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Return of products within the warranty coverage induces additional cost and loss of reputation to man-
ufacturers. It is of practical interest to predict the return rate by experimental means before introducing
a product to the market. In this paper, we propose to optimize accelerated reliability tests to achieve the
goal within limited time. To describe the heterogeneity in the customers’ usage mode, a discrete ran-
dom variable is employed to model the degradation rate in addition to the continuous stress variable. To
further characterize the heterogeneity in the customers’ behavior, two models of product return are in-
vestigated: one assumes that customers return products once the degradation level reaches the minimum
eligible return threshold and the other assumes that the threshold varies among different customers. Op-
timal reliability tests are planned under the large-sample assumption with two novel test schemes: global
optimal planning and stress constrained planning. Insights regarding the optimal plans are gleaned to
ameliorate the test planning procedure and verify the optimality. A real example from the battery in-
dustry is then presented along with the simulation study and sensitivity analysis to demonstrate the
methods. We find that the randomness in return level results in different test plans. Furthermore, the
constrained optimal plans offer more robustness to the compromise plans.
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1. Introduction
1.1. Background and motivation

Manufacturers are putting more effort in enhancing product re-
liability to attain competitiveness in the market. Nowadays, most
products are sold with warranty, which acts as a contractual obli-
gation by manufacturers to provide free or discounted after-sale
service upon the product failure or malfunction under a specific
coverage policy. During the warranty coverage period, the product
return rate is one of the most representative measures that reflect
the reliability performance under certain warranty policies. A high
return rate within warranty coverage usually incurs reduced sales
of products and poor reputation to the manufacturer (Walsh, Al-
brecht, Kunz, & Hofacker, 2016), in addition to the immediate in-
crease in maintenance/replacement cost, which could account for
a remarkable proportion of the operational cost of a manufacturer.
Therefore, to control the return rate is essential to extract more
profit from customers and establish positive marketing influences
and reputation.
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E-mail addresses: xiujiezhao@tju.edu.cn (X. Zhao), p.chen-6@tudelft.nl (P. Chen).
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With the rapid emergence of new products, it is of great impor-
tance to predict the return rate for products free of tracking his-
tory (Darghouth, Ait-kadi, & Chelbi, 2017). The evaluation of future
warranty claims under usage condition can be realized indirectly
via reliability tests. Some realistic constraints attach challenges to
the prediction problems. Manufacturers usually wish to shorten
the duration of reliability tests. To achieve this goal, accelerated-
stress reliability tests are preferred, yet extrapolation is inevitable
for accelerated tests. Further, the usage mode usually varies among
sold products due to different customers’ behaviors. Variable usage
modes not only influence the expected return rate, but also aug-
ment the variability in return rate prediction.

A typical example of this type is the rechargeable battery. Bat-
tery manufacturers test the battery capacity over time prior to
their introduction to the market. Many rechargeable batteries are
returned due to unsatisfactory capacity within the warranty cov-
erage. Battery capacity is believed to decrease over time and the
deterioration can be accelerated by several factors (Li, Rezvanizani-
ani, Ge, Abuali, & Lee, 2015). Specifically, temperature is deemed to
make the most significant effects, therefore, battery manufacturers
usually set operating ambient temperature at a specified range to
avoid irreversible damages to the batteries. Moreover, consumers
behaviors, such as the selection of recharging and discharging
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modes, may also influence the speed of battery capacity degrada-
tion. Behind the huge success of e-commence in China, there exist
numerous delivering vehicles of which the quantity keeps increas-
ing rapidly. These vehicles are mostly equipped with rechargeable
batteries, and they are used under various usage habits. In the
presence of the aforementioned sources of variability, the reliabil-
ity tests need to be carefully planned to obtain as much useful in-
formation as possible for the prediction of product return rate. Un-
like conventional accelerated tests designed to estimate the mean-
time-to-failure (MTTF) or life quantiles, the aims of reliability tests
for return rate prediction lie in two aspects: a) to accurately esti-
mate the proportion of returned products in population; b) to bet-
ter understand the relationship between product degradation and
covariates in usage condition and mode, and thereby assist deci-
sion makers to specify usage instructions. Motivated by the battery
example, in this paper, we address the general planning of reliabil-
ity test under multiple experimental factors for return rate predic-
tion.

1.2. Related works

Sitting in the interface of design of reliability experiments
(tests) and warranty analysis, our work mainly deals with the
problem of reliability test planning for return rate prediction
within the warranty coverage. To this end, we give literature re-
view on the following related topics.

Modeling of accelerated degradation tests. From a broader
view of classification, accelerated reliability tests consist of life
tests and degradation tests. Owing to the utilization of dynamic
measurable quality characteristics, accelerated degradation tests
(ADT) have shown great advantages over accelerated life tests (ALT)
after the enlightening work by Meeker, Escobar, & Lu (1998), espe-
cially for highly reliable products (Fang, Pan, & Wang, 2022; Wang,
Wang, Hong, & Jiang, 2021; Ye & Xie, 2015). In an ADT, test units
are exposed to elevated stresses to increase their degradation rates.
As a compensation for the inevitable extrapolation in estimation,
the accelerated stresses can considerably shorten the test duration.
ADT has been widely investigated and applied in the battery in-
dustry. Thomas, Bloom, Christophersen, & Battaglia (2008) utilized
ADT data to predict the life of lithium-ion cells with general path
models. In Cheng, Li, Yuan, Zhang, & Liu (2016), nonlinear curve
fitting methods were proposed to predict the lifetime for lithium
thionyl chloride batteries via ADT data. Li et al. (2015) treated a
NASA battery dataset as the historical data and employed a simu-
lated Bayesian approach to plan the step-stress ADT. Further, ran-
dom fuzzy model was formulated to characterize the random ef-
fects in time dimension and unit-unit variations and the method
was applied to the lithium-ion battery (Li, Wu, Ma, Li, & Kang,
2018). Current studies commonly regard temperature, charging and
discharging voltage/current as key factors that affects the battery
capacity over time (Zhu et al., 2020). In addition, many existing
works have contributed to the degradation modeling for recharge-
able batteries without accelerated stress conditions (Si, 2015; Ye &
Chen, 2014; Zhai & Ye, 2017).

Warranty analysis via experimental results. Although a large
amount of effort has been put into degradation data analysis and
degradation tests, the research concerning the linkage between
warranty issues (e.g., return rate, warranty cost, warranty pol-
icy) and experimental tests is relatively scant. Most extant works
predominately adopt life models for warranty analysis and over-
look the degradation models. Yang (2010) optimized ALT plans to
minimize the asymptotic variance of predicted warranty cost un-
der a replacement policy. Zhao & Xie (2017) and Zhao, He, & Xie
(2018) utilized ALT and ADT data to predict the number of war-
ranty claims with a fixed period under environmental variation,
respectively. In Hsu, Tseng, & Chen (2015) and Tseng, Hsu, & Lin
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(2016), Bayesian framework was employed to jointly model field
return date and lab data for warranty prediction. While one can
witness the initial emergence of related works, these studies have
not zoomed into the reliability test planning problem with multi-
ple covariates that can be either continuous or discrete.

Optimization of accelerated test plans. The most widely used
paradigm for accelerated reliability test planning is to utilize the
asymptotic property of maximum likelihood estimators (MLEs).
Under the large-sample assumption, the Fisher information of un-
known parameters can well characterize the estimation uncer-
tainty (Meeker & Escobar, 2015). In this sense, the uncertainty in
desired estimation can be inferred via the classic delta method.
In the context of degradation tests, where more informative data
can be collected than in life tests, the appropriateness of the large-
sample approximation is usually well justified. More advanced ap-
proaches have been intensely explored on this mainstream direc-
tion of optimization to improve the applicability and robustness
of test plans. To name a few, Zhang & Meeker (2006) employed a
Bayesian method to maximize the pre-posterior utility and obtain
the robust optimal ALT plan under model uncertainty. To enhance
the generality of ADT planning approaches, Lee, Tseng, & Hong
(2020) proposed an exponential-dispersion degradation model that
generalize commonly used stochastic models and provided the
closed-form ADT plans. The studies mentioned above all deal with
the asymptotic properties of the objective function. Such meth-
ods are proved to be reasonably accurate by simulation studies.
Most existing studies identify the minimization of asymptotic vari-
ance of key reliability characteristics, such as the mean time to
failure (MTTF) and life quantiles, as their criteria. To the best of
our knowledge, the criterion that concerns the prediction of return
rate, is still underexplored.

1.3. Overview

This paper prescribes an ADT planning method for return rate
prediction under one continuous quantitative factor and one qual-
itative factor. Potential inherent correlation between the two fac-
tors is addressed in the test planning phase. Further, the hetero-
geneity in the customers usage mode is taken into consideration
to achieve more accurate prediction. In view of practical assump-
tions, we inaugurate new criteria of optimal plans for two different
return models. The criteria of optimality are established based on
the large-sample approximation. In addition, two test schemes are
put forward for different application scenarios. To the best of our
knowledge, the work sheds new lights on the reliability testing re-
search by being the first to simultaneously address the following
issues:

1. We propose a novel criterion of optimality that concerns the
return rate prediction for accelerated tests. The criterion in-
tend to aid decision makers to predict the proportion of re-
turned products in the design phase

2. We put forward a framework to plan accelerated tests in
the presence of both continuous and discrete factors. Specif-
ically, we construct the optimal test plans for degrading
products in the presence of both the continuous environ-
mental stress and multiple usage modes.

3. The proposed model enables the randomness in the degra-
dation level of the returned product, which is quite common
in practice. In addition, we provide rigorous evaluations ap-
proaches to the return rate in the presence of the aforemen-
tioned randomness.

4. We introduce two test schemes: global optimal plans and
constrained optimal plans to enhance the generality of pro-
posed methods. Global optimal plans can achieve the most
accurate prediction, whereas constrained optimal plans pro-
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vide feasible options to manufacturers with limited test
chambers.

The paper proceeds as follows. Section 2 presents the re-
turn rate modeling under the Wiener degradation process. In
Section 3, the approaches to test plan optimization are detailed,
based on which we provide some general insights to test planners.
Section 4 demonstrates the proposed methods systematically with
a practical example, in which we also carry out simulation stud-
ies and sensitivity analysis to illustrate the robustness of optimal
plans. Conclusions are drawn in Section 5. Technical proofs are rel-
egated in the Appendix A.

2. Modeling of return rate under degradation models
2.1. Wiener degradation process with covariates

The Wiener process has been successfully applied to model
the degradation of rechargeable batteries due to the fact that the
degradation paths of batteries are oftentimes non-monotone (Si,
2015; Zhang, Si, Hu, & Lei, 2018). In the paper, we use the Wiener
process as the degradation model and it can be easily extended
to other stochastic processes for the adaptation to other product-
s/systems. Under a covariate vector denoted by xg, the degradation
process Y (t|xg) is given as follows:

Y(t[Xo) = yo + (X)W (t) + o B(Y(1)). (1)

where yj is the initial degradation level, w(xg) is the drift param-
eter evaluated at xp, W(t) is the time scale function to character-
ize the nonlinearity in degradation path, o is the diffusion param-
eter, and B(-) is the standard Brownian motion. Standing on the
model in (1), covariates regarding usage condition x; exert influ-
ences on the drift properties of the degradation paths, and the
volatility stays constant over any Xy. Note that the assumption has
been commonly made and verified by extant works (Hu, Lee, &
Tang, 2015; Lim & Yum, 2011). Without loss of generality, W (t) =t
is assumed to imply a linear degradation path under a fixed x; for

t>0,

simplicity. Further, we divide Xy into two parts by Xy = (xgl), xéz)),

where xgl) and xc(,z) represent the continuous quantitative variables
and discrete qualitative variables, respectively.

For the better exposition of the proposed methods, we con-
sider the scenario in which there is one continuous quantitative
factor and one discrete qualitative factor in x5, which we denote
by x5 = (X9, mp). It is worth mentioning that the proposed frame-
work can be readily extended to consider more factors (Fang, Pan,
& Stufken, 2020). For rechargeable batteries, x; usually represents
a transformed variable of the environmental temperature, which is
believed to be a dominating factor affecting the battery capacity
(Tian, Xiong, & Shen, 2020). In contrast, the discrete factor mg can-
not be quantified or ordered. In the context of the battery example,
the factor could characterize the recharging and discharging mode
of the battery. To characterize the heterogeneity in the usage mode,
we assume that mgy has M categories, and mg is characterized by
a discrete random distribution. For m =1, ..., M, a value py, is as-
signed to quantify the probability that customers use the product
under mode my =m, i.e, Pr(mg=m) = pn. Let p= (01..... Pm),
and p can be estimated via customer survey and records of similar
products from the manufacturer. Remark Since factors like the us-
age mode cannot be modeled as continuous variables or even ordi-
nal discrete variables, we can only model them as discrete random
variables and employ the probability mass to characterize them.
In practice, a customer may use the product with modes that vary
over time. We can employ a deterministic function, or, more gener-
ally, a stochastic process to characterize the usage mode as My(t).
The main challenge in modeling the problem with time-varying
usage mode lies in the derivation of the reliability function when

1351

European Journal of Operational Research 304 (2023) 1349-1363

My (t) is stochastic. Simulation-based methods can be resorted to if
the reliability function cannot be derived analytically. In this work,
for simplicity, we can regard My (t) as a controlled variable and as-
sume that it is constant over time in the ADT. By considering all
the usage modes in the test planning, the results obtained from
the proposed method can be easily utilized to predict the return
rate if the usage mode is time varying.

2.2. Degradation under accelerated tests

Accelerated tests are conducted under elevated stresses in com-
parison to usage conditions. A common exercise to test products is
to expose them in moderately higher temperatures. Next, we de-
note the degradation rate under x, = (x, m) by w(x,m) = w(xm).
Following previous literature of reliability tests, the standardized
quantitative factor x is a variable between 0 and 1, which satisfies
that xg = 0 and xmax = 1. Further, we assume that the degradation
rate can be modeled by the well-known log-linear function (Zhang
& Meeker, 2006), while different from existing models, we propose
a multivariate model are as follows:

Bo + Bix.
/30 + ,Bmx + Vm,

for x€[0,1] and m=1,...,M. In the model, the parameter set
{Bm.m=1,..., M} characterizes the effect of the continuous fac-
tor under different m, while {ym, m=1,..., M} characterizes the
effect of the discrete factor that is independent of the con-
tinuous factor. Since we have used By to benchmark the log-
degradation-rate given that x=0 and m =1, it is set that y; =
0. The model can characterize the effects of both the contin-
uous and discrete factors, as well as their mutual interactions
by assigning a different 8 to each x under a specific m. Under
the current model, the unknown parameters are denoted by 6 =
(Bo. B1,---»Bm- 0. V2, ..., Ym)'. Here, we note that only the con-
tinuous factor is accelerated in the test. Moreover, since x is stan-
dardized to O at usage condition, the extrapolation to predict field
reliability at xo = 0 only involves parameters By, o and y», ..., Yu.

Remark 1. The log-linear model has been widely adopted in
the existing works on ALT/ADT planning and analysis (Escobar &
Meeker, 2006; Ye & Xie, 2015). An appealing advantage of the
model is its flexibility to characterize different types of physical/-
chemical acceleration relationships, including the Arrhenius rela-
tionship that considers temperature, Peck relationship that consid-
ers both temperature and humidity and the power law relation-
ship that incorporates factors such as voltage and current. There-
fore, the proposed methods can be readily used to plan accelerated
tests for products with various factors, besides rechargeable batter-
ies.

ifm=1,

2
ifm=2,...,M, )

log pu(x, m) = {

2.3. Return rate prediction under heterogeneous usage mode - a
basic model

The return rate of products is determined by both the inher-
ent reliability properties and external usage conditions and modes.
Without loss of generality, we assume that yo =0 in (1). We first
elaborate a simple and ideal scenario under which a customer def-
initely returns the sold product if its degradation level exceeds a
fixed failure threshold L. Let T be the return time from the prod-
uct purchase and it is the equivalent random variable as the failure
time implied by the current assumption. Under a fixed warranty
coverage period 1y and usage condition Xy = (xo, m), the product
return rate, denoted by P (tyy, Xg; €, L), is equal to the unreliability
at 1y, that is,

PR(Tw,Xo; 0) =1- R(Tw;Xo,O)

FT(Tw;Xo,o,L),TW ZO (3)



X. Zhao, P. Chen, S. Lv et al.

where R(-) and Fr(-) are the reliability function and cumulative
distribution function (CDF) of the failure time, respectively. Under
the Wiener degradation model, the failure time T is defined as the
first passage time to the failure threshold L, i.e., T = inf{t; Y (t|xg) >
L}. It is well known that T follows an inverse Gaussian (IG) distri-
bution with mean L/u(xy) and shape L?/02 (Chhikara, 1988), and
the CDF evaluated at any 1y > 0 is given by

Fr(tw: %, 0, 1) = CD|:\/ ﬁ(ﬂ(&))fw L):|+exp I:ZI’L;?)L:I
@ 1 L
- m(l’«(xo)fw +L0) |,

where ®(.) is the CDF of the standard normal distribution. Taking
into account the heterogeneity in the discrete factor, the overall
expected product return rate (EPRR) under L is given by taking the
expectation of P (tyy . Xg; 0, L) with respect to My:

(4)

M
EPRRo (L) = By, [Pe(tw. X0: )] = Y pmFr (tw: (x0.m). 6. L), (5)

m=1

for L > 0. With given parameters and L, the overall return rate is
convenient to evaluate as Fp(-) has a typical form of an inverse
Gaussian CDF. Recall that a predominant assumption in the subsec-
tion is that all customers return products at threshold L, which is
sometimes impractical in the real market. In the next subsection,
we relax the assumption to enhance the flexibility of the return
model.

2.4. Return rate prediction under heterogeneous usage mode: A
random returning model

A natural practice of product return is that a customer is more
likely to return the product when the degradation level is higher.
On the one hand, manufacturers usually set a minimum degrada-
tion level that is eligible for product return. For instance, battery
providers may follow the policy that batteries with a capacity 80%
or less are eligible for return within the warranty contract, other-
wise free-of-charge replacement/repair cannot be guaranteed. On
the other hand, not all customers would return their purchases im-
mediately when the products reach the returnable status. More of-
ten than not, there is a random gap between the minimum return-
able level and actual level upon the return. It is noteworthy that
there already exists literature that addresses the reliability model-
ing for Wiener degradation models under random failure thresh-
olds. For some recent contributions, one can be referred to Wang
& Coit (2007), Hua, Zhang, Xu, Zhang, & Xu (2013), Sarada & Shen-
bagam (2021) and Li, He, & Zhao (2022). To characterize the ran-
domness in the return model, we introduce one fixed threshold
Imin and one positive random variable Lp > O to represent the min-
imum returnable degradation level and the difference between the
actual return level and [.,;,, respectively. It is obvious that the ac-
tual return level is I, + Lp.

The involvement of Lp improves the applicability of the model
by capturing customers’ behaviors more realistically. However, this
creates a hurdle to evaluate the return rate because T no longer
follows a known distribution in presence of the random effect. We
put forth two different approaches to obtain the CDF of T to facili-
tate the calculation of return rate: an exact characteristic function-
based method and a first-order approximated method. First, sup-
pose that a fixed [, is given and Lp follows a known continuous
distribution with characteristic function ¢, (z). We have the fol-
lowing proposition that gives the EPRR.
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Proposition 1. The EPRR can be exactly evaluated by the following
function:

M
EPRR] (lmins LD) = Z meT (TW; (XOv m): 0: lmin + LD),

m=1

(6)

and

1. T follows a distribution with the following characteristic func-
tion:

¢r(z) = /Ooo eXP[
202iz

2. The CDF Fr(tw; (X0, m), . i + Lp) is given by

J

where Im(-) is the imaginary part of a complex number.

(lmin + LD)M(XOs m)
o2

(7)

1
2

1

g

o Im [e‘iZTW or (z)]
z

dz,
(8)

Fr (tw; (x0,m), 0, lin + Lp) =

The proposition is a ready result in light of the theorems in
Gil-Pelaez (1951). Following the proposition, the EPRR can be com-
puted exactly with the aid of characteristic functions. However, the
computation of (8) may be onerous under certain distributions of
Lp. Alternatively, we can resort to approximated methods that are
more tractable to evaluate. The following proposition provides an
approximation to EPRR via the Taylor series:

Proposition 2. The EPRR can be approximately evaluated by

M
EPRR; (Imin: Lp) = pmEi, [Fr(Tw: (0, m), 0, Imin +Lp) ], (9)
m=1
if we regard
1
Euy [Fr (t1, + bnin) ] &t + 5 F? (1, + bnin)Var (Lp). (10)

where pu is the mean of random variable Lp. If we denote
the density function of the standard normal distribution by ¢(-),

FT(Z)(,MLD + Imin) is given by:

1/2
E® (11, + bnin) =A¢[( ) (M(Xo)fw—lmin—MLD):|

o2ty
1 1/2
+ Bd>|:—<02rw) (LX) Tw + Iin + /LLD)]
1 1/2
(11)
and
1 3/2

A= —(m) (M(XO)TW_Imin_MLn)'

244 (%0) (Imin + H1,)
o2

44 (%o)
B = P exp

cz[(

]

32
) (o) Tw + 1+ ppy) —

].

1
O’Z'L'W

41t (Xo)
o2

O’Z'L'W

exp [

() ]

244 (%0) (Imin + H1,)
o2
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Fig. 1. Illustration of the ADT planning.

As a side note, the selection of distribution for Lp is sort of an
open question to decision makers. The distribution of Ly can re-
flect different customers’ behaviors. For example, if one wants to
describe the scenario in which the customers are more sensitive to
the degradation performance, it can be assumed that Lp follows a
distribution with relatively large density at values that are closer
to 0. Meanwhile, it is also possible that a significant delay exists
and makes the mode of Lp greater than 0. Fortunately, manufac-
turers usually own previous warranty claim data to facilitate the
modeling of Lp, either from the same type of products or similar
products. Decision makers may fit known distributions to the data
and compare the fitness. Since the topic is well established in the
statistical literature and is not the main focus of the paper, we skip
more detailed discussions.

3. Reliability test planning

In this section, test planning approaches to predict return rate
are presented. Section 3.1 introduces the notations and preliminar-
ies regarding the test. Section 3.2 prescribes two types of planning
from practical perspectives. In Section 3.3 and 3.4, general insights
are gleaned.

3.1. Preliminaries

Unlike conventional one-factor problems, the proposed test is
conducted under various combinations of treatments under two
factors. We assume that a proportion of m;; of test units are as-
signed to usage mode m, and we naturally have Z’,‘,’,’:1 Tm = 1. Fur-
ther, under mode m, J levels of the continuous factor are specified
for testing. In other words, the test plan is “balanced” with respect
to the number of treatments in each level of the discrete factor.
More discussions on this will be provided in Section 3.3. By denot-
ing the levels of the continuous factor in mode m by Xp1, ..., Xy,
where X1 < X2 < ... < Xpy, and the respective proportion of test
units by 71, ..., Ty, the ADT planning can be illustrated by Fig. 1.

Additional assumptions regarding the ADT planning are given as
follows:

o The total number of test units is fixed and is denoted by N.

o The inspection intervals are identical under different treat-
ments and we denote the interval by At.

o The total number of inspections per test unit is fixed at K,
which implies that the test lasts for a duration of KAt.

Proposition 3. To estimate the parameters in model (2), at least one
test unit has to be assigned to each level of the discrete factor, i.e.,
Tm>0form=1,..., M.

The statement is intuitive as any m; = 0 will make B, and yn
inestimable in the model. The proposition guarantees that the test
has exactly M x J treatments.
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3.2. Two types of planning schemes

To enhance the practical generality of the proposed model, we
put forward two types of planning schemes: planning with min-
imum test treatments, by which we call the “constrained optimal
planning”, and the “global optimal planning”. Prior to zooming into
details, we discuss some related practical issues in reliability tests.
First, accelerated tests typically require a certain number of test
chambers to create elevated stresses. For the battery example dis-
cussed in the paper, the variation in environmental temperature
is mostly realized by chambers. Second, there is usually a criti-
cal limit on the test duration. Manufacturers would spend more
costs induced by test chambers and energy consumption to save
time. Therefore, experiments for different treatments need to be
conducted at the same time, which implies that the test chambers
have to be sufficient to fulfill the experimental design. Considering
the aforementioned issues, some manufacturers may wish to plan
reliability tests that require fewer test chambers to reduce related
costs. For the rechargeable battery example, the control of the con-
tinuous temperature needs test chambers while to alter the cate-
gorical mode factor does not, which implies that the total number
of treatments in the continuous factor determines the number of
necessary test chambers. In this sense, we introduce the follow-
ing constraint to the problem: x,,; = x,,; for any m # m and j=
1,...,J. The constraint manages to limit the number of levels of
the continuous factor at J. In this sense, we construct the problem
of constrained optimal planning.

For notational convenience, we use 2 to integrally represent
the EPRR under different scenarios, thus the estimated 2 can be
summarized as follows:

mo(L), for fixed return threshold (Model 0),
€ = { EPRR; (Ippin. Lp), for random return threshold (exact, Model 1),
EPRR; (Imin, Lp), for random return threshold (approximate, Model 2).

(12)

Note that we will use Model 0, Model 1 and Model 2 to denote
the three scenarios hereafter. An underlying concern in €2 emerges,
that is, under any model the value of EPRR is in the range from
0 and 1, and it tends to be small (typically smaller than 20%) for
common products. To minimize the asymptotic variance of 2 im-
plicitly treats it as a normal distributed random variable, which is
inappropriate for random variables with bounded support as this
brings concerns to the uncertainty quantification of the estimators.
To overcome the issue, we utilize the well adopted logit model to
transform Q to a random variable with infinite support. The logit
function creates a map of probability values from (0,1) to (—oo, c0)
(Cramer, 2003). Specifically, a logit function of a probability p is
given by logit(p) = log(p/(1 — p)), where p/(1 — p) is the odds,
i.e., the probability of success divided by the probability of failure.
Analogously, we transform the current € into a revised version as
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follows:

logit(mo (L)), for fixed return threshold (Model 0),
Q= logit(ﬁ’_ﬁil (Imin- Lp)). for random return threshold, (exact, Model 1),
logit(EPRR; (Ihin. Lp)). for random return threshold (approximate, Model 2),

(13)

so that we can then minimize the asymptotic variance of Q. To
plan a constrained test, the following problem needs to be solved
to find the optimal plan ET:

maximize — Avar(2; &)

M J
subjectto Y~ > "y =1;

m=1 j=1
Xmj =Xpj for any m#m’ and j=1,....J;

O<xpj<1forany m=1,...,M and j=1,....] (14)

The other planning scheme is to remove the constraint on the
number of treatments and strive to find the global optimal ADT
plans. Straightforwardly, we formulate the problem as:

maximize — Avar(2; £)

M ]
subjectto Y ° > ;=1
m=1 j=1

O<xpj<1forany m=1,...,M and j=1,...,J, (15)

and we denote the corresponding optimal plan by &*. For simplic-
ity in interpretation, we call & and ET the “global optimal plan”
and the “constrained optimal plan” in the remainder of the paper.

Remark 2. The choice between ‘;‘T and & depends on how the test
planners regard the importance of absolute statistical performance
and test convenience. Two possible scenarios exist. The first one is
that the difference between Avar(fZ;ET) and Avar($2; &) is quite
minor, and test planners may tend to conveniently carry out the
test with ST. The other scenario is that there is a sensible difference
in the asymptotic variance. In this situation, test plan may need
to figure out whether to choose a more convenience plan or not
by comprehensively considering the tradeoff between estimation
accuracy and test chamber cost, labor cost, etc.

The complexity in the objective functions in (14) and
(15) makes it an onerous task to derive analytical solutions to
the optimization problems. One may have to resort to numerical
methods to solve for the optimal plans. Fortunately, under the ADT
planning framework, the number of decision variables are gener-
ally small. Additionally, some statistical insights gleaned from the
theories of optimal designs can be utilized to simplify our problem,
which is discussed in detail in the following context.

3.3. General results and insights

Maximum likelihood estimation (MLE) plays a dominant role
in reliability test data modeling owing to its appealing asymptotic
properties. To this end, the test planning procedures usually hinge
on the MLE framework. For test unit i =1, ..., N, denote the exper-
imental condition by x;, where x; is governed by the optimal plan
described in Section 3.2. Belonging to the exponential dispersion
degradation models (Tseng & Lee, 2016), the Wiener degradation
process features the property that the increments from two non-
overlapping intervals are independent. Therefore, the degradation
increments between (k —1)At and kAt, denoted by AYy, follow
independent normal distributions as AYy ~ N (u (%) AT, 02AT).
Therefore, given observed data Ayy,i=1,....N k=1,... K, the

1354

European Journal of Operational Research 304 (2023) 1349-1363
log-likelihood function is given by

N K
¢(0|data) =ZZlog¢|: ]

i=1 k=1

By maximizing (16), the MLE of @ is obtained and denoted by 0.
Further, the following elaborations are put forward to quantify the
uncertainty of Q. Based on the results in Meeker et al. (1998) un-
der a specific ADT plan & and objective EPRR under €2, the asymp-
totic variance of €2 can be approximated by:

Ay — (%) At

o~ AT (16)

Avar($2: §) = HL (0)[10: §)] 'Ha (0).

where Hg, is the vector of first derivatives of € with respect to
each unknown parameters, i.e.,

(17)

Ho@ - (22 92 092 02 90 a2,
TN\ BBy 9B BB oy v )

and

0. ¢ e (18)
10;8) =E| —— 18
5 [ aaaaT}

is the Fisher information of @ under plan &. The forgoing analysis
provides a consistent objective function for the problem of interest.
Obviously, H(#) is an invariant of test plan &, and the derivation of
H(#) is trivial and thus omitted in the paper. Test plan only in-
fluences the Fisher information I(@; £). A noteworthy point is that
the Fisher information stays the same for the same test plan under
different objective functions in the paper. Appendix B shows the
detailed derivations of the Fisher information.

Lemma 1. Under model 2, the optimal plan & has M x 2 treatments,
i.e., ] = 2. The optimality can be verified by Theorem 3.

The lemma can be easily justified by the fact that the number
of regression parameters is 2M (as regression parameters include
Bu and Ym)/ (Shi, Escobar, & Meeker,
2009). As stated in Section 3.1, the plan is assumed to be bal-
anced with equal J under each level of m, thus J = 2. Lemma 1 im-
plies that under each level of m, the optimal ADT plan is a sim-
ple two-level design. Although the problem can be simplified a bit
from the lemma, the analytical solver cannot be attained due to
the complexity in the objective function. Numerical optimization
is inevitable in solving the problem. A critical drawback of numer-
ical methods is the difficulty in guaranteeing the global optimality.
Owing to the advances in theories of optimal design, we can take
advantage of the following theorem to verify the optimality of test
plans.

..........

Theorem 3 (General Equivalence Theorem). The following results
apply to the problem described in (15):

1. The objective function —Avar(; &) is concave with respect to
test plans. In other words, for any 0 < « < 1 and two different
test plans & and ¢, we have

—Avar($; o + (1 — a)8) > —aAvar(Q: &) — (1 — a)Avar($2; £).
(19)

2. The directional derivative, denoted by A, of the objective func-
tion at & at the direction of the alternative plan &, can be rep-
resented by

A& = HLO)[10:6] ' 10: ) [16: 5]

Ho(0) —HL(O)[16: )] 'He(6). (20)
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3. For any a; > 0 where Y";a; = 1, if we have a series of alterna-
tive plans &; and their convex combination Y; a;&;, the follow-
ing equation holds under the directional derivative:

A E,Zaici =ZaiA(§,§i).

(21)

If conditions 1-3 hold for the derivative function and test plans,
then the following results follow immediately from Theorem 1 parts
(i), (ii), (iii), and (c) from Whittle (1973):

(a) By letting &, be the test plan that puts all the units at level x,
a test plan & is optimal if and only if sup, A(£*, &,) = 0.

(b) The stress levels %/ in the optimal plan is a subset of x that
satisfies sup, A (", &,) =0.

One appealing advantage of the General Equivalence Theorem
(GET) is that (20) can be easily evaluated by analytical means and
the results serve as input to items (a) and (b) in the theorem to
verify the optimality of test plans obtained via numerical methods.
It is worth mentioning that the GET can only be applied to the
problem in (15) because the problem in (14) is actually to find a
suboptimal test plan under additional constraints.

3.4. Compromise plans

In the presence of considerable uncertainty in the pilot model,
compromise plans are usually preferable to enhance the robustness
of the plan. The compromise plan usually contains extra stress lev-
els that is analogous to adding center/side points to experimental
designs (Del Castillo, 2007). The compromise test can be planned
when preliminary data indicates abnormities in the residual analy-
sis, and more general models can be estimated by the data gener-
ated by the compromise test. A common concern in the ADT plan-
ning is the appropriateness of the log-linear assumption in (2). Al-
though the log-linear models are widely applied in ADT planning
literature, the concern about two-level plans has been aroused
soon after its proposal (Meeker & Escobar, 2015). For example, sup-
pose that we are considering the following link function that can
be possibly the true model rather than the one in (2):

Bo + Bix + Bnx?,
Bo + Bmx + ,Bmmx2 + ¥Ym.

ifm=1

ifm=2,....M, (22)

log pu(x, m) = {
then a plan with 2M treatments will fail to estimate the quadratic
parameters 81; and Bmm as the model involves 3M parameters. To
overcome the shortcoming of the two-level plans, extra stress lev-
els need to be inserted to the plans. Previous studies have set up
some practical rules for three-level compromise ADT plans (Tseng
& Lee, 2016) and it is a common practice to use a 10% or 20%
rule to allocate test units to the extra stress level. Considering the
uniqueness of the problem described in the paper, at a compro-
mise level of (100 x k)%, we solve the problem as follows:

maximize —Avar($; £)

M 3
subjectto Y Y 7y =1;

m=1 j=1

M
anZ =K;
m=1

TTmy >0, for any m=1,..., M;
Xm2 = (Xm1 +Xm3)/2 for any m=1, ..
0 <xpj<1 for any m=1,....M and

., M;
j=1,2,3.(23)

1355

European Journal of Operational Research 304 (2023) 1349-1363

Analogously, the problem under the stress constraint is formu-
lated as:

maximize —Avar($2; &)

M 3
subjectto Y Y " 7pj=1;

m=1 j=1

M
ZﬂmZ =K;
m=1

TTmy >0, for any m=1,..., M;

Xm2 = (Xm1 +Xm3)/2 for any m=1,..., M;
Xmj=Xpj for any m#m’ and j=1,....J;
0<xpj<1 for any m=1,...,M and j=1,2,3.(24)

Note that x« denotes the total proportion of test units that are al-
located to the extra “mid-stress-levels”. The optimal rules to pro-
vide reasonable robustness are beyond the scope of the paper.
More often than not, k is set by a small proportion from 10% to
30% depending on the extent of compromise. A more scientific
method to plan robust tests with respect to model misspecification
is Bayesian planning (Insua, Ruggeri, Soyer, & Wilson, 2019). Since
it is not the focus of the paper, we leave the Bayesian approaches
for the problem as a future work.

4. Examples
4.1. Test planning for rechargeable batteries

In order to grab market share and reduce the cost induced by
post-sales service, the lead acid rechargeable battery manufactur-
ers improve the design of products frequently. On the one hand,
battery design improvement intends to bring immediate perfor-
mance enhancement that is sensible to customers. On the other,
new technologies and designs may bring unknown risks to prod-
ucts, which could lead to high return rate in the future. The ex-
ample discussed in the section is from one of the top-ranked acid
rechargeable battery manufacturers based in China. From January
to August 2017, the external losses (mainly because of the products
return) of the company is around $11,000,000, accounting for 71%
of the quality and reliability related cost. In general, battery man-
ufacturers pay great efforts to conduct various tests to validate the
reliability of products that are used by customers in various modes.
For batteries, a degradation experiment for newly developed bat-
teries takes up to half a year in normal conditions. In this situation,
many products cannot be adequately verified under the strategy of
bringing products to market faster than competitors. This has mo-
tivated the managerial team and engineers to seek for a scientific
approach to degradation test planning that incorporates the con-
sumers usage modes in the market.

Based on domain knowledge and previous experience of relia-
bility tests, engineers believe that environmental temperature sig-
nificantly affects the lead-acid batterys capacity. Specifically, the
battery capacity degrades faster as the temperature increases from
25°C to 65°C. The failure mode can change when the tempera-
ture is higher than 65°C, thus the maximum test temperature is
set at 65°C. Another factor that affects the reliability of batteries
is the charging mode. The proposed model in (2) can well satisfy
the requirements to plan tests for the batteries. To facilitate fur-
ther elaborations, we standardize the temperature factor into the
range from O to 1, where x =0 and x = 1 indicate the normal us-
age temperature and maximum allowed temperature. In the ex-
ample, we assume that x=0 and x =1 correspond to 25°C and
65 °C, respectively. Let TK; denote the thermodynamic temperature
under the ith stress level, then according to the Arrhenius model
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Table 1

Preliminary settings for the test.
Description Notation  Value
Number of test units N 200
Inspection interval AT 5
Number of inspections (for each test unit) K 20
Maximum allowable temperature Tmax 65°C
Warranty period Tw 730 days
Deterministic failure threshold L 5
Minimum returnable threshold Imin 45
Random delay return level Lp ~ Gamma(1,0.5)

(Meeker et al., 1998), x; can be standardized as:
v — 1/TKyin — 1/TK;
" 1/TKpin — 1/TKiax

where TK;, and TKmax are equal to 298.15 Kelvin and 348.15
Kelvin, respectively. For illustrative purposes, we assume that three
charging modes are considered. Planning settings and parameters
are listed in Tables 1 and 2, respectively. It is noted that we set
Imin = 4.5 and Lp ~ Gamma(1, 0.5) to describe the randomness in
return level. In this sense, we keep the mean of I;;;, + Lp the same
as L. Nevertheless, the median and mode of I, +Lp are both
smaller than L, which implies that more products tend to be re-
turned earlier when the return threshold is random. We will con-
duct more sensitivity analysis with respect to Lp in Section 4.5.

Tables 3 and 4 exhibit the global optimal plan and constrained
optimal plan, respectively, under the three proposed models. From
Table 3 it is observed that the optimal stress levels are the same
under three proposed methods. Specifically, the lower stress level
x%, is higher for m =2 while is lower for m = 3. Interestingly,
even though we assign the highest proportion to the mode m =1,
the optimal plans assign most test units to m = 3. A possible rea-
son behind the phenomenon is that products under mode m =3
are more likely to be returned by the customers due to its higher
degradation rate as y3 is greater. By comparing the global optimal
plans under the three models, we find that when the return level is
random, slightly more test units tend to be allocated to m = 1. Ad-
ditionally, the minimum asymptotic variance of €2 is smaller in the
presence of randomness in return level at the current setting. In
general, the optimal plans under Model 1 and Model 2 are reason-
ably close, yet the approximation embedded in Model 2 leads to
incorrectly lower asymptotic variance of the value of interest than
the true value.

In contrast to the global optimal plans, the constrained optimal
plans under three models suggest different optimal lower stress
levels and a slightly different allocation scheme. Naturally, the
minimum asymptotic variances under constrained optimal plans
are higher than those under global optimal plans, while only slight
margins are witnessed from the results. The current parameter set-
tings yield true values of 2 under Models 0, 1 and 2 to be -
2.20, -1.88 and -1.78, respectively. Therefore, the constrained op-
timal plans have provided relatively small asymptotic variances in
comparison to the absolute values of true 2's. Due to the fact that
the global plans seem to outperform the constrained plans only by
a small margin, the test plans may choose the constrained opti-
mal plans that save more test resources as the preferable schemes.
We can also observe that all the optimal higher stress levels (x5 ,)
are equal to 1, implying that the optimal plan always utilizes the
highest allowed temperature to fully take advantage of the feasible
experimental region.

(25)

4.2. Verification of optimality

The optimality of test plans can be readily verified by the re-
sults in Theorem 3. The derivative functions of global optimal plans
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at different values of x are plotted in Fig. 2 under different values
of m and proposed models. The plot of derivative functions indi-
cates that the plans in Table 3 are global optimal under the three
models. To contrast, we exhibit the plots for the constrained opti-
mal plans in Fig. 3, in which we can notice that the derivative val-
ues are greater than O at particular values of x. Therefore, in view
of global optimality, the constrained test plans are suboptimal. Fur-
ther, the results in the plots also verify Lemma 1 by demonstrat-
ing that a two-level plan for each m formulates the global optimal
plan.

4.3. Simulation study

To demonstrate the efficiency of the large-sample approxima-
tion employed in the model, Monte Carlo simulation is conducted.
We simulate large numbers of test data sets according to the set-
tings in Tables 1 and 2 and the optimal test plans in Tables 3 and 4.
The number of simulated data sets under each test plan is 10,000.
Table 5 depicts the average bias and standard error for each un-
known parameter under various models, and in the last two rows,
the sample variance computed from the simulated data (denoted
by var(€2)) and the theoretical asymptotic variance of & are com-
pared. Generally, the accuracy of estimation is fairly high and we
can observe a satisfactory consistency in var($2) and Avar(£2) un-
der each model. Taken together, for the settings in the example,
the adoption of large-sample approximation is reasonable, which
thereby validates the appropriateness of the optimal plans.

4.4. Compromise plans

Three-level compromise plans were introduced in Section 3.4 to
improve the model robustness. For illustrative purposes, we set the
total proportion of test units to the extra levels as 10%, ie., k =
0.1. The global optimal and constrained optimal compromise plans
are listed in Tables 6 and 7, respectively. We define the “Relative
Efficiency (RE)” of a test plan as follows:

Avar($2; £)/Avar($: §), for global optimality,
Avar($; €')/Avar(Q; §), for constrained optimality.
(26)

In this manner, a higher RE represents that the efficiency of a
test plan is closer to the optimal. As shown in Table 6, the extra
mid-level stress ranges from 0.67 to 0.75 under different m and
models, and most units assigned to extra stress are allocated to
m = 2. In comparison to the results in Table 3, the compromise
plan is fairly close to the two-level optimal plans regardless of
the extra stress level. Similarly, Table 7 exhibits analogous results.
The reported high REs ranging from 0.95 to 0.98 indicate a very
marginal loss of efficiency loss under the setting x = 0.1.

Understandably, the increase in x would increase the power
to detect the lack-of-fit of the model, whereas it inevitably de-
grades the RE of a test plan. Thus, it is of interest to explore how
the change in « affects the REs of the compromise optimal plans.
Figure 4 displays the values of RE under different scenarios when
k ranges from O to 0.4. The REs for the global compromise plans
generally behave a near-linear reduction in the increase of «, while
there is a slight fluctuation around x = 0.2 under Model 1 and
Model 2. To contrast, the REs for the constrained compromise plans
decreases relatively slower when « increases from 0 to a small
value, whereas the speed of decrease increases as k increases to a
relatively higher value. In general, the REs of constrained compro-
mise plans are higher than those of global compromise plans un-
der a same k. The interesting result implies that the constrained
compromise plans are more robust than the global ones when «
changes. Reasons behind this can be partially explained as follows.

RE(§) = {
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Table 2
Input parameters for test planning.

European Journal of Operational Research 304 (2023) 1349-1363

Parameter 6

P
Bo B B B o 2w P P2 P3
Value 53 25 30 20 0027 01 02 05 03 02
] Model 0 . Model 1 ] Model 2
w ) i .
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©
Qo
o
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0.85 : © 085 : ©0.85 : '
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o
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c
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o
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K
Fig. 4. RE of optimal compromise plans under different «’s.
Table 3 ity, the extra stress levels in the optimal compromise plans can
Global optimal plans. to some extent compensate some efficiency incurred by the stress
Model ~ x, Optimal plan &" Avar[Q: £'] constraint, and keeps a higher RE for the constrained compromise
" " . " - plans. The aforementioned robustness is another advantage of the
xi, (temp°C)  x:,(temp°C) 7y, 7, . . e . X
constrained plans in addition to the convenience of test implemen-
0 m=1 0489 (433) 1 (65.0) 022 003 00514 tation. Taken together, if the test planner wish to conduct a robust
m=2 0574 (46.7) 1 (65.0) 022 0.03 . . .
m=3 0361(383) 1(650) 045  0.05 test plan under a limited number of test facilities, the constrained
1 m=1 0489 (433) 1(65.0) 027 004 0.0388 optimal compromise plans are preferable choices.
m=2 0574 (46.7) 1 (65.0) 022 0.04
m=3 0361(383) 1(65.0) 039 0.04
2 m=1 0489 (43.3) 1 (65.0) 031 004 0.0329
m=2 0574 (46.7) 1 (65.0) 022 0.03 L )
m=3 0361(383) 1(65.0) 036 0.04 4.5. Sensitivity analysis

For global optimality, any alternative selection of stress levels, in-
cluding the ones in the compromise ones, is worse than those
in the global optimal plan. However, for the constrained optimal-

To further investigate the robustness of the test plans, we report
on a series of sensitivity analysis. To be specific, three aspects of
the model inputs are considered, that is, the unknown parameters
0, the probability model of usage mode p and the characteristics
of the random return level I, + Lp.

Table 4
Constrained optimal plans.
Model  x, Optimal plan & Avar[ﬂ; ET]
x4, (temp°C) X ,(temp°C) T Ty
0 m=1 0.462 (42.25) 1 (65.0) 0.22 0.03 0.0536
m=2 0.23 0.02
m=3 0.43 0.07
1 m=1 0.470 (42.55) 1 (65.0) 0.27 0.03 0.0404
m=2 0.24 0.02
m=3 0.38 0.06
2 m=1 0.474 (42.73) 1 (65.0) 0.30 0.04 0.0342
m=2 0.24 0.02
m=3 0.34 0.06
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Table 5
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Mean bias and standard error of unknown parameters and variance of 2.

Global optimal

Optimal under constrained x

Model 0 Model 1 Model 2 Model 0 Model 1 Model 2
bias(Bg) -0.00100 -0.00116 0.00013 -0.00086 -0.00045 -0.00068
se(/§0) 0.04949 0.04459 0.04260 0.04996 0.04578 0.04340
bias(ﬁl ) 0.00099 0.00094 -0.00021 0.00061 0.00035 0.00050
se(ﬁl ) 0.05813 0.05307 0.05034 0.05944 0.05406 0.05053
bias(ﬁz) -0.00005 0.00049 -0.00010 -0.00059 -0.00006 -0.00094
Se(Bz) 0.03903 0.03768 0.03836 0.04131 0.03855 0.03920
bias(Bg) 0.00035 0.00067 -0.00025 0.00082 0.00053 0.00000
se(Bs) 0.04759 0.05012 0.05385 0.04636 0.04880 0.05239
bias(6) -0.00002 -0.00002 -0.00002 -0.00002 -0.00002 -0.00003
se(G) 0.00030 0.00031 0.00031 0.00030 0.00030 0.00030
bias(7,) 0.00085 0.00056 -0.00012 0.00098 0.00064 0.00136
se(7,) 0.06027 0.05603 0.05419 0.06121 0.05694 0.05562
bias(j3) 0.00058 0.00039 -0.00010 0.00018 0.00011 0.00068
se(73) 0.06256 0.05862 0.05921 0.06353 0.06071 0.06013
var($2) 0.0513 0.0382 0.0339 0.0533 0.0400 0.0347
Avar(Q) 0.0514 0.0388 0.0329 0.0536 0.0404 0.0342
Table 6
Global optimal compromise plans under x = 0.1.
Model x,  Optimal plan & Avar[Q: €] RE
X X2 X3 T Tmy T3
0 1 0 480 (42.97) 0 740 (53.61) 1 (65.0) 0.21 0.01 0.03 0.0538 0.955
2 0494 (4350) 0.747 (53.90) 1(65.0) 0.15 0.08 0.04
3 0.356(38.11) 0.678 (51.00) 1(65.0) 043 0.01 0.04
1 1 0.482 (43.03) 0.741 (53.65) 1 (65.0) 0.26 0.01 0.04 0.0406 0.956
2 0497 (43.62) 0.748 (53.96) 1(65.0) 0.15 0.08 0.04
3 0.355(38.08) 0.678 (50.98) 1(65.0) 037 0.01 0.04
2 1 0.483 (43.06) 0.741 (53.65) 1(65.0) 0.29 001 0.04 0.0345 0.954
2 0498 (43.66) 0749 (53.98) 1(65.0) 0.16 0.08 0.04
3 0.355(38.05) 0.677 (50.97) 1(65.0) 034 001 0.3
Table 7
Constrained optimal compromise plans under x = 0.1.
Model x,  Optimal plan & Avar[Q; SI] RE
X1 Xin2 Xin3 T T2 T3
0 1 0.425 (40.77) 0.712 (52.43) 1 (65.0) 0.21 0.01 0.02 0.0548 0.978
2 0.15 0.08 0.04
3 0.42 0.01 0.06
1 1 0.434 (41.14) 0.717 (52.63) 1 (65.0) 0.26 0.01 0.03 0.0414 0.976
2 0.15 0.08 0.04
3 0.37 0.01 0.05
2 1 0.440 (41.36)  0.720 (52.75) 1(65.0) 029 001 0.03 0.0351 0.974
2 0.15 0.08 0.04
3 0.33 0.01 0.05

Sensitivity with respect to the unknown parameters

The parameter vector @ is usually provided by experienced ex-
perts before a test is planned. Sometimes, the unknown parame-
ters in @ are misspecified due to the lack of prior knowledge about
the product to be tested. To this end, we explore how the marginal
changes in each parameter can affect the efficiency of the resulted
optimal test plans. We add more details to the RE proposed in
(26) as follows:

Avar(Q; £, 0)/Avar(Q; £, 6),

for global optimality, (
Avar($2; «ST, 0)/Avar($2; £, 0),

for constrained optimality.

RE(&,0) = { 27)
As with the equation above, we define all the REs under true pa-
rameters. In this sense, we evaluate the true asymptotic variances
of Q2 of the test plan optimized under misspecified parameters and
compare them with the true asymptotic variances. Further, we uti-
lize the true covariance matrix of €2, which is the inverse of 1(6),
under test plan & under Model 0 in Table 3 to quantify the uncer-
tainties of each parameter in 6. Specifically, we compute the stan-
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dard deviation of the unknown parameters as follows:

[a®)-1], (28)

for i=1,...,7, where [-]; denotes the ith diagonal element of a
matrix. Then, we explore how the change in each parameter by
+0y,, =20y, and 30y, influences the REs and the results are dis-
played in Table 8. We highlight the REs that are smaller than 0.9
by bold text in the table. As observed, the REs are more sensitive
to the change in parameters By, ¥, and y3, which is understand-
able because these parameters determine the degradation models
under the normal condition of xq, i.e., x; = 0. Specifically, the RE
decreases considerably when S is over-specified or j», and y; are
under-specified. Thus, test planners should avoid such cases to im-
prove the robustness of the test plans. In general, most REs listed
in the table are quite high and this indicates adequate robustness
of the test plans in the current settings.
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Table 8
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The RE of optimal test plans under misspecified parameters. (Values smaller than 0.9 are bold).

Model  6; Global optimal Constrained optimal
—30y, —20y, —1oy, +10y, +20y, +30y, —30y, —20y, —1oy, +1oy, +20p +30y,
0 Po 0950 0973 0992 0.988 0.946 0.862 0949 0972 0.992 0988 0945 0.861
B 0996 0998 1.000 1.000 0.998 0.996 0998 0999 1.000 1.000 0999 0.998
B 0999 0999 1.000 1.000 0.999 0.999 0999 1.000 1.000 1.000 1.000 0.999
B3 0995 0998 1.000 1.000 0.998  0.995 0996 0998 1.000 1.000 0998  0.996
o 0998 0999 1.000 1.000 0.999 0.999 0998 0999 1.000 1.000 0.999 0.998
y, 0647 0839 0962 0975 0.928 0.895 0.635 0.832 0960 0974 0925 0.891
y3 0700 0878 0976 0.991 0.988  0.999 0.693 0874 0975 0991 0.987  0.999
1 Bo 0950 0972 0990 0.988 0.953  0.887 0.943 0965 0983  0.981 0.946  0.880
B 0993 0996 0.997 0.997 0996 0.993 0988 0990 0.990 0990 0990 0.988
B, 0996 0997 0998 0.998 0.997 0.996 0990 0.990  0.991 0.991 0.990 0.990
B3 0993 0996 0.997 0.997 0996  0.993 0988 0989 0.990 0990 0989 0.988
o 0997 0997 0.998 0.998 0997 0.997 0990 0.990  0.991 0.991 0.990  0.990
y» 0755 0895 0975 0984 0.961 0.950 0.742 0885 0967 0977 0953 0.941
y3 0818 0933 0986 0995 0.996 0.996 0.808 0.924 0979 0988 0989 0.989
2 Bo 0940 0970  0.991 0.990 0968 0935 0.940 0970  0.991 0.991 0.968  0.935
B 0994 0996 0.998 0.998 0996 0.994 0996 0997 0.999 0999 0997 0.996
B, 0997 0998 0998 0.998 0.998 0.997 0998 0998 0.999 0999 0998 0.998
B3 0994 0997 0998 0.998 0.997 0.995 0996 0998 0.999 0999 0998  0.996
o 0998 0998 0.998 0.998 0998  0.998 0999 0999 0999 0999 0999 0.999
y, 0811 0925 0984 0991 0979 0971 0.805 0.923 0983 0991 0978  0.971
y3 0885 0962 0993 0997 0.996 0.998 0.882  0.961 0993  0.997 0.997  0.999
1 Model 0 Model 1 Model 2
_ 08 0.8
]
£
*g_ 0.6 0.6
S04 0.4
o
& 0.2 0.2
0 0
1
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Fig. 5. Surface plot of RE under different combinations of p; and p,.

Sensitivity with respect to probability model of usage modes

Apart from the unknown parameters, the test planner has to
provide the probabilities of usage mode p. Analogously, we use the
RE defined under true p and compute them under misspecified p.
Fig. 5 displays the surface plot of RE when p; and p, take different
values. We can see that the misspecification of # can possibly lead
to very low REs, especially when p; and p, are specified as ex-
treme values that are close to 0 or 1. When the specified p is fairly
closer to the true p, the RE can retain at a high level (> 0.8). The
sensitivity analysis, in general, indicates the importance to spec-
ify p that is close to the true one. Test planners are suggested
to collect adequate and reliable information on p to facilitate the
test planning. Fortunately, in a particular industry, the probability
model of usage modes of customers for similar products could be
quite close and related information can be collected based on ex-
isting data and experiences.
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Sensitivity with respect to the parameters in Lp

Next, we explore the influence of characteristics of the random
return level I, + Lp on the optimal test plans. Since the random-
ness of I, + Lp completely lies in Lp, we evaluate the asymptotic
variances under different settings of Lp, and the results are dis-
played in Table 9. We put forward two scenarios to keep the com-
parison consistent. In the first one, the mean of Lj is kept at 0.5,
while in the second one the mode is kept at 0.5. Then, the variance
of Lp is adjusted and the asymptotic variances as well as REs are
compared. As a side note, we only adopt Model 1 to conduct the
analysis. An interesting result observed from the table is that when
the variances gets larger, the asymptotic variance of 2 becomes
smaller. The underlying reason can be that the gamma distribu-
tion is a right-skewed distribution, when the variance gets larger
with a fixed mean or mode, the distribution will be more right
skewed, which implies that a larger probability density when Lp
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Table 9
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The asymptotic variance of { and RE under different settings of Lp.

Lp var(Lp) shape scale  Global optimal Constrained optimal
Avar[Q: €] RE Avar[fz; ET] RE

Mean =05 0.10 2.50 0.20 0.0436 0.8906 0.0454 0.8898
0.25 1.00 0.50 0.0388 1.0000 0.0404 1.0000
0.50 0.50 1.00 0.0358 1.0830 0.0372 1.0840

Mode =0.5 0.10 4.27 0.15 0.0491 0.7905 0.0512 0.7891
0.25 2.62 0.31 0.0472 0.8213 0.0492 0.8198
0.50 2.00 0.50 0.0456 0.8498 0.0476 0.8484

is relatively small. It is understandable that when the realizations
of I +Lp are smaller, the asymptotic variance of 2 should be
smaller as the extent of extrapolation is reduced. These results, in
general, suggest that the determination of Lp can be quite impor-
tant to plan the test and predict the return rate. Again, like p, the
determination of Lp can be aided by existing data and experiences.

5. Conclusions

This paper investigates the optimization of reliability tests for
return rate prediction based on a prevailing degradation-failure
model. The proposed model allows for the existence of multiple
customer usage modes and random return level. We have given
analytical forms of the return rate model and the large-sample ap-
proximation approach is employed to quantify the uncertainty of
the estimated return rate. Two types of test plans, namely global
optimal plans and constrained optimal plans, are put forward to
satisfy different requirements of the decision maker. A real moti-
vating example from the battery industry is analyzed to demon-
strate the proposed methods. Our results have suggested the adop-
tion of the constrained optimal plans that compromise limited sta-
tistical efficiency whereas simplify the test implementation and of-
fer more robustness under compromise plans. Moreover, the sensi-
tivity analysis emphasizes the importance of accurately determin-
ing the probabilities of customer usage modes.

It is of interest to extend the methods to scenarios with more
complicated product return models. The heterogeneity in products
and customer behaviors can be modeled in a more general man-
ner. Moreover, for products subject to several stress factors, the
model can be extended to incorporate multiple continuous and
discrete factors. The adaption to products with multiple key com-
ponents is also significant to manufacturers of more complex prod-
ucts. Bayesian approaches or nonparametric methods can be ex-
plored to plan similar reliability tests in the absence of reliable pa-
rameter settings and specification of the degradation model. Fur-
thermore, the approaches to data analytics based on the test data
can be of interest for more specific prediction of return rate.

Acknowledgments

The work is in part supported by the National Natural Science
Foundation of China (72002149, 72032005, 71971181, 72002066)
and in part by the Humanity and Social Science Youth Foundation
of Ministry of Education of China (19Y]C630117).

Appendix A. Technical proofs

Proof of Proposition 2 The idea behind Proposition 2 originates
from the Taylor expansion. We can expand Ey [Fr(Lp)] as follows:

o0

EM™
1l (Lo)] = Fr(uagy) + Y Tt w1 gy,
n=2 )

If we adopt the second-order approximation, then
1
Ei,Fr (Lo)] = Fr (t1,) + 5K (11, E[ (Lo — p11,)°]

1
= Fr(uy) + 57 (py)var(Lp).
which yields (10). The derivation of (11) is trivial and thus
omitted. O

Al. Proof of Theorem 1

To justify the results (a) and (b) in the general equivalence the-
orem, we need to prove conditions 1-3 in the theorem. To start
with, (19) is proved as follows. We first have

— Avar(Q; af + (1 — a)&) + aAvar(2: &) + (1 — a)Avar(£2; &)
= HyO)]a[16:9] "+ (1 -)[16:0)]”
160+ (1 -00)] ' [Ha®).
Further, due to the fact that 1(0; & + (1 —«)¢) =al(0; &) + (1 -
a)I(6; £), we have
a[10: 6] + (1 -)[168:0)] " —[16: a6 + 1 - )]
—a[10:6)] " + (1 —a)[10: )]
~[e18: &) + (1 - e)1(0: )],

which is positive definite following the results in Section V-C in
Xiao & Ye (2016). Since al(@; &) + (1 — a)I(0; &) is positive defi-
nite, then (B.3) is greater than zero for any Hg () # 0, which com-
pletes the proof of (19). Afterward, according to the definition of
the derivative function in the GET, we have

AE D) = 51ir(r)1+ —Avar(£2; (1 - 8)§8+ 8¢) + Avar(€2; g).

Now apply the I'Hopital’s rule to (B.4), and we get

lim —Avar($2; (1 —8)& +8¢) + Avar($2; £)

(B.3)

(B.4)

§—0+ )
— lim —0Avar(£2; (1 —8)E+68¢0)
§—0+ 86
—OHL(O)[10: (1 - 8)& + 68)] ' Ha(8)
= l1im
§—0+ 88

(Split Fisher information)

~0HLO)[(1 - 5)1(8: §) + 81(6: )] 'Ho(8)
= lim
§—0+ 26
(Apply the chain rule)

= lim HL@)[ (1 - 8)18: §) +816: )] '[-16: &) +16: 0]
x[(1=8)IB: §) +516: )] "Ha(8)
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— HLO)[160:§)] ' [-16: &) +1(6: O)][16:§)] 'He(6)
— HLO)[106:£)]'1(60: O)[1(6:§)] ' He(6)

LO[10:6] 'Ha®).

and thus this completes the proof of (20). The fact that
1(0: Y5 a;8;) = > ai1(6; &;) together with (20) can prove (21) af-
ter simple mathematical manipulations. The proofs above have en-
sured that conditions 1-3, then the GET can be well applied to the
problem.

Appendix B. Expression of the Fisher information

According to (18), the elements in the matrix can be expressed
by

2
E[ 862} NKAt Z:E:7HUDLme"0]
’3 m=1 j=1
22 22
El-ep— | =E| -
|: 3,303,3m} |: aﬁmaﬁ0j|
NKAT <
= > Tmj[ 1 K, m)]zxmj, form=1,...,M,
=1
2] NKAI
E —m__ an][ (xmj,m)] mp form=1,....M,
) ) 1
__802_ T o2’
22 NKA‘E
El-—— an][u(xm],m)] form=2,...,M,
Vi |
[ g2 2
El-— | =E| - —
Bymaﬂo} [ aﬁoaym]
NKAT an][u(xm],m)] form=2,...,M.,
j=1
22 02
E|l--— |=E| -
|: aymaﬂmi| |: 3ﬂm37/m]

J
NKAT 2
=—7 > " T[4 Ky M) | Xnj, form=2,.... M.

j=1
and other elements all equal to zero.

References

Cheng, S., Li, B, Yuan, Z., Zhang, F, & Liu, J. (2016). Development of a lifetime pre-
diction model for lithium thionyl chloride batteries based on an accelerated
degradation test. Microelectronics Reliability, 65, 274-279. https://doi.org/10.1016/
j.microrel.2016.07.152.

Chhikara, R. (1988). The inverse Gaussian distribution: Theory: methodology, and ap-
plications: vol. 95. CRC Press.

Cramer, J. S. (2003). The origins and development of the logit model (pp. 149-157)).
Cambridge University Press.

Darghouth, M., Ait-kadi, D., & Chelbi, A. (2017). Joint optimization of design, war-
ranty and price for products sold with maintenance service contracts. Reliability
Engineering & System Safety, 165, 197-208. https://doi.org/10.1016/j.ress.2017.03.
033.

Del Castillo, E. (2007). Process optimization: A statistical approach: vol. 105. Springer
Science & Business Media.

Escobar, L. A., & Meeker, W. Q. (2006). A review of accelerated test models. Statisti-
cal Science, 21(4), 552-577. https://doi.org/10.1214/088342306000000321.

Fang, G., Pan, R, & Stufken, ]. (2020). Optimal setting of test conditions and allo-
cation of test units for accelerated degradation tests with two stress variables.
IEEE Transactions on Reliability. https://doi.org/10.1109/TR.2020.2995333. in press

Fang, G., Pan, R, & Wang, Y. (2022). Inverse Gaussian processes with correlated ran-
dom effects for multivariate degradation modeling. European Journal of Opera-
tional Research. https://doi.org/10.1016/j.ejor.2021.10.049.

1362

European Journal of Operational Research 304 (2023) 1349-1363

Gil-Pelaez, ]. (1951). Note on the inversion theorem. Biometrika, 38(3-4), 481-482.

Hsu, N.-j., Tseng, S.-t., & Chen, M.-w. (2015). Adaptive warranty prediction for highly
reliable products. IEEE Transactions on Reliability, 64(3), 1057-1067. https://doi.
org/10.1109/TR.2015.2427153.

Hu, C.-H,, Lee, M.-Y,, & Tang, ]. (2015). Optimum step-stress accelerated degrada-
tion test for Wiener degradation process under constraints. European Journal of
Operational Research, 241(2), 412-421. https://doi.org/10.1016/j.ejor.2014.09.003.

Hua, C, Zhang, Q., Xu, G., Zhang, Y., & Xu, T. (2013). Performance reliability estima-
tion method based on adaptive failure threshold. Mechanical Systems and Signal
Processing, 36(2), 505-519. https://doi.org/10.1016/j.ymssp.2012.10.019.

Insua, D. R., Ruggeri, F, Soyer, R., & Wilson, S. (2019). Advances in Bayesian decision
making in reliability. European Journal of Operational Research. https://doi.org/10.
1016/j.ejor.2019.03.018.

Lee, . C, Tseng, S. T, & Hong, Y. (2020). Global planning of accelerated degrada-
tion tests based on exponential dispersion degradation models. Naval Research
Logistics, 67(6), 469-483. https://doi.org/10.1002/nav.21923.

Li, T, He, S., & Zhao, X. (2022). Optimal warranty policy design for deteriorating
products with random failure threshold. Reliability Engineering & System Safety,
218, 108142. https://doi.org/10.1016/j.ress.2021.108142.

Li, X., Rezvanizaniani, M., Ge, Z., Abuali, M., & Lee, ]. (2015). Bayesian optimal design
of step stress accelerated degradation testing. Journal of Systems Engineering and
Electronics, 26(3), 502-513. https://doi.org/10.1109/]SEE.2015.00058.

Li, X.-Y., Wu, J.-P, Ma, H.-G,, Li, X., & Kang, R. (2018). A random fuzzy accelerated
degradation model and statistical analysis. IEEE Transactions on Fuzzy Systems,
26(3), 1638-1650. https://doi.org/10.1109/TFUZZ.2017.2738607.

Lim, H., & Yum, B.-J. (2011). Optimal design of accelerated degradation tests based
on Wiener process models. Journal of Applied Statistics, 38(2), 309-325. https:
//doi.org/10.1080/02664760903406488.

Meeker, W. Q., & Escobar, L. A. (2015). A review of recent research and current
issues in AT. International Statistical Review, 61(1), 147-168. https://doi.org/10.
2307/1403600.

Meeker, W. Q., Escobar, L. A, & Lu, C. J. (1998). Accelerated degradation tests:
Modeling and analysis. Technometrics, 40(2), 89-99. https://doi.org/10.1080/
00401706.1998.10485191.

Sarada, Y., & Shenbagam, R. (2021). Optimization of a repairable deteriorating sys-
tem subject to random threshold failure using preventive repair and stochastic
lead time. Reliability Engineering and System Safety, 205, 107229. https://doi.org/
10.1016/j.ress.2020.107229.

Shi, Y., Escobar, L. A., & Meeker, W. Q. (2009). Accelerated destructive degradation
test planning. Technometrics, 51(1), 1-13.

Si, X. S. (2015). An adaptive prognostic approach via nonlinear degradation model-
ing: Application to battery data. IEEE Transactions on Industrial Electronics, 62(8),
5082-5096. https://doi.org/10.1109/TIE.2015.2393840.

Thomas, E. V., Bloom, I, Christophersen, J. P., & Battaglia, V. S. (2008). Statistical
methodology for predicting the life of lithium-ion cells via accelerated degrada-
tion testing. Journal of Power Sources, 184(1), 312-317. https://doi.org/10.1016/j.
jpowsour.2008.06.017.

Tian, J., Xiong, R., & Shen, W. (2020). State-of-health estimation based on differen-
tial temperature for lithium ion batteries. IEEE Transactions on Power Electronics,
35(10), 10363-10373. https://doi.org/10.1109/TPEL.2020.2978493.

Tseng, S.-T., Hsu, N.-J., & Lin, Y.-C. (2016). Joint modeling of laboratory and field data
with application to warranty prediction for highly reliable products. IIE Transac-
tions, 48(8), 710-719. https://doi.org/10.1080/0740817X.2015.1133941.

Tseng, S.-T., & Lee, 1.-C. (2016). Optimum allocation rule for accelerated degradation
tests with a class of exponential-dispersion degradation models. Technometrics,
58(2), 244-254. https://doi.org/10.1080/00401706.2015.1033109.

Walsh, G., Albrecht, A. K., Kunz, W., & Hofacker, C. F. (2016). Relationship between
online retailers’ reputation and product returns. British Journal of Management,
27(1), 3-20. https://doi.org/10.1111/1467-8551.12120.

Wang, P, & Coit, D. (2007). Reliability and degradation modeling with random or
uncertain failure threshold. In 2007 Proceedings - annual reliability and main-
tainability sympsoium (pp. 392-397). IEEE. https://doi.org/10.1109/RAMS.2007.
328107. http://ieeexplore.ieee.org/document/4126383/

Wang, X., Wang, B. X,, Hong, Y., & Jiang, P. H. (2021). Degradation data analysis
based on gamma process with random effects. European Journal of Operational
Research, 292(3), 1200-1208. https://doi.org/10.1016/j.ejor.2020.11.036.

Whittle, P. (1973). Some general points in the theory of optimal experimental
design. Journal of the Royal Statistical Society: Series B (Methodological), 35(1),
123-130.

Xiao, X., & Ye, Z. (2016). Optimal design for destructive degradation tests with ran-
dom initial degradation values using the Wiener process. IEEE Transactions on
Reliability, 65(3), 1327-1342.

Yang, G. (2010). Accelerated life test plans for predicting warranty cost. IEEE Trans-
actions on Reliability, 59(4), 628-634. https://doi.org/10.1109/TR.2010.2085550.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5613969

Ye, Z.-S., & Chen, N. (2014). The inverse Gaussian process as a degradation model.
Technometrics, 56(3), 302-311. https://doi.org/10.1080/00401706.2013.830074.

Ye, Z.-S., & Xie, M. (2015). Stochastic modelling and analysis of degradation for
highly reliable products. Applied Stochastic Models in Business and Industry, 31(1),
16-32. https://doi.org/10.1002/asmb.2063.

Zhai, Q., & Ye, Z.-S. (2017). RUL prediction of deteriorating products using an adap-
tive Wiener process model. [EEE Transactions on Industrial Informatics, 13(6),
2911-2921. https://doi.org/10.1109/TI1.2017.2684821.

Zhang, Y., & Meeker, W. Q. (2006). Bayesian methods for planning accelerated life
tests. Technometrics, 48(1), 49-60. https://doi.org/10.1198/004017005000000373.

Zhang, Z., Si, X, Hu, C, & Lei, Y. (2018). Degradation data analysis and remain-


https://doi.org/10.1016/j.microrel.2016.07.152
http://refhub.elsevier.com/S0377-2217(22)00370-8/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00370-8/sbref0003
https://doi.org/10.1016/j.ress.2017.03.033
http://refhub.elsevier.com/S0377-2217(22)00370-8/sbref0005
https://doi.org/10.1214/088342306000000321
https://doi.org/10.1109/TR.2020.2995333
https://doi.org/10.1016/j.ejor.2021.10.049
http://refhub.elsevier.com/S0377-2217(22)00370-8/sbref0009
https://doi.org/10.1109/TR.2015.2427153
https://doi.org/10.1016/j.ejor.2014.09.003
https://doi.org/10.1016/j.ymssp.2012.10.019
https://doi.org/10.1016/j.ejor.2019.03.018
https://doi.org/10.1002/nav.21923
https://doi.org/10.1016/j.ress.2021.108142
https://doi.org/10.1109/JSEE.2015.00058
https://doi.org/10.1109/TFUZZ.2017.2738607
https://doi.org/10.1080/02664760903406488
https://doi.org/10.2307/1403600
https://doi.org/10.1080/00401706.1998.10485191
https://doi.org/10.1016/j.ress.2020.107229
http://refhub.elsevier.com/S0377-2217(22)00370-8/sbref0022
https://doi.org/10.1109/TIE.2015.2393840
https://doi.org/10.1016/j.jpowsour.2008.06.017
https://doi.org/10.1109/TPEL.2020.2978493
https://doi.org/10.1080/0740817X.2015.1133941
https://doi.org/10.1080/00401706.2015.1033109
https://doi.org/10.1111/1467-8551.12120
https://doi.org/10.1109/RAMS.2007.328107
http://ieeexplore.ieee.org/document/4126383/
https://doi.org/10.1016/j.ejor.2020.11.036
http://refhub.elsevier.com/S0377-2217(22)00370-8/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00370-8/sbref0032
https://doi.org/10.1109/TR.2010.2085550
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5613969
https://doi.org/10.1080/00401706.2013.830074
https://doi.org/10.1002/asmb.2063
https://doi.org/10.1109/TII.2017.2684821
https://doi.org/10.1198/004017005000000373

X. Zhao, P. Chen, S. Lv et al.

ing useful life estimation: A review on Wiener-process-based methods. Euro-
pean Journal of Operational Research, 271(3), 775-796. https://doi.org/10.1016/].
€jor.2018.02.033.

Zhao, X., He, S., & Xie, M. (2018). Utilizing experimental degradation data for war-
ranty cost optimization under imperfect repair. Reliability Engineering & System
Safety, 177, 108-119. https://doi.org/10.1016/j.ress.2018.05.002.

European Journal of Operational Research 304 (2023) 1349-1363

Zhao, X., & Xie, M. (2017). Using accelerated life tests data to predict warranty cost
under imperfect repair. Computers & Industrial Engineering, 107, 223-234. https:
//doi.org/10.1016/j.cie.2017.03.021.

Zhuy, J., Dewi Darma, M. S., Knapp, M., Serensen, D. R., Heere, M., Fang, Q., ... Ehren-
berg, H. (2020). Investigation of lithium-ion battery degradation mechanisms by
combining differential voltage analysis and alternating current impedance. Jour-
nal of Power Sources, 448, 28-30. https://doi.org/10.1016/j.jpowsour.2019.227575.

1363


https://doi.org/10.1016/j.ejor.2018.02.033
https://doi.org/10.1016/j.ress.2018.05.002
https://doi.org/10.1016/j.cie.2017.03.021
https://doi.org/10.1016/j.jpowsour.2019.227575

	Reliability testing for product return prediction
	1 Introduction
	1.1 Background and motivation
	1.2 Related works
	1.3 Overview

	2 Modeling of return rate under degradation models
	2.1 Wiener degradation process with covariates
	2.2 Degradation under accelerated tests
	2.3 Return rate prediction under heterogeneous usage mode - a basic model
	2.4 Return rate prediction under heterogeneous usage mode: A random returning model

	3 Reliability test planning
	3.1 Preliminaries
	3.2 Two types of planning schemes
	3.3 General results and insights
	3.4 Compromise plans

	4 Examples
	4.1 Test planning for rechargeable batteries
	4.2 Verification of optimality
	4.3 Simulation study
	4.4 Compromise plans
	4.5 Sensitivity analysis
	Sensitivity with respect to the unknown parameters
	Sensitivity with respect to probability model of usage modes
	Sensitivity with respect to the parameters in 


	5 Conclusions
	Acknowledgments
	Appendix A Technical proofs
	A1 Proof of Theorem 1

	Appendix B Expression of the Fisher information
	References


