementation also successfully eliminates enclosed voids when combined with the robust
formulation, although for either lower β limits or slightly relaxed constraints some small voids may slip through the
cracks.

(a) (b)

(c) (d)

Figure 4.17: Cantilever compliance robust optimization results using the geometric constraint implementation with different β

limits and χ = 1 element. (a) βmax = 10 with
c

cre f
= 132.9%; (b) βmax = 12 with

c
cre f

= 132.6%; (c) βmax = 15 with
c

cre f
= 135.5%

and (d) βmax = 20 with
c

cre f
= 145.6%.

These results do have a small caveat in that they exhibits suboptimal convergence behaviour, as shown in Figure 4.19.
An important note for these convergence graphs is that they show an objective scaled to the initial design of uniformly
intermediate densities. The suboptimal convergence behaviour is because, as noted before, the robust formulation uses
a continuation method on the Heaviside, which means that until β is increased the optimizer is again mostly trying to
minimize the error in the smooth max function. Fixing this behaviour can be done by initially relaxing the constraint
and slowly tightening it as β increases, however the choice of both the relaxed constraint and how fast it is tightened
is not a trivial task. The choice of parameters depends on a combination of the previously described total error in the
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(a) (b)

Figure 4.18: Cantilever compliance robust optimization results using the geometric constraint implementation with a β limit of 15
and different constraint values (a) χ = 10 with

c
cre f

= 130.8% and (b) χ = 20 with
c

cre f
= 129.4%.

smooth maximum function and the increase in β limit.

(a)

(b)

Figure 4.19: Convergence behaviour of the geometric constraint implementation. (a) Graph of scaled objective versus iterations
and (b) design at peak at iteration 28.

Figure 4.20 shows a result found when the geometric constraint is scaled in too late, when β is already at its limit of 25.
Figure 4.21 shows scaling in the constraint too fast is also a problem, although this mostly pertains to how much the
constraint changes each iteration. While both these results do somewhat resemble the optimal arch solution, there are
multiple imperfections that have been caused by these two ways of scaling in the constraints. Analytically determining
a universal formula for tightening the constraint is still difficult, but two general rules to follow can be derived from
these results. The first general rule is that the constraint can only become restrictive when β is high enough to curb
the error, but not too high that the gradients of densities close to zero and one have already decreased too far. In this
case that value lies somewhere between eight and twelve. However what a restrictive constraint means is going to be
different for every case and depends on both the mesh size and the problem itself. The second rule is on how much the
constraint should change every iteration, which should be as little as possible. The recommendation is then to start the
constraint at 10% of the total amount of elements and end it at less than one element, linearly changing the constraint
between these two values starting at the first iteration and ending at an iteration in which β is between eight and twelve.

4.6.3 Additional 2D compliance problems
Results from the cantilever tests show how all implementations of the method are able to deal with enclosed voids
properly in 2D when combined with the robust formulation. This initial result is promising, although some more tests
on different problems are necessary to validate that the method could be applied universally. For this purpose two
additional design problems were chosen: a Mitchell cantilever and a table problem. The full problem description and
their free-form results can be found in Figure 4.22 for the Mitchell cantilever and in Figure 4.23 for the table. Both
these new problems were solved using the exact same settings that were successful for the cantilever problem, which
could show that this method is universally applicable.

The results for the Mitchell cantilever are visible in Figure 4.24, which shows how all implementation methods have
successfully dealt with enclosed voids and have generated a design which could be considered optimal. The filter result
shows a small imperfection with more material on the upper part of the design, this is because during the optimization
a void elimination feature was located there. This feature was closed so slowly that the Heaviside already reached its
limit, causing the result to get stuck in a slightly suboptimal shape. The result for the geometric constraint also got
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(a)

(b)

(c)

(d)

(e)

Figure 4.20: Scaling in the geometric constraint too late with graph of objective and designs at key points in graph. (a) Graphed
convergence behaviour; (b) iteration 137; (c) iteration 160; (d) iteration 175; (e) iteration 200.

(a)

(b)

(c)

(d)

Figure 4.21: Scaling in the geometric constraint too fast with graph of objective and designs at key points in graph. (a) Graphed
convergence behaviour; (b) iteration 75; (c) iteration 99; (d) iteration 200.

stuck in a suboptimal shape in a similar fashion, however it instead is caused by the previously discussed convergence
behaviour.

Results for the table problem for all three implementation methods are shown in Figure 4.25, which shows that the filter
and volume constraint implementation have again successfully dealt with enclosed voids and created an optimal design.
However, the geometric constraint implementation got stuck in a suboptimal shape, again caused by the convergence
behaviour. It shows that without a proper fix for the convergence behaviour the geometric constraint has a tendency
to get stuck in shapes similar to its initial shape, which is close to the design shown in Figure 4.19. This behaviour
also explains how the slight deviation in shape of the Mitchell cantilever result came to be. Figure 4.26 shows the table
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(a)

(b)

Figure 4.22: The Mitchell cantilever problem with (a) Problem description and (b) free-form solution for a volume fraction of 0.35
with cre f = 100.

(a)
(b)

Figure 4.23: The table problem with (a) Problem description and (b) free-form solution for a volume fraction of 0.4 with cre f =
100.

(a) (b) (c)

Figure 4.24: Mitchell cantilever results with β limit 15 for different implementations (a) filter implementation with increased pe-
nalization and

c
cre f

= 116.0%; (b) Volume constraint implementation with
c

cre f
= 113.5%; (c) Geometric constraint implementation

with χ = 1 and
c

cre f
= 114.6%.

results with the scaled constraint, in which this problem is fixed.

4.6.4 3D compliance problem

Initial tests

Since the method has succeeded in eliminating enclosed voids in multiple 2D problems, a 3D case should not pose
too much of a problem. This is because, as noted before, there are more directions in which to create void elimination
features. Nevertheless it is still good to test the method in 3D both to see if that brings any unexpected problems with
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(a) (b) (c)

Figure 4.25: Table results with β limit 15 for different implementations (a) filter implementation with increased penalization and
c

cre f
= 106.6%; (b) Volume constraint implementation with

c
cre f

= 106.4%; (c) Geometric constraint implementation with χ = 1

and
c

cre f
= 270.1%.

Figure 4.26: Table result with β limit 15 and a scaled geometric constraint with
c

cre f
= 106.9%.

it and to further test morphologic operators. The 3D test problem will be the torsion beam same as in Chapter 3 and
for the same reasons listed there. Its problem description and unconstrained solution are visible in Figure 4.27 as a
reminder.

(a)

(b)

Figure 4.27: The 3D torsion beam (a) problem description and (b) unconstrained result with a volume fraction of 0.5 and cre f = 100.

The results of all three implementation methods are shown in Figure 4.28, which show how all implementations suffi-
ciently dealt with the enclosed void in the middle by making a small hole close to the base. However, the location of
this hole is different for the geometric constraint method. This does show a slight problem the method might encounter,
where the location of the feature could be unpredictable. This is not an issue in this symmetric problem as the hole
locations are essentially the same, but whether or not this problem also occurs in asymmetric problems should still
be tested. In terms of compliance all implementations show acceptable results, with the filter implementation even
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improving on compliance. This improvement is unfortunately only artificial, as it is caused by the error of the smooth
maximum function increasing element densities above one.

(a) (b) (c)

Figure 4.28: Solutions to the torsion beam problem with three flood fill implementations. (a) Filter with
c

cre f
= 99.0%; (b) Volume

constraint with
c

cre f
= 100.1%; (c) Geometric constraint with χ = 50 and

c
cre f

= 102.1%.

Morphologic operators

The initial tests show that the method is able to successfully eliminate enclosed voids in a 3D problem, however it
currently does so using only an elimination feature of one element wide. Depending on how fine the mesh is this might
not be a sufficient width to extract powder from the void, which is why the next step is to also apply the morphologic
operators discussed in Section 4.4. The geometric optimization already shows how these should be able to properly
achieve control over the void elimination feature size, although testing in 3D and with compliance is still necessary to
confirm this.

Results using the filter, volume constraint and geometric constraint implementation with different morphologic operator
radii are shown in Figure 4.29. For the volume and geometric constraint implementations the figure does show that
morphologic operators can be used to accurately control the size of the void elimination feature, but for the filter
implementation the compliance is higher due to the error introduced and an unnecessary void elimination feature has
even been generated for a radius of one. This result shows once again one of the main issues of the flood fill algorithm,
where it can get stuck in suboptimal void locations and numbers. The geometric constraint did require quite a high
constraint value, due to the addition of the error in the smooth maximum of the morphologic operators. This is not a
problem in the case of the torsion beam because there is only one large void area, but for other problems where smaller
voids exist this could be abused to leave those enclosed.

Feature location control

Now that the size of the void elimination features can be controlled using morphologic operators, the final test is to
also accurately control both the amount and locations of the features. These should be tested together as choosing
the amount of features inherently also necessitates a choice on different feature locations. To create additional void
elimination features the flood fill algorithm needs to be performed multiple times, each time with different boundary
elements. This is in contrast to the eigenfrequency method, where a higher constraint value automatically created more
features. The advantage of this is that there should be complete control over the amount, size and location of the void
elimination features, this does however come at the cost of additional computational effort. Performing the flood fill
multiple times in a row also opens up another decision on how that is best performed, as they can either be done in
series or parallel. Performing the flood fill in series would mean that every subsequent flood fill takes the output of
the previous one as input, which has a knock-on effect on the total error. Performing the flood fill in parallel could
avoid the knock-on effect on the error, as all flood fills are performed using the same input. This does mean that
additional constraints are necessary for each new density field, which makes it impossible in combination with the
filter implementation.

Figure 4.30 shows the results of multiple flood fills for the filter, volume and geometric constraint implementation,
where for the filter the flood fill is done in series but for the volume and geometric constraint it is done in parallel.
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(a) (b) (c)

(d) (e) (f)

Figure 4.29: Solutions to the torsion beam problem for different implementations and morphologic operator radii. (a) Filter imple-
mentation with r = 1 and

c
cre f

= 105.4%; (b) Volume constraint implementation with r = 1 and
c

cre f
= 100.6%; Geometric constraint

implementation with χ = 1000, r = 1 and
c

cre f
= 101.1%; (d) Filter implementation with r = 2 and

c
cre f

= 110.4%; (e) Volume

constraint implementation with r = 2 and
c

cre f
= 104.5%; (f) Geometric constraint implementation with χ = 1000, r = 2 and

c
cre f

=

102.6%.

The results for all beams show how the method can succesfully create multiple void elimination channels, although
the location of these channels has become less predictable. Furthermore the result for the volume constraint even
contains two redundant void elimination channels, although it has not resulted in a large increase in compliance. The
compliance for the filter implementation should once again be taken with a grain of salt, as it is now the result of two
flood fills being performed in a row.

(a) (b) (c)

Figure 4.30: Solutions to the torsion beam problem where multiple void elimination channels are required with three flood fill
implementations. (a) Filter with

c
cre f

= 96.6%; (b) Volume constraint with
c

cre f
= 103.4%; (c) Geometric constraint with χ = 200

and
c

cre f
= 100.6%.
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Finally the method was also tested with two additional locations for the boundary elements, one of two specific hole
locations and one of two surfaces with some overlapping elements. These were both only tested using the volume
constraint implementation, because throughout all tests it performed the best. The results for both tests are shown in
Figure 4.31 along with the problem description of the specific hole locations, which shows how the method is at least
able to deal with very specific hole locations. The surfaces with overlapping elements do show how some precaution
should be taken when prescribing boundary elements, as the optimizer has created one single hole connected to the
overlapping elements.

(a)

(b) (c)

Figure 4.31: Additional boundary element cases, results using the volume constraint implementation. (a) Problem description
of torsion beam with specific boundary locations; (b) Result for specific boundary locations with

c
cre f

= 102.6%; (c) Result for

boundary surfaces with overlapping elements with
c

cre f
= 101.8%.
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5 | Discussion

5.1 Computational effort
How much additional computational effort the new methods cost for the test cases is known, but how that additional
effort scales with the amount of elements or degrees of freedom should still be tested. It is also necessary to test how
different settings, for instance locking the degrees of freedom discussed in Section 3.1 or the morphologic operators
discussed in Section 4.5, affect this additional effort. The five tests then become the eigenfrequency method with and
without a locked direction, the flood fill method with and without morphologic operators and finally determination
of the compliance. The eigenfrequency method includes three notable operations, the assembly of the stiffness and
mass matrix, as well as the generalized eigenvalue problem. Determination of the compliance includes two notable
operations, the assembly of the stiffness matrix and a linear solve to determine the displacement vector.

By testing the algorithm on a cube with different mesh sizes, the computational effort can be visualized in Figure 5.1.
They show that for lower amount of degrees of freedom all tested methods require similar amounts of computational
effort, with the eigenfrequency method slightly more expensive than the objective calculation, which in turn is slightly
more expensive than the flood fill. That the flood fill initially requires a similar amount of computational effort can be
explained by the fact that this program is written in an interpreted coding language, but the linear solve and eigensolve
both utilize extensions which have been written in a compiled language. Interpreted languages are known to be slower
than compiled languages and at a low amount of degrees of freedom this has a more significant impact than the
computational complexity of the methods. Increasing the amount of degrees of freedom is when the computational
complexity more significantly influences the computational effort required. The flood fill is a simple loop which should
scale linearly (O(n)) with the amount of elements and therefore it has a large advantage over the eigenfrequency method
or the linear solve for larger meshes. The theoretical estimation of the computational complexity depends on the chosen
technique and is between O(n log(n)) and O(n3) for a linear solve and between O(n2.4) and O(n3) for an eigenvalue
determination. These computational complexities clearly reiterate how the flood fill method is comparatively cheaper
the larger the mesh becomes.

Figure 5.1: Computational effort for a cube of increasing size.
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These results do have a small caveat though, as the calculation of the sensitivities was left out. This calculation is an
expensive part of the flood fill method in the current direct approach and therefore the true computational complexity
of the flood fill method is slightly higher than O(n). Figure 5.2 compares the flood fill method with and without
sensitivity calculation, which shows that the computational complexity is indeed increased to approximately O(n1.5)
when the sensitivity calculation is taken into account. An adjoint formulation of the sensitivity could possibly improve
this complexity, although it would come at the cost of having to store the order of processing and subsequently running
an additional loop.

Figure 5.2: Computational effort of the flood fill method with and without sensitivities.

5.2 Overshoot error
As seen in Chapter 4, one of the biggest drawbacks of the flood fill algorithm is the error of the smooth maximum
function. It artificially inflated the performance of the design in the filter implementation, unnecessarily put additional
restrictions on the volume in the volume constraint method and caused suboptimal convergence behaviour for the
geometric constraint implementation.

Figure 5.3 shows how this error evolves when multiple elements of the same density are evaluated sequentially, this is
to get an idea of how this error is affected by different mesh sizes. It is important to note that this essentially assumes
one large line of either void or solid material and that the actual problem has to be several orders of magnitude larger
than depicted for that error to occur. This is due to the fact that a normal design has a mix of groups with either void
or solid elements and that any boundary between these groups will have an error of zero as seen in Figure 4.2. The
first subfigure clearly shows that the absolute error is negligible for void elements, while for solid elements this error
can become unacceptably high. The second subfigure shows the error for void elements more accurately and it shows
how all errors in the p-norm are the same when scaled with the element densities. How these tested errors relate to a
specific mesh size is once again something that is difficult to determine, as it varies for specific load cases, their volume
constraints and filter radii.

Since the robust formulation has been used to partly tackle the problem of this error, its cumulative error should also
be tested. However, since all density values above one simply get projected back to one, this test is only done on a
line of void elements. The result of this test should then show if the error in a void element can become so large that it
reaches the point where the Heaviside steps. The amount of elements required for this to happen for any η and p can
be determined analytically with the following equation:

(nel (ρel)
p)

1
p = η (5.1)

This equation reveals that with the common values of η = 0.5, ρel = 0.1 and p = 15 it would require more than 1010

uninterrupted void elements for one element density to reach 0.5. This again shows how the robust formulation can
successfully mitigate the error of the smooth maximum function.

Now that this test revealed how the error on void elements has negligible impact, a final test should be done on solid
elements. This test could reveal another critical aspect of the robust formulation in combination with the flood fill
algorithm, namely how much the total error on a specific amount of solid elements is for different values of β . This
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(a) (b)

Figure 5.3: Cumulative error for 100 elements of the flood fill algorithm for different element types and values of P. (a) solid and
void elements of ρ = 1 and ρ = 0.001, respectively; (b) Only void elements of ρ = 0.001 with different scale on y-axis.

could then be used to determine a specific value of β where this error no longer hampers the convergence of the
geometric constraint implementation. For this purpose Figure 5.4 shows the total error of solid elements for different
values of β , which shows that for any β past 7 for normal and 9 for very fine meshes the overestimation error is
negligible. This result combined with the tests done in Section 4.6.2 allows us to have a better understanding of how
the geometric constraint should be applied, mainly that the constraint should be tightened at these β values and not
much higher, optionally while pausing the β continuation.

Figure 5.4: Total error of the flood fill algorithm with P = 15 for different values of β and number of solid elements.

5.3 Feature locations
During testing with the flood fill method it became apparent that it has a tendency to get stuck in an initial location
of the void elimination channel, even though better locations can clearly be identified. This most notably happened
during geometric optimization, where large void channels were sometimes created for every single void as opposed
to simply connecting all voids together. This behaviour seemed to be solved when compliance is considered, because
most of those results utilize one single void elimination channel. However, another question could then be raised on the
location of this channel and whether or not it is a result of the aforementioned tendency or the optimal location. These
issues are mainly caused by the discrete order in which elements are processed, which is not included in the sensitivity
calculations.

While the final designs offer no insight into this matter, their results in earlier iterations do show how this tendency is
less problematic than initially thought. Figure 5.5 shows the early iterations of two results shown in Chapter 4, more
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specifically in Figure 4.13, 4.15 and 4.16. These earlier iterations show how the optimizer generally opens up multiple
void elimination channels, which are then closed in later iterations. The closing of these channels happens because of
a small change in density in one of the channels and its exact working mechanism is visualized schematically in Figure
5.6, these. This phenomenon does show that multiple locations for void elimination channels are considered and that
they are later closed due to their negative impact on the compliance, which indicates that the tendency to get stuck is
not as prevalent as initially suspected, although more testing is necessary to confirm this.

(a) (b) (c)

Figure 5.5: Previous results show how multiple channels are used in early iterations. (a) Iteration 20 and 50 for volume constraint
with increased penalization; (b) Iteration 15 and 23 for geometric constraint of 100 elements; (c) Iteration 25 and 100 for geometric
constraint of 100 elements with increased penalization.

(a) (b)

(c) (d)

Figure 5.6: Visual representation of the removal of redundant void elimination channels. Outlines indicate which element is
influenced by which channel. (a) Initial state where both channels have different reaches of influence, caused by slight variations
in density; (b) Next iteration where the channel with less influence increases in density to reduce effect on compliance; (c) Channel
with increased density now has zero influence; (d) Channel with zero influence fills up over subsequent iterations as no void elements
depend on it anymore.

Unfortunately closing void elimination channels does not always occur, most notably in the 3D results shown in Figure
4.29a and 4.30b. Here the small increase in density which subsequently closes the void elimination channel does not
happen, because closing it in 3D has much less impact on compliance than in 2D. The void elimination channels in
3D instead find an equilibrium, where the internal void is split up in a way that each channel influences a significant
portion of the void.
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6 | Conclusion and Recommendations

6.1 Conclusion
The research aim of this thesis was to investigate new methods to prevent enclosed voids from forming during the
topology optimization process, this has resulted in two new methods: the eigenfrequency method and the flood fill
method.

The eigenfrequency method utilizes eigenfrequency analysis of an inverted density field and applies a minimum con-
straint to the eigenfrequencies to eliminate enclosed voids. It is difficult to predetermine the constraint value for specific
properties of the void elimination feature, because for any given eigenfrequency constraint level, multiple combina-
tions of properties like void size and void elimination channel width or length can be found. The main problem of this
method is the occurrence of intermediate densities, as the eigenfrequency constraint could also be satisfied by them.
Even with the use of multiple techniques to curb the use of these intermediate densities, the 2D compliance results were
still either suboptimal or contained enclosed voids. In 3D the issue of intermediate densities was less prevalent and the
method successfully eliminated enclosed voids in most tests, however the exact properties of the void elimination fea-
tures were difficult to directly control with different eigenfrequency constraints. Finally, the additional computational
effort was high due to the eigensolve used for the method, although this additional effort was successfully reduced by
locking certain directions used in the calculation.

The flood fill method utilizes a modified flood fill algorithm, which is a filter with a resulting density field where
elements monotonically increase from the starting boundary. This density field can then be incorporated as a filter, into
the volume constraint or as a geometric constraint. This method successfully eliminates enclosed voids in geometric
optimization by creating void elimination channels of 1 element wide. To directly control the width of these channels
morphologic operators were then successfully incorporated into the method. In regular 2D compliance optimization
the method utilized channels of intermediate densities to fill up all enclosed voids with more intermediate densities.
Combined with the robust formulation all three implementations did successfully eliminate enclosed voids for multiple
2D problems with the same settings, which indicates that the method is universally applicable with these settings. The
filter and geometric constraint implementation did show some suboptimal convergence behaviour, which can be solved
for the latter by slowly tightening the constraint during the optimization. The method mostly worked well in 3D,
although in some specific cases redundant void elimination channels were created. Direct control over the location,
amount and size of the void elimination feature was also achieved by varying boundary elements, running additional
flood fills and morphologic operators, respectively. Finally, the method requires very little computational effort for
large meshes, as it scales linearly with the amount of elements.

After all tests done on both methods they can now be added to the rating table at the end of Chapter 2, which con-
cisely compares these new methods to the existing methods. Table 6.1 shows that the eigenfrequency method did not
necessarily perform better than the current methods. However the flood fill method has performed well on all criteria,
making it a good choice for future topology optimization focused on AM.

6.2 Recommendations
With intermediate densities being the main drawback of the eigenfrequency method, the main recommendation is also
on that topic. Testing the eigenfrequency method with topology optimization approaches that inherently create binary
solutions, most notably the level set, ESO and BESO method is recommended. Using these approaches would eliminate
the issue of intermediate densities and would allow for further research into the true effect of different eigenfrequency
constraints, as in this thesis the results were mostly muddled by the inclusion of intermediate densities.
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Method User Computational Ease of Mechanical Geometric
Control Effort Use Performance Complexity

Shortest path [20] + ++ +− − ++
Casting Constraint [11][12][13] − ++ + −− −−
Machining Constraint [14][15][16] +− ++ + − −−
Virtual Temperature Method [17][18] −− + −− +− ++
Side Constraint Method [21] − + − − −
Void Projection Method [22] ++ + +− + −
Eigenfrequency Method −− +− + +− ++
Flood fill Method ++ ++ + + ++

Table 6.1: Comparison of new methods with current void elimination methods

The flood fill algorithm allows a designer to specifically control the amount of void elimination features, their location
as well as the width of these features. The one property that is missing from this list is the length of a void elimination
feature, which would be a valuable parameter to also have control over, for instance because a longer path will have a
larger chance of getting clogged with powder. One possible option to do this would be to add a specific offset based
on the distance from the boundary, where combined with the robust formulation this offset would change any void
element too far from the boundary to solid, regardless of whether or not a void elimination channel is connected to it.
This boundary could even be the specific element at the start of the void elimination channel, since it is known for any
specific element which other elements were processed before it. With this information of which internal element was
influenced by a boundary element it could also be possible to have control over the size of internal voids, where some
void size threshold can be introduced to decide whether a channel is made or it is changed to solid.

More alternatives to directly control void elimination features are also a possibility. The first is to also implement
the coarser mesh method to control the size of void elimination features. This would be a possible alternative to
morphologic operators as it offers a large decrease in computational effort at the cost of reduced geometric complexity.
An alternative for when multiple holes are necessary is subdividing the mesh and then performing the flood fill with
different boundary conditions for each subdivision. This would avoid the problem of additional computational effort
added by running multiple flood fills at the cost of geometric complexity, although another advantage is that void
elimination features are located closer to the actual void.

Additional tests should be done on the relation between the convergence behaviour of the geometric constraint and
other parameters like mesh size, volume fraction constraint and filter radius. With the results from these tests it
could be possible to determine a universal rule for scaling in the geometric constraint for different β continuation
implementations.

Changes to the way the flood fill algorithm is written can also be useful. Firstly, the algorithm currently only works
on simple square or cubic elements and therefore some alterations need to be made for it to also work on unstructured
meshes. Sensitivities are currently calculated directly and in the same loop as the response, which was faster because
the algorithm is written in an interpreted language. When using this method in a compiled language the disadvantage of
calculating the sensitivities directly could outweigh the advantage of only using one loop. Therefore when this method
is implemented with a compiled language an adjoint sensitivity formulation should be used, for which the algorithm
would also need to save the order in which elements are processed.

Finally both the flood fill and eigenfrequency method could have another application next to eliminating enclosed voids.
By simply inverting the methods they could be used to eliminate floating masses, which sometimes occur in topology
optimization of eigenfrequencies or mixing features in fluid channels. The eigenfrequency method would then simply
no longer be on the inverted but on the regular density field, while the flood fill method will work by utilizing a smooth
minimum function and reversing the order in which elements are processed.
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A | Eigenfrequency method

A.1 Increased penalization
Figure A.1 shows a complete overview of 2D results using the eigenfrequency method with slightly increased pe-
nalization (q = 5) and a varied eigenfrequency constraint. It is essentially an intermediate step between the regular
penalization and extreme penalization used in Section 3.5.2.

(a) (b)

(c) (d)

(e) (f)

Figure A.1: Results with the eigenfrequency method with slightly increased penalization and a varied eigenfrequency constraint.
(a) ω2 = 107; (b) ω2 = 107.5; (c) ω2 = 108; (d) ω2 = 108.5; (e) ω2 = 109; (f) ω2 = 109.5.
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A.2 Extreme penalization
Figure A.2 shows some remaining 2D results using the eigenfrequency method with extreme penalization (q = 10)
and a varied eigenfrequency constraint. Figure A.2c and A.2d have a slightly decreased and increased eigenfrequency
constraint compared to the result shown in Section 3.5.2, respectively. This reconfirms how it is very difficult to
determine the eigenfrequency constraint, as these two results do contain two small enclosed voids.

(a) (b)

(c) (d)

Figure A.2: Results with the eigenfrequency method with slightly increased penalization and a varied eigenfrequency constraint.
(a) ω2 = 108.5; (b) ω2 = 109; (c) ω2 = 5 ·109; (d) ω2 = 7 ·109.

A.3 Robust formulation

Figure A.3 shows additional results using the robust formulation with a β limit of 20 and slightly increased penalization
(q = 5). Which shows that the void on the right is still deemed too important to remove.

(a) (b)

(c) (d)

Figure A.3: Results with the eigenfrequency method with the robust formulation, slightly increased penalization and a varied
eigenfrequency constraint. (a) ω2 = 108; (b) ω2 = 108.5; (c) ω2 = 109; (d) ω2 = 109.5.
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B | Flood fill method

B.1 Formulation of the Geometric constraint
The geometric constraint used the following smooth approximation of an absolute value:

sA = x
epx

epx + e−px − x
e−px

epx + e−px . (B.1)

Figure B.1 plots the behaviour of sA for different values of p, which shows how the approximation slightly underes-
timates the true absolute value at small values of x. This is also the reason why a relatively large cluster of elements
could take an intermediate density in Figure 4.17a and 4.17b.

Figure B.1: Smooth approximation of the absolute value for different values of p.

The sensitivities of this smooth approximation are given in the following equation:

∂ sA

∂x
= (xp)

(
1− (epx− e−px)

2

(epx + e−px)2

)
+

(epx− e−px)
2

(epx + e−px)2 (B.2)
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B.2 Element processing order
Figure B.2 shows how the flood fill order of the result in Figure 4.10 changes in its first few iterations. It shows how
there is some slight variation in the processing order, but the only really drastic step is from the first iteration to the
second iteration.

(a) (b)

(c) (d)

Figure B.2: How the flood fill order changes in early iterations of an optimization. (a) iteration 1; (b) iteration 2; (c) iteration 3; (d)
iteration 4.

Figure B.3 shows the removal of redundant channels as discussed in Section 5.3 in closer detail on the result of Figure
4.10, where a slight variation in density causes a specific hole elimination channel to lose influence, which subsequently
closes that channel. The comparison with the actual corresponding design at that iteration also shows how minute the
differences actually are when these orders are altered. It is also important to note that the color scale was altered
slightly for the latter two subfigures, as displayed in the legend bar next to it.
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(a)

(b)

(c)

(d)

Figure B.3: How redundant void elimination channels are closed during the optimization, with the design at a specific iteration on
the left and its corresponding order on the right. (a) Iteration 10 where two main access channels can be identified; (b) Iteration 12
where the lower access channel has a slight increase in density; (c) Iteration 13 where the redundant access channel is clearly lower
in the processing order; (d) Iteration 14 where the redundant access channel is fully closed.
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B.3 Additional results when varying p

Figure B.4, B.5 and B.6 shows designs for additional values of p.

B.3.1 Filter implementation

(a) (b)

(c) (d)

Figure B.4: Results for the cantilever problem with the flood fill filter implementation applied with different values of p. (a) p = 5;
(b) p = 30; (c) p = 40; (d) p = 50.

B.3.2 Volume constraint implementation

(a) (b)

(c) (d)

Figure B.5: Results for the cantilever problem with the flood fill volume constraint implementation applied with different values of
p. (a) p = 5; (b) p = 30; (c) p = 40; (d) p = 50.
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B.3.3 Geometric constraint implementation

(a) (b)

(c) (d)

Figure B.6: Results for the cantilever problem with the flood fill geometric constraint implementation applied with χ = 300 and
different values of p. (a) p = 5; (b) p = 30; (c) p = 40; (d) p = 50.
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B.4 Additional results when varying flood fill boundary
Currently 2D results use all outside surfaces as starting point for the flood fill. Excluding some boundaries is unneces-
sarily restrictive in 2D, although it could offer some information what boundaries are important for a specific problem.
Some additional internal locations can also be specified as flood fill boundary, which could show large improvements
on compliance. The four specific cases used and their results using the volume constraint implementation are shown in
Figure B.7, which shows that excluding the left surface has caused the method to no longer successfully eliminate en-
closed voids. Furthermore it shows that opening just a single hole already improves the compliance by a large amount.

(a)

(b)

(c)

(d)

Figure B.7: Case descriptions and robust results of different flood fill boundaries with a β limit of 12. (a) Right and top surfaces
excluded with

c
cre f

= 147.2%; (b) Left surface excluded; (c) Element in the middle included with
c

cre f
= 115.4%; (d) Elements in

middle and on 3
4 of x-axis included with

c
cre f

= 113.6%.
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B.5 Early iterations of specific results
Figure B.8 shows the early iterations of the Mitchell cantilever results using the filter implementation, which shows
why the result in Figure 4.24 got stuck in a slightly suboptimal shape.

(a) (b)

(c) (d)

Figure B.8: Early iterations of the filter implementation used for the Mitchell cantilever problem. (a) iteration 90; (b) iteration 130;
(c) iteration 160; (d) iteration 200.

Figure B.9 shows the early iterations of the table results for the using the geometric constraint implementation, which
visualizes why the result in Figure 4.25 got stuck in a suboptimal shape.
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(a) (b)

(c) (d)

Figure B.9: Early iterations of the geometric constraint implementation used for the table problem. (a) iteration 10; (b) iteration
50; (c) iteration 70; (d) iteration 170.
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C | Flood fill code

1 import numpy as np

2 from optiblock import OptiBlock, Signal

3

4 class Floodfill(OptiBlock):

5 def _prepare(self, model, bc, P):

6 #Initialize optimization constants

7 self.model = model #Load in FE model used

8 self.bc = bc #Load in prescribed boundary elements

9 self.P = P #Smooth maximum parameter

10

11 #Initialize model dimensions

12 self.nx = self.model.nx

13 self.ny = self.model.ny

14 self.nz = self.model.nz

15 self.A = self.ny*self.nz

16

17 def _response(self, x):

18 #initialize lists:

19 #Q is queue of elements, d is list of densities and result stores the result

20 #self.sens is the Jacobian of the flood filled densities to the input densities

21 x = self.sig_in[0]

22 d = x.get_state().copy()

23 Q = np.empty(self.model.nel)

24 Q[:] = np.nan

25 Q[self.bc] = d[self.bc]

26 Result = np.copy(Q)

27 self.sens = np.eye(self.model.nel)

28

29 #Initialize adjacent element arrays

30 if np.equal(self.nz, 0):

31 Adj = np.array([-1, 1, -self.ny, self.ny])

32 else:

33 Adj = np.array([-1, 1, -self.nz, self.nz, -self.A, self.A])

34

35

36 for i in range(self.model.nel):

37 #Select new element

38 Curr = np.nanargmin(Q)

39 Xik = Result[Curr]

40 NewEl = np.ones_like(Adj)*Curr + Adj

41

42 #Filter out edge elements

43 if np.equal(self.nz, 0):

44 Moduy = np.remainder(Curr, self.ny)
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45 NewEl = NewEl[np.array([Moduy, Moduy+1-self.ny, np.greater(NewEl[2], -1),

np.less(NewEl[3], self.model.nel)], dtype= np.bool_)]↪→

46 else:

47 Moduz = np.remainder(Curr, self.nz)

48 Moduyz = np.remainder(Curr, self.A)

49 NewEl = NewEl[np.array([Moduz, Moduz+1-self.nz, np.greater(Moduyz,

self.nz-1), np.less(Moduyz, self.A-self.nz), np.greater(NewEl[4], -1),

np.less(NewEl[5], self.model.nel)], dtype=np.bool_)]

↪→

↪→

50

51 #Filter out elements already in Q

52 NewEl = NewEl[np.isnan(Result[NewEl])]

53

54 #Update densities and lists

55 Rhoi = d[NewEl]

56

57 ##p-norm smooth maximum

58 Xii = np.power(np.add(np.power(Rhoi, self.P), np.power(Xik, self.P)), 1/self.P)

59

60 #update lists

61 Q[NewEl] = Xii

62 Q[Curr] = np.nan

63 Result[NewEl] = Xii

64

65 #update sensitivities

66 if np.logical_not(np.equal(NewEl.size, 0)):

67 ##p-norm

68 self.sens[:, NewEl] = np.copy(self.sens[:,

[Curr]])*(Xik**(self.P-1))*(Xik**self.P + Rhoi**self.P)**(1/self.P - 1)↪→

69 self.sens[NewEl, NewEl] = (Rhoi**(self.P-1))*(Rhoi**self.P +

Xik**self.P)**(1/self.P - 1)↪→

70 return [Result]

71

72 def _sensitivity(self, dfdv):

73 sensin = np.ones(self.model.nel)*np.copy(dfdv[0])

74 sensout = np.matmul(self.sens, sensin)

75 return [sensout]
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