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a b s t r a c t 

Return of products within the warranty coverage induces additional cost and loss of reputation to man- 

ufacturers. It is of practical interest to predict the return rate by experimental means before introducing 

a product to the market. In this paper, we propose to optimize accelerated reliability tests to achieve the 

goal within limited time. To describe the heterogeneity in the customers’ usage mode, a discrete ran- 

dom variable is employed to model the degradation rate in addition to the continuous stress variable. To 

further characterize the heterogeneity in the customers’ behavior, two models of product return are in- 

vestigated: one assumes that customers return products once the degradation level reaches the minimum 

eligible return threshold and the other assumes that the threshold varies among different customers. Op- 

timal reliability tests are planned under the large-sample assumption with two novel test schemes: global 

optimal planning and stress constrained planning. Insights regarding the optimal plans are gleaned to 

ameliorate the test planning procedure and verify the optimality. A real example from the battery in- 

dustry is then presented along with the simulation study and sensitivity analysis to demonstrate the 

methods. We find that the randomness in return level results in different test plans. Furthermore, the 

constrained optimal plans offer more robustness to the compromise plans. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

.1. Background and motivation 

Manufacturers are putting more effort in enhancing product re- 

iability to attain competitiveness in the market. Nowadays, most 

roducts are sold with warranty, which acts as a contractual obli- 

ation by manufacturers to provide free or discounted after-sale 

ervice upon the product failure or malfunction under a specific 

overage policy. During the warranty coverage period, the product 

eturn rate is one of the most representative measures that reflect 

he reliability performance under certain warranty policies. A high 

eturn rate within warranty coverage usually incurs reduced sales 

f products and poor reputation to the manufacturer ( Walsh, Al- 

recht, Kunz, & Hofacker, 2016 ), in addition to the immediate in- 

rease in maintenance/replacement cost, which could account for 

 remarkable proportion of the operational cost of a manufacturer. 

herefore, to control the return rate is essential to extract more 

rofit from customers and establish positive marketing influences 

nd reputation. 
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With the rapid emergence of new products, it is of great impor- 

ance to predict the return rate for products free of tracking his- 

ory ( Darghouth, Ait-kadi, & Chelbi, 2017 ). The evaluation of future 

arranty claims under usage condition can be realized indirectly 

ia reliability tests. Some realistic constraints attach challenges to 

he prediction problems. Manufacturers usually wish to shorten 

he duration of reliability tests. To achieve this goal, accelerated- 

tress reliability tests are preferred, yet extrapolation is inevitable 

or accelerated tests. Further, the usage mode usually varies among 

old products due to different customers’ behaviors. Variable usage 

odes not only influence the expected return rate, but also aug- 

ent the variability in return rate prediction. 

A typical example of this type is the rechargeable battery. Bat- 

ery manufacturers test the battery capacity over time prior to 

heir introduction to the market. Many rechargeable batteries are 

eturned due to unsatisfactory capacity within the warranty cov- 

rage. Battery capacity is believed to decrease over time and the 

eterioration can be accelerated by several factors ( Li, Rezvanizani- 

ni, Ge, Abuali, & Lee, 2015 ). Specifically, temperature is deemed to 

ake the most significant effects, therefore, battery manufacturers 

sually set operating ambient temperature at a specified range to 

void irreversible damages to the batteries. Moreover, consumers 

ehaviors, such as the selection of recharging and discharging 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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odes, may also influence the speed of battery capacity degrada- 

ion. Behind the huge success of e-commence in China, there exist 

umerous delivering vehicles of which the quantity keeps increas- 

ng rapidly. These vehicles are mostly equipped with rechargeable 

atteries, and they are used under various usage habits. In the 

resence of the aforementioned sources of variability, the reliabil- 

ty tests need to be carefully planned to obtain as much useful in- 

ormation as possible for the prediction of product return rate. Un- 

ike conventional accelerated tests designed to estimate the mean- 

ime-to-failure (MTTF) or life quantiles, the aims of reliability tests 

or return rate prediction lie in two aspects: a) to accurately esti- 

ate the proportion of returned products in population; b) to bet- 

er understand the relationship between product degradation and 

ovariates in usage condition and mode, and thereby assist deci- 

ion makers to specify usage instructions. Motivated by the battery 

xample, in this paper, we address the general planning of reliabil- 

ty test under multiple experimental factors for return rate predic- 

ion. 

.2. Related works 

Sitting in the interface of design of reliability experiments 

tests) and warranty analysis, our work mainly deals with the 

roblem of reliability test planning for return rate prediction 

ithin the warranty coverage. To this end, we give literature re- 

iew on the following related topics. 

Modeling of accelerated degradation tests . From a broader 

iew of classification, accelerated reliability tests consist of life 

ests and degradation tests. Owing to the utilization of dynamic 

easurable quality characteristics, accelerated degradation tests 

ADT) have shown great advantages over accelerated life tests (ALT) 

fter the enlightening work by Meeker, Escobar, & Lu (1998) , espe- 

ially for highly reliable products ( Fang, Pan, & Wang, 2022; Wang, 

ang, Hong, & Jiang, 2021; Ye & Xie, 2015 ). In an ADT, test units

re exposed to elevated stresses to increase their degradation rates. 

s a compensation for the inevitable extrapolation in estimation, 

he accelerated stresses can considerably shorten the test duration. 

DT has been widely investigated and applied in the battery in- 

ustry. Thomas, Bloom, Christophersen, & Battaglia (2008) utilized 

DT data to predict the life of lithium-ion cells with general path 

odels. In Cheng, Li, Yuan, Zhang, & Liu (2016) , nonlinear curve 

tting methods were proposed to predict the lifetime for lithium 

hionyl chloride batteries via ADT data. Li et al. (2015) treated a 

ASA battery dataset as the historical data and employed a simu- 

ated Bayesian approach to plan the step-stress ADT. Further, ran- 

om fuzzy model was formulated to characterize the random ef- 

ects in time dimension and unit-unit variations and the method 

as applied to the lithium-ion battery ( Li, Wu, Ma, Li, & Kang, 

018 ). Current studies commonly regard temperature, charging and 

ischarging voltage/current as key factors that affects the battery 

apacity over time ( Zhu et al., 2020 ). In addition, many existing 

orks have contributed to the degradation modeling for recharge- 

ble batteries without accelerated stress conditions ( Si, 2015; Ye & 

hen, 2014; Zhai & Ye, 2017 ). 

Warranty analysis via experimental results . Although a large 

mount of effort has been put into degradation data analysis and 

egradation tests, the research concerning the linkage between 

arranty issues (e.g., return rate, warranty cost, warranty pol- 

cy) and experimental tests is relatively scant. Most extant works 

redominately adopt life models for warranty analysis and over- 

ook the degradation models. Yang (2010) optimized ALT plans to 

inimize the asymptotic variance of predicted warranty cost un- 

er a replacement policy. Zhao & Xie (2017) and Zhao, He, & Xie 

2018) utilized ALT and ADT data to predict the number of war- 

anty claims with a fixed period under environmental variation, 

espectively. In Hsu, Tseng, & Chen (2015) and Tseng, Hsu, & Lin 
1350
2016) , Bayesian framework was employed to jointly model field 

eturn date and lab data for warranty prediction. While one can 

itness the initial emergence of related works, these studies have 

ot zoomed into the reliability test planning problem with multi- 

le covariates that can be either continuous or discrete. 

Optimization of accelerated test plans . The most widely used 

aradigm for accelerated reliability test planning is to utilize the 

symptotic property of maximum likelihood estimators (MLEs). 

nder the large-sample assumption, the Fisher information of un- 

nown parameters can well characterize the estimation uncer- 

ainty ( Meeker & Escobar, 2015 ). In this sense, the uncertainty in 

esired estimation can be inferred via the classic delta method. 

n the context of degradation tests, where more informative data 

an be collected than in life tests, the appropriateness of the large- 

ample approximation is usually well justified. More advanced ap- 

roaches have been intensely explored on this mainstream direc- 

ion of optimization to improve the applicability and robustness 

f test plans. To name a few, Zhang & Meeker (2006) employed a 

ayesian method to maximize the pre-posterior utility and obtain 

he robust optimal ALT plan under model uncertainty. To enhance 

he generality of ADT planning approaches, Lee, Tseng, & Hong 

2020) proposed an exponential-dispersion degradation model that 

eneralize commonly used stochastic models and provided the 

losed-form ADT plans. The studies mentioned above all deal with 

he asymptotic properties of the objective function. Such meth- 

ds are proved to be reasonably accurate by simulation studies. 

ost existing studies identify the minimization of asymptotic vari- 

nce of key reliability characteristics, such as the mean time to 

ailure (MTTF) and life quantiles, as their criteria. To the best of 

ur knowledge, the criterion that concerns the prediction of return 

ate, is still underexplored. 

.3. Overview 

This paper prescribes an ADT planning method for return rate 

rediction under one continuous quantitative factor and one qual- 

tative factor. Potential inherent correlation between the two fac- 

ors is addressed in the test planning phase. Further, the hetero- 

eneity in the customers usage mode is taken into consideration 

o achieve more accurate prediction. In view of practical assump- 

ions, we inaugurate new criteria of optimal plans for two different 

eturn models. The criteria of optimality are established based on 

he large-sample approximation. In addition, two test schemes are 

ut forward for different application scenarios. To the best of our 

nowledge, the work sheds new lights on the reliability testing re- 

earch by being the first to simultaneously address the following 

ssues: 

1. We propose a novel criterion of optimality that concerns the 

return rate prediction for accelerated tests. The criterion in- 

tend to aid decision makers to predict the proportion of re- 

turned products in the design phase 

2. We put forward a framework to plan accelerated tests in 

the presence of both continuous and discrete factors. Specif- 

ically, we construct the optimal test plans for degrading 

products in the presence of both the continuous environ- 

mental stress and multiple usage modes. 

3. The proposed model enables the randomness in the degra- 

dation level of the returned product, which is quite common 

in practice. In addition, we provide rigorous evaluations ap- 

proaches to the return rate in the presence of the aforemen- 

tioned randomness. 

4. We introduce two test schemes: global optimal plans and 

constrained optimal plans to enhance the generality of pro- 

posed methods. Global optimal plans can achieve the most 

accurate prediction, whereas constrained optimal plans pro- 
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vide feasible options to manufacturers with limited test 

chambers. 

The paper proceeds as follows. Section 2 presents the re- 

urn rate modeling under the Wiener degradation process. In 

ection 3 , the approaches to test plan optimization are detailed, 

ased on which we provide some general insights to test planners. 

ection 4 demonstrates the proposed methods systematically with 

 practical example, in which we also carry out simulation stud- 

es and sensitivity analysis to illustrate the robustness of optimal 

lans. Conclusions are drawn in Section 5 . Technical proofs are rel- 

gated in the Appendix A . 

. Modeling of return rate under degradation models 

.1. Wiener degradation process with covariates 

The Wiener process has been successfully applied to model 

he degradation of rechargeable batteries due to the fact that the 

egradation paths of batteries are oftentimes non-monotone ( Si, 

015; Zhang, Si, Hu, & Lei, 2018 ). In the paper, we use the Wiener

rocess as the degradation model and it can be easily extended 

o other stochastic processes for the adaptation to other product- 

/systems. Under a covariate vector denoted by x 0 , the degradation 

rocess Y (t| x 0 ) is given as follows: 

 (t| x 0 ) = y 0 + μ( x 0 ) �(t) + σB ( �(t) ) , t ≥ 0 , (1)

here y 0 is the initial degradation level, μ( x 0 ) is the drift param- 

ter evaluated at x 0 , �(t) is the time scale function to character- 

ze the nonlinearity in degradation path, σ is the diffusion param- 

ter, and B(·) is the standard Brownian motion. Standing on the 

odel in (1) , covariates regarding usage condition x 0 exert influ- 

nces on the drift properties of the degradation paths, and the 

olatility stays constant over any x 0 . Note that the assumption has 

een commonly made and verified by extant works ( Hu, Lee, & 

ang, 2015; Lim & Yum, 2011 ). Without loss of generality, �(t) = t

s assumed to imply a linear degradation path under a fixed x 0 for 

implicity. Further, we divide x 0 into two parts by x 0 = 

(
x (1) 

0 
, x (2) 

0 

)
, 

here x (1) 
0 

and x (2) 
0 

represent the continuous quantitative variables 

nd discrete qualitative variables, respectively. 

For the better exposition of the proposed methods, we con- 

ider the scenario in which there is one continuous quantitative 

actor and one discrete qualitative factor in x 0 , which we denote 

y x 0 = ( x 0 , m 0 ) . It is worth mentioning that the proposed frame- 

ork can be readily extended to consider more factors ( Fang, Pan, 

 Stufken, 2020 ). For rechargeable batteries, x 0 usually represents 

 transformed variable of the environmental temperature, which is 

elieved to be a dominating factor affecting the battery capacity 

 Tian, Xiong, & Shen, 2020 ). In contrast, the discrete factor m 0 can-

ot be quantified or ordered. In the context of the battery example, 

he factor could characterize the recharging and discharging mode 

f the battery. To characterize the heterogeneity in the usage mode, 

e assume that m 0 has M categories, and m 0 is characterized by 

 discrete random distribution. For m = 1 , . . . , M, a value ρm 

is as-

igned to quantify the probability that customers use the product 

nder mode m 0 = m , i.e., Pr ( m 0 = m ) = ρm 

. Let ρ = ( ρ1 , . . . , ρM 

) , 

nd ρ can be estimated via customer survey and records of similar 

roducts from the manufacturer. R emark Since factors like the us- 

ge mode cannot be modeled as continuous variables or even ordi- 

al discrete variables, we can only model them as discrete random 

ariables and employ the probability mass to characterize them. 

n practice, a customer may use the product with modes that vary 

ver time. We can employ a deterministic function, or, more gener- 

lly, a stochastic process to characterize the usage mode as M 0 (t) . 

he main challenge in modeling the problem with time-varying 

sage mode lies in the derivation of the reliability function when 
1351 
 0 (t) is stochastic. Simulation-based methods can be resorted to if 

he reliability function cannot be derived analytically. In this work, 

or simplicity, we can regard M 0 (t) as a controlled variable and as- 

ume that it is constant over time in the ADT. By considering all 

he usage modes in the test planning, the results obtained from 

he proposed method can be easily utilized to predict the return 

ate if the usage mode is time varying. 

.2. Degradation under accelerated tests 

Accelerated tests are conducted under elevated stresses in com- 

arison to usage conditions. A common exercise to test products is 

o expose them in moderately higher temperatures. Next, we de- 

ote the degradation rate under x m 

= (x, m ) by μ(x, m ) = μ( x m 

) .

ollowing previous literature of reliability tests, the standardized 

uantitative factor x is a variable between 0 and 1, which satisfies 

hat x 0 ≡ 0 and x max = 1 . Further, we assume that the degradation

ate can be modeled by the well-known log-linear function ( Zhang 

 Meeker, 2006 ), while different from existing models, we propose 

 multivariate model are as follows: 

og μ( x, m ) = 

{
β0 + β1 x, if m = 1 , 

β0 + βm 

x + γm 

, if m = 2 , . . . , M, 
(2) 

or x ∈ [0 , 1] and m = 1 , . . . , M. In the model, the parameter set

 βm 

, m = 1 , . . . , M} characterizes the effect of the continuous fac-

or under different m , while { γm 

, m = 1 , . . . , M} characterizes the

ffect of the discrete factor that is independent of the con- 

inuous factor. Since we have used β0 to benchmark the log- 

egradation-rate given that x = 0 and m = 1 , it is set that γ1 ≡
 . The model can characterize the effects of both the contin- 

ous and discrete factors, as well as their mutual interactions 

y assigning a different β to each x under a specific m . Under 

he current model, the unknown parameters are denoted by θ = 

β0 , β1 , . . . , βM 

, σ, γ2 , . . . , γM 

) ′ . Here, we note that only the con-

inuous factor is accelerated in the test. Moreover, since x is stan- 

ardized to 0 at usage condition, the extrapolation to predict field 

eliability at x 0 = 0 only involves parameters β0 , σ and γ2 , . . . , γM 

. 

emark 1. The log-linear model has been widely adopted in 

he existing works on ALT/ADT planning and analysis ( Escobar & 

eeker, 2006; Ye & Xie, 2015 ). An appealing advantage of the 

odel is its flexibility to characterize different types of physical/- 

hemical acceleration relationships, including the Arrhenius rela- 

ionship that considers temperature, Peck relationship that consid- 

rs both temperature and humidity and the power law relation- 

hip that incorporates factors such as voltage and current. There- 

ore, the proposed methods can be readily used to plan accelerated 

ests for products with various factors, besides rechargeable batter- 

es. 

.3. Return rate prediction under heterogeneous usage mode - a 

asic model 

The return rate of products is determined by both the inher- 

nt reliability properties and external usage conditions and modes. 

ithout loss of generality, we assume that y 0 ≡ 0 in (1) . We first

laborate a simple and ideal scenario under which a customer def- 

nitely returns the sold product if its degradation level exceeds a 

xed failure threshold L . Let T be the return time from the prod-

ct purchase and it is the equivalent random variable as the failure 

ime implied by the current assumption. Under a fixed warranty 

overage period τW 

and usage condition x 0 = ( x 0 , m ) , the product 

eturn rate, denoted by P R (τW 

, x 0 ; θ, L ) , is equal to the unreliability

t τW 

, that is, 

 R 

(
τW 

, x 0 ; θ
)

= 1 − R 

(
τW 

; x 0 , θ
)

= F T 
(
τW 

; x 0 , θ, L 
)
, τW 

≥ 0 (3) 
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here R (·) and F T (·) are the reliability function and cumulative 

istribution function (CDF) of the failure time, respectively. Under 

he Wiener degradation model, the failure time T is defined as the 

rst passage time to the failure threshold L , i.e., T = inf { t ;Y (t | x 0 ) ≥
 } . It is well known that T follows an inverse Gaussian (IG) distri-

ution with mean L/μ( x 0 ) and shape L 2 /σ 2 ( Chhikara, 1988 ), and 

he CDF evaluated at any τW 

> 0 is given by 

 T 

(
τW 

; x 0 , θ, L 
)

= �

[ √ 

1 

σ 2 τW 

( μ( x 0 ) τW 

− L ) 

] 

+ exp 

[
2 μ( x 0 ) L 

σ 2 

]

�

[ 

−
√ 

1 

σ 2 τW 

( μ( x 0 ) τW 

+ L ) 

] 

, (4) 

here �(·) is the CDF of the standard normal distribution. Taking 

nto account the heterogeneity in the discrete factor, the overall 

xpected product return rate (EPRR) under L is given by taking the 

xpectation of P R (τW 

, x 0 ; θ, L ) with respect to M 0 : 

PRR 0 (L ) = E M 0 

[
P R (τW 

, X 0 ; θ) 
]

= 

M ∑ 

m =1 

ρm 

F T 
(
τW 

; (x 0 , m ) , θ, L 
)
, (5) 

or L > 0 . With given parameters and L , the overall return rate is

onvenient to evaluate as F T (·) has a typical form of an inverse 

aussian CDF. Recall that a predominant assumption in the subsec- 

ion is that all customers return products at threshold L , which is 

ometimes impractical in the real market. In the next subsection, 

e relax the assumption to enhance the flexibility of the return 

odel. 

.4. Return rate prediction under heterogeneous usage mode: A 

andom returning model 

A natural practice of product return is that a customer is more 

ikely to return the product when the degradation level is higher. 

n the one hand, manufacturers usually set a minimum degrada- 

ion level that is eligible for product return. For instance, battery 

roviders may follow the policy that batteries with a capacity 80% 

r less are eligible for return within the warranty contract, other- 

ise free-of-charge replacement/repair cannot be guaranteed. On 

he other hand, not all customers would return their purchases im- 

ediately when the products reach the returnable status. More of- 

en than not, there is a random gap between the minimum return- 

ble level and actual level upon the return. It is noteworthy that 

here already exists literature that addresses the reliability model- 

ng for Wiener degradation models under random failure thresh- 

lds. For some recent contributions, one can be referred to Wang 

 Coit (2007) , Hua, Zhang, Xu, Zhang, & Xu (2013) , Sarada & Shen-

agam (2021) and Li, He, & Zhao (2022) . To characterize the ran- 

omness in the return model, we introduce one fixed threshold 

 min and one positive random variable L D > 0 to represent the min- 

mum returnable degradation level and the difference between the 

ctual return level and l min , respectively. It is obvious that the ac- 

ual return level is l min + L D . 

The involvement of L D improves the applicability of the model 

y capturing customers’ behaviors more realistically. However, this 

reates a hurdle to evaluate the return rate because T no longer 

ollows a known distribution in presence of the random effect. We 

ut forth two different approaches to obtain the CDF of T to facili- 

ate the calculation of return rate: an exact characteristic function- 

ased method and a first-order approximated method. First, sup- 

ose that a fixed l min is given and L D follows a known continuous 

istribution with characteristic function ϕ L D 
(z) . We have the fol- 

owing proposition that gives the EPRR. 
1352 
roposition 1. The EPRR can be exactly evaluated by the following 

unction: 

PRR 1 (l min , L D ) = 

M ∑ 

m =1 

ρm ̆

F T 
(
τW 

; (x 0 , m ) , θ, l min + L D 
)
, (6) 

nd 

1. T follows a distribution with the following characteristic func- 

tion: 

ϕ T (z) = 

∫ ∞ 

0 

exp 

[
(l min + L D ) μ(x 0 , m ) 

σ 2 ( 

1 −
√ 

1 − 2 σ 2 iz 

μ(x 0 , m ) 2 

) ] 

f L D (l ) dl . (7) 

2. The CDF F̆ T 
(
τW 

; (x 0 , m ) , θ, l min + L D 
)

is given by 

F̆ T 
(
τW 

; (x 0 , m ) , θ, l min + L D 
)

= 

1 

2 

− 1 

π

∫ ∞ 

0 

Im 

[
e −izτW ϕ T (z) 

]
z 

dz, 

(8) 

where Im (·) is the imaginary part of a complex number. 

The proposition is a ready result in light of the theorems in 

il-Pelaez (1951) . Following the proposition, the EPRR can be com- 

uted exactly with the aid of characteristic functions. However, the 

omputation of (8) may be onerous under certain distributions of 

 D . Alternatively, we can resort to approximated methods that are 

ore tractable to evaluate. The following proposition provides an 

pproximation to EPRR via the Taylor series: 

roposition 2. The EPRR can be approximately evaluated by 

PRR 2 (l min , L D ) = 

M ∑ 

m =1 

ρm 

E L D 

[
F T 

(
τW 

; (x 0 , m ) , θ, l min + L D 
)]

, (9) 

f we regard 

 L D [ F T ( μL D + l min ) ] ≈ μL D + 

1 

2 

F (2) 
T ( μL D + l min ) var (L D ) , (10) 

here μL D 
is the mean of random variable L D . If we denote 

he density function of the standard normal distribution by φ(·) , 
 

(2) 
T 

(
μL D 

+ l min 

)
is given by: 

 

(2) 
T ( μL D + l min ) = Aφ

[(
1 

σ 2 τW 

)1 / 2 

( μ( x 0 ) τW 

− l min − μL D ) 

]

+ B �

[
−
(

1 

σ 2 τW 

)1 / 2 

( μ( x 0 ) τW 

+ l min + μL D ) 

]

+ Cφ

[
−
(

1 

σ 2 τW 

)1 / 2 

( μ( x 0 ) τW 

+ l min + μL D ) 

]
, 

(11) 

nd 

 = −
(

1 

σ 2 τW 

)3 / 2 

( μ( x 0 ) τW 

− l min − μL D ) , 

 = 

4 μ2 ( x 0 ) 

σ 4 
exp 

[
2 μ( x 0 )(l min + μL D ) 

σ 2 

]
, 

 = 

[(
1 

σ 2 τW 

)3 / 2 

( μ( x 0 ) τW 

+ l + μL D ) −
4 μ( x 0 ) 

σ 2 

(
1 

σ 2 τW 

)1 / 2 
]

exp 

[
2 μ( x 0 )(l min + μL D ) 

σ 2 

]
. 
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Fig. 1. Illustration of the ADT planning. 
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As a side note, the selection of distribution for L D is sort of an

pen question to decision makers. The distribution of L D can re- 

ect different customers’ behaviors. For example, if one wants to 

escribe the scenario in which the customers are more sensitive to 

he degradation performance, it can be assumed that L D follows a 

istribution with relatively large density at values that are closer 

o 0. Meanwhile, it is also possible that a significant delay exists 

nd makes the mode of L D greater than 0. Fortunately, manufac- 

urers usually own previous warranty claim data to facilitate the 

odeling of L D , either from the same type of products or similar 

roducts. Decision makers may fit known distributions to the data 

nd compare the fitness. Since the topic is well established in the 

tatistical literature and is not the main focus of the paper, we skip 

ore detailed discussions. 

. Reliability test planning 

In this section, test planning approaches to predict return rate 

re presented. Section 3.1 introduces the notations and preliminar- 

es regarding the test. Section 3.2 prescribes two types of planning 

rom practical perspectives. In Section 3.3 and 3.4 , general insights 

re gleaned. 

.1. Preliminaries 

Unlike conventional one-factor problems, the proposed test is 

onducted under various combinations of treatments under two 

actors. We assume that a proportion of πm 

of test units are as- 

igned to usage mode m , and we naturally have 
∑ M 

m =1 πm 

= 1 . Fur-

her, under mode m , J levels of the continuous factor are specified 

or testing. In other words, the test plan is “balanced” with respect 

o the number of treatments in each level of the discrete factor. 

ore discussions on this will be provided in Section 3.3 . By denot- 

ng the levels of the continuous factor in mode m by x m 1 , . . . , x mJ ,

here x m 1 < x m 2 < . . . < x mJ , and the respective proportion of test 

nits by πm 1 , . . . , πmJ , the ADT planning can be illustrated by Fig. 1 .

Additional assumptions regarding the ADT planning are given as 

ollows: 

• The total number of test units is fixed and is denoted by N. 
• The inspection intervals are identical under different treat- 

ments and we denote the interval by �τ . 
• The total number of inspections per test unit is fixed at K, 

which implies that the test lasts for a duration of K�τ . 

roposition 3. To estimate the parameters in model (2) , at least one 

est unit has to be assigned to each level of the discrete factor, i.e., 

m 

> 0 for m = 1 , . . . , M. 

The statement is intuitive as any πm 

= 0 will make βm 

and γm 

nestimable in the model. The proposition guarantees that the test 

as exactly M × J treatments. 
1353 
.2. Two types of planning schemes 

To enhance the practical generality of the proposed model, we 

ut forward two types of planning schemes: planning with min- 

mum test treatments, by which we call the “constrained optimal 

lanning”, and the “global optimal planning”. Prior to zooming into 

etails, we discuss some related practical issues in reliability tests. 

irst, accelerated tests typically require a certain number of test 

hambers to create elevated stresses. For the battery example dis- 

ussed in the paper, the variation in environmental temperature 

s mostly realized by chambers. Second, there is usually a criti- 

al limit on the test duration. Manufacturers would spend more 

osts induced by test chambers and energy consumption to save 

ime. Therefore, experiments for different treatments need to be 

onducted at the same time, which implies that the test chambers 

ave to be sufficient to fulfill the experimental design. Considering 

he aforementioned issues, some manufacturers may wish to plan 

eliability tests that require fewer test chambers to reduce related 

osts. For the rechargeable battery example, the control of the con- 

inuous temperature needs test chambers while to alter the cate- 

orical mode factor does not, which implies that the total number 

f treatments in the continuous factor determines the number of 

ecessary test chambers. In this sense, we introduce the follow- 

ng constraint to the problem: x m j = x m 

′ j for any m 	 = m 

′ and j =
 , . . . , J. The constraint manages to limit the number of levels of 

he continuous factor at J. In this sense, we construct the problem 

f constrained optimal planning. 

For notational convenience, we use 
 to integrally represent 

he EPRR under different scenarios, thus the estimated 
 can be 

ummarized as follows: 

ˆ = 

⎧ ⎨ 

⎩ 

̂ EPRR 0 (L ) , for fixed return threshold (Model 0) , 
̂ EPRR 1 (l min , L D ) , for random return threshold (exact, Model 1) , 
̂ EPRR 2 (l min , L D ) , for random return threshold (approximate, Model 2)

(12) 

Note that we will use Model 0, Model 1 and Model 2 to denote 

he three scenarios hereafter. An underlying concern in 

ˆ 
 emerges, 

hat is, under any model the value of EPRR is in the range from 

 and 1, and it tends to be small (typically smaller than 20%) for 

ommon products. To minimize the asymptotic variance of ˆ 
 im- 

licitly treats it as a normal distributed random variable, which is 

nappropriate for random variables with bounded support as this 

rings concerns to the uncertainty quantification of the estimators. 

o overcome the issue, we utilize the well adopted logit model to 

ransform 

ˆ 
 to a random variable with infinite support. The logit 

unction creates a map of probability values from (0,1) to (−∞ , ∞ ) 

 Cramer, 2003 ). Specifically, a logit function of a probability p is 

iven by logit (p) = log (p/ (1 − p)) , where p/ (1 − p) is the odds,

.e., the probability of success divided by the probability of failure. 

nalogously, we transform the current ˆ 
 into a revised version as 
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ollows: 

ˆ = 

⎧ ⎨ 

⎩ 

logit( ̂ EPRR 0 (L )) , for fixed return threshold (Model 0) , 

logit( ̂ EPRR 1 (l min , L D )) , for random return threshold, (exact, Model 1) , 

logit( ̂ EPRR 2 (l min , L D )) , for random return threshold (approximate, Model 2) , 

(13) 

o that we can then minimize the asymptotic variance of ˆ 
. To 

lan a constrained test, the following problem needs to be solved 

o find the optimal plan ξ
† 
: 

maximize − Avar ( ̂  
; ξ) 

subject to 

M ∑ 

m =1 

J ∑ 

j=1 

πm j = 1 ;

x m j = x m 

′ j for any m 	 = m 

′ and j = 1 , . . . , J;
0 ≤ x m j ≤ 1 for any m = 1 , . . . , M and j = 1 , . . . , J. (14) 

The other planning scheme is to remove the constraint on the 

umber of treatments and strive to find the global optimal ADT 

lans. Straightforwardly, we formulate the problem as: 

maximize − Avar ( ̂  
; ξ) 

subject to 

M ∑ 

m =1 

J ∑ 

j=1 

πm j = 1 ;

0 ≤ x m j ≤ 1 for any m = 1 , . . . , M and j = 1 , . . . , J, (15) 

nd we denote the corresponding optimal plan by ξ
∗
. For simplic- 

ty in interpretation, we call ξ
∗

and ξ
† 

the “global optimal plan”

nd the “constrained optimal plan” in the remainder of the paper. 

emark 2. The choice between ξ
† 

and ξ
∗

depends on how the test 

lanners regard the importance of absolute statistical performance 

nd test convenience. Two possible scenarios exist. The first one is 

hat the difference between Avar ( ̂  
; ξ† 
) and Avar ( ̂  
; ξ∗

) is quite 

inor, and test planners may tend to conveniently carry out the 

est with ξ
† 
. The other scenario is that there is a sensible difference 

n the asymptotic variance. In this situation, test plan may need 

o figure out whether to choose a more convenience plan or not 

y comprehensively considering the tradeoff between estimation 

ccuracy and test chamber cost, labor cost, etc. 

The complexity in the objective functions in (14) and 

15) makes it an onerous task to derive analytical solutions to 

he optimization problems. One may have to resort to numerical 

ethods to solve for the optimal plans. Fortunately, under the ADT 

lanning framework, the number of decision variables are gener- 

lly small. Additionally, some statistical insights gleaned from the 

heories of optimal designs can be utilized to simplify our problem, 

hich is discussed in detail in the following context. 

.3. General results and insights 

Maximum likelihood estimation (MLE) plays a dominant role 

n reliability test data modeling owing to its appealing asymptotic 

roperties. To this end, the test planning procedures usually hinge 

n the MLE framework. For test unit i = 1 , . . . , N, denote the exper-

mental condition by x i , where x i is governed by the optimal plan 

escribed in Section 3.2 . Belonging to the exponential dispersion 

egradation models ( Tseng & Lee, 2016 ), the Wiener degradation 

rocess features the property that the increments from two non- 

verlapping intervals are independent. Therefore, the degradation 

ncrements between (k − 1)�τ and k �τ , denoted by �Y ik , follow 

ndependent normal distributions as �Y ik ∼ N (μ( x i )�τ, σ 2 �τ ) . 

herefore, given observed data �y , i = 1 , . . . , N, k = 1 , . . . , K, the
ik 
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og-likelihood function is given by 

 ( θ| data ) = 

N ∑ 

i =1 

K ∑ 

k =1 

log φ

[
�y ik − μ( x i )�τ

σ
√ 

�τ

]
. (16) 

y maximizing (16) , the MLE of θ is obtained and denoted by ˆ θ. 

urther, the following elaborations are put forward to quantify the 

ncertainty of ˆ 
. Based on the results in Meeker et al. (1998) un- 

er a specific ADT plan ξ and objective EPRR under 
, the asymp- 

otic variance of ˆ 
 can be approximated by: 

var ( ̂  
; ξ) = H 

T 

( θ) 

[
I ( θ; ξ) 

]−1 
H 
( θ) , (17) 

here H 
 is the vector of first derivatives of 
 with respect to 

ach unknown parameters, i.e., 

 
( θ) = 

(
∂


∂β0 

, 
∂


∂β1 

, . . . , 
∂


∂βM 

, 
∂


∂σ
, 
∂


∂γ2 

, . . . , 
∂


∂γM 

)
T . 

nd 

 ( θ; ξ) = E 

[
− � 2 

∂ θ∂ θ
T 

]
(18) 

s the Fisher information of θ under plan ξ. The forgoing analysis 

rovides a consistent objective function for the problem of interest. 

bviously, H ( θ) is an invariant of test plan ξ, and the derivation of 

 ( θ) is trivial and thus omitted in the paper. Test plan only in- 

uences the Fisher information I ( θ; ξ) . A noteworthy point is that 

he Fisher information stays the same for the same test plan under 

ifferent objective functions in the paper. Appendix B shows the 

etailed derivations of the Fisher information. 

emma 1. Under model 2 , the optimal plan ξ has M × 2 treatments, 

.e., J = 2 . The optimality can be verified by Theorem 3 . 

The lemma can be easily justified by the fact that the number 

f regression parameters is 2 M (as regression parameters include 

0 , β1 , . . . , βM 

and γ2 , . . . , γM 

) ′ ( Shi, Escobar, & Meeker, 

009 ). As stated in Section 3.1 , the plan is assumed to be bal-

nced with equal J under each level of m , thus J = 2 . Lemma 1 im-

lies that under each level of m , the optimal ADT plan is a sim-

le two-level design. Although the problem can be simplified a bit 

rom the lemma, the analytical solver cannot be attained due to 

he complexity in the objective function. Numerical optimization 

s inevitable in solving the problem. A critical drawback of numer- 

cal methods is the difficulty in guaranteeing the global optimality. 

wing to the advances in theories of optimal design, we can take 

dvantage of the following theorem to verify the optimality of test 

lans. 

heorem 3 (General Equivalence Theorem) . The following results 

pply to the problem described in (15) : 

1. The objective function −Avar ( ̂  
; ξ) is concave with respect to 

test plans. In other words, for any 0 < α < 1 and two different 

test plans ξ and ζ, we have 

−Avar ( ̂  
;αξ + (1 − α) ζ) > −αAvar ( ̂  
; ξ) − (1 − α) Avar ( ̂  
; ζ) . 

(19) 

2. The directional derivative, denoted by �, of the objective func- 

tion at ξ at the direction of the alternative plan ζ, can be rep- 

resented by 

�( ξ, ζ) = H 

T 

( θ) 

[
I ( θ; ξ) 

]−1 
I ( θ; ζ) 

[
I ( θ; ξ) 

]−1 

H 
( θ) − H 

T 

( θ) 

[
I ( θ; ξ) 

]−1 
H 
( θ) . (20) 
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3. For any a i > 0 where 
∑ 

i a i = 1 , if we have a series of alterna-

tive plans ζi and their convex combination 
∑ 

i a i ζi , the follow- 

ing equation holds under the directional derivative: 

�

( 

ξ, 
∑ 

i 

a i ζi 

) 

= 

∑ 

i 

a i �
(
ξ, ζi 

)
. (21) 

If conditions 1–3 hold for the derivative function and test plans, 

hen the following results follow immediately from Theorem 1 parts 

i), (ii), (iii), and (c) from Whittle (1973) : 

(a) By letting ξx be the test plan that puts all the units at level x ,

a test plan ξ
∗

is optimal if and only if sup x �( ξ
∗
, ξx ) = 0 . 

(b) The stress levels x ∗
l 

in the optimal plan is a subset of x that 

satisfies sup x �( ξ
∗
, ξx ) = 0 . 

One appealing advantage of the General Equivalence Theorem 

GET) is that (20) can be easily evaluated by analytical means and 

he results serve as input to items (a) and (b) in the theorem to 

erify the optimality of test plans obtained via numerical methods. 

t is worth mentioning that the GET can only be applied to the 

roblem in (15) because the problem in (14) is actually to find a 

uboptimal test plan under additional constraints. 

.4. Compromise plans 

In the presence of considerable uncertainty in the pilot model, 

ompromise plans are usually preferable to enhance the robustness 

f the plan. The compromise plan usually contains extra stress lev- 

ls that is analogous to adding center/side points to experimental 

esigns ( Del Castillo, 2007 ). The compromise test can be planned 

hen preliminary data indicates abnormities in the residual analy- 

is, and more general models can be estimated by the data gener- 

ted by the compromise test. A common concern in the ADT plan- 

ing is the appropriateness of the log-linear assumption in (2) . Al- 

hough the log-linear models are widely applied in ADT planning 

iterature, the concern about two-level plans has been aroused 

oon after its proposal ( Meeker & Escobar, 2015 ). For example, sup- 

ose that we are considering the following link function that can 

e possibly the true model rather than the one in (2) : 

og μ( x, m ) = 

{
β0 + β1 x + β11 x 

2 , if m = 1 

β0 + βm 

x + βmm 

x 2 + γm 

, if m = 2 , . . . , M, 
(22) 

hen a plan with 2 M treatments will fail to estimate the quadratic 

arameters β11 and βmm 

as the model involves 3 M parameters. To 

vercome the shortcoming of the two-level plans, extra stress lev- 

ls need to be inserted to the plans. Previous studies have set up 

ome practical rules for three-level compromise ADT plans ( Tseng 

 Lee, 2016 ) and it is a common practice to use a 10% or 20%

ule to allocate test units to the extra stress level. Considering the 

niqueness of the problem described in the paper, at a compro- 

ise level of (100 × κ)% , we solve the problem as follows: 

aximize −Avar ( ̂  
; ξ) 

subject to 

M ∑ 

m =1 

3 ∑ 

j=1 

πm j = 1 ;

M ∑ 

m =1 

πm 2 = κ;

πm 2 > 0 , for any m = 1 , . . . , M;
x m 2 = (x m 1 + x m 3 ) / 2 for any m = 1 , . . . , M;
0 ≤ x m j ≤ 1 for any m = 1 , . . . , M and j = 1 , 2 , 3 . (23) 
u
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Analogously, the problem under the stress constraint is formu- 

ated as: 

aximize −Avar ( ̂  
; ξ) 

subject to 

M ∑ 

m =1 

3 ∑ 

j=1 

πm j = 1 ;

M ∑ 

m =1 

πm 2 = κ;

πm 2 > 0 , for any m = 1 , . . . , M;
x m 2 = (x m 1 + x m 3 ) / 2 for any m = 1 , . . . , M;
x m j = x m 

′ j for any m 	 = m 

′ and j = 1 , . . . , J;
0 ≤ x m j ≤ 1 for any m = 1 , . . . , M and j = 1 , 2 , 3 . (24) 

ote that κ denotes the total proportion of test units that are al- 

ocated to the extra “mid-stress-levels”. The optimal rules to pro- 

ide reasonable robustness are beyond the scope of the paper. 

ore often than not, κ is set by a small proportion from 10% to 

0% depending on the extent of compromise. A more scientific 

ethod to plan robust tests with respect to model misspecification 

s Bayesian planning ( Insua, Ruggeri, Soyer, & Wilson, 2019 ). Since 

t is not the focus of the paper, we leave the Bayesian approaches 

or the problem as a future work. 

. Examples 

.1. Test planning for rechargeable batteries 

In order to grab market share and reduce the cost induced by 

ost-sales service, the lead acid rechargeable battery manufactur- 

rs improve the design of products frequently. On the one hand, 

attery design improvement intends to bring immediate perfor- 

ance enhancement that is sensible to customers. On the other, 

ew technologies and designs may bring unknown risks to prod- 

cts, which could lead to high return rate in the future. The ex- 

mple discussed in the section is from one of the top-ranked acid 

echargeable battery manufacturers based in China. From January 

o August 2017, the external losses (mainly because of the products 

eturn) of the company is around $11,0 0 0,0 0 0, accounting for 71% 

f the quality and reliability related cost. In general, battery man- 

facturers pay great efforts to conduct various tests to validate the 

eliability of products that are used by customers in various modes. 

or batteries, a degradation experiment for newly developed bat- 

eries takes up to half a year in normal conditions. In this situation, 

any products cannot be adequately verified under the strategy of 

ringing products to market faster than competitors. This has mo- 

ivated the managerial team and engineers to seek for a scientific 

pproach to degradation test planning that incorporates the con- 

umers usage modes in the market. 

Based on domain knowledge and previous experience of relia- 

ility tests, engineers believe that environmental temperature sig- 

ificantly affects the lead-acid batterys capacity. Specifically, the 

attery capacity degrades faster as the temperature increases from 

5 ◦C to 65 ◦C. The failure mode can change when the tempera- 

ure is higher than 65 ◦C, thus the maximum test temperature is 

et at 65 ◦C. Another factor that affects the reliability of batteries 

s the charging mode. The proposed model in (2) can well satisfy 

he requirements to plan tests for the batteries. To facilitate fur- 

her elaborations, we standardize the temperature factor into the 

ange from 0 to 1, where x = 0 and x = 1 indicate the normal us-

ge temperature and maximum allowed temperature. In the ex- 

mple, we assume that x = 0 and x = 1 correspond to 25 ◦C and

5 ◦C, respectively. Let T K i denote the thermodynamic temperature 

nder the i th stress level, then according to the Arrhenius model 
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Table 1 

Preliminary settings for the test. 

Description Notation Value 

Number of test units N 200 

Inspection interval �τ 5 

Number of inspections (for each test unit) K 20 

Maximum allowable temperature T max 65 ◦C 

Warranty period τW 730 days 

Deterministic failure threshold L 5 

Minimum returnable threshold l min 4.5 

Random delay return level L D ∼ Gamma (1 , 0 . 5) 
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 Meeker et al., 1998 ), x i can be standardized as: 

 i = 

1 /T K min − 1 /T K i 

1 /T K min − 1 /T K max 
, (25) 

here T K min and T K max are equal to 298.15 Kelvin and 348.15 

elvin, respectively. For illustrative purposes, we assume that three 

harging modes are considered. Planning settings and parameters 

re listed in Tables 1 and 2 , respectively. It is noted that we set

 min = 4 . 5 and L D ∼ Gamma (1 , 0 . 5) to describe the randomness in

eturn level. In this sense, we keep the mean of l min + L D the same

s L . Nevertheless, the median and mode of l min + L D are both

maller than L , which implies that more products tend to be re- 

urned earlier when the return threshold is random. We will con- 

uct more sensitivity analysis with respect to L D in Section 4.5 . 

Tables 3 and 4 exhibit the global optimal plan and constrained 

ptimal plan, respectively, under the three proposed models. From 

able 3 it is observed that the optimal stress levels are the same 

nder three proposed methods. Specifically, the lower stress level 

 

∗
m 1 is higher for m = 2 while is lower for m = 3 . Interestingly,

ven though we assign the highest proportion to the mode m = 1 ,

he optimal plans assign most test units to m = 3 . A possible rea-

on behind the phenomenon is that products under mode m = 3 

re more likely to be returned by the customers due to its higher 

egradation rate as γ3 is greater. By comparing the global optimal 

lans under the three models, we find that when the return level is 

andom, slightly more test units tend to be allocated to m = 1 . Ad-

itionally, the minimum asymptotic variance of ˆ 
 is smaller in the 

resence of randomness in return level at the current setting. In 

eneral, the optimal plans under Model 1 and Model 2 are reason- 

bly close, yet the approximation embedded in Model 2 leads to 

ncorrectly lower asymptotic variance of the value of interest than 

he true value. 

In contrast to the global optimal plans, the constrained optimal 

lans under three models suggest different optimal lower stress 

evels and a slightly different allocation scheme. Naturally, the 

inimum asymptotic variances under constrained optimal plans 

re higher than those under global optimal plans, while only slight 

argins are witnessed from the results. The current parameter set- 

ings yield true values of 
 under Models 0, 1 and 2 to be -

.20, -1.88 and -1.78, respectively. Therefore, the constrained op- 

imal plans have provided relatively small asymptotic variances in 

omparison to the absolute values of true 
’s. Due to the fact that 

he global plans seem to outperform the constrained plans only by 

 small margin, the test plans may choose the constrained opti- 

al plans that save more test resources as the preferable schemes. 

e can also observe that all the optimal higher stress levels ( x ∗
m 2 

)

re equal to 1, implying that the optimal plan always utilizes the 

ighest allowed temperature to fully take advantage of the feasible 

xperimental region. 

.2. Verification of optimality 

The optimality of test plans can be readily verified by the re- 

ults in Theorem 3 . The derivative functions of global optimal plans 
1356 
t different values of x are plotted in Fig. 2 under different values 

f m and proposed models. The plot of derivative functions indi- 

ates that the plans in Table 3 are global optimal under the three 

odels. To contrast, we exhibit the plots for the constrained opti- 

al plans in Fig. 3 , in which we can notice that the derivative val-

es are greater than 0 at particular values of x . Therefore, in view

f global optimality, the constrained test plans are suboptimal. Fur- 

her, the results in the plots also verify Lemma 1 by demonstrat- 

ng that a two-level plan for each m formulates the global optimal 

lan. 

.3. Simulation study 

To demonstrate the efficiency of the large-sample approxima- 

ion employed in the model, Monte Carlo simulation is conducted. 

e simulate large numbers of test data sets according to the set- 

ings in Tables 1 and 2 and the optimal test plans in Tables 3 and 4 .

he number of simulated data sets under each test plan is 10,0 0 0. 

able 5 depicts the average bias and standard error for each un- 

nown parameter under various models, and in the last two rows, 

he sample variance computed from the simulated data (denoted 

y var ( ̂  
) ) and the theoretical asymptotic variance of ˆ 
 are com- 

ared. Generally, the accuracy of estimation is fairly high and we 

an observe a satisfactory consistency in var ( ̂  
) and Avar ( ̂  
) un- 

er each model. Taken together, for the settings in the example, 

he adoption of large-sample approximation is reasonable, which 

hereby validates the appropriateness of the optimal plans. 

.4. Compromise plans 

Three-level compromise plans were introduced in Section 3.4 to 

mprove the model robustness. For illustrative purposes, we set the 

otal proportion of test units to the extra levels as 10%, i.e., κ = 

 . 1 . The global optimal and constrained optimal compromise plans 

re listed in Tables 6 and 7 , respectively. We define the “Relative 

fficiency (RE)” of a test plan as follows: 

E ( ξ) = 

{
Avar ( ̂  
; ξ∗

) / Avar ( ̂  
; ξ) , for global optimality , 

Avar ( ̂  
; ξ† 
) / Avar ( ̂  
; ξ) , for constrained optimality . 

(26) 

In this manner, a higher RE represents that the efficiency of a 

est plan is closer to the optimal. As shown in Table 6 , the extra

id-level stress ranges from 0.67 to 0.75 under different m and 

odels, and most units assigned to extra stress are allocated to 

 = 2 . In comparison to the results in Table 3 , the compromise

lan is fairly close to the two-level optimal plans regardless of 

he extra stress level. Similarly, Table 7 exhibits analogous results. 

he reported high REs ranging from 0.95 to 0.98 indicate a very 

arginal loss of efficiency loss under the setting κ = 0 . 1 . 

Understandably, the increase in κ would increase the power 

o detect the lack-of-fit of the model, whereas it inevitably de- 

rades the RE of a test plan. Thus, it is of interest to explore how

he change in κ affects the REs of the compromise optimal plans. 

igure 4 displays the values of RE under different scenarios when 

ranges from 0 to 0.4. The REs for the global compromise plans 

enerally behave a near-linear reduction in the increase of κ , while 

here is a slight fluctuation around κ = 0 . 2 under Model 1 and

odel 2. To contrast, the REs for the constrained compromise plans 

ecreases relatively slower when κ increases from 0 to a small 

alue, whereas the speed of decrease increases as κ increases to a 

elatively higher value. In general, the REs of constrained compro- 

ise plans are higher than those of global compromise plans un- 

er a same κ . The interesting result implies that the constrained 

ompromise plans are more robust than the global ones when κ
hanges. Reasons behind this can be partially explained as follows. 
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Fig. 2. Derivative functions against x under ξ
∗

for Model 0, 1 and 2. 

Fig. 3. Derivative functions against x under ξ
† 

for Model 0, 1 and 2. 
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Table 2 

Input parameters for test planning. 

Parameter θ ρ

β0 β1 β2 β3 σ γ2 γ3 ρ1 ρ2 ρ3 

Value -5.3 2.5 3.0 2.0 0.027 0.1 0.2 0.5 0.3 0.2 

Fig. 4. RE of optimal compromise plans under different κ ’s. 

Table 3 

Global optimal plans. 

Model x 2 Optimal plan ξ
∗

Avar 
[

ˆ 
; ξ∗]
x ∗m 1 (temp ◦C) x ∗m 2 (temp ◦C) π ∗

m 1 π ∗
m 2 

0 m = 1 0.489 (43.3) 1 (65.0) 0.22 0.03 0.0514 

m = 2 0.574 (46.7) 1 (65.0) 0.22 0.03 

m = 3 0.361 (38.3) 1 (65.0) 0.45 0.05 

1 m = 1 0.489 (43.3) 1 (65.0) 0.27 0.04 0.0388 

m = 2 0.574 (46.7) 1 (65.0) 0.22 0.04 

m = 3 0.361 (38.3) 1 (65.0) 0.39 0.04 

2 m = 1 0.489 (43.3) 1 (65.0) 0.31 0.04 0.0329 

m = 2 0.574 (46.7) 1 (65.0) 0.22 0.03 

m = 3 0.361 (38.3) 1 (65.0) 0.36 0.04 

F

c

i

i

t

c
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c

t

t

o

4

o

t

θ
o

or global optimality, any alternative selection of stress levels, in- 

luding the ones in the compromise ones, is worse than those 

n the global optimal plan. However, for the constrained optimal- 
Table 4 

Constrained optimal plans. 

Model x 2 Optimal plan ξ
† 

x ∗m 1 (temp ◦C) x ∗m 2 (tem

0 m = 1 0.462 (42.25) 1 (65.0

m = 2 

m = 3 

1 m = 1 0.470 (42.55) 1 (65.0

m = 2 

m = 3 

2 m = 1 0.474 (42.73) 1 (65.0

m = 2 

m = 3 

1358 
ty, the extra stress levels in the optimal compromise plans can 

o some extent compensate some efficiency incurred by the stress 

onstraint, and keeps a higher RE for the constrained compromise 

lans. The aforementioned robustness is another advantage of the 

onstrained plans in addition to the convenience of test implemen- 

ation. Taken together, if the test planner wish to conduct a robust 

est plan under a limited number of test facilities, the constrained 

ptimal compromise plans are preferable choices. 

.5. Sensitivity analysis 

To further investigate the robustness of the test plans, we report 

n a series of sensitivity analysis. To be specific, three aspects of 

he model inputs are considered, that is, the unknown parameters 

, the probability model of usage mode ρ and the characteristics 

f the random return level l + L . 
min D 

Avar 

[ 
ˆ 
; ξ† 

] 
p ◦C) π ∗

m 1 π ∗
m 2 

) 0.22 0.03 0.0536 

0.23 0.02 

0.43 0.07 

) 0.27 0.03 0.0404 

0.24 0.02 

0.38 0.06 

) 0.30 0.04 0.0342 

0.24 0.02 

0.34 0.06 
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Table 5 

Mean bias and standard error of unknown parameters and variance of ˆ 
. 

Global optimal Optimal under constrained x 

Model 0 Model 1 Model 2 Model 0 Model 1 Model 2 

bias( ̂  β0 ) -0.00100 -0.00116 0.00013 -0.00086 -0.00045 -0.00068 

se( ̂  β0 ) 0.04949 0.04459 0.04260 0.04996 0.04578 0.04340 

bias( ̂  β1 ) 0.00099 0.00094 -0.00021 0.00061 0.00035 0.00050 

se( ̂  β1 ) 0.05813 0.05307 0.05034 0.05944 0.05406 0.05053 

bias( ̂  β2 ) -0.00005 0.00049 -0.00010 -0.00059 -0.00006 -0.00094 

se( ̂  β2 ) 0.03903 0.03768 0.03836 0.04131 0.03855 0.03920 

bias( ̂  β3 ) 0.00035 0.00067 -0.00025 0.00082 0.00053 0.00000 

se( ̂  β3 ) 0.04759 0.05012 0.05385 0.04636 0.04880 0.05239 

bias( ̂ σ ) -0.00002 -0.00002 -0.00002 -0.00002 -0.00002 -0.00003 

se( ̂ σ ) 0.00030 0.00031 0.00031 0.00030 0.00030 0.00030 

bias( ̂ γ2 ) 0.00085 0.00056 -0.00012 0.00098 0.00064 0.00136 

se( ̂ γ2 ) 0.06027 0.05603 0.05419 0.06121 0.05694 0.05562 

bias( ̂ γ3 ) 0.00058 0.00039 -0.00010 0.00018 0.00011 0.00068 

se( ̂ γ3 ) 0.06256 0.05862 0.05921 0.06353 0.06071 0.06013 

var( ̂  
) 0.0513 0.0382 0.0339 0.0533 0.0400 0.0347 

Avar( ̂  
) 0.0514 0.0388 0.0329 0.0536 0.0404 0.0342 

Table 6 

Global optimal compromise plans under κ = 0 . 1 . 

Model x 2 Optimal plan ξ
∗
c Avar 

[
ˆ 
; ξ∗

c 

]
RE 

x ∗m 1 x ∗m 2 x ∗m 3 π ∗
m 1 π ∗

m 2 π ∗
m 3 

0 1 0.480 (42.97) 0.740 (53.61) 1 (65.0) 0.21 0.01 0.03 0.0538 0.955 

2 0.494 (43.50) 0.747 (53.90) 1 (65.0) 0.15 0.08 0.04 

3 0.356 (38.11) 0.678 (51.00) 1 (65.0) 0.43 0.01 0.04 

1 1 0.482 (43.03) 0.741 (53.65) 1 (65.0) 0.26 0.01 0.04 0.0406 0.956 

2 0.497 (43.62) 0.748 (53.96) 1 (65.0) 0.15 0.08 0.04 

3 0.355 (38.08) 0.678 (50.98) 1 (65.0) 0.37 0.01 0.04 

2 1 0.483 (43.06) 0.741 (53.65) 1 (65.0) 0.29 0.01 0.04 0.0345 0.954 

2 0.498 (43.66) 0.749 (53.98) 1 (65.0) 0.16 0.08 0.04 

3 0.355 (38.05) 0.677 (50.97) 1 (65.0) 0.34 0.01 0.03 

Table 7 

Constrained optimal compromise plans under κ = 0 . 1 . 

Model x 2 Optimal plan ξ
† 
c Avar 

[ 
ˆ 
; ξ† 

c 

] 
RE 

x ∗m 1 x ∗m 2 x ∗m 3 π ∗
m 1 π ∗

m 2 π ∗
m 3 

0 1 0.425 (40.77) 0.712 (52.43) 1 (65.0) 0.21 0.01 0.02 0.0548 0.978 

2 0.15 0.08 0.04 

3 0.42 0.01 0.06 

1 1 0.434 (41.14) 0.717 (52.63) 1 (65.0) 0.26 0.01 0.03 0.0414 0.976 

2 0.15 0.08 0.04 

3 0.37 0.01 0.05 

2 1 0.440 (41.36) 0.720 (52.75) 1 (65.0) 0.29 0.01 0.03 0.0351 0.974 

2 0.15 0.08 0.04 

3 0.33 0.01 0.05 
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ensitivity with respect to the unknown parameters 

The parameter vector θ is usually provided by experienced ex- 

erts before a test is planned. Sometimes, the unknown parame- 

ers in θ are misspecified due to the lack of prior knowledge about 

he product to be tested. To this end, we explore how the marginal 

hanges in each parameter can affect the efficiency of the resulted 

ptimal test plans. We add more details to the RE proposed in 

26) as follows: 

E ( ξ, θ) = 

{
Avar ( ̂  
; ξ∗

, θ) / Avar ( ̂  
; ξ, θ) , for global optimality , 

Avar ( ̂  
; ξ† 
, θ) / Avar ( ̂  
; ξ, θ) , for constrained optimality . 

(27) 

s with the equation above, we define all the REs under true pa- 

ameters. In this sense, we evaluate the true asymptotic variances 

f 
 of the test plan optimized under misspecified parameters and 

ompare them with the true asymptotic variances. Further, we uti- 

ize the true covariance matrix of ˆ 
, which is the inverse of I ( θ) ,

nder test plan ξ
∗

under Model 0 in Table 3 to quantify the uncer- 

ainties of each parameter in θ. Specifically, we compute the stan- 
1359 
ard deviation of the unknown parameters as follows: 

θi 
= 

√ [
( I ( θ) ) −1 

]
ii 
, (28) 

or i = 1 , . . . , 7 , where [ ·] ii denotes the i th diagonal element of a

atrix. Then, we explore how the change in each parameter by 

σθi 
, ±2 σθi 

and ±3 σθi 
influences the REs and the results are dis- 

layed in Table 8 . We highlight the REs that are smaller than 0.9 

y bold text in the table. As observed, the REs are more sensitive 

o the change in parameters β0 , γ2 and γ3 , which is understand- 

ble because these parameters determine the degradation models 

nder the normal condition of x 1 , i.e., x 1 = 0 . Specifically, the RE

ecreases considerably when β0 is over-specified or γ2 and γ3 are 

nder-specified. Thus, test planners should avoid such cases to im- 

rove the robustness of the test plans. In general, most REs listed 

n the table are quite high and this indicates adequate robustness 

f the test plans in the current settings. 
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Table 8 

The RE of optimal test plans under misspecified parameters. (Values smaller than 0.9 are bold ). 

Model θi Global optimal Constrained optimal 

−3 σθi 
−2 σθi 

−1 σθi 
+1 σθi 

+2 σθi 
+3 σθi 

−3 σθi 
−2 σθi 

−1 σθi 
+1 σθi 

+2 σθ +3 σθi 

0 β0 0.950 0.973 0.992 0.988 0.946 0.862 0.949 0.972 0.992 0.988 0.945 0.861 

β1 0.996 0.998 1.000 1.000 0.998 0.996 0.998 0.999 1.000 1.000 0.999 0.998 

β2 0.999 0.999 1.000 1.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 

β3 0.995 0.998 1.000 1.000 0.998 0.995 0.996 0.998 1.000 1.000 0.998 0.996 

σ 0.998 0.999 1.000 1.000 0.999 0.999 0.998 0.999 1.000 1.000 0.999 0.998 

γ2 0.647 0.839 0.962 0.975 0.928 0.895 0.635 0.832 0.960 0.974 0.925 0.891 

γ3 0.700 0.878 0.976 0.991 0.988 0.999 0.693 0.874 0.975 0.991 0.987 0.999 

1 β0 0.950 0.972 0.990 0.988 0.953 0.887 0.943 0.965 0.983 0.981 0.946 0.880 

β1 0.993 0.996 0.997 0.997 0.996 0.993 0.988 0.990 0.990 0.990 0.990 0.988 

β2 0.996 0.997 0.998 0.998 0.997 0.996 0.990 0.990 0.991 0.991 0.990 0.990 

β3 0.993 0.996 0.997 0.997 0.996 0.993 0.988 0.989 0.990 0.990 0.989 0.988 

σ 0.997 0.997 0.998 0.998 0.997 0.997 0.990 0.990 0.991 0.991 0.990 0.990 

γ2 0.755 0.895 0.975 0.984 0.961 0.950 0.742 0.885 0.967 0.977 0.953 0.941 

γ3 0.818 0.933 0.986 0.995 0.996 0.996 0.808 0.924 0.979 0.988 0.989 0.989 

2 β0 0.940 0.970 0.991 0.990 0.968 0.935 0.940 0.970 0.991 0.991 0.968 0.935 

β1 0.994 0.996 0.998 0.998 0.996 0.994 0.996 0.997 0.999 0.999 0.997 0.996 

β2 0.997 0.998 0.998 0.998 0.998 0.997 0.998 0.998 0.999 0.999 0.998 0.998 

β3 0.994 0.997 0.998 0.998 0.997 0.995 0.996 0.998 0.999 0.999 0.998 0.996 

σ 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 

γ2 0.811 0.925 0.984 0.991 0.979 0.971 0.805 0.923 0.983 0.991 0.978 0.971 

γ3 0.885 0.962 0.993 0.997 0.996 0.998 0.882 0.961 0.993 0.997 0.997 0.999 

Fig. 5. Surface plot of RE under different combinations of ρ1 and ρ2 . 
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ensitivity with respect to probability model of usage modes 

Apart from the unknown parameters, the test planner has to 

rovide the probabilities of usage mode ρ. Analogously, we use the 

E defined under true ρ and compute them under misspecified ρ. 

ig. 5 displays the surface plot of RE when ρ1 and ρ2 take different 

alues. We can see that the misspecification of θ can possibly lead 

o very low REs, especially when ρ1 and ρ2 are specified as ex- 

reme values that are close to 0 or 1. When the specified ρ is fairly

loser to the true ρ, the RE can retain at a high level ( ≥ 0 . 8 ). The

ensitivity analysis, in general, indicates the importance to spec- 

fy ρ that is close to the true one. Test planners are suggested 

o collect adequate and reliable information on ρ to facilitate the 

est planning. Fortunately, in a particular industry, the probability 

odel of usage modes of customers for similar products could be 

uite close and related information can be collected based on ex- 

sting data and experiences. 
1360 
ensitivity with respect to the parameters in L D 
Next, we explore the influence of characteristics of the random 

eturn level l min + L D on the optimal test plans. Since the random- 

ess of l min + L D completely lies in L D , we evaluate the asymptotic

ariances under different settings of L D , and the results are dis- 

layed in Table 9 . We put forward two scenarios to keep the com- 

arison consistent. In the first one, the mean of L D is kept at 0.5, 

hile in the second one the mode is kept at 0.5. Then, the variance 

f L D is adjusted and the asymptotic variances as well as REs are 

ompared. As a side note, we only adopt Model 1 to conduct the 

nalysis. An interesting result observed from the table is that when 

he variances gets larger, the asymptotic variance of ˆ 
 becomes 

maller. The underlying reason can be that the gamma distribu- 

ion is a right-skewed distribution, when the variance gets larger 

ith a fixed mean or mode, the distribution will be more right 

kewed, which implies that a larger probability density when L 
D 
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Table 9 

The asymptotic variance of ˆ 
 and RE under different settings of L D . 

L D var (L D ) shape scale Global optimal Constrained optimal 

Avar 
[

ˆ 
; ξ∗]
RE Avar 

[ 
ˆ 
; ξ† 

] 
RE 

Mean = 0 . 5 0.10 2.50 0.20 0.0436 0.8906 0.0454 0.8898 

0.25 1.00 0.50 0.0388 1.0000 0.0404 1.0000 

0.50 0.50 1.00 0.0358 1.0830 0.0372 1.0840 

Mode = 0 . 5 0.10 4.27 0.15 0.0491 0.7905 0.0512 0.7891 

0.25 2.62 0.31 0.0472 0.8213 0.0492 0.8198 

0.50 2.00 0.50 0.0456 0.8498 0.0476 0.8484 
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s relatively small. It is understandable that when the realizations 

f l min + L D are smaller, the asymptotic variance of ˆ 
 should be 

maller as the extent of extrapolation is reduced. These results, in 

eneral, suggest that the determination of L D can be quite impor- 

ant to plan the test and predict the return rate. Again, like ρ, the

etermination of L D can be aided by existing data and experiences. 

. Conclusions 

This paper investigates the optimization of reliability tests for 

eturn rate prediction based on a prevailing degradation-failure 

odel. The proposed model allows for the existence of multiple 

ustomer usage modes and random return level. We have given 

nalytical forms of the return rate model and the large-sample ap- 

roximation approach is employed to quantify the uncertainty of 

he estimated return rate. Two types of test plans, namely global 

ptimal plans and constrained optimal plans, are put forward to 

atisfy different requirements of the decision maker. A real moti- 

ating example from the battery industry is analyzed to demon- 

trate the proposed methods. Our results have suggested the adop- 

ion of the constrained optimal plans that compromise limited sta- 

istical efficiency whereas simplify the test implementation and of- 

er more robustness under compromise plans. Moreover, the sensi- 

ivity analysis emphasizes the importance of accurately determin- 

ng the probabilities of customer usage modes. 

It is of interest to extend the methods to scenarios with more 

omplicated product return models. The heterogeneity in products 

nd customer behaviors can be modeled in a more general man- 

er. Moreover, for products subject to several stress factors, the 

odel can be extended to incorporate multiple continuous and 

iscrete factors. The adaption to products with multiple key com- 

onents is also significant to manufacturers of more complex prod- 

cts. Bayesian approaches or nonparametric methods can be ex- 

lored to plan similar reliability tests in the absence of reliable pa- 

ameter settings and specification of the degradation model. Fur- 

hermore, the approaches to data analytics based on the test data 

an be of interest for more specific prediction of return rate. 
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ppendix A. Technical proofs 

Proof of Proposition 2 The idea behind Proposition 2 originates 

rom the Taylor expansion. We can expand E L D [ F T ( L D ) ] as follows: 

 L D [ F T ( L D ) ] = F T ( μL D ) + 

∞ ∑ 

n =2 

F (n ) 
T ( μL D ) 

n ! 
E 

[
( L D − μL D ) 

n 
]
. 
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f we adopt the second-order approximation, then 

 L D [ F T ( L D ) ] ≈ F T ( μL D ) + 

1 

2 

F (2) 
T ( μL D ) E 

[
( L D − μL D ) 

2 
]

= F T ( μL D ) + 

1 

2 

F (2) 
T ( μL D ) var (L D ) , 

hich yields (10) . The derivation of (11) is trivial and thus 

mitted. �

1. Proof of Theorem 1 

To justify the results (a) and (b) in the general equivalence the- 

rem, we need to prove conditions 1–3 in the theorem. To start 

ith, (19) is proved as follows. We first have 

− Avar ( ̂  
;αξ + (1 − α) ζ) + αAvar ( ̂  
; ξ) + (1 − α) Avar ( ̂  
; ζ) 

= H 

T 

( θ) 

{ 

α
[
I ( θ; ξ) 

]−1 + (1 − α) 
[
I ( θ; ζ) 

]−1 

−
[
I ( θ;αξ + (1 − α) ζ) 

]−1 
} 

H 
( θ) . (B.3) 

urther, due to the fact that I ( θ;αξ + (1 − α) ζ) = αI ( θ; ξ) + (1 −
) I ( θ; ζ) , we have 

α
[
I ( θ; ξ) 

]−1 + (1 − α) 
[
I ( θ; ζ) 

]−1 −
[
I ( θ;αξ + (1 − α) ζ) 

]−1 

= α
[
I ( θ; ξ) 

]−1 + (1 − α) 
[
I ( θ; ζ) 

]−1 

−
[
αI ( θ; ξ) + (1 − α) I ( θ; ζ) 

]−1 
, 

hich is positive definite following the results in Section V-C in 

iao & Ye (2016) . Since αI ( θ; ξ) + (1 − α) I ( θ; ζ) is positive defi-

ite, then (B.3) is greater than zero for any H 
( θ) 	 = 0 , which com-

letes the proof of (19) . Afterward, according to the definition of 

he derivative function in the GET, we have 

( ξ, ζ) = lim 

δ→ 0 + 

−Avar ( ̂  
; (1 − δ) ξ + δζ) + Avar ( ̂  
; ξ) 

δ
. (B.4) 

ow apply the l’H ̂ o pital’s rule to (B.4) , and we get 

lim 

δ→ 0 + 

−Avar ( ̂  
; (1 − δ) ξ + δζ) + Avar ( ̂  
; ξ) 

δ

= lim 

δ→ 0 + 

−∂ Avar ( ̂  
; (1 − δ) ξ + δζ) 

∂δ

= lim 

δ→ 0 + 

−∂ H 

T 

( θ) 

[
I ( θ; (1 − δ) ξ + δζ) 

]−1 
H 
( θ) 

∂δ

( Split Fisher information ) 

= lim 

δ→ 0 + 

−∂ H 

T 

( θ) 

[
(1 − δ) I ( θ; ξ) + δI ( θ; ζ) 

]−1 
H 
( θ) 

∂δ

( Apply the chain rule ) 

= lim 

δ→ 0 + 
H 

T 

( θ) 

[
(1 − δ) I ( θ; ξ) + δI ( θ; ζ) 

]−1 [−I ( θ; ξ) + I ( θ; ζ) 
]

×
[
(1 − δ) I ( θ; ξ) + δI ( θ; ζ) 

]−1 
H 
( θ) 
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W
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Y
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Z

Z  
= H 

T 

( θ) 

[
I ( θ; ξ) 

]−1 [−I ( θ; ξ) + I ( θ; ζ) 
][

I ( θ; ξ) 
]−1 

H 
( θ) 

= H 

T 

( θ) 

[
I ( θ; ξ) 

]−1 
I ( θ; ζ) 

[
I ( θ; ξ) 

]−1 
H 
( θ) 

−H 

T 

( θ) 

[
I ( θ; ξ) 

]−1 
H 
( θ) , 

nd thus this completes the proof of (20) . The fact that 

 

(
θ; ∑ 

i a i ζi 

)
= 

∑ 

i a i I 
(
θ; ζi 

)
together with (20) can prove (21) af- 

er simple mathematical manipulations. The proofs above have en- 

ured that conditions 1–3, then the GET can be well applied to the 

roblem. 

ppendix B. Expression of the Fisher information 

According to (18) , the elements in the matrix can be expressed 

y 

E 

[
− � 2 

∂β2 
0 

]
= 

NK�τ

σ 2 

M ∑ 

m =1 

J ∑ 

j=1 

πm j 

[
μ(x m j , m ) 

]2 
, 

E 

[
− � 2 

∂ β0 ∂ βm 

]
= E 

[
− � 2 

∂ βm 

∂ β0 

]

= 

NK�τ

σ 2 

J ∑ 

j=1 

πm j 

[
μ(x m j , m ) 

]2 
x m j , for m = 1 , . . . , M, 

E 

[
− � 2 

∂β2 
m 

]
= 

NK�τ

σ 2 

J ∑ 

j=1 

πm j 

[
μ(x m j , m ) 

]2 
x 2 m j , for m = 1 , . . . , M, 

E 

[
− � 2 

∂σ 2 

]
= 

2 NK 

σ 2 
, 

E 

[
− � 2 

∂γ 2 
m 

]
= 

NK�τ

σ 2 

J ∑ 

j=1 

πm j 

[
μ(x m j , m ) 

]2 
, for m = 2 , . . . , M, 

E 

[
− � 2 

∂ γm 

∂ β0 

]
= E 

[
− � 2 

∂ β0 ∂ γm 

]

= 

NK�τ

σ 2 

J ∑ 

j=1 

πm j 

[
μ(x m j , m ) 

]2 
, for m = 2 , . . . , M., 

E 

[
− � 2 

∂ γm 

∂ βm 

]
= E 

[
− � 2 

∂ βm 

∂ γm 

]

= 

NK�τ

σ 2 

J ∑ 

j=1 

πm j 

[
μ(x m j , m ) 

]2 
x m j , for m = 2 , . . . , M. 

nd other elements all equal to zero. 
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