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Summary 

The Netherlands has always been in a battle with surrounding water bodies and rivers crossing 

the country. One of the important water defence structures is the Afsluitdijk, which separates 

Lake IJssel with the Waddensea. Renovations of the discharge sluices led to new insights in the 

design wave forces on these flood gates. Since they have an overhang on top of them potentially 

large forces of standing waves are exerted on the structure. This has yet to be investigated.  

A new semi-analytical model is developed to predict the dynamic response of slender gates in 

combination with an overhang, which are subjected to standing waves. Still little is known for 

these types of gates for this specific forcing type. The semi-analytical model is still in its 

development phase and must be validated on its performance. This thesis aims for validation of 

the modal calculations performed by the Semi-Analytical model for submerged gates, which 

include fluid structure interaction. 

Experiments were executed to generate data that give insight in the modal shapes and natural 

frequencies of two different scaled models. The scaled models existed of a Solid Plate and a 

Reinforced Plate. The Reinforced Plate was equipped with two stiffeners. Both prototypes had 

a width of 80 cm and a height of 60 cm and where made of RVS304. The Solid Plate was 

designed to have most energy in its first mode, while the Reinforced Plate had its energy divided 

in the first three modes. The experiments took place in the flume of Stevinlab 2 at the faculty 

of Civil Engineering at the TU Delft. Three types of tests were performed: 

- In-vacuo hammer tests were used for a dry modal analysis. 

- Immersed hammer tests were used for a wet modal analysis, which gave insight in the 

wet modes of the plates. Different water levels were investigated: 0.3 m, 0.4 m, 0.5 m, 

0.56 m and 0.6 m.  

- Wave experiments were executed for further modal analysis in case of insufficient data 

of the wet hammer tests. These experiments used water levels of 0.56 m and 0.6 m.  

In order to get reliable results on the experiments, a measurement device plan was designed. 

Starting point for the design was investigating the wet modes that were predicted by the SA 

model. Local nodes and anti-nodes were assigned to be potential locations for strain gauges and 

accelerometers. These spots were found using the semi-analytical predictions of the modal 

shapes. Together with synthetic time series of the SA model and the experiment modal analysis 

method Frequency Domain Decomposition (FDD) method, the performance of different 

measurement device plans was investigated. Eventually the Reinforced Plate was equipped with 

25 strain gauges and 12 accelerometers, while the Solid Plate had 20 strain gauges and 12 

accelerometers.  

The experimental data obtained from the dry hammer, wet hammer and wave tests were 

subjected to the FDD algorithm in order to identify modes in the output data. The identified 

modes were compared to the predicted SA modes by means of a Modal Assurance Criterion 

(MAC). High MAC values indicate high correspondence between the predicted and identified 

modal shapes. Several types of analysis were done to get insight in the reliability of the SA 
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model. First, dry finite element method (FEM) modes were generated and used as input for the 

calculations. Secondly the identified dry FEM modes were used together with the identified 

natural frequencies in order to get insight in the accuracy of the SA models calculations. These 

set of modal shapes and  natural frequencies is known as the adjusted set of dry FEM modes. It 

was found that for the Solid Plate all initial FEM modes correspond to the identified modes 

while for the Reinforced Plate several FEM modes did not show up in the data. The latter might 

have implied that a wrong set of input modes was used. The results of the SA model were 

compared to the experimental results in order to draft conclusions on the performance of the 

SA model in these situations. A last analysis was performed by means of using the dry modal 

shapes and frequencies that were found in the dry hammer experiments as input for the SA 

model.  

The results of the analysis showed that the SA predictions of the Solid Plate had good 

correspondence with the experimental observations. The best results were found when the FEM 

generated modes were used as input of the model. The first three modes were all found with 

consistently high MAC values, except for a water level of 0.5 m. The relative averaged errors 

of the first three modes for the natural frequencies were also found to be very small, in the order 

of 2% - 6%. The Reinforced Plate showed a more scattered pattern. Not all modes were found 

for the water levels. Using a combination of strain gauges and accelerometers showed the 

identification of the first three modes, except for a water level of 0.56 m. The relative error of 

the natural frequencies turned out to be rather high. This led to analysing the data of the wave 

impacts as well. It was thought that these forces were larger and therefore the response of the 

Reinforced Plate was measured more easily. Water levels of 0.56 and 0.6 m identified all first 

three modes when the FEM modes were used as input. The best results for this plate were 

obtained by using an adjusted set of dry FEM modes as input. The averaged relative error of 

the first three modes for the natural frequencies was determined to be respectively 12.6% and 

6.6%.  

The above results had to be taken with some possible measurement mistakes. First, the 

accelerometers for the Reinforced Plate showed large angles of inclination, up to 18⁰ which 

might indicate that accelerometers got loose from the plate. Furthermore, it was observed that 

the Reinforced Plate had large damping, which might have caused uncertainty in the 

measurements for the dry and wet modal experiments. Perhaps the most important flaw that 

was discovered was the loosening of the stiffeners and the U-frame from the front of the 

Reinforced Plate. The glue was not applied properly on the front plate, which caused the gate 

components to fail. Therefor no assurance could be given regarding the fully clamped boundary 

conditions. It was not observed when this happened as it was discovered after the experiments. 

This has influenced the modal characteristics of the Reinforced Plate, causing corrupt datasets.  

The results and discussion conclude that the modes that play a large role in the response were 

detected for both the Solid and Reinforced plates. The modal shapes were predicted correctly 

by the semi-analytical model for both plates. Natural frequencies matched perfectly for the 

Solid Plate, while the Reinforced Plate showed larger errors. Due to the complexity of the semi-

analytical calculations and potential experimental mistakes, it is advices to redo the experiments 
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for the Reinforced Plate and more complex plate geometries. Furthermore the assurance for the 

fully clamped boundary conditions leads to more reliable results. 
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1 Introduction 

The Netherlands is a low-lying country that is part of the delta of several rivers, from which the 

Rhine and the Meuse are the most famous ones. Most economic wealth and inhabitants of the 

Netherlands are situated under sea level. To ensure a safety threshold, many hydraulic structures 

are built to prevent flooding. A large important flood defence structure is the Afsluitdijk. Its 

function is to regulate the water levels in lake IJssel to prevent flooding of the area around. In 

order to discharge the excess water from the river, several discharge sluices are installed in the 

dike as depicted in Figure 1. Furthermore, it creates a freshwater buffer and provides sufficient 

discharge into the Waddensea by means of the Stevin and Lorentz sluices. 

Up to recent, these sluices were safe enough, but insights on wave induced dynamics changed 

the opinion about this safety. Since these sluices have a stiff concrete road over the chambers, 

standing wave pressure impulses may be amplified leading to an excessive increase of wave 

pressure on the gates. First studies show the importance of this force for the quantification of 

the safety threshold of the gates. 

 

Figure 1 Side view of sluice chamber underneath the Afsluitdijk. The overhang on the sea side and lake side creates an extra pressure force 

acting on the gate in the case of standing waves (De Almeida, Hofland & Jonkman, 2019). 

1.1 Current research 

Design of hydraulic gates usually incorporates two important research lines. These are both part 

of the DynaHicS program funded by the Dutch government. These research lines are known to 

be the (1) external forcing part and (2) the resistance/internal forcing part of the gate. For both, 

a brief overview of current research will be given in §1.1.1 and §1.1.2. 

 Current research wave impacts 

De Almeida, Hofland & Jonkman (2019) state that wave impacts may be classified into three 

categories: 1) breaking waves on vertical wall, 2) Overtopping waves on crest wall and 3) non-

breaking standing waves on a vertical wall with an overhang. They conclude that from these 

three general wave impact categories the breaking waves are studied extensively. Bagnold 

(1939) was the first to come up with a method to find the wave impact by means of the pressure-

impulse theory. In general Goda (1974) came up with a relation for calculating pressures of 

breaking waves on breakwaters. Cuomo et al. (2010) focused their research on vertical walls 

subjected to breaking waves. More recent studies from Chen et al. (2019) take the dynamic 
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characteristics of a gate into account as well. They come up with a method that relates the 

excitation frequency of a wave with that of the structure, which eventually leads to a Dynamic 

Amplification Factor (DAF) for the static wave impact force.  

Still little is known about standing wave impacts on structures with an overhang. De Almeida 

et al. (2019) took the pressure impulse derived by Bagnold (1939) in combination with the 

pressure-impulse theory from Cooker & Peregrine (1995) to obtain a method for standing wave 

impacts on gates with an overhang. The study was validated using a stiff concrete structure, 

which potentially only approximates the real life situations were flexible gates are often 

implemented. Almeida & Hofland (2020) validated the new approach for low steepness 

standing wave impacts on gates that were equipped with an overhang. They excluded the 

dynamic behaviour of the gate and solely looked at the static forces due to standing wave 

impacts. By means of the pressure-impulse theory it was found that an additional force was 

acting on the structure in case of a rigid overhang. This force is best described as the impulsive 

load. Almeida et al (2020) also describe that the presence of air can influence the magnitude of 

this impulsive load. The latter was already found by Bredmose et al. (2009) and Hofland et al. 

(2010). 

  Current research gate dynamics 

Tieleman et al. (2019) state that current design approaches are mainly based on simplified single 

degree of freedom (SDOF) systems. The dynamics of these SDOF system are usually predicted 

by means of a so-called DAF (Chen et al, 2019) which depends on the dynamic characteristics 

of the SDOF system. Static forces are multiplied with the DAF to obtain dynamic stresses in 

the structure. Kolkman & Jongeling (1996b) describe a method that looks like the DAF method 

of Chen et al (2019). They relate the factor of the dynamic over the static amplification 

comparing the excitation period by the Eigen period of the structure. They treat the structure as 

a SDOF mass-damp system. In real life most flood gates are acting in the 3D plane, which 

makes them a multiple degree of freedom (MDOF) system. Hattori & Tsujioka (1996) were the 

first to study the system as a MDOF and compared it to the outcomes from the SDOF systems. 

It was found that for breaking waves the results were closely related in terms of peak pressures. 

Tieleman et al (2019) state that SDOF models lack precision in case of designing 3D structures 

such as slender gates. They come up with a semi-analytical (SA) model based on research of 

Tsouvalas & Metrikine (2014). The semi-analytical model theoretically derives a solution 

method for a 3D deflection field of a slender structure. It makes use of modal decomposition 

and using boundary and interface conditions the fluid field on both sides of the gates is 

considered as well. Fluid structure interaction (FSI) follows from the interface conditions at the 

gate-fluid interface. Although more precise finite element method (FEM) packages are 

available, the semi-analytical model is usually preferred due to the significant reduction in 

computational costs. The semi-analytical model is expanded to situation where an overhang is 

present in the system (Tieleman, Hofland, Tsouvalas et al, 2020). The semi-analytical model of 

Tieleman et al. (2020) still must be validated since it incorporates some potentially crucial 

assumptions.  
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1.2 Problem statement  

Concluding the above paragraph, one might identify a case which is still not available for 

dynamic gate design under wave loading, while examining the semi-analytical model of 

Tieleman et al. (2020):  

It is still not known/verified whether the semi-analytical model holds for a gate geometry in 

combination with the presence of an overhang, entrapped air and fluid structure interaction, 

which is often the case for hydraulic structures in the Netherlands. The derived model is based 

on an analytical approach but is not tested nor validated. The model relies on assumptions that 

should be tested on their legitimacy.  

The above statement shows that current research has a gap in terms of relevant knowledge for 

dynamic gate design. Although research is currently taking place, validation and improvement 

of the models should be examined.  

1.3 Research questions 

In order to manage the problem statements mentioned in §1.2, a main research question is 

drafted. Four sub-questions lead to the answer on the main research question. Important to 

notice is that the SA model relies on dry mode shapes and natural frequencies as input, which 

eventually lead to wet mode shapes and natural frequencies. From there the time series are 

obtained. Further explanation is given in Chapter 4. 

Main research question: Does the modal prediction of the semi-analytical model derived by 

Tieleman et al. (2020) hold for common designs such as discharge 

sluices in the Afsluitdijk? 

  

Sub-question A) Which method is suitable for finding natural frequencies and mode 

shapes for experimental data? 

 

Sub-question B) What is a suitable measurement device plan for measuring different 

modes correctly? 

 

Sub-question C) Does the semi-analytical model asses the right structural modes of the 

system in submerged state for two different gate designs? 

Sub-question D) Can the semi-analytical model be improved by using experimental data 

in the form of modal shapes and natural frequencies to represent the 

boundary conditions? 

 

  



Introduction 

8 

 

1.4 Research methodology 

To validate and potentially improve the semi-analytical model scaled flume tests are carried out 

in order to create a dataset of deflections and strains of the model. This dataset is obtained via 

a measurement device plan containing strain gauges and accelerometers. The data from the 

flume tests should afterwards be translated to relevant dynamic data for validation and 

improvement of the semi-analytical model. This sequence can be captured in several steps that 

eventually lead to the desired result. 

 Experimental modal analysis algorithm  

An experimental model analysis is performed for 2 specific reasons: 1) as an extra tool in the 

design of a measurement device plan and 2) obtain modes and natural frequencies of the scaled 

model during dynamic experiments in the wave flume. The experimental modal analysis is 

performed using Frequency Domain Decomposition (FDD). An acceleration or strain time 

series for every measurement point is used as input and the outputs are the different mode 

shapes and their corresponding natural frequencies. The implementation of the algorithm is 

validated by data obtained from the semi-analytical model while its output is again compared 

to the output of the semi-analytical model. The latter enables validation of the semi-analytical 

model for different circumstances. 

 Modal analysis tests  

Hammer test in both dry and submerged conditions may give insight in the dynamic behaviour 

of the gate as well as the correctness of implementation of the experimental modal analysis. 

The Fluid Structure Interaction (FSI) can be investigated by comparing both hammer tests. It 

reveals all dynamic characteristic of the gate itself. These are the stiffness, damping, natural 

frequencies and mode (shapes), which give already some preliminary conclusions about the 

performance of the semi-analytical model.   

 Flume tests  

Flume testing enables to subject the gate to scaled real life wave conditions and analyse the 

performance of the semi-analytical model by comparing the outcome of the tests with the 

prediction of the model. Different situations are investigated in terms of wave conditions. Using 

the displacement field of the gate enables to validate and/or improve the semi-analytical model. 

The displacement field is first translated to natural frequencies and their corresponding modes, 

which are compared to the output of the semi-analytical model afterwards.  

 Measurment devices 

In the experiments different types of devices are used to obtain force fields, deflections field 

and incoming wave characteristics. A more detailed follow up is given in §5.1.2. An overview 

of the devices used in the experiments is given in Table 1. This thesis solely uses the results of 

the accelerometers and strain gauges. The remainder is used in for other research. 
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Device  Obtained data 

Strain gauges Strains that lead to a strain field of the scaled model 

Accelerometers Accelerations which lead to an acceleration field of the scaled model 

Wave gauges Measuring the incoming wave height 

Pressure sensors Measuring the pressure impulse of the incoming standing wave 

Load cells Measuring the total load acting on the gate 

Table 1 Measurement devices used during the experiments 

1.5 Thesis outline 

This report starts with a relevant literature study about structural mechanics and dynamics, 

experimental modal analysis and the semi-analytical model (Tieleman et al, 2020) is elaborated. 

The structural mechanics partly addresses the stress-strain relation and the method for rewriting 

displacements of a plate to strains. This serves as a basis for incorporating the strain field and 

rewriting it to a displacement field. The structural dynamics part will focus on the conventional 

solution techniques for Multiple Degree of Freedom systems (MDOF) such as modal analysis 

and frequency response functions. Furthermore, it reveals the approach to obtain standard 

dynamic characteristics such as damping and the natural frequency. The chapter on 

Experimental Modal Analysis (Ch. 3) gives an insight in the different techniques and will then 

elaborated the most important ones for this research. The Frequency Domain Decomposition 

(FDD) and the Peak Picking (PP) technique are treated in detail. The literature research is 

finalized with a chapter about the SA model of Tieleman et al. (2020). This chapter is 

accompanied with Appendix C which treats the SA mode of Tieleman et al. (2019) which does 

not include an overhang.  

Following on the literature study a chapter on the experimental tests is given, Ch. 5. This chapter 

treats the scaled models that are used, the location and flume of the experiments, as well as the 

different experiments that are executed. Important part of this chapter is about the processing 

and correction of the data.  

The start of the analysis takes place in chapters 6 and 7. Chapter 6 treats the optimal 

measurement set up for both scaled models. First research is executed on the modal parameters 

of both plates. This is done by using the results from the SA model of Tieleman et al. (2020). 

The natural frequencies and mode shapes are then used for further research on the measurement 

plan. The approach and results are a follow up, after which the chapter is finalized with some 

mode plots that are generated with the measurement device plan. 

Chapter 7 describes the modal analysis that is executed to quantify the modes that are identified 

with the modes that were predicted by the SA model. The detected modes and natural 

frequencies in the dry situations are also used as input for the SA model and will be analysed 

accordingly. The influence of the boundary conditions is on its turn modelled by using the exact 

dry modes, as found in the dry modal analysis for both plates, as input for the SA model. The 
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modal parameters that are predicted are then compared to the identified ones in order to draw 

conclusions. 

The report is finalized by the chapters 8 and 9 with the discussion, results and recommendations.  

 

Figure 2 Thesis outline 
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2 Theory – Structural Mechanics and Dynamics 

To describe the outcome of the experiments in a correct order, a literature study is performed. 

The literature that is examined serves as a base for the master thesis and the analyses that are 

performed. This chapter goes into the relevant available literature of Wave impacts, Structural 

dynamics, Experimental modal analysis and basic structural relations for rewriting measured 

data to useful data for analysing the experiments. 

2.1 Structural mechanics  

In order to obtain useful data from the different measurement devices several structural 

mechanical as well as dynamic relations should be used. This paragraph gives an overview of 

the fundamental relations that are crucial for this research.  

 Kinematical relation in structural mechanics – strains to delfections  

In order to obtain the right deflections following from a strain field, one should apply the 

kinematical relationship that links both quantities to each other. Equation 1 gives a 

representation of the relationship between the strains and the displacements (Hartsuijker, 2001). 

 
𝜀𝑥 = 𝑎 ∗

𝑑2𝑤

𝑑𝑥2
 1 

Rewriting this relation gives an expression for the deflection with a strain field as input. 

 
𝑤(𝑥) =

1

𝑎
∬ 𝜀(𝑥)𝑑𝑥𝑑𝑥 + 𝐴𝑥 + 𝐵 2 

In which A and B are integration constants that can be solved using the boundary conditions 

and a is the distance from the centre of mass towards the locations of the measured strain. The 

strain field ε(x) follows from measurements and can be numerically integrated. 

 Stress in a plate 

Stresses in a steel plate can be either directly obtained from strains or a deflection field. These 

are directly linked to each other according to relation 3. Equations 3 and 4 give handholds for 

translating both quantities to a stress field (Hartsuijker, 2001).  

 
𝜅 =  −

𝑑2𝑤

𝑑𝑥2
  →   𝑀 = 𝐸𝐼𝜅  →    𝜎 =

𝑀 ∗ 𝑎

𝐼
 3 

 
𝑁 = 𝐸𝐴𝜀 →    𝜎 =

𝑁

𝐴
 4 
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2.2 Structural Dynamics 

This paragraph serves as a basis of structural dynamics quantities and theories such as Fluid 

Structure Interaction (FSI), Damping and Natural Frequencies of a system. It gives a first insight 

into these phenomena and for the natural frequencies it gives a handheld for the expected 

outcomes of the future analysis.  

 Fluid structure interaction  

Several important dynamic characteristics are adjusted in a situation where the gate is 

submerged in water. The natural frequency of a system depends on both the mass and the 

stiffness. Due to added water effects the stiffness might significantly increase and therefore the 

influence on the natural frequency is significantly. Kolkman & Jongeling (1996a) approach the 

added water mass as a problem in which the moving gate is displacing and accelerating water 

particles that are in contact with it. Kolkman & Jongeling (1996a) use the velocity potential of 

every water particle and assume that the Laplace equation holds (eq. 5) 

 ∆Φ = 0  5 

They reason that the velocities of the water particles, and therefore the velocity potential, are in 

phase with the velocity of the gate. This leads to an expression of the exerted pressure from the 

water particle on the gate, which after integration over the total area of the gate gives the added 

water mass.  

 
𝑝 =  𝜌

𝑑Φ

𝑑𝑡
+ 𝐶 6 

Wendel (in Kolkman & Jongeling, 1996a) solved the added water mass problem for different 

structure geometries and different direction of vibration. For a two-dimensional rectangle he 

comes up with an equation of the added water mass as given in eq. 7.  

 𝑚𝑤 = 1.51 ∗ 𝜌𝜋𝑎2𝐿 7 

In which: 

ρ  = Density of the fluid  

a  = Height of the structure under water  

L  = Width of the structure.  

 System damping  

Damping of a system can be obtained via multiple methods, either via the time or frequency 

domain. Experimental research executed in this master thesis allows the following relevant 

methods: 

1. Dimensionless damping ratio obtained from the time series of the structure.  
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2. Damping obtained from the width of the peaks of the singular values in the frequency 

domain(Brincker, Ventura, & Andersen, 2001). 

The damping can be obtained from peaks in the displacement time series. Using the amplitudes 

(ui) of certain locations on the gate and the measured decay (ui+n) one can obtain the damping 

of the system (Little & Mann, 2019). 

 
𝜁 =

𝛿

√(2𝜋)2 + 𝛿2
;   𝛿 =

1

𝑛
ln (

𝑢𝑖

𝑢𝑖+𝑛
) 8 

 Natural frequency of a dynamic system 

In case of a simple Single Degree of Freedom System (SDOF), a mass-spring system, one can 

compute the natural frequency of the SDOF using equation 9 (Metrikine, n.d.). The natural 

frequency of the system determines to a great extend the dynamic behaviour of the structure 

that is subjected to a dynamic force with a certain period.  

 
𝜔𝑛 = √

𝑘𝑠𝑦𝑠𝑡𝑒𝑚+∑ 𝑘𝑤

𝑚𝑠𝑦𝑠𝑡𝑒𝑚+∑ 𝑚𝑤
  9 

In which: 

ksystem  = Total stiffness of the system  

kw  = Added water stiffness 

msystem  = Total mass of the system  

mw  = Added water mass.  

In case of a Multiple Degree of Freedom System the system contains more natural frequencies 

corresponding to the number of degree of freedoms. Performing an Eigenvalue analysis of the 

multiple equations of motion lead to a set of frequencies that belong to the system(Spijkers, 

Vrouwenvelder, & Klaver, 2005).  

2.3 Dynamics of Systems 

This paragraph serves as an insight in the different solutions techniques available in the field of 

structural dynamics. The most well-known techniques for both a MDOF and Continuous 

systems are treated. The MDOF strategies will be discussed in more detail since they serve as 

the basis for the Experimental Modal Analysis strategies which are the core of the data analyses 

in order to find the validity of the semi-analytical model. The paragraph will kick off with some 

basic fluid structure interaction and on how to obtain damping from a dataset.  

 Continuous systems  

In case of a continuously distributed system, it is classified as a continuous model. These 

models can be either of one-dimensional nature or may consist of more dimensions. A one-

dimensional problem is defined by the fact that deflections depend, besides time, on one space 



Theory – Structural Mechanics and Dynamics 

14 

 

coordinate only (personal communication, 2019). Spijkers et al. (2005) describe a derivation of 

the equations of motion (EOM) by means of a balance of forces in sections of the system. The 

list below gives an overview of relevant EOM’s (Spijkers et al., 2005). 

- Euler-Bernoulli Bending beam  𝜌𝐴
𝜕2𝑤

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
= 𝑓(𝑡) 

- Beam on visco-elastic soil 𝜌𝐴
𝜕2𝑤

𝜕𝑡2
+

𝜕2𝑤

𝜕𝑥2 (𝐸𝐼
𝜕2𝑤

𝜕𝑥2 ) + 𝑘𝑤 + 𝑐
𝜕𝑤

𝜕𝑡
= 𝑓(𝑡) 

- Bending plate (Tieleman et al, 

2019) 
𝜌

𝜕2𝑤

𝜕𝑡2
+ 𝐷 [

𝜕4𝑤

𝜕𝑥4
+

𝜕4𝑤

𝜕𝑥2𝜕𝑧2
+

𝜕4𝑤

𝜕𝑧4
] = 𝑓(𝑡) 

Using boundary conditions, the equations can be solved for a given geometry and situation. 

When solving continuous systems often a modal analysis is used. This analysis states that the 

deflections of a system can be described as the multiplication of their modes with a certain 

amplitude which varies in time. In theory an infinite number of modes can exist in a structure, 

that must be summed to obtain a final result. 

Spijkers et al. (2005) describe that for a continuous system one can separate the unknown 

displacement into a time and space dependent part, as given in equation 10.  

 𝑤(𝑥, 𝑡) = 𝑥̂(𝑥)𝐴(𝑡) 10 

In which x̂(x) is defined as the structural mode of the system and A(t) as a time related amplitude 

function. Multiplying both will eventually lead to a solution for the displacement in both the 

time and space domain. Spijkers et al. (2005) describe a general solution for the space domain 

of a Euler-Bernoulli bending beam, that can be obtained via solving the space dependent part 

of the solution (eq. 11). 

 𝑊(𝑥) = 𝐴𝑐𝑜𝑠ℎ(𝛽𝑥) + 𝐵𝑠𝑖𝑛ℎ(𝛽𝑥) + 𝐶𝑐𝑜𝑠(𝛽𝑥) + 𝐷𝑠𝑖𝑛(𝛽𝑥) 11 

 
𝛽4 =

𝜌𝐴𝜔2

𝐸𝐼
 12 

In which A, B, C and β can be found using the boundary conditions and D is found as a ratio of 

respectively A/D, B/D and C/D. Since β has infinite solutions, we also find that the 

corresponding normal modes has infinite solutions.  

The time dependent part A(t) is in the form of an imaginary exponential function: eiωt or sin(ωt). 
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 Multiple Degree of Freedom systems 

Continuous systems can be discretized in a grid with several degrees of freedom. These so 

called Multiple Degree of Freedom (MDOF) systems can be solved using different types of 

strategies. The relevant strategies are given in the coming paragraphs and are known to be: 

1. Modal domain (Modal decomposition)  

2. Frequency domain (Frequency Response Function) 

 Modal domain 

Solution techniques that make use of modal decomposition are well suited for problems that 

comprise linear MDOF systems. The main idea is that the response of a system exists of a 

summation of different response shapes in time, that can be summed to obtain the total response 

of the system(Spijkers et al., 2005). This paragraph will first treat the definition of modes and 

how they can be obtained, after which the modal analysis solution technique is treated.  

Modes  

Spijkers et al. (2005) describe the method to obtain eigenvectors of a MDOF. The vectors can 

be obtained by performing an Eigenvalue problem of a MDOF equation of motion, neglecting 

the damping. This approach gives the natural frequencies and the corresponding Eigenvectors 

(equivalent for mode shape) of the system. Knowing the modes of a MDOF system is of great 

importance. Resonance may occur when loading frequencies are approaching the natural 

frequencies of a system. Insight in these natural frequencies is therefore good practice and 

should always be considered when designing dynamically loaded structures. 

In case of a mode shape and natural frequency extraction from experimental data the Frequency 

Response Function provides an adequate approach (Schwarz & Richardson, 1999). This is 

treated in §2.3.4 and a graphical representation of the operational deflection shape extraction 

from the FRF plot is given in Figure 3. Schwarz & Richardson (1999) further describe a mode 

as the shape of the structure that dominantly vibrates when forcing the structure near the natural 

frequency of the mode. 

 

 

Figure 3 Graphical representation of operational mode shapes extracted from the response plotted in the frequency domain for different 

degrees of freedom(DOF 1, 2 and 3) of a structure (Avitabile, 2001) 
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Modal analysis 

Spijkers et al. (2005) state that a vibration pattern can be decomposed into a set of individual 

vibration patterns that, when summed, lead to the total vibration pattern in time.  

 𝑥(𝑡) =  ∑ 𝑥̂𝑢𝑖(𝑡) = 𝑬𝑢(𝑡) 13 

In which: 

x̂  = Mode shape / Eigenvector for mode i  

ui(t)  = Modal coordinate time series corresponding to mode i 

 

This method assumes a displacement vector that can be split up into a matrix containing the 

Eigen vectors (modes) and a time dependent deflection vector. For this situation, the equation 

of motion looks as depicted in equation 14.  

 𝐸𝑇𝑀𝐸𝑢̈ + 𝐸𝑇𝐾𝐸𝑢 = 𝐸𝑇𝐹(𝑡) 14 

Spijkers et al. (2005) state that the system now only contains a set of fully uncoupled linear 

equations. This system can therefore be treated as different SDOF systems for which u(t) can 

be solved. Solving u(t) leads eventually to a solution of x(t). The vector u(t) refers to the modal 

coordinates of the system. Each solution of the equation is multiplied with the modes shape 

corresponding to that SDOF to enable a generation to nodal coordinates again. 

For this method it is crucial to explore which modes are acting in a vibration pattern of the 

system. They serve as an input and influence the outcome directly. Schwarz & 

Richardson(1999) state that a mode is defined by a natural frequency, damping and a mode 

shape.  

 Frequency Response Function 

Performing a Fourier Transformation on the time series for either deflections or forces results 

in a representation of the time series in the frequency domain. 

 𝑀𝑥̈(𝑡) + 𝐶𝑥̇(𝑡) + 𝐾𝑥(𝑡) = 𝐹(𝑡) 15 

 
𝑓(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 16 

 
𝑥̃(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 17 
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Substituting equations 15 and 16 into an equation of motion gives an steady state response, as 

depicted in equation 18 (Katsikadelis, 2020). This is a rather simple expression for the 

frequency dependent displacements (x(ω)). 

 
𝑥̃(𝜔) =

1

−𝜔2𝑀 + 𝑖𝜔𝐶 + 𝐾
𝑓(𝜔) 18 

The relation between the input (f(ω)) and the output (x(ω)) is called the Frequency Response 

Function(FRF) (Schwarz & Richardson, 1999). In case of a MDOF system the FRF matrix, 

denoted as H(ω) consists of entries that link the input at a certain point to the response of another 

point due to the impact at that particular point. For MDOF systems equation 18 can be rewritten 

to equation 19. 

 𝑋(𝜔) = 𝐻(𝜔)𝐹(𝜔) 19 

The sizes of the vectors and matrices depend on the number of Degrees of Freedom (DOF). 

Every DOF resembles an entry in the complex displacement vector X(ω). DOF’s can be linked 

to the locations of the measurements, called a spatial distribution (Schwarz & Richardson, 

1999). 

 

Figure 4 Representation on how to obtain a FRF via experiments (Schwarz & Richardson, 1999) 

The response of different DOF’s can easily be analysed by plotting the response of that DOF 

as a function of the frequency. Schwarz & Richardson(1999) describe that every peak in a 

spectral density plot of a DOF represents a mode. Local peaks refer to natural frequencies 

relating to the frequency observed at that peak.  
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Figure 5 Plot of response as a function of frequency for different DOF's of a system, which represent the different modes of that system 

(Schwarz & Richardson, 1999) 
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3 Theory – Experimental Modal Analysis 

The field of Experimental Modal Analysis (EMA) is developed to give insight in dynamic 

quantities such as mode shapes, natural frequencies, damping etc. of civil structures. EMA 

techniques provide an adequate solution. The inputs (forces) and outputs (response) are 

measured to find an optimal relationship between the two in the form of a Frequency Response 

Function. The different methods that are available will be treated in section 3.1, while two 

specific relevant methods are highlighted and treated in more depth in 3.2 and 3.3. The 

experiment executed in this thesis contain only data from the response of the structure, the Peak 

Picking method and Frequency Domain Decomposition are therefore relevant for this thesis 

and highlighted. 

3.1 Different methods of Experimental Modal Analysis 

Experimental modal analysis techniques can be subdivided into two main groups: 

1. Input – output methods 

2. Output only methods  

For both groups it holds that there are methods that can be analysed in the time or frequency 

domain.  

Maia & Silva (2001) describe several Input-Output methods. The list below gives an overview 

of the different EMA using Inputs and Outputs in the time domain. The overview is purely 

informational and will not be used in the remainder of this thesis.  

- ARMA model;   

- Complex exponential model;   

- Least squares complex exponential;   

- Polyreference complex exponential;  

- Ibrahim time domain method;  

Cunha & Caetano (2006) elaborate that input-Output methods in the frequency domain are 

mainly based on the Frequency Response Function. They state that depending on the number 

of degree of freedoms extra actions should be carried out to obtain a proper fit of the measured 

FRF and the theoretical FRF. Furthermore, SDOF system often do not need an extra analysis 

and can be fitted directly. According to Cunha & Caetano (2006) MDOF systems need different 

methods for the fit between the theoretical and measured FRF to hold for a large range of 

frequencies. They describe the rational fraction polynomial (RFP), complex exponential 

frequency domain (CEFD) and the Polyreference frequency domain (PRFD). 

Besides the Input-Output methods some output only modal analysis methods are developed as 

well. The huge advantage of these methods is that one only needs to measure the response of a 

structure whereas the input is assumed to be an excitation of a zero-mean Gaussian white 

noise(Cunha & Caetano, 2006). They can be divided into two groups in which the solution is 

either based in the time or frequency domain. The frequency domain methods are all relying on 

the fact that a response time series is translated to the frequency domain, after which the spectral 
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density is calculated, as can be observed from Figure 6(Cunha & Caetano, 2006). From this 

point several methods with each their own reasoning use these spectral densities as an input to 

calculate the modal parameters. Ewins (1984) and Ranieri & Fabbrocino (2014) state that the 

most basic method is the Peak Picking (PP) method, which is elaborated in §3.2. This method 

was later improved by means of a singular value decomposition (SVD) of the Power Spectral 

Density (PSD) functions, which is known as the Frequency Domain Decomposition (§3.3) from 

Brincker, Zhang & Andersen (2001). Figure 6 gives an overview of both the time and 

frequency-based techniques.  

 

Figure 6 An overview of Output-only modal identification methods. The scheme is divided into two parts: 1) Methods for translating a time 

series into the desired power spectral density or correlation functions and 2) methods that generate modal parameters.(Cunha & Caetano, 

2006) 

3.2 Output only Frequency domain method – Peak Picking 

Ranieri & Fabbrocino (2014) state that perhaps the most general output-only method in the field 

of Experimental Modal Analysis is the Peak Picking method (PP). Felber (1993) elaborates 

methods for extracting natural frequencies and mode shapes using this method. The reader is 

referred to his dissertation for a detailed elaboration of the method. Naderpour & Fakharian 

(2016) state that the PP assumes, as all the other output-only EMA’s, an input of Gaussian 

white-noise. They state that the method is based on the characteristic of the FRF that peaks in 

this plot are observed near natural frequencies. Also, when the force is assumed to be a Gaussian 

white noise input, the FFT of the data at a sensor location can be taken as an equivalent of the 

FRF of the data at that location.  

 

Figure 7 Peak Picking Method route for obtaining the natural frequencies from the real part of the FFT and the mode shapes from the 

imaginary part of the FFT. 
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The FRF of a system also holds information on the mode shapes. Zimmerman et al (2008) give 

a method for retrieving operational shapes by means of the PP method. Avitabile (2001) states 

that the FRF is a complex valued matrix from which the real values denote the natural 

frequencies, and the complex values can be used for the mode shape. He reasons that for every 

frequency that holds a peak in the FRF plot of the real values, the corresponding imaginary 

values give the amplitude of the mode shape of a particular sensor. This is best visualized in 

Figure 8 from Avitabile (2001). 

 

Figure 8 Visualization from Avitabile (2001) on how to retrieve the mode shapes from the imaginary part of the FRF plot of all sensors. 

3.3 Output only Frequency domain method – Frequency Domain 

Decomposition 

The PP method was improved by Brincker, Zhang, et al. (2001) by means of performing a SVD 

on the PSD of the decomposed SDOF systems. This method is the Frequency Domain 

Decomposition(FDD). Brincker, Zhang, et al. (2001) state that using this method may overcome 

some major drawbacks of the Peak Picking method: 

1. Natural frequencies can only be detected for well separated frequencies, this problem is 

tackled when using the Frequency Domain Decomposition. 

2. Damping estimation is highly uncertain in the Peak Picking method.  

3. The frequency resolution limits the estimates in the PP method 

Important to note is that this method also assumes a Gaussian white noise as input for the 

forcing. Results are exact when this input is achieved but might deviate when this is not the 

case. Nevertheless Brincker, Zhang, et al. (2001) state that the results are more precise using 

this method compared to the Peak Picking method in the situation when the assumptions are 

not met. 

Using the PP method one can detect solely well separated modes directly from the PSD easily. 

Brincker, Zhang, et al. (2001) comes with a method to tackle this drawback. The FDD method 

first generates a spectral density matrix by performing a FFT on the measured data. It provides 

an additional step to be able to extract closely neighbouring natural frequencies as well. 

Furthermore, the FDD approach gives mode shapes as a result, where the PP method solely 
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gives the operational deflection shapes. In the FDD method the spectral density matrix is 

subjected to a singular value decomposition (SVD) which decomposes the spectral matrix into 

several auto spectral matrices. These auto spectral matrices each represent a SDOF of the 

system. The problem is translated from a MDOF to a set of SDOF’s. The singular values of the 

SVD analysis are stored in the auto spectral matrices and the peaks in their plot represent the 

natural frequencies (see Figure 9). The left singular vectors, which is a residue of the SVD, hold 

information about the mode shapes. Left singular values belonging to a peak singular value give 

the corresponding mode shape of the system.   

  Theoretical basis and Assumptions 

Brincker, Zhang, et al. (2001) describe a theoretical basis of the FDD which is elaborated in 

this paragraph. They start with the fact that a PSD of the measured output can be written as in 

equation 20.  

 𝐺𝑦𝑦(𝑗𝜔) =  𝐻̅(𝑗𝜔)𝐺𝑥𝑥(𝑗𝜔)𝐻(𝑗𝜔)𝐻 20 

In which: 

Gyy  = PSD of the response 

Gxx  = PSD of the inputs 

HH  = Transpose of the FRF matrix. 

H   = Complex conjugate of the FRF matrix 

This equation can be simplified by taking the assumptions listed below. Assuming a forcing 

that consists of Gaussian white noise with a zero mean the PSD of the input can be simplified 

to a matrix which is proportional to the identity matrix. This can be done since the forcing inputs 

are Gaussian white noise. Assuming this will lead to equation 21 which states that the PSD of 

the outputs is proportional to the matrix H(jω)H(jω)H. This directly implies that the PSD of the 

response holds the modal parameters.  

 𝐺̃𝑦𝑦 ∝  𝐻̃(𝑗𝜔)𝐻̃(𝑗𝜔)𝐻 21 

Assumptions: 

1. Input forces should cover a broad spectrum of frequencies. 

2. Input forces should act over the total surface area.  

3. Input forces should be uncorrelated. 

4. Input forces should have similar amplitudes. 

Decomposition of the Response PSD 

The general idea is to decompose the PSD of the response into several spectral densities that 

each belong to a SDOF using a SVD. The starting points of this decomposition lies in the 

correlation of two vectors. Brincker & Zhang (2009) and the master thesis of Ogno (2013) 

describe a method for the decomposition of the spectral matrix using a uncorrelated input. This 
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is elaborated in equations 22 – 26. The correlation matrix Cuu is rewritten to a Power Spectral 

Density matrix using the relations below. Using the modal coordinates u(t) = Φz(t) this leads 

to a relation as given in eq. 22 - 24. 

 𝑪𝑢𝑢(𝜏) = 𝐸{𝒖(𝑡)𝒖(𝑡 − 𝜏)𝑇} 22 

 →  𝑪𝑢𝑢(𝜏) = Φ𝐸{𝒛(𝑡)𝒛(𝑡 − 𝜏)𝑇}Φ𝑇 23 

 →  𝑪𝑢𝑢(𝜏) = Φ𝐶𝑧𝑧(𝜏)Φ𝑇 24 

In which Czz is the correlation of the response vectors in modal coordinates. Performing a FFT 

on the correlation matrix one can find a PSD of the responses, which leads to a relation as given 

eq. 25. The correlation and PSD are linked to each other via the Wiener-Khinchin Theory. 

 𝑆̃𝑢𝑢(𝜔) =  Φ𝑆̃𝑧𝑧(𝜔)Φ𝑇 25 

The decomposition is finalized by taking the SVD of the PSD Suu(ω) and relate the outcome to 

equation 25. Equation 26 gives the final relationship that denotes the decomposition of the PSD 

by performing a SVD.  

 𝑆̃𝑢𝑢(𝜔) ∝ 𝐻̃(𝜔)𝐻̃(𝜔)𝐻 = 𝑈Σ𝑈𝑇 26 

In which: 

U = Matrix holding the left singular vectors  

Σ = Diagonal matrix holding the singular values  

 

When an SVD is performed for every individual frequency in a dataset the singular values and 

left singular vectors are stored in a matrix for which each entry represent a frequency.  

Brincker, Zhang, et al. (2001) use the output of the SVD as an identification tool for the modal 

parameters. Depending on the rank of Suu one might use one or multiple rows of the singular 

value matrix. Specific peaks of this plot correspond to the natural frequencies. Using a matrix 

that has a rank of 2 or higher, one can find closely located modes by taking multiple rows of 

the singular value matrix into account. 

The mode shapes are found by examining the corresponding column of the left singular value 

matrix (Brincker, Zhang, et al., 2001).  

 𝑈𝑖,1 = 𝜙̂𝑖 27 

Brincker, Zhang, et al. (2001) state that in case of closely situated modes one should take the 

second column of the left singular value matrix into account as well. They write that the first 
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vector is a good measure for the strongest mode in the region while the second vector denotes 

the mode shape of the second mode.  

 

 

Figure 9 Plot of the singular value matrix obtained via a SVD on the PSD of the responses. The 4th and 5th mode are closely situated to 

each other which can be seen in the peak of the second singular vector row (Brincker, Zhang, et al., 2001) 

 Implementation of the FDD algorithm  

Based on Brincker, Zhang, et al. (2001) the FDD algorithm can be divided into several parts 

that form the total algorithm. Every part is discussed in the coming paragraphs. The main topics 

that can be divided are: 

1. Generate a dataset that consists of time series of every measurement location. 

2. Segmentation of the dataset and perform Fast Fourier Transformation into the frequency 

domain. 

3. Singular Value Decomposition of the segmented dataset. 

4. Plot Singular values and detect natural frequencies.  

5. Plot corresponding left singular matrix to obtain the mode shapes. 

Time series 

Following the FDD method of Brincker, Zhang, et al. (2001) the time series that act as input of 

the experimental modal analysis follow from experiments that are executed. They should at 

least fulfil the requirement that loading is white noise (Brincker, Zhang, et al., 2001). 

The time series as an input has the form of a matrix d [m x n] with on the vertical entries the 

different measurement locations and on the horizontal entries the time series. 
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𝑑 =  [

𝑑1,𝑡0 ⋯ 𝑑1,𝑡𝑛

⋮ ⋱ ⋮
𝑑𝑛,𝑡0 ⋯ 𝑑𝑛,𝑡𝑛

] 

Segmentation and Fast Fourier Transform 

A FFT is performed to transform the time series into the frequency domain from which the 

remained of the algorithm will act. Segmentation of the data can be useful to increase the rank 

of the PSD Sdd. Brincker et al. (2003) describe that a dataset should contain multiple forcing as 

input. This can be obtained by merging multiple different experimental datasets as segments. 

The new Sdd is now obtained by a summation of the averaged segments, multiplied by their 

conjugate (Lourens, 2020). Furthermore Lay (2012) lay denotes that the rank determines the 

number of non-zero singular values. Incorporating equation 28 leads to an increase in the rank 

of the matrix(Lourens, 2020). 

 𝑆𝑑𝑑 = 𝑑̃1(𝜔)𝑑̃1
𝐻(𝜔) + ⋯ + 𝑑̃𝑛(𝜔)𝑑̃𝑛

𝐻(𝜔)  28 

Singular Value Decomposition and results 

Brincker, Zhang, et al. (2001) elaborate the finishing part of the FDD algorithm focuses on the 

singular value decomposition of the spectral density matrix. They state that the output of this 

decomposition is a diagonal matrix containing the singular values of each measurement location 

of each point in the frequency domain, leading to a [m x m x k] matrix. In which m is the 

number of measurement points in space and k is the number of measurement points in the 

frequency domain. The left singular vector U is also a result of the decomposition and exists of 

vectors representing the modal shapes for every singular vector per point in the frequency 

domain. U is therefore a [m x m x k] matrix as well. Where the first column is associated with 

the mode shape of the first singular vector from S and so on. A graphical representation of the 

singular value plot is given in Figure 10. 

 

Figure 10 Graphical representation of singular values as an outcome of the frequency domain decomposition 
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3.4 Modal Assurance Criterion (MAC) 

Pastor et al. (2012) state that the MAC is one of the tools that is often used to quantitatively 

compare two modes. High MAC values correspond to modes that are much alike while low 

MAC values denote that examined modes are different from each other. It can be used to 

identify different modes from one dataset to examine whether all the detected mode shapes 

belong to different modes, whereas it can also be used as a tool to examine whether the modes 

that are found from a dataset correspond to the expected modes from other models. 

The MAC is calculated by comparing two vectors and take their normalized scalar product 

(Pastor et al., 2012). This yields into a formulation as given in equation 29.  

 
𝑀𝐴𝐶(𝐴, 𝐵) =  

|{𝜙𝐴}𝑇{𝜙𝐵}|2

({𝜙𝐴}𝑇{𝜙𝐴})({𝜙𝐵}𝑇{𝜙𝐵}) 
 29 

In which: 

φA  = Mode shape vector from FDD 

φB  = Mode shape vector from FEM or other model 

MAC(A,B)  = Modal assurance criterion value for mode shape vectors A and B  

In case of orthogonal modes a MAC matrix has solely diagonal values. This will be the case for 

individual modes as well. Figure 11 gives a representation of a MAC matrix that is a result of 

one of the experimental analyses. It can be seen clearly that a diagonal matrix is obtained, 

meaning that the modes are orthogonal.  

 

Figure 11 Example of a MAC matrix obtained from the experiments. Yellow squares denote high MAC values, Orthogonal matrices are 

marked with red circles and denote that modes correspond to each other. 
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4 Theory - Semi-analytical model (Tieleman et al., 2020) 

Tieleman et al (2020) derived a semi-analytical to predict gate vibrations in a fluid, which will 

be treated here. The problem is split up into a structural part and a fluid part that are each treated 

separately, after which a coupling is made using interface conditions. Figure 12 gives an 

overview of the examined problem. 

 

Figure 12 Problem under consideration (Tieleman et al, 2020) 

The derivation is based on the assumption that the vertical thin plate is homogeneous and 

isotropic. The result is a 3-dimensional solution for the bending gate vibrations. the 

corresponding equations of motion for both the structure and the fluid can be found in appendix 

B.  

Tieleman et al. (2020) use the technique of separation of variables for both the structural and 

fluid part for both the x- and z-direction. This leads to the following expansions in the frequency 

domain. In which Wx,k denotes the plate modes and Φ the fluid modes.  

 
𝑤̃ = ∑ 𝐴𝑘(𝜔)𝑊𝑥,𝑘(𝑥, 𝑧)

∞

𝑘=1
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𝜙̃𝐼(𝑥, 𝑦, 𝑧, 𝜔) = ∑ (𝐵𝑝
−(𝜔)𝑒−𝑖𝑘𝑦,𝑝

𝐼 (𝐿𝑦−𝑦) + 𝐵𝑝
+(𝜔)𝑒−𝑖𝑘𝑦,𝑝

𝐼 𝑦) Φ𝑝
I (𝑥, 𝑧)

∞

𝑝=1
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𝜙̃𝐼𝐼(𝑥, 𝑦, 𝑧, 𝜔) = ∑ (𝐶𝑟

+(𝜔)𝑒−𝑖𝑘𝑦,𝑟
𝐼𝐼 (𝐿𝑦−𝑦)) Φ𝑟

II(𝑥, 𝑧)

∞

𝑟=1
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𝜙̃𝐼𝐼𝐼(𝑥, 𝑦, 𝑧, 𝜔) = ∑ (𝐷𝑡

+(𝜔)𝑒−𝑖𝑘𝑦,𝑡
𝐼𝐼𝐼(−𝑦)) Φ𝑡

III(𝑥, 𝑧)

∞

𝑟=1

 33 

Tieleman et al. (2020) describe a solution technique that makes use of interface conditions 

between the different regions. The result is a set of three equations that each has an unknown 

modal coefficient, which relates to each of the three regions. The unknowns that are present in 

this problem definition are Ak, Bp
-, Bp

+, Cr
+, Dt

+. 

Applying the first interface conditions leads to two equations as given in equation 34 & 35. The 

details about the calculation are not treated in this report. The first interface conditions enhance 

the interface between fluid regions 1 and 3 with the gate. Tieleman et al. (2020) give the 

following relations: 
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35 

 

 

 

 

 

 

The second interface conditions are applied on the fluid regions I and II and, as was the case 

for the first method, orthogonality on the fluid modes. The result is given in equation 36.  

 

 

36 

 

 

 

 

 

 

 

 

 

Tieleman et al. (2020) state that solving all equations at once, opens the opportunity to solve 

the unknowns that are left in the equations. The system of equation can be solved numerically 

with a truncation of modes that are considered.  

Figure 13 gives a roadmap to obtain a solution that fully depends on the structural modes only.  
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Figure 13 Roadmap for deflections for immersed vertical gate (Tieleman et al, 2019) 
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5 Experimental tests 

This chapter focusses on the different experiments that are executed. Figure 14 gives a 

schematic workflow which ultimately leads to a desired output of the different tests that are 

executed. The structure of this chapter is such that all experiments and their set up are briefly 

explained. 

 

Figure 14 Workflow of experiments to derive at required data for validation of the semi-analytical model 

The tests can be divided into three experiments: 

- Dry Modal Analysis test 

- Wet Modal Analysis tests in submerged conditions and  

- Flume tests with both regular and irregular wave impacts.  

The desired output is a time series of strains and accelerations for different points on the scaled 

model. The goal of these experiments is to validate the SA model derived by Tieleman et al. 

(2020) for assessing dynamic response of slender flood gates. Using the dry and wet modal 

analysis gives insight in the modal parameters of the structure, while the wave experiments give 

insight in the modal parameters as well as time series. The latter is not treated in this thesis, but 

the experiments are used for modal analysis purposes as well. 

5.1 Scaled model 

The scaled model enhances two parts: 1) The flume and 2) the scaled model gate. Both will be 

treated in detail in this paragraph.  

 Flume  

The flume is located at the faculty of Civil Engineering at the Technical University of Delft. It 

is housed at the Stevin lab 3.  

The flume has the following dimensions: 

- Width   = 0.8 m  

- Depth  = 1.0 m  

- Length  = 42.0 m 

Mind that the height of the flume is not the same as the water depth that can be reached. The 

height is somewhat larger. A wave maker that is installed in the flume is able to generate waves 
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for experimental studies, such as wave impacts and/or dynamic response of structures due to 

wave impacts.  

 

Figure 15 Schematic side(Right) and front(Left) of the flume at the TU Delft. The locations of the Wave maker (Right) and Scaled model gate 

(Left) given. 

Multiple experiments are performed using a set of both regular and irregular waves. An 

overview of the experiments and the desired outcome is treated in §5.2.3.  

 Measurement devices 

Strain gauges and accelerometers are used on both gates to obtain a time series that contains 

both strains and accelerations. Using two datasets enhances the reliability of the outcome by 

validation of the outcome by using both datasets. Another reason for using both devices is that 

for the Reinforced Gate the strains in the field between the stiffeners are predicted to be rather 

low, based on the SA model.  

Measurement device  Measuring frequency 

Strain gauge 5000-10.000 Hz 

Accelerometer 5000-10.000 Hz 

Table 2 Overview of measurement devices and their sampling frequency 

To assess the right modes, it is crucial that the devices are installed on the right locations on the 

gate. Chapter 6 elaborates the procedure of designing the set up plan. Figure 28 gives an 

overview of the measurement device plans of both the Reinforced and the Solid Plates.  

 Scaled model gate 

Two types of gates are examined to guarantee a broad base for the validation of the semi-

analytical model:  

- Solid plate  

- Reinforced plate 

The solid plate acts as a basic configuration and the Reinforced plate represents a more realistic 

gate design. The latter is designed in such a way that during a wave impact, multiple modes are 

triggered. Figure 16 gives an overview of the gates including the location of the load cells and 

the pressure sensors. The systems’ dynamic characteristics such as modes and natural 

frequencies are elaborated in §6.1. This paragraph also mentions the expected modes that are 

triggered for both gates, based on the SA analysis. The solid plate is expected to have most 

energy in mode 1, while the Reinforced Plate has most energy in mode 1,2 and 3. The largest 
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natural frequencies observed are 216 Hz (dry) and 132 Hz (wet). The measurement frequency 

will take this into consideration as well, where the Nyquist frequency determines the largest 

possible frequency that can be measured.   

 

Figure 16 Schematic front view of the solid and reinforced gates including dimensions and locations of pressure sensors and load cells (top) 

and the location of the pressure sensors in the overhang(bottom). 

5.2 Experiments 

Experiments are executed in order to facilitate an experimental modal analysis in the form of a 

Frequency Domain Decomposition. The experiments serve different purposes which are 

visualized in Figure 17. The different tests that are executed are: 

- Dry hammer tests   - Dry Modal Analysis (§5.2.1) 

- Wet hammer tests   - Wet Modal Analysis (§5.2.2)  

- Regular wave impacts - Wet Modal Analysis (§5.2.3) 

A total overview of the executed experiments including their experiment ID is given in 

appendix E. 
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Figure 17 Workflow for different experiments and the use of their results in the different types of analyses 

 Hammer test in dry conditions 

Dry hammer tests are executed in the situation where the gate in mounted on the concrete block, 

which provides stabilization of the total system, without the presence of water. Using an impact 

hammer, random points of the gate are subjected to an impulse. Dry hammer tests are performed 

for multiple reasons: 

1. Validation of the measurement plan  

2. Obtaining the dry structural modes of the scaled models for input in SA model 

3. Obtaining the dry natural frequencies of the scaled models for input in SA model. 

The structural dynamic characteristics of the system that are retrieved at these tests serve as a 

first validation for the semi-analytical model. The SA model uses the dry characteristics as an 

input, which are therefore relevant to know for the two different scale models.  

Besides a dry modal analysis, single hammer impacts are also performed for eight different 

points on the scaled models. By analysing these datasets the damping of the system can be 

retrieved. The different locations of the single impacts are elaborated in Figure 18. 

 

Figure 18 Locations of single hammer impacts 
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 Hammer test in submerged conditions 

Goal of the submerged hammer tests is to retrieve all wet natural frequencies and mode shapes 

of the gate, which are compared to the SA prediction. This serves as a validation step for the 

SA model in submerged conditions. These experiments give insight in submerged modal shapes 

and corresponding natural frequencies. These shapes and frequencies are then compared to the 

prediction of the semi-analytical model to validate the performance of the model. 

Gate  Test ID Test number Waterlevel  Frequency 

Solid plate Wet Modal Analysis 004-006 0.30 m 5000 Hz 

Solid plate Wet Modal Analysis 007-009 0.40 m 5000 Hz 

Solid plate  Wet Modal Analysis 010-012 0.50 m 5000 Hz 

Solid plate Wet Modal Analysis 013 0.60 m 5000 Hz 

Reinforced plate  Wet Modal Analysis 001-003 0.30 m  5000 Hz 

Reinforced plate  Wet Modal Analysis 006-011 0.40 m  5000 Hz 

Reinforced plate  Wet Modal Analysis 012-017 0.50 m 5000 Hz 

Reinforced plate  Wet Modal Analysis 019-024 0.56 m 5000 Hz 

Reinforced plate  Wet Modal Analysis 028-030 & 034-036 0.60 m 5000 Hz 

Reinforced plate  Wet Modal Analysis 031-033 0.63 m 5000 Hz 

Table 3 Overview of Wet Modal Analysis experiments and corresponding water levels 

 Flume tests under wave loading  

To simulate standing wave impacts, regular waves are generated by a wave maker. The results 

of these experiments will serve as back up for the situation that submerged hammer tests are 

not sufficient. Regular wave tests consist of 100 and were executed for three water levels: 1) 

0.56 m, 2) 0.60 m and 3) 0.63 m. Table 4 gives an overview of the wave conditions during the 

different wave tests. The coding also includes the different water levels for which the 

experiments is executed, this number is replaced by ## in Table 4.  

Test ID  Wave height  

(H0) 

Wave period 

(T0) 

Wave length 

(L0) 

Skewness 

(S0) 

Water level 

[m] 

AS##R 0.06 m  1.30 s 2.64 m 0.023 0.56, 0.60, 0.63 

BS##R 0.08 m  1.60 s 3.99 m 0.020 0.56, 0.60, 0.63 

CS##R 0.10 m 1.30 s 2.64 m 0.038 0.56, 0.60, 0.63 

DS##R 0.10 m 1.60 s 3.99 m 0.025 0.56, 0.60, 0.63 

ES##R 0.10 m 2.00 s 6.24 m 0.016 0.56, 0.60, 0.63 

Table 4 Wave conditions for different Regular Wave tests 

5.3 Data processing  

Raw datasets are retrieved from the experiments described in §5.2 - §5.2.3. This data is 

processed in order to work with zero-mean and calibrated datasets that represent real values for 

strains and accelerations rather than voltages. Both measurement devices are treated in this 

paragraph. All data is collected and processed in the MP3 software package. This program is 

developed for the collecting data from strain gauges during experiments. It is also possible to 

collect data from other measurement devices and store them in large datafiles. MP3 enables the 
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user to either retrieve raw data or filtered data in .csv files. Filtered data is already calibrated 

whereas raw data contains solely voltages.   

 Processing of strain gauges 

Strain gauges are delivered with standard calibration and scaling factors. The data coming from 

these gauges is therefore already filtered in the output files. The MP3 program is specially 

designed for these measurement sensors. Processing the strain data therefore only consists of 

averaging the dataset to a zero-mean as well as detrending the dataset using Matlab. Figure 19 

gives an example from a raw dataset obtained during the tests and the same dataset after 

processing.  

 

Figure 19 An example of a processed data set for strain gauges. Left: raw data, right: processed data (zero-mean and detrend) 

 Processing of accelerometers 

Acceleration data is collected as raw data and contains voltages only. Processing these voltages 

to accelerations comprises several steps: 

1. Calibration factors of the accelerometers and their amplifiers 

2. Correction factors for possible inclination angles 

3. Averaging to zero mean values and detrending.  

Calibration factors are obtained via conventional methods. The voltages for both +1g and -1g 

are measured for every individual accelerometer-amplifier pair in the direction perpendicular 

to the accelerometer itself. These datasets are then used to calculate acceleration per voltage.  

 

𝑓𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 =
9.81

𝑚
𝑠2 − (−9.81

𝑚
𝑠2)

𝑉+1𝑔 − 𝑉−1𝑔
   

37 
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Figure 20 Accelerometer position for +1g and -1g voltage retrieval during calibration 

Possible tilt correction of the accelerometers is included in the data processing as well. The 

voltage for 0 g is taken as the average voltage from the calibration. The actual voltage at the 

start of each measurement is taken to calculate the inclination angle of each accelerometer. 

Figure 21 gives a visual impression on how the correction factor for the inclination is calculated. 

 

Figure 21 Visual presentation of geometry of an inclined accelerometer with the measured value and the actual value of the acceleration. 

 
𝛼𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =

𝛥𝛼

𝛥𝑉
∗ (𝑉0𝑔 − 𝑉𝑡=0)  ;

𝛥𝛼

𝛥𝑉
=  

𝛼+1𝑔 − 𝛼−1𝑔

𝑉+1𝑔 − 𝑉−1𝑔
  38 

 𝑓𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 1/cos(𝛼𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 39 

In which dα/dV is 180 degrees divided by the difference in voltage for 1g and -1g. Multiplying 

this value by the difference in voltage measured and the 0 g voltage, one can obtain the 

inclination angle of the accelerometer. The correction factor is then obtained via the cosinus of 

that inclination angle. Detrending the data and taking the zero-mean of the total dataset and 

subtract that from every measurement point gives the processed dataset.  
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Figure 22 An example of a processed data set for accelerometers. Left: raw data, right: processed data (calibrated, inclination correction, 

zero-mean and detrend) 
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6 Measurement device plan  

To obtain reliable results a measurement device plan is designed. The plan should be designed 

such that all the possible modes, that are acting during the experimental tests, are detected. This 

chapter will focus on the design process, with first a system analysis of the two plates to predict 

which modes will act, including the mode shapes. The predicted modes will lead to different 

potential measurements plans which will be tested on their performance, the results will 

eventually lead to an optimal measurement plan. This plan is elaborated in §6.3. 

6.1 System research  

System identification of the Solid and Reinforced plate focusses on two main modal subjects 

for different situations. This results in a set of natural frequencies and modes that should be 

detected by the measurement device plan. The three main modal subjects are: 

1. Natural frequencies  

2. Mode shapes 

3. Mode contribution to the total response 

This paragraph is divided into subparagraphs that focus on these dynamic quantities. 

 Natural frequencies  

Both a dry and immersed analysis are executed in the SA model and a total of 8 natural 

frequencies for both situations are obtained. Table 5 and Table 6 give an overview of the values 

of these frequencies.  

Table 5 Frequencies of dry modes computed by semi-analytical model 

Solid Plate f1 f2 f3 f4 f5 f6 f7 f8 

Dry 34.5 74.1 87.7 129.5 162.3 167.6 210.6 216.1 

Wet (0.6 m) 14.1 35.4 43.3 70.7 90.7 94 124.9 131.8 

Table 6 Frequencies of wet modes computed by semi-analytical model 

Reinforced Plate f1 f2 f3 f4 f5 f6 f7 f8 

Dry 84.3 95.1 135.9 169.9 183.8 207.9 216 - 

Wet (0.6 m) 23.2 35.1 57.3 60 75.5 95.7 107.9 - 

 Modes 

The mode shapes for both the solid and reinforced plate are given in Figure 23. Both 

symmetrical and asymmetrical modes are detected, which indicates that all modes are triggered. 
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Figure 23 Total overview of all modes (dry & wet) for both the solid and reinforced plate. Wet modes are taken at a water level of 0.6 m. 

 Mode contribution 

With the SA model, the contribution of each mode to a time series and/or maximum deflection 

field can be calculated. This information is relevant in order to validate whether the high 

contribution modes are identified in the analyses of chapter 7. Figure 24 gives an overview of 

the mode contribution for both the Solid Plate and the Reinforced Plate. It can be observed that 

for the Solid Plate most energy is put into the first mode. The Reinforced Plate divides most of 

the energy input in the first three modes (no. 1, 2 and 3). 

 

Figure 24 Mode contribution of the maxima of all timesteps. Left: Solid Plate, right: Reinforced Plate. 
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6.2 Approach design measurement plan  

Several steps have been taken to obtain an optimal measurement plan, as is described in §6.3. 

The designs were limited to 25 strain gauges for every plate and 12 accelerometers. The list 

below gives an overview of the steps that were taken: 

1. Locate the nodes and antinodes of the important modes.  

Sensors are preferably located on these locations in order to guarantee a clear mode 

identification. 

2. Determine the number of strain gauges and accelerometers for every plate. 

The number of strain gauges and/or accelerometers depends on the number of nodes 

and anti-nodes in the plate.  

3. Test several set ups with synthetic data from the SA model.  

4. Compare the results of the FDD and SA for different set ups.  

The Solid Plate has a gentle shape for both the strain and deflection field of all modes. Locating 

both accelerometers and strain gauges on the nodes as well as on the anti-nodes of the 

corresponding fields already gives a first impression on the number of devices that are needed. 

The same holds for the Reinforced Plate. After determining the potential locations of each 

measurement device, the exact locations were determined by analysing synthetic data form the 

SA model and compare the outcome with that of the FDD for different set ups. 

 

Figure 25 Workflow for obtaining error of potential measurement device plans. 

Every potential set up was tested on its performance using synthetic data from the SA model. 

This served two goals: 

1. Testing the performance of the set ups using the absolute error between the synthetic 

data (FDD algorithm) and SA result. 

2. Testing the correctness of implementation of the FDD algorithm. 

Figure 26 gives the results from one of the examined set ups for the Solid Plate, while Figure 

27 gives results for the Reinforced Plate. Both figures consist of the first four modes of the gate, 

with 1) Strain or acceleration field from the synthetic data in combination with a FDD analysis, 

2) Strain or acceleration field from the SA model and 3) the absolute error between the two. 

The value of the error is given in Table 7.  
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Figure 26 Deflection and strain modes for the Solid Plate calculated using the SA model and FDD analysis using synthetic SA time series. 

Every mode consists of three figures: 1) FDD mode from synthetic SA data, 2) Predicted mode from the SA model and 3) The error between 

the two for every data point. Blue denotes small amplitudes(negative) while yellow denotes large amplitudes(positive) 

 

Figure 27 Deflection and strain modes for the Reinforced Plate calculated using the SA model and FDD analysis using synthetic SA time 

series. Every mode consists of three figures: 1) FDD mode from synthetic SA data, 2) Predicted mode from the SA model and 3) The error 

between the two for every data point. 

Solid Plate  Mode 1 Mode 2  Mode 3  Mode 4  Mode 5 

Strain Set up 1 204 173 430 184 415 

Strain Set up 5 209 205 487 250 423 

Reinforced Plate       

Strain Set up 1 352 525 641 661 202 

Strain Set up 4 370 472 649 712 212 

Table 7 Absolute errors per strain mode for different set ups. 

6.3 Optimal measurement plan 

The most optimal plan is given in Figure 28. Regarding the reinforced plate, it is useful to 

measure the strains on the stiffeners as well. These locations give relatively large strains which 

might be measured easily. 
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Figure 28 Measurement set up for strain gauges and accelerometers for both the Reinforced and Solid plates 

 Identified frequencies  

Both set ups were analysed by means of synthetic data from the SA model and afterwards the 

results were compared to each other. The frequencies of both analyses should in principle be 

the same if both methods work accordingly. Graph 1 gives an overview of both the frequencies 

from the SA model as well as from the EMA for both the dry and wet situation and the 

Reinforced (RP) and Solid Plate (SP). The dots denoted the prediction of natural frequencies 

by the SA model while the crosses are the identified values using the FDD algorithm. The graph 

shows clearly that the EMA is able to detect natural frequencies in a high level of detail. 

 

Graph 1 Overview of the first 5 natural frequencies detected by the EMA together with the results from the SA for both the solid and reinforced 

plate in dry and wet conditions. 

 Identified modes  

The corresponding detected modes for the first five frequencies show a good correspondence 

with the outcome of the Semi-Analytical model in Figure 23. Both the natural frequencies and 

modal shapes are predicted correctly. The results for the mode shapes of the Solid Plate are 

visualized in Figure 29. 
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Figure 29 Overview of the first five detected modes of the Solid Plate from the Experimental Modal Analysis. They show good 

correspondence with the outcome of the Semi-Analytical model. 

6.4 Conclusion 

The measurement device plan was designed by taking several principles into consideration: 

1. Strains/Acceleration should be large enough to be measured. 

2. Strain gauges should also detect zero-crossings to give a well interpolated strain field 

of the modes. 

3. Strain gauges and accelerometers should at least be able to detect the first three modes 

for the Solid Plate and the first five modes for the Reinforced Plate. 

4. The required sensors should meet the number of sensors available, taking some spare 

ones into consideration. 

The device plan was designed by means of the above 4 principles together with a synthetic 

dataset obtained from the SA model.  

An optimal measurement plan was found for both plates. It was directly observed that for the 

Reinforced Plate, although smaller, the strain gauges should be placed in x-direction rather than 

z-direction. The strain field of the strains in z-direction had many local peaks that could only 

be detected with a large number of sensors. The strain field of the strains in x-direction was 

more gentile and had mild slopes and relatively small number of local peaks. The Solid Plate 

was easier to measure in all modes observed, due to the absence of local peaks.  
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Figure 30 Resonance shapes for mode 3 and 4 in terms of strains in the z-direction. Local peaks are observed, especially at the stiffeners. 

 

Figure 31 Resonance shapes for mode 3 and 4 in terms of strains in the z-direction. Local peaks are limited to the stiffeners only. 

Close to the boundaries in x-direction, large peaks were observed in the strain field, which had 

to be grabbed by adding a set of strain gauges near these boundaries. This was not the case for 

the accelerometers, which therefore only needed to be placed on relevant nodes and antinodes.  

Several measurement plans were analysed using the synthetic time series of the SA model. The 

outcome for different modes were compared with the prediction of the SA model and the 

smallest error was taken as the most optimal set up. A hard condition was that at least the first 

five modes should be detected. The final design for the Solid Plate consisted of 20 strain gauges 

and 12 accelerometers. The Reinforced Plate was equipped with 25 strain gauges and 12 

accelerometers. The optimal measurement device plans, following from of these analyses, are 

given in Figure 28.  
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7 Modal analysis 

This chapter focusses on the analyses for both the dry and wet modes and frequencies. Both 

will be treated extensively for the Solid Plate and the Reinforced Plate. First an approach of the 

different analyses is treated after which an overview of the data will be given, including the 

names of the datasets. Thereafter, the dry modes and wet modes for both the Solid Plate and 

Reinforced Plate are treated. This serves as a basis for the comparison between the identified 

modes and frequencies with the SA model. The chapter will be finalized with a conclusion and 

a reflection on the results. 

7.1 Approach of validation analyses 

The types of analyses serve several goals for validating the SA model. The SA model uses dry 

modes as input for the calculation of the submerged modes and corresponding response. By 

default, the dry modes are generated by a FEM software package such as ANSYS. In this light 

a dry modal analysis is performed in order to verify the dry modes. This serves several goals: 

- The set of input dry modes can be adjusted in order to validate the SA model for the 

identified modes.  

- Input of the modal shapes that are found can be used to represent boundary conditions. 

The first point uses an assumption that the FEM modes that are not identified, do not play a role 

in the response of the structure. This is a large assumption and should be treated as such. 

The wet modal analysis experiments serve the need to validate the results from the SA model. 

The mode shapes are identified by means of the FDD algorithm while using the experimental 

data from §7.2. Several wet modal analyses are used for a reliable validation of the mode 

prediction by the SA model. These analyses all relate to different input modes of the SA model. 

Figure 32 gives an overview of the different types of analysis and their workflow. The following 

paragraphs elaborate the results retrieved from the different analyses: 

- §7.4.2: FEM modes (Default) 

- §7.4.3: Adjusted set of FEM modes with the modes that are identified during the dry 

modal experiments. This set had updated frequencies that corresponds to the results of 

these experiments but take the FEM mode shapes into account. 

- §7.4.4: The dry modal shapes and natural frequencies obtained from the dry modal 

experiments. 

Regarding bullet two, using a reduced updated set of FEM modes, normal practice prescribes 

to calibrate the FEM model in order to represent the real situation. This is out of the scope of 

this master thesis. Instead, the identified FEM modes are used in combination with updated 

natural frequencies.  

All analyses are subjected to a MAC analysis to give a scientific basis on the identified modes. 

The performance in terms of natural frequencies is expressed in percentual deviation of the 
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identified modes with respect to the SA predictions. As an additional step the cumulative error 

is calculated to quantify. 

 

Figure 32 Overview of different analyses. 

7.2 Datasets  

The datasets that are used for the Solid Plate include the dry and wet modal experiments. The 

Reinforced plate also includes Regular Wave Impact datasets due to its potentially high 

damping, which makes it difficult to detect modes with a relatively small impulse during 

hammer impacts. Table 8 gives an overview of the datasets that are used, including the 

measurement device that was observed. Important to note is that all datasets that are executed 

under a water level, are merged into a large dataset. This increases the accuracy of the 

experiments for the FDD analysis. All data is processed using the techniques as described in 

§5.3. 

Plate  
Water 

Level [m] 
Experiment ID ID included Device  

Solid Plate  3_Dry_Modal_Analysis_008  AM 

Solid Plate  3_Dry_Modal_Analysis_009  AM 

Solid Plate  3_Dry_Modal_Analysis_010  AM 

Solid Plate 0.3 5_Wet_Modal_Analysis_004 – 006 4, 5, 6 AM 

Solid Plate 0.4 5_Wet_Modal_Analysis_007 – 009  7, 8, 9 AM 

Solid Plate 0.5 5_Wet_Modal_Analysis_010 – 012  10, 11, 12 AM 

Solid Plate 0.6 5_Wet_Modal_Analysis_013 13 AM 

Solid Plate 0.56 5_Wet_Modal_Analysis_016 – 018  16, 17, 18 AM 

Reinforced Plate  3_Dry_Modal_Analysis_033  AM 

Reinforced Plate  3_Dry_Modal_Analysis_034  AM 

Reinforced Plate  3_Dry_Modal_Analysis_035  AM 

Reinforced Plate 0.3 5_Wet_Modal_Analysis_001 – 003  1, 2, 3 AM & SG 
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Plate  
Water 

Level [m] 
Experiment ID ID included Device  

Reinforced Plate 0.4 5_Wet_Modal_Analysis_005 – 010  5, 6, 7, 8, 9, 10 AM & SG 

Reinforced Plate 0.5 5_Wet_Modal_Analysis_012 – 017  12, 13, 14, 15, 16, 17 AM & SG 

Reinforced Plate 0.56 5_Wet_Modal_Analysis_019 – 027  19, 20, 21, 25, 26, 27 AM & SG 

Reinforced Plate 0.6 5_Wet_Modal_Analysis_028 – 036  28, 29, 30, 34, 35, 36 AM & SG 

Reinforced Plate 0.56 6_Regular_Wave_Impact_005 – 009  5, 6, 7, 8, 9  AM 

Reinforced Plate 0.6 6_Regular_Wave_Impact_010 – 014  10, 11, 12, 13, 14 AM 

Table 8 Overview of different experiments including their water levels and gate type. The last column denotes the measurement device from 

which the data was taken: Accelerometers (AM)  and/or Strain gauges (SG). 

7.3 Identified modes  

The merged datasets are analysed using the FDD method, from which several mode shapes and 

natural frequencies are retrieved. The unique mode shapes are then obtained via a MAC 

analysis, for which high values (close to one) mean high correspondence between two modes. 

First the dry modes of the Solid and Reinforced Plate are treated, after which the wet modes of 

both plates are elaborated.  

 Identified dry modes 

As readily discussed in paragraph 7.1 the identified dry modes enable to execute different types 

of analyses. The modes that are detected are used for input of the SA model in paragraph 7.4.3 

and 7.4.4. The modal shapes are obtained by interpolating the eigenvectors from the FDD 

analysis on a grid that represents the plate.  

Solid Plate 

The dry modes of the solid plate are obtained using the datasets 3_Dry_Modal_Analysis_008, 

009 & 010 (see Table 8). The singular values show clear peaks, indicating modes at the 

corresponding frequencies. Figure 33 gives the singular value plot for dataset 

3_Dry_Modal_Analysis_008. The modes are checked on their uniqueness using the MAC 

matrix. A diagonal matrix gives an impression on the fact that all modes are unique.  
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Figure 33 Singular Value Plot for dry modal analysis of the Solid Plate 

 

Figure 34 MAC matrices for identified dry modes of the Solid Plate. The bar at the right side of the diagrams explains the colour coding of 

the MAC values. Yellow depicts a MAC value of 1, blue a MAC value of 0. 

Figure 34 gives the MAC matrices comparing the identified modes with each other. The 

matrices are showing a clear diagonal matrix for all datasets. All dry modes that are identified 

can be classified as unique. Table 9 gives the corresponding frequencies. Figure 35 gives an 

overview of the unique dry modes that are detected using a FDD analysis. 

Data ID f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz] f7 [Hz] 

008 32.3 67.4 82.0 119.7 139.2 154.3 195.5 

009 32.2 67.2 82.3 119.8 138.8 154.7 195.1 

010 32.2 67.3 81.7 119.8 140.2 154.2 195.2 

Table 9 Natural Frequencies of the identified dry modes of the Solid Plate 
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Figure 35 Dry mode shapes for Solid Plate. Top) 3_Dry_Modal_Analysis_001, middle) 3_Dry_Modal_Analysis_002, bottom) 

3_Dry_Modal_Analysis_003. 

Reinforced Plate  

The Reinforced Plate makes use of the datasets 3_Dry_Modal_Analysis_033, 034 & 035. 

Following the same reasoning as for the Solid Plate the Singular Value Plots and MAC matrices 

can be obtained (Figure 36 & Figure 37). Again, a diagonal matrix is observed, but with 

relatively larger non-diagonal MAC values for several modes. This might indicate that modes 

are unique but that experiments are not executed properly. Reasons for this might be found in 

the fact that stiffness and damping play a considerable role in the amplitudes of the accelerations 

and strains. Therefore, the datasets might be inefficient for analysis. 

 

Figure 36 Singular value plot from which the natural frequencies are retrieved for the Reinforced Plate. Singular value plot retrieved from 

dataset 3_Dry_Modal_Analysis_033. 
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Figure 37 MAC matrices for identified dry modes of the Reinforced Plate. Yellow depicts a MAC value of 1, blue a MAC value of 0. 

Data ID f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz] f7 [Hz] 

033 69.48 83.95 125.11 153.05 165.63 195.09 203.29 

034 69.56 84.15 124.72 153.02 165.98 195.11 202.83 

035 69.63 83.77 124.92 153.10 165.34 195.02 202.73 

Table 10 Natural Frequencies of the identified dry modes of the Reinforced Plate 

 

Figure 38 Overview of the dry mode shapes of the Reinforced Plate using a FDD analysis 

 Identified wet modes 

The identified wet modes are considered while performing a validation of the SA model. They 

serve as input in the MAC analysis for different water levels in order to obtain a scientific base 

for comparison between the identified modes and the SA predicted modes. 

Solid Plate  

The datasets used for the wet modal analysis of the solid plate are subdivided into different 

water levels. Table 11 gives an overview of the merged datasets per water level. Again, the 

datasets are process in terms of zero mean averaging and detrend as described in §5.3. This 

procedure is done before the datasets where merged. For the water level of 0.6 meters only 

datasets 013 were available, since the other two experiments turned out to have failed. 

 



Modal analysis 

52 

 

Water level  Merged datasets 

0.3 m 5_Wet_Modal_Analysis_004 - 006 

0.4 m 5_Wet_Modal_Analysis_007 - 009 

0.5 m 5_Wet_Modal_Analysis_010 - 012 

0.56 m 5_Wet_Modal_Analysis_016 - 018 

0.6 m 5_Wet_Modal_Analysis_013  

Table 11 Datasets per water level for the wet modal analysis of the Solid Plate 

The MAC matrices for the identified modes for different water levels are depicted in Figure 39. 

It can be clearly seen that for all water levels identical modes are detected since the MAC 

matrices show a clear diagonal pattern. The corresponding natural frequencies are listed in 

Table 12. An overview of the corresponding modes is presented in Figure 40. 

 

Figure 39 MAC matrices for wet modal analysis for different water levels at the Solid Plate. The modes detected are all unique modes. 

Waterlevel f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz] f7 [Hz] f8[Hz] f9[Hz] 

0.3   m 27.9 49.1 63.3 91 100 115.3 136.9 163.1 171.9 

0.4   m 20.7 44.6 50.2 89.9 96.6 131.6 154.6   

0.5   m 15.9 42.2 45 78.5 86.5 124.6 135.2 188.8  

0.56 m 13.2 32 38.3 65.8 77 81.9 116.9 130.5 170.8 

0.6   m 10.5 29.6 33.5 52.2 72.1 74.1 97.2 104.8 122.5 

Table 12 Natural frequencies for identified wet modes for the Solid Plate 
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Figure 40 Mode shapes from accelerometers for the Solid Plate for different water levels 

Reinforced Plate  

The reinforced plate’s wet modal analysis makes use of the regular wave impact datasets as 

well. The main reason for doing so is that the plate experiences high damping and relatively 

small excitation amplitudes. Hammering might therefore cause insufficient deflections, 

accelerations and/or strains. The datasets that are used are given in Table 13. For these datasets 

only the strain data is used. 

Water level  Merged datasets 

0.3   m 5_Wet_Modal_Analysis_001 – 003  

0.4   m 5_Wet_Modal_Analysis_008 – 010  

0.5   m 5_Wet_Modal_Analysis_015 – 017  

0.56 m 5_Wet_Modal_Analysis_019 – 021 & 025 – 027  

6_Regular_Wave_Impact_005 – 009  

0.6   m 5_Wet_Modal_Analysis_028 – 030 & 034 – 036  

6_Regular_Wave_Impact_010 – 014 

Table 13 Datasets used for the Wet Modal Analysis for the Reinforced Plate. 

The MAC matrices reveal that for multiple experiments modes are detected multiple times. 

Modes that are not unique are marked with a red circle. Removing one of the set of double 

modes from the datasets leaves the natural frequencies and mode shapes as given in Table 14 

and Figure 42.  
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Figure 41 MAC matrices for Wet modes of the Reinforced Plate. Some modes are detected twice and will be removed from the set of modes. 

Waterlevel f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz] f7 [Hz] f8[Hz] f9[Hz] 

0.3 m 72.3 101.2 125.7 155.6 163.9 180.1 205.3 230.35  

0.4 m 32.8 40.2 55.5 66.2 87 125.8 146.8 174.2 187.8 

0.5 m 26.1 50.4 52.5 88.3 112.9 122.7 131.1 162.2  

0.56 m 19.4 45.6 69.4 82.1 110 126 141.5 170.3 190 

0.56 m (RWI) 16.5 21.5 30.7 51.1 80.5 90 100.7 115.1  

0.6 m 17.3 22.5 30 38.9 51.4 78.2 112.5 122.1 177 

0.6 m (RWI) 13.5 22 30 52.5 81 100.8 115.7   

Table 14 Identified natural frequencies for Reinforced Plate after removing double identified modes. RWI = Regular Wave Impact. 

 

Figure 42 Overview of identified strain modes for the Reinforced Plate 
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7.4 Comparison SA and FDD modes 

An important validation step for the semi-analytical model is to determine whether the dry 

modes that serve as an input are correct. Besides the dry modes, which can be adjusted for 

potential better SA results, the wet modes are validated as well. The wet modes are a result of 

the SA model and therefore directly influence the time series and maxima calculated by the 

model. This paragraph first elaborates the validation of the dry modes from which conclusion 

can be drafted regarding the correctness of the SA model input. Afterwards, the wet modes are 

validated for the case with the FEM modes as input (see §7.1). As a second analysis an adjusted 

set of FEM modes are used as input together with the corresponding natural frequencies. The 

identified FEM modes and their updated natural frequencies are used as input. A third analysis 

focusses on the influence of the boundary conditions. This analysis uses the modal shapes and 

corresponding frequencies that are found for the dry modal analysis as input for the SA model.  

 Dry modes  

The procedure for validation of the input modes has the same structure as for the identified 

modes. First a MAC analysis is performed between the identified modes and FEM modes, 

which is concluded with a comparison between the corresponding natural frequencies.  

Solid Plate 

The MAC matrices depicted in Figure 43 give a clear view on the correspondence between the 

identified FDD and the FEM modes. Diagonal matrices are observed, indicating that the 

identified modes are the same as from the FEM software. This outcome indicates that the correct 

modes are used in the SA model. 

 

Figure 43 MAC matrices for identified dry FDD modes compared to the predicted SA mode. Clear correspondence between the two is 

observed. 

A second validation step is to determine if the natural frequencies correspond to each other. 

Graph 2 gives an overview of the natural frequencies for the identified modes compared to the 

FEM modes. From this graph it can immediately be seen that the SA model consistently predicts 

about 5-10% higher natural frequencies. This might have several reasons: 
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1. The boundary conditions of the gate are not as expected. The gate was glued on a U-

frame. This might have given complications about the fact that it could be that it was 

not completely clamped.  

2. The material characteristics used in ANSYS differ from the one used in the experiments. 

Analysis shows a little decline of the natural frequencies, in the order of 1% - 2%.  

 

Graph 2 Overview of the natural frequencies percentual deviation. The FEM software consistently overshoots the natural frequencies 

compared with the experimental results. 

Reinforced plate  

The reinforced plate has the same approach as the solid plate. Figure 44 gives the results of the 

MAC analysis for the accelerometer data of the Reinforced Plate. The FEM modes are not 

identified in all cases. Modes 2 and 7 are poorly identified in all experiments, while mode 6 is 

not detected at all. These results might serve in an extra validation step for the wet modes, 

executed in §7.4.3 & §7.4.4. A new set of modes as input could probably give different results 

in the wet modal analysis of the SA model. Again, the FEM modes overshoot the natural 

frequencies consistently by approximately 10%, which again might be because of the boundary 

conditions that are not met. 

 

Figure 44 MAC matrices for the identified modes versus the FEM modes for the Reinforced Plate. Modes 1, 3, 4, 5 and 8 are identified 

consistently. 
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Graph 3 Percentual error of the natural frequencies of the identified and FEM modes for the Reinforced Plate. Mode 6 is not detected in all 

experiments. 

 Wet modes – FEM input 

This analysis focusses on the validation of the SA model using the default FEM modes as input. 

These modes are generated by ANSYS and correspond to the intended procedure of the SA 

model. The analysed datasets for the Solid Plate only contain Wet Modal Analysis experiments. 

The Reinforced Plate also takes the Regular Wave Impact experiments into account. 

Solid Plate 

The Solid Plate identified wet modes are retrieved from the MAC analysis elaborated in §7.3.2 

and are taken into the MAC analysis which compares the SA modes with the experimentally 

identified ones. The most important modes for the Solid Plate are modes 1 to 4. According to 

the SA model these modes have the largest contribution to the response of the plate. Table 15 

gives an overview of the identified mode that matches the corresponding SA modes. This table 

also contains a row where the summation of the errors of the first four modes is given. It is clear 

that mode 5 is not detected for all water levels, only for water levels 0.56 and 0.6 m. 

Furthermore mode 3 is poorly detected for water level 0.5 m. The green dots show a MAC value 

higher than 0.75 while the orange dots indicate a value between 0.5 and 0.75. 

Waterlevel Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Error 

0.3 m 1 [0.99]  2 [0.86]  3 [0.96]  4 [0.97]  - 3.1% 

0.4 m 1 [0.99]  2 [0.94]  3 [0.92]  4 [0.97]  - 2.3% 

0.5 m 1 [0.93]  2 [0.88]  3 [0.56]  4 [0.97]  - 6.0% 

0.56 m 1 [0.96]  2 [0.77]  3 [0.95]  4 [0.90]  5 [0.87]  2.7% 

0.6 m 1 [0.97]  2 [0.95]  3 [0.90]  4 [0.92]  6 [0.78]  4.7% 

Table 15 Overview of the Identified modes that matches the SA predictions using dry FEM modes as input, corresponding to the MAC matrices 

with their value between brackets. The last column give the sum of the errors for the first three modes. 
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Figure 45 MAC matrices for comparing between the identified modes and the SA prediction using dry FEM modes as input. 

The natural frequencies on their turn are analysed and presented in Graph 4. This graph gives 

the relative error in percentages of the identified modes compared to the SA modes. A negative 

values means a undershoot while a positive value represents an overshoot by the SA model. 

 

Graph 4 Relative error of identified modes compared with the SA prediction using dry FEM modes as input. Negative values mean an 

undershoot while positive values represent an overshoot of the SA model. 

Reinforced Plate – Strain gauges 

Based on the MAC matrices depicted in Figure 46, it can be directly concluded that there is a 

significant mismatch in the identified modes and the SA modes. A reason for this is the already 

mentioned amplitude of the deflection (see §6.2) of the gate for relatively small hammer 

impacts. In the case of a water level of 0.4, 0.5 and 0.6 meters the first three modes are found 

more or less with small MAC values. Table 16 gives an overview of the identified modes that 

belong to the SA modes together with their MAC value. 
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Figure 46 MAC matrices for Reinforced Plate wet modes of the SA model with dry FEM modes as input, compared to the identified wet 

modes of the experiments. Red circles indicate an identified mode that matches the SA mode 

Waterlevel Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Error 

0.3 m  - 1 [0.99]   2 [0.97]  71.7% 

0.4 m 1 [0.98]  4 [0.96]  5 [0.86]  9 [0.75]  6 [0.75]  6.5% 

0.5 m 1 [0.96]  2 [0.97]  4 [0.59]  - - 8.2% 

0.56 m 1 [0.96]  2 [0.98]  -  3 [0.94]  4 [0.96]  43.3% 

0.6 m 1 [0.93]  3 [0.67]  4 [0.83]  6 [0.80]  - 24.2% 

Table 16 Overview of the Identified modes that matches the SA modes with dry FEM modes as input corresponding to the MAC matrices with 

their value between brackets. The last column denotes the average relative natural frequency error over the first three modes.  

The corresponding natural frequencies are analysed, and the SA shows inconsistency for 

especially the higher water levels. In comparison to the Solid Plate the Reinforced Plate makes 

larger errors, especially large undershoots. It should be noted that mode 4 at a water level of 0.4 

m is highly uncertain. Looking at the stiffeners of the system one can see similarities between 

the SA and identified mode, however when looking at the inner fields they differ.  

 

Graph 5 Percentual error of the identified natural frequency compared to the SA prediction. Negative value is an SA overshoot, positive value 

is an SA undershoot. The dry FEM modes are used for the SA model input. 

1
0

0
.0

1
0

0
.0

1
5

.0

0
.0 4
.7

-1
1

.9 -3
.7

4
.0

-9
4

.2

-1
.8

-1
.3

-5
.4

1
7

.9

-4
.1

0
.02

0
.2

-9
.7

1
0

0
.0

-0
.2

4
.72

5
.3

1
4

.7 3
2

.5

-2
9

.0

0
.0

1 2 3 4 5

ER
R

O
R

 [
%

]

MODES

PERCENTUAL ERROR NATURAL FREQUENCIES

h = 0.3 m h = 0.4  m h = 0.5 m h = 0.56 m h = 0.6 m



Modal analysis 

60 

 

Reinforced Plate – Accelerometers 

To accomplish water levels with large errors in the identification of natural frequencies, the 

accelerometer data for these experiments is analysed. The identified modes and corresponding 

natural frequencies are added to the results of the strain gauges. The minimum error of the 

natural frequency is taken as best fit and is used in the results for the combined dataset. 

The following water levels and datasets are considered: 

- h = 0.4 meter  - 5_Wet_Modal_Analysis_005-010 

- h = 0.5 meter  - 5_Wet_Modal_Analysis_012-017 

- h = 0.56 meter  - 5_Wet_Modal_Analysis_019-027 

- h = 0.6 meter   - 5_Wet_Modal_Analysis_028-036 

The MAC matrices of the identified modes in comparison with the SA modes are given in 

Figure 47. Modes that are not detected with the strain gauge data, or that have large errors with 

the SA predictions, are identified by the accelerometer data. The natural frequencies of the 

identified modes that correspond to with the SA modes are given in Graph 6. The graph shows 

a decline in error for most modes. Interesting to see is that for water levels of 0.5 m and 0.56 

m, the third mode is not identified. These modes have exactly the same shape. The strain gauge 

data gave large errors at this mode for h = 0.5 m while it was not identified for h = 0.56 m, 

which therefore might indicate that this mode is not correct.  

 

Figure 47 MAC matrices for Reinforced Plate accelerometer data with dry FEM modes as input. 

Waterlevel Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

0.4 m - 1  2  3 [Visual] 4  

0.5 m - 1  - 2  - 

0.56 m - 1  - 3  4  

0.6 m - 2  3  - - 

Table 17 Matching identified modes with the SA prediction. Mode 4 for h = 0.4 m is added based on visual approval. Dry FEM modes are 

used as input. 
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Graph 6 Absolute error of the identified natural frequency compared to the SA mode for the accelerometer data. Negative value is a SA 

overshoot, positive value is a SA undershoot. 

Taking these results into account a total overview of identified modes with the smallest error 

can be made. Both the strain gauges and accelerometer datasets are taken into account in Graph 

7. It can be observed that the errors are reduced significantly when the datasets are both taken 

into account. Table 18 gives the summation of errors of the first three modes of the strain and 

accelerometer dataset combined results.  

Water level 0.4 m  0.5 m  0.56 m  0.6 m  

Error 6.5% 16.7% 43% 17.8% 

Table 18 Averaged relative natural frequency error of the first three modes both sensors of the Reinforced Plates using dry FEM modes as 

input for the SA model. 

 

Graph 7 Relative error of the identified natural frequency compared to the SA predictions, using dry FEM modes as input, for the combined 

strain gauge and accelerometer data. Negative value is an SA overshoot, positive value is an SA undershoot. 

Reinforced Plate – Regular Wave Impact 

The MAC matrices show a clear identification of the first three modes for both the water level 

0.56 and 0.6 meters. High MAC values are obtained for these modes when comparing them to 
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the SA modes. The absolute error between the SA model and the identified modes is relatively 

small for the smaller modes (7-10 Hz) while it tends to increase for the higher modes (+/- 16 

Hz). Table 19 contains a row with the averaged relative error over the first three modes.  

Waterlevel Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Error 

0.56 m 1 [0.77]  3 [0.82]  4 [0.72]  - - 27.0 % 

0.6 m 1 [0.82]  3 [0.95]  4 [0.78]  - 5 [0.83]  17.9 % 

Table 19 Identified modes linked to the SA modes for the Regular Wave Impact experiments with dry FEM modes as input for the SA model. 

  

Figure 48 MAC matrices for the Regular Wave Impacts for the Reinforced Plate with FEM input. The first three modes are clearly identified. 

 

 

Graph 8 Relative error of the identified natural frequency for regular wave experiments compared to the SA mode with dry FEM modes as 

input. Negative value is an SA overshoot, positive value is an SA undershoot. 

 Wet modes - Adjusted set of FEM modes input 

In order to investigate the influence of the input modes a set of adjusted FEM modes is used. 

The set contains the mode shapes from the FEM modes that are identified during the dry modal 

analysis experiments. The corresponding natural frequencies are updated using the results from 

the dry experiments. 
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Solid Plate  

The input from the identified dry modes is limited to the natural frequencies that are found. The 

modes that are identified have a corresponding shape to the ones generated by the FEM 

software. The natural frequencies of the input modes are readily given in Table 9 in §7.4.1. 

Data ID f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz] f7 [Hz] 

008 32.4 67.5 82.0 119.7 136.2 154.5 195.2 

Table 20 Identified modes and their natural frequencies of the Solid Plate. These serve as new input for the SA calculations. 

The modes generated by the SA model did shift in both natural frequencies and shape, while 

changing the input modes. The natural frequencies turned out to be lower than for the case with 

the FEM input. In total more modes have been found, but a negative side effect is that the error 

with respect to the frequencies has grown. The overall natural frequencies of the SA model 

declined, which causes the increase of the deviation of the summation of errors of the first four 

modes. 

Waterlevel Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Error 

0.3 m 1 [0.99]  2 [0.86]  3 [0.90]  4 [0.94]  5 [0.62]  9.2% 

0.4 m 1 [0.99]  2 [0.95]  3 [0.90]  - 5 [0.68]  8.3% 

0.5 m 1 [0.93]  2 [0.88]  3 [0.56]  5 [0.71] - 14.3% 

0.56 m 1 [0.96]  2 [0.78]  3 [0.95]  4 [0.86]  6 [0.64]  6.3% 

0.6 m 1 [0.97]  2 [0.95]  3 [0.90]  4 [0.93]  5 [0.83]  4.8% 

Table 21 Overview of the Identified modes that matches the SA modes, using an adjusted set of dry FEM modes as input, corresponding to the 

MAC matrices with their value between brackets. The last column gives the averaged relative natural frequency error over the first three modes 

 

Figure 49 MAC matrices for Solid Plate wet modes of the SA model with adjusted set of dry FEM modes as input, compared to the identified 

wet modes of the experiments. Every matrix corresponds to a water level. 
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Graph 9 Relative error of identified modes compared with the SA modes using the adjusted set of dry FEM modes as input. Negative values 

mean an undershoot while positive values represent an overshoot of the SA model. 

Reinforced Plate – Strain gauges 

The scarcity of correct identified modes directly while using a total set of FEM modes as input, 

leads to use the identified dry modes in the analysis. In §7.4.1 it was observed that dry mode 6 

was poorly identified. It will therefore be excluded from the input modes. Furthermore the 

natural frequencies of the dry modes will be adjusted to the values the where identified. The 

new values are listed in Table 22. It seems that the adjustment of the input didn’t result in 

detecting other modes. Nevertheless, the modes that are detected have a rather high MAC value 

and can therefore incorporated in the analysis with high insurance. Table 23 gives an overview 

of the SA modes matched with the identified ones. 

Mode 1 2 3 4 5 6 7 

fn 69.6 Hz 83.9 Hz 124.9 Hz 153.1 Hz 165.7 Hz 195.1 Hz 203 Hz 

Table 22 Identified modes and their natural frequencies of the Reinforced Plate. These serve as new input for the SA calculations. 

 

Figure 50 MAC matrices for Reinforced Plate wet modes of the SA model using the adjusted set of dry FEM modes as input, compared to the 

identified wet modes of the experiments. Red circles indicate a identified mode that matches the SA mode 

 

-6
.7

-1
7

.1

-3
.8

0
.3 1

.9

-1
0

.1

-6
.6

-8
.0

0
.0

-8
.1

-1
2

.2

-1
6

.1

-1
4

.6

-9
.8-8

.1

-4
.7

-6
.0 -3

.5

-9
.8

3
.0

-1
1

.0

-0
.4

5
.0

-1
3

.2

1 2 3 4 5

ER
R

O
R

 [
%

]

MODES

PERCENTAGE ERROR NATURAL FREQUENCIES

h = 0.3 m h = 0.4  m h = 0.5 m h = 0.56 m h = 0.6 m



Modal analysis 

65 

 

Waterlevel Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Error 

0.3 m - - 1 [0.99]  - 2 [0.96]  67% 

0.4 m 1 [0.99]  4 [0.72]  6 [0.86]  - 5 [0.97]  52.4% 

0.5 m 1 [0.97]  2 [0.94]  - 4 [0.86]  - 45.7% 

0.56 m 1 [0.95]  2 [0.97]  - 3 [0.96]  4 [0.95]  43.9% 

0.6 m 1 [0.92]  3 [0.70]  4 [0.79]  6 [0.82]   13.4% 

Table 23 Overview of the Identified Reinforced Plate modes that matches the SA modes, using the adjusted set of dry FEM modes as input, 

with their MAC value between brackets. The averaged natural frequency error of the first three modes is depicted in the last column. 

Just like the case for the Solid Plate, again a decrease of the natural frequency of the SA modes 

is observed. This results in a shift downwards of the errors. Graph 10 gives an overview of these 

errors, for which the positive value became smaller and the negative values larger. 

 

Graph 10 Error of the identified natural frequency compared to the SA mode. Negative value is an SA overshoot, positive value is an SA 

undershoot. The adjusted set of dry FEM modes are used as input for the SA model. 

Reinforced Plate – Regular Wave Impact 

Regarding the mode shapes, the adjustment of the modes for input did result in the same 

identification of modes. Both plates show high MAC values for the first three modes, which 

was the case for the situation where all FEM modes were used as input. 

  

Figure 51 MAC matrices for the Regular Wave Impacts for the Reinforced Plate with adjusted set of dry FEM modes input. 
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Waterlevel Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Error 

0.56 m 1 [0.83]  3 [0.72]  4 [0.76]  - - 12.6 % 

0.6 m 1 [0.86]  3 [0.95]  4 [0.79]  - - 6.6 % 

Table 24 Identified modes compared linked to the corresponding SA prediction using the adjusted set of dry FEM modes as input. The averaged 

relative error over the first three modes is given in the last column. 

The corresponding identified frequencies show a very well correspondence with the SA modes 

when the adjusted set of FEM modes are used as input. The absolute error for the first three 

modes, that were dominant, declined rapidly to a maximum of 6 Hz and 13.3 Hz.  

 

 

Graph 11 Natural frequencies of the SA model using the adjusted set of dry FEM modes as input and the identified natural frequencies for 

RWI experiments. 

 Dry FDD modes input – Influence of bounary conditions 

In order to schematize the boundary conditions in the situation of the experiment the modal 

shapes from the dry modal analysis experiments are used as input. They replace the FEM modes 

that were used in the previous analyses. 

Input modes 

The mode shapes and corresponding natural frequencies that serve as input are obtained via the 

dry modal analysis. The dry modes from the following datasets are considered: 

- Solid plate   : 3_Dry_Modal_Analysis_008 

- Reinforced plate : 3_Dry_Modal_Analysis_035 

Figure 52 gives an overview of the modes of both datasets, while the natural frequencies are 

given in Table 25.  

Plate f1 f2 f3 f4 f5 f6 f7 

Solid 32.3 Hz 67.4 Hz 82.0 Hz 119.7 Hz 139.2 Hz 154.3 Hz 195.5 Hz 

Reinforced 69.6 Hz 83.8 Hz 124.9 Hz 153.1 Hz 165.3 Hz 195.0 Hz 202.7 Hz 

Table 25 Natural frequencies used for input of the SA model. 
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Figure 52 Modes used for input of the SA model. Top row: Dry modes for the Solid Plate, bottom row: Dry modes for the Reinforced Plate. 

Solid Plate  

The modes that predicted by the SA model are compared to the readily identified modes from 

datasets: 

- h = 0.5 m : 5_Wet_Modal_Analysis_010 - 012 

- h = 0.56 m  : 5_Wet_Modal_Analysis_016 - 018 

- h = 0.6 m  : 5_Wet_Modal_Analysis_013 

The MAC plots are given in Figure 53 clearly illustrating that in all cases the first four modes 

have been detected. The percentual error of the natural frequencies that of the SA prediction 

and the identified modes are plotted in Graph 12. The first mode has relatively large errors. This 

can be declared by the fact that these natural frequencies are low compared to the rest of the 

set. Small deviations lead to large percentual errors. The sum of the absolute error is given in 

Table 26 to quantify the results.  

Water level  h = 0.5 m h = 0.56 m h = 0.6 m 

Error  15.3% 11.0% 8.6% 

Table 26 Averaged relative error over the first 3 natural frequencies for the Solid Plate with FDD mode shapes as input. 

 

Figure 53 MAC matrices for the Solid Plate wet modes of the SA model with dry FDD mode shapes and frequencies as input. 
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Graph 12 Percentual error of the wet modes of the Solid Plate with the dry FDD mode shapes as input for the SA model. 

Reinforced Plate 

The new predicted modes by the SA model are compared to the already identified modes of 

datasets: 

- h = 0.5 m  : 5_Wet_Modal_Analysis_015 – 017 

- h = 0.56 m  : 5_Wet_Modal_Analysis_019 – 021 & 025 – 027 

- h = 0.6 m  : 5_Wet_Modal_Analysis_028 – 030 & 034 – 036 

The new input modes did not sort into the desired results. Figure 54 gives the MAC matrices 

for the different water levels. The MAC matrices reveal directly concluded that out of the first 

five modes only two are found. In the SA model prediction with FEM modes as input the first 

three modes were found consistently for these water levels.  

 

Figure 54 MAC matrices for the Reinforced Plate wet modes of the SA model with dry FDD mode shapes and frequencies as input. 

The low resolution of identified modes does not give any reason to investigate the natural 

frequencies of the system. Conclusions regarding this approach can directly be drafted.  
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 Overview modal shapes 

This paragraph provides an overview of a selection of modal shapes that are obtained via the 

different analyses. The structure of the paragraph is such that every plate is treated separately. 

Solely visual overview are given.  

Solid Plate 

 

Figure 55 Solid Plate SA modes for FEM mode input (top row) and identified modes (bottom row)  

 

Figure 56 Solid Plate SA modes for the adjusted set of FEM mode input (top row) and identified modes (bottom row)  
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Reinforced Plate – Strain gauge 

 

Figure 57 SA model predictions with FEM modes as input (top row) and the identified modes (bottom row) for the Wet Modal Analysis for 

the Reinforced Plate.  

 

Figure 58 SA model predictions with the adjusted set of FEM modes as input (top row) and the identified modes (bottom row) for the Wet 

Modal Analysis for the Reinforced Plate. input.  

Reinforced Plate – Regular wave impacts 

 

Figure 59 SA model predictions with FEM modes as input (top row) and the identified modes (bottom row) for the Regular Wave 

experiments for the Reinforced Plate.. 
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Figure 60 SA model predictions with adjusted set of FEM modes as input (top row) and the identified modes (bottom row) for the Regular 

Wave Impact experiments for the Reinforced plate. 

7.5 Conclusion  

This paragraph is intended to give an overview and summary of the results that were found 

during the analysis executed in the previous paragraphs.  

 Dry modes 

The solid plate shows good correspondence in terms of the MAC values. It can be concluded 

that for the dry modes, all modes have been identified in the experiments.  

The Reinforced Plate shows more deviation on this topic. Mode 6 is not identified at all while 

modes 2 and 7 are not consistently identified over all experiments.  

The natural frequencies on their turn show the same behaviour for both gates. The FEM modes 

are consistently overshooting the identified FDD frequencies. Especially the Reinforced Plates 

shows large percentual deviations for the first two modes. The Solid Plate is more or less 

constant in its overshoot. Values range between the 7 and 16 percent for both gates. 

Reasons for the overshoot can be twofold. Firstly, the errors for the Reinforced Plate can be 

mainly due to the boundary conditions. The gates are glued on a steel U-frame. This glue turned 

out to be not completely applied on the full contact area between the plate and the U-frame. 

This might indicate that the gate is not completely clamped. Furthermore, the steel 

characteristics of the material that was used in the experiments might deviate from the ones 

used in the FEM modes. This might lead to smaller values for the natural frequencies, which 

then move slowly towards the ones found in the experiments. The fact that not all modes are 

found for the Reinforced Plate can be clarified by damping. The single hammer impact 

experiments reveal that the damping for the Reinforced Plate is approximately 23% higher than 

for the Solid Plate. This might cause the vibrations to damp out early, so that the FDD analysis 

cannot detect them sufficiently. This is the reason why Regular Wave Impact tests are used for 

the wet modal analysis. 
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 Solid Plate – Wet modes 

On first basis the mode shapes were found correctly while using the standard FEM modes as an 

input for the SA model. Mode 1 is dominating the response and was consistently found for all 

water levels, together with modes 2 and 3. At larger water levels (0.56 and 0.6 m) all modes 

that were predicted by the SA model were found. The average natural frequency errors of the 

first three modes varied between 2% and 6%, which are relatively low percentages.  

Using the adjusted set of FEM modes as input for the SA model did not result in more identified 

modes. All cases showed the first three modes, which was the case for the FEM input as well. 

The natural frequencies that were predicted by the SA model declined rapidly, leading to an 

increase of the absolute error when compared to the identified modes. Table 27 gives an 

overview of the average errors of the natural frequencies of the first three modes. The maximum 

error grew to 14%. Interesting to see is that lower modes now also experience this order of 

magnitude when it comes to the absolute error. 

Input  h = 0.3 m  h = 0.4 m  h = 0.5 m h = 0.56 m  h = 0.6 m 

FEM 3.1% 2.3% 6.0% 2.1% 4.7% 

Adj. FEM 9.2% 8.3% 14.3% 6.3% 4.8% 

Table 27 Overview of the averaged natural frequency error of the first three modes for the Solid Plate with different input modes. 

 Reinforced Plate – Wet modes 

The wet modal analysis did not give the desired results for the Reinforced Plate. Larger water 

levels gave a sufficient result in terms of identified modes. Four of the first five modes were 

found for all water levels, except 0.3 m and 0.56 m. The natural frequencies on their turn where 

consistently low for the first two modes. The third mode however showed a large natural 

frequency error with a maximum of 32%. The averaged natural frequency errors of the first 

three modes for all water levels were observed in a range between 6% and 43%.  

Using the adjusted set of FEM modes as input for the SA model resulted in a somewhat similar 

result, the same modes were identified. MAC values turned out to be somewhat higher which 

indicates a better mode correspondence. This was limited to only a few modes. The natural 

frequencies showed the same behaviour as for the Solid Plate. The value of the SA frequencies 

decreased, which in some cases led to an increase in the error. Table 28 gives an overview of 

the averaged natural frequency error and the corresponding water level.  

Taking the accelerometers into account and subsequently combining the results, give an 

improvement in terms of mode detection and errors of the natural frequency. All modes are 

found, except mode three for h = 0.56 m. The situation where all first three modes are identified 

shows a drastic decline of the error in natural frequencies. This was the case of h = 0.3, 0.4 and 

0.6 m. The other water levels show large errors due to the failure in identification of the third 

mode. 
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Input  h = 0.4 m  h = 0.5 m h = 0.56 m  h = 0.6 m 

FEM 6.5% 16.7% 43% 17.8% 

Adj. FEM 52.4% 45.7% 43.9% 13.4% 

Combined 6.5% 16.7% 43% 17.8% 

Table 28 Overview of the averaged natural frequency error of the first three modes for the Reinforced Plate with different input mode.  

It was already expected that the Wet Modal Analysis for the Reinforced Plate was difficult to 

execute. The high damping values of the plate ensure that large forces are needed to make the 

FDD analysis to work. This is difficult to achieve with a smaller hammer.  

 Reinforced Plate – Regular Wave Impact modes 

The expectation was that the Regular Wave Impact experiments would give a better result in 

terms of identified modes. The first three modes were expected to be dominant in these 

experiments. It can be concluded that for the situation with the original FEM modes as input 

for the SA model, the first three modes were detected for both water levels. High MAC values 

(>0.8) proof that the identified modes had good correspondence with the predicted SA modes.  

The natural frequencies again experienced an overshoot by the SA model. Water level of 0.6 m 

experienced some good predictions, except for the first mode which was almost twice as high 

compared to the identified one. 

Using the identified dry FEM modes as input for the SA calculations, the first three modes were 

found. The cumulative error with respect to the natural frequencies declined on his turn as well. 

Smaller natural frequencies for the dry modes established this decline. 

Input  h = 0.56 m  h = 0.6 m  

FEM 27% 17.9% 

Adj. FEM 12.6% 6.6% 

Table 29 Overview of the averaged natural frequency error of the first three modes for the Reinforced Plate with different input modes. 

 Dry FDD modes – Influence of boundary conditions 

The Solid Plate showed a limited decrease in the natural frequency error for a water level of 0.6 

m. The other water levels showed an increase. It can therefore be concluded that the overall 

performance declined. The original situation with the FEM modes as input still perform best 

when looking at the natural frequencies. Regarding the identification of modes, the inclusion 

of different boundary conditions showed a more accurate identification of the modes. More 

modes were detected for a water level of 0.5 m, while the other water levels showed equal 

results with respect to the FEM modes as input.  

The Reinforced Plate did not give the desired result. It showed that including the real time 

boundary conditions were lacking performance. Solely mode 1 & 2 were identified for the 

larger water levels. This might have several reasons which will be discussed in the discussion 

in chapter 8. 
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8 Discussion 

The discussion treats the potential errors that have been made during the experiments, which 

could have influenced the results. This chapter treats potential flaws of the experiments, semi-

analytical model and the approach of the analyses that could have influenced the results. The 

chapter is structured such that first the potential flaws in the experiments are treated. After this 

paragraph the topics treated are taken as input to elaborate the influence on the validation of the 

semi-analytical model. The last paragraph proposes an improvements for the experiments to 

obtain more reliable and accurate results. 

8.1 Experiments 

The semi-analytical model revealed a large deviation in terms of performance between the Solid 

Plate and Reinforced Plate. The Solid Plate turned out to be more precise in its match between 

the SA predictions and identified modes, while the Reinforced Plate showed large errors and 

unidentified modes. The reasons for this will be treated in the following paragraphs. Since only 

the Reinforced Plate showed large deviations from the expected outcome, this plate will be 

discussed in this paragraph. 

 Calibration of FEM model  

In the performed analyses an adjusted set of FEM modes was taken into consideration. Modes 

that were not detected were assumed to have no play in the response of the gate and were 

removed from the set of input modes. This could have introduced large errors. In case of not 

identifying a mode with an experimental modal analysis, cannot imply that a mode is not there. 

It might well be the case that given certain circumstances it is just missed. Nevertheless this 

method was chosen as an alternative to calibrate the FEM modes. 

Calibration of the FEM model using the results of the experimental modal analysis could have 

given a model  that perfectly reflects the boundary conditions. This was out of scope for this 

thesis. Nevertheless it might increase the performance of the SA model. Dry modes that 

represent the real situation are found to be key, when smaller errors are induced in this part the 

SA model is able to give better predictions for the wet modes (§9.1.3). Calibration of the FEM 

model may exists of material properties and boundary conditions. Both lead to an influence in 

the natural frequency. 

 Loose components of Reinforced Plate 

While reinstalling the Reinforced plate for extra additional experiments, it was observed that 

the stiffeners had come loose from the steel plate. This was also observed for the Solid Plate 

before the experiments started. This plate however was repaired for the planned experiments 

and did not fail anymore. Regarding the Reinforced Plate, it was missed and had not been 

noticed until the plate was reinstalled again. It is therefore not sure when this process of 

loosening started. 
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The gates were applied on a steel U-frame by gluing the contact area between the two 

components. It is well known that applying glue on a steel-steel interface is a rather difficult 

procedure. The glue must be of high quality and must be applied on the full contact area. 

Consulting the constructor of the gates afterwards learned that this was not the case. The glue 

was only partly applied on the contact area.  

It is not likely that components come of relatively slowly, since glue is a brittle material. 

Nevertheless parts of the contact area might have been partly loose during the experiments. 

Locations where less glue was present might have failed. This should have been identified by 

using the identified dry modes of the dry modal experiments as input. Doing so for the 

Reinforced Plate did not give the desired result and still large mismatches were observed. 

Therefore, it can be assumed that after the dry modal analysis experiments the gate have gotten 

loose during the submerged experiments.   

 Inclination and fixation of Accelerometers 

During the wave experiments of the Reinforced Plate it was observed that the accelerometers 

had a large inclination angle after installation. This might have happened for some 

accelerometers, leading to potentially unreliable calibration for this measurement device.  

Another feature that might have taken place is the loosening of the accelerometers. It was 

observed during the experiments that accelerometers got loose. This resulted in the inclination 

in the first place but this feature leads to vibrations of the device that do not correspond to the 

vibrations of the plate. This leads to unreliable acceleration data as well. The spectral density 

plots of the accelerometers were compared with the strain gauges and nothing extraordinary 

was observed. The limited frequency band was 500 Hz, so in case of higher frequencies of the 

loose accelerometers it cannot be concluded based on the data whether the accelerometers 

where fixed on the plate.   

The dry modes that have been identified with the acceleration data show good correspondence 

with the FEM modes. It is therefore likely that during the wave and wet modal experiments the 

accelerometers slowly got loose from the plate, resulting in potentially unreliable data. 

Especially larger water levels might be prone for this. The sequence of tests was first a wet 

modal experiment where after wave tests were executed.  

 Effect of large damping Reinforced Plate 

The damping ratio in the Reinforced Plate was approximately 20% higher than for the Solid 

Plate in dry conditions. High damping in systems mean small amplitudes of the response. This 

can lead to dynamic behaviour that is difficult to measure. The accelerations were in the order 

20 m/s2 for both plates while the strains were 50 – 150 microstrain for the Solid Plate and only 

5 – 30 microstrain for the horizontal strains on the front plate of the Reinforced Plate. The 

vertical strains had larger magnitudes but were not measured due to large local peaks which 

were difficult to capture (see §6.4). The strains at the stiffeners were in the same order as for 
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the Solid Plate. Since only the stiffeners showed proper values for the strains, the number of 

measurement devices was limited which induces errors for these types of complex gates.  

Besides the initial amplitude of the response the increase in damping also generates a fast decay 

of the response. The strains and acceleration damp out quite quickly, 0.1 s for the Reinforced 

Plate versus 0.5 s for the Solid Plate. The Frequency Domain Decomposition thrives best by 

many observed cycles of every mode. Due to the fast damping of these cycles it might have 

been the case that hammering was not hard or long enough for this plate. This was perfectly 

illustrated by using the wave impact datasets that generate a larger impact force, thus also larger 

amplitudes and more cycles per impact. The modes with most energy were detected for this 

situation.  

Brincker et al. (2003) state that the minimal time length of a dataset is dependent on the damping 

and natural frequencies of the structure, as well as the number of segments one opts to choose. 

Increasing the damping and lowering the natural frequency leads to an increase of desired data 

length. This is in line with the results that were found.  

Nevertheless there is no reason to assume that the SA model’s prediction is worse for situations 

with large damping. The damping of the plate solely affects the performance of the 

experimental modal analysis and thus the validation of the model. The SA model predicts the 

same order of magnitude for modal damping over the first three modes of the reinforced plate. 

Furthermore it was observed that for larger wave impacts the model did not had any difficulties 

for predicting the modal shapes. Real life structures have larger damping than the plates that 

were investigated. On the other hand larger impulses excite the structure so the two balance 

each other. 

8.2 Semi-analytical model  

The validation of the modal calculations of the semi-analytical model is the main goal of this 

research. Different types of analyses were performed to obtain a valuable conclusion on this 

part. The measurements and analysis were executed in order to validate the modal shapes and 

the natural frequencies of both the reinforced and solid plate. Given the fact that the final output 

of the semi-analytical model is to predict the maximum displacement and stress of a submerged 

slender gate with an overhang, still additional research has to be done to come up with a full 

validation of the model.  

The semi-analytical uses dry mode shapes as input for the calculations. Any flaw or difference 

in these modes that deviate from reality induces errors in the calculations. The model was 

validated using different experiments for a solid plate and a reinforced plate. Analyses showed 

that for the solid plate the modal shapes and corresponding natural frequencies were predicted 

correctly.  
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 Input modes 

The semi-analytical predictions of the reinforced plate showed a consistent overshoot of the dry 

natural frequencies, while the modal shapes turned out to have a high correlation when 

compared with the experimental data. Reasons for an overshoot in the dry natural frequencies 

of the reinforced plate can be explained using the previous paragraphs. Most likely the boundary 

conditions that were assumed in the finite element method, did not reflect the reality. Loosing 

or partly clamping of the front plate from the U-frame results in a more simply support boundary 

conditions, inducing lower natural frequencies. The boundary conditions might therefore reflect 

a partially clamped plate. This pattern was observed during the wave experiments. Adjusting 

the natural frequencies of the dry input modes resulted in a smaller error of the semi-analytical 

predictions. The modal shapes turned out to have more or less the same correlation, meaning 

that the prediction of the semi-analytical model is sufficient on this part. It was observed that, 

especially for the reinforced plate, more accurate dry natural frequencies result in a better 

performance of the semi-analytical predictions of the wet natural frequencies. The latter could 

have been obtained by calibration of the finite element software model. This would have 

enabled more realistic dry modes that serve as input for the semi-analytical model, resulting in 

more reliable validation results. It was observed that for the input of the identified dry natural 

frequencies (Adjusted FEM input) the relative averaged error over the first three natural 

frequencies dropped from: 

- Water level of 0.56 m : 27 % (FEM input) to 12.6 % (Adjusted FEM input) 

- Water level of 0.60 m : 17.9 % (FEM input) to 6.6 % (Adjusted FEM input) 

 Extrapolation of results to other plates 

Incorporating stiffeners on a front plate complicates calculations when compared to gates that 

exists of a front plate alone. Based on the result and relative simple calculations of the solid 

plate, it can be assumed that the results of the analyses can be extrapolated to a wide series of 

solid plate geometries. The more complicated geometries (reinforced plates) cannot be assigned 

the same conclusion based on this research. Although the semi-analytical predictions for the 

reinforced plate under consideration are in line with the experimental results, more research 

should be done to conclude the same for even more complicated geometries. §8.3 gives 

handhelds for improving the experiments. To obtain a 100% validation of the semi-analytical 

model it is also needed to do research on more gate geometries that have multiple stiffeners in 

different directions as well. 

8.3 Lessons learned - Improvement of analyses  

Based on the previous paragraphs some lessons learned for the execution of experiments and 

analyses can be drafted. Given the large number of potential errors during the experiments of 

the Reinforced Plate, it is recommended to repeat the experiments for this plate and for more 

complex geometries. The results showed proper matching between the identified modes and the 
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predicted SA modes. Nevertheless, the results were not as good as for the Solid Plate. This 

might have multiple important reasons: 

1. Insufficient bonding between the U-frame and plate was likely to influence the dynamic 

properties and boundary condition because the stiffeners and plate to slowly detached 

from the U-frame. Although this cannot be said with 100% certainty. 

2. Calibration of the FEM model in order to obtain dry modes that have a small error with 

the reality. 

3. Increase in complexity of the semi-analytical calculations resulting in less accurate 

predictions. 

Furthermore the execution of the wet modal analysis revealed some flaws. Most important is 

that the duration of the experiments was too short. A minimal number of cycles for every modes 

was not reached. Especially the accelerometers showed the influence of damping in the 

experiments, leading to a less reliable validation of the semi-analytical model during the wet 

modal experiments. Longer duration of experiments will fix this issue. In addition harder hits 

will result in the same remedy.  
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9 Conclusion & Recommendation 

The conclusion starts by repeating the main research question of this thesis, where after a brief 

overview of the executed analyses is given. This is followed by the most relevant results. Based 

on these results both an overall conclusion and recommendations will be given. Conclusions 

are based on the results of the experimental modal analysis of the different experiments that 

were executed.  

9.1 Conclusion 

This thesis was performed in order to validate a new semi-analytical (SA) model by Tieleman 

et al. (2020). This model was developed to determine the dynamic behaviour of flood gates 

with an overhang that are subjected to standing waves. The model was yet to be validated with 

modal and wave experiments, which were not carried out before. This research focused on the 

validation of the modal prediction of the model and whether it holds for general geometries of 

flood gates. 

 Recap experiments and analyses 

Multiple experiments were executed in order to retrieve a solid validation of the semi-analytical 

model. First of all dry modal experiments served as a basis for the validation of the input modes 

for the semi-analytical model. The SA model uses the dry modes of the system in order to 

perform calculations for the submerged modes and corresponding time series. These 

experiments revealed the dry natural frequencies and mode shapes of each plate (solid and 

reinforced). This analysis resulted in a set of identified modes shapes and corresponding natural 

frequencies. These were gathered in an adjusted set of finite element method (FEM) modes in 

order to reflect the real boundary conditions of the plates. The default situation, in which the 

modes generated by FEM software were used as input, was analysed as well.  

Wet modal experiments were executed to compare the semi-analytical prediction with the 

identified mode shapes and frequencies in order to validate the model for the solid plate. The 

reinforced plate used the experiments that consists of the regular wave impacts. They served 

the same goal as for the solid plate.  

Furthermore the number of identified modes and their modal assurance criterion (MAC) value 

was a measure for quantifying the performance of the SA model. 

 Conclusion Solid Plate  

The analyses of the Solid Plate showed that the first four wet modes were identified. The SA 

model predicted that the first mode was dominant and that the second and third had little 

contribution to the total response of the plate. The first mode was consistently found with MAC 

values in the order of 0.95, which gives reason to believe the SA prediction was correct. The 

other modes had MAC values in the order of 0.8 – 0.99, indicating a solid prediction of the SA 
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model in terms of mode shapes. Using an adjusted set of FEM modes as input did not result in 

an increase of the results. The SA model is capable of predicting the right wet modal shapes for 

the solid plate using a set of dry FEM modes as input. 

Table 30 Averaged MAC values of the first three modes of the Solid Plate with different input modes. 

 Water level  Dry h = 0.4 m  h = 0.5 m  h = 0.56 m  h = 0.6 m  

MAC 

values 

FEM input  0.95 0.95 0.79 0.90 0.94 

Adjusted FEM 

mode input 
- 0.95 0.79 0.90 0.94 

The error of the natural frequencies where small for the wet modes, based on the relative 

averaged value of the first three modes. This indicates that the SA model performs the right 

calculations and that it is able to come up with solid predictions. When observing the averaged 

natural frequency errors of different modes over the water levels, it shows that the natural 

frequency error in dry modes directly influences the error of the wet modes. It is observed that 

the ratio between the two is rather constant with a value of 0.5 - 0.6. This implies that the 

relative error is approximately halved for the wet modes when compared to the dry modes.  

Table 31 Averaged relative error in natural frequencies made by the SA model over the first three modes of the Solid Plate. 

 Water level  Dry  h = 0.4 m  h = 0.5 m  h = 0.56 m  h = 0.6 m  

Fn 

FEM input  7.1% 2.3% 6% 2.7% 4.7% 

Adjusted FEM mode 

input 
0% 8.3% 14.3% 6.3% 4.8% 

Table 32 Error of the natural frequencies of the dry modes and wet modes (averaged) and the ratio between the two for the first four modes of 

the Solid Plate for FEM modes as input.  

Error per mode Mode 1 Mode 2 Mode 3 Mode 4 

Dry  6 % 8.9 % 6.5 % 7.6 % 
Averaged error  

wet modes  
3.9 % 4.1 % 3.3 % 4.9 % 

Ratio error 

Dry/wet 
0.6 0.5 0.5 0.6 

 

 

Graph 13 Error in terms of percentages per mode per water level. The lines indicate upper and lower bounds of the error of the dry modes. 

The SA model stays in this range, indicating proper predictions. 
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 Conclusion Reinforced Plate 

The Reinforced Plate was analysed using the Regular Wave Impact experiments. The SA model 

predicted that the first three modes were dominant in the response of the plate. This was 

observed in the results of the experiments, where the first three modes were consistently found. 

MAC values varied between 0.77 and 0.95 indicating a proper correlation between the 

identified and the predicted modes in terms of shape. The SA model is able to predict the correct 

mode shapes as well as the modes that dominate the response.  

Table 33 Averaged MAC values of the first three modes of the Reinforced Plate with different input modes. 

 Water level  Dry h = 0.56 m  h = 0.6 m  

MAC 

values 

FEM input  0.77 0.77 0.85 

Adjusted FEM mode 

input 
- 0.77 0.87 

 

The averaged error of the natural frequencies for the first three wet modes turned out to be 

lower when compared to the averaged frequency error of the dry modes. The percentage was 

declined from 38% to 27% for a water level of 0.56 meters and 17.9% for 0.6 meters. Using 

adjusted set of FEM modes resulted in lower averaged errors for the natural frequencies. 

Averaged values of 12.6% for a water level of 0.56 meters and 6.6% for 0.6 meters where 

observed.  

Looking at the relative natural frequency error of the individual modes averaged over the water 

levels, larger natural frequency errors of the input modes resulted in larger natural frequency 

errors of the predicted wet modes. Overall a ratio between the dry mode error and the wet mode 

error between 1.6 and 1.9 was found. The induced relative error of the natural frequencies for 

the dry modes declines over the higher modes. The same is shown for the wet modes that are 

predicted by the SA model. This trend is clearly visible in Graph 14. This concludes that a 

smaller natural frequency error of the FEM modes that serve as input, result in a smaller error 

in the prediction of the SA model. 

Table 34 Cumulative error of the absolute error in natural frequencies by the SA model over the first three modes of the Reinforced Plate. 

Error per water level Water level  Dry  h = 0.56 m  h = 0.6 m  

Natural frequencies 

FEM input  38% 27% 17.9% 

Adjusted FEM mode 

input 
0% 12.6% 6.6% 

 

Table 35 Relative natural frequency error of the dry modes and wet modes (averaged) and the ratio between the two for the first three modes 

of the Reinforced Plate using dry FEM modes as input. 

Error per mode Mode 1 Mode 2 Mode 3 

Dry  17.5 % 12.8 % 8.6 % 
Averaged error  

wet modes  
30.1 % 20.6 % 16.4 % 

Ratio error 

Wet/Dry 
1.7 1.6 1.9 
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Graph 14 Reinforced plate natural frequency error in terms of percentages per mode per water level. The lines indicate upper and lower 

bounds of the error of the dry modes. The SA model is out of bounds, indicating wrong predictions. 

 Overall conclusion 

The semi-analytical model is able to predict dynamic characteristics of submerged gates. 

Simpler gate geometries such as the Solid Plate are predicted correctly in terms of both natural 

frequencies as well as mode shapes. It was observed that for this gate type the MAC values 

where sufficiently high (order of 0.9) indicating high correlation between the modal shapes and 

the predicted ones from the SA model. Furthermore the default input modes, generated by FEM 

software, gave errors in the order of 2% - 7%. Using the adjusted set of FEM modes resulted in 

an increase in the relative error. It was observed that the error rose to 5% - 14%. Taking both 

into account leads to the conclusion that the SA model is capable of predicting the dynamic 

quantities of the Solid Plate, representing simple gate geometries. 

The Reinforced Plate is lacking correct predictions in terms of natural frequencies. Large 

deviations were observed for lower modes. Errors in the order of 18% - 27% were observed for 

analyses with the default FEM input modes. Using the adjusted set of FEM modes as input 

resulted in a decrease of errors in the natural frequencies. Relative errors dropped to 

approximately 7% - 12%. The MAC values were predicted correctly for both analyses and had 

magnitudes in the order of 0.8, indicating well correspondence and proper mode shape 

prediction.  

Analyses of the individual modes revealed that modes with a large error of the input modes, 

give larger errors in the modes calculated by the SA model. This trend was observed for both 

the Solid Plate and the Reinforced Plate. A ratio between the relative wet mode errors and the 

relative dry mode errors of 0.5 was observed for the Solid Plate. The Reinforced Plate had a 

ratio of approximately 1.7 – 1.9.  

Overall it can be concluded that the SA model was able to predict the right modal shapes of 

both plates. The natural frequencies were predicted with high precision for the solid plate, 

indicating a proper performance of the SA model for these gate types. The reinforced plate 

showed larger errors in terms of natural frequencies. Situations where the dry input modes are 
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representing the one of the gate under consideration resulted in smaller natural frequency errors. 

Therefore it is crucial that for this gate type, the dry modes reflect the real life situation, resulting 

in small errors of natural frequencies. 

9.2 Recommendations 

The SA model turned out to have high performance of the predictions for the Solid Plate. Due 

to the relative larger errors in natural frequencies of the reinforced plate the same cannot directly 

be concluded for more complex gate geometries. Therefore it is recommended to perform more 

experiments with these types of gates. Especially gates with multiple stiffeners in different 

directions should be examined, since most gates have this kind of geometry. 

To be concise, it is recommended to redo the experiments for complex gate geometries taking 

the following into account: 

1. Proper attachment of the gate on the U-frame by means of glueing the full contact area.  

2. Proper attachment of the stiffeners on the gate by means of glueing the full contact area. 

3. Level out and fix the accelerometers properly so that they have a small inclination angle 

and follow the plate’s surface. 

4. Wet modal analysis experiments should have sufficient vibration cycles of every mode, 

which can be achieved by longer experiments or larger impulses on the plate. 

5. Proper calibration of the FEM model. 

Taking these points into consideration will increase the reliability of the results. Therefore, the 

reliability of the validation of the semi-analytical model is increased. The modes that served as 

input for the SA model were based on clamped edges of the plate and clamped fixation of the 

stiffeners. Taking the first two recommendations into account this will be ensured. To ensure 

that proper representation of the real modes is achieved, the FEM model should be calibrated. 

This avoids unnecessary errors in the SA prediction. 

Furthermore the threshold for a minimum duration of the wet modal analysis datasets might not 

have been met. Taking point 4 in consideration will ensure a proper length of the data. This was 

already observed when using the Regular Wave Impact experiments, which lasted longer.  
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Appendices 

A. Linear Algebra Tools  

Dynamic equations can be brought back to a set of linear equations most of the time. Since the 

problems can be described in a set of equations one can apply linear algebra on the problems 

for possible dynamic solutions. Two linear algebra tools that are important are the Eigen 

decomposition and the singular value decomposition(SVD). Both techniques lead to a set of 

Eigenvalues and Eigenvectors. In the modal analysis these have a dynamical meaning and are 

known to be the natural frequencies and mode shapes of a system. 

The set of equations that one works with are known as the EOM and originate from Newtons’ 

second law F = ma. The EOMs most of the time have the simple form as given in eq. 40 (without 

damping) and eq. 41 (with damping).  

 𝐹 = 𝑚𝑥̈ + 𝑘𝑥 40 

 𝐹 = 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 41 

In case of an MDOF system several degrees of freedom make that more EOMs are needed to 

describe the systems motion. The number of EOMs and degree of freedoms is in balance. The 

form of the EOMs can be either obtained via Finite Element software, Displacement method or 

the Lagrange method (Spijkers et al., 2005). Eventually an EOM for a MDOF system looks like 

the one given in eq. 42. The M, C and K denotations are matrices that represent the mass, 

damping and stiffness terms for every DOF (Spijkers et al., 2005).  

 𝑭 = 𝑴𝑥̅̈ + 𝑪𝑥̅̇ + 𝑲𝑥̅ 42 

Eigenvalue problem 

Spijkers et al. (2005) elaborate that the Eigenvalue problem starts by solving the homogeneous 

solution of eq. 42, which leads to eq. 43 in the case of no damping. The only non-trivial solution 

of this set of equations leads to the natural frequency of the system. This has a non-trivial 

solution if the determinant of the system is zero. Equation 44 gives an example. 

 𝑴𝑥̅̈ + 𝑲𝑥̅ = 0 →  −𝜔2𝑴 + 𝑲 = 0 43 

 det (−𝜔2𝑴 + 𝑲) = 0 44 

In case of a n x n matrix a Eigen decomposition can be executed. Eigenvalues are found by 

means of setting the determinant of A-λI to zero(Lay, 2012). Solving the corresponding 

equation leads to a set of Eigenvalues. The corresponding Eigenvectors are given by the relation 

Aλ = λx, in which x is the Eigenvector corresponding to the Eigenvalue under consideration. 
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Singular Value Decomposition 

When a matrix has not the same amount of rows as columns, it can be denoted as a m x n matrix. 

In this case Eigen decomposition is not possible. Singular value decomposition is a powerful 

tool to obtain the natural frequencies of a system (singular values) and the mode shapes(left 

singular vector). Lay (2012) gives a detailed explanation on this topic. The reader is referred to 

his book. 
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B. Experimental Modal Analysis – Frequency Domain Decomposition 

This appendix addresses more in detailed information about the FDD and on the algorithm 

implementation in this thesis. First of all the workflow for validation of implementation is given 

where after the algorithm itself is presented. The algorithm is given in a workflow as well to 

maintain the oversight. 

Validation of implementation of Frequency Domain Decomposition algorithm  

Validation of the implementation of the Frequency Domain Decomposition of Brincker, Zhang, 

et al. (2001) is based on synthetic data obtained from the semi-analytical model for Tieleman 

et al (2019). The workflow of the validation technique is given in Figure 61. Based on different 

outputs of the semi-analytical model the mode detection algorithm can be compared to the 

desired output from the semi-analytical model. The different input parameters should be chosen 

such that the different types of analysis in the semi-analytical model examine the same situation. 

Both the Reinforced and Solid plate are checked on their implementation for different 

situations, which are known to be: 

- Eccentric forcing    : Trigger of symmetric and asymmetrical modes  

- Centric forcing    : Trigger of symmetric modes only  

- Various water levels  

- Dry conditions  

- Different values of damping 

- Different measurement frequencies 

 



Appendices 

90 

 

 

Figure 61 Workflow for EMA algorithm implementation validation 

Frequency Domain Decomposition algorithm  

The algorithm is based on the theory of Brincker, Zhang, et al. (2001) and Brincker & Zhang 

(2009) is specially developed for structures with modes that are close to each other. According 

to §6.1.1 it can be seen that the structures under investigation have potentially nearby modes. 

The algorithm consists of several steps that must be performed, these are listed below. The steps 

are elaborated in a workflow(Figure 62) with additional clarification on several subjects. 

- Generate experimental data  

- Sort data into matrix  

- Specify settings such as measurement frequency, number of data points and number of 

segments 

- Perform segmentation on data set if set is merged from multiple sets 

- Perform a Fast Fourier Transform for every data point and segmented data set  

- Create a spectral density matrix  

- Perform a singular value decomposition in order to obtain the singular values and left 

singular vectors 
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Figure 62 Schematic workflow of the Frequency Domain Decomposition approach. 
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C. Problem formulation semi-analytical model (Tieleman et al, 2019) 

Tieleman et al (2019) derived a semi-analytical to predict gate vibrations in a fluid. This 

appendix will treat their reasoning and derivation of the problem, the information given is based 

on the work of Tieleman et al. (2019). The problem is split up in a structural part and a fluid 

part, which are each treated separately where after a coupling is made using interface 

conditions. Figure 63 gives an overview of the examined problem. 

 

Figure 63 Problem under consideration (Tieleman et al, 2019) 

The derivation is based on the assumption that the vertical thin plate is homogeneous and 

isotropic. The result is a 3-dimensional solution for the bending gate vibrations. the 

corresponding equations of motion for both the structure and the fluid can be found in chapter 

2.3.1. 

Tieleman et al(2019) use the technique of separation of variables for both the structural and 

fluid part for both the x- and z-direction. This leads to the following expansions in the frequency 

domain. 

 
𝑤̃ = ∑ ∑ 𝐴𝑘𝑚𝑊𝑥,𝑘(𝑥)𝑊𝑧,𝑚(𝑧)

∞

𝑘=1

∞

𝑚=1

 45 

 
𝜙̃(𝑥, 𝑦, 𝑧) = ∑ ∑ 𝐵𝑝𝑟Φ𝑝𝑟(𝑥, 𝑧)𝑒−𝑖𝑘𝑦,𝑝𝑟𝑦

∞

𝑘=1

∞

𝑚=1

 46 

The goal is now to rewrite the fluid modal shapes in terms of the structural modal shapes using 

the interface conditions at the gate-fluid interface. Tieleman et al(2019) eventually obtain a 

solution for both the water pressures in the fluid volume as well as the deflections of the gate. 

The solution for the deflections considers the amplitude matrix, which needs to be multiplied 

by the structural modes to obtain a real solution. The amplitude matrix is determined via 

equation 47.  

 
∑ ∑ [𝜌𝑠(𝜔𝑘𝑚

2 − 𝜔2)𝛿𝑘𝑙𝛿𝑚𝑛Γ𝑙𝑛 − 𝐿𝑘𝑚,𝑙𝑛 + 𝑅𝑘𝑚,𝑙𝑛]𝐴𝑙𝑛 = 𝐹𝑙𝑛

∞

𝑚=1

∞

𝑘=1

 47 

In which the variables are expressed by the following equations.  
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𝐿𝑘𝑚,𝑙𝑛 = 𝑖𝜔2𝜌𝑓 ∑ ∑

𝑄𝑘𝑚,𝑝𝑟𝑄𝑙𝑛,𝑝𝑟

𝑘𝑦,𝑝𝑟∆𝑝𝑟

∞

𝑟=1

∞

𝑝=1
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𝑅𝑘𝑚,𝑙𝑛 = 𝑖𝜔2𝜌𝑓 ∑ ∑

𝑄𝑘𝑚,𝑝𝑟𝑄𝑙𝑛,𝑝𝑟

𝑘𝑦,𝑝𝑟∆𝑝𝑟

∞

𝑟=1

∞

𝑝=1

 49 

 
𝐹𝑙𝑛 = ∬ 𝑓𝑒̃ (𝑥, 𝑧, 𝜔)𝑊𝑙𝑛(𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 50 

 
𝑄𝑘𝑚,𝑝𝑟 = ∬ 𝑊𝑚𝑘(𝑥, 𝑧)Φ𝑝𝑟(𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 51 

 
𝑄𝑙𝑛,𝑝𝑟 = ∬ 𝑊𝑙𝑛(𝑥, 𝑧)Φ𝑝𝑟(𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 52 

Figure 13 gives a roadmap to obtain a solution that fully depends on the structural modes only.  

Structural problem  

The structural problem is dominated by the EOM and its boundary conditions. 

 
𝜌

𝜕2𝑤

𝜕𝑡2
+ 𝐷 [

𝜕4𝑤

𝜕𝑥4
+

𝜕4𝑤

𝜕𝑥2𝜕𝑧2
+

𝜕4𝑤

𝜕𝑧4
] = −𝑓𝑙 + 𝑓𝑟 + 𝑓𝑝 53 

In which D is the uniform bending rigidity and fl, fr and fp are the time signals of the external 

forces.  

Assuming a simply supported structure the following boundary conditions are defined. 

 𝑤(𝑥 = 0, 𝑧)  =  𝑀𝑥𝑥(𝑥 = 0, 𝑧)  =  𝑤(𝑥 = 𝐿𝑥 , 𝑧)  =  𝑀𝑥𝑥 (𝑥 = 𝐿𝑥 , 𝑧)  =  0  54 

  𝑤(𝑥, 𝑧 = 0)  =  𝑀𝑥𝑥(𝑥, 𝑧 = 0)  =  𝑤(𝑥, 𝑧 = 𝐿𝑧)  =  𝑉𝑧𝑦 (𝑥 , 𝑧 = 𝐿𝑧)  =  0  55 

The equation of motion can be rewritten in the frequency domain. The formulation is given in 

equation 43. 

 
−𝜌𝜔2𝑤̃(𝑥, 𝑧, 𝜔) + 𝐷 [

𝜕4𝑤̃

𝜕𝑥4
+

𝜕4𝑤̃

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤̃

𝜕𝑧4
] = −𝑓𝑙̃ + 𝑓𝑟 + 𝑓𝑝̃ 56 

Fluid problem 

the fluid problem is dominated by the equations of motion given in equations 57- 59 and are 

based on the fact that the fluid experiences high Reynolds numbers.  
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∇2𝜙(𝑥, 𝑦, 𝑧, 𝑡) −

1

𝑐𝑝
2

𝜕2𝜙

𝜕𝑡2
= 0 57 

 
𝑝(𝑥, 𝑦, 𝑧, 𝑡) = −𝜌𝑓

𝜕𝜙

𝜕𝑡
 58 

 𝑣(𝑥, 𝑦, 𝑧, 𝑡) = ∇𝜙(𝑥, 𝑦, 𝑧, 𝑡) 59 

The problem may be solved by introducing a set of boundary conditions, and is coupled with 

the structural problem by means of an interface condition.  

 𝜕𝜙

𝜕𝑥
|

𝑥=0
=

𝜕𝜙

𝜕𝑥
|

𝑥=𝐿𝑥

=
𝜕𝜙

𝜕𝑧
|

𝑧=0
= 0 60 

 𝜕2𝜙

𝜕𝑡2
+ 𝑔

𝜕𝜙

𝜕𝑧
= 0 61 

 𝜕𝜙

𝜕𝑦
|

𝑦=0

=
𝜕𝑤

𝜕𝑡
 62 

The equations of motion can be rewritten in the frequency domain. This holds for the boundary 

conditions as well. The formulations are given in equations 63-68. 

 
∇2𝜙̃(𝑥, 𝑦, 𝑧, 𝜔) − 𝑘𝑓

2𝜙̃(𝑥, 𝑦, 𝑧, 𝜔) = 0 ;  𝑘𝑓
2 =

𝜔2

𝑐𝑝
2

 63 

 𝑝(𝑥, 𝑦, 𝑧, 𝜔) = −𝜌𝑓𝑖𝜔𝜙̃(𝑥, 𝑦, 𝑧, 𝜔) 64 

 𝑣̃(𝑥, 𝑦, 𝑧, 𝜔) = ∇𝜙̃(𝑥, 𝑦, 𝑧, 𝜔) 65 

 𝜕𝜙̃

𝜕𝑥
|

𝑥=0

=
𝜕𝜙̃

𝜕𝑥
|

𝑥=𝐿𝑥

=
𝜕𝜙̃

𝜕𝑧
|

𝑧=0

= 0 66 

 𝜔2

𝑔
𝜙̃|

𝑧=ℎ

=
𝜕𝜙̃

𝜕𝑧
|

𝑧=ℎ

 67 

 𝜕𝜙̃

𝜕𝑦
|

𝑦=0

= 𝑖𝜔𝑤̃ 68 
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D. Semi-analytical modes and natural frequencies  

This appendix gives an overview of all natural frequencies and mode shapes of the different 

gates based on the results of the semi-analytical model. Modes in the dry and wet, for different 

water levels, are generated by the semi-analytical model and serve as a basis for the validation 

of the model. The modes are compared to the outcome of the FDD of the experimental data 

where after they are classified in either detected or not detected. Depending on the result 

additional steps on the settings or input of the semi-analytical model can be taken for further 

research.  

Natural frequencies Solid plate  

 f1 f2 f3 f4 f5 f6 f7 

Dry  34.5 74.1 87.7 129.5 162.3 167.6 210.6 

Wet 0.3   m 28.0 45.8 62.2 96.1 112.9 116.5 124 

Wet 0.4   m 20.1 45.5 49 94.7 95 100.6 143.7 

Wet 0.5   m  15.1 40.1 41.9 77.7 86.6 92.7 139.1 

Wet 0.56 m  12.6 33.6 38.1 66.4 81.7 88.6 120.9 

Wet 0.6   m 11.4 29.3 35.6 59.1 76.2 79.1 105.8 

Table 36 Natural frequencies for different situations of Solid Plate 

Natural frequencies Reinforced plate  

 f1 f2 f3 f4 f5 f6 f7 

Dry  84.3 95.3 136.6 171.5 184.2 209.1 216.5 

Wet 0.3   m 43.4 71.2 85.5 99.9 110.9 170 184.2 

Wet 0.4   m 29.3 63.9 90.6 96.6 123.5 157 187.5 

Wet 0.5   m  25.8 47.8 61.4 84.7 96.5 127.3 182.5 

Wet 0.56 m  26 47.8 61.6 79 91.4 96.3 133 

Wet 0.6   m 23.1 35.1 57.6 60.6 76.1 95.4 96.4 

Table 37 Natural frequencies for different situations of Reinforced Plate 
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Mode shapes Solid Plate 
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Mode shapes Reinforced Plate 
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E. Experiments - overview 

This appendix contains an overview of all experiments that are executed. The experiments are 

divided in 5 categories: 

1. Dry modal analysis  

2. Dry hammer impacts  

3. Wet modal analysis  

4. Regular wave impacts  

5. Irregular wave impacts 

 

Solid Plate  

# Test 

ID 

Test name  Forcing method  Measurement 

frequency 

Waterlevel 

3 001 Dry modal analysis Random hammer impacts 5000 - 

3 002 Dry modal analysis Random hammer impacts 5000 - 

3 003 Dry modal analysis Random hammer impacts 5000 - 

3 004 Dry modal analysis Random hammer impacts 5000 - 

3 005 Dry modal analysis Random hammer impacts 5000 - 

3 006 Dry modal analysis Random hammer impacts 5000 - 

3 007 Dry modal analysis Random hammer impacts 5000 - 

3 008 Dry modal analysis Random hammer impacts 5000 - 

3 009 Dry modal analysis Random hammer impacts 5000 - 

3 010 Dry modal analysis Random hammer impacts 5000 - 

4 001 Dry hammer impact Single hammer impacts loc 0-6 5000   

4 002 Dry hammer impact Single hammer impacts loc 0-7 5000  

4 003 Dry hammer impact Single hammer impacts loc 0-8 5000  

4 004 Dry hammer impact Single hammer impacts loc 0-8 5000  

4 005 Dry hammer impact Single hammer impacts loc 0-8 5000  

4 006 Dry hammer impact Single hammer impacts loc 0-8 5000  

4 007 Dry hammer impact Single hammer impacts loc 0-8 5000  

4 008 Dry hammer impact Single hammer impacts loc 0-8 5000  

4 009 Dry hammer impact Single hammer impacts loc 0-8 5000  

4 010 Dry hammer impact Single hammer impacts loc 0-8 5000  

4 011 Dry hammer impact Single hammer impacts loc 0-8 5000  

4 012 Dry hammer impact Single hammer impacts loc 0-8 5000  

4 013 Dry hammer impact Single hammer impacts loc 0-8 5000  

5 001 Wet modal analysis Random hammer impacts 5000 0.304 

5 002 Wet modal analysis Random hammer impacts 5000 0.304 

5 003 Wet modal analysis Random hammer impacts 5000 0.304 

5 004 Wet modal analysis Random hammer impacts 5000 0.304 

5 005 Wet modal analysis Random hammer impacts 5000 0.304 

5 006 Wet modal analysis Random hammer impacts 5000 0.304 

5 007 Wet modal analysis Random hammer impacts 5000 0.401 
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5 008 Wet modal analysis Random hammer impacts 5000 0.401 

5 009 Wet modal analysis Random hammer impacts 5000 0.401 

5 010 Wet modal analysis Random hammer impacts 5000 0.500 

5 011 Wet modal analysis Random hammer impacts 5000 0.500 

5 012 Wet modal analysis Random hammer impacts 5000 0.500 

5 013 Wet modal analysis Random hammer impacts 5000 0.600 

5 014 Wet modal analysis Random hammer impacts 5000 0.600 

5 015 Wet modal analysis Random hammer impacts 5000 0.600 

5 016 Wet modal analysis Random hammer impacts 5000 0.560 

5 017 Wet modal analysis Random hammer impacts 5000 0.560 

5 018 Wet modal analysis Random hammer impacts 5000 0.560 

5 019 Wet modal analysis Random hammer impacts 5000 0.600 

5 020 Wet modal analysis Random hammer impacts 5000 0.600 

5 021 Wet modal analysis Random hammer impacts 5000 0.600 

5 022 Wet modal analysis Random hammer impacts 5000 0.631 

5 023 Wet modal analysis Random hammer impacts 5000 0.631 

5 024 Wet modal analysis Random hammer impacts 5000 0.631 

6 001 Regular wave impact Regular waves 10000 0.600 

6 002 Regular wave impact Regular waves 10000 0.600 

6 003 Regular wave impact Regular waves 10000 0.600 

6 004 Regular wave impact Regular waves 10000 0.600 

6 005 Regular wave impact Regular waves 10000 0.600 

6 006 Regular wave impact Regular waves 10000 0.560 

6 007 Regular wave impact Regular waves 10000 0.560 

6 008 Regular wave impact Regular waves 10000 0.560 

6 009 Regular wave impact Regular waves 10000 0.560 

6 010 Regular wave impact Regular waves 10000 0.560 

6 011 Regular wave impact Regular waves 10000 0.630 

6 012 Regular wave impact Regular waves 10000 0.630 

6 013 Regular wave impact Regular waves 10000 0.630 

6 014 Regular wave impact Regular waves 10000 0.630 

7 001 Irregular wave 

impact 

Irregular wave spectrum 10000 0.600 

7 002 Irregular wave 

impact 

Irregular wave spectrum 10000 0.600 

7 003 Irregular wave 

impact 

Irregular wave spectrum 10000 0.600 

7 004 Irregular wave 

impact 

Irregular wave spectrum 10000 0.599 

7 005 Irregular wave 

impact 

Irregular wave spectrum 10000 0.599 

7 006 Irregular wave 

impact 

Irregular wave spectrum 10000 0,600 
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7 007 Irregular wave 

impact 

Irregular wave spectrum 10000 0.560 

7 008 Irregular wave 

impact 

Irregular wave spectrum 10000 0.630 

 

Reinforced plate  

# Test 

ID 

Test name Activity Measurement 

frequency 

Waterlevel 

3 033 Dry modal analysis Final - with tape all sides 5000  

3 034 Dry modal analysis Final - with tape all sides 5000  

3 035 Dry modal analysis Final - with tape all sides 5000  

3 036 Dry modal analysis Final - with tape all sides 5000  

3 037 Dry modal analysis Final - with tape all sides 5000  

4 001 Dry hammer impact Outside flume - Loc 0 1000   

4 002 Dry hammer impact Outside flume - Loc 1 1000 - 

4 003 Dry hammer impact Outside flume - Loc 2 1000 - 

4 004 Dry hammer impact Outside flume - Loc 3 1000 - 

4 005 Dry hammer impact Outside flume - Loc 4 1000 - 

4 006 Dry hammer impact Outside flume - Loc 5 1000 - 

4 007 Dry hammer impact Outside flume - Loc 6 1000 - 

4 008 Dry hammer impact Outside flume - Loc 7 1000 - 

4 009 Dry hammer impact Outside flume - Loc 8 1000 - 

4 - Dry hammer impact In flume - tape test - tape all sides - 

loc 0 

1000 

- 

4 010 Dry hammer impact In flume - tape test - tape all sides - 

Loc 1 

1000 

- 

4 011 Dry hammer impact In flume - tape test - tape all sides - 

Loc 2 

1000 

- 

4 012 Dry hammer impact In flume - tape test - tape all sides - 

Loc 3 

1000 

- 

4 013 Dry hammer impact In flume - tape test - tape all sides - 

Loc 4 

1000 

- 

4 014 Dry hammer impact In flume - tape test - tape all sides - 

Loc 5 

1000 

- 

4 015 Dry hammer impact In flume - tape test - tape all sides - 

Loc 6 

1000 

- 

4 016 Dry hammer impact In flume - tape test - tape all sides - 

Loc 7 

1000 

- 

4 017 Dry hammer impact In flume - tape test - tape all sides - 

Loc 8 

1000 

- 

4 - Dry hammer impact In flume - tape test - no tape - loc 0 1000 - 

4 018 Dry hammer impact In flume - tape test - no tape - Loc 1 1000 - 
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4 019 Dry hammer impact In flume - tape test - no tape - loc 2 1000 - 

4 020 Dry hammer impact In flume - tape test - no tape - loc 3 1000 - 

4 021 Dry hammer impact In flume - tape test - no tape - loc 4 1000 - 

4 022 Dry hammer impact In flume - tape test - no tape - loc 5 1000 - 

4 023 Dry hammer impact In flume - tape test - no tape - loc 6 1000 - 

4 024 Dry hammer impact In flume - tape test - no tape - loc 7 1000 - 

4 025 Dry hammer impact In flume - tape test - no tape - loc 8 1000 - 

4 028 Dry hammer impact Final - with tape - loc 0 5000 - 

4 029 Dry hammer impact Final - with tape - loc 1 5000  

4 030 Dry hammer impact Final - with tape - loc 2 5000  

4 031 Dry hammer impact Final - with tape - loc 3 5000  

4 032 Dry hammer impact Final - with tape - loc 5 5000  

4 033 Dry hammer impact Final - with tape - loc 6 5000  

4 034 Dry hammer impact Final - with tape - loc 7 5000  

4 035 Dry hammer impact Final - with tape - loc 8 5000  

4 036 Dry hammer impact Final - with tape - loc 4 5000  

5 001 Wet modal analysis h = 0.3 Hammer front 5000 0.302 

5 002 Wet modal analysis h = 0.3 Hammer front 5000 0.302 

5 003 Wet modal analysis h = 0.3 Hammer front 5000 0.302 

5 004 Wet modal analysis h = 0.3 Hammer back 5000 0.302 

5 005 Wet modal analysis h = 0.4 Hammer front 5000 0.403 

5 006 Wet modal analysis h = 0.4 Hammer front 5000 0.403 

5 007 Wet modal analysis h = 0.4 Hammer front 5000 0.403 

5 008 Wet modal analysis h = 0.4 Hammer front through water 5000 0.403 

5 009 Wet modal analysis h = 0.4 Hammer front through water 5000 0.403 

5 010 Wet modal analysis h = 0.4 Hammer front through water 5000 0.403 

5 011 Wet modal analysis h = 0.4 Hammer back 5000 0.403 

5 012 Wet modal analysis h = 0.5 Hammer front 5000 0.504 

5 013 Wet modal analysis h = 0.5 Hammer front 5000 0.504 

5 014 Wet modal analysis h = 0.5 Hammer front 5000 0.504 

5 015 Wet modal analysis h = 0.5 Hammer front through water 5000 0.504 

5 016 Wet modal analysis h = 0.5 Hammer front through water 5000 0.504 

5 017 Wet modal analysis h = 0.5 Hammer front through water 5000 0.504 

5 018 Wet modal analysis h = 0.5 Hammer back 5000 0.504 

5 019 Wet modal analysis h = 0.56 Hammer front through water 5000 0.56 

5 020 Wet modal analysis h = 0.56 Hammer front through water 5000 0.56 

5 021 Wet modal analysis h = 0.56 Hammer front through water 5000 0.56 

5 022 Wet modal analysis h = 0.56 Hammer back 5000 0.56 

5 023 Wet modal analysis h = 0.56 Hammer back 5000 0.56 

5 024 Wet modal analysis h = 0.56 Hammer back 5000 0.56 

5 025 Wet modal analysis h = 0.56 Hammer front through water 

lower 

5000 0.56 

5 026 Wet modal analysis h = 0.56 Hammer front through water 

lower 

5000 0.56 
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5 027 Wet modal analysis h = 0.56 Hammer front through water 

lower 

5000 0.56 

5 028 Wet modal analysis h = 0.6 Hammer front through water 5000 0.6 

5 029 Wet modal analysis h = 0.6 Hammer front through water 5000 0.6 

5 030 Wet modal analysis h = 0.6 Hammer front through water 5000 0.6 

5 031 Wet modal analysis h = 0.63 Hammer front through water 5000 0.63 

5 032 Wet modal analysis h = 0.63 Hammer front through water 5000 0.63 

5 033 Wet modal analysis h = 0.63 Hammer front through water 5000 0.63 

5 034 Wet modal analysis h = 0.6 Hammer front through water 5000 0,599 

5 035 Wet modal analysis h = 0.6 Hammer front through water 5000 0,599 

5 036 Wet modal analysis h = 0.6 Hammer front through water 5000 0,599 

5 037 Wet modal analysis h = 0.3 Hammer front only dry 5000 0.301 

5 038 Wet modal analysis h = 0.3 Hammer front dry and 

through water 

5000 0.301 

5 039 Wet modal analysis h = 0.4 Hammer front dry only 5000 0.402 

5 040 Wet modal analysis h = 0.4 Hammer front through water 

and dry 

5000 0.402 

5 041 Wet modal analysis h = 0.5 Hammer front through water 5000 0.502 

5 042 Wet modal analysis h = 0.56 Hammer front through water 5000 0.559 

5 043 Wet modal analysis h = 0.6 Hammer front through water 5000 0.599 

5 044 Wet modal analysis h = 0.6 Hammer front through water 5000 0.599 

5 045 Wet modal analysis h = 0.63 Hammer front through water 5000 0.631 

6 001 Regular wave impact Leakage test - mechanical fit 50000 0.6 

6 002 Regular wave impact Leakage test - tape  - h 0,62 5000 0.62 

6 003 Regular wave impact Leakage test - tape  - h 0,6 5000 0.6 

6 004 Regular wave impact AS56R 5000 0.56 

6 005 Regular wave impact AS56R 10000 0.559 

6 006 Regular wave impact BS56R 10000 0.559 

6 007 Regular wave impact CS56R 10000 0.559 

6 008 Regular wave impact DS56R 10000 0.559 

6 009 Regular wave impact ES56R 10000 0.559 

6 010 Regular wave impact AS60R 10000 0.6 

6 011 Regular wave impact BS60R 10000 0.6 

6 012 Regular wave impact CS60R 10000 0.6 

6 013 Regular wave impact DS60R 10000 0.6 

6 014 Regular wave impact ES60R 10000 0.6 

6 016 Regular wave impact BS63R 10000 0.63 

6 017 Regular wave impact CS63R 10000 0.63 

6 018 Regular wave impact DS63R 10000 0.63 

6 019 Regular wave impact ES63R 10000 0.63 

6 020 Regular wave impact CS60R - redone 125x 10000 0.6 

6 021 Regular wave impact ES60R - redone 125x 10000 0.6 

7 002 Irregular wave impact AS56I 10000 0.56 

7 003 Irregular wave impact AS60I 10000 0.6 
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7 004 Irregular wave impact AS63I 10000 0.56 

7 005 Irregular wave impact BS60I 10000 0.6 

7 006 Irregular wave impact CS60I frozen computer 10000 0.6 

7 007 Irregular wave impact CS60I 10000 0,599 

7 008 Irregular wave impact DS60I 10000 0,599 

7 009 Irregular wave impact ES60I 10000 0,599 

7 010 Irregular wave impact BS60I - redone 125x 10000 0.6 

7 011 Irregular wave impact AS60I - redone 125x 10000 0.6 
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F. Identified modes  

All modes that are identified during the different experiments are given in this appendix. These 

modes have been part of the modal analysis in chapter 7. First the dry modes for both plates are 

given, afterwards the modes from the Wet Modal Analysis experiments are visualized. Finally 

the identified modes for the Regular Wave Impacts are listed. The wet modes are divided in 

sections containing the FEM and FDD input. FDD input refers to the identified dry FEM modes 

using the FDD method. The plots contain two rows for each water level. The top row represents 

the SA predictions while the bottom row depicts the identified mode shapes. 

Dry modes – Solid Plate 

 

Dry modes – Reinforced Plate  

 

Wet modes – Solid Plate 

A division is made between modes that are generated with FEM modes as input and with FDD 

modes as input. The figures below give both overviews of SA modes and the corresponding 
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identified mode. The top rows are the SA predictions while the bottom rows are the identified 

mode shapes. 
 

 

Wet modes – Reinforced Plate 

The Reinforced Plate makes used of the strain gauge data. Small amplitudes made it difficult to 

use the accelerometers. Strain gauges are more precise. The figures below give both overviews 

of SA modes and the corresponding identified mode. The top rows are the SA predictions while 

the bottom rows are the identified mode shapes. 
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FEM input 
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Identified dry FEM input 
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Regular Wave Impact – Reinforced Plate 

 

 

 

 


