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Abstract—Operational risk management is the process of mon- that safety and security issues will become an integral aspect of

itoring, evaluating, and changing courses of actions with potential real-time monitoring and control of large-scale distributed op-
detrimental consequences in real time. In this paper, we extend the erations

decision models proposed in the literature for individual risk man- . . . N
agers to account for situations where multiple risk managers are Planning and modifying CA's in an ORM setting involves

involved. For this purpose, two dynamic and adaptive preference many different considerations, including the operators (e.g.,
aggregation models for cardinal and ordinal assessments are pro- drivers), companies (e.g., trucking companies), public inter-
posed and discussed. The mechanical aspects of the models are thegsts logistics, and emergency response issues. Assessing the
validated using field data collected from experienced operational impacts of unexpected threatening events is not done just by

risk managers in an individual-expert setting. Sensitivity analysis tor but includ ltiol ; h .
indicates that the models have enough flexibility to be adapted to an operator but includes multiple experts, such as engineers,

account for behavioral considerations. The paper closes with a re- highway patrol, environmental experts, public officials, and

search agenda. emergency managers—all acting under time pressure. In this
Index Terms—Dbecision making, experts, preference aggregation, paper we gxtend the single-operator QRM concept "?‘S proposed
risk management. by Beroggi and Wallace [6] to multi-expert operational risk

management. The proposed concept is based on the continuous
advance of information and communications technologies for
real-time monitoring and control, including video conferencing,
HE NEED to assess and manage risks in real time is maultimedia systems, and wireless communication.
ceiving increasing attention due to the growing complexity The following section provides an overview of ORM.

of large-scale operations and the advances in information apeiction Il presents the formulation of multi-expert ORM.
communications technologies. Prominent examples are the &#gally, Section IV discusses the sensitivity of the proposed
of satellite communications and computing technology for lanodels using data obtained from a quasi-field experiment with
gistics management, security concerns for world-wide commexperienced dispatchers and truck drivers. The paper closes
nications networks, and information and communications techith suggestions for continued research in development of
nologies in support of crisis and emergency management ftgcision models and their implementation as components of
natural disasters such as floods, earthquakes, and fires. decision support systems for ORM.

The concept of operational risk management (ORM) was in-
troduced as real-time monitoring and control of courses of ac-
tion (CA's), and decision—makingin the case of sudden unforel—l' THE DECISION ENVIRONMENT FOR MULTI-EXPERT ORM
seen events, called real-time events (RTE) [6]. For example, adORM is the process of monitoring, evaluating, and changing
vanced information and communications technologies are beigg's due to real-time events. A CA is defined as a set of chrono-
employed by trucking companies to monitor their shipmenlsgically ordered decisions to take specific actions. Examples of
in real time. For changes in planned shipments, such as n€Ws are emergency response plans and transportation routes for
customer orders, traffic congestion, or truck problems, the disazardous materials. The space of feasible CA's can be repre-
patcher can assist the drivers in their decision-making processnted as a graph, where the edges are the decisions to take cer-
including rerouting. Rerouting shipments (or at least the invein actions (vertices). In the case of emergency plans (Fig. 1,
tigation of rerouting possibilities) can be motivated by manieft), the edges of the graph are the possible decisions and the
reasons, including new opportunities (e.g., picking up an ulinks the response actions; in the case of transportation of haz-
foreseen order) as well as for safety and security reasons (eagdous materials (Fig. 1, right), the edges of the graph are the
unforeseen bad weather or possible terrorist attack). Tests #mtdrsections and the vertices the road segments connecting the
pilot studies in the U.S. and Europe have demonstrated the prtersections.
tential of real-time monitoring and route guidance [2]. How- Past research developed and assessed different models for
ever, these new technologies have not yet established theDRM to assess the preferences of the actions on a graph struc-
selves world-wide. Itis our contention, and governmental effortgre and to compute optimal courses of actions, with two of them
especially in the European scene point in this direction [18)eing the ordinal preference (OP) model and the multiattribute

utility (MAU) model [5]. In their most basic form, both models
Manuscript received December 1997; revised September 23, 1999. use the two criteria risks and costs to expresptiéerencesor
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The cost preferences in the case of hazardous material trans-
portation are computed from the estimated driving velocity,
using the cost estimate of $1.0/km for driving at a velocity of 80
km/h. Thus, the transportation costs along a link of lerigtha
velocity v (km/h) are(80/v)*1). With the total cost values (i.e.,
the sum of risk-costs and transportation costs), the minimum
costroute (i.e., CA) can be computed as follows, where= 1
if road segment;; is taken and:;; = 0 otherwise.

call in
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experts chemicals
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area
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emergency

tJ

min: C(R) = Z <
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80
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Fig. 1. Examples of emergency response (left) and transportation (right)
graphs.

action (e.g., road segment) is said to be affected by an RTEBif 1he Ordinal Preference Model (OP)
the preference to engage in this action deteriorates. An operaThe OP model uses a lexicographic preference structure to
tion (e.qg., vehicle) is said to be affected by an RTE if it plans tmeasure preferences of actions. The lexicographic classes are
engage in at least one of affected actions (e.qg., if it plans to drig@here ‘“<” stands for “less preferred”):
through the snow storm).
In order to use these decision models in ORM conditions, all avoid action()
actions must first be assessed unummaloperating conditions L
(i.e., for when no RTE's are present). When an RTE occurs, the < high risk (HR) < costs(C)
operational risk manager (e.g., dispatcher, on-site emergency < low risks (LR) < negligible impac{(w).
manager) can change the risk and cost values of the affected
actions. Based on these new risk and cost values, the systean action is assigned am preference, then none of the on-
will compute, possibly new, CA's for all affected operations. going operations can engage in this action. This could mean that
o - aroad segment must be closed for hazardous material shipments
A. The Multiattribute Utility (MAU) Model or that the use of chemical dispersant to abate an oil spill is not
The MAU model uses a cardinal scale for both risks and coss option. Thev preference reflects that a situation has been de-
Cost preferences are assessed in terms of some monetary tegted but no negative implication has been assessed yet. This
which stands for a monotonically decreasing preference furemuld mean that possible problems have been identified for cer-
tion. Risk preferences are expressed on a pseudo-logarithtaio actions which, however, at this point in time do not affect
scale which is commonly used in the practice of risk managany of the ongoing operations. Tli¢ class allows the ORM
ment. The scale ranges from 0 (no risk) to 100 (certain accident)anager to express financial implications. Although they might
a value of 90 stands for an estimated annual probability for a fae expressed in some monetary unit, they do not have to stand
tality of 10~!, a value of 70 stands fdi0—2, and a value of 84 for absolute cost values or best possible estimates. Rather, they
stands for x 1072, Again, these values are subjective estimatesin reflect subjective estimates or preferences by the ORM man-
made by an experienced ORM manager. The general transfager. An action is assigned an HR preference if no financial im-
mation equation to transform amy< [0, 100] risk preference plications are deemed too high to avoid this activity.
value into an absolute risk measuréz) € [0,1], is given Consequently, if two courses of action contain HR buino
below [5]: These absoluta risk values are then transformedactivities, then the choice between the two is based solely on
into risk-costs using estimates for life-saving costs (LSQY3f risk and not on cost aspects. On the other hand, an activity is as-
SFr to reduce one unit of [13]. signed an LR preference if a risk has been detected which would

() = 010~ [10-INT(+/10)] forr € Z = {0,10,20,...,70,80,100}
" T e [r =10 X INT(Z)] x 107110-INTC/10) - for 1 ¢ [0,100]\Z
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only be avoided if it does not involve any additional financiavisual display of the graph and the affected activities. The CH
implications. Therefore, if two courses of action contain LR buhodel computes without user interaction alternative CA's based
no HR ora activities, then the choice between the two is basexh worst-case estimates.
solely on the cost and not on risk aspects. The OP and MAU models provide decision supportdty
The preference of an action is the “suif®) over its pref- tributes(risk and cost) while the VI and CH models provide de-
erence classes; for example, an actigrwith an HR risk pref- cision support byalternative(i.e., the ORM decision manager
erence an@C cost preferences has an overall preference afompares alternative CA's in their entirety rather than based on
7(a1) = HR & 2C. The preference of a CA is the “suni®) risk and cost attributes). Our finding that decision support by at-
of the preferences of its actions. For example, if CA considtisbute is superior to decision support by alternative in an ORM
of seven actionsrr(a;) = HR & 2C, n(az) = 5C @ 5LR, environmentis supported by other research; see Rehyal§19]
m(az) = HR @ 3C, n(as) = 4C @ w, w(as) = HR @ C, for instance.
m(ag) = HR & 2C, andn(a;) = 3C & w, then, the overall  Consequently, ORM decision models should support also
preference isr(CA) = 0 o ¢ 4HR @ 20C @ 1LR @ 2w. A multiple managers in: 1) the identification of the actions
transformation of the lexicographic preference value into a naffected by an RTE; 2) the assessment of the impact when
meric preference value, for a CA consistingxdictions, can be engaging in those actions in terms of the attributes; 3) the

computed as follows, whekg is theith action in the CA: identification of the affected operations (CA's); and 4) the
decisions to change planned CA’s.
n 5 ORM often requires the assistance of experts working at dif-
7(CA) = Z < Mkmk) ferent locations. With the advent of technologies like cellular
i=1 \k=1 communications, the experts can access data on the RTE, dis-

cuss its ramifications for operations, and assess the current and
Thereby,r;; is the« preference of action;, ;> the HR pref- proposed state of operations. However, different experts process
erence of actiom;, 7;3 the C preference of actiom;, ;4 the data differently. Thus, the results of their analyses and the rec-
LR preference of actiom;, andr;; the w preference of ac- ommendations for changing CA's cannot be expected to be the
tiona;. My (k=1,...,5) are numbers making the preferenceame. Discrepancies among the experts occur at two stages: 1)
classes incommensurablgf; > M, > M3z > M, > M; during analysis (i.e., assessment) and 2) when making recom-
(e.9.,.M; = 1/0, My = 10%, M3 = 10!, My = 10~%, and mendations for new CA's or to modify CA's (i.e., choice).
Ms = 107®). Let m;; be the preference of actian; (i.e., a;; Itis our contention that experts' assessments in an ORM envi-
is the action between the decisiarsndy) andx;; the decision ronment should not be judged solely in terms of right or wrong,
variable for taking actiom;; (x;; = 1 if action a;; is taken, good or bad, and reliable or unreliable. Rather, their expertise
z;; = 0 otherwise). Then, the most preferred CA is the orghould be judged in terms of tlnsistencyandagreemenof

with lowest preference value(CA); it is defined by: their assessments and recommendations over multiple RTE's.
Consistency is defined in terms of rank value of the assessment.
min: 7(CA) = Z Z Mz, For example, if one expert assesses constantly the lowest risk

value, then s/he is very consistent. Agreement is defined in terms
of deviations from the weighted group mean. Therefore, a trust-
. ) worthy group of experts has not only high agreement but also a
subject to: high level of consistency.

« flow conservation: CA starts with the currently ongoing Typically, however, both consistency and agreement vary
gction (e.g., using burning to abate the'oil spill) and engser time and may adapt to group norms. For example, if
in the planned end state of the operation (.g., responsgerts are presented the results of their assessments relative
crews can be sent home); _ to the other experts' assessments, they might undergo an

+ feasibility of actions;; # «, Vi, j, wherelp, isthe setof a4antation process and change their attitude toward risk and
all decisions andn = {o, HR, U, LR, w} the set of the ¢qqt5 and, subsequently, assessment and choice.
preference classes. The ways multi-expert ORM assessments and choices by

This means, for example, that if the overall preferend@Af is  experts can be processed (i.e., aggregated) is illustrated in Fig. 2.
3HR®25C®12LR, and the overall preference©f\; is5SHR®  The assessments byexperts are first checked for acceptability.
18C @ 17LR, thenCA, is preferred taCA,. The preference of |f an expert's assessment is determined not to be acceptable it
the joint CA's,CA; U CAy, is m(CA1) @ m(CA2) = 8HR @  can be disregarded or she can be asked for a reassessment—in
43C & 29LR. real time. The accepted assessments are used to derive a group
) ) ) assessment based on which the optimal CA's are computed.
C. ORM for Multi-Expert Situations The individually recommended changes in CA's from each
The reason to extend the OP and MAU decision models, aofithe experts whose assessment was found to be acceptable as
not other possible models, to multi-expert ORM situations igell as the new CA's based upon the aggregated group assess-
that they outperformed traditional visual interactive (VI) and theent can be presented in graphical form to the decision-maker.
conservative heuristics (CH) models in terms of effort and aén aggregation of the accepted CA's could also be done. We
curacy [5]. The VI model does not provide any analytic susummarize our view of the ORM multi-expert assessment and
port to the ORM manager in case of an RTE, other than tkeboice process as follows:

tjCIp k€lL
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Fig. 2. Process of experts' assessment and choice.

» Each expert makes an assessment of the risk and cost pref- [ll. MuLTI-ExPERT ORM DECISION MODELS
erences for the activities affected by the RTE. Itis assumgd

that the affected activities have been identified by one ex- ) ) )
pert and that they are submitted to all other experts. The multi-expert MAU model is based on cardinal preference

« Each expert's assessment is evaluated in termsrufis- assessments for an action in terms of costs and risks. It is as-
tency and agreementfor the purpose of determining a.sur_ned that. experts will have .to assess RTE’s as they occur
group assessment. A weight is determined for each éR-time. The process of assessmg}%héw RTE is referred to as
pert which is a function of: 1) his/her consistency in padhe k-th stage. Let;;, be the cardinal preference value (e.g.,
assessments and 2) his/her degree of group memberdRIpisk) provided by expert (¢ = 1,...,7) for any action in
(agreement). stagek. Then, the aggregated group assessment fexperts

» For each expert and for the group assessment, change'§ idéfined as the weighted average, wherg is theweight of
CA's are computed and presented to the ORM managd@fPerti for the assessment in stage
for decision-making. .
my = Wi |k X W, 1 Us |k - 1
both in the context of risk management and in the context of b <§ ’|k> ; Ikl @
social choices. In the latter case the issue has been subject of re-

search for more than 200 years and resulted in well known pafeshould be noted that the weighted mean value is invariant over
doxes, such as rank reversals in the Borda count, the Condofgitiplicative transformations of the weights. Therefore, we do
paradox of non-transitivity, and Arrow's impossibility theorenyot have to require that the sum of weights be equal to one. In
[4]. Risk management methods for the aggregation of expert @gher words, if we rescale the weights by multiplying them by a
sessments have been addressed by Beinai[3], Cooke [9], constant, the weighted mean is still the same. The weigft
DeWispelareet al[10], Sandriet al[20], and Myunget al[18].  accounts for consistency and agreement of expiarstagek.

The procedures proposed in the literature to aggregate exThe weight of expertin stagek, wjx = f(cijp—1,dijr—1), 18
pert assessments can be classifiebetsavioral andmechan- determined iteratively and is a function of the expert's long-run
ical [10]. Behavioral procedures are based on either structurmsistencwilk, and his/herelative deviation (d;;.) from the
discussions on non-interactive approaches such as the DELRlg§regated group assessment in the previous assessment(s):
Method [17]. Mechanical procedures consist of mathematical
formulae and algorithms, of which a large body of literature has
emerged over the last two decades [8]. However, for practical
purposes, simple averages of point estimates have often shown

to suffice, although they have some conceptual drawbacks [19he expert whose assessment was furthest away from the aggre-

Thg mulU-exper'F QRM environment as defined earlller is Ch"?‘éated group assessment in stagel has in stagé a deviation
acterized by repetitive assessments of RTE's over time, subjggfficient,d; , = 1 (least agreement with the group). If there is
tive preference elicitation by experts, and an objective to hayg expert whose assessment was equad;to; then the devia-

the expe_rts be consistent and in agreement. Early work in then coefficient isd; . = 0 (highest agreement with the group).
related field of command and control dates back to the 196@ﬁe|ong_run consistency c; ;. is defined as the long-term av-

[11]. More recently, models for sequential revision of beIie‘{\rage rank change:
have been proposed [12], [14]. The extensions of the MAU and
OP models for multiple experts as proposed in the following
section differ in the sense that long-term consistency and agree-
ment by the experts are incorporated.

An Adaptive Model for Cardinal Preference Assessments

Preference aggregation for multiple experts has been addressed

Vilk—1 — MEk—1

Umax|k—1 — MEk—1

1 k
Cilk = m;ﬁﬂk, 3
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wherel < j < k—1, with 5 being the first stage to count from.Group consistency Cj,, which gets computed at each assess-
The valuej reflects how much of the assessment history shoufdent stage is a measure of disarray of the rank-orders of the
be accounted for. For examplegould be the stage at which theexperts' assessments over time. This measure assumes that dif-
composition of the group has changed the last time. ferences in the assessments are less serious if they occur be-
The maximum long-run consistency (least consistent) withcause the experts have different degrees of conservatism. As-
EXPerts i, xx=1 and the minimum value (most consistent) isume that there are three experts and that one consistently as-
cmink = 0, If the expert never changes rank. The rank changggns highest risk values, another always lowest, and the third
ik, IS defined as the number of positions an expert changkes always in-between. Then, we would say that the group as
compared to the previous assessment. For example, let's assambole is consistent and we would be more willing to accept
that an expert provided in stage— 1 the second most conser-differences between the experts than in the case where the pref-
vative assessment and in stagéhe fourth most conservative erence-orders change very often.
assessment; in this case, the rank changgis = 2. The group consistency measure is therefore a relative mea-
The weight for each expert can now be computed assare of concordance of conservatism or risk attitude. Different
function of the expert's long-run consisteney;, € [0 (most measures have been proposed in the literature and we will use
consistent), 1 (least consistent)], and his/her relative deviatidthe most prevalent one: Kendall's coefficient of concordance,
d;; € [0 (in highest agreement),1 (in lowest agreement)lised to test rank correlations [16, p. 119]. Thus, the group con-

wir = f(cir—1,d;x—1). For the function,f, we propose sistency is defined as:
an approach that has been first introduced as the Minkowski
metric and then extended to fuzzy logic by Yager [21] and S 125
employed in the Swiss safety regulation for disaster scaling [7]. Ck = S = 22— k) —n> U
Theweight for expert: in stagek is: with
wije = Round(10 x wjj; + 1) "L, kn?(k+1)2
where S = ;Rl e )
whp = 1 —minfL, ((cip-1)" + (dig-1)")"""] (8 where theR? are the squares of deviations of the rank sums
around their mean which equalér +1)/2, andU’ = >~ (n> —
where s = 1,2,..., andwj, € [0,1]. The character- n)/12 s to reduce the sum of square of deviations due to tied
istic of the parameters is that for k= oo, Wiy, = ranks. For example, assume we have two experts assessing the
1 — min[l, max(cip_y, dip_1)], and for x = 1, COSt preferences as 66, three experts assessing 72, and another

wl, = 1 - min[1, cip_y + dipr]; that is, wy, = 1’ three experts assessing 69. Then, we get as correction factor
2|k - 1|k — Tk — 1 ’ Tk -

only if ¢;;, = 0 (i.e., expert never changes rank) afyg, = 0 YU =[2°-2) + 2(3% N 3)1/12 = 4.5. .

(i.e., expertis in perfect agreement with the group). The weights T N€ group consistency is ameasure of relative agreemént of

are thereforas;;, € [1,11]; the constant 1 was introduced tgank-orders. It takes on the valg =1 for perfect agreement,

prevent divisions by O. and the valu€’,, = 0 for complete disagreement. Consequently,
We would like to specify aneasure of acceptability(s;) theacceptability rangeis defined as

for then assessments provided in stageround the weighted

mean value in orde_r to determine the accepFabIe assessments. Vi € [mr — TCrOr, m + 11 Cr ] (8)

We propose to do this as a function of the unbiased sample vari-

ance,s?, of the weighted assessments: . . .
ok 9 where~, is a constant. Fof;, = 1, the acceptability range is

the standard deviation multiplied BY,. A small value ofy;
causes many assessments to be rejected. This would be reason-
able if time is available to ask the experts who fall outside the
acceptability range to do a reassessment. Moreeyecould

D i Wik — 1

which converges toward the variance under multiplicative tran&@'y In with increasingy.
formation. that is: Instead of using a behavioral approach where some of the ex-

perts might be asked to do a reassessment, the acceptable as-
sessments at each stage can also be determined mechanically in

b = \/ sk an iterative way. First, with alk assessments, the acceptability
where range is computed for somg. Assessments falling outside of

this range are discarded. With the remaining assessments, a new
WS w (i — )2 range is determined by computing newy, andé;, values with
lim s7 = i=l ik Tk the remaining assessments. Then, the unacceptable assessments

o . w2 i Wilk — 1 are discarded. This procedure is repeated until all remaining as-
D iy wiklvigk — my)? 6) sessments are contained within the acceptability range (i.e., until
= - .

none of the remaining assessments is rejected).

2 i Wik
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However, if at the firstiteration the acceptable set is empty, veaifficient, if a majority of the (weighted) experts agrees on the
propose that the assessment be considered as not valid. In sucadeoff between risks and costs. For the assessment spectrum
case, the decision-maker (e.g., dispatcher or on-site emergefieyHR, LR, w}, this means that the assessment is sufficient if
manager) must rely on his/her own judgment. Thus, the algiie majority of experts agree on one of the two getsHR } or
rithmic approach of determining the acceptable assessment§li&, w}. The corresponding set of assessments is then referred
as follows: to as the sufficient set.

We would call an assessmegfficient if it is sufficient and if
F = {v}, (set of all assessments),:= 0, I, := 0 (the set amajority of the experts choosing the sufficient set agree on one

of rejected assessments) preference. The corresponding set of assessments is referred to
repeat whilel, # I, as the efficient set. Finally, we would call an assessraatis-
x = x + 1, computeny,;, Ci|;, andoy;, factory, if a majority of experts agrees on one preference class.
{vin} € ¥ — F, := F, ,, wherev;;, ¢ [my; — The corresponding set of assessments is referred to as the satis-
YeCrljOkls> Ml; + YR Chlj O] factory set. Evidently, a satisfactory assessment is efficient. To
F.=F\F,, seethis,lef] . = {a,HR}and] ], = {LR,w}. Let]], bethe
if /' = () andx = 1 then group assessment is bi-modal angreference class which determined that the assessment is satis-
unacceptable factory; thatis, by definition ], | > | I, |, wherei # j. Since
end repeat IL; € IIc or]I; € II.. it follows that the assessment is effi-
cient.

Note that the set of acceptab|e assessments could be empw/e shall defln%cceptablllty to include either efficient or
for two cases: 1) if the group assessment for an RTE is bi-mog@attisfactory group assessments. Therefore, we may have a suf-
and 2) if the experts are so inconsistent over time €jagnd ficient assessment which is not acceptable; for example, two

& are very small, resulting in a range of acceptability too sma&KPerts assess, two experts assess HR, one expert assesses
to accept any assessments. LR, and two experts assess(where all experts have equal

weight). If the experts have different weights, then we assume
B. An Adaptive Model for Ordinal Preference Assessments thatround(100 x w;) is the number of experts agreeing on one

The assessment spectrum for an ordinal risk sEpieas in-  SPecific assessment, whereis the weight of expert.
troduced as consisting of several preference classes referring tf 9roup assessmentis proposed, equivalent to the mean group
cost and risk attributes and also to the priorities between the t@gsessment for the MAU model in Section I1I-A. If a group as-
(the avoidance of HR actions has higher priority thaiCodic- SesSsmentis satlsfa_\ctory, the aggregated assessment is the pref-
tions, and higher priority than of LR actiong)] = H(l) ~ erence class that is agreed upon by a majority of the experts

< H(n)_ A possible assessment spectrum for the OP mod&t9- at least five out of eight experts). If a group assessment is
was proposed asi < HR < C < LR < w. efficient, the aggregated preference is the preference class that

Assume that the attribute-classes for the risk attribute (in t&C€1ves @ majority within the two classes that are acceptable.
example the two classes HR and LR), as well as the classegor example, if (for equally weighted experts) two experts agree

(action must be avoided) and (impact of RTE is negligible) onq, three assess HR, one expert assesses LR, and two experts

consist of only one element, and the classes of costs of multiffe>®S%» t\)/vg havk(]e an efﬁuent,dthat is, acceptable, assehssrr|1dergt,
elements. Itis further assumed that an assessment is done p B1(;—|Rr’] emg; € aggregahte Igroup_assre]:ssr:pehnt. It s Og ]?
erly if every activity is assigned one element reflecting evetgf)te that we do not use the class with the highest number o
attribute. For ORM, an assessmenpisper if every activity ssessments as the group aggregated assessment. For example,

which gets assessed has a risk-element ffomHR, LR, w} in a case involving nine experts, four experts might assess LR,
and a cost-element frorf, {$}, w}. T zerow, three HR and twav. Then, the group aggregated assess-

With 7 independent experts, the probability that all experf8€Ntwould notbe LR, although it has the most experts (but not
assign the same risk value4§ —™. If their assessments were? majority) agreeing on this class, but HR because the assess-

independent, the probability of havingidentical assessmentsMent is efficient.

out of s assessments, where < s, would be binomial dis- W& can now define theelative deviation, d;, to the ag-
tributed, whergy = 4(1—"): gregated assessment. The nonefficient values of an efficient as-

sessment have a deviation valdg;, = 0. The efficient values
o (T s s which do not fall into the class which determined the assessment
by = (3) p-p)" to be efficient have a deviation valué,; = 0.5. Finally, the
assessments that fall into the group aggregated class have a de-
For example, the probability that eight experts agree at leagtion valued;;, = 1.0. It should be noted that a non-efficient
once in 18 assessments is about oty 2. This is an upper assessmentdoes not provide an aggregated group assessment. In
bound, since the experts might not be independent in their asch cases, the decision-maker (e.qg., dispatcher or on-site emer-
sessments. Thus, we would never expechakperts to agree gency manager) must rely on his/her own assessment.
on all» assessments. On the other hand, a lower bound can b&lsing these distance measures and the consistency coeffi-
determined by considering that with four risk classesamrd- cients (same definition as for the MAU model) of the experts,
perts,trunc(n/4) experts must agree on at least one out of tthe weights are updated for the assessment of the next RTE in
four risk classes. We would therefore call a group assessmtrg same way as for the MAU model. The aggregation of the
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assessments does not, however, need to be done by an iterative risk
procedure because the process of assessing the efficient set al- w00 b
ready takes care of the concept of eliminating outliers.
One might argue that the group aggregation procedure pro- 80
posed for ordinal assessments is more severe than the one for 60
cardinal assessments because of the different definitions of ac-
ceptability of the group as a whole. A cardinal assessment of a 40| Istay on planned route |
group is not accepted if the first iteration eliminates all assess- 0 | @y
ments. An ordinal assessment is not accepted if itis not efficient, (¢,r) before RTE costs
although it might be sufficient. The reason to allow this more se- 0 10 20 30 40 50 60 70 80 .

vere definition is based on empirical evidence which shows that

the ordinal assessment outperforms the cardinal assessment in

ORM situations in terms of effort and accuracy [5]. Thus, weig. 3. Violation of the Pareto optimality axiom for high risk (or cost) RTE’s.

expect ordinal assessments to be more consistent than cardinal

assessments, especially when one attribute is assessed on a cars .
. : vill not. We can now compare the number of experts choosing

dinal scale (e.g., costs) and the other is assessed on an orcrﬁa :

scale (e.g., risk) € planned CA and the CA resulting from the aggregated as-

sessment.

The aggregation of multiple expert assessments for deci-
C. Decision-Making sion-making, however, could result in counterintuitive choices.
Simple numerical examples can be constructed for which the
The decision-maker has the choice of maintaining the preséiikarly aggregated preferences of two experts result in a choice
CA or finding a new set of CAs in response to RTE’s. Fothat contradicts both experts' recommendations. An aggrega-
example, a dispatcher could identify alternative routes if thyn procedure should avoid this rather awkward result. Social
planned route is affected by an RTE (e.g., a show storm). ¢Aoice researchers have thus proposedRheeto optimality
the case of ORM the decision-maker may be required to or mgyiom which says that if all experts agree on one alternative,
need to call upon “experts” to provide recommendations. WRen the aggregated assessment should result in this alternative
have modeled this process as first one of assessment (e.g.[Hstnfortunately, aggregation principles based on averages do
sessing the risk and cost impacts of driving through a snayst necessarily comply with this axiom.

storm) and then as one of choice (e.g., rerouting the vehiclesl_0 see this, let's assume there is an RTE (e.g., snow storm)
to another rqute to avoid the S”OV_V storm,). _ which affects one action (e.g., route segment) of the planned
However, in the case of changing CA's the choice phasthsA1 (e.g., route). A change of the planné€dh, to an alter-
performed algorithmically based upon the assessments (€.thgflve C A, is suggested if the implications on risk and/or cost
routmg.a.lgonthm computes the alternative route). Thereforg,, undertaking this activity are too high. Because both risk
the decision-maker has both the planned CA and a set of reCofig st preferences are monotonically decreasing, all risk-cost
mended CA's, which may include the planned CA; that is, thesirs which result in keeping the plann€d,; define a convex
CA bas_e_d upon the group assessment and the CA's based U \(Fig. 3). If the risk/cost assessments of two expBrtand
the individual expert assessments' for those experts WhoseBSSuggest taking'A» (e.g., to take the reroute), then a linearly
sessmentwas found to b.e acceptable. These recommended G4 egated assessméAt, ) will lie on the connecting line be-
can be displayed graphically (e.g., on a map background). dfeen the two assessments. This could result in either what the

addition, the decision-maker might want to identify other CA'g, experts suggested, or in a contradiction (e.g., to stay on the

that make some sort of sense. planned route) of their unanimous suggestion (e.g., to take the
Two CA’s, ¢ and j, are referred to amdifferent (prefer- reroute).
entially equivalent) if they have the same overall preference:Because of the possible violation of what is referred to as
m; = m;. They are calledtongruent (strategically equivalent) pareto optimality (i.e., if all experts agree on one CA then the
if they consist of the same links in the same sequeljce: ;.  aggregated assessment must suggest the same CA), we propose
They are referred to amnalogousif they are congruent but not showing all CA's based on the assessment of the “acceptable”
indifferent. Finally, they are calledlentical if they are con- experts, as well as the CA resulting from the aggregated as-
gruent and indifferent. sessment. The operator can then decide which of these CA's to
With any given assessment of the affected activities (e.g., tbieoose. If all the experts' assessments result in the same CA, one
experts' assessments or the group aggregated assessmenthatlis different from the CA resulting from the aggregated as-
terations to the planned CA's can be computed. &beept- sessment, a reasonable heuristic would be to choose the former
ability of CA's can be defined in terms of how many expert€A. In any case, we would always consider what is referred to
come up with the same CA. In general, there are only two CA&s recognition, saying that all experts must be considered in
possible based on the group aggregated assessments with dieeiaggregation of the assessments. In terms of the proposed
sion-making by attribute—the planned CA and the CA whichodels, this simply means that no expert should ever receive a
avoids the RTE with overall highest preference value. Thusgight of zero, a situation which would exclude him/her from
some experts will propose the alternative CA while the othetise group of experts.
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TABLE |
EXPERT ASSESSMENTS OR/ELOCITY (CARDINAL ) AND RISK (CARDINAL AND ORDINAL)

El E2 E3 E4 ES Eé6 E7 ES

v=0 v=21 v=26 v=44 v=22 v=39 v=35 v=18
RTE 1 r=95 r=96 r=99 =75 r=96 =88 r=80 r=85
r=HR r=HR r=LR r=a r=LR r=HR r=HR r=HR
v=80 v=32 v=56 v=46 v=70 v=72 v=63 v=65
RTE 2 r=21 r=55 r=33 r=52 r=24 r=21 =34 =49
r=LR r=LR r=LR r=LR =LR r=LR r=LR r=LR
v=52 v=39 v=50 v=52 v=66 v=61 v=66 v=49
RTE 3 r=41 r=62 =36 r=47 =30 r=49 r=48 r=42
r=LR r=LR r=LR =LR r=LR =LR =LR r=LR

V= v=17 v=17 v=37 v=T1 v=39 v=60 v=22
RTE4 | =22 r=100 =73 r=90 r=65 r=81 r=74 =83
r=HR | r=HR r=a r=a r=HR r=a r=HR r=a

v=50 v=17 v=17 v=49 v=43 v=40 v=44 v=28
RTES | r=92 r=93 r=86 =79 r=33 r=75 =17 r=84
r=HR r=HR r=a r=HR r=HR r=HR r=HR r=HR
v=58 v=42 v=30 =80 v=58 v=80 v=45 v=39
RTE 6 =21 r=37 =21 r=28 r=21 r=21 =35 r=21
r=LR =LR r=LR r=LR r=LR ¥=LR r=LR r=LR

IV. SENSITIVITY ANALYSIS as follows: very hazardous driving conditions due to ice rain
(RTE1), cautious driving recommended due to heavy traffic
A. Preference Aggregation (RTE2), cautious driving conditions due to heavy rain (RTE3),

high explosion hazard due to accident with oil truck (RTE4),

The data used for this sensitivity analysis was collected inggh danger due to falling rock (RTE5), and expected traffic
quasi-field setting with the OP and MAU decision models aptelay during rush hours (RTES).

plied to transportation of hazardous materials [5]. A total of 16 The first two rows for each RTE in Table | show the assess-
experienced dispatchers and truck drivers participated in the gxents by the eight expert€1,..., ES) for velocity (v) and
periment, where eight were working with the MAU model angisk () preferences working with the MAU model; the third
the other eight with the OP model. row (r) shows the assessments of risk preferences by the other
The task for each expert (dispatcher) was to monitor tléght experts working with the OP model. The velocity values
movement of three vehicles. After a few minutes of monitoringvere transformed into cost values as discussed in Section II-A.
two RTE’s were announced which affected the planned routesBecause data for only six RTE’'s were collected in the
of the vehicles. The dispatchers had then to assess for bqifasi-field experiment, the assessments for the six RTE’s were
RTE'’s the impacts on risks and travel velocity for vehiclegsed three times for this sensitivity analysis, resulting in a total
driving through the areas which were affected by the RTE'sf 18 RTE’s. The sequence for the six RTE's was generated
With these assessments, alternative routes were computed frandomly; the first (original) sequence was 1, 2, 3, 4, 5, 6;
the vehicles' current positions to their planned destinations withe second (random) sequence was 4, 3, 5, 6, 1, 2; and the
the MAU and OP models, respectively. The dispatcher couldird (random) sequence was 4, 3, 1, 2, 5, 6.Comparing the
then decide for each vehicle whether to keep it on the planngggregated assessment in the second= oo,y = 2) and
route or to reroute it to the suggested alternative (which coufisurth column(x = 1,y = 2), we see that the influence sfis
be identical with the planned route if the new risk and velocityinor. The most extreme differences were obtained for the fifth
values were not too much different from original values pricind ninth RTE’s, wher& = oo gave 33.6 as the aggregated
to the RTE’s). This task was repeated a total of three times f@ilue with zero (third RTE) and four (ninth RTE) experts
each expert with different RTE’s and different routes for thggreeing on it, while and = 1 gave 17.0 as the aggregated
three vehicles. As a result, each expert had to assess six RTNlkie with two experts agreeing (both for the fifth and ninth
and make nine rerouting decisions. RTE).The purpose of the sensitivity analysis is to test the
The tasks were presented in a multimedia environmemiechanical aspects of the two models and not any behavioral
were the movement of the vehicles was animated on a magpects. That is, experts were not presented the assessments
background. The announcement of the RTE’s was done throughthe other experts, and they were not given the possibility to
audio, static pictures, and text. Changes of risk and velocitpmmunicate to one another.
preferences could be done with the computer mouse, either byl) Agreement in Cardinal Assessmenthe parameters to
moving a slide to change cardinal values or by clicking on thee set in the cardinal model afein (4) which directly affects
appropriate box to change ordinal values. These three decisiiba weights of the experts and indirectly the mean and the range
situations lasted about 15 min. The six announced RTE's wartaccepted assessments, andn (8) which affects the range
taken from news accounts and described to the dispatchefacceptable assessments.
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TABLE I

AGGREGATEDEXPERT ASSESSMENTS FOR/ELOCITY WITH MAU M ODEL FOR DIFFERENTPARAMETER SETTINGS AND NUMBER OF I TERATIONS

K=o, y=1 K=00, =2 K=00, =2, k=1, =2 K=00, y=00
all iterations all iterations only 1 iteration all iterations all iterations
[21..21.5..22]/2/3 [-4..25.6...51.6)/8/1 [-4..25.6...51.61/8/0 [-4..25.6...51.6)/8/0 256
[63...63...63)/1/1 [63...63...63)/1/3 [52.6...60.5...68.4)/3/1 | [63...63...63)/1/2 60.5
[61..61..61)/1/1 [50...50...50)/1/4 [48.4...56.8...65.2}/5/1 | [50...50...50])/1/3 56.8
[37.8...38.3...38.8]/0/2 | [17..17...171/2/4 [15.1..35.8..56.6)/5/1 |[17...17...17)/2/3 35.8
[40...40...40)/1/1 [28.7...33.6...38.5)/0/4 |[21.8..33.6..455)/4/1 |[17..17..17)2/3 33.6
[58...58...58)/2/1 [45...45...45]/1/3 [33.9..559...77.9)/5/1 [39...39...39)/1/3 55.9
[37.6...38...38.51/0/2 [17..17...17]/2/4 [19.4..39.6..59.8)/3/1 |[17...17...17)/2/3 39.6
[52...52...52)/2/1 [50...50...50)/1/4 [44.8...54.5...64.2)/5/1 [49.1...49.6...50.0]/1/4 54.5
[29.3...32.6...36]/0/2 [21.6..33.6..45.7)/4/3 |[22.8..36.8..50.8)/6/1 |[17..17..17)/2/5 36.8
[49.4..52.8..56.2)/0/2 | [34.5..46.4..58.2)/5/4 |[37.9...59...80}/5/1 [39.6..40.9...42.3)/1/4 59
[22..23...24)/0/2 [21..21.5..21.9)/0/5 [13.8..24.8..35.8)/5/1 |[21..21.21)/V/4 24.8
[63...63...63}/1/2 [65...65...65)/1/4 [43.4..57.8..72.2)/6/1 ([65.6...67.7...69.8)/0/5 57.8
[37.7..38.1..38.6)/0/2 | [22..22..22)/1/4 [13.7..37.1..60.5)/6/1 1[22..22..22]/1/2 371
[52...52...52)/2/1 [50...50...50)/1/4 [44.4...53.56...62.7)/5/1 |[49...49...49)/1/4 53.6
[24.2..24.8..25.5)/0/2 [[21..21..21)/1/5 [13..27.5..41.9)/6/1 [21..21..21)/1/4 27.5
[59.7...61.3...62.9/0/2 | [65...65...65)/1/S [44.8...58...71.2)/5/1 [65...65...65)/1/4 58
[40...40...40)/1/1 [43..43...43)/1/4 [23.1..35.6..48.2)/4/1 |[43...43..43)/1/3 35.6
[58...58...58}/2/1 [58...58...58)/2/2 [39.9..58.8...77.7)/4/1 | {58...58...58)/2/1 58.8

70
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40 —a— 7L
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20 — 72!
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0 +—F—A—+—+—+—+—t+—+——+—+—+—+—+—+—+—1 RTEs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 4. Aggregated expert assessments for different parameter settings.

As previously mentioned, a smal}. in (8) is used when time 127
is available for the experts to repeat their assessments if they 101
disagree to the extent that many of their assessments are re- gl
jected. This narrow band is achieved by setting = 1 for
E=1,...,18.

Table Il shows results for the aggregated expert assessment 1
of velocities for different values of and~;, where the experts 27
are using the MAU model. For example, the first row in the first 0 +—+—————————+—+—+—+— ! RTEs
column,[21...21.5...22]/2/3, says that the range of accept- 123456789101112131415161718
able assessments goes from 21 to 22, and that the aggrege, @ Decline of standard deviation for values in Fig. 4 (smoothed through
assessment is 21.5. Only two experts fall within this band, ar@thod of moving averages).
the band has been computed in three iterations. The parameter
~v = v was held constant throughout the iterations. to be equal. Then, the group-aggregated values diverge. In the

A much stronger influence on the aggregated assessmentlbag-run, the values seem to converge again.
the parametet;, = +, which was held constant throughout the Fig. 5 shows that the standard deviation of the four data
interations. This can be seen when comparing columns 1 anddints and the 18 stages (RTE's) from Fig. 4, which have
of Table II. been smoothed through the method of moving averages, first

Fig. 4 shows the graphs for the data sets in columns 1,i@¢creases monotonically up to stage seven (RTE 7) and then
4, and 5 in Table Il (all iterations according to algorithm irdecreases monotonically.

Section llI-A). Obviously, the different parameter settings pro- The convergence of the different parameter settings in terms
duce in the first two stages (RTE 1 and 2) similar group-agf aggregated group assessment, shows that in the long run one
gregated values because the weights of the experts are assurnettl use the weighted average model with any parameter set-

6+
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120 + [ velocity MAU model | 7k=},=2, =1
- " E1
upper bound for C =1
100 - average value
o E2
80
E3
60 A
<
40 ; B4
20 § ES
A
0 t | . E6
1 1 17 18 «
50 | 3 5 16 E7
w0l lower bound for Cy=1 aggregated value RTEs e E8
Fig. 6. Aggregation of velocity assessments made with the MAU model.
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Fig. 7. Aggregation risk assessments made with the MAU model.

tings. That is, the mechanical characteristics of convergencemoted that the upper and lower bounds stand for the ranges of
dicate that even when the experts do not have time to disctiss double standard deviatigsy, ), sincey = 2 andCy, = 1
their differences in assessment, the model eventually convergefs].
to the weighted mean value. Because of the high consistency, the assessments of velocity
2) Consistency in Cardinal Assessment@ analyze the by all experts (Fig. 6) as well as at least seven out of eight as-
mechanical aspects of consistency in cardinal assessmesgssments for the risk values (Fig. 7) were accepted for all 18
the two extremes of most and least consistent assessmentd=Aie’s. Only six out of the eighteen RTE’s had one risk assess-
considered. The most consistent assessments are achievethéwt rejected (Fig. 7). This explains why the band (defined by
rearranging the assessments in descending order for each R&double standard deviation of the assessmentsy(i-.2) is
In addition, the weights of the experts are held fixed. Thimther large. The band of acceptable assessments depends on (1)
assumption means that the long-run consisteneyis= 1 for  the consistency of the group of experts, (2) the extreme values
all experts: and that the group consistency@% = 1 for all inrelation to all assessments, and (3) the weights of the experts.
RTE stageg:. If the weightsuw; ;. were not held fixed, but computed according
Figs. 6 and 7 show the results of the group-aggregattxi(4), the band would be narrower and thus the number of ac-
velocity and risk values for the MAU model using data fronteptable assessments would be smaller.
Table I. The x-value was chosen to bec which means, For the other extreme case, when the experts are least con-
according to [4], that the weight of each expert depends orsistent, the velocity values were rearranged alternatively in de-
on the larger of the two values;; (consistency) andl;; scending and ascending order, that is, the first expert was in
(deviation from aggregated mean). The upper and lower bourtle first assessment the most conservative, in the next assess-
in Figs. 6 and 7 reflect the acceptable assessments whennatint the least conservative, then again the most conservative,
experts are perfectly consistent (i.€5 = 1). It should be etc. This means that the group consistencg’is= 0 for all
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Fig. 8. Aggregation of velocity assessments made with OP model.

except the first RTE, which means that no band of acceptalbien IV-Al), the assessment was always efficient; in fact the ex-
assessments exists. pertsagreedunanimouslyonLR. ForRTE 4, fourexpertsassessed
However, the resulting group assessments were determimepreferences for the affected activities, while four assessed the
by a weighted mean of all eight assessments. Consequently,dffected activities as HR preferences. If only one RTE has hap-
aggregated group assessments of: 1) the most consistent; 2) lpased, then the reroutes are the same regardless whetheran
consistent; and 3) nonweighted averages are almost the sant¢R preference is assessed. However, if there are multiple RTE’s,
These three special cases show that taking the simple averdigeresulting CA could be different. Thus, we would not accept
as the group-aggregated assessment can be misleading; thauigh an assessment. In cases of sufficient but not efficient assess-
the assessment could be what we considered “best” (most corents, the group assessmentis usually determined by the experts’
sistent) or “worst” (least consistent). The proposed aggregatimeights. Inthe above example, the sum ofthe experts' weights de-
procedure discriminates for different experts' weights. For etermined whether the RTE must be avoided or not.
ample, RTE4 in Fig. 6 shows that the group assessment can be
quite lower that the simple average. The reason for this is t@t
outliers are rejected iteratively. Thereby, an outlier is not only
determined by the numeric value of the assessment but also byhe CA's (routes) that resulted from the aggregated numer-
the expert's weight. Thus, what in numeric terms might not heal values were all meaningful because a majority of the ex-
an outlier, could very well be in terms of group assessment. perts agreed on the CA's for all RTE's. However, because the
For the MAU velocity assessments, we computed an averaagsessments of all experts are considered, there is little meaning
group consistency for the velocity assessméht= 0.43, and in debating about the quality of the reroutes resulting from the
for the MAU risk assessment, = 0.39. For the OP model, the aggregated assessment. Moreover, reroutes are only suggestions
average group consistency for the velocity assessment was Jasth for the ORM manager (e.g., dispatcher) as well as the oper-
low, C;, = 0.14. The reason for this is that if one assesses tla¢or (e.g., driver) who considers the ORM manager's advice for
risks with an ordinal scale, s/he often does not assess anymgedecision. The ORM manager always has the option to pro-
the velocity for high risk RTE's (RTE’s 2, 3, and 6, as describeidose a different CA by “constructing” a CA which is different
in Section IV-Al). This is so because assessing an RTE as hfgbm the planned CA or any computationally derived CA.
risk (HR) often implicitly implies a very low velocity. In addi- In most cases, there are only two CA's based upon the
tion, if an RTE gets assigned anrisk preference, the velocity proposed assessment procedure—decision-making by at-
is automatically set to zero because the area affected by the Rilieute—the planned CA (e.g., planned route) and the alternate
cannot be transited anymore. CA (e.g., route) which avoids the actions (e.g., road segments)
For the velocity assessments in the MAU and OP modeksfected by the RTE (e.g., the most preferred reroute). This
and the risk assessment in the MAU model, the aggregationhafids if the new CA is based on the aggregated assessment
cardinal values has been done similar to the case discussedalue. However, if for each acceptable assessment a CA is
Fig. 6. The numeric risk values showed less consistency theamputed, some of the experts might choose to keep the
the numeric velocity values for the MAU model. planned CA while other prefer the alternate CA. If the CA
3) Ordinal AssessmentsThe ordinalrisks assessedinthe OBased upon the aggregated assessment values is the same as the
model were at least sufficient; that is, a majority of the exper@A proposed by the majority of the experts, we recommend
agreed on the tradeoff between risks and costs. For the ass#is-CA as the solution. However, both the planned CA and
ment of low risk RTE’s (RTE's 1, 4, and 5, as described in Sethe alternate CA could be displayed graphically on the graph

Choices
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structure (e.g., road map) with the choice based upon the grolthe unavailability of some experts for some RTE’s, their reluc-
assessment highlighted for the decision-maker. tance to make or revise assessments, and the different reactions

In the case of multiple RTE'’s, there may be more reconte time delay and lack of information and data will give insights
mendations than just the planned CA and one alternate CA. Wawhich direction the models might have to be adapted. How-
could have multiple recommended CA's—one based upon taeer, the flexibility of the models, which is due to its parameters,
group assessment and one based upon each expert that hagshaws that a wide range of aggregated values can be generated,
acceptable assessment. These CA's, together with the originalllybased on different assumptions. This leads us to conclude
planned CA, could be presented to the decision-maker. Sirthat the models encompass enough flexibility to be adapted to
the number of experts is small, typically less than ten (in oaccount for behavioral considerations. For example, the effects
example it was eight), displaying the alternative CA's shoulof feedback and learning will have to be investigated. Feedback
not present a problem for the decision-maker. However, if véecounts for a relative improvement of the group assessment by
have a very complex decision situation with multiple operatiorshowing the experts the assessments and choices of the other
(e.g., vehicles on the road) and multiple RTE’'s—and there éxperts. Learning, on the other hand, accounts for an absolute
no recommended new CA (including the planned CA) that improvement by instructing the experts about the consequences
chosen by a majority of those experts with acceptable asseasistheir assessments and decisions.
ments—we recommend displaying only the planned CA's and
the CA chosen based upon the group assessments, but having REFERENCES
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