
 
 

Delft University of Technology

Meta-control and Self-Awareness for the UX-1 Autonomous Underwater Robot

Hernandez Corbato, Carlos; Milosevic, Zorana; Olivares, Carmen; Rodriguez, Gonzalo; Rossi, Claudio

DOI
10.1007/978-3-030-35990-4_33
Publication date
2019
Document Version
Final published version
Published in
Robot 2019

Citation (APA)
Hernandez Corbato, C., Milosevic, Z., Olivares, C., Rodriguez, G., & Rossi, C. (2019). Meta-control and
Self-Awareness for the UX-1 Autonomous Underwater Robot. In M. F. Silva, J. Luís Lima, L. P. Reis, A.
Sanfeliu, & D. Tardioli (Eds.), Robot 2019: 4th Iberian Robotics Conference - Advances in Robotics (pp.
404-415). (Advances in Intelligent Systems and Computing; Vol. 1092 AISC). Springer.
https://doi.org/10.1007/978-3-030-35990-4_33
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-35990-4_33
https://doi.org/10.1007/978-3-030-35990-4_33


Green Open Access added to TU Delft Institutional Repository 

‘You share, we take care!’ – Taverne project 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care


Meta-control and Self-Awareness for the
UX-1 Autonomous Underwater Robot

Carlos Hernandez Corbato1(B), Zorana Milosevic2, Carmen Olivares2,
Gonzalo Rodriguez2, and Claudio Rossi2

1 Delft University of Technology, 2628 CD Delft, The Netherlands
c.h.corbato@tudelft.nl

2 Centre for Automation and Robotics UPM-CSIC, Madrid, Spain

Abstract. Autonomous underwater robots, such as the UX-1 developed
in the UNEXMIN project, need to maintain reliable autonomous oper-
ation in hazardous and unknown environments. Because of the lack of
any kind of real-time communications with a human operated command
and control station, the control architecture needs to be enhanced with
mission-level self-diagnosis and self-adaptation properties an additional
provided by some kind of supervisory or “metacontrol” component to
ensure its reliability. In this paper, we propose an ontological implemen-
tation of such component based on Web Ontology Language (OWL) and
the Semantic Web Rule Language (SWRL). The solution is based on
an ontology of the functional architecture of autonomous robots, which
allows inferring the effects of the performance of its constituents compo-
nents in the functions required during the robot mission, and generate
the reconfigurations needed to maintain operation reliably. The concept
solution has been validated using a hypothetical set of scenarios imple-
mented in an OWL ontology and an OWLAPI-based reasoner, which
we aim at validating by integrating the metacontrol reasoning with a
realistic simulation of the underwater robot.

1 Introduction

The objective of the European Project UNEXMIN1 is to develop an underwater
vehicle (see Fig. 1) capable of autonomously surveying old mine sites, that are
nowadays flooded2. The information available regarding the structural layout of
the tunnels of such mines is limited, imprecise or even totally lacking. Therefore,
prior to any decision, a survey and prospecting of the mine tunnels network
should be conducted. Since exploration by human divers is mostly ruled out
due to the risks involved, the use of robotic systems appears the only possible
solution.

Operating in such environments poses additional requirements, in addition to
the “classical” Planning and GNC (Guidance, Navigation and Control) features
1 H2020, Grant agreement No 690008.
2 There is a high interest in re-opening some of these sites, since the European Union

is largely dependent on raw materials imports.

c© Springer Nature Switzerland AG 2020
M. F. Silva et al. (Eds.): ROBOT 2019, AISC 1092, pp. 404–415, 2020.
https://doi.org/10.1007/978-3-030-35990-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35990-4_33&domain=pdf
https://doi.org/10.1007/978-3-030-35990-4_33


Meta-control and Self-Awareness 405

Fig. 1. The UX-1 prototype during a dive in Kaatiala Mine (Finland). Image credits:
UNEXMIN consortium, www.unexmin.eu

of autonomous robots. In fact, due to the lack of any kind of real-time com-
munications with a human operated command and control station, the robot,
besides of taking autonomous decisions regarding its mission, must be provided
with enhanced fault-tolerance capabilities. Here, we decided to go beyond sim-
ple “fault tolerance”. Our purpose is to augment the UX-1 control architecture
with self-adaptation properties to ensure the reliability of its behavior, using the
Metacontrol architectural framework by Hernandez et al. [9] and ontological rea-
soning. The UX-1 perception and motion systems are highly redundant, which
allows for multiple (sub-optimal) configurations. Here, we focus on a subset of
possibilities for its motion system (see Fig. 2), and demonstrate how, thanks
to the self-diagnosis and self-adaptation capabilities provided by the Metacon-
trol, it can respond to thrusters failures with suitable reconfiguration of both its
hardware and software.

We argue that ontological reasoning to drive Metacontrol operation fulfills
the needs in the previous context. Ontologies are suitable to capture the sys-
tem’s architecture and capabilities with the appropriate level of abstraction.
Ontological reasoning allows to separate the rules for metacontrol operation (i.e.
diagnostics and reconfiguration) from the application specific knowledge, and
the use of off-the-shelf reasoners, facilitating the validation of the architectural
reconfigurations inferred.

This paper presents three novel contributions to the Metacontrol framework:
(1) the extension of the Teleological and Ontological Metamodel for Autonomous
Systems (TOMASys), to include models of quality attributes, concretely “per-
formance”, (2) the use of ontological reasoning for self-diagnostics and recon-
figuration, and (3) its proof-of-concept application in the context of the UX-1
autonomous underwater robot.

The paper is organised as follows. Section 2 discusses related research on self-
adaptation and ontologies in robotics. Section 3 presents the general Metacontrol
framework and the extension of the TOMASys metamodel. Section 4 introduces
the specific autonomous underwater robot and its functional architecture, and
its ontological modelling with TOMASys. Finally, Sect. 5 discusses the benefits
and limitations of solution proposed and addresses next steps in this research
and Sect. 6 presents some concluding remarks.

www.unexmin.eu


406 C. Hernandez Corbato et al.

Fig. 2. Left: Main components if the UX-1 robot. Right: thrusters allocation.

2 Related Work

In robotics, ontologies and symbolic reasoning have proven effective for mis-
sion management and high-level representation of robot environments and tasks
[1], thanks to their ability to represent heterogeneous knowledge. In particular,
underwater autonomous robots are a very good testbed for this kind of systems,
since their working environment is difficult and hazardous for humans, and hence
the need for autonomy and resilience is much more compelling. Zhai et al. [18],
developed a OWL and SRWL-based ontology to provide users of underwater
robots with query services to know the status of the robotic systems and the
underwater environment. We use the same technologies, but to implement auto-
matic diagnosis and reconfiguration of an autonomous underwater robot. The
Ontology for Autonomous Systems (OASys) [3] is meant to describe and drive
the entire life-cycle of autonomous systems, from engineering to operation, base
on metamodelling and ontologies.

Control systems of autonomous robots are software systems. The self-
adaptation and the use of models at runtime has been extensively studied in
software systems in the last decade [2,17]. Simple examples have shown that
models of software properties, such as execution time, can be used to optimize
the software design of a robot according to associated requirements, such as
safety [4,15].

In a previous work [9] we demonstrated how the metamodelling approach in
[3] can be used for self-adaptation at the mission level at runtime, going beyond
component fault-tolerance. In this work, we advance in that roadmap with the
use of ontologies to reason on the robot control architecture and its properties
during the mission.

3 Metacontrol Framework

The work presented here extends the framework by Hernandez et al. [9] for self-
adaptive autonomous systems. The core idea (Fig. 3) is to leverage the engineer
knowledge of the system in the form of a runtime model, to drive its runtime self-
adaptation capabilities. This knowledge is captured as a model of the functional
architecture during system development [7], by using the Integrated Systems



Meta-control and Self-Awareness 407

Engineering and PPOOA (ISE&PPOOA) method for Model-Based Systems
Engineering (MBSE) [6]. Following the functional approach in ISE&PPOOA
allows to raise the level of abstraction in the system’s representation and focus
on representing the architectural properties that are particularly relevant for
the system’s capabilities required in the mission at hand. To create an applica-
tion and domain independent solution, the Metacontrol framework departs from
knowledge representation approaches in robotics, centered in application-specific
models, by applying a metamodelling approach. The TOMASys metamodel [9] is
designed to represent runtime models for metacontrol, based on other metamod-
els for MBSE (UML, SysML), so that eventually transformations can be defined
to automatically generate the runtime model from the functional architecture
model.

runtime

Control System

control 
system 
development

Metacontroller

runtime 
model

monitoring

functional 
architecture

model

TOMASys 
metamodel

engineering time

conforms to

Fig. 3. The Metacontrol approach.

3.1 TOMASys

TOMASys is a metamodel to represent the functional architecture of an
autonomous robot, and distinctively also its runtime state. TOMASys functional
concepts are based on the theoretical framework for autonomous cognitive sys-
tems by Lopez [13], and TOMASys elements related to structure are inspired by
models for component-based software [14]. Here we will only present briefly the
functional elements in TOMASys, displayed in its ontological version in Fig. 4, a
complete description of the original TOMASys metamodel can be found in [8].

A differentiating aspect in TOMASys is that it takes the functional app-
roach from systems engineering and functional modelling. TOMASys explicitly
captures the relation between the robot’s objectives3 and its control architec-
ture through functional decomposition. At each instant, the system pursues a
set of Objectives, or specific instances of the functional requirements of the sys-
tem, i.e. the Functions. A FunctionDesign (FD) is selected in order to Solve
each particular Objective using concrete system resources, i.e. Components. The
FunctionDesign contains a set of Roles that define how certain Components in
the system are configured to fulfill the Function. The instantiation or grounding
of a FunctionDesign by the Binding of its defined Roles to actual Components is

3 We use italics for the elements in TOMASys ontology.



408 C. Hernandez Corbato et al.

Fig. 4. Main classes in the OWL implementation of TOMASys

represented by a FunctionGrounding (FG). The FunctionDesign may also require
the realisation of other Objectives, which would in turn require the instantiation
of other FunctionDesign that solve them, and so on. This is how TOMASys
represents functional decomposition.

Summarily, a TOMASys model represents the control architecture of an
autonomous robot through two sets of elements. The first set includes Objec-
tives, FGs, Bindings, Components and additional property values and links to
capture the information of dynamic state of the functional hierarchy of the sys-
tem. The second set includes Functions, FDs and Roles, to represent the static
knowledge about the system resources and architectural alternatives.

TOMASys originally supported simple fault-based reasoning for diagno-
sis and component fault-tolerance and functional reconfiguration [9]. This was
implemented as fault-propagation in the functional hierarchy model (FGs and
Objectives). In this work we address quality attributes of functions, using perfor-
mance as an example. For this, we have extended TOMASys with three elements.
Performance is a property of Components, FunctionGroundings and Objectives,
and it is a real number [0.0, 1.0]. Efficacy is a property of FunctionDesigns,
also [0.0, 1.0], that express their ability to solve the objective they address. The
instantaneous performance achieved at runtime for each objective in the system
depends on the performance of the FunctionGrounding solving it and the efficacy
of the FD it grounds. To compute the performance of the FG, different models
could be considered, and we have enabled the definition of different performance
models for different FDs through SWRL rules. However, here we will consider
only a default model for all FDs, which equals the performance of its grounded
FG to the average of the performances of the components binded to the roles
defined by the FD.

3.2 Ontological Reasoning for Metacontrol

One of the core contributions of this work is the implementation of TOMASys
in an OWL ontology with SWRL rules. This way, the metacontrol operation for
functional diagnosis and reconfiguration is implemented using an OWL reasoner,
with the following benefits. First, it facilitates validation and verification by using



Meta-control and Self-Awareness 409

standard reasoners for the metacontrol operation, and explicitly separating it
from the model semantics. Finally, it opens the door to extend the runtime
model with knowledge from other robot ontologies, and enables the use of the
multiple ontological tools for metacontrol development.

The Semantic Web Rule Language (SWRL) extends OWL with the capabil-
ity to specify Horn-like rules (i.e. statements of the form “if-then”) to perform
inferences over OWL individuals, so new knowledge about those individuals can
be generated. An example of the SWRL rules developed to implement TOMASys
semantics is shown in Table 1. Concrete, these rules allow to perform functional
diagnosis: they identify which objectives are affected by an error in a component.
R1 propagates an error detected in a component by the monitoring infrastruc-
ture, to the role it plays in a function, by setting the binding’s status to ERROR.
R2 scales that error to the function grounding, and R3 to the objective being
realised by the function grounding. Rules 4 and 5 in Table 2 determine that a
function design that uses a component that is not available because of being
unique and in ERROR, is not realisable.

Table 1. Example of the SWRL rules implementing TOMASys semantics for error
propagation.

R1 Binding(?b) ˆbinding component(?b, ?c) ˆc status(?c, false) ->b status(?b, false)
R2 Binding(?b) ˆhasBindings(?fg, ?b) ˆb status(?b, false) ->fg status(?fg, false)

R3
Objective(?o) ˆfg status(?fg, false) ˆFunctionGrounding(?fg) ˆrealises(?fg, ?o)
->o status(?o, false)

Table 2. SWRL rules implementing.

R4
Component(?c) ˆtypeC(?c, ?cc) ˆc status(?c, false) ˆcc unique(?cc, true)
->cc availability(?cc, false)

R5
FunctionDesign(?fd) ˆComponentSpecification(?cs) ˆcc availability(?cc, false) ˆ
Role(?r) ˆroleDef(?r, ?cs) ˆtypeC(?cs, ?cc) ˆroles(?fd, ?r) ˆComponentClass(?cc)
->realisability(?fd, false)

We have used a rule-based reasoner that supports SWRL, concretely Pellet
[16], and OWLAPI, to implement the metacontrol operation as symbolic infer-
ence, in a similar approach to that of [11]. The TOMASys metamodel assumes
that the architectural alternatives (FDs) are finite and known, and the statuses
of the system components are fully known through monitoring. We use OWLAPI
constructs to implement our reasoning with the partial-closed world assumption.
The metacontrol reasoning operation consists of functional diagnosis and recon-
figuration.

Firstly, the functional diagnosis proceeds as follows. The monitoring obser-
vations about the system components are converted into assertions of OWL



410 C. Hernandez Corbato et al.

individuals. Then, the reasoner is executed on the updated ontology, and the
status of FGs and Objectives is inferred using the TOMASys SWRL rules. In
this work, in addition to the rules for functional diagnosis in Table 1, SWRL
rules are defined for the FDs in the application ontology to implement the new
TOMASys performance model (see Rule 5 in Table 3). These rules update the
performance achieved in the fulfillment of each Objective, based on the instan-
taneous performance of the components involved in their realization4 and the
efficacy of the FDs they ground.

Secondly, the metacontrol reasoner infers the best reconfiguration to optimize
Objectives’ performance, based on the available resources, i.e. Components, and
the design knowledge, i.e. the Efficacies of the FDs that can be implemented
with them. This is done reasoning again with the application-specific rules for
performance, in addition to the generic rules for TOMASys semantics.

4 Metacontrol of an Underwater Robot

In this section, we elaborate the application of the Metacontrol framework to
implement reasoning for self-adaptation in the control architecture of the UX-1
robot. Concretely, the objective was to design the metacontroller to: (1) perform
self-diagnosis of the navigation and motion subsystems, given the status of the
thrusters, and (2) determine the best configuration of both subsystems based on
the previous diagnosis.

The knowledge obtained during the engineering of both subsystems is that (i)
according to the level of performance of the thrusters, different controllers shall
be used for optimal performance, and similarly (ii) according to the controller
used, one or the other navigation system is suitable. To account for this type
of self-adaptation requirements, we have extended TOMASys to model perfor-
mance as presented at the end of Sect. 3.1.

4.1 Control Architecture of the Underwater Robot

Figure 2 depicts the UX-1 prototype, highlighting both its perception and actua-
tion means. As mentioned earlier, in this work we take into consideration only a
subset of all the devices as a proof of concept. Concretely, we take into account
only four of the eight thrusters (the ones dedicated to the forward and back-
ward movement), and we consider only the subsystem to control the motions of
the underwater robot, including two low-level possible controllers (one PID and
one fuzzy) tuned for different thruster configurations. We use the ISE&PPOOA
[5,7] to develop the hypothetical model of the control architecture for the motion
subsystem and its alternative configurations. This is represented in Fig. 5, where
only two of the multiple alternatives are displayed for each function, and the
Navigation function is not detailed as it is not considered in the concept proof
presented here.
4 We assume here that this information is provided by the monitoring infrastructure

or other specific observers.



Meta-control and Self-Awareness 411

<<func t ion>>
Propulsion

<<func t ion>>
Control ledMotion

<<func t ion>>
Navigate

<<sys tem>>
U X - 1

< < b l o c k > >
PropulsionM1M3

references
T1 : Thruster
T3 : Thruster

properties
efficacy : double = 0.9

< < b l o c k > >
FD_PID

properties
efficacy : float = 1.0

controller : PID

< < b l o c k > >
FD_fuzzy

properties
efficacy : float = 0.9

controller : Fuzzy

< < b l o c k > >
PropulsionM2M4

references
T2 : Thruster
T4 : Thruster

properties
efficacy : double = 1.0

requiresrequires

solves
solves

solvessolves

Fig. 5. Architectural alternatives for the UX-1 MotionControl and Propulsion func-
tions, displayed using the SysML graphical notation.

For forward motion, the pair {T2, T4} (front thrusters) is preferred
(efficacy=1), but any combination of T1/T2–T3/T4 is allowed, depending of
the performance of the thrusters. For example, if T1 has bad performance, T2
can be employed. The rationale is that, according to the level of performance
of the thrusters, different controllers shall be used for optimal performance. For
the shake of our hypothetical scenario, it is assumed The PID controller works
well when the performance of the thrusters results in a propulsion thrust above
70%, while the fuzzy controller performs better when the overall thrust is below
30% due to the instantaneous thruster’s performance.

4.2 Ontology for the Underwater Robot

For the metacontroller to reason at runtime the optimal configuration of the
control architecture of the US-1, the previous engineering knowledge is encoded
in the ontology following the TOMASys metamodel.

The UX-1 ontology consist of two modules: the TOMASys ontology, and the
application specific ontology for the underwater robot. The later contains the
simplified version of the robot’s control architecture described in Sect. 4.1.



412 C. Hernandez Corbato et al.

TOMASys concepts have been implemented through OWL classes, comple-
mented with SWRL rules for additional Metacontrol semantics, in the so called
TBox (for terminological knowledge), which is used to represent the domain, i.e.
the functional architecture of autonomous systems in this case. The model of the
underwater robot’s architecture is thus captured in the ABox (for assertions) by
creating specific instances of the TOMASys classes for the different objectives,
functions and components in the underwater robot’s architecture.

In our simplified version of the UX-1, the system has the root Objective
to Navigate, for which any FunctionDesign solving it requires the Objective
ControlledMotion. Correspondingly, multiple FDs for ControlledMotion are
available, each one corresponding to each of the different controller options pre-
sented in the previous section, and all of them requiring a specific objective for
the function Propulsion. Finally, the different configurations of thrusters are
modeled as different FDs for the Function Propulsion.

We have used the new TOMASys elements performance and efficacy already
discussed in Sect. 3.1, and an associated set of SWRL rules to model the runtime
performance of alternative architectures. For example (see Fig. 5), the Function-
Design FD PID solves the function ControlledMotion with an efficacy of 1.0
(optimal), and for this it has a role that contains a specification for the PID
controller, and requires that an objective of functionType Propulsion is ful-
filled with a performance higher than 0.7. At the lower level, multiple FDs
are available to address objectives of functionType Propulsion. For example,
PropulsionM1M3 defines two roles, specifying the use of thruster T1 and T3 for
propulsion, with an efficacy of 0.9 (they are not the optimal configuration for
propulsion). During runtime operation, the performance achieved for each objec-
tive is given by the TOMASys model for performance, which has been imple-
mented in application-specific SWRL rules such as R6 in Table 3. For example,
the performance for the propulsion objective, when realized by a FG implement-
ing the FD PropulsionM1M3, is given by multiplying the performance of both
thrusters, weighted by the efficacy of the FD, which in this case is 0.9. Note that
different performance models could have been specified for different FDs.

5 Discussion

The previous proof of concept shows the benefits of our metacontrol approach
for the self-adaptation of robot control architectures. The ontological implemen-
tation of TOMASys allows to implement a general functional diagnosis for robot
control architectures, novelly including performance considerations, by adding
a model for this quality attribute in TOMASys. The approach followed for the
ontological implementation of TOMSys has TOMASys elements implemented
in the TBox, as OWL classes and SWRL rules complementing the metacontrol
semantics, and the application-specific model represented through individuals in
the ABox. This allows for a clear separation of application-specific knowledge
and reuse of the TOMASys ontology file and reasoner across applications and
domains.



Meta-control and Self-Awareness 413

Table 3. One of the SWRL rules that implement the TOMASys performance model
for the UX-1.

R6

FunctionGrounding(?fg) ˆtypeF(?fg, ?fd) ˆfd efficay(?fd, ?eff)
hasBindings(?fg, ?bA) ˆhasBindings(?fg, ?bB)
Binding(?bA) ˆbinding role(?bA, role1-fd move fw 2m13) ˆbinding component(?bA, ?motorA) ˆ
Binding(?bB) ˆbinding role(?bB, role3-fd move fw 2m13) ˆbinding component(?bB, ?motorB) ˆ
c performance(?motorA, ?pA) ˆc performance(?motorB, ?pB) ˆ
swrlb:add(?aux1 , ?pA, ?pB) ˆswrlb:divide(?aux2, ?aux1, 2.0) ˆ
swrlb:multiply(?eff, ?aux2, .0) ->
fg performance(?fg, ?aux)

The second contribution of this paper is the extension of the TOMASys
metamodel to incorporate quality attributes in the model of the functional hier-
archy. Previously, TOMASys only accounted for a “confidence” property of the
functional design in the architecture, that allowed to propagate component’s
faults into the functional hierarchy, and diagnose their impact in the system’s
objectives. This approach was very limited and did not support considering more
detailed quality attributes that are usually considered in the engineering of sys-
tems, e.g. performance, efficiency/power.

However, the proof-of-concept with the underwater robot have also mani-
fested a difficulty with the current TOMASys metamodel to capture bottom-up
design considerations. For example when the performance of some components
(controllers) in the robot depends on which other components they are interact-
ing with (thrusters). The solution we have applied is to make the dependency
indirect through intermediate objectives (e.g. propulsion). An alternative solu-
tion is to create a “flatter” model, in which the interdependent components are
captured as multiple roles in a FunctionDesign, having as many FDs as alterna-
tive configurations for those components.

OWL and SWRL present some limitations for our metacontrol, mainly
related to their open-world assumption, that were exposed by the proof of con-
cept. In practice, for TOMASys modelling one of the limitations of SWRL is that
it cannot represent rules that require to iterate over individuals. In some cases,
e.g. rule 5 in Table 1, we have been able overcome this limitation with the addi-
tion of local closed-world assumption by injecting facts with OWLAPI, imple-
menting an application-independent SWRL rule, at the cost of ad-hoc meta-
control reasoning out of the standard reasoner, therefore reducing the original
benefits obtained when implementing all the semantics explicitly in the ontology,
e.g. verification and validation.

5.1 Future Work

Currently we are testing different ontology engineering approaches for the UX-1
runtime model and associated metacontrol reasoning designs. The representa-
tion limitations of TOMASys and OWL/SWRL need to be addressed. Then,
we plan to implement the metacontrol operation with a realistic version of the
UX-1 control architecture, and test it with a simulation of the underwater robot,



414 C. Hernandez Corbato et al.

analyzing the influence of the reasoner execution time in real reconfiguration sce-
narios.

In a next step, we plan to investigate the integration of TOMASys with
the ontological standards in robotics CORA (IEEE 1872-2015) [10], which con-
tains concepts to represent the complete triplet mission–system(architecture)–
environment. This would allow to coordinate the metacontrol operation with the
mission or task-planning. Finally, To address the ontological engineering burden
(e.g. modelling of many alternative FDs, and their associated SWRL rules) we
plan to explore ontology design patterns [12] and metamodelling transforma-
tions.

6 Concluding Remarks

In conclusion, we believe that component-level fault-tolerance is insufficient and
self-diagnosis and self-adaptation capabilities are needed for autonomous robots,
such as the underwater robot UX-1, that need to maintain reliable autonomous
operation in hazardous, unknown environments.

The implementation of our Metacontrol framework for self-adaptation using
OWL ontologies and SWRL rules for reasoning, extended with specific models of
quality attributes of the control architecture, has demonstrated to be effective
for this purpose, and the experience gained in this real-world application has
raised a series of interesting questions and potential research lines.

Acknowledgements. This work was supported by the UNEXMIN (Grant Agreement
No. 690008) and ROSIN (Grant Agreement No. 732287) projects with funding from
the European Union’s Horizon 2020 research and innovation programme, and has been
co-funded by the RoboCity2030-DIH-CM Madrid Robotics Digital Innovation Hub
(“Robotica aplicada a la mejora de la calidad de vida de los ciudadanos. fase IV”;
S2018/NMT-4331), funded by “Programas de Actividades I+D en la Comunidad de
Madrid” and cofunded by Structural Funds of the EU.

References

1. Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Kaan Bozcuoglu, A., Bartels, G.:
KnowRob 2.0 — a 2nd generation knowledge processing framework for cognition-
enabled robotic agents, pp. 512–519, May 2018

2. Bencomo, N., Götz, S., Song, H.: Models@run.time: a guided tour of the state of
the art and research challenges. Softw. Syst. Model. 18(5), 3049–3082 (2019)

3. Bermejo-Alonso, J., Hernández, C., Sanz, R.: Model-based engineering of
autonomous systems using ontologies and metamodels. In: 2016 IEEE Interna-
tional Symposium on Systems Engineering (ISSE), pp. 1–8, October 2016

4. Brugali, D., Capilla, R., Mirandola, R., Trubiani, C.: Model-based development
of QoS-aware reconfigurable autonomous robotic systems. In: 2018 Second IEEE
International Conference on Robotic Computing (IRC), pp. 129–136, January 2018

5. Fernandez, J.L., Lopez, J., Gomez, J.P.: Feature article: reengineering the avionics
of an unmanned aerial vehicle. IEEE Aerosp. Electron. Syst. Mag. 31(4), 6–13
(2016)



Meta-control and Self-Awareness 415

6. Fernandez-Sánchez, J.L., Hernández, C.: Practical model based systems engineer-
ing. Artech House (2019)

7. Hernandez, C., Fernandez-Sanchez, J.L.: Model-based systems engineering to
design collaborative robotics applications. In: 2017 IEEE International Systems
Engineering Symposium (ISSE), pp. 1–6, October 2017

8. Hernández, C.: Model-based Self-awareness patterns for autonomy. Ph.D. thesis,
Universidad Politécnica de Madrid, ETSII, Dpto. Automática, Ing. Electrónica e
Informática Industrial, October 2013

9. Hernández, C., Bermejo-Alonso, J., Sanz, R.: A self-adaptation framework based
on functional knowledge for augmented autonomy in robots. Integr. Comput. Aided
Eng. 25(2), 157–172 (2018)

10. IEEE Robotics and Automation Society: IEEE Standard Ontologies for Robotics
and Automation. Technical report. IEEE Std 1872–2015, February 2015

11. Jajaga, E., Ahmedi, L.: C-SWRL: SWRL for reasoning over stream data. In: 2017
IEEE 11th International Conference on Semantic Computing (ICSC), pp. 395–400,
January 2017

12. Krieg-Brückner, B., Mossakowski, T.: Generic ontologies and generic ontology
design patterns. In: Workshop on Ontology Design and Patterns (WOP-2017),
located at ISWC 2017, Wien, Austria, 21–25 October. CEUR (2017)

13. López, I., Sanz, R., Hernández, C., Hernando, A.: Perception in general
autonomous systems. In: Grzech, A. (ed.) Proceedings of the 16th International
Conference on Systems Science, vol. 1, pp. 204–210 (2007)

14. OMG: Robotic Technology Component Specification. Technical Report,
formal/2008-04-04, Object Management Group, April 2008

15. Ramaswamy, A., Monsuez, B., Tapus, A.: Model-driven self-adaptation of robotics
software using probabilistic approach. In: 2015 European Conference on Mobile
Robots (ECMR), pp. 1–6, September 2015

16. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. J. Web Semant. 5(2), 51–53 (2007). Software Engineering and the
Semantic Web

17. Weyns, D., et al.: Perpetual assurances for self-adaptive systems. In: de Lemos, R.,
et al. (eds.) Software Engineering for Self-Adaptive Systems III. Assurances, pp.
31–63. Springer, Cham (2017)

18. Zhai, Z., Mart́ınez Ortega, J.F., Lucas Mart́ınez, N., Castillejo, P.: A rule-based
reasoner for underwater robots using OWL and SWRL. Sensors 18, 3481 (2018)


	Meta-control and Self-Awareness for the UX-1 Autonomous Underwater Robot
	1 Introduction
	2 Related Work
	3 Metacontrol Framework
	3.1 TOMASys
	3.2 Ontological Reasoning for Metacontrol

	4 Metacontrol of an Underwater Robot
	4.1 Control Architecture of the Underwater Robot
	4.2 Ontology for the Underwater Robot

	5 Discussion
	5.1 Future Work

	6 Concluding Remarks
	References




