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Multi-Expert Operational Risk Management
Giampiero E. G. Beroggi, Senior Member, IEEEand W. A. Wallace, Senior Member, IEEE

Abstract—Operational risk management is the process of mon-
itoring, evaluating, and changing courses of actions with potential
detrimental consequences in real time. In this paper, we extend the
decision models proposed in the literature for individual risk man-
agers to account for situations where multiple risk managers are
involved. For this purpose, two dynamic and adaptive preference
aggregation models for cardinal and ordinal assessments are pro-
posed and discussed. The mechanical aspects of the models are then
validated using field data collected from experienced operational
risk managers in an individual-expert setting. Sensitivity analysis
indicates that the models have enough flexibility to be adapted to
account for behavioral considerations. The paper closes with a re-
search agenda.

Index Terms—Decision making, experts, preference aggregation,
risk management.

I. INTRODUCTION

T HE NEED to assess and manage risks in real time is re-
ceiving increasing attention due to the growing complexity

of large-scale operations and the advances in information and
communications technologies. Prominent examples are the use
of satellite communications and computing technology for lo-
gistics management, security concerns for world-wide commu-
nications networks, and information and communications tech-
nologies in support of crisis and emergency management for
natural disasters such as floods, earthquakes, and fires.

The concept of operational risk management (ORM) was in-
troduced as real-time monitoring and control of courses of ac-
tion (CA’s), and decision-making in the case of sudden unfore-
seen events, called real-time events (RTE) [6]. For example, ad-
vanced information and communications technologies are being
employed by trucking companies to monitor their shipments
in real time. For changes in planned shipments, such as new
customer orders, traffic congestion, or truck problems, the dis-
patcher can assist the drivers in their decision-making process,
including rerouting. Rerouting shipments (or at least the inves-
tigation of rerouting possibilities) can be motivated by many
reasons, including new opportunities (e.g., picking up an un-
foreseen order) as well as for safety and security reasons (e.g.,
unforeseen bad weather or possible terrorist attack). Tests and
pilot studies in the U.S. and Europe have demonstrated the po-
tential of real-time monitoring and route guidance [2]. How-
ever, these new technologies have not yet established them-
selves world-wide. It is our contention, and governmental efforts
especially in the European scene point in this direction [15],
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that safety and security issues will become an integral aspect of
real-time monitoring and control of large-scale distributed op-
erations.

Planning and modifying CA’s in an ORM setting involves
many different considerations, including the operators (e.g.,
drivers), companies (e.g., trucking companies), public inter-
ests, logistics, and emergency response issues. Assessing the
impacts of unexpected threatening events is not done just by
an operator but includes multiple experts, such as engineers,
highway patrol, environmental experts, public officials, and
emergency managers—all acting under time pressure. In this
paper we extend the single-operator ORM concept as proposed
by Beroggi and Wallace [6] to multi-expert operational risk
management. The proposed concept is based on the continuous
advance of information and communications technologies for
real-time monitoring and control, including video conferencing,
multimedia systems, and wireless communication.

The following section provides an overview of ORM.
Section III presents the formulation of multi-expert ORM.
Finally, Section IV discusses the sensitivity of the proposed
models using data obtained from a quasi-field experiment with
experienced dispatchers and truck drivers. The paper closes
with suggestions for continued research in development of
decision models and their implementation as components of
decision support systems for ORM.

II. THE DECISIONENVIRONMENT FORMULTI-EXPERTORM

ORM is the process of monitoring, evaluating, and changing
CA’s due to real-time events. A CA is defined as a set of chrono-
logically ordered decisions to take specific actions. Examples of
CA’s are emergency response plans and transportation routes for
hazardous materials. The space of feasible CA’s can be repre-
sented as a graph, where the edges are the decisions to take cer-
tain actions (vertices). In the case of emergency plans (Fig. 1,
left), the edges of the graph are the possible decisions and the
links the response actions; in the case of transportation of haz-
ardous materials (Fig. 1, right), the edges of the graph are the
intersections and the vertices the road segments connecting the
intersections.

Past research developed and assessed different models for
ORM to assess the preferences of the actions on a graph struc-
ture and to compute optimal courses of actions, with two of them
being the ordinal preference (OP) model and the multiattribute
utility (MAU) model [5]. In their most basic form, both models
use the two criteria risks and costs to express thepreferencesfor
taking certain actions and for making decisions for changes in
case an RTE occurs.

An RTE typically affects only some of the actions; for ex-
ample, a snow storm affects only parts of the road network. An
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Fig. 1. Examples of emergency response (left) and transportation (right)
graphs.

action (e.g., road segment) is said to be affected by an RTE if
the preference to engage in this action deteriorates. An opera-
tion (e.g., vehicle) is said to be affected by an RTE if it plans to
engage in at least one of affected actions (e.g., if it plans to drive
through the snow storm).

In order to use these decision models in ORM conditions, all
actions must first be assessed undernormaloperating conditions
(i.e., for when no RTE’s are present). When an RTE occurs, the
operational risk manager (e.g., dispatcher, on-site emergency
manager) can change the risk and cost values of the affected
actions. Based on these new risk and cost values, the system
will compute, possibly new, CA’s for all affected operations.

A. The Multiattribute Utility (MAU) Model

The MAU model uses a cardinal scale for both risks and costs.
Cost preferences are assessed in terms of some monetary unit,
which stands for a monotonically decreasing preference func-
tion. Risk preferences are expressed on a pseudo-logarithmic
scale which is commonly used in the practice of risk manage-
ment. The scale ranges from 0 (no risk) to 100 (certain accident);
a value of 90 stands for an estimated annual probability for a fa-
tality of , a value of 70 stands for , and a value of 84
stands for . Again, these values are subjective estimates
made by an experienced ORM manager. The general transfor-
mation equation to transform any risk preference
value into an absolute risk measure, , is given
below [5]: These absolute risk values are then transformed
into risk-costs using estimates for life-saving costs (LSC) of
SFr to reduce one unit of [13].

The cost preferences in the case of hazardous material trans-
portation are computed from the estimated driving velocity,
using the cost estimate of $1.0/km for driving at a velocity of 80
km/h. Thus, the transportation costs along a link of lengthat a
velocity (km/h) are . With the total cost values (i.e.,
the sum of risk-costs and transportation costs), the minimum
cost route (i.e., CA) can be computed as follows, where
if road segment is taken and otherwise.

subject to:

• consists of connected road segments from origin to des-
tination:

for origin
for all other
for destination.

B. The Ordinal Preference Model (OP)

The OP model uses a lexicographic preference structure to
measure preferences of actions. The lexicographic classes are
(where “ ” stands for “less preferred”):

avoid action

high risk costs

low risks negligible impact

If an action is assigned an preference, then none of the on-
going operations can engage in this action. This could mean that
a road segment must be closed for hazardous material shipments
or that the use of chemical dispersant to abate an oil spill is not
an option. The preference reflects that a situation has been de-
tected but no negative implication has been assessed yet. This
could mean that possible problems have been identified for cer-
tain actions which, however, at this point in time do not affect
any of the ongoing operations. The class allows the ORM
manager to express financial implications. Although they might
be expressed in some monetary unit, they do not have to stand
for absolute cost values or best possible estimates. Rather, they
can reflect subjective estimates or preferences by the ORM man-
ager. An action is assigned an HR preference if no financial im-
plications are deemed too high to avoid this activity.

Consequently, if two courses of action contain HR but no
activities, then the choice between the two is based solely on
risk and not on cost aspects. On the other hand, an activity is as-
signed an LR preference if a risk has been detected which would

for
for
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only be avoided if it does not involve any additional financial
implications. Therefore, if two courses of action contain LR but
no HR or activities, then the choice between the two is based
solely on the cost and not on risk aspects.

The preference of an action is the “sum” over its pref-
erence classes; for example, an actionwith an HR risk pref-
erence and cost preferences has an overall preference of:

. The preference of a CA is the “sum”
of the preferences of its actions. For example, if CA consists
of seven actions:

, and , then, the overall
preference is: . A
transformation of the lexicographic preference value into a nu-
meric preference value, for a CA consisting ofactions, can be
computed as follows, where is the th action in the CA:

Thereby, is the preference of action the HR pref-
erence of action the preference of action the
LR preference of action , and the preference of ac-
tion . are numbers making the preference
classes incommensurable:
(e.g., , and

). Let be the preference of action (i.e.,
is the action between the decisionsand ) and the decision
variable for taking action if action is taken,

otherwise). Then, the most preferred CA is the one
with lowest preference value ; it is defined by:

subject to:

• flow conservation: CA starts with the currently ongoing
action (e.g., using burning to abate the oil spill) and ends
in the planned end state of the operation (e.g., response
crews can be sent home);

• feasibility of actions: where is the set of
all decisions and the set of the
preference classes.

This means, for example, that if the overall preference of is
, and the overall preference of is

, then is preferred to . The preference of
the joint CA’s, , is

.

C. ORM for Multi-Expert Situations

The reason to extend the OP and MAU decision models, and
not other possible models, to multi-expert ORM situations is
that they outperformed traditional visual interactive (VI) and the
conservative heuristics (CH) models in terms of effort and ac-
curacy [5]. The VI model does not provide any analytic sup-
port to the ORM manager in case of an RTE, other than the

visual display of the graph and the affected activities. The CH
model computes without user interaction alternative CA’s based
on worst-case estimates.

The OP and MAU models provide decision support byat-
tributes(risk and cost) while the VI and CH models provide de-
cision support byalternative(i.e., the ORM decision manager
compares alternative CA’s in their entirety rather than based on
risk and cost attributes). Our finding that decision support by at-
tribute is superior to decision support by alternative in an ORM
environment is supported by other research; see Payneet al.[19]
for instance.

Consequently, ORM decision models should support also
multiple managers in: 1) the identification of the actions
affected by an RTE; 2) the assessment of the impact when
engaging in those actions in terms of the attributes; 3) the
identification of the affected operations (CA’s); and 4) the
decisions to change planned CA’s.

ORM often requires the assistance of experts working at dif-
ferent locations. With the advent of technologies like cellular
communications, the experts can access data on the RTE, dis-
cuss its ramifications for operations, and assess the current and
proposed state of operations. However, different experts process
data differently. Thus, the results of their analyses and the rec-
ommendations for changing CA’s cannot be expected to be the
same. Discrepancies among the experts occur at two stages: 1)
during analysis (i.e., assessment) and 2) when making recom-
mendations for new CA’s or to modify CA’s (i.e., choice).

It is our contention that experts' assessments in an ORM envi-
ronment should not be judged solely in terms of right or wrong,
good or bad, and reliable or unreliable. Rather, their expertise
should be judged in terms of theconsistencyandagreementof
their assessments and recommendations over multiple RTE’s.
Consistency is defined in terms of rank value of the assessment.
For example, if one expert assesses constantly the lowest risk
value, then s/he is very consistent. Agreement is defined in terms
of deviations from the weighted group mean. Therefore, a trust-
worthy group of experts has not only high agreement but also a
high level of consistency.

Typically, however, both consistency and agreement vary
over time and may adapt to group norms. For example, if
experts are presented the results of their assessments relative
to the other experts' assessments, they might undergo an
adaptation process and change their attitude toward risk and
costs and, subsequently, assessment and choice.

The ways multi-expert ORM assessments and choices by
experts can be processed (i.e., aggregated) is illustrated in Fig. 2.
The assessments byexperts are first checked for acceptability.
If an expert's assessment is determined not to be acceptable it
can be disregarded or she can be asked for a reassessment—in
real time. The accepted assessments are used to derive a group
assessment based on which the optimal CA’s are computed.

The individually recommended changes in CA’s from each
of the experts whose assessment was found to be acceptable as
well as the new CA’s based upon the aggregated group assess-
ment can be presented in graphical form to the decision-maker.
An aggregation of the accepted CA’s could also be done. We
summarize our view of the ORM multi-expert assessment and
choice process as follows:
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Fig. 2. Process of experts' assessment and choice.

• Each expert makes an assessment of the risk and cost pref-
erences for the activities affected by the RTE. It is assumed
that the affected activities have been identified by one ex-
pert and that they are submitted to all other experts.

• Each expert's assessment is evaluated in terms ofconsis-
tency and agreement for the purpose of determining a
group assessment. A weight is determined for each ex-
pert which is a function of: 1) his/her consistency in past
assessments and 2) his/her degree of group membership
(agreement).

• For each expert and for the group assessment, changes in
CA’s are computed and presented to the ORM manager
for decision-making.

Preference aggregation for multiple experts has been addressed
both in the context of risk management and in the context of
social choices. In the latter case the issue has been subject of re-
search for more than 200 years and resulted in well known para-
doxes, such as rank reversals in the Borda count, the Condorcet
paradox of non-transitivity, and Arrow's impossibility theorem
[4]. Risk management methods for the aggregation of expert as-
sessments have been addressed by Beinatet al.[3], Cooke [9],
DeWispelareet al.[10], Sandriet al.[20], and Myunget al.[18].

The procedures proposed in the literature to aggregate ex-
pert assessments can be classified asbehavioral andmechan-
ical [10]. Behavioral procedures are based on either structured
discussions on non-interactive approaches such as the DELPHI
Method [17]. Mechanical procedures consist of mathematical
formulae and algorithms, of which a large body of literature has
emerged over the last two decades [8]. However, for practical
purposes, simple averages of point estimates have often shown
to suffice, although they have some conceptual drawbacks [10].

The multi-expert ORM environment as defined earlier is char-
acterized by repetitive assessments of RTE’s over time, subjec-
tive preference elicitation by experts, and an objective to have
the experts be consistent and in agreement. Early work in the
related field of command and control dates back to the 1960s
[11]. More recently, models for sequential revision of belief
have been proposed [12], [14]. The extensions of the MAU and
OP models for multiple experts as proposed in the following
section differ in the sense that long-term consistency and agree-
ment by the experts are incorporated.

III. M ULTI-EXPERT ORM DECISION MODELS

A. An Adaptive Model for Cardinal Preference Assessments

The multi-expert MAU model is based on cardinal preference
assessments for an action in terms of costs and risks. It is as-
sumed that experts will have to assess RTE’s as they occur
in time. The process of assessing the-th RTE is referred to as
the -th stage. Let be the cardinal preference value (e.g.,
for risk) provided by expert for any action in
stage . Then, the aggregated group assessment forexperts
is defined as the weighted average, where is theweight of
expert for the assessment in stage:

(1)

It should be noted that the weighted mean value is invariant over
multiplicative transformations of the weights. Therefore, we do
not have to require that the sum of weights be equal to one. In
other words, if we rescale the weights by multiplying them by a
constant, the weighted mean is still the same. The weight
accounts for consistency and agreement of expertin stage .

The weight of expert in stage , is
determined iteratively and is a function of the expert's long-run
consistency, , and his/herrelative deviation from the
aggregated group assessment in the previous assessment(s):

(2)

The expert whose assessment was furthest away from the aggre-
gated group assessment in stage has in stage a deviation
coefficient, (least agreement with the group). If there is
an expert whose assessment was equal to then the devia-
tion coefficient is (highest agreement with the group).
The long-run consistency, , is defined as the long-term av-
erage rank change:

(3)
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where , with being the first stage to count from.
The value reflects how much of the assessment history should
be accounted for. For example,could be the stage at which the
composition of the group has changed the last time.

The maximum long-run consistency (least consistent) with
experts is and the minimum value (most consistent) is

, if the expert never changes rank. The rank change,
, is defined as the number of positions an expert changed

compared to the previous assessment. For example, let's assume
that an expert provided in stage the second most conser-
vative assessment and in stagethe fourth most conservative
assessment; in this case, the rank change is .

The weight for each expert can now be computed as a
function of the expert's long-run consistency, (most
consistent), 1 (least consistent)], and his/her relative deviation,

(in highest agreement),1 (in lowest agreement)]:
. For the function, , we propose

an approach that has been first introduced as the Minkowski
metric and then extended to fuzzy logic by Yager [21] and
employed in the Swiss safety regulation for disaster scaling [7].
Theweight for expert in stage is:

where

(4)

where and . The character-
istic of the parameter is that for

, and for
; that is,

only if (i.e., expert never changes rank) and
(i.e., expert is in perfect agreement with the group). The weights
are therefore ; the constant 1 was introduced to
prevent divisions by 0.

We would like to specify ameasure of acceptability
for the assessments provided in stage, around the weighted
mean value in order to determine the acceptable assessments.
We propose to do this as a function of the unbiased sample vari-
ance, , of the weighted assessments:

(5)

which converges toward the variance under multiplicative trans-
formation, that is:

where

(6)

Group consistency, , which gets computed at each assess-
ment stage is a measure of disarray of the rank-orders of the
experts' assessments over time. This measure assumes that dif-
ferences in the assessments are less serious if they occur be-
cause the experts have different degrees of conservatism. As-
sume that there are three experts and that one consistently as-
signs highest risk values, another always lowest, and the third
lies always in-between. Then, we would say that the group as
a whole is consistent and we would be more willing to accept
differences between the experts than in the case where the pref-
erence-orders change very often.

The group consistency measure is therefore a relative mea-
sure of concordance of conservatism or risk attitude. Different
measures have been proposed in the literature and we will use
the most prevalent one: Kendall's coefficient of concordance,
used to test rank correlations [16, p. 119]. Thus, the group con-
sistency is defined as:

with

(7)

where the are the squares of deviations of the rank sums
around their mean which equals , and

is to reduce the sum of square of deviations due to tied
ranks. For example, assume we have two experts assessing the
cost preferences as 66, three experts assessing 72, and another
three experts assessing 69. Then, we get as correction factor

.
The group consistency is a measure of relative agreement of

rank-orders. It takes on the value for perfect agreement,
and the value for complete disagreement. Consequently,
theacceptability range is defined as

(8)

where is a constant. For , the acceptability range is
the standard deviation multiplied by . A small value of
causes many assessments to be rejected. This would be reason-
able if time is available to ask the experts who fall outside the
acceptability range to do a reassessment. Moreover,could
vary in with increasing .

Instead of using a behavioral approach where some of the ex-
perts might be asked to do a reassessment, the acceptable as-
sessments at each stage can also be determined mechanically in
an iterative way. First, with all assessments, the acceptability
range is computed for some. Assessments falling outside of
this range are discarded. With the remaining assessments, a new
range is determined by computing new and values with
the remaining assessments. Then, the unacceptable assessments
are discarded. This procedure is repeated until all remaining as-
sessments are contained within the acceptability range (i.e., until
none of the remaining assessments is rejected).
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However, if at the first iteration the acceptable set is empty, we
propose that the assessment be considered as not valid. In such a
case, the decision-maker (e.g., dispatcher or on-site emergency
manager) must rely on his/her own judgment. Thus, the algo-
rithmic approach of determining the acceptable assessments is
as follows:

, (set of all assessments), (the set
of rejected assessments)
repeat while

, compute and
, where

if and then group assessment is bi-modal and
unacceptable
end repeat

Note that the set of acceptable assessments could be empty
for two cases: 1) if the group assessment for an RTE is bi-modal
and 2) if the experts are so inconsistent over time thatand

are very small, resulting in a range of acceptability too small
to accept any assessments.

B. An Adaptive Model for Ordinal Preference Assessments

The assessment spectrum for an ordinal risk scalewas in-
troduced as consisting of several preference classes referring to
cost and risk attributes and also to the priorities between the two
(the avoidance of HR actions has higher priority than ofac-
tions, and higher priority than of LR actions):

. A possible assessment spectrum for the OP model
was proposed as: .

Assume that the attribute-classes for the risk attribute (in this
example the two classes HR and LR), as well as the classes
(action must be avoided) and (impact of RTE is negligible)
consist of only one element, and the classes of costs of multiple
elements. It is further assumed that an assessment is done prop-
erly if every activity is assigned one element reflecting every
attribute. For ORM, an assessment isproper if every activity
which gets assessed has a risk-element from
and a cost-element from $ .

With independent experts, the probability that all experts
assign the same risk value is . If their assessments were
independent, the probability of havingidentical assessments
out of assessments, where , would be binomial dis-
tributed, where

For example, the probability that eight experts agree at least
once in 18 assessments is about only . This is an upper
bound, since the experts might not be independent in their as-
sessments. Thus, we would never expect allexperts to agree
on all assessments. On the other hand, a lower bound can be
determined by considering that with four risk classes andex-
perts, experts must agree on at least one out of the
four risk classes. We would therefore call a group assessment

sufficient, if a majority of the (weighted) experts agrees on the
tradeoff between risks and costs. For the assessment spectrum

, this means that the assessment is sufficient if
the majority of experts agree on one of the two sets or

. The corresponding set of assessments is then referred
to as the sufficient set.

We would call an assessmentefficient if it is sufficient and if
a majority of the experts choosing the sufficient set agree on one
preference. The corresponding set of assessments is referred to
as the efficient set. Finally, we would call an assessmentsatis-
factory, if a majority of experts agrees on one preference class.
The corresponding set of assessments is referred to as the satis-
factory set. Evidently, a satisfactory assessment is efficient. To
see this, let and . Let be the
preference class which determined that the assessment is satis-
factory; that is, by definition , where . Since

or , it follows that the assessment is effi-
cient.

We shall defineacceptability to include either efficient or
satisfactory group assessments. Therefore, we may have a suf-
ficient assessment which is not acceptable; for example, two
experts assess, two experts assess HR, one expert assesses
LR, and two experts assess(where all experts have equal
weight). If the experts have different weights, then we assume
that is the number of experts agreeing on one
specific assessment, where is the weight of expert.

A group assessment is proposed, equivalent to the mean group
assessment for the MAU model in Section III-A. If a group as-
sessment is satisfactory, the aggregated assessment is the pref-
erence class that is agreed upon by a majority of the experts
(e.g., at least five out of eight experts). If a group assessment is
efficient, the aggregated preference is the preference class that
receives a majority within the two classes that are acceptable.
For example, if (for equally weighted experts) two experts agree
on , three assess HR, one expert assesses LR, and two experts
assess , we have an efficient, that is, acceptable, assessment,
with HR being the aggregated group assessment. It should be
noted that we do not use the class with the highest number of
assessments as the group aggregated assessment. For example,
in a case involving nine experts, four experts might assess LR,
zero , three HR and two . Then, the group aggregated assess-
ment would not be LR, although it has the most experts (but not
a majority) agreeing on this class, but HR because the assess-
ment is efficient.

We can now define therelative deviation, , to the ag-
gregated assessment. The nonefficient values of an efficient as-
sessment have a deviation value, . The efficient values
which do not fall into the class which determined the assessment
to be efficient have a deviation value, . Finally, the
assessments that fall into the group aggregated class have a de-
viation value, . It should be noted that a non-efficient
assessment does not provide an aggregated group assessment. In
such cases, the decision-maker (e.g., dispatcher or on-site emer-
gency manager) must rely on his/her own assessment.

Using these distance measures and the consistency coeffi-
cients (same definition as for the MAU model) of the experts,
the weights are updated for the assessment of the next RTE in
the same way as for the MAU model. The aggregation of the



38 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 1, FEBRUARY 2000

assessments does not, however, need to be done by an iterative
procedure because the process of assessing the efficient set al-
ready takes care of the concept of eliminating outliers.

One might argue that the group aggregation procedure pro-
posed for ordinal assessments is more severe than the one for
cardinal assessments because of the different definitions of ac-
ceptability of the group as a whole. A cardinal assessment of a
group is not accepted if the first iteration eliminates all assess-
ments. An ordinal assessment is not accepted if it is not efficient,
although it might be sufficient. The reason to allow this more se-
vere definition is based on empirical evidence which shows that
the ordinal assessment outperforms the cardinal assessment in
ORM situations in terms of effort and accuracy [5]. Thus, we
expect ordinal assessments to be more consistent than cardinal
assessments, especially when one attribute is assessed on a car-
dinal scale (e.g., costs) and the other is assessed on an ordinal
scale (e.g., risk).

C. Decision-Making

The decision-maker has the choice of maintaining the present
CA or finding a new set of CA’s in response to RTE’s. For
example, a dispatcher could identify alternative routes if the
planned route is affected by an RTE (e.g., a show storm). In
the case of ORM the decision-maker may be required to or may
need to call upon “experts” to provide recommendations. We
have modeled this process as first one of assessment (e.g., as-
sessing the risk and cost impacts of driving through a snow
storm) and then as one of choice (e.g., rerouting the vehicles
to another route to avoid the snow storm).

However, in the case of changing CA’s the choice phase is
performed algorithmically based upon the assessments (e.g., a
routing algorithm computes the alternative route). Therefore,
the decision-maker has both the planned CA and a set of recom-
mended CA’s, which may include the planned CA; that is, the
CA based upon the group assessment and the CA’s based upon
the individual expert assessments' for those experts whose as-
sessment was found to be acceptable. These recommended CA’s
can be displayed graphically (e.g., on a map background). In
addition, the decision-maker might want to identify other CA’s
that make some sort of sense.

Two CA’s, and , are referred to asindifferent (prefer-
entially equivalent) if they have the same overall preference:

. They are calledcongruent (strategically equivalent)
if they consist of the same links in the same sequence: .
They are referred to asanalogousif they are congruent but not
indifferent. Finally, they are calledidentical if they are con-
gruent and indifferent.

With any given assessment of the affected activities (e.g., the
experts' assessments or the group aggregated assessment), al-
terations to the planned CA’s can be computed. Theaccept-
ability of CA’s can be defined in terms of how many experts
come up with the same CA. In general, there are only two CA’s
possible based on the group aggregated assessments with deci-
sion-making by attribute—the planned CA and the CA which
avoids the RTE with overall highest preference value. Thus,
some experts will propose the alternative CA while the others

Fig. 3. Violation of the Pareto optimality axiom for high risk (or cost) RTE’s.

will not. We can now compare the number of experts choosing
the planned CA and the CA resulting from the aggregated as-
sessment.

The aggregation of multiple expert assessments for deci-
sion-making, however, could result in counterintuitive choices.
Simple numerical examples can be constructed for which the
linearly aggregated preferences of two experts result in a choice
that contradicts both experts' recommendations. An aggrega-
tion procedure should avoid this rather awkward result. Social
choice researchers have thus proposed thePareto optimality
axiom which says that if all experts agree on one alternative,
then the aggregated assessment should result in this alternative
[1]. Unfortunately, aggregation principles based on averages do
not necessarily comply with this axiom.

To see this, let's assume there is an RTE (e.g., snow storm)
which affects one action (e.g., route segment) of the planned

(e.g., route). A change of the planned to an alter-
native is suggested if the implications on risk and/or cost
for undertaking this activity are too high. Because both risk
and cost preferences are monotonically decreasing, all risk-cost
pairs which result in keeping the planned define a convex
set (Fig. 3). If the risk/cost assessments of two expertsand

suggest taking (e.g., to take the reroute), then a linearly
aggregated assessment will lie on the connecting line be-
tween the two assessments. This could result in either what the
two experts suggested, or in a contradiction (e.g., to stay on the
planned route) of their unanimous suggestion (e.g., to take the
reroute).

Because of the possible violation of what is referred to as
Pareto optimality (i.e., if all experts agree on one CA then the
aggregated assessment must suggest the same CA), we propose
showing all CA’s based on the assessment of the “acceptable”
experts, as well as the CA resulting from the aggregated as-
sessment. The operator can then decide which of these CA’s to
choose. If all the experts' assessments result in the same CA, one
that is different from the CA resulting from the aggregated as-
sessment, a reasonable heuristic would be to choose the former
CA. In any case, we would always consider what is referred to
as recognition, saying that all experts must be considered in
the aggregation of the assessments. In terms of the proposed
models, this simply means that no expert should ever receive a
weight of zero, a situation which would exclude him/her from
the group of experts.
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TABLE I
EXPERT ASSESSMENTS OFVELOCITY (CARDINAL ) AND RISK (CARDINAL AND ORDINAL)

IV. SENSITIVITY ANALYSIS

A. Preference Aggregation

The data used for this sensitivity analysis was collected in a
quasi-field setting with the OP and MAU decision models ap-
plied to transportation of hazardous materials [5]. A total of 16
experienced dispatchers and truck drivers participated in the ex-
periment, where eight were working with the MAU model and
the other eight with the OP model.

The task for each expert (dispatcher) was to monitor the
movement of three vehicles. After a few minutes of monitoring,
two RTE’s were announced which affected the planned routes
of the vehicles. The dispatchers had then to assess for both
RTE’s the impacts on risks and travel velocity for vehicles
driving through the areas which were affected by the RTE’s.
With these assessments, alternative routes were computed from
the vehicles' current positions to their planned destinations with
the MAU and OP models, respectively. The dispatcher could
then decide for each vehicle whether to keep it on the planned
route or to reroute it to the suggested alternative (which could
be identical with the planned route if the new risk and velocity
values were not too much different from original values prior
to the RTE’s). This task was repeated a total of three times for
each expert with different RTE’s and different routes for the
three vehicles. As a result, each expert had to assess six RTE’s
and make nine rerouting decisions.

The tasks were presented in a multimedia environment
were the movement of the vehicles was animated on a map
background. The announcement of the RTE’s was done through
audio, static pictures, and text. Changes of risk and velocity
preferences could be done with the computer mouse, either by
moving a slide to change cardinal values or by clicking on the
appropriate box to change ordinal values. These three decision
situations lasted about 15 min. The six announced RTE’s were
taken from news accounts and described to the dispatchers

as follows: very hazardous driving conditions due to ice rain
(RTE1), cautious driving recommended due to heavy traffic
(RTE2), cautious driving conditions due to heavy rain (RTE3),
high explosion hazard due to accident with oil truck (RTE4),
high danger due to falling rock (RTE5), and expected traffic
delay during rush hours (RTE6).

The first two rows for each RTE in Table I show the assess-
ments by the eight experts for velocity and
risk preferences working with the MAU model; the third
row shows the assessments of risk preferences by the other
eight experts working with the OP model. The velocity values
were transformed into cost values as discussed in Section II-A.

Because data for only six RTE’s were collected in the
quasi-field experiment, the assessments for the six RTE’s were
used three times for this sensitivity analysis, resulting in a total
of 18 RTE’s. The sequence for the six RTE’s was generated
randomly; the first (original) sequence was 1, 2, 3, 4, 5, 6;
the second (random) sequence was 4, 3, 5, 6, 1, 2; and the
third (random) sequence was 4, 3, 1, 2, 5, 6.Comparing the
aggregated assessment in the second and
fourth column , we see that the influence ofis
minor. The most extreme differences were obtained for the fifth
and ninth RTE’s, where gave 33.6 as the aggregated
value with zero (third RTE) and four (ninth RTE) experts
agreeing on it, while and gave 17.0 as the aggregated
value with two experts agreeing (both for the fifth and ninth
RTE).The purpose of the sensitivity analysis is to test the
mechanical aspects of the two models and not any behavioral
aspects. That is, experts were not presented the assessments
by the other experts, and they were not given the possibility to
communicate to one another.

1) Agreement in Cardinal Assessments:The parameters to
be set in the cardinal model arein (4) which directly affects
the weights of the experts and indirectly the mean and the range
of accepted assessments, andin (8) which affects the range
of acceptable assessments.
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TABLE II
AGGREGATEDEXPERTASSESSMENTS FORVELOCITY WITH MAU M ODEL FORDIFFERENTPARAMETER SETTINGS AND NUMBER OF ITERATIONS

Fig. 4. Aggregated expert assessments for different parameter settings.

As previously mentioned, a small in (8) is used when time
is available for the experts to repeat their assessments if they
disagree to the extent that many of their assessments are re-
jected. This narrow band is achieved by setting for

.
Table II shows results for the aggregated expert assessment

of velocities for different values of and , where the experts
are using the MAU model. For example, the first row in the first
column, , says that the range of accept-
able assessments goes from 21 to 22, and that the aggregated
assessment is 21.5. Only two experts fall within this band, and
the band has been computed in three iterations. The parameter

was held constant throughout the iterations.
A much stronger influence on the aggregated assessment has

the parameter , which was held constant throughout the
interations. This can be seen when comparing columns 1 and 5
of Table II.

Fig. 4 shows the graphs for the data sets in columns 1, 2,
4, and 5 in Table II (all iterations according to algorithm in
Section III-A). Obviously, the different parameter settings pro-
duce in the first two stages (RTE 1 and 2) similar group-ag-
gregated values because the weights of the experts are assumed

Fig. 5. Decline of standard deviation for values in Fig. 4 (smoothed through
method of moving averages).

to be equal. Then, the group-aggregated values diverge. In the
long-run, the values seem to converge again.

Fig. 5 shows that the standard deviation of the four data
points and the 18 stages (RTE’s) from Fig. 4, which have
been smoothed through the method of moving averages, first
increases monotonically up to stage seven (RTE 7) and then
decreases monotonically.

The convergence of the different parameter settings in terms
of aggregated group assessment, shows that in the long run one
could use the weighted average model with any parameter set-



BEROGGI AND WALLACE: MULTI-EXPERT ORM 41

Fig. 6. Aggregation of velocity assessments made with the MAU model.

Fig. 7. Aggregation risk assessments made with the MAU model.

tings. That is, the mechanical characteristics of convergence in-
dicate that even when the experts do not have time to discuss
their differences in assessment, the model eventually converges
to the weighted mean value.

2) Consistency in Cardinal Assessments:To analyze the
mechanical aspects of consistency in cardinal assessments,
the two extremes of most and least consistent assessments are
considered. The most consistent assessments are achieved by
rearranging the assessments in descending order for each RTE.
In addition, the weights of the experts are held fixed. This
assumption means that the long-run consistency is for
all experts and that the group consistency is for all
RTE stages .

Figs. 6 and 7 show the results of the group-aggregated
velocity and risk values for the MAU model using data from
Table I. The -value was chosen to be which means,
according to [4], that the weight of each expert depends only
on the larger of the two values (consistency) and
(deviation from aggregated mean). The upper and lower bounds
in Figs. 6 and 7 reflect the acceptable assessments when all
experts are perfectly consistent (i.e., ). It should be

noted that the upper and lower bounds stand for the ranges of
the double standard deviation , since and
in [8].

Because of the high consistency, the assessments of velocity
by all experts (Fig. 6) as well as at least seven out of eight as-
sessments for the risk values (Fig. 7) were accepted for all 18
RTE’s. Only six out of the eighteen RTE’s had one risk assess-
ment rejected (Fig. 7). This explains why the band (defined by
the double standard deviation of the assessments (i.e., ) is
rather large. The band of acceptable assessments depends on (1)
the consistency of the group of experts, (2) the extreme values
in relation to all assessments, and (3) the weights of the experts.
If the weights were not held fixed, but computed according
to (4), the band would be narrower and thus the number of ac-
ceptable assessments would be smaller.

For the other extreme case, when the experts are least con-
sistent, the velocity values were rearranged alternatively in de-
scending and ascending order, that is, the first expert was in
the first assessment the most conservative, in the next assess-
ment the least conservative, then again the most conservative,
etc. This means that the group consistency is for all
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Fig. 8. Aggregation of velocity assessments made with OP model.

except the first RTE, which means that no band of acceptable
assessments exists.

However, the resulting group assessments were determined
by a weighted mean of all eight assessments. Consequently, the
aggregated group assessments of: 1) the most consistent; 2) least
consistent; and 3) nonweighted averages are almost the same.

These three special cases show that taking the simple average
as the group-aggregated assessment can be misleading; that is,
the assessment could be what we considered “best” (most con-
sistent) or “worst” (least consistent). The proposed aggregation
procedure discriminates for different experts' weights. For ex-
ample, RTE4 in Fig. 6 shows that the group assessment can be
quite lower that the simple average. The reason for this is that
outliers are rejected iteratively. Thereby, an outlier is not only
determined by the numeric value of the assessment but also by
the expert's weight. Thus, what in numeric terms might not be
an outlier, could very well be in terms of group assessment.

For the MAU velocity assessments, we computed an average
group consistency for the velocity assessment, , and
for the MAU risk assessment, . For the OP model, the
average group consistency for the velocity assessment was very
low, . The reason for this is that if one assesses the
risks with an ordinal scale, s/he often does not assess anymore
the velocity for high risk RTE’s (RTE’s 2, 3, and 6, as described
in Section IV-A1). This is so because assessing an RTE as high
risk (HR) often implicitly implies a very low velocity. In addi-
tion, if an RTE gets assigned anrisk preference, the velocity
is automatically set to zero because the area affected by the RTE
cannot be transited anymore.

For the velocity assessments in the MAU and OP models,
and the risk assessment in the MAU model, the aggregation of
cardinal values has been done similar to the case discussed in
Fig. 6. The numeric risk values showed less consistency than
the numeric velocity values for the MAU model.

3) Ordinal Assessments:Theordinal risksassessed in theOP
model were at least sufficient; that is, a majority of the experts
agreed on the tradeoff between risks and costs. For the assess-
ment of low risk RTE’s (RTE’s 1, 4, and 5, as described in Sec-

tion IV-A1), the assessment was always efficient; in fact the ex-
pertsagreedunanimouslyonLR.ForRTE4,fourexpertsassessed

preferences for the affected activities, while four assessed the
affected activities as HR preferences. If only one RTE has hap-
pened, then the reroutes are the same regardless whether anor a
HR preference is assessed. However, if there are multiple RTE’s,
the resulting CA could be different. Thus, we would not accept
such an assessment. In cases of sufficient but not efficient assess-
ments, the group assessment is usuallydeterminedby the experts'
weights. In theaboveexample, thesumof theexperts'weightsde-
termined whether the RTE must be avoided or not.

B. Choices

The CA’s (routes) that resulted from the aggregated numer-
ical values were all meaningful because a majority of the ex-
perts agreed on the CA’s for all RTE’s. However, because the
assessments of all experts are considered, there is little meaning
in debating about the quality of the reroutes resulting from the
aggregated assessment. Moreover, reroutes are only suggestions
both for the ORM manager (e.g., dispatcher) as well as the oper-
ator (e.g., driver) who considers the ORM manager's advice for
his decision. The ORM manager always has the option to pro-
pose a different CA by “constructing” a CA which is different
from the planned CA or any computationally derived CA.

In most cases, there are only two CA’s based upon the
proposed assessment procedure—decision-making by at-
tribute—the planned CA (e.g., planned route) and the alternate
CA (e.g., route) which avoids the actions (e.g., road segments)
affected by the RTE (e.g., the most preferred reroute). This
holds if the new CA is based on the aggregated assessment
value. However, if for each acceptable assessment a CA is
computed, some of the experts might choose to keep the
planned CA while other prefer the alternate CA. If the CA
based upon the aggregated assessment values is the same as the
CA proposed by the majority of the experts, we recommend
this CA as the solution. However, both the planned CA and
the alternate CA could be displayed graphically on the graph
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structure (e.g., road map) with the choice based upon the group
assessment highlighted for the decision-maker.

In the case of multiple RTE’s, there may be more recom-
mendations than just the planned CA and one alternate CA. We
could have multiple recommended CA’s—one based upon the
group assessment and one based upon each expert that had an
acceptable assessment. These CA’s, together with the originally
planned CA, could be presented to the decision-maker. Since
the number of experts is small, typically less than ten (in our
example it was eight), displaying the alternative CA’s should
not present a problem for the decision-maker. However, if we
have a very complex decision situation with multiple operations
(e.g., vehicles on the road) and multiple RTE’s—and there is
no recommended new CA (including the planned CA) that is
chosen by a majority of those experts with acceptable assess-
ments—we recommend displaying only the planned CA’s and
the CA chosen based upon the group assessments, but having
available for display; that is, stored in the computer, the CA’s
chosen based upon the individual experts whose assessments
were acceptable.

V. CONCLUSION

Operational risk management has become technologically vi-
able and headquarters are implementing advanced technologies
to improve efficiency, safety, and security of their operations.
However, the decisions to change planned courses of action
(such as emergency plans or transportation routes for hazardous
materials) are not made by the operational manager alone. Other
operational personnel such as managers and technical experts
may have some responsibility and useful expertise.

In this paper, we have proposed preference aggregation
and decision-making approaches both for cardinal and ordinal
assessments for operational risk management. The models
are adaptive due to the capability to change dynamically
weights and consistency coefficients over time, and the experts'
aggregated assessments are computed iteratively. At each
iteration step, some of the experts are offered the possibility
to reconsider their assessment. However, time pressure might
cause the models to progress in a mechanical way without
feedback, by eliminating step-by-step expert assessments
which are inconsistent or in disagreement with the group.

The sensitivity analysis for these models using field data
shows interesting insights about the influence of the parame-
ters. Although specific parameter settings make more sense for
some situations (e.g., small when time to discuss differences
in assessment is available), the aggregated values seem even-
tually to converge. However, the use of the proposed models
makes sense especially when consistency and agreement are an
important consideration. Moreover, taking the simple average
of the experts' assessment as the group assessment might lead
to misleading results.

With the data used for the sensitivity analysis, both assess-
ment and rerouting decisions complied with what a majority
of the experts suggested. Although the sensitivity analysis was
done with real field data, only mechanical aspects were subject
of this research. The next step is to test the models in terms of
their behavioral aspects for specific ORM problem situations.

The unavailability of some experts for some RTE’s, their reluc-
tance to make or revise assessments, and the different reactions
to time delay and lack of information and data will give insights
in which direction the models might have to be adapted. How-
ever, the flexibility of the models, which is due to its parameters,
shows that a wide range of aggregated values can be generated,
all based on different assumptions. This leads us to conclude
that the models encompass enough flexibility to be adapted to
account for behavioral considerations. For example, the effects
of feedback and learning will have to be investigated. Feedback
accounts for a relative improvement of the group assessment by
showing the experts the assessments and choices of the other
experts. Learning, on the other hand, accounts for an absolute
improvement by instructing the experts about the consequences
of their assessments and decisions.
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