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Preface

The following thesis was written to obtain my Master degree in the profile Control & Simulation at the
Faculty of Aerospace Engineering at Delft University of Technology. The thesis involved improving LoC
detection in quadrotors using CSD theory, and actuator phase delay as an EWS, alongside providing a
quantitative definition of LoC. This research aims to examine the roles of CSD, and actuator phase delay
in detecting upcoming LoC events, and explore their integration using a Fuzzy Logic Inference System
(FLIS) to enhance the accuracy and robustness of LoC detection while minimizing both false positives and
negatives. Additionally, the study will assess how different quadrotors (systems) experiencing different
modes of loss of control, such as yaw-induced vs roll-induced LoC maneuvers, impact these parameters,
aiming to determine if consistent global trends exist across different systems

The public presentation and defense of this thesis are scheduled for the 17th of May 2024, before a
committee comprising Associate Professor Dr.ir. Coen de Visser, Associate Professor Dr ir René van
Paassen, and Associate Professor Dr.ir. Wouter van der Wal.

I would like to express my gratitude towards my supervisor Associate Professor Dr.ir. Coen de Visser
who has guided me throughout the thesis to reach this important milestone.

Many thanks to Ir. Jasper van Beers, whose support has been integral to my journey. His technical
advice, assistance with understanding various complex theories, and assistance with various coding/plotting
difficulties, have been invaluable.
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가 고등학교를 끝내고 대학교와 석사 과정까지 갈 줄은 몰랐어요. 하지만 엄마의 잔소리와 아빠

가 경영학 석사를 하지 말라고 했던 추천 덕분에 오늘 이렇게 졸업을 할 수 있었어요. 엄마, 아빠
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랑에 투자할게요. 내 25년 인생을 잘 키워주셔서 너무 감사합니다. 엄마, 아빠 사랑해요
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이 되었네요. 저는 할머니께서 하늘나라에서 저를 지켜보고 계셔서 제가 이렇게 졸업할 수 있었

던 것 같아요. 할머니가 저를 계속 하늘나라에서 지켜봐 주신다면, 제가 할머니가 자랑스러워하

실 수 있는 훌륭한 손자가 되도록 계속 노력하겠습니다.
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전체 문서에 대한 기본 정보를 소개 단락.

엄마, 아빠, 드디어 나의 19년 간의 공부하는 삶이 끝났네요. 어렸을 때 공부를 그렇게 싫어했던 내

가 고등학교를 끝내고 대학교와 석사 과정까지 갈 줄은 몰랐어요. 하지만 엄마의 잔소리와 아빠

가 경영학 석사를 하지 말라고 했던 추천 덕분에 오늘 이렇게 졸업을 할 수 있었어요. 엄마, 아빠
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할머니, 저는 오늘 제 석사 졸업을 해요! 어렸을 때부터 그렇게 떼를 쓰던 윤상이가 드디어 어른

이 되었네요. 저는 할머니께서 하늘나라에서 저를 지켜보고 계셔서 제가 이렇게 졸업할 수 있었

던 것 같아요. 할머니가 저를 계속 하늘나라에서 지켜봐 주신다면, 제가 할머니가 자랑스러워하

실 수 있는 훌륭한 손자가 되도록 계속 노력하겠습니다.
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1
Introduction

1.1. Research Objective
In recent years, quadrotors have gained significant attention due to their versatile applications across various
domains, including, but not limited to delivery services, aerial photography, agricultural and infrastructure
surveillance, military applications, as well as personal and recreational pursuits. Their popularity can be
attributed to their adaptability, ease of operation, and agility, making them become popular commercial
assets [1].

The commercial drone market, predominantly composed of quadrotors, hit a valuation of $19.89 billion
in 2022, underscoring their growing prominence. Furthermore, projections indicate a continuous compound
annual growth rate of 13.9% from 2023 to 2030 [2], highlighting the increasing demand for these devices.
With the expanding user base, there is a pressing need for enhanced safety measures, particularly in
situations where drones interact with people. A notable incident involving world champion slalom skier
Marcel Hirscher, who narrowly avoided a falling drone during a Slalom World Cup event, serves as a
reminder of the importance of safety precautions in drone operations [3]. Loss-of-Control (LoC) emerges as
the predominant culprit behind quadrotor accidents [4].

Traditionally, LoC in aircraft has been extensively studied, with research primarily focusing on detecting
LoC through the determination of the safe flight envelope (SFE), and defining LoC as a deviation from
the boundaries of the SFE. Notable studies include Zhang et al. [5] [6], who developed a closed-loop
flight envelope protection system for dynamic SFE retrieval using damage identification. Van Oort [7]
identified the longitudinal SFE for an F-16 under various configurations and conditions. Lombaerts et al.
[8] introduced an online SFE determination method accounting for model uncertainties in an impaired
aircraft. Chongsival et al. [9] proposed a LoC prediction method by monitoring aircraft states across five
flight envelopes. However, these methods face significant computational challenges, as estimating the SFE
through standard Hamilton-Jacobi reachability analyses is known to be computationally intensive due to
the curse of dimensionality [10].

For quadrotors, which operate on much tighter time scales, traditional SFE calculation methods are
impractical due to these computational constraints. To address the computational constraints, Sun and
de Visser [11] investigated the SFE determination for flight envelope protection using a computationally
efficient Monte-Carlo approach. Additionally, Kaffa [12] investigated the behavior of the global SFE of a
quad-rotor subjected to varying system dynamics, including the effects of longitudinal center of gravity
displacements and actuator dynamics, also using a computationally efficient Monte-Carlo to estimate the
SFE. However, using the SFE for LoC detection still has two main limitations. Firstly, a key assumption
using SFE for LoC prevention is that it presumes that maintaining the existing system SFE is the sole
strategy for preventing LoC. However, this overlooks the potential for a poorly designed controller to induce
LoC even within the SFE. Secondly, any estimated SFEs emerge from a given (nominal) model of the
system which fails to account for dynamic changes or faults in the system.

Consequently, much of the drone-specific research has shifted towards LoC detection and recovery in
the presence of faults. Van der Pluijm [13] and Hoppenbrouwer [14] have led efforts in fault-based LoC
detection, employing methods such as Critical Slowing Down (CSD) theory and Lyapunov stability analysis.
However, results indicate that CSD alone was not suitable for LoC detection as it would result in too
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1.2. Research Questions 2

many false positives, and Lyapunov stability analysis required precise state-estimation, often necessitating
external motion capturing devices such as OptiTrack.

In terms of LoC recovery in the presence of faults, Sun et al. [15] developed a multi-loop hybrid nonlinear
controller for high-speed flight (9m/s) of quadrotors even with a single rotor failure (SRF). Additionally,
they introduced an Incremental Nonlinear Fault-Tolerant Controller (FTC) for quadrotors with complete
loss of two opposing rotors [16]. Hamadi [17] also made contributions to this field by developing a FTC for
a UAV under hardware and software failures experiencing wind gusts. Lu et al. [18] designed an FTC that
incorporates active fault detection and isolation, enabling real-world application of quadrotor control under
rotor failure.

Despite these advancements, research into LoC in undamaged quadrotors remains sparse. One notable
study by Altena et al. [19], tackled controller-induced LoC through a scenario-specific approach using
neural networks for yaw-induced LoC detection and prediction. LoC is defined as the moment in time where
the roll or pitch angle exceeds, and continues to exceed, 90 deg after the start of the yawing maneuver.
The two limitations here were: firstly, the definition of LoC was very scenario specific, and does not apply
in more general contexts where quadrotors perform maneuvers such as flips. Secondly, this attitude based
LoC definition often failed to detect even if the dangerous yawing maneuver resulted in a crash, thus having
a poor detection rate.

A gap exists in the current literature for a data-driven LoC detection in quadrotors that does not depend
on the presence of hardware faults, is adaptable to various LoC scenarios, and remains computationally
viable, without relying on precise state estimation of the quadrotor. Considering this gap, the research
objective is to improve LoC detection in quadrotors using CSD theory, and actuator phase delay as an EWS,
alongside a quantitative definition of LoC. This study aims to examine the roles of CSD, and actuator phase
delay in detecting upcoming LoC events, and explore their integration using a Fuzzy Logic Inference System
(FLIS) to enhance the accuracy and robustness of LoC detection while minimizing both false positives and
negatives. Additionally, the study will assess how different quadrotors (systems) experiencing different
modes of loss of control, such as yaw-induced vs roll-induced LoC maneuvers, impact these parameters,
aiming to determine if consistent global trends exist across different systems.

The overarching objective of this research is to enhance quadrotor Loss-of-Control (LoC) de-
tection using Critical Slowing Down (CSD) theory and actuator phase delay as Early Warning
Signals (EWS). Through a Fuzzy Logic Inference System (FLIS), we aim to improve both the
accuracy and response time of LoC detection while minimizing the occurrence of false positives
and negatives. Additionally, we will explore how different LoC modes, such as yaw-induced versus
roll-induced, affect these parameters to identify consistent global trends across various quadrotor
systems.

Research Objective

1.2. Research Questions

What early warning signals (EWS) act as precursors for the onset of loss-of-control (LoC) in
quadrotors approaching a critical transition, if any?

Main Research Question
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RQ1 : How can LoC in quadrotors be accurately detected and defined using a data-driven method,
considering data sources, sensor inputs, and data analysis techniques?

• What data sources and sensors can effectively capture relevant information about an
upcoming LoC event?

• What data pre-processing techniques are required to extract informative features for LoC
detection?

• Can sliding window analysis and the data pre-processing methods applied to the sensor
outputs be performed in real-time and onboard the drone for timely LoC detection?

RQ2 : How can different EWS indicators, when used collectively, contribute to more accurate
detection and prediction of the onset of LoC in quadrotors, while effectively mitigating erroneous
alarms (Type I errors) and missed warnings (Type II errors)?

• What role do Critical Slowing Down (CSD) indicators play in predicting the onset of a
critical transition in quadrotors?

• How do actuator saturation levels impact the onset of a critical transition in quadrotors?
• In what ways can the integration of multiple parameters improve the robustness of LoC

prediction, ensuring a lower rate of erroneous alarms (Type I errors) and missed warnings
(Type II errors)?

• How can the model’s predictive performance be evaluated, and what are the most relevant
evaluation metrics?

RQ3 : To what extent can these LoC events be detected through parameters such as CSD and
actuator phase lag?

• How do aggressive yaw, and roll maneuvers influence these parameters and contribute to
LoC risk?

• Do different maneuvers exhibit consistent global trends in CSD, and actuator saturation that
can be used for early LoC detection and prediction?

• How are these indicators affected by nominal flight?

Sub-Research Questions

1.3. Research Planning
The research strategy is outlined as shown in Figure 1.1, and can be categorized into different work packages:

• WP1 : Preliminary Research & Literature Report - This work package will involve investigating
CSD applied to the pre-existing Yaw-LoC Data to identify important features, detrending methods,
and the optimal window size for observing EWS using CSD parameters. This work package also
includes the writing of the Literature Report

• WP2 : Experimental Setup - Focus will be on the production of the Gimbal, as well as assembling
and tuning the quadrotor.

• WP3 : Roll-LoC Data Collection - This phase involves starting the collection of Roll-induced LoC
Data.

• WP4 : CSD Analysis & Thesis Report - Apply CSD analysis to Roll-LoC Data, utilizing insights
from WP1 about CSD parameter tuning. This will involve analyzing and comparing results from
both LoC types. Additionally, the final thesis report will be written during this phase.

• WP5 : Thesis Defense - Implement the feedback received from the Green Light meeting and prepare
for Thesis Defense Presentation.

In addition to the research strategy, an overall Thesis timeline can be seen in the next page. WP1 starts on
12/05/2023 with the preliminary research and literature report. Note that in the current planning, there is
a 4-week summer break from July to August. Subsequently, WP2 begins on November 10, 2023 with the
production and building of the experimental equipment. WP3 commences on January 1, 2024 with the
Roll-LoC Data collection. WP4 starts on February 1, 2024 where the collected data will be processed and
analyzed, and working in parallel, the final thesis report and the scientific paper will be written. Finally,
WP5 begins on May 4, 2024 with the Green Light meeting, in which the remainder of the time will be used
to implement final feedback, and to prepare for the thesis defense.
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Figure 1.1: Research Strategy Visualization

The structure of the report is as follows. Firstly, Part I presents the scientific paper. Next, Part II
presents the Literature Review. Finally, Part III presents the conclusions and recommendations. All code
for this research is available in the GitHub repository 1.

1https://github.com/chumbuks/LoC_Detection_CSD-FLIS
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Loss-of-Control Detection of a Quadrotor Using Critical Slowing
Down Theory

Chris Y.S. Chung∗

Loss-of-Control (LoC) is the primary cause of drone crashes, necessitating efficient onboard
prevention systems that are effective in terms of sensor requirements, computing power, and
memory. This study introduces a data-driven approach for detecting LoC in quadrotors, using
Critical Slowing Down (CSD) theory as an Early Warning Signal (EWS) of approaching a
critical transition. This paper employs a Fuzzy Logic Inference System (FLIS) to aggregate the
CSD metrics alongside other EWS indicators, such as actuator phase delay, to provide a fuzzy
indicator that quantifies the quadrotor’s stability. The proposed FLIS is applied to two LoC
modes: the first is a yaw-induced LoC event during free-flight of the quadrotor in which growing
off-axis instabilities during the maneuver culminate in LoC. The second is a roll-induced LoC
event during a gimballed flight of the quadrotor in which growing off-axis instabilities during
the maneuver also culminate in LoC. This approach proposes novel EWS indicators and a LoC
detector and is generalizable across varying mass/size without needing precise state estimation
of the quadrotor, instead only relying on onboard gyro and rotor speed data. Using real flight
data from a GEPRO quadrotor, and a custom-built drone mounted on a 3-axis quadrotor gimbal
testing rig, this paper demonstrates that various EWS indicators inferred with a FLIS can
provide accurate, and timely detection of an upcoming LoC event, regardless of their specific
causes or the maneuvers involved. This novel approach significantly enhances LoC detection
rates relative to previous studies, and improves detection times, providing crucial additional
seconds for corrective action.

I. Introduction

In recent years, quadrotors have gained significant attention due to their versatile applications across various domains.
The commercial drone market, predominantly composed of quadrotors, hit a valuation of $19.89 billion in 2022,

underscoring their growing prominence. Furthermore, projections indicate a continuous compound annual growth rate
of 13.9% from 2023 to 2030 [1], highlighting the increasing demand for these devices. With the expanding user base,
there is a pressing need for enhanced safety measures, particularly in situations where drones interact with people.
Loss-of-Control (LoC) emerges as the predominant culprit behind quadrotor accidents [2].

Traditionally, LoC in aircraft has been extensively studied, with research primarily focusing on detecting LoC
through the determination of the safe flight envelope (SFE), and defining LoC as a deviation from the boundaries of
the SFE. Notable studies include Zhang et al. [3] [4], who developed a closed-loop flight envelope protection system
for dynamic SFE retrieval using damage identification. Van Oort [5] identified the longitudinal SFE for an F-16
under various configurations and conditions. Lombaerts et al. [6] introduced an online SFE determination method
accounting for model uncertainties in an impaired aircraft. Chongsival et al. [7] proposed a LoC prediction method by
monitoring aircraft states across five flight envelopes. However, these methods face significant computational challenges,
as estimating the SFE through standard Hamilton-Jacobi reachability analyses is known to be computationally intensive
due to the curse of dimensionality [8].

For quadrotors, which operate on much tighter time scales, traditional SFE calculation methods are impractical due
to these computational constraints. To address the computational constraints, Sun and de Visser [9] investigated the SFE
determination for flight envelope protection using a computationally efficient Monte-Carlo approach. Additionally,
Kaffa [10] investigated the behavior of the global SFE of a quad-rotor subjected to varying system dynamics, including
the effects of longitudinal center of gravity displacements and actuator dynamics, also using a computationally efficient
Monte-Carlo to estimate the SFE. However, using the SFE for LoC detection still has two main limitations. Firstly,
a key assumption using SFE for LoC prevention is that it presumes that maintaining the existing system SFE is the
sole strategy for preventing LoC. However, this overlooks the potential for a poorly designed controller to induce LoC

∗MSc Graduate, Faculty of Aerospace Engineering, Kluyverweg 1.
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even within the SFE. Secondly, any estimated SFEs emerge from a given (nominal) model of the system which fails to
account for dynamic changes or faults in the system.

Consequently, much of the drone-specific research has shifted towards LoC detection and recovery in the presence of
faults. Van der Pluĳm [11] and Hoppenbrouwer [12] have led efforts in fault-based LoC detection, employing methods
such as Critical Slowing Down (CSD) theory and Lyapunov stability analysis. However, results indicate that CSD alone
was not suitable for LoC detection as it would result in too many false positives, and Lyapunov stability analysis required
precise state-estimation, often necessitating external motion capturing devices such as OptiTrack.

In terms of LoC recovery in the presence of faults, Sun et al. [13] developed a multi-loop hybrid nonlinear controller
for high-speed flight (9m/s) of quadrotors even with a single rotor failure (SRF). Additionally, they introduced an
Incremental Nonlinear Fault-Tolerant Controller (FTC) for quadrotors with complete loss of two opposing rotors [14].
Hamadi [15] also made contributions to this field by developing a FTC for a UAV under hardware and software failures
experiencing wind gusts. Lu et al. [16] designed an FTC that incorporates active fault detection and isolation, enabling
real-world application of quadrotor control under rotor failure.

Despite these advancements, research into LoC in undamaged quadrotors remains sparse. One notable study by
Altena et al. [17], tackled controller-induced LoC through a scenario-specific approach using neural networks for
yaw-induced LoC detection and prediction. LoC is defined as the moment in time where the roll or pitch angle exceeds,
and continues to exceed, 90 deg after the start of the yawing maneuver. The two limitations here were: firstly, the
definition of LoC was very scenario specific, and does not apply in more general contexts where quadrotors perform
maneuvers such as flips. Secondly, this attitude based LoC definition often failed to detect even if the dangerous yawing
maneuver resulted in a crash, thus having a poor detection rate.

A gap exists in the current literature for a data-driven LoC detection in quadrotors that does not depend on the
presence of hardware faults, is adaptable to various LoC scenarios, and remains computationally viable, without relying
on precise state estimation of the quadrotor. Considering this gap, the research objective is to improve LoC detection in
quadrotors using CSD theory, and actuator phase delay as an EWS, alongside a quantitative definition of LoC. This
study aims to examine the roles of CSD, and actuator phase delay in detecting upcoming LoC events, and explore their
integration using a Fuzzy Logic Inference System (FLIS) to enhance the accuracy and robustness of LoC detection while
minimizing both false positives and negatives. Additionally, the study will assess how different quadrotors (systems)
experiencing different modes of loss of control, such as yaw-induced vs roll-induced LoC maneuvers, impact these
parameters, aiming to determine if consistent global trends exist across different systems.

The remainder of this paper is structured as follows: section II introduces CSD theory, and section III covers Fuzzy
Logic. The methodology for data collection, signal detrending, Early Warning Signal (EWS) calculation, and the Fuzzy
logic architecture are presented in section IV. section V presents the results from the CSD analysis and the Fuzzy Logic
Inference of the CSD outputs, which are then discussed in section VI. The conclusions are presented in section VII.

II. Critical Slowing Down (CSD) Theory
The behavior of numerous natural and human-made systems is influenced by multiple parameters that evolve over

time. Their responses to external perturbations may vary: they may exhibit a smooth, gradual change in the system’s
state, or they may show little reaction within certain ranges of conditions, responding more as they approach a critical
threshold. This situation, where a small perturbation can lead to an abrupt shift in the system’s state when it reaches a
critical threshold is commonly referred to as tipping or critical transition. Tipping events can be observed in real-world
systems like climate systems [18], ecological systems [19], financial systems [20], and biological systems [21].

Predicting these critical transitions presents significant challenges, as the system’s state often exhibits minimal
change prior to reaching the tipping point. Furthermore, models of complex systems typically lack the precision required
for reliable predictions of where critical thresholds may occur. Interestingly, however, research indicates that various
systems typically exhibit common symptoms as they approach a critical point [22].

In particular, several research papers on ecological systems [23][24][25] have emphasized the occurrence of Critical
Slowing Down (CSD) in empirical/time-series measurements as they approach a tipping point. CSD theory is based on
the generic phenomenon that, in the vicinity of various tipping points, the rate at which a system recovers from small
perturbations becomes very low [23]. It is important to note that not all transitions can show signs of CSD. This can
be visualized in Figure 1, where the transitions are grouped into Rapid Regime Shift (abrupt changes in the state and
conditions of system behavior), Bifurcations (qualitative changes in system behavior due to the passing of a threshold in
underlying parameters or conditions), and CSD (observed behavior of slow system response to perturbation).

2



Fig. 1 Intersecting domains of Rapid Regime Shifts, Bifurcations, and Critical Slowing Down. Domain I
represents catastrophic bifurcations preceded by CSD, Domain II describes catastrophic bifurcations not
preceded by CSD, Domain III represents non-catastrophic bifurcations preceded by CSD, Domain IV represents
CSD in the absence of bifurcations or regime shifts, and finally Domain V represents catastrophic regime shifts
without bifurcations or CSD. Smaller labels under each domain illustrate specific phenomena occurring within
these categories, adapted from [26].

Figure 1 illustrates that not all regime shifts include bifurcations, and bifurcations can exist without exhibiting signs
of CSD, and some regime shifts can also exhibit signs of CSD. Consequently, CSD should not be interpreted as a
universal predictor of tipping points nor specific to approaching tipping point. Rather, CSD should be regarded as a
broad spectrum indicator of potential fundamental changes in the current state [23]. It is worth noting that much of the
prior work on CSD has been centered around its application in open-loop systems. To the best of our knowledge, the
successful application of CSD theory in closed-loop systems remains unexplored, opening new avenues for investigation.

To accurately apply CSD analysis, it is crucial to pre-process the data by detrending the signals. This process involves
removing long-term trends or shifts from the time series data, thereby isolating the residual oscillations. Detrending is
essential because it minimizes the influence of non-stationary trends on the analysis, allowing for a clearer detection of
the slowing down phenomena that precede critical transitions.

Although CSD occurs for a class of different bifurcations (Figure 1), the following explanation will focus on the
saddle-node (fold) bifurcation. This type is particularly intuitive to understand due to the folded nature of the system
and the presence of distinct basins of attraction. To understand why CSD occurs at a fold bifurcation—where the system
recovery behavior following a perturbation diminishes and approaches zero—consider the dynamics of a simple system:

Fig. 2 Reduced system resilience due to Critical Slowing Down (CSD) in a saddle-node bifurcation. The rate of
recovery from minor perturbations is lower when the basin of attraction is smaller, and thus lower resilience
(right side) compared to when it is larger, and hence higher resilience (left side).
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𝑑𝑥

𝑑𝑡
= 𝑟 + 𝑥2 (1)

In this model, 𝑟 represents the bifurcation parameter. When 𝑟 is negative, two equilibrium points exist: 𝑥𝑠𝑡𝑎𝑏𝑙𝑒 =
√
−𝑟

and 𝑥𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 =
√
−𝑟, with one being stable and the other unstable, which can be visualized in the left side figure of

Figure 2, where the left basin represents the stable equilibrium and right basin represents the unstable equilibrium. As
𝑟 approaches zero from the negative side, the two fixed points move closer to each other. At 𝑟 = 0, they merge and
annihilate, resulting in a catastrophic bifurcation and an abrupt, irreversible change to a different state. This can be
visualized on the right side of Figure 2, as 𝑟 approaches 0, the system’s resilience decreases, indicated by a smaller basin
of attraction and the smaller slope of the basin, which effectively slows the rate of recovery.

Now, lets examine the dynamics near the tipping point, to analyze the stability of the equilibrium points, and how
perturbations decay, linearizing the system round a fixed point 𝑥0 by introducing a small perturbation 𝜖 such that
𝑥 = 𝑥0 + 𝜖 :

𝑑𝜖

𝑑𝑡
=
𝑑

𝑑𝑡
(𝑥 − 𝑥0) =

𝑑𝑥

𝑑𝑡
= 𝑟 + (𝑥0 + 𝜖)2 (2)

Linearizing this equation using a first-order Taylor expansion yields :

𝑑𝜖

𝑑𝑡
≈ 𝑟 + 𝑥2

0 + 2𝑥0𝜖 (3)

Since 𝑥0 is a fixed point, 𝑟 + 𝑥2
0 = 0, and the equation simplifes to:

𝑑𝜖

𝑑𝑡
≈ 2𝑥0𝜖 (4)

Here, the coefficient 2𝑥0 is essentially the eigenvalue 𝜆 for the linearized system around the fixed point 𝑥0. Now, as 𝑟
approaches zero from the negative side, we can substitute 𝑥𝑠𝑡𝑎𝑏𝑙𝑒 into our expression for the eigenvalue:

𝜆 = 2𝑥𝑠𝑡𝑎𝑏𝑙𝑒 = 2(−
√
−𝑟) ⇒ lim

𝑟→0
𝜆 = 2(−0) = 0 (5)

Thus, as the system approaches a bifurcation, the parameter 𝑟 approaches zero, and the eigenvalue associated with the
stable fixed point approaches zero. Since the eigenvalue can be interpreted as the rate at which small perturbations to
the system’s state will grow or decay, this proves that as the system approaches a bifurcation, its rate of recovery will
diminish.

The primary implication of CSD is that a decreased recovery rate following a small experimental perturbation may
indicate the system’s proximity to a bifurcation point [27]. Although it may be impractical to systematically monitor
recovery rates after experimental perturbations, the fact that most natural systems regularly encounter such disturbances
means that this can serve as an effective early warning signal for impending critical transitions. Notable indicators
include increased lag-1 auto-correlation and variance in system fluctuations. This can be explained intuitively; CSD
reduces the system’s rate of change, causing its current state to more closely resemble its past and effectively increasing
its memory, as measured by lag-1 auto-correlation [28] [29]. Additionally, as a tipping point approaches, the variance in
the system’s fluctuations increases due to the decreased rate of recovery. Because the effects of disturbances do not
dissipate, there is an increase in the variance of the state variable [30].

This phenomenon can also be shown mathematically demonstrated using a simple first-order auto-regressive model,
where repeated disturbances every Δ𝑡 lead to a progressively slower return to equilibrium, characterized by a recovery
rate 𝜆:

𝑥𝑛+1 − 𝑥 = 𝑒𝜆Δ𝑡 (𝑥𝑛 − 𝑥) + 𝜎𝜖𝑛 (6)

𝑦𝑛+1 = 𝑒𝜆Δ𝑡 𝑦𝑛 + 𝜎𝜖𝑛 (7)

𝑦𝑛 represents the deviation of the state variable 𝑥 from its equilibrium, and 𝜖𝑛 is zero-mean noise with a standard
deviation of 𝜎. Assuming the recovery rate 𝜆 and the time interval Δ𝑡 are independent of 𝑦𝑛, this setup can be effectively
described as a first-order auto-regressive (AR(1)) process:

𝑦𝑛+1 = 𝛼𝑦𝑛 + 𝜎𝜖𝑛 (8)
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Fig. 3 The effect CSD measured in stochastically induced fluctuations in the state of the system as increased
variance and "memory" as shown by lag-1 auto-correlation.

In an AR(1) process, the AR1 coefficient, denoted as 𝛼 ≡ 𝑒𝜆Δ𝑡 , quantifies how much each value in the series depends
on its immediate predecessor. For white noise, this coefficient is zero, whereas for red (auto-correlated) noise, the
coefficient is close to one [31]. The expected value of an AR(1) process 𝑦𝑛+1 = 𝑐 + 𝛼𝑦𝑛 + 𝜎𝜖𝑛 is [32]:

𝐸 (𝑦𝑛+1) = 𝑐 + 𝛼𝐸 (𝑦𝑛) + 𝐸 (𝜎𝜖𝑛) ⇒ 𝜇 = 𝑐 + 𝛼𝜇 + 0⇒ 𝜇 =
𝑐

1 − 𝛼 (9)

can be understood as a linear combination of the previous value, 𝑦𝑛, adjusted by the coefficients 𝑐 and 𝛼, with an added
term 𝜖𝑛 for noise scaled by 𝜎 [32]. For 𝑐 = 0, the mean equals zero and the variance is found to be :

𝑉𝑎𝑟 (𝑦𝑛+1) = 𝐸 (𝑦2
𝑛) − 𝜇2 =

𝜎2

1 − 𝛼 (10)

Close to the critical point, the return recovery rate to equilibrium decreases, implying that 𝜆 approaches zero and the
auto-correlation 𝛼 tends to one. Thus the variance tends to infinity.

While CSD has traditionally been applied to ecological systems, van der Pluĳm [11] attempted to explore the
application of CSD in predicting critical transitions in quadrotors. He investigated whether EWS could be detected in
the time-series data of a damaged quadrotor with a single rotor failure (SRF) using CSD indicators. The objective was
to gather data on the steady-state and transient behavior of a damaged quadrotor experiencing various wind speeds, and
to examine if there were EWS that could be detected prior to the quadrotor crashing as the wind speed was increased.

The analysis revealed that 𝑤2, and 𝑞 were the most relevant variables, as angles were found to be less likely to
contain EWS, compared to angular rates as stochastic effects are less pronounced in angles. The study’s concluded that
using CSD theory alone to identify EWS in quad-rotor systems was not feasible due to the unrealistic constraints it
placed on wind speed behavior. As the author noted, CSD requires slow and monotonic transitions, whereas damaged
quadrotors usually are subject to sudden changes, resembling rapid regime shifts. Observations from Figure 1 indicate
that some rapid regime shifts show no signs of slowing down, impacting the effectiveness of CSD based on the rate of
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wind speed changes. However, by broadening the scope beyond traditional CSD indicators and incorporating other
domain specific indicators such as actuator saturation metric, more reliable EWS could be generated. Furthermore, a
sensitivity analysis showed that the most critical parameter is the size of the rolling window used, with larger windows
yielding fewer false positives; however, for robotic applications, smaller windows are preferred.

This insight is consistent with a study by Wen et al. [33], which emphasizes the sensitivity of EWS detection to
several factors, including the intrinsic early warning period (time-scale of LoC event, and window size), data frequency,
and the choice of test statistic.

Another insightful example comes from a study by Dakos et al. [34], which delved into the potential EWS in a
highly stochastic system using a model that describes the shift of a lake from an oligotrophic to a eutrophic state [35].
Initially, it was assumed that in such noisy conditions, CSD might not be relevant, and traditional EWS would not
be expected to be effective. However, the research uncovered an unexpected connection. Even though this system
did not align with the typical characteristics of a slow-time-varying system, but rather being characterized by strong
perturbations leading to rapid regime shifts, or “flickering”. The study revealed that the behavior of the system often
exhibited rising variance, AR1, and skew. These patterns closely resembled the effects of CSD, challenging traditional
assumptions and highlighting the adaptability of CSD Theory in unforeseen, highly stochastic environments. This
unexpected finding underscores the versatility of CSD theory in identifying critical transitions, even in systems with
dynamic, non-monotonic perturbations.

III. Fuzzy Logic Inference System
A Fuzzy Logic Inference System (FLIS) is the process of formulating the mapping from given input(s) to output(s)

using fuzzy logic. Fuzzy Logic is based on the idea that truth can be expressed as a continuous fuzzy variable, not a
binary output [36]. This approach may be particularly useful in scenarios like predicting the onset of Loss of Control
(LoC), where a quadrotor’s state might not strictly be binary; but could exhibit varying degrees of LoC.

FLIS is instrumental in various domains, including automatic control, data classification, decision-making, expert
systems, robotics, and more, owing to its ability to handle nuances in data and decision-making processes [37]. The
system comprises five primary components:

• Rule Base - A collection of fuzzy rules that use logical operators such as IF, OR, and NOT.
• Database - Defines membership functions for input and output variables.
• Fuzzification Interface - Converts crisp inputs into fuzzy inputs through degrees of match with linguistic variables

(membership functions).
• Decision-Making Unit - Executes inference on the fuzzy rules.
• Defuzzification Interface - Transforms fuzzy inference results back into crisp outputs.

- fuzzy

Database Rule Base

Knowledge Base

Fuzzification Defuzzification

Decision-Making 
Unit - fuzzy

- crisp - crisp

Input Ouput

Fig. 4 Structure of a Fuzzy Logic Inference System (FLIS), with the five main components : Rule Base, Database,
Fuzzification Interface, Decision-Making Unit, and Defuzzification Interface

The process begins with fuzzification, which transforms specific inputs into degrees of match with membership functions,
based on predefined intervals. This transformation results in fuzzified variables, representing the antecedents in the
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fuzzy logic system. These variables are then processed by the decision-making unit. This unit employs logical operators
(AND for the minimum, OR for the maximum, and NOT for the complement of the membership value) to associate the
antecedents’ membership functions with a consequent membership function in the output. The choice and application of
these logical operators critically influence the degree of match between the antecedents and the consequent, effectively
determining the output’s membership value. Upon applying all the rules, where each rule connects antecedents to a
consequent, the decision-making unit aggregates these consequent values to produce a single, crisp output through
defuzzification. This final step typically involves calculating the centroid of the aggregated fuzzy set, culminating in a
crisp output value reflective of the fuzzy logic inference.

Fuzzy logic inference systems has various advantages, such as handling uncertainty, inherent interpretability, and
most importantly domain expertise. If domain expert knowledge regarding quadrotor LoC are available, this can be
leveraged to define appropriate membership functions and fuzzy rules that can reflect the intricacies of the system, such
as combining CSD, and actuator phase delay parameters.

IV. Methodology

Raw Data

CSD & Time Delay

- .bbl files - Convert to .csv
- Include Timestamps
- Create Config Files

Data Pre-Processing

function_module.py

- Fuzzy Variables
- Membership Functions
- Fuzzy Rules

FLIS.py

Fuzzy Logic Inference

- t?

- .csv files
- config files

- Fuzzy LoC Indicator Timeseries

import_CSD_timeseries.py

- Kernel Regression
- High-Pass Filter

- AR1 Autocorrelation
- Interquartile Range

- Cross-Correlation ?

- p,q,r
- ? 0,? 1,? 2,? 3
- Timestamps

- ? 0,? 1,? 2,? 3 
- ? cmd0,? cmd1, ? cmd2, ? cmd3 

- ?0,?1,?2,?3

CSD

Time Delay

- p,q,r detrended
- ? 0,? 1,? 2,? 3 detrended
- Timestamps

- p,q,r AR1/IQR
- ? 0,? 1,? 2,? 3 AR1/IQR
- New Timestamps

- ?sum

- p,q,r AR1/IQR
- ? 0,? 1,? 2,? 3 AR1/IQR
- ?sum
- New Timestamps

Fig. 5 CSD-FLIS Algorithm Pipeline

To accurately identify the occurrence of a LoC event, the proceeding sections will analyze the gyro rates (p,q,r) along
with the measured rotor speeds (𝜔0, 𝜔1, 𝜔2, 𝜔3) following the feature importance test from Van der Pluĳn’s study [11].
The proceeding sections will explain the different components of the pipeline, which includes data collection, signal
detrending, EWS indicators, and the FLIS. Figure 5 presents the algorithm pipeline that will be used for the detection of
LoC in quadrotors. Note that the algorithm pipeline uses some plotting and data-preprocessing functions from [38].

A. Data Collection
The primary cause of LoC in quadrotors is actuator saturation [39]. When actuators saturate, control authority

deteriorates. Without control authority, the ability to counteract external disturbances is lost. Thus, the study will
investigate two different modes of LoC induced by actuator saturation, which involve demanding very high roll and
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pitch rates. Although both modes experience LoC due to a high rotational rates and consequently actuator saturation,
the underlying LoC dynamics differ.

1. Yaw induced LoC
The two yaw datasets were sourced from the research of Altena et al. [17]. The datasets comprise two sets of

Yaw-LoC Data. The first set is obtained from the GEPRO (CineGo), a quadrotor with a diagonal length of 361 mm and
a mass of 265 g (Figure 6). The second set is obtained from the Tiny Whoop (DataCan), a more compact quadrotor with
a diagonal length of 75 mm and a weight of 56 g (Figure 7). The details of these quadrotors are summarized in Table 1.

Fig. 6 GEPRO (CineGo) Quadrotor Fig. 7 Tiny Whoop (DataCan) Quadrotor

The occurrence of a yaw induced Loss of Control (LoC) mode was attributed to a functionality in the BetaFlight flight
controller software named "anti-gravity". This feature aims to maintain level flight by measuring the accelerometer’s 𝑥
and 𝑦 axes. Nevertheless, in instances where the Inertial Measurement Unit (IMU) is not precisely aligned with the
center of gravity (c.g.) of the drone, a pure yaw input results in the accelerometer also detecting translational motion.
Consequently, the flight controller misinterprets these readings as disturbances in roll and pitch angles, endeavoring to
counteract them, which leads to oscillations around the roll and pitch axes. At low rotational rates, or when the actuators
are not saturated, these oscillations are manageable, and thus do not lead to LoC. However, at high rotational rates, when
the actuators are therefore saturated, these oscillations become unstable. These oscillations tend to increase either due to
phase discrepancies between the control actions and the measurements or as a result of the controller fighting itself.

Given that the CineGo dataset is substantially more extensive (96 LoC Flights, 71 System Identification (SysID)
Flights) compared to the DataCan dataset (47 LoC Flights), the primary analysis will focus on the CineGo dataset, with
the DataCan dataset serving to corroborate and validate the findings.

It is important to note that the yaw SysID flights include maneuvers that are coupled in roll, pitch, and yaw, thereby
posing challenges in distinguishing which off-axis gyro-rates to apply the CSD analysis to. This issue will be revisited
in subsection IV.D.

2. Roll Induced LoC
The collection of the roll LoC dataset will be conducted as part of this research. Previous attempts by Altena et al.

[17] to collect roll LoC data were unsuccessful due to space limitations, which prevented the manifestation of LoC. This
issue was re-confirmed during free-flight roll LoC maneuver tests conducted in the CyberZoo, a ten-by-ten meter drone
testing laboratory at the Faculty of Aerospace Engineering, Delft University of Technology. It was observed that the
quadrotor would impact the ground before entering a LoC state.

To address this challenge, a specialized gimbal test-bench (Figure 9), as designed by Sharma & Dĳkstra [40], enables
achieving a high roll-rate of ±800 deg/s. This required constructing a quadrotor with a custom frame to allow mounting
onto the gimbal. The custom quadrotor and the gimbal build are displayed in Figure 8 and Figure 9. The details of the
custom quadrotor are summarized in the third column of Table 1.
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Table 1 GEPRO CineGo, TinyWhoop DataCan, and Gimbal Drone characteristics

Characteristics GEPRO CineGO Tiny Whoop DataCan Gimbal Drone
Mass incl.
batteries

265 [g] 56 [g] 138 [g]

Axis-to-axis
diameter

361 [mm] 75 [mm] 117 [mm]

Propeller Di-
ameter

76.5 [mm] 40 [mm] 40 [mm]

Motor TC0803 with 15,000 [kV] Emax Eco 1407 with 3300 [kV] T-MOTOR M0802 with 25000
[kV]

Batteries One 4S (four cell) Tattu R-Line
with 14.8 [V] and 550 [mAh]

Two 1S (one cell) BETAFPV
with 4.35 [V] and 300 [mAh]

One 1S (one cell) Tattu R-Line
with 3.7 [V] and 500 [mAh]

Flight Con-
troller

MATEKSYS F722-mini 2-8S JHEMCU SH50 F4 2S with 8.0
MB black box

T-MOTOR F411 6A AIO -
ELRS

FC software Betaflight 4.2 Betaflight 4.2 Betaflight 4.2

Fig. 8 Custom Quadrotor (Gimbal Drone) Fig. 9 3D printed Gimbal

During data collection, the quadrotor is deliberately placed in a LoC scenario by demanding a roll rate of ±800 deg/s.
Initially, the quadrotor rotates about its x-axis as intended; however, due to quadrotor coupling [41], the rolling motion
also introduces yawing, which later induces pitch oscillations. As the LoC maneuver continues, the yaw rate increases.
However, in the absence of input for yaw, the gyroscopic sensor detects a gradual increase in yaw rate errors. As the yaw
rate drift increases, the error grows until the yaw rate surges to 1000 deg/s, leading to rotor saturation. Subsequently,
BetaFlight kills the integrator (I) gain for yaw to prevent integrator wind-up, resulting in the quadrotor ceasing to roll
and losing control entirely, unable to rotate around its x-axis.

Addressing the challenge encountered with SysID Yaw data, specifically the coupled maneuvers in SysID flights, the
SysID data for Roll-LoC has been segregated into three distinct sets: Roll, Pitch, and Yaw. This separation of maneuver
types enables the discrete analysis of gyro AR1 values pertinent to each maneuver.

B. Signal Detrending
CSD applied to a closed-loop stochastic and complex system such as a quadrotor poses numerous challenges. It is

important that CSD is applied to signals that can capture the rate of recovery to external perturbations. In the context of
quadrotors, this could mean analyzing the oscillations in roll and pitch axes when a yaw maneuver is performed. To
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obtain meaningful results from CSD analysis on quadrotors, it is imperative that the long term trends in the data are
removed (detrended) to isolate the fluctuations in the residuals. If this is not done properly, the remaining correlations
(trends or periodicity in the time series) can lead to false indications.

Detrending is done by finding a function to approximate the signal’s long-term trends. Once this can be captured,
these long-term trends may be removed from the original signal. The result is a detrended signal, which only contains
the residual fluctuations due to external disturbances. During the preliminary phase of the research, four detrending
techniques were evaluated: Moving Average, Differencing, Kernel Regression, High Pass Filter. Detailed outcomes of
this evaluation are presented in the Appendix A.1.

The investigation revealed that the gyro rate data yielded the most effective EWS through CSD when detrended
using Kernel Regression. Conversely, the measured rotor speed is best detrended using a High-Pass Filter.

Kernel regression is a non-parametric technique in statistics used to estimate the conditional expectation of a random
variable; it allows the modeling of complex relationships between variables without assuming a predefined form of the
relationship. Kernel regression can be used for detrending by fitting a smooth curve to the time-series data, capturing
the long-term trends, which is subsequently subtracted from the original time series to obtain the detrended data. In this
study, a local constant Gaussian kernel detrending method is used, as widely acknowledged in literature [31] [42][43],
the Gaussian kernel function at the point (𝑡𝑖 − 𝑡) adjusted by the bandwidth ℎ is formulated as shown in Equation 11:

𝐾ℎ (𝑡𝑖 − 𝑡) =
1
√

2𝜋ℎ
𝑒
− (𝑡𝑖−𝑡 )

2

2ℎ2 (11)

�̂�𝑡 =

∑𝑛
𝑖=1 𝐾ℎ (𝑡𝑖 − 𝑡)𝑦𝑖∑𝑛
𝑖=1 𝐾ℎ (𝑡𝑖 − 𝑡)

(12)

Here, (𝑡𝑖 − 𝑡) is the distance in time between the data point 𝑡𝑖 and the estimation point 𝑡. The kernel function 𝐾ℎ

uses this distance to compute how much influence the data point 𝑦𝑖 should have on the estimation at 𝑡. ℎ represents the
bandwidth of the kernel, which influences the kernel’s width. In essence, the computation of the kernel function results
in a weight that decreases exponentially as the distance (𝑡𝑖 − 𝑡) increases, more rapidly so as the bandwidth ℎ decreases.
The bandwidth influences the smoothness of the trend line, a larger bandwidth resulting in a smoother estimate, while
a smaller bandwidth captures more local fluctuations. The choice of bandwidth is critical; as it must be adequate to
remove long-term trends while preserving residual dynamics.

Each data point 𝑦𝑖 at a time 𝑡𝑖 is then multiplied by this weight, and the sum of those weighted values forms the
numerator of the kernel regression estimate. The denominator is the sum of the weights, normalizes these weights to
ensure that the weights sum to 1. The entire equation for the kernel regression estimate (�̂�𝑡 ) can be seen in Equation 12.
By aggregating all �̂�𝑡 values into a time series, a time-series which contains only the long-term trends (trend-line) is
generated.

Similarly, the High-Pass Filter (HPF) has been utilized to remove the long-term trends (low frequency oscillations),
as indicated by references [44] [45]. This filter is represented in the frequency domain by the transfer function 𝐻 (𝑠)
given by Equation 13

𝐻 (𝑠) = 𝑠𝑛

𝑠𝑛 +∑𝑛
𝑘=1 𝑐𝑘𝑠

𝑛−𝑘 (13)

Here, 𝑠 = 𝑗𝜔 represents the complex frequency, with 𝜔 being the angular frequency of the signal, 𝑐𝑘 the coefficients
determined by the filter design, and 𝑛 the filter order. Now the actual implementation of the filter requires a discrete
time filter, which approximates the continuous time filter in Equation 13.

𝑦[𝑛] = 1
𝑎0
(
𝑀∑︁
𝑘=0

𝑏𝑘 · 𝑥 [𝑛 − 𝑘] −
𝑁∑︁
𝑖=1

𝑎𝑖 ∗ 𝑦[𝑛 − 𝑖]) (14)

To achieve this, the filter is applied in the time domain using pre-calculated coefficients designed to mimic the
desired frequency domain effects. This typically involves a two-step process where a Butterworth filter first determines
the necessary coefficients 𝑎𝑖 , 𝑏𝑘 , that define the filter’s behavior. Once the filter coefficients have been obtained, the
filter is applied directly to the discrete-time signal, through the use of a difference equation as shown in Equation 14.
Here, 𝑦[𝑛] is the current filtered output, (∑𝑀

𝑘=0 𝑏𝑘 · 𝑥 [𝑛 − 𝑘]) is the input signal component, which computes a weighted
sum of the current and past input samples, and the coefficients 𝑏𝑘 defines the filter’s zeros. (∑𝑁

𝑖=1 𝑎𝑖 ∗ 𝑦[𝑛 − 𝑖]) is the
feedback component, which calculates a weighted sum of the past filtered outputs, and the coefficients 𝑎𝑖 set the poles.
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𝑀 and 𝑁 represent the filter orders, which indicates the number of b and a coefficients, respectively, and 𝑛 indicates the
current sample index. In this study, a fifth-order HPF will be utilized. The bandwidth and the cutoff frequency used for
the detrending methods can be obtained in Table 2.

Table 2 Detrending Parameters

Data CineGo DataCan Gimbal
Variables Gyro Rates Debug Gyro Rates Debug Gyro Rates Debug
Bandwidth/Cutoff 0.01 [-] 7 [Hz] 0.004 [-] 5 [Hz] 0.015 [-] 15 [Hz]

C. Early Warning Signals

1. CSD indicators
The two CSD indicators that are used in this paper are the lag-1 auto-correlation coefficient (AR1) and the

inter-quartile range (IQR). Note that instead of the variance, this study uses IQR as the measure of variability, since
variance is sensitive to extreme values. Thus, IQR is selected to provide a consistent measure of variability across the
time-series data [46] [47] [48].

The AR1 is the most commonly used indicator to measure CSD. An increase in auto-correlation usually refers to an
increase in short-term memory (correlation at low lags) of the system, which indicates that the rate of return/recovery
following a perturbation has been reduced.

To approximate AR1, the correlation between consecutive values (i.e., its lag-1 value) in a time series is computed
using a moving window offset by a single time step (step size). The auto-correlation is computed as follows:

𝑅𝑋𝑌 =

∑𝑁
𝑖=1 (𝑋𝑖 − �̄�) (𝑌𝑖 − 𝑌 )√︁∑(𝑋𝑖 − �̄�)2√︁∑(𝑌𝑖 − 𝑌 )2 (15)

where 𝑋𝑖 and 𝑌𝑖 are the 𝑖𝑡ℎ data point in windows 𝑋 and 𝑌 respectively. �̄� and 𝑌 are the means of the data within
windows 𝑋 and 𝑌 , and 𝑁 is the window size. To use AR1 as an EWS indicator, two hyper-parameters are tuned: the
window size and step size.

The selection of window size critically influences the false positive rate of EWS given by CSD. Opting for a large
window size allows for a more smooth, and general capture of the persistent effects of AR1 peaks, at the expense of
delayed detection. Opting for a smaller window allows for faster detection but increases the risk false positives. An
optimal window size is determined heuristically by testing various window sizes on a subset of the data to find the
minimum window size that minimizes false positives without compromising detection time, which was found to be 450
as detailed in Table 2. The step size, less critical than the window size, was set at 1 to maximize the detection of EWS.

An important consideration is the impact of the bandwidth/cutoff frequency used in the detrending method, which
can sometimes yield a Not a Number (NaN) value for the AR1. To address this, a checking mechanism has been
implemented to detect if the resulting AR1 time-series contains any NaN values, prompting an incremental adjustment
to the bandwidth/cutoff and a subsequent recalculation of the AR1 time-series in an iterative manner. The algorithm for
this iterative detrending and AR1 calculation can be found in the Appendix A.2.

The IQR is the second CSD indicator that will be used. The IQR is calculated as the difference between the third
quartile (Q3) and the first quartile (Q1). 𝑄3 represents the value below which 75% of the data falls, and Q1 represents
the value at which 25% of the data falls. The method for calculating these quartiles and consequently the IQR is given
by :

IQR = 𝑄3 −𝑄1 (16)

The data is first sorted in ascending order. This is a fundamental step because percentiles are values that divide
the sorted dataset into parts. To find the percentile value Q3 and Q1, the following formula can be used to find to
position/index 𝑘 of the 𝑝-th percentile in a dataset with 𝑁 samples:

𝑘 =
𝑝

100
(𝑁 + 1) (17)
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If 𝑘 is not an integer, the percentile value lies between two data points. NumPy uses linear interpolation to estimate
this value. For the IQR, the only hyper-parameter that can be tuned is the window size. From initial analysis, it was found
that IQR is not as sensitive to false positives occurring, therefore a smaller window size of 50 was chosen heuristically.
The bandwidth, cutoff, and window size parameters used can be obtained in Table 2.

Additionally, recall from section II, CSD theory posits that as a system approaches a bifurcation, its eigenvalues tend
to zero, implying that the rate of recovery goes to infinity. However, a quadrotor is not a linear system and does not
have globally defined eigenvalues. In our approach, given that we are analyzing very short time scales (0.5 seconds for
the AR1 windows), the quadrotor dynamics may be considered approximately linear, thereby allowing us to implicitly
linearize the system around a moving operating point. This adaptation is critical in applying CSD theory to the complex
dynamics of quadrotors effectively.

2. Time Delay indicator
Van der Pluĳm’s research [11] recommends the implementation of case-specific measures to address the challenges

of false positives and the limitations of CSD in detecting EWS. Building on this, our study hypothesizes that LoC often
arises from phase lags due to actuator and sensor saturation, particularly under high rotational demands. To effectively
monitor these phase lags, the Time Delay Indicator (𝜏), is introduced as a case-specific measure. The cross-correlation
between two signals can be computed using:

𝑅𝑥𝑦 (𝜏) =
∑︁

𝑥 [𝑛] · 𝑦[𝑛 + 𝜏] (18)

where 𝑥 [𝑛] and 𝑦[𝑛] are the measured and commanded RPM values, 𝜏 is the lag, or shift applied to the signal 𝑦
relative to 𝑥. The cross-correlation is calculated for various lag values in a predefined window of 50 time-steps.

Choosing an optimal window size is pivotal; a smaller window size provides higher resolution and quicker response
to data changes but is more susceptible to noise, potentially leading to misleading correlations. Conversely, a larger
window might detect irrelevant changes due to external factors like throttle adjustments. From a preliminary sensitivity
analysis, it was determined that an optimal window size of 50 provides a good balance between fast detection, and
minimizing false positives.

The lag that yields the highest correlation is identified and recorded as the time-delay coefficient 𝜏. To translate this
lag into real-time units, dividing by the sampling rate yields the 𝜏 in seconds. Subsequently, the 𝜏 values from all four
rotors are summed to have a single indicator of phase delays, offering insights into the cumulative impact of phase lags
across multiple rotors.

This unified 𝜏 contributes to constructing another indicator, 𝑡𝜏 , which quantifies the prolonged detection of lags
within the time series. It serves as a temporal metric to gauge the duration and magnitude of the lag, employing an
algorithm that increments a counter based on the presence and magnitude of the lag, resetting after 50 consecutive
lag-free time-steps. The methodology for calculating the 𝑡𝜏 variable is detailed in the Appendix A.2. The strategy
for determining the increment magnitude balances the reduction of false positives while maintaining a threshold low
enough to facilitate early detection.

D. Fuzzy Logic Architecture
Various methods exist for interpreting results from the CSD analysis. Previous research focusing on applying CSD

to quadrotors [11], utilized the Kendall Rank correlation coefficient to evaluate the statistical significance of EWS
identified via CSD. This method, however, falls short in enabling an integrated analysis combining the outputs from
multiple parameters.

To address this limitation, this paper adopts a Fuzzy Logic Inference System (FLIS) for inferring the CSD outputs.
While there are various tools available for constructing a FLIS, this paper utilizes the SciKit Fuzzy Logic Toolbox
(Version 0.4.2) for Python (Version 3.11.5). Leveraging this toolbox, the main effort is primarily focused on the database
and rule base construction.

The Database’s first step involves setting the expected value ranges for both antecedent and consequent variables,
allowing the assignment of membership functions to specific value ranges. For example, AR1 values are naturally
constrained between [-1, 1], easing their fuzzification process. Nevertheless, the IQR’s lesser sensitivity to outliers,
coupled with fuzzy logic’s unique feature of allowing overlaps between membership functions enhances the system’s
threshold-setting flexibility, which aids in establishing a practical analysis range. Membership functions are then
designated to these variables, sorting them into linguistic categories such as ’Stable’, ’Mid’, ’EWS’, and ’LoC’, based on
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their value ranges. Notably, these membership functions can take shapes such as triangular or trapezoidal, popular
for their simplicity and capacity to depict qualitative distinctions clearly [49]. Note that the choice of membership
function and the overlap between them greatly determines the shape of the Fuzzy Logic output values, and will be
further discussed in subsection V.C. Furthermore the details regarding each membership functions’ shape, threshold,
overlap can be found in Appendix A.3

Simplicity remains a key objective in our data-driven approach. From initial analysis, it was observed that for
simple uncoupled flights, Gyro AR1 was sufficient at detecting LoC. However, for coupled maneuvers like those in the
Yaw-LoC SysID flights, Gyro-AR1 rules are inapplicable due to the stick neutrality condition (which will be elaborated
on further below), we need to increase the complexity of the FLIS by including other CSD indicators such as Gyro IQR,
measured rotor speed AR1, and Time delay indicator (tau).

Therefore, this study employs two main rule groups for inference: Gyro-Rate AR1 based rules (GYRO-AR1), and
CSD/Time Delay (CSD-𝜏) based rules. The Gyro-AR1 rules are the primary set of rules to identify a LoC scenario,
only inferring the AR1 time-series of gyro rates, when no stick inputs have been given for the past 450 time steps. This
condition of stick neutrality over 450-time-step is due to the nature of a rolling window analysis for generating AR1
values. As the AR1 is calculated on the previous 450 time-steps, the impact of a stick input may persist within the AR1
calculation window. The CSD-𝜏 rules serve as an auxiliary measure to enhance LoC detection rates and address the
limitations of the stick neutrality condition when using Gyro-AR1 rules. Since the GYRO-AR1 rules are contingent on
the absence of stick inputs, the CSD-𝜏 rules provide a supplementary indication of stability when GYRO-AR1 rules
are inapplicable, such as during maneuvers that involve stick inputs in all three axes. These rules utilize Gyro IQR,
measured rotor speed’s AR1, and the time delay duration variable 𝑡𝜏 to assess the quadrotor’s risk of LoC. Overall,
the study employs three FLIS models: a Gyro-AR1 based model, a CSD-𝜏 based model, and a combined model. The
combined model gives priority to Gyro-AR1 rules, but switches to CSD-𝜏 rules when the Gyro-Ar1 is inapplicable due
to violations of the stick-neutrality condition.

Within these rule groups, rules are categorized into Stable (STA), Mid Stable (MID), Early Warning Signal (EWS),
and Loss-of-Control (LoC). STA rules determine the quadrotor’s stability under normal conditions. MID rules assess
the stability during nominal maneuvers. EWS rules are indicative of diminishing stability potentially leading to an LoC,
while LoC rules establish the threshold for identifying when a quadrotor is undergoing an LoC event.

Comprehensive details on each variable, their membership functions, and the fuzzy rules are available in Appendix
A.3. Once all rules have been applied, the corresponding output membership function values can be combined to
determine the overall aggregated output membership value.

V. Results
The flight data were first analyzed using CSD, proving AR1 and IQR outputs for gyro rates, and measured rotor

RPMs. These outputs were then used as inputs to the FLIS, as shown in Figure 5. The following sections will discuss
the results obtained from the CSD and FLIS, separately for the two different LoC scenarios.

A. CSD Results - Yaw LoC
Figure 10 and Figure 11 present the CSD analysis conducted on the Gyro Rates for the Yaw-LoC (CineGo) datasets.
From Figure 11 it is evident that gyro rates do exhibit a decrease in rate of recovery to external perturbations, as

AR1 and IQR increase as the LoC event is approached.
Additionally, the detrended signals also reveal minor oscillations in roll and pitch prior to the yaw maneuver.

Although these oscillations appear minimal in the detrended series, the AR1 outputs highlight a significant increase due
to these small movements.

This is reflective of the sensitivity of the CSD indicators to the chosen detrending method and subsequent
hyper-parameters. This observation points to the sensitivity of CSD analysis towards the chosen detrending method,
emphasizing the importance of accurately removing all long-term trends to avoid false positives. Adjusting the bandwidth
could be a solution, but this risks eliminating valuable residual data. An innovative approach involves incorporating
stick inputs into the CSD inference. When stick inputs for roll, pitch and yaw remain at a neutral (1500[𝜇𝑠]) position
for over 450 time steps, a drop in AR1 is noted. This can be observed in the orange overlay on top of the AR1 time
series in Figure 11. This is a binary indicator for stick input neutrality over the last 450 time-steps : a ’0’ indicating
absence of stick inputs, and ’1’ indicating presence. Hence, gyro rate AR1 values should only be considered when no
stick input has been registered in the preceding 450 time steps. Implementing this criterion facilitates the use of the AR1
indicator as an informative CSD, provided the detrending method adequately eliminates (most) long-term trends.
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Fig. 10 Yaw-LoC (CineGo) gyro rates detrending results. Each row denotes a rotational rate axis, the first
column depicts the original signal in blue, overlaid with the estimated long-term trend in orange. The second
column depicts the detrended signal. Both column features a green dotted line indicating the commencement of
the LoC maneuver.

Fig. 11 Yaw-LoC (CineGo) gyro rates CSD results. Each row denotes a rotational rate axis, the first column
depicts the AR1 time-series in blue, overlaid with the stick neutrality condition in orange. The second column
depicts the IQR time series in blue, overlaid with the lag indicator signal 𝜏. Both column features a green dotted
line indicating the commencement of the LoC maneuver.

IQR also appears to exhibit EWS, utilizing a smaller window and showing less sensitivity to the detrending method.
Unlike AR1, where minor oscillations in roll and pitch lead to sharp increases, IQR remains stable until the onset of LoC,
highlighting its effectiveness in EWS detection. However, the main limitation of IQR is its inconsistent range. Unlike
AR1, which has a defined range of [−1, 1], IQR exhibits a variable range, making the setting of precise thresholds prior
to observing the LoC maneuver challenging without comprehensive understanding of its dynamics during the LoC
maneuver. Thus in this research, AR1 is prioritized as the primary indicator due to its fixed range and direct correlation
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with LoC events, and the IQR serves as a supportive measure combined with measured rotor speed’s CSD results, to
enhance accuracy by reducing the likelihood of false positives.

Fig. 12 Yaw-LoC (CineGo) measured rotor RPMs detrending results. Each row denotes a rotor, the first column
depicts the original signal in blue, overlaid with the estimated long-term trend in orange. The second column
depicts the detrended signal. Both column features a green dotted line indicating the commencement of the LoC
maneuver.

Fig. 13 Yaw-LoC (CineGo) measured rotor RPMs CSD results. Each row denotes a rotor, the first column
depicts the AR1 time-series in blue. The second column depicts the IQR time series in blue. Both column features
a green dotted line indicating the commencement of the LoC maneuver, and a red line showing the lag indicator
signal 𝜏.
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The measured rotor speed’s CSD analysis illustrated in Figure 12 and Figure 13 reveals these signals also exhibit
an increase in AR1 as a LoC event is approached. While measured rotor speed values can be considered for LoC
detection, their suitability as an EWS is less clear. This is primarily because, the increase in AR1 tends to be more
abrupt. Consequently, this study gives precedence to gyro rates as the main indicator for EWS due to their more gradual
increase in AR1. measured rotor speed values, on the other hand, are utilized as supplementary indicator to improve
LoC detection rates.

The trends in Figure 11 suggest a sensitivity to non-LoC maneuvers. Thus, Figure 14 presents the CSD analysis
on the SysID flights, revealing two significant findings. The first observation concerns AR1 spikes during non-LoC
maneuvers. Similar to the LoC flights, the detrending approach appears insufficient in completely eliminating long-term
trends. In addition, the SysID flights includes maneuvers that were coupled in roll, pitch, and yaw, resulting in elevated
AR1 values for all axes. Implementing the strategy of ensuring stick neutrality over the preceding 450 time-steps as a
means to filter out false positives, as demonstrated by the orange overlay in the third column of Figure 14, helps in
mitigating this issue. Moreover, the IQR values during SysID flights do not increase as significantly as observed during
LoC flights. This smaller increase in variability is also aids in distinguishing between false positives in nominal and
LoC maneuvers.

The second observation regards the absence of phase lag in the nominal SysID Flights, supporting the utility of the
actuator phase lag indicator. This consistency in lag detection, correlating with increasing AR1 noted in LoC flights
(Figure 11 and Figure 13). Moreover, the lag relates the system dynamics to traditional notions of stability, such as
phase margin and delay margin, thus providing a robust measure against false positives. These two key results lend
credibility to the actuator indicator.

Nonetheless, a notable deviation emerges when applying the time-delay indicator to the DataCan flights, marked
by an absence of detected lag during LoC events. This absence of lag suggests a potential link between the actuator
size and 𝜏, suggesting that larger (and slower) actuators would inherently exhibit higher latency. The CSD outputs for
the DataCan flights can be found in the Appendix A.4. A similar behavior was observed in the Roll-LoC, and will be
elaborated further in subsection V.B.

Fig. 14 Yaw-SysID (CineGo) gyro rates CSD results. Each row denotes a rotational rate axis, the first column
depicts the AR1 time-series in blue, overlaid with the stick neutrality condition in orange. The second column
depicts the IQR time series in blue, overlaid with the lag indicator signal 𝜏 in red.
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B. CSD Results - Roll LoC
Figure 15 and Figure 16 show the gyro CSD analysis from a Gimballed-LoC flight-test, demonstrating a more

consistent AR1 increase compared to the Yaw-LoC CSD outcomes, without detecting false positives before the maneuver.
This difference is primarily due to the quadrotor’s gimbal setup, which eliminates the need for attitude corrections,
or the impact of minor perturbations on the gyro rates. Additionally, the absence of detected phase lag supports the
insights regarding actuator size and detectability of phase lag (described in subsection V.A).

Fig. 15 Roll-LoC gyro rates detrending results. Each row denotes a rotational rate axis, the first column depicts
the original signal in blue, overlaid with the estimated long-term trend in orange. The second column depicts the
detrended signal. Both column features a green dotted line indicating the beginning and the end of the LoC
maneuver.

Fig. 16 Roll-LoC gyro rates CSD results. Each row denotes a rotational rate axis, the first column depicts the
AR1 time-series in blue. The second column depicts the IQR time series in blue. Both column features a green
dotted line indicating the beginning and the end of the LoC maneuver, and a red line depicting the lag indicator
signal 𝜏.

Similarly to the Yaw-LoC scenario, there is a consistent pattern where AR1 initially increases before experiencing a
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decrease shortly after the start of the LoC maneuver. This pattern is visible in the AR1 time series for pitch and yaw
rates, shown in the second and third rows of Figure 16, respectively, suggesting coupling effects. In the Roll-induced
LoC, these coupling effects appear more pronounced, as illustrated by the detrended time series in the second column.
There is a significant coupling effect between the roll and yaw axes, initially maintaining a steady yaw rate that begins
to escalate after one second. This escalation in yaw rate further intensifies pitch oscillations, leading to a peak three
seconds after the maneuver onset. Following this peak, the flight controller kills the integrator (I) gain for yaw to prevent
integrator wind-up, effectively halting the rolling maneuver, as evidenced by the drop in roll rate in Figure 15. The
distinctions in LoC dynamics between roll and yaw will be explored in greater detail in subsection VI.A.

Fig. 17 Roll-LoC measured rotor speed’s detrending results. Each row denotes a rotor, the first column depicts
the original signal in blue, overlaid with the estimated long-term trend in orange. The second column depicts the
detrended signal. Both column features a green dotted line indicating the beginning and the end of the LoC
maneuver.

Fig. 18 Roll-LoC measured rotor speed’s CSD results. Each row denotes a rotor, the first column depicts the
AR1 time-series in blue. The second column depicts the IQR time series in blue. Both column features a green
dotted line indicating the beginning and the end of the LoC maneuver, and a red line depicting the lag indicator
signal 𝜏.
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Figure 17 and Figure 18 presents the detrending and CSD results on the measured rotor speeds. Unlike the Yaw-LoC
scenarios, the measured rotor speed in Roll-LoC does not effectively reflect LoC. This discrepancy may stem from the
nature of Roll-LoC, compared to Yaw-LoC. In Yaw-LoC, the controller typically induces oscillations as a corrective
measure, resulting in rapid throttle changes. However, in Roll-LoC, the oscillations arise not from the controller actions,
but from the coupling between roll and yaw. Consequently, there are fewer throttle changes in the roll LoC data, which
means that the rotor speeds do not accurately reflect LoC. Additionally, compared to the Yaw-LoC, Roll-LoC uses a
higher cutoff frequency ( 𝑓𝑐) of 15[𝐻𝑧], which may lead to the removal of some residual oscillations during detrending.

Figure 20 and Figure 22 present the CSD analysis for the nominal rolling SysID maneuver. It is important to note
that the AR1 time series begins during the maneuver, making the high initial correlations in the pitch rate unsurprising.
The CSD results demonstrate its ability to distinguish false positives in nominal and LoC maneuvers, evidenced by the
pitch and yaw AR1 values rising only to [0.7, 0.4] respectively. For the IQR, observations show that in the SysID flights,
gyro rates show little variability, as reflected by lower IQR values relative to those in the LoC flights. The CSD results
on the gyro rates highlights it’s effectiveness in distinguishing between false positives in nominal and LoC maneuvers.

Additionally, while the measured rotor speeds do not exhibit any increase in AR1, their IQR values seem to increase
similarly to those observed in the LoC flights. This suggests that the IQR of measured rotor speeds may not be an
adequate indicator of LoC.

Fig. 19 Roll-SysID gyro rates detrending results. Each row denotes a rotational rate axis, the first column
depicts the original signal in blue, overlaid with the estimated long-term trend in orange. The second column
depicts the detrended signal.
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Fig. 20 Roll-SysID gyro rates CSD results. Each row denotes a rotational rate axis, the first column depicts the
AR1 time-series in blue. The second column depicts the IQR time series in blue. Both column features a red line
depicting the lag indicator signal 𝜏.

Fig. 21 Roll-SysID measured rotor speed’s detrending results. Each row denotes a rotor, the first column
depicts the original signal in blue, overlaid with the estimated long-term trend in orange. The second column
depicts the detrended signal.
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Fig. 22 Roll-SysID measured rotor speed’s CSD results. Each row denotes a rotor, the first column depicts the
AR1 time-series in blue. The second column depicts the IQR time series in blue. Both column features a red line
depicting the lag indicator signal 𝜏.

C. FLIS Results - Yaw LoC

Fig. 23 Fuzzy LoC Indicator for Yaw-LoC (CineGo).
The color-coded regions indicate stability and risk lev-
els: green (stable), yellow (mid-level stability), orange
(early warning signal), and red (LoC). The maneuver
initiation is marked by the vertical green dashed line.
The blue line depicts the Fuzzy LoC Indicator based on
Gyro-AR1 rules, while the red line is based on CSD-𝜏
rule set. The onset of ATT-based LoC detection is
indicated by the vertical orange dashed line.

Fig. 24 LoC detection method comparison for Yaw-
LoC (CineGo). Displayed are: Gyro-AR1 (blue), CSD-
𝜏 (red), and attitude-based definition of [17]. The first
row visualizes LoC detection timing relative to the start
of the maneuver. The second and third row overlay
roll and pitch responses of 96 flights in grey, with a
sample LoC flight in black. Colored dots indicate the
moment LoC was detected by each method.
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Figure 23 displays the FLIS output, demonstrating the FLIS’ capability to quantify the quadrotor’s proximity to an
upcoming LoC event. Three distinct LoC definitions are depicted:

1) Gyro-AR1 based LoC detection (Blue) - LoC defined as the moment Gyro AR1 exceeds 0.8, provided that the
stick-neutrality condition is met.

2) CSD-𝜏 based LoC detection (Red) - LoC defined as the moment 𝑡𝜏 exceeds 50.
3) ATT based LoC detection (Orange) - LoC defined as the time when roll or pitch angle exceeds, and continues

to exceed, 90 degrees after the start of the yawing maneuver[17]

As expected, prior to the maneuver, the LoC indicator remains in the stable (green) region. Upon initiation of the
maneuver, the indicator swiftly transitions into the mid-stable (yellow) region, progressively increasing until it reaches
the EWS (orange) region, and finally to the LoC (red) region. Generally, the Gyro-AR1 method exhibits earlier detection
compared to the CSD-𝜏 based method.

This demonstrates the FLIS’s ability to effectively interpret multiple indicators, as shown by the CSD-𝜏 method,
which integrates Gyro IQR, measured rotor speed AR1, and time delay duration 𝑡𝜏 . This combination of indicators
reduces the likelihood of false positives (FP) and improves missed detection (false negatives).

Using the Gyro-AR1 based LoC detection, the quadrotor transitions from a stable to an LoC state in 1.09 seconds
from the onset of the yaw maneuver. The CSD-𝜏 based definition identifies LoC after 1.72 seconds from the maneuver’s
start, and the Attitude based definition identifies LoC after 2.15 seconds from the maneuver start.

Additionally, Figure 24 compares detection times across all 96 (CineGo) LoC flights for the three different LoC
definitions. These results reveal two main advantages of the Gyro-AR1 and CSD-𝜏 based LoC definitions over the
ATT (Attitude) based definition. Firstly, a significant improvement in detection rate is observed, with the ATT-based
definition achieving a 31% detection rate, while the Gyro-AR1 and CSD-𝜏 based LoC definitions achieve detection
rates of 93% and 96%, respectively. The lower detection rate of the attitude-based approach is attributed to its reliance
on a 90-degree attitude criterion, which is often unmet before a drone crash.

Secondly, both the Gyro-AR1 and CSD-𝜏 based methods offer earlier LoC detection by an average of 0.97 seconds
and 0.4 seconds, respectively, compared to the ATT-based definition. Considering the rapid dynamics of quadrotors,
this additional time for recovery is crucial, potentially making the difference between a drone’s recovery and crash. This
extension of available recovery time, as well as a high detection rate, underscores the effectiveness of CSD as an EWS
indicator.

A notable constraint of the Gyro-AR1 based rules is their sensitivity to the detrending methodology used. To
counteract this, a stick-neutrality condition was integrated when applying the Gyro-AR1 rules. Nevertheless, this
approach is challenged by SysID flight data, involving nominal maneuvers that engage stick inputs across all three axes,
rendering the Gyro-AR1 rules inapplicable. To address this limitation, the FLIS was employed to combine both the
Gyro-AR1 with the CSD-𝜏 based rules, thereby enabling its application to the SysID data. The combined model gives
priority to Gyro-AR1 rules, but switches to CSD-𝜏 rules when the Gyro-Ar1 is inapplicable due to violations of the
stick-neutrality condition. These results are summarized in Table 3

Subsequent observations from this combined method indicated a 99% detection rate and an 8% false positive rate,
underscoring the effectiveness of integrating both rule sets within the FLIS framework for enhanced LoC detection.

Table 3 LoC Detection Time Distribution Comparison between Gyro-AR1 versus CSD-𝜏 versus ATT based
LoC Definitions

Gyro-AR1 CSD-𝜏 ATT
Mean Var TP FP Mean Var TP FP Mean Var TP FP
1.205 [s] 0.027 [s2] 93% 8% 1.764 [s] 0.032 [s2] 96% 8% 2.172 [s] 0.197 [s2] 31% 0%
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D. FLIS Results - Roll LoC

Fig. 25 Fuzzy LoC Indicator for Roll-LoC. The color-
coded regions indicate stability and risk levels: green
(stable), yellow (mid-level stability), orange (early warn-
ing signal), and red (LoC). The maneuver initiation is
marked by the vertical green dashed line. The blue line
depicts the Fuzzy LoC Indicator based on CSD rules
(𝑝, 𝑞, 𝑟, 𝜔𝑖). The onset of ATT-based LoC detection is
indicated by the vertical orange dashed line.

Fig. 26 LoC detection method comparison for Roll-
LoC. Displayed are: CSD (blue), and attitude-based
definition of [17]. The first row visualizes LoC detec-
tion timing relative to the start of the maneuver. The
second and third row overlay pitch and yaw responses
of 87 flights in gray, with a sample LoC flight in black.
Colored dots indicate the moment LoC was detected
by each method.

As highlighted in subsection V.B, the Roll-LoC maneuver exhibits no discernible lag between commanded and
actual RPMs, leading to the application of only two LoC definitions for Roll-LoC: a CSD-based definition and an
ATT-based definition from [17].

Figure 25 demonstrates the FLIS output for a Roll-LoC flight, where the quadrotor initially stays within the stable
region. Upon the initiation of the roll maneuver, it temporarily transitions into the mid-region due to the initial coupling
effect observed in subsection V.B, but soon returns to the stable green region. However, as the yaw rate begins to
escalate, the FLIS output steadily increases, advancing into the EWS region. The increasing yaw rate amplifies the pitch
oscillations until both approach instability, prompting the FLIS to signal a transition into the LoC region. The FLIS
identifies a LoC event 4.65 seconds after the roll maneuver begins, whereas the ATT-based definition identifies it 8.98
seconds after the roll maneuver begins.

Figure 26 presents the detection performance of the two LoC definitions on Roll-LoC dataset. In the Yaw-LoC
(CineGo) dataset, the application of CSD significantly improved detection rates relative to the ATT-based definition.
The ATT-based definition for Roll-LoC already achieves a 97% detection rate. This difference in detection rates, for the
same LoC definition, stems from the incorporation of the gimbal. Unlike in Yaw-LoC scenarios where drones often
crash before reaching the 90-degree attitude criterion, the gimbal ensures the quadrotor meets the LoC criteria without
crashing. Moreover, the distribution of detection times for Roll-LoC exhibit a broader range compared to Yaw-LoC,
ranging from 2 to 8 seconds, which is due to the dependency of time to LoC with max yaw rate. This will be elaborated
further in subsection VI.A

Table 4 LoC Detection Time Distribution Comparison between CSD versus ATT based LoC Definitions

CSD ATT
Mean Var TP FP Mean Var TP FP
3.500 [s] 3.604 [s2] 99% 9% 6.326 [s] 4.364 [s2] 96% 0%
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VI. Discussion
Combining the results outlined in the previous section, this section will discuss the fundamental differences in Roll

vs Yaw induced LoC dataset, analyzing 𝜏 and CSD as an EWS indicator, and finally, Fuzzy Logic as an EWS inference
system.

A. Roll vs Yaw induced LoC
The results from subsection V.A and subsection V.B highlight that both roll-induced and yaw-induced LoC share

similar CSD trends, despite distinct differences in their LoC dynamics. The dynamics of these LoC events differ,
particularly in how error accumulates. Recall that the essence of CSD lies in its ability to detect a system approaching a
critical transition, reflected on its slowed recovery after a small perturbation.

In the case of yaw-induced LoC, perturbations are introduced in roll and pitch oscillations stemming from the
"anti-gravity" feature of BetaFlight (the flight controller), which induces oscillations due to a misalignment between the
center of gravity (c.g) and the Inertial Measurement Unit (IMU). The high yaw rates results in translational accelerometer
measurements due to the c.g and IMU misalignment. Consequently, the flight controller misinterprets these readings
as disturbances in roll and pitch angles, endeavoring to counteract them, which induces oscillations around the roll
and pitch axes. At low rotational rates, or when the actuators are not saturated, these oscillations remain small and
manageable, not leading to LoC. However, at high rotational rates or under actuator saturation, oscillations intensify and
become unstable, thereby tying this mode of LoC to controller-induced LoC.

Conversely, roll-induced LoC introduces perturbations in yaw through the coupling of roll and yaw axis due to
gyroscopic precession. Gyroscopic precession, observed in rotating bodies, occurs where an applied force causes the
body to move in a direction perpendicular to the force’s direction [50]. This effect results from the conservation of
angular momentum and is commonly seen in gyroscopes and spinning objects like bicycle wheels, tops, and quadrotors
rotors [51].

Fig. 27 Free Body Diagram of Quadrotor expe-
riencing Gyroscopic Precession Fig. 28 Time to Max Yaw Rate vs Time to LoC

The visual representation of this effect is provided in Figure 27. In an ideal scenario, a quadrotor mounted on a
gimbal and executing a pure roll maneuver would have the resultant torque vector 𝑇𝑟𝑜𝑙𝑙 placed in the 𝑥 direction, and as
roll rate increases, this would increase the angular momentum in the 𝑥 axis direction, without causing any translational
movement since the quadrotor is placed on a gimbal. However, in reality, c.g. misalignment occur, such as an improperly
placed battery, which introduces a new torque vector 𝑇𝑤𝑒𝑖𝑔ℎ𝑡 in the 𝑦 direction. This torque, when combined with the
angular momentum from the rolling maneuver, redirects this angular momentum around the 𝑧 axis, causing a yawing
motion (𝑇𝑝𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛). As yawing intensifies, it also triggers pitch oscillations, culminating in LoC when BetaFlight
deactivates the I term to avoid integrator windup, halting the roll motion. Although roll-induced LoC also ultimately
occurs due to the controller killing the I term, the reasons differ: for Yaw-LoC, the anti-gravity feature induces error
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accumulation due to corrective measures, whereas for Roll-LoC, the error accumulates due to the coupling of roll and
yaw.

Further analysis explored the relationship between time to LoC and the time taken for the quadrotor to achieve the
maximum yaw rate, as depicted in Figure 28. A linear correlation is observed between the time to max yaw rate and
time to LoC, solidifying our insights that gyroscopic precision-induced yawing is the primary driver of the roll-induced
LoC dynamics. This can also be used to explain the wider spread in LoC detection times between roll-induced and
yaw-induced LoC found in Figure 26. Variations in the c.g., due to battery placement after each flight run, affect the
torque magnitude, contributing to the spread in LoC detection times shown.

Integrating these findings from the Roll-induced and Yaw-induced LoC maneuvers, a key takeaway emerges: despite
the different dynamics behind each LoC type, CSD analysis consistently identifies trends that appear to apply across
various LoC scenarios. This outcome highlights the effectiveness and broad applicability of CSD as a method for
detecting potential LoC events, regardless of their specific causes or the maneuvers involved.

B. Time Delay Indicator
Saturation causes non-linear actuator responses, leading to disproportionate control inputs, phase lags, and system

instability. When saturated, actuators may fail to adjust, causing oscillations or deviations from intended trajectories,
resulting in erratic behavior. Given these effects, especially when dealing with LoC due to high rotational rates,
indicators of actuator saturation or phase lag become effective for defining a LoC event. For the GEPRO (CineGo)
quadrotor, CSD analysis from subsection V.A confirmed that the time-delay variable 𝜏 is an effective definition of LoC.
Even with some false positives in SysID flights, the use of 𝜏 to obtain the delay duration variable 𝑡𝜏 , defining LoC as a
phase lag persisting over 50 time-steps, has proven to improve its reliability as a LoC definition.

However, the TinyWhoop (DataCan) and Gimbal drone analyses from subsection V.A and subsection V.B indicated
no (measureable) phase lag in smaller drones, pointing to a correlation between actuator size and 𝜏 detection. This
seems plausible, since larger actuators, with their mass distributed away from the rotation axis, have a higher moment of
inertia and thus exhibit slower response times. In contrast, smaller actuators exhibit lower inertia and quicker response
times.

Considering this, increasing the sampling rate for smaller drones could offer a finer resolution for detecting shorter
lags, given their rapid response capabilities. Ideally, CSD would serve as an EWS indicator and LoC detector, with 𝑡𝜏
acting as a redundancy layer to minimize false positives, and increase detection rates. Future research should delve
deeper into the time delay variable, exploring how variations in sampling rate or different controller designs might
influence lag detection efficacy. Additionally, testing Roll-LoC maneuvers on larger drones with gimbal setups could
substantiate the assumption that 𝜏 detection correlates with actuator size and not LoC mode, ensuring that the results are
applicable across various drone configurations.

C. Critical Slowing Down as an Early Warning Signal
CSD has emerged as an effective EWS for detecting quadrotor LoC. Its straightforward application, computational

efficiency, and reliance solely on data from onboard IMUs, without the need for precise state estimation via external
devices like OptiTrack, make it a practical choice. Table 8 highlights the comparative effectiveness of different LoC
definitions: CSD-based, 𝜏-based, and ATT-based. The insight from the table lead to several conclusions:

Table 5 LoC Detection Time Distribution Comparison between CSD-FLIS versus ATT based LoC Definitions

Gyro-AR1 CSD-𝜏 ATT
Mean
[s]

Var
[s2]

TP
[%]

FP
[%]

Mean
[s]

Var
[s2]

TP
[%]

FP
[%]

Mean
[s]

Var
[s2]

TP
[%]

FP
[%]

Yaw LoC 1.205 0.027 93 8 1.764 0.032 96 8 2.172 0.197 31 0
Roll LoC 3.500 3.604 99 9 - - - - 6.326 4.364 96 0

1) Detection Rates - The Gyro-AR1 and CSD-𝜏 based definitions demonstrate high detection rates, with Gyro-AR1
achieving detection rates of 93% and 99% for yaw and roll induced LoC scenarios, respectively. This marks a
significant improvement over the ATT-based definition [17], which was foundational for exploring the use of
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neural networks to predict time-to-LoC in quadrotors. Incorporating a consistent and non-binary LoC definition
could potentially enhance the generalizability and performance of these neural networks.

2) Prediction Time - For yaw-induced LoC, the ATT-based definition detects LoC on average 2.172 seconds
post-maneuver. The CSD-𝜏 based approach improves this by 0.4 seconds, averaging detection at 1.764 seconds.
The Gyro-AR1 methodology advances this even further, reducing the detection time to just 1.205 seconds, an
entire second earlier than the ATT-based definition. This additional reaction time could mean the difference
between a drone’s recovery or crash.

3) Generalizability - CSD has shown to be broadly applicable, effectively serving as an EWS for LoC events across
various quadrotor size/weight and LoC modes.

4) Evaluation of CSD Indicators - Gyro AR1 appears to provide the best EWS among the investigated indicators,
offering the earliest detection of LoC, ease of use due to its natural bound between [-1,1], and consistency across
different systems.

Nonetheless, a notable limitation exists: in scenarios where stick inputs occur across all axes simultaneously, the
system’s current approach falters, unable to interpret any of the CSD results. An ideal solution would use stick inputs to
detrend gyro rates, ensuring that CSD analysis is focused on external system influences.

Theoretically, gyro error should only reflect oscillations due to external perturbations, as intentional maneuvers
should not generate error. However, in practice, this is not the case. For instance, a step input will always be perceived
as a large error due to the quadrotor’s inability to meet sudden reference changes instantly. This discrepancy occurs
because the sampling rate for gyro errors often exceeds the quadrotor’s natural response rate to control inputs, resulting
in transient differences between intended and actual gyro rates being recorded as errors. This complicates distinguishing
between disturbances and control reference changes.

This complexity indicates the need for either improved detrending methods to distinguish between control reference
changes and oscillations due to external disturbances, or to combine multiple metrics in order to describe the quadrotor’s
stability in various flight scenarios. Future research should aim to address these challenges, refining the accuracy and
reliability of CSD as a predictive tool for LoC in quadrotors.

D. Fuzzy Logic as Early Warning Signal Inference System
Fuzzy logic has been employed in this research as a method to interpret CSD outputs. Its main advantages include

simplicity in setup, the ability to aggregate multiple EWS indicators, and the conversion of complex AR1 and IQR
values into more understandable linguistic variables. Furthermore, fuzzy logic’s allowance for overlapping membership
functions provides a margin of error when interpreting AR1/IQR values, offering flexibility near critical thresholds.

One of the biggest advantages of FLIS is the ability to implement domain expertise, particularly in two areas. First,
insights from the CSD analysis underscore the necessity of the stick-neutrality condition when inferring the Gyro-AR1
results. Second, it’s acknowledged that an AR1 value of 1 signals a tipping point, whereas a value of 0 indicates
stability; however, when noise is considered, tipping is likely just below 1. This enables the precise placement of
LoC membership functions slightly under an AR1 value of 1. Therefore, these qualitative domain knowledge can be
incorporated into a quantitative metric.

The benefit of using FLIS to interpret multiple EWS can be showcased in Table 8. As can be seen, the detection
times remain the same because the Gyro-AR1 rules usually detect LoC before the CSD-𝜏 based rules; however, the
main benefit of this is the generalizability to non-LoC maneuvers as well. The FLIS allows the analysis of additional
flight data containing nominal SysID maneuvers that are coupled in all three axis. By combining both sets of data, the
FLIS has a 99% detection rate and an 8% false positive rate from 96 LoC flights, and 67 SysID flights.

Since the FLIS was developed using SciKit’s Fuzzy logic toolbox, the main tasks involved defining the Database and
Rule Base. These define the membership functions, their thresholds, and the fuzzy rules. The database translates an
AR1 value of 0.2, into a ’stable’ linguistic value, aiding in verifying the accuracy of set thresholds through the FLIS
outputs. Correctly set thresholds should reflect the quadrotor’s actual behavior, indicating stability prior to LoC and
transitioning from stable to LoC post-maneuver.
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Fig. 29 Output of the Rule Activation Detection Algorithm output for a Yaw-LoC Flight (CineGo). The four
subplots display the temporal distribution of rule activation within the time-series, with a red vertical line
marking the start of the yaw maneuver. The legend on the right depicts each rule with its color coding and the
total number of activation through the dataset.

For the fuzzy rules, two aspects need verification : the timing of rule activation in flight data, and the interrelationship
of rules to ensure no conflicts. However, the pre-made toolbox treats FLIS somewhat as a black-box, not providing any
insights into rule activation. To address this, two key measures were implemented: a rule activation detection algorithm
to track the activation of rules, and a cross-correlation analysis to investigate the relationships between all the rules.

The rule activation detection algorithm is designed to verify that the fuzzy rules trigger at appropriate moments in
the flight data timeline. Specifically, Stable (STA) rules should activate before the maneuver begins, Mid rules before
and slightly after the start of the maneuver, and Early Warning Signal (EWS)/Loss of Control (LoC) rules activate only
after the maneuver has started. By creating a dictionary containing all rules, their antecedents, and corresponding
membership values, each FLIS iteration’s membership states are calculated to determine the active rules. An example of
the outcomes for an arbitrary LoC flight is depicted in Figure 29. Indeed, it can be seen that the rules are activating at
the correct phases, aligning with the intended criteria. A comprehensive distribution analysis of rule activation for all
the flight data, detailed in Appendix A.5, further confirms that each rule activates at the appropriate stage relative to the
maneuver’s initiation.

Subsequently, the relationship between each rule was examined through cross-correlation analysis. This analysis
aims to understand how rules interact with each other, where a high correlation between two rules suggests simultaneous
activation. Ideally, rules within the same group should exhibit high correlation, while rules from different groups
should show low or negative correlation. This pattern is visible in the Figure 30, especially near the diagonal where
highly correlated rules signify intra-group consistency, while lower off-diagonal correlations indicate proper segregation
between different rule groups. It’s noteworthy that the bottom left corner of the figure shows a relatively high correlation
between EWS004(Yaw) and MID002(Yaw), despite them belonging to different rule groups. This anomaly can be
attributed to certain Mid rules being designed to trigger immediately post-maneuver, coupled with the inherent overlap
in fuzzy membership functions allowing antecedents to fall within two categories. This overlap explains why some MID
and EWS rules exhibit unexpectedly high correlations. Similar correlation results can be seen for the Yaw-LoC, which
can be found in Appendix A.5.
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Fig. 30 Correlation Matrix of Fuzzy Rules for Roll-LoC

These methodologies for analyzing rule activation and inter-rule correlations offer deep insights into the fuzzy rules’
operational effectiveness and the absence conflicts between rules. Overall, the FLIS demonstrates a robust capacity for
interpreting CSD outputs, evidenced by the performance metrics in Table 8. This approach not only complements but
also extends van der Pluĳm’s [11] research on using Kendall Tau for AR1 value interpretation, showcasing the FLIS’s
ability to integrate multiple variables, set nuanced boundaries for different AR1 levels, and effectively prevent false
positives.

VII. Conclusion
This research embarked on addressing the critical challenge of Loss-of-Control (LoC) in quadrotors, a prevalent

cause of drone failures, through the use of Critical Slowing Down (CSD) theory and a Fuzzy Logic Inference System
(FLIS). The study focused on two different LoC scenarios induced by demanding high rotational rates: roll induced
LoC (Roll-LoC) and yaw induced LoC (Yaw-LoC). The Yaw-LoC data were collected from a real flight of a GEPRO
quadrotor, and the Roll-LoC data generated through experiments on a custom-built drone mounted on a 3-axis quadrotor
gimbal testing rig. Initial findings identified gyro rates and rotor rpm values as highly indicative CSD, thus chosen for
the subsequent analysis, while kernel regression and high pass filters effectively eliminated long-term trends, yielding
accurate residual data for CSD analysis.

Comparison of CSD outcomes for two different drones undergoing distinct LoC maneuvers revealed similar CSD
patterns, despite differences in LoC characteristics, as well as drone weight and size. Besides CSD, time delay, an
indicator reflecting the actuator phase lag, served as an additional LoC indicator. However, the detection of time delays
was only observed in larger quadrotors, suggesting a correlation between phase lag detection and actuator size. Future
work should seek to investigate the relationship between actuator size and the detectability of phase lag, if any.

CSD findings were then inferred using FLIS, translating variables such as AR1 and IQR from gyro rates and
measured rotor speeds, along with the time delay variable, into a single fuzzy value [0,1] indicative of the quadrotor’s
proximity to a LoC event. The CSD-FLIS framework proved effective as a general LoC detection method, with high
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detection rates (True Positive: 96% for Yaw-LoC, 98% for Roll-LoC) and low missed detection rates (False Positive:
8% for Yaw-LoC, 9% for Roll-LoC), applicable across different quadrotors and LoC modes. Moreover, the CSD-FLIS
framework was able to improve the detection rate compared to the previous ATT-based definition, which had a detection
rate of 31%.

Beyond detection rates, the CSD-FLIS framework also excelled in prediction time compared to the ATT-based
definition. On average, for Yaw-LoC, the CSD-FLIS detected a LoC event 1.2 seconds after the maneuver, whereas the
ATT-based definition detected it 2.2 seconds later. For Roll-LoC, the framework detected a LoC event 3.5 seconds after
the maneuver, compared to 6.3 seconds with the ATT-based definition. These earlier detection times enable more LoC
experiments to be conducted without risking quadrotor crashes, facilitating a more sustainable approach to generating
LoC data.

The main limitation of this method is its sensitivity to the chosen detrending method, impacting its vulnerability to
false positives. Two potential solutions were proposed: firstly, use of stick inputs to define the overall trend for signal
detrending, to only capture the residual oscillations attributed to movements in axes other than the one being directly
manipulated. Secondly, further exploration into time-delay variable is recommended, to enhance phase lag detection in
smaller quadrotors, possibly through increased sampling rates.
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Appendix

A.1 - Detrending Analysis

Fig. 31 Comparison of various detrending methods applied to gyro rates and their corresponding AR1 and
IQR time-series
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Fig. 32 Comparison of various detrending methods applied to measured RPM (debug) and their corresponding
AR1 and IQR time-series
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A.2 - Algorithms

Algorithm 1 Update Delay Duration
1: function UpdateDelayDuration(tau, delay_duration, zero_delay_count)
2: if time_delay = 0 then
3: zero_delay_count← zero_delay_count + 1 ⊲ Check if tau is 0 and update zero_delay_count or reset it
4: else
5: zero_delay_count← 0 ⊲ Reset counter if time_delay is not 0
6: end if
7: if zero_delay_count > 50 then
8: delay_duration← 0
9: zero_delay_count← 0 ⊲ Reset the zero delay count for next time

10: else if time_delay > 4 then ⊲ Update delay_duration based on tau value
11: if time_delay < 10 then
12: delay_duration← delay_duration + 1
13: else if 10 ≤ time_delay < 20 then
14: delay_duration← delay_duration + 2
15: else if time_delay ≥ 20 then
16: delay_duration← delay_duration + 3
17: end if
18: end if
19: return delay_duration, zero_delay_count
20: end function
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Algorithm 2 Kernel Regression and AR(1) Calculation
1: function KR_and_AR1(𝑦, 𝑡𝑖𝑚𝑒, 𝑏𝑤, 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒, 𝑠𝑡𝑒𝑝, 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒, 𝑙𝑜𝑔𝑔𝑒𝑟 , 𝑏𝑤_𝑖𝑛𝑐 = 0.001, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 500)
2: 𝑦_𝑑𝑒𝑡𝑟𝑒𝑛𝑑 ← empty_like(𝑦)
3: 𝑦_𝑡𝑟𝑒𝑛𝑑 ← empty_like(𝑦)
4: 𝑎𝑟1_𝑣𝑎𝑙𝑢𝑒𝑠← empty((𝑦.𝑠ℎ𝑎𝑝𝑒[0],max(0, (y.shape[1] − 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒)//𝑠𝑡𝑒𝑝)))
5: for 𝑖 = 0 to 𝑦.𝑠ℎ𝑎𝑝𝑒[0] − 1 do
6: 𝑏𝑤_𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ← 𝑏𝑤 [𝑖]
7: 𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑_𝑠𝑒𝑟𝑖𝑒𝑠← array( [])
8: 𝑡𝑟𝑒𝑛𝑑_𝑠𝑒𝑟𝑖𝑒𝑠← array( [])
9: 𝑎𝑟1_𝑠𝑒𝑟𝑖𝑒𝑠← array( [])

10: for 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 0 to y.shape[1] − 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 step 𝑠𝑡𝑒𝑝 do
11: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 > y.shape[1] then
12: continue ⊲ Ensure we have a full window
13: end if
14: 𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑_𝑑𝑎𝑡𝑎 ← 𝑦[𝑖, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒]
15: 𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑_𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒[𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒]
16: 𝑘𝑅𝑒𝑔 ← KernelReg(𝑒𝑛𝑑𝑜𝑔 = 𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑_𝑑𝑎𝑡𝑎, 𝑒𝑥𝑜𝑔 = 𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑_𝑡𝑖𝑚𝑒, 𝑣𝑎𝑟_𝑡𝑦𝑝𝑒 = 𝑐, 𝑏𝑤 =

[𝑏𝑤_𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑], 𝑟𝑒𝑔_𝑡𝑦𝑝𝑒 = 𝑙𝑐)
17: 𝑓 𝑖𝑡𝑡𝑒𝑑, _← 𝑘𝑅𝑒𝑔. 𝑓 𝑖𝑡 (𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑_𝑡𝑖𝑚𝑒)
18: 𝑤𝑖𝑛𝑑𝑜𝑤_𝑡𝑟𝑒𝑛𝑑 ← 𝑓 𝑖𝑡𝑡𝑒𝑑 ⊲ Windowed Trend Line
19: 𝑤𝑖𝑛𝑑𝑜𝑤_𝑑𝑒𝑡𝑟𝑒𝑛𝑑 ← 𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑_𝑑𝑎𝑡𝑎 − 𝑤𝑖𝑛𝑑𝑜𝑤_𝑡𝑟𝑒𝑛𝑑 ⊲ Windowed Detrend Line
20: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 0 then ⊲ Keep everything for first window
21: 𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑_𝑠𝑒𝑟𝑖𝑒𝑠← concatenate(𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑_𝑠𝑒𝑟𝑖𝑒𝑠, 𝑤𝑖𝑛𝑑𝑜𝑤_𝑑𝑒𝑡𝑟𝑒𝑛𝑑)
22: 𝑡𝑟𝑒𝑛𝑑_𝑠𝑒𝑟𝑖𝑒𝑠← concatenate(𝑡𝑟𝑒𝑛𝑑_𝑠𝑒𝑟𝑖𝑒𝑠, 𝑤𝑖𝑛𝑑𝑜𝑤_𝑡𝑟𝑒𝑛𝑑)
23: else ⊲ Only append last term for proceeding windows
24: 𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑_𝑠𝑒𝑟𝑖𝑒𝑠← append(𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑_𝑠𝑒𝑟𝑖𝑒𝑠, 𝑤𝑖𝑛𝑑𝑜𝑤_𝑑𝑒𝑡𝑟𝑒𝑛𝑑 [−1])
25: 𝑡𝑟𝑒𝑛𝑑_𝑠𝑒𝑟𝑖𝑒𝑠← append(𝑡𝑟𝑒𝑛𝑑_𝑠𝑒𝑟𝑖𝑒𝑠, 𝑤𝑖𝑛𝑑𝑜𝑤_𝑡𝑟𝑒𝑛𝑑 [−1])
26: end if
27: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 + 𝑠𝑡𝑒𝑝 ≤ y.shape[1] then ⊲ Last window
28: 𝑛𝑒𝑥𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 ← 𝑦[𝑖, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑠𝑡𝑒𝑝 : 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 + 𝑠𝑡𝑒𝑝] −

𝑤𝑖𝑛𝑑𝑜𝑤_𝑡𝑟𝑒𝑛𝑑
29: 𝐴𝑅𝐶𝑜𝑒 𝑓 𝑓 ← corr(𝑤𝑖𝑛𝑑𝑜𝑤_𝑑𝑒𝑡𝑟𝑒𝑛𝑑, 𝑛𝑒𝑥𝑡_𝑤𝑖𝑛𝑑𝑜𝑤)
30: 𝑎𝑟1_𝑠𝑒𝑟𝑖𝑒𝑠← append(𝑎𝑟1_𝑠𝑒𝑟𝑖𝑒𝑠, 𝐴𝑅𝐶𝑜𝑒 𝑓 𝑓 )
31: end if
32: end for
33: 𝑎𝑟1_𝑣𝑎𝑙𝑢𝑒𝑠[𝑖, : 𝑙𝑒𝑛(𝑎𝑟1_𝑠𝑒𝑟𝑖𝑒𝑠)] ← 𝑎𝑟1_𝑠𝑒𝑟𝑖𝑒𝑠[: len(𝑎𝑟1_𝑣𝑎𝑙𝑢𝑒𝑠[𝑖])]
34: 𝑦_𝑑𝑒𝑡𝑟𝑒𝑛𝑑 [𝑖, : 𝑙𝑒𝑛(𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑_𝑠𝑒𝑟𝑖𝑒𝑠)] ← 𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑_𝑠𝑒𝑟𝑖𝑒𝑠
35: 𝑦_𝑡𝑟𝑒𝑛𝑑 [𝑖, : 𝑙𝑒𝑛(𝑡𝑟𝑒𝑛𝑑_𝑠𝑒𝑟𝑖𝑒𝑠)] ← 𝑡𝑟𝑒𝑛𝑑_𝑠𝑒𝑟𝑖𝑒𝑠
36: end for
37: return 𝑦_𝑑𝑒𝑡𝑟𝑒𝑛𝑑, 𝑦_𝑡𝑟𝑒𝑛𝑑, 𝑎𝑟1_𝑣𝑎𝑙𝑢𝑒𝑠
38: end function
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Algorithm 3 HPF and AR(1) Calculation
1: function HPF_and_AR1(𝑦, 𝑡𝑖𝑚𝑒, 𝑐𝑢𝑡𝑜 𝑓 𝑓 , 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒, 𝑠𝑡𝑒𝑝, 𝑓 𝑠, 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒, 𝑙𝑜𝑔𝑔𝑒𝑟, 𝑜𝑟𝑑𝑒𝑟 = 5, 𝑏𝑤_𝑖𝑛𝑐 =

0.001, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 10)
2: 𝑦_ 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ← empty_like(𝑦)
3: 𝑦_𝑡𝑟𝑒𝑛𝑑 ← empty_like(𝑦)
4: 𝑎𝑟1_𝑣𝑎𝑙𝑢𝑒𝑠← empty(𝑦.𝑠ℎ𝑎𝑝𝑒[0])
5: for 𝑖 = 0 to 𝑦.𝑠ℎ𝑎𝑝𝑒[0] − 1 do
6: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 0
7: 𝑐𝑢𝑡𝑜 𝑓 𝑓 _𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ← 𝑐𝑢𝑡𝑜 𝑓 𝑓 [𝑖]
8: 𝑛𝑎𝑛← True
9: while 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 and 𝑛𝑎𝑛 do

10: 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝑑𝑎𝑡𝑎, 𝑡𝑟𝑒𝑛𝑑_𝑑𝑎𝑡𝑎 ← highpass_filter(𝑦[𝑖, :], 𝑐𝑢𝑡𝑜 𝑓 𝑓 _𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑, 𝑓 𝑠, 𝑜𝑟𝑑𝑒𝑟)
11: 𝑦_ 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 [𝑖, :] ← 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝑑𝑎𝑡𝑎
12: 𝑦_𝑡𝑟𝑒𝑛𝑑 [𝑖, :] ← 𝑡𝑟𝑒𝑛𝑑_𝑑𝑎𝑡𝑎
13: 𝑎𝑟1← indicatorsCSD(𝑦_ 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 [𝑖, :], 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒, 𝑠𝑡𝑒𝑝)
14: if not 𝑛𝑝.𝑖𝑠𝑛𝑎𝑛(𝑎𝑟1).𝑎𝑛𝑦() then
15: 𝑎𝑟1_𝑣𝑎𝑙𝑢𝑒𝑠[𝑖] ← 𝑎𝑟1
16: 𝑛𝑎𝑛← False
17: else
18: 𝑐𝑢𝑡𝑜 𝑓 𝑓 _𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ← 𝑐𝑢𝑡𝑜 𝑓 𝑓 _𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 + 𝑏𝑤_𝑖𝑛𝑐
19: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1
20: end if
21: end while
22: if 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 == 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 then
23: print("Warning: Max iterations reached for series ", 𝑖, ". AR1 autocorrelation may be NaN.")
24: else
25: print("Cutoff frequency adjusted to ", 𝑐𝑢𝑡𝑜 𝑓 𝑓 _𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑, " for series ", 𝑖, " with AR1 autocorrelation ",

𝑎𝑟1, ".")
26: logger.info("Chosen Cutoff Freq for ", 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒, " KR: ", 𝑐𝑢𝑡𝑜 𝑓 𝑓 _𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑)
27: end if
28: end for
29: if 𝑦_ 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑.𝑠ℎ𝑎𝑝𝑒[0] == 1 then
30: 𝑦_ 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ← 𝑦_ 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑.𝑟𝑒𝑠ℎ𝑎𝑝𝑒(−1)
31: 𝑦_𝑡𝑟𝑒𝑛𝑑 ← 𝑦_𝑡𝑟𝑒𝑛𝑑.𝑟𝑒𝑠ℎ𝑎𝑝𝑒(−1)
32: end if
33: return 𝑦_ 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑, 𝑦_𝑡𝑟𝑒𝑛𝑑, 𝑎𝑟1_𝑣𝑎𝑙𝑢𝑒𝑠
34: end function
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A.3 - Fuzzy Logic Inference System Architecture

Table 6: FLIS-Yaw Variable Description: membership functions, function shape, overlap intervals

Variable Range Step Membership Function Shape Interval

(𝑝, 𝑞, 𝑟) AR1 [-0.2, 1.0] 0.01

STABLE Trapezoidal [-0.4, -0.2, 0, 0.25]
MID Triangular [0.05, 0.4, 0.6]
EWS Trapezoidal [0.55, 0.6, 0.79, 0.79]
LoC Trapezoidal [0.80, 0.80, 1, 1]

(𝜔0, 𝜔1, 𝜔2, 𝜔3) AR1 [-0.6, 1.0] 0.01
STABLE Trapezoidal [-0.6, -0.6, 0.4, 0.5]
EWS Trapezoidal [0.4, 0.5, 1, 1]

(𝑝, 𝑞, 𝑟) IQR [0, 500] 1
STABLE Trapezoidal [0, 0, 0, 0]
EWS Trapezoidal [1, 1, 500, 500]

(Φ, Θ, Ψ) Inputs [0, 1] 0.1
STABLE Trapezoidal [0, 0, 0.3, 0.3]
LoC Trapezoidal [0.7, 0.7, 1, 1]

𝑡𝜏 [0, 1000] 0.1
STABLE Trapezoidal [0, 0, 0, 0]
EWS Triangular [0.8, 40, 40]
LoC Trapezoidal [41, 50, 1000, 1000]

Consequent [0, 1] 0.01

STABLE Trapezoidal [0, 0, 0.2, 0.3]
MID Trapezoidal [0.2, 0.3, 0.4, 0.5]
EWS Trapezoidal [0.45, 0.5, 0.8, 0.8]
LoC Triangular [0.8, 1, 1]

Table 7: FLIS-Roll Variable Description: membership functions, function shape, overlap intervals

Variable Range Step Membership Function Shape Interval

(𝑝, 𝑞, 𝑟) AR1 [-0.2, 1.0] 0.01

STABLE Trapezoidal [-0.4, -0.4, 0, 0.25]
MID Triangular [0.2, 0.4, 0.6]
EWS Trapezoidal [0.5, 0.6, 0.7, 0.8]
LoC Trapezoidal [0.8, 0.8, 1, 1]

(𝜔0, 𝜔1, 𝜔2, 𝜔3) AR1 [-0.6, 1.0] 0.01
STABLE Trapezoidal [-0.6, -0.6, 0.3, 0.32]
EWS Trapezoidal [0.3, 0.4, 1, 1]

(𝑝, 𝑞, 𝑟) IQR [0, 500] 1
STABLE Trapezoidal [0, 0, 4, 5]
EWS Trapezoidal [4, 5, 10, 15]
LoC Trapezoidal [10, 15, 500, 500]

(Φ, Θ, Ψ) Inputs [0, 1] 0.1
STABLE Trapezoidal [0, 0, 0.3, 0.3]
LoC Trapezoidal [0.7, 0.7, 1, 1]

Consequent [0, 1] 0.01

STABLE Trapezoidal [0, 0, 0.2, 0.3]
MID Trapezoidal [0.2, 0.3, 0.4, 0.5]
EWS Trapezoidal [0.45, 0.5, 0.8, 0.85]
LoC Triangular [0.8, 1, 1]
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Table 8: Fuzzy Rules for Yaw-LoC (Gyro-AR1 & CSD-𝜏). Columns: (1) Rule ID – identifies each rule, (2) Logic
Operator – the logical connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4)
Antecedents & Membership Values – the variables and their respective membership value to activate the rule,
(5) Consequent Membership Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of
the rule’s application.

Rule ID Condition Antecedents Membership Consequent Description

STA001
AND Φ Input stable

STABLE
If stick input is neutral, AND
gyro AR1 is stable, THEN
output is stable.AND 𝑝 AR1 stable

STA001
AND Θ Input stable

STABLE
If stick input is neutral, AND
gyro AR1 is stable, THEN
output is stable.AND 𝑞 AR1 stable

STA001
AND Ψ Input stable

STABLE
If stick input is neutral, AND
gyro AR1 is stable, THEN
output is stable.AND 𝑟 AR1 stable

STA002

AND Φ Input LoC

STABLE

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND ALL
measured rotor speed’s AR1
is stable, and no lag, THEN
output is stable.

AND 𝑝 IQR stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 stable

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

STA002

AND Θ Input LoC

STABLE

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND ALL
measured rotor speed’s AR1
is stable, and no lag, THEN
output is stable.

AND 𝑞 IQR stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 stable

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input \ 𝑟 AR1 ∼ (stable&LoC)

STA002

AND Ψ Input LoC

STABLE

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND ALL
measured rotor speed’s AR1
is stable, and no lag, THEN
output is stable.

AND 𝑟 IQR stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 stable

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)

STA003

AND Φ Input LoC

STABLE

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND ALL mea-
sured rotor speed’s AR1 is
stable, and no lag,THEN out-
put is stable.

AND 𝑝 IQR EWS
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 stable

OR
Θ Input 𝑞 AR1 ∼ (stable&LoC)
Ψ Input 𝑟 AR1 ∼ (stable&LoC)

Continued on next page
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Table 8: Fuzzy Rules for Yaw-LoC (Gyro-AR1 & CSD-𝜏). Columns: (1) Rule ID – identifies each rule, (2) Logic
Operator – the logical connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4)
Antecedents & Membership Values – the variables and their respective membership value to activate the rule,
(5) Consequent Membership Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of
the rule’s application. (Continued)

STA003

AND Θ Input LoC

STABLE

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND ALL mea-
sured rotor speed’s AR1 is
stable, and no lag,THEN out-
put is stable.

AND 𝑞 IQR EWS
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 stable

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input 𝑟 AR1 ∼ (stable&LoC)

MID001
AND Φ Input stable

MID
If stick input is neutral, AND
gyro AR1 is MID, THEN out-
put is mid.AND 𝑝 AR1 mid

MID001
AND Θ Input stable

MID
If stick input is neutral, AND
gyro AR1 is MID, THEN out-
put is mid.AND 𝑞 AR1 mid

MID001
AND Ψ Input stable

MID
If stick input is neutral, AND
gyro AR1 is MID, THEN out-
put is mid.AND 𝑟 AR1 mid

MID002

AND Φ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND one of
the measured rotor speed’s
AR1 is EWS, and no
lag,THEN output is mid.

AND 𝑝 IQR stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 stable

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

MID002

AND Θ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND one of
the measured rotor speed’s
AR1 is EWS, and no
lag,THEN output is mid.

AND 𝑞 IQR stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 stable

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

MID002

AND Ψ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND one of
the measured rotor speed’s
AR1 is EWS, and no
lag,THEN output is mid.

AND 𝑟 IQR stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 Stable

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)

Continued on next page
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Table 8: Fuzzy Rules for Yaw-LoC (Gyro-AR1 & CSD-𝜏). Columns: (1) Rule ID – identifies each rule, (2) Logic
Operator – the logical connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4)
Antecedents & Membership Values – the variables and their respective membership value to activate the rule,
(5) Consequent Membership Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of
the rule’s application. (Continued)

MID003

AND Φ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND one of the
measured rotor speed’s AR1
is EWS, and no lag,THEN
output is mid.

AND 𝑝 IQR EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 stable

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

MID003

AND Θ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND one of the
measured rotor speed’s AR1
is EWS, and no lag,THEN
output is mid.

AND 𝑞 IQR EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 stable

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

MID003

AND Ψ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND one of the
measured rotor speed’s AR1
is EWS, and no lag,THEN
output is mid.

AND 𝑟 IQR EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 stable

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

MID004

AND Φ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND ALL
measured rotor speed’s AR1
is stable, AND Delay Dura-
tion is EWS,THEN output is
mid.

AND 𝑝 IQR stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 EWS

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

MID004

AND Θ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND ALL
measured rotor speed’s AR1
is stable, AND Delay Dura-
tion is EWS,THEN output is
mid.

AND 𝑞 IQR stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 EWS

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

Continued on next page
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Table 8: Fuzzy Rules for Yaw-LoC (Gyro-AR1 & CSD-𝜏). Columns: (1) Rule ID – identifies each rule, (2) Logic
Operator – the logical connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4)
Antecedents & Membership Values – the variables and their respective membership value to activate the rule,
(5) Consequent Membership Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of
the rule’s application. (Continued)

MID004

AND Ψ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND ALL
measured rotor speed’s AR1
is stable, AND Delay Dura-
tion is EWS,THEN output is
mid.

AND 𝑟 IQR stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 EWS

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)

MID005

AND Φ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND ALL mea-
sured rotor speed’s AR1 is
stable, AND Delay Duration
is EWS,THEN output is mid.

AND 𝑝 IQR EWS
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 EWS

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

MID005

AND Θ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND ALL mea-
sured rotor speed’s AR1 is
stable, AND Delay Duration
is EWS,THEN output is mid.

AND 𝑞 IQR EWS
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 EWS

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

MID005

AND Ψ Input LoC

MID

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND ALL mea-
sured rotor speed’s AR1 is
stable, AND Delay Duration
is EWS,THEN output is mid.

AND 𝑟 IQR EWS
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 EWS

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)

EWS001

AND Φ Input stable

EWS

While other axis is not LoC,
If stick input is neutral, AND
gyroAR1 is MID, THEN out-
put is EWS.

AND 𝑝 AR1 EWS

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

EWS001

AND Θ Input stable

EWS

While other axis is not LoC,
If stick input is neutral, AND
gyroAR1 is MID,THEN out-
put is EWS.

AND 𝑞 AR1 EWS

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

Continued on next page
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Table 8: Fuzzy Rules for Yaw-LoC (Gyro-AR1 & CSD-𝜏). Columns: (1) Rule ID – identifies each rule, (2) Logic
Operator – the logical connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4)
Antecedents & Membership Values – the variables and their respective membership value to activate the rule,
(5) Consequent Membership Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of
the rule’s application. (Continued)

EWS001

AND Ψ Input stable

EWS

While other axis is not LoC,
If stick input is neutral, AND
gyroAR1 is MID,THEN out-
put is EWS.

AND 𝑟 AR1 EWS

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)

EWS002

AND Φ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND one of
the measured rotor speed’s
AR1 is EWS, AND Delay
Duration is EWS,THEN out-
put is EWS.

AND 𝑝 IQR stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 EWS

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

EWS002

AND Θ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND one of
the measured rotor speed’s
AR1 is EWS, AND Delay
Duration is EWS,THEN out-
put is EWS.

AND 𝑞 IQR stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 EWS

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

EWS002

AND Ψ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND one of
the measured rotor speed’s
AR1 is EWS, AND Delay
Duration is EWS,THEN out-
put is EWS.

AND 𝑟 IQR stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 EWS

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)

EWS003

AND Φ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND one of
the measured rotor speed’s
AR1 is EWS, AND Delay
Duration is EWS,THEN out-
put is EWS.

AND 𝑝 IQR EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 EWS

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

EWS003

AND Θ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND one of the
measured rotor speed’s AR1
is EWS, AND Delay Dura-
tion is EWS,THEN output is
EWS.

AND 𝑞 IQR EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 EWS

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

Continued on next page
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Table 8: Fuzzy Rules for Yaw-LoC (Gyro-AR1 & CSD-𝜏). Columns: (1) Rule ID – identifies each rule, (2) Logic
Operator – the logical connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4)
Antecedents & Membership Values – the variables and their respective membership value to activate the rule,
(5) Consequent Membership Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of
the rule’s application. (Continued)

EWS003

AND Ψ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND one of the
measured rotor speed’s AR1
is EWS, AND Delay Dura-
tion is EWS,THEN output is
EWS.

AND 𝑟 IQR EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 EWS

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)

EWS004

AND Φ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND ALL
measured rotor speed’s AR1
is stable, AND Delay Dura-
tion is LoC,THEN output is
EWS.

AND 𝑝 IQR stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 LoC

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

EWS004

AND Θ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND ALL
measured rotor speed’s AR1
is stable, AND Delay Dura-
tion is LoC,THEN output is
EWS.

AND 𝑞 IQR stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 LoC

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

EWS004

AND Ψ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND ALL
measured rotor speed’s AR1
is stable, AND Delay Dura-
tion is LoC,THEN output is
EWS.

AND 𝑟 IQR stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 LoC

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)

EWS005

AND Φ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND ALL
measured rotor speed’s AR1
is stable, AND Delay Dura-
tion is LoC,THEN output is
EWS.

AND 𝑝 IQR EWS
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 LoC

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

Continued on next page
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Table 8: Fuzzy Rules for Yaw-LoC (Gyro-AR1 & CSD-𝜏). Columns: (1) Rule ID – identifies each rule, (2) Logic
Operator – the logical connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4)
Antecedents & Membership Values – the variables and their respective membership value to activate the rule,
(5) Consequent Membership Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of
the rule’s application. (Continued)

EWS005

AND Θ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND ALL
measured rotor speed’s AR1
is stable, AND Delay Dura-
tion is LoC,THEN output is
EWS.

AND 𝑞 IQR EWS
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 LoC

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

EWS005

AND Ψ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND ALL
measured rotor speed’s AR1
is stable, AND Delay Dura-
tion is LoC,THEN output is
EWS.

AND 𝑟 IQR EWS
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable
AND 𝑡𝜏 LoC

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)

EWS006

AND Φ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND one of
the measured rotor speed’s
AR1 is EWS, AND Delay
Duration is LoC,THEN out-
put is EWS.

AND 𝑝 IQR stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 LoC

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

EWS006

AND Θ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND one of
the measured rotor speed’s
AR1 is EWS, AND Delay
Duration is LoC,THEN out-
put is EWS.

AND 𝑞 IQR stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 LoC

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

EWS006

AND Ψ Input LoC

EWS

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is stable, AND one of
the measured rotor speed’s
AR1 is EWS, AND Delay
Duration is LoC,THEN out-
put is EWS.

AND 𝑟 IQR stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 LoC

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)

Continued on next page
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Table 8: Fuzzy Rules for Yaw-LoC (Gyro-AR1 & CSD-𝜏). Columns: (1) Rule ID – identifies each rule, (2) Logic
Operator – the logical connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4)
Antecedents & Membership Values – the variables and their respective membership value to activate the rule,
(5) Consequent Membership Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of
the rule’s application. (Continued)

LOC001
AND Φ Input stable

LOC
If stick input is neutral, AND
gyro AR1 is LoC,THEN out-
put is LoC.AND 𝑝 AR1 LoC

LOC001
AND Θ Input stable

LOC
If stick input is neu-
tral, AND gyro AR1 is
LoC,THEN output is LoC.AND 𝑞 AR1 LoC

LOC001
AND Ψ Input stable

LOC
If stick input is neu-
tral, AND gyro AR1 is
LoC,THEN output is LoC.AND 𝑟 AR1 LoC

LOC002

AND Φ Input LoC

LOC

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND one of the
measured rotor speed’s AR1
is EWS, AND Delay Dura-
tion is LoC,THEN output is
LoC.

AND 𝑝 IQR EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 LoC

OR
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

LOC002

AND Θ Input LoC

LOC

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND one of the
measured rotor speed’s AR1
is EWS, AND Delay Dura-
tion is LoC,THEN output is
LoC.

AND 𝑞 IQR EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 LoC

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Ψ Input & 𝑟 AR1 ∼ (stable&LoC)

LOC002

AND Ψ Input LoC

LOC

While Gyro-AR1 rules are
not applicable, AND Gyro
IQR is EWS, AND one of
the measured rotor speed’s
AR1 is EWS,AND Delay Du-
ration is LoC,THEN output
is LoC.

AND 𝑟 IQR EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
AND 𝑡𝜏 LoC

OR
Φ Input & 𝑝 AR1 ∼ (stable&LoC)
Θ Input & 𝑞 AR1 ∼ (stable&LoC)
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Table 9: Fuzzy Rules for Roll-LoC. Columns: (1) Rule ID – identifies each rule, (2) Logic Operator – the logical
connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4) Antecedents & Membership
Values – the variables and their respective membership value to activate the rule, (5) Consequent Membership
Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of the rule’s application.

Rule ID Condition Antecedents Membership Consequent Description

STA001

AND Φ Input LoC

stable
If both gyro AR1 is mid, AND
ALL measured rotor speed’s AR1
is stable, THEN output is stable.

AND 𝑞 AR1 mid
AND 𝑟 AR1 mid
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable

STA002

AND Φ Input LoC

stable

If both gyro AR1 is mid/stable,
AND ALL measured rotor
speed’s AR1 is stable, THEN out-
put is stable.

AND 𝑞 AR1 mid
AND 𝑟 AR1 stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable

STA002

AND Φ Input LoC

stable

If both gyro AR1 is mid/stable,
AND ALL measured rotor
speed’s AR1 is stable, THEN out-
put is stable.

AND 𝑞 AR1 stable
AND 𝑟 AR1 mid
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable

STA003

AND Φ Input LoC

stable
If both gyro AR1 is stable, AND
ALL measured rotor speed’s AR1
is stable, THEN output is stable.

AND 𝑞 AR1 stable
AND 𝑟 AR1 stable
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable

MID001

AND Φ Input LoC

MID

If both gyro AR1 is mid, AND
one of the measured rotor speed’s
AR1 is EWS, THEN output is
mid.

AND 𝑞 AR1 mid
AND 𝑟 AR1 mid
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS

MID002

AND Φ Input LoC

MID

If both gyro AR1 is mid/stable,
AND one of the measured rotor
speed’s AR1 is EWS, THEN out-
put is mid.

AND 𝑞 AR1 mid
AND 𝑟 AR1 stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS

MID002

AND Φ Input LoC

MID

If both gyro AR1 is mid/stable,
AND one of the measured rotor
speed’s AR1 is EWS, THEN out-
put is mid.

AND 𝑞 AR1 stable
AND 𝑟 AR1 mid
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS

MID003

AND Φ Input LoC

MID
If both gyro AR1 is mid, AND
both gyro IQR are EWS, THEN
output is mid.

AND 𝑞 AR1 mid
AND 𝑟 AR1 mid
AND 𝑞 IQR EWS
AND 𝑟 IQR EWS
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Table 9: Fuzzy Rules for Roll-LoC. Columns: (1) Rule ID – identifies each rule, (2) Logic Operator – the logical
connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4) Antecedents & Membership
Values – the variables and their respective membership value to activate the rule, (5) Consequent Membership
Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of the rule’s application.
(Continued)

MID004
AND Φ Input LoC

MID
If gyro AR1 is LoC, and ALL
measured rotor speed’s AR1 is
stable, THEN output is mid

AND 𝑞 AR1 LoC
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable

MID004
AND Φ Input LoC

MID
If gyro AR1 is LoC, and ALL
measured rotor speed’s AR1 is
stable, THEN output is mid

AND 𝑟 AR1 LoC
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable

MID005
AND Φ Input LoC

MID
If gyro AR1 is EWS, and ALL
measured rotor speed’s AR1 is
stable, THEN output is mid

AND 𝑞 AR1 EWS
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable

MID005
AND Φ Input LoC

MID
If gyro AR1 is EWS, and ALL
measured rotor speed’s AR1 is
stable, THEN output is mid

AND 𝑟 AR1 EWS
AND (𝜔0&𝜔1&𝜔2&𝜔3) AR1 stable

MID006

AND Φ Input LoC

MID
If both gyro AR1 is mid, AND
one of the measured rotor speed’s
AR1 is EWS THEN output is mid.

AND 𝑞 AR1 mid
AND 𝑟 AR1 mid
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS

EWS001

AND Φ Input LoC

EWS
If both gyro AR1 is mid/EWS,
AND both gyro IQR are EWS,
THEN output is EWS.

AND 𝑞 AR1 mid
AND 𝑟 AR1 EWS
AND 𝑞 IQR EWS
AND 𝑟 IQR EWS

EWS001

AND Φ Input LoC

EWS
If both gyro AR1 is mid/EWS,
AND both gyro IQR are EWS,
THEN output is EWS.

AND 𝑞 AR1 EWS
AND 𝑟 AR1 mid
AND 𝑞 IQR EWS
AND 𝑟 IQR EWS

EWS002

AND Φ Input LoC

EWS

If both gyro AR1 is EWS, AND
one of the measured rotor speed’s
AR1 is EWS, THEN output is
EWS.

AND 𝑞 AR1 EWS
AND 𝑟 AR1 EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS

EWS003

AND Φ Input LoC

EWS

If both gyro AR1 is EWS/mid,
AND one of the measured rotor
speed’s AR1 is EWS, THEN out-
put is EWS.

AND 𝑞 AR1 EWS
AND 𝑟 AR1 mid
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
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Table 9: Fuzzy Rules for Roll-LoC. Columns: (1) Rule ID – identifies each rule, (2) Logic Operator – the logical
connector used within the rule (’&’ for ’AND’, ’∼’ for ’NOT’, ’|’ for ’OR’), (3 & 4) Antecedents & Membership
Values – the variables and their respective membership value to activate the rule, (5) Consequent Membership
Value – the outcome’s degree of truth, (6) Rule Description – an elaboration of the rule’s application.
(Continued)

EWS003

AND Φ Input LoC

EWS

If both gyro AR1 is EWS/mid,
AND one of the measured rotor
speed’s AR1 is EWS, THEN out-
put is EWS.

AND 𝑞 AR1 mid
AND 𝑟 AR1 EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS

EWS004

AND Φ Input LoC

EWS

If both gyro AR1 is EWS/stable,
AND one of the measured rotor
speed’s AR1 is EWS, THEN out-
put is EWS.

AND 𝑞 AR1 EWS
AND 𝑟 AR1 stable
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS

EWS004

AND Φ Input LoC

EWS

If both gyro AR1 is EWS/stable,
AND one of the measured rotor
speed’s AR1 is EWS, THEN out-
put is EWS.

AND 𝑞 AR1 stable
AND 𝑟 AR1 EWS
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS

LOC001
AND Φ Input LoC

LoC
If gyro AR1 is LoC, AND one of
the measured rotor speed’s AR1
is EWS, THEN output is LoC.

AND 𝑞 AR1 LoC
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS

LOC001
AND Φ Input LoC

LoC
If gyro AR1 is LoC, AND one of
the measured rotor speed’s AR1
is EWS, THEN output is LoC.

AND 𝑟 AR1 LoC
AND (𝜔0|𝜔1|𝜔2|𝜔3) AR1 EWS
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A.4 - CSD Analysis for DataCan(TinyWhoop) Flights

Fig. 33 Yaw-LoC (DataCan) gyro rates detrending results. Each row denotes a rotational rate axis, the first
column depicts the original signal in blue, overlaid with the estimated long-term trend in orange. The second
column depicts the detrended signal. Both column features a green dotted line indicating the commencement of
the LoC maneuver.

Fig. 34 Yaw-LoC (DataCan) gyro rates CSD results. Each row denotes a rotational rate axis, the first column
depicts the AR1 time-series in blue, overlaid with the stick neutrality condition in orange. The second column
depicts the IQR time series in blue, overlaid with the lag indicator signal 𝜏. Both column features a green dotted
line indicating the commencement of the LoC maneuver.
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Fig. 35 Yaw-LoC (DataCan) measured rotor RPMs detrending results. Each row denotes a rotor, the first
column depicts the original signal in blue, overlaid with the estimated long-term trend in orange. The second
column depicts the detrended signal. Both column features a green dotted line indicating the commencement of
the LoC maneuver.

Fig. 36 Yaw-LoC (DataCan) measured rotor RPMs CSD results. Each row denotes a rotor, the first column
depicts the AR1 time-series in blue. The second column depicts the IQR time series in blue. Both column features
a green dotted line indicating the commencement of the LoC maneuver, and a red line showing the lag indicator
signal 𝜏.
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A.5 - Fuzzy Logic Inference System Verification

Fig. 37 Histogram of FLIS-Yaw activation times relative to the initiation of the yaw maneuver. Each rules are
categorized into four groups: Stable (STA), Mid Stable (MID), Early Warning Signal (EWS), Loss of Control
(LoC).

Fig. 38 Histogram of FLIS-Roll activation times relative to the initiation of the yaw maneuver. Each rules are
categorized into four groups: Stable (STA), Mid Stable (MID), Early Warning Signal (EWS), Loss of Control
(LoC).
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Fig. 39 Correlation Matrix of Fuzzy Rules for Yaw-LoC
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3
Literature Review

3.1. UAV Safety
Loss of Control (LoC) emerges as the predominant culprit behind quad-rotor accidents [4]. In 2000, the
Commercial Aviation Safety Team founded the Joint Safety Analysis Team (JSAT), to investigate data on
LOC events and recommend interventions that could lead to a 80% reduction in fatal accidents rate by
2007. JSAT defines LOC as ”significant, unintended departure of the aircraft from controlled flight, the
operational flight envelope, or usual flight attitudes, including ground events” [20]. Traditionally, the flight
envelope is defined as the set of limits or boundaries that dictate where an aircraft (or drone) can safely
operate [21]. A traditional flight envelope (depicted in Figure 3.1) typically consists of the maximum and
minimum airspeed, as a function of different load factors. The envelope shows which combinations of these
states allow a safe operation, and which will lead to structural damage, or even LoC.

Figure 3.1: Traditional flight envelope [13]
Figure 3.2: SFE as an intersection of forward and

backward reachable set [7]

However, this definition is limited to a vehicle operating at nominal conditions, and primarily tailored
to conventional aircraft. As such, an extended definition known as the Safe Flight Envelope (SFE) is
defined as ”The part of the state space for which safe operation of the aircraft and safety of its cargo can
be guaranteed and externally posed constraints will not be violated” [22]. SFE applied to LoC prevention
can be divided in two parts : first the SFE itself should be defined after which a controller that guarantees
that the system remains in the SFE needs to be designed. Now the difficulty lies in the first part of the
SFE, the determination of the SFE is not such a straightforward process. The reason being that the SFE
is not only dependent on the dynamics of the aircraft or UAV, but also the conditions it’s operating in.
Traditionally, the dynamic flight envelope was researched through extensive wind tunnel testing and CFD
analysis, in which the results were validated using flight tests [22], or through analytical methods using
aircraft models, however this is computationally expensive. Another method was using bifurcation analysis
to study the steady-state nonlinear dynamics of the vehicle, and to compute the entire set of steady state
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solutions [23]. However this also requires the system to be in a quasi steady-state condition, which may not
always be the case in operation, especially for drones.

More recently, a promising technique for SFE determination has been explored through the use of
reachability analysis, a data-driven methods towards SFE determination[6]. The concept of the reachable
set in aviation, applicable to both aircraft and UAVs, encompasses all attainable states within a defined time
span, taking into account initial conditions. Subsequently, the Safe Flight Envelope (SFE), is established
as the overlap between the forward and backward reachable sets (assuming time reversibility) as can be
seen on Figure 3.2. Consider a system as Equation 3.1

ẋ(𝑡) =𝑓(x(𝑡), u(𝑡), d(𝑡))
𝑥(0) ∈ 𝑆0 or 𝑥(𝑡𝑓) ∈ 𝑇𝑓𝑡 ∈ [0, 𝑡𝑓]

(3.1)

where 0 ≤ 𝑡𝑓 < ∞, x ∈ ℝ𝑛 is the state, u ∈ 𝑈 ⊂ ℝ𝑚 is the control input, d ∈ 𝐷 ⊂ ℝ𝑞 is the disturbance
input, 𝑆0 is a set of initial states, and 𝑇𝑓 = {𝑥 ∈ ℝ𝑛|𝑇 (𝑥) ≤ 0} is a set of target states. The dynamics
defined by the equation above can be evolved backwards and forwards in time resulting in the two reachable
sets respectively [22].
Definition 2.1 (Backwards Reachable Set) - The backwards reachable set 𝑇 (𝜏) at a time 𝜏(0 < 𝜏 ≤ 𝑡𝑓), of
the system (Equation 3.1) for the target set 𝑇𝑓, is the set of all states 𝑥(𝜏), such that there exists a control
input 𝑢(𝑡) ∈ 𝑈(𝜏 ≤ 𝑡 ≤ 𝑡𝑓), for all disturbance inputs 𝑑(𝑡) ∈ 𝐷(𝜏 ≤ 𝑡 ≤ 𝑡𝑓), for which some 𝑥(𝑡𝑓) ∈ 𝑇𝑓 are
reachable from 𝑥(𝜏) along a trajectory satisfying Equation 3.1
Definition 2.2 (Forwards Reachable Set) - The forwards reachable set 𝑆(𝜏) at a time 𝜏(0 < 𝜏 ≤ 𝑡𝑓), of the
system (Equation 3.1) for the initial set 𝑆0, is the set of all states 𝑥(𝜏), such that there exists a control
input 𝑢(𝑡) ∈ 𝑈(𝜏 ≤ 𝑡 ≤ 𝑡𝑓), for all disturbance inputs 𝑑(𝑡) ∈ 𝐷(𝜏 ≤ 𝑡 ≤ 𝑡𝑓), for which 𝑥(𝜏) is reachable
from some 𝑥(0) ∈ 𝑆0 along a trajectory satisfying Equation 3.1

The reachable set theory has been used for the determination of the SFE for different aircraft and
UAVs. However there still exists the problem of computational cost, and curse of dimensionality which
refers to the computational challenges and increased complexity that arises with increasing dimensions,
which makes this even harder. In addition to the dynamic conditions the vehicle operates in, the vehicle
dynamics itself could also change. Some notable examples are:

1. Rotor Damage - The most common form of hardware damage is damage sustained by the propellers
or the primary actuation mechanism, i.e., the rotor assembly itself [24] [25]. Small fractures or chips
on the propeller blades can cause an imbalance on the lift generated by one of the rotors, which can
create instabilities. In more severe instances, the complete failure of an actuator may occur, resulting
in the loss of control in one of the axis, or a complete loss of control.

2. Battery Health - The condition of the battery is crucial because it determines the flight time and
overall performance of the drone. A degraded battery can lead to rotor saturation, and provide less
power, which ultimately alters the flight envelope.

3. Other Factors - Payload Changes, Sensor Calibration Errors, Electrical Interference, Misalignment of
IMU, Gimbal, and Camera.

Therefore, due to the dynamic operating conditions, and potential changes due to the dynamics of
the drone itself, a model-based approach for LoC detection and prevention is challenging to construct.
Hence, another way of preventing vehicles operating outside of their SFE needs to be explored. If the
primary objective of the research is to be able to detect when a drone is operating near the edge of
the SFE, there is no strict requirement for identifying the SFE itself. The emphasis is on obtaining an
indicator of proximity to the SFE. It is important to highlight that there are numerous modes and varying
environmental conditions that can lead the drone near the edges of the SFE, hence there is no singular,
standardised method for detecting this proximity. However, there exists some traits that are typically
observed when a drone operates on the edge of its SFE, including the emergence of approaching instabilities
and a consequential reduction in the degree of remaining control authority. Therefore, it becomes logical
to establish a definition of Loss of Control (LoC) based on the duration and intensity of instabilities
experienced by the drone, as well as the drone’s recoverability at any given moment. Consequently, the
research’s objective is to investigate the possibility of defining such indicators of LoC using a data-driven
approach.
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3.2. Data Driven Methods for Anomaly Detection & Time-series Prediction
The core objective of our research aims to grapple with the notion of LoC, striving to formulate a generalised
definition for LoC. As previously mentioned in Section 3.1, LoC is traditionally defined by determining the
SFE for which any operation outside the SFE bounds is considered a LoC event. However, as the ultimate
goal of this research is not for the determination of the SFE, rather to obtain an indicator of proximity to
the edge of the SFE. This problem can be simplified into detecting approaching instabilities as an indicator
of proximity to the edge of the SFE.

An important consideration that underscores the essence of our research lies in the choice of our
approach. We have opted to navigate away from model-based methodologies, an approach that requires
precise modelling of our system. The rationale behind this choice is due to the fact that a data-driven
method allows for reduced model assumptions, which entails better adaptability to real-world conditions,
but also allows for continuous improvement, integration of multiple data sources, and better scalability.
This necessitates a shift towards data-driven techniques that leverage empirical data and analysis to predict
upcoming instabilities, a practical approach that aligns with the constraints of real-world applications.
Thus, in this chapter presents three data-driven methods for predicting upcoming instabilities : Critical
Slowing Down Theory, Complexity Measures, and Machine Learning Methods.

As we delve into the subsequent sections of this chapter, we’ll explore these data-driven methodologies.
We aim to highlight their roles in addressing LoC prediction in the realm of drone technology, with one
methodology grounded in theory, while the other relies solely on data-driven autonomy.

3.2.1. Critical Slowing Down (CSD) Theory
The behavior of numerous natural and human-made systems is influenced by multiple parameters that
evolve over time. Their responses to external perturbations may vary: they may exhibit a smooth, gradual
change in the systems state, or they may show little reaction within certain ranges of conditions, responding
more as they approach a critical threshold. This situation, where a small perturbation can lead to an
abrupt shift in the system’s state when it reaches a critical threshold is commonly referred to as tipping or
critical transition. Tipping events can be observed in real-world systems like climate systems [26], ecological
systems [27], financial systems [28], and biological systems [29].

Predicting these critical transitions present significant challenges, as the system’s state often exhibits
minimal change prior to reaching the tipping point. Furthermore, models of complex systems typically lack
the precision required for reliable predictions of where critical thresholds may occur. Interestingly however,
research indicates that various systems typically exhibit common symptoms as they approach a critical
point [30].

In particular, several research papers on ecological systems [31][32][33] have emphasized the occurrence
of Critical Slowing Down (CSD) in empirical/time-series measurements as they approach a tipping point.
CSD theory is based on the generic phenomenon that, in the vicinity of various tipping points, the rate at
which a system recovers from small perturbations becomes very low [31]. It is important to note that not all
transitions can show signs of CSD. This can be visualized in Figure 3.3, where the transitions are grouped
into Rapid Regime Shift (abrupt changes in the state and conditions of system behavior), Bifurcations
(qualitative changes in system behavior due to the passing of a threshold in underlying parameters or
conditions), and CSD (observed behavior of slow system response to perturbation).
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Figure 3.3: Intersecting domains of Rapid Regime Shifts, Bifurcations, and Critical Slowing Down.
Domain I represents catastrophic bifurcations preceded by CSD, Domain II describes catastrophic

bifurcations not preceded by CSD, Domain III represents non-catastrophic bifurcations preceded by CSD,
Domain IV represents CSD in the absence of bifurcations or regime shifts, and finally Domain V represents
catastrophic regime shifts without bifurcations or CSD. Smaller labels under each domain illustrate specific

phenomena occurring within these categories, adapted from [34].

Figure 3.3 illustrates that not all regime shifts include bifurcations, and bifurcations can exist without
exhibiting signs of CSD, and some regime shifts can also exhibit signs of CSD. Consequently, CSD should
not be interpreted as a universal predictor of tipping points nor specific to approaching tipping point.
Rather, CSD should be regarded as a broad spectrum indicator of potential fundamental changes in the
current state [31]. It is worth noting that much of the prior work on CSD has been centered around its
application in open-loop systems. To the best our knowledge, the successful application of CSD theory in
closed-loop systems remains unexplored, opening new avenues for investigation.

To accurately apply CSD analysis, it is crucial to pre-process the data by detrending the signals. This
process involves removing long-term trends or shifts from the time series data, thereby isolating the residual
oscillations. Detrending is essential because it minimizes the influence of non-stationary trends on the
analysis, allowing for a clearer detection of the slowing down phenomena that precede critical transitions.

Although CSD occurs for a class of different bifurcations (Figure 3.3), the following explanation will
focus on the saddle-node (fold) bifurcation. This type is particularly intuitive to understand due to the
folded nature of the system and the presence of distinct basins of attraction. To understand why CSD
occurs at a fold bifurcation—where the system recovery behavior following a perturbation diminishes and
approaches zero—consider the dynamics of a simple system:

Figure 3.4: Reduced system resilience due to Critical Slowing Down (CSD) in a saddle-node bifurcation.
The rate of recovery from minor perturbations is lower when the basin of attraction is smaller, and thus

lower resilience (right side) compared to when it is larger, and hence higher resilience (left side).
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𝑑𝑥
𝑑𝑡

= 𝑟 + 𝑥2 (3.2)

In this model, 𝑟 represents the bifurcation parameter. When 𝑟 is negative, there are two equilibrium
points : ̄𝑥𝑠𝑡𝑎𝑏𝑙𝑒 =

√
−𝑟 and ̄𝑥𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 =

√
−𝑟, with one being stable, and the other unstable which can be

visualized in left figure of Figure 3.4, where the left basin represents the stable equilibrium and right basin
represents the unstable equilibrium. As 𝑟 approaches zero from the negative side, these two fixed points
move closer to each other. At 𝑟 = 0, they collide and annihilate, causing a catastrophic bifurcation causing
sudden and irreversible change to a different state. This can be visualized on the right side of Figure 3.4,
as 𝑟 approaches 0, the system loses its resilience, meaning the basin of attraction is much smaller, and the
slope of the basin is also smaller, effectively slowing its rate of recovery.

Now lets examine the dynamics near the tipping point, to analyze the stability of the equilibrium
points, and how perturbations decay, linearizing the system round a fixed point 𝑥0 by introducing a small
perturbation 𝜖 such that 𝑥 = 𝑥0 + 𝜖:

𝑑𝜖
𝑑𝑡

= 𝑑
𝑑𝑡

(𝑥 − 𝑥0) = 𝑑𝑥
𝑑𝑡

= 𝑟 + (𝑥0 + 𝜖)2 (3.3)

Linearizing this equation using a first-order Taylor expansion yields :

𝑑𝜖
𝑑𝑡

≈ 𝑟 + 𝑥2
0 + 2𝑥0𝜖 (3.4)

Since 𝑥0 is a fixed point, 𝑟 + 𝑥2
0 = 0, and the equation simplifes to:

𝑑𝜖
𝑑𝑡

≈ 2𝑥0𝜖 (3.5)

Here, the coefficient 2𝑥0 is essentially the eigenvalue 𝜆 for the linearized system around the fixed point
𝑥0 Now, as 𝑟 approaches zero from the negative side, we can substitute 𝑥𝑠𝑡𝑎𝑏𝑙𝑒 into our expression for the
eigenvalue:

𝜆 = 2𝑥𝑠𝑡𝑎𝑏𝑙𝑒 = 2(−
√

−𝑟) ⇒ lim
𝑟→0

𝜆 = 2(−0) = 0 (3.6)

Thus, as the system approaches a bifurcation, the parameter 𝑟 approaches zero, and the eigenvalue associated
with the stable fixed point approaches zero. Since the eigenvalue can be interpreted as the rate at which
small perturbations to the system’s state will grow or decay, this proves that as the system approaches a
bifurcation, it’s rate of recovery will diminish.

The primary implication of CSD is that after a small experimental perturbation, the decreased recovery
rate can indicate the system’s proximity to a bifurcation point [35]. While it may be impractical to monitor
recovery rates of experimental perturbations systematically, given, that most natural systems regularly face
natural perturbation, this can serve as an effective early warning signal for impending critical transitions.
Notable indicators include an increase in lag-1 auto-correlation and variance in system fluctuations. This
can be explained intuitively, since CSD reduces the system’s rate of change, making its current state more
like its past, effectively increasing its memory as measured by lag-1 auto-correlation [36] [37]. Additionally,
as a tipping approaches, the variance in the system fluctuations also increased due to the decreased rate
of recover, the disturbances’ effects do not dissipate, leading to an increase in the variance of the state
variable CSD [38].

This phenomenon can also be shown mathematically using a simple first-order auto-regressive model,
where repeated disturbances every Δ𝑡 leads to a progressively slower return to equilibrium, characterized
by a recovery rate 𝜆:

𝑥𝑛+1 − ̄𝑥 = 𝑒𝜆Δ𝑡(𝑥𝑛 − ̄𝑥) + 𝜎𝜖𝑛 (3.7)
𝑦𝑛+1 = 𝑒𝜆Δ𝑡𝑦𝑛 + 𝜎𝜖𝑛 (3.8)

𝑦𝑛 represents the deviation of the state variable 𝑥 from its equilibrium, and 𝜖𝑛 is a zero-mean noise with
a standard deviation of 𝜎. Assuming that the recovery rate 𝜆 and the time interval Δ𝑡 are independent of
𝑦𝑛, this setup can be effectively described as a first-order autoregressive (AR(1)) process:
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𝑦𝑛+1 = 𝛼𝑦𝑛 + 𝜎𝜖𝑛 (3.9)

Figure 3.5: The effect CSD measured in stochastically induced fluctuations in the state of the system as
increased variance and ”memory” as shown by lag-1 auto-correlation.

In an AR(1) process, the AR1 coefficient, denoted as 𝛼 ≡ 𝑒𝜆Δ𝑡, quantifies how much each value in
the series depend on its immediate predecessor. For white noise, this coefficient is zero, whereas for
red (auto-correlated) noise, the coefficient is close to one [39]. The expectation of an AR(1) process
𝑦𝑛+1 = 𝑐 + 𝛼𝑦𝑛 + 𝜎𝜖𝑛 is [40]:

𝐸(𝑦𝑛+1) = 𝑐 + 𝛼𝐸(𝑦𝑛) + 𝐸(𝜎𝜖𝑛) ⇒ 𝜇 = 𝑐 + 𝛼𝜇 + 0 ⇒ 𝜇 = 𝑐
1 − 𝛼

(3.10)

can be understood as a linear combination of the previous value, 𝑦𝑛, adjusted by the coefficients 𝑐 and 𝛼,
with an added term 𝜖𝑛 for noise scaled by 𝜎 [40]. For 𝑐 = 0, the mean equals zero and the variance is found
to be :

𝑉 𝑎𝑟(𝑦𝑛+1) = 𝐸(𝑦2
𝑛) − 𝜇2 = 𝜎2

1 − 𝛼
(3.11)

Close to the critical point, the return recovery rate to equilibrium decreases, implying that 𝜆 approaches
zero and the auto-correlation 𝛼 tends to one. Thus the variance tends to infinity.

While CSD has traditionally been applied to ecological systems, van der Pluijm [13] attempted to
explore the application of CSD in predicting critical transitions in quadrotors. He investigated whether
EWS could be detected in the time-series data of a damaged quadrotor with a single rotor failure (SRF)
using CSD indicators. The objective was to gather data on the steady-state and transient behavior of a
damaged quadrotor experiencing various wind speeds, and to examine if there were EWS that could be
detected prior to the quadrotor crashing as the wind speed was increased.

The analysis revealed that 𝑤2, and 𝑞 were the most relevant variables, as angles were found to be less
likely to contain EWS, compared to angular rates as stochastic effects are less pronounced in angles. The



3.2. Data Driven Methods for Anomaly Detection & Time-series Prediction 66

study’s conclusions yielded that using CSD theory alone to identify EWS in quad-rotor systems was not
feasible due to the unrealistic constraints it placed on wind speed behavior. As noted by the author, CSD
requires a slow and monotonic transitions, whereas damaged quadrotors usually are subject to sudden
changes, resembling rapid regime shifts. Observations from Figure 3.3 indicate that some rapid regime
shifts show no signs of slowing down, impacting the effectiveness of CSD based on the rate of wind speed
changes. However, by expanding the scope beyond traditional CSD indicators and incorporating other
domain specific indicators such as actuator saturation metric, more reliable EWS could be generated.
Additionally, a sensitivity analysis demonstrated that the most critical parameter is the size of the rolling
window used, with larger windows yielding fewer false positives; however, for robotic applications, smaller
windows are preferred.

This insight is consistent with a study by Wen et al. [41], which emphasizes the sensitivity of EWS
detection to several factors, including the intrinsic early warning period (intrinsic time-scale of LoC event,
and window size), data frequency, and the choice of test statistic.

Another insightful example comes from a study by Dakos et al. [42], which delved into the potential
EWS in a highly stochastic system using a model that describes the shift of a lake from an oligotrophic
to a eutrophic state [43]. Initially, it was assumed that in such noisy conditions, CSD might not be
relevant, and traditional EWS would not be expected to be effective. However, the research uncovered
an unexpected connection. Even though this system did not align with the typical characteristics of a
slow-time-varying system, but rather being characterized by strong perturbations that can lead to rapid
regime shifts, or “flickering”. The study revealed that the behavior of the system often exhibited rising
variance, AR1, and skew. These patterns closely resembled the effects of CSD, challenging traditional
assumptions and highlighting the adaptability of CSD Theory in unforeseen, highly stochastic environments.
This unexpected finding underscores the versatility of CSD theory in identifying critical transitions, even
in systems with dynamic, non-monotonic perturbations.

3.2.2. Complexity Measures
Measuring complexity within time-series data is critical in understanding, predicting and controlling the
behavior of a dynamic system. It offers means to quantify the level or disorder, emergence of patterns, and
inherent instability that may occur as a system evolves in time. Various complexity measures have been
developed to compare time-series, to distinguish their regular, chaotic, and random behavior. The main
types of complexity parameters are entropies, fractal dimensions, and Lyapunov Exponents [44]. However,
for the scope of this research, Lyapunov Exponents will be omitted as they are generally considered a
model-based method.

Entropy-based Parameters
Entropy is a powerful tool for measuring the degree of disorder or irregularities in a system [45]. If the
degree of randomness is low, the system tends to become more organized, whereas high disorder in the data
will give higher entropy values. Various entropy measures are available for time-series prediction, including,
but not limited to, Shannon Entropy and Permutation Entropy.

Consider a time series 𝐴 = {𝑎(𝑖) ∶ 𝑖 = 1, 2, ..., 𝑁}, the Shannon Entropy (SE) is defined as:

𝑆𝐸 =
𝑛

∑
𝑖=1

𝑝(𝑎𝑖)log 2
1

𝑝(𝑎𝑖)
= −

𝑛
∑
𝑖=1

𝑝(𝑎𝑖)log 2𝑝(𝑎𝑖) (3.12)

where 𝑝(𝑎𝑖) is the probability of a specific outcome or value 𝑎𝑖 occurring. The SE of variable 𝐴 is a
measure of the expected randomness obtained through the measurement of the values in variable 𝐴. A
higher entropy is obtained by more uncertainty in the time series [46]. Applied to time series, SE assesses
predictability, measuring the information needed to anticipate the next value in the sequence. SE assumes
that the data points in the time series are independent, identically distributed, and although it can be
applied to non-stationary time series, it may not capture changes in the underlying probability distribution.
Therefore, assumptions of stationarity can make it more appropriate [44].

Permutation entropy introduced by Bandt and Pompe [44], which combines the ideas from SE and
ordinal pattern analysis, through the estimation of related frequencies of ordinal patterns obtained from the
time series data [47]. There are two parameters which must be defined to calculate the PE : the embedding
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dimension (𝑚) which determines how many data points are considered at each time step, and the time
delay (𝜏) indicating the time gap between these data points. The following is a description of how to
calculate PE as provided by Bandt and Pompe:

For a time series, the delay embedding vector is contructed at each time point 𝑖. It is a 𝑚 dimensional
vector that includes data points from the time series at specific time indices, determined by the embedding
dimension and time delay, it can be defiend as:

𝐴𝑚
𝑖 = [𝑎(𝑖), 𝑎(𝑖 + 𝜏), ..., 𝑎(𝑖 + (𝑚 − 2)𝜏), 𝑎(𝑖 + (𝑚 − 1)𝜏)] (3.13)

The vector 𝐴𝑚
𝑖 represents a segment of the time series at time 𝑖. Now each delay embedding vector 𝐴𝑚

𝑖
can have a permutation 𝜋. A permutation is an arrangement of intergers 𝜋 = (𝑟0, 𝑟1, ..., 𝑟𝑚−1) that reflects
the order of data points in 𝐴𝑚

𝑖 . They key condition is that the data points in 𝐴𝑚
𝑖 must be ordered from

the smallest to largest according to the permutation:

𝑎(𝑡 + 𝑟0𝜏) ≤ 𝑎(𝑡 + 𝑟1𝜏) ≤ ⋯ ≤ 𝑎(𝑡 + 𝑟𝑚−1𝜏)
where : 0 ≤ 𝑟𝑖 ≤ (𝑚 − 1) and 𝑟𝑖 ≠ 𝑟𝑗

(3.14)

For each permutation 𝜋 you can calculate its relative frequency, denoted by 𝑝(𝜋). This frequency
represents how often that specific ordinal pattern appears within the time series. The numerator counts
how many times 𝐴𝑚

𝑖 has a specific permutation of 𝜋 in the time series, while the denominator normalises
the count.

𝑝(𝜋) = #{𝑡|𝑡 ≤ 𝑁 − (𝑚 − 1)𝜏, 𝐴𝑚
𝑖 has type 𝜋}

𝑁 − 𝑚 + 1
(3.15)

Now, the PE for a given embedding dimension 𝑚 is calculated by summing over the relative frequencies
of all possible permutations 𝜋 and applying a logarithimic function. It quantifies the complexity or entropy
of ordinal patterns within the time series:

𝑃𝐸 = − ∑ 𝑝(𝜋)log 2𝑝(𝜋) (3.16)

Now, the maximum possible value for PE for a specific embedding dimension is log (𝑚!), where all
possible permutations have equal probabilities. To make the measure independent of 𝑚 the Normalised
Permutation Entropy (NPE) is defined by dividing the PE by ln(𝑚!). 𝑁𝑃𝐸 provides a standardised
measure that facilitates comparison across different time series with varying embedding dimensions.

Note that the equations for SE (Equation 3.12) and PE (Equation 3.16) look identical. However the
difference between the two lies in how 𝑝(𝑎𝑖) or 𝑝(𝜋) is calculated. For SE, 𝑝(𝑎𝑖) represents the probability
of a specific value occurring, based on the probability distribution of data values obtained from the time
series itself. In contrast, for PE, 𝑝(𝜋) represents the frequency of a specific ordinal pattern appearing within
the time series.

Fractal Dimensions
Fractals are mathematical and geometrical objects that exhibit self-similarity at different scales. This
means that as you zoom in on a fractal object, you see similar patterns or structures at different levels
of magnification [48]. In the context of time series data, the idea is to explore whether the data exhibits
self-similarity, or fractal-like behaviour, at different time scales. This can be achieved by considering the
time series at different levels of temporal resolution or by using various techniques.

Now the Hurst Exponent (H) is a measure related to the fractal dimension (D) of the time series as
𝐻 = 2 − 𝐷 [49]. The Hurst exponent quantifies the degree of self-similarity or long-range dependence in a
time series, and the scaling of the standard deviation is used to estimate the Hurst exponent.

Calculating the standard deviation of a time series within different time intervals or windows of varying
lengths, essentially measures how the variability or fluctuations in the data change as the time scale changes.
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Now if the said time-series is self-similar, it will exhibit a scaling behaviour, meaning that the standard
deviation should change systematically with the length of the time interval over which it is calculated. The
standard deviation typically scales with time scale 𝑇 as a power-law relationship :

𝜎(𝑇 ) = 𝐾 ⋅ 𝑇 𝐻 (3.17)

Where 𝐾 is a constant, and 𝐻 is the Hurst Exponent, the exponent in the power-law relationship that
describes how the standard deviation scales with the time scale. The calculation of 𝐻 can be performed
following the Multifractal Detrended Fluctuation Analysis (MFDFA) [50] [51].

𝐻 represents a measure of how persistent or correlated a signal is. If an increase in the signal’s value is
more likely to be followed by another increase, we call the signal persistent. In such cases, 𝐻 exceeds 0.5.
Conversely, an anti-persistent or negatively correlated signal, where an increase in value is mostly followed
by a decrease or vice versa, corresponds to 𝐻 values less than 0.5. Uncorrelated white noise, where there’s
no systematic correlation, results in an 𝐻 of 0.5.

Fractal analysis has a wide range of practical applications across various fields, including life sciences,
engineering, econophysics, and geophysics [52][53][54][55][56][57].

3.2.3. Machine Learning Methods
Over the past two decades, the field machine learning has witnessed substantial growth in various domains,
evolving from an experimental concept in research labs to a versatile technology widely adopted for
commercial purposes. In the realm of artificial intelligence (AI), machine learning (ML) has become the
preferred approach for creating functional software solutions across various domains, including computer
vision, speech recognition, natural language processing, robot control, and numerous other applications. In
addition to machine learning, the past decade has also witnessed a substantial growth in the ability of
networked and mobile computing systems to gather and transport vast amounts of data, a phenomenon
often referred to as “Big Data”. This surge in extensive data across all areas of human endeavour has
triggered a wave of new demands on the underlying machine-learning algorithms [58]. Machine Learning
are quintessentially data-driven, residing within the domain of black-box algorithms. Here, the system’s
strength lies in its ability to autonomously decipher patterns and relationships within the data, without
explicit dependence on established theories or principles. In this method, we feed data to the machine
learning algorithm, and it learns from the data itself, progressively improving its predictive capabilities.

The most popular type of machine learning methods are supervised learning methods [59]. In supervised
learning, prediction systems typically create their outputs through a learned mapping 𝑓(𝑥). This mapping
is responsible for generating an output y for each input x, or alternatively, a probability distribution
over y based on x. Various types of mappings, such as decision trees, decision forests, logistic regression,
support vector machines, neural networks, kernel machines, and Bayesian classifiers, have been explored
and employed [59].

Within the context of unmanned aerial systems, machine learning methods have opened up new
possibilities in predicting critical transitions and Loss of Control (LoC) events in quadrotors. There are
several machine learning methodologies that are well suited for time-series predictions, each offering a
unique perspective on LoC prediction:

• Recurrent Models : Echo State, Long Short-Term Memory, Gated Recurrent Units
• Sequence Modelling Models : Transformer and Attention-Based Models
• Probabilistic and Uncertainty-Aware Models : Bayesian Neural Networks
• Non-Traditional Approaches : Fuzzy Logic Inference System

Recurrent Models
A recurrent neural network is a type of a neural network specifically designed for handling time series or
sequential data. Unlike a standard neural network, RNNs can retain information over time, influencing the
current and future states using past input data. This is achieved through a feedback loop, where the RNN
incorporates the output from the previous input into its calculations before passing through the activation
function. This feedback loop can be thought of as a series of interconnected single-input-single-output
(SISO) neural networks, which can be visualised in Figure 3.6.
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Figure 3.6: Unrolled Recurrent Neural Network [60]

Figure 3.7: Illustration of LSTM(Left) and GRU(Right). Left : 𝑖, 𝑓 and 𝑜 are the input, forget, and output
gates, respectively. 𝑐 and ̃𝑐 denote the memory cell and the new memory cell content. Right : 𝑟 and 𝑧 are

the reset and update gates, and ℎ and ℎ̃ are the activation and the candidate activation [62].

One of the essential feature of an RNN is that they share weights and biases across all sequential
inputs, ensuring that the number of parameters remains constant, regardless of the length of the input
sequence. Although this brings some benefits such as computational efficiency, it also comes at a cost
of the vanishing/exploding gradient problem. This problem arises when a weight that multiplies the
output fed back into the network is larger than 1. As the sequence length increases, the gradient becomes
disproportionately large, resulting in slow convergence towards the minimum of the loss function [60]. To
overcome these challenges, alternative RNN architectures have been developed, such as Long Short-Term
Memory (LSTM), Gated Recurrent Unit, and Echo State Networks.

LSTM is an extension to the standard RNN which allows the RNNs to remember their input over a
longer period of time. It achieves this by incorporating memory cells that function in a similar manner
to a computer’s memory. The LSTM cell is capable of reading, writing and erasing information through
its three gates: input, forget, and output gate [61]. GRUs were proposed by Cho et al. [63] in order
to allow each recurrent unit to flexibly capture dependencies at various time scales. Both LSTM and
GRU units share a key feature : the additive update from one time step to another, which the traditional
RNNs lack. In RNNs, the activation is always replaced with a new value based on the current input and
previous hidden states. However, LSTM and GRU retain the existing content and add the new content on
top of it, preserving valuable features over long sequences, and creating shortcut paths that prevent the
vanishing/exploding gradient problem. However, there are two main differences. The LSTM unit controls
the exposure of the memory content through the output gate, whereas the GRU exposes its full content
without control. Secondly, the location of the input gate differs between the two. LSTM computes new
memory content independently from the amount of information carried from the previous step, whereas
the GRU controls information flow from the previous activation but does not independently regulate the
amount of candidate activation added. This essentially means that LSTM has two separate mechanisms
(input and output gates) that controls how much old and new information is included in the memory cell,
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whereas GRUs only have a single mechanism that simultaneously manages the flow of information from the
previous state and the addition of new information [62].

Finally, Echo State Networks, another subset of RNNs that isn’t trained using the traditional gradient-
descent based methods, instead uses the reservoir computing framework. Reservoir computing is when the
input signal is connected to a fixed (non-trainable) and random dynamical system (the reservoir/neural
network), thus creating a higher dimension representation (embedding). This embedding is then connected
to the desired output via trainable units [64]. One recommendation is that the number of nodes in the
reservoir 𝑁 should be in the range 𝑇

10 ≤ 𝑁 ≤ 𝑇
2 , where 𝑇 is the number of sample data [65]. The optimal

value of 𝑁 depends on the periodicity of the training data and the complexity of the learning task. A
reservoir size that is too small may result in model inaccuracy, whereas a reservoir size that is too large
may lead to slow training and data over-fitting [66]. Due to the fixed random weights, and the reservoir
computing aspects of the ESN, this helps prevent the vanishing/exploding gradient problem [67].

Attention Based Methods
The Transformer is a machine learning architecture introduced in the paper ”Attention is All You Need” by
Vaswani et al. [68] in 2017. It has since become a fundamental building block for a wide range of natural
language processing (NLP) tasks and beyond. The key innovation of the Transformer architecture is the
concept of ”self-attention.”

Attention is a mechanism which allows a model to weigh the importance of different segments of an
input data when making predictions. Self-attention allows the model to consider the entire input sequence
simultaneously, instead of dealing with sequential data ’sequentially’, assigning different attention weights
to various segments of the sequence. This allows for the model to focus on the more relevant context
elements, leading to a more informed and context-aware predictions.

The main advantages of a Transformer model is its parallelization, dealing with long-term dependencies,
and bi-directionality. Traditional models that deal with sequential data such as RNNs process data
sequentially, which can slow. Transformers can parallelize the computation due to the self-attention.
Transformers are also able to capture long-term dependencies, and also analyse data bidirectionally meaning
they can consider the elements both before and after a given position. These traits allows the transformer
to excel in handling sequential data and capturing complex, long-term trends by efficiently modelling
relationships between elements in a sequence, making it a powerful tool for wide range of ML applications
[68].

Probabilistic Models
Bayesian Neural Networks (BNNs) are a variant of the traditional neural networks that incorporate the
principles of stochastic modelling. They differ from a traditional neural network in how they handle
uncertainty and make predictions. In a Bayesian neural network, model parameters such as weights and
biases are treated as a probability distribution, which allows them to have a distribution of possible
parameter values, typically represented as a posterior distribution. Once the posterior distribution is
estimated, BNNs can sample from it to obtain multiple sets of parameter values, each representing a
different hypothesis about the models structure, and these samples capture the uncertainty in the parameter
values, reflecting the models uncertainty about its own architecture. In addition, when making predictions
with BNNs, instead of a single point estimate, the BNN outputs a distribution of possible outcomes. This
distribution is obtained by running inference using each set of sampled parameters. The spread of variance
of these predictions represents the model’s uncertainty. For regression, this can be a predictive distribution,
while for classification, it can be a probability distribution over classes [69].

Fuzzy Logic
Fuzzy Logic Inference System (FLIS) is the process of formulating the mapping from given input(s) to
output(s) using fuzzy logic. Fuzzy Logic is based on the idea that the truth can be expressed as a
continuous fuzzy variable , not a binary output [70]. This approach may be particularly useful in scenarios
like predicting the onset of Loss of Control (LoC), where a quadrotor’s state might not strictly be binary;
it could be experiencing varying degrees of LoC.

FLIS is instrumental across various domains, including automatic control, data classification, decision-
making, expert systems, robotics, and more, due to its capacity to handle nuances in data and decision-
making processes [71]. The system comprises five primary components:
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• Rule Base - A collection of fuzzy rules that use logical operators such as IF, OR, and NOT.
• Database - Defines membership functions for input and output variables.
• Fuzzification Interface - Converts crisp inputs into fuzzy inputs through degrees of match with

linguistic variables (membership functions).
• Decision-Making Unit - Executes inference on the fuzzy rules.
• Defuzzification Interface - Transforms fuzzy inference results back into crisp outputs.

- fuzzy

Database Rule Base

Knowledge Base

Fuzzification Defuzzification

Decision-Making 
Unit - fuzzy

- crisp - crisp

Input Ouput

Figure 3.8: Structure of a Fuzzy Logic Inference System (FLIS), with the five main components : Rule
Base, Database, Fuzzification Interface, Decision-Making Unit, and Defuzzification Interface

The process begins with fuzzification, transforming specific inputs into degrees of match with membership
functions, based on predefined intervals. This transformation results in fuzzified variables, representing the
antecedents in the fuzzy logic system. These fuzzified variables are then processed by the decision-making
unit. This unit employs logical operators (’AND’ for the minimum, ’OR’ for the maximum, and ’NOT’
for the complement of the membership value) to associate the antecedents’ membership functions with
a consequent membership function in the output. The choice and application of these logical operators
critically influence the degree of match between the antecedents and the consequent, effectively determining
the output’s membership value. Upon applying all the rules, where each rule connects antecedents to a
consequent, the decision-making unit aggregates these consequent values to produce a single, crisp output
through defuzzification. This final step typically involves calculating the centroid of the aggregated fuzzy
set, culminating in a crisp output value reflective of the fuzzy logic inference.

Fuzzy logic inference systems has various advantages, such as handling uncertainty, inherent inter-
pretability, and most importantly domain expertise. If domain expert knowledge regarding quadrotor LoC
are available, this can be leveraged to define appropriate membership functions and fuzzy rules that can
reflect the intricacies of the system, such as combining CSD, and actuator phase delay parameters.
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4
Conclusion

4.1. Answer to Research Questions
The research questions posed in Chapter 1 are repeated below for convenience.

What early warning signals (EWS) act as precursors for the onset of loss-of-control (LoC) in
quadrotors approaching a critical transition, if any?

Main Research Question

To answer the main research question, it was found that CSD theory applied to onboard measurements
provided from the Inertial Measurement Unit (IMU) from the quadrotor can act as precursors for the
onset of loss-of-control. More specifically, calculating the lag-1-autocorrelation coefficients (AR1) and
the Inter-quartile Range (IQR) on the detrended signals of gyro rates: 𝑝, 𝑞, 𝑟, and measured rotor speeds
(debug): 𝜔0, 𝜔1, 𝜔2, 𝜔3 using a rolling window analysis. In addition to CSD, the actuator phase to act as a
suitable precursor to the onset of LoC, which was the time-delay variable, which was a measure of the
actuator phase delay. However this variable seemed to only have an effect towards larger quadrotors with
larger actuators. This will be further discussed in answering RQ2.

RQ1 : How can LoC in quadrotors be accurately detected and defined using a data-driven method,
considering data sources, sensor inputs, and data analysis techniques?

• What data sources and sensors can effectively capture relevant information about an
upcoming LoC event?

• What data pre-processing techniques are required to extract informative features for LoC
detection?

• Can sliding window analysis and the data pre-processing methods applied to the sensor
outputs be performed in real-time and onboard the drone for timely LoC detection?

Sub-Research Questions

In addressing the first sub-research question, we discovered that the most effective data comes from
gyro rates, which are measured by the gyroscopic sensor. In addition, the measured rotor speeds recorded
by the Electronic Speed Controllers (ESC) through the use of Bi-directional DShot600, were also analyzed
using CSD, however although they can detect a LoC event accurately, they were not suitable as an EWS
indicator, as they did not appear prior to the LoC, and their increase in AR1 was too abrupt.

The process of data-processing involved several key steps. Initially, it was necessary to convert the
data from the onboard black-box logs into an accessible CSV format. Following this, the most crucial
step in data preparation was the detrending of the signals. Our findings indicate that for CSD analysis to
effectively reveal meaningful insights, its essential to remove long-term trends from the Data. This step
isolates the signal’s residual fluctuations, in order to measure the rate of recovery to minor perturbations.
Without this, any remaining trends or periodic patterns in the time-series could lead to false indications.To
obtain meaningful results from CSD analysis on quadrotors, it is imperative that the long term trends in
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the data are removed (detrending) to isolate the fluctuations in the residuals. If this is not done properly,
the remaining correlations (trends or periodicity in the time series) can lead to false indications. Detrending
is done by finding a function to approximate the signal’s long-term trends. Once this can be captured, these
long-term trends may be removed from the original signal. The result is the detrended signal, which only
contains the residual fluctuations to external disturbances. During the preliminary phase of the research,
four detrending techniques were evaluated: Moving Average, Differencing, Kernel Regression, High Pass
Filter. The investigation revealed that the gyro rate data yielded the most effective EWS through CSD
when detrended using Kernel Regression. Conversely, the measured rotor speed is best detrended using a
High-Pass Filter.

Currently, real-time and onboard calculation of LoC detection is not feasible. However, potential
solutions exist to make this achievable. The primary challenge lies in the detrending process, particularly
in the HPF implementation. The HPF is designed using the filtfilt function from SciPy’s Signal library
in Python. This function utilizes filter coefficients obtained from the Butterworth filter and employs a
forward-backward filtering technique. This technique filters the data both forward and backward, ensuring
zero phase distortion. However, the backward filtering makes this method non-causal, limiting its application
to offline use once all data has been collected. An alternative approach is to use the lfilter function from
SciPy’s Signal library, which performs single forward pass filtering. While this maintains causality, enabling
online application, it introduces phase distortion. Therefore future work should explore the feasibility of
detecting EWS using lfilter for the IQR values.

RQ2 : How can different EWS indicators, when used collectively, contribute to more accurate
detection and prediction of the onset of LoC in quadrotors, while effectively mitigating erroneous
alarms (Type I errors) and missed warnings (Type II errors)?

• What role do Critical Slowing Down (CSD) indicators play in predicting the onset of a
critical transition in quadrotors?

• How do actuator saturation levels impact the onset of a critical transition in quadrotors?
• In what ways can the integration of multiple parameters improve the robustness of LoC

prediction, ensuring a lower rate of erroneous alarms (Type I errors) and missed warnings
(Type II errors)?

• How can the model’s predictive performance be evaluated, and what are the most relevant
evaluation metrics?

Sub-Research Questions

In addressing the second sub-research question, CSD has shown its pivotal role in detection of critical
transitions in quadrotors. It operates on the principle that as a system nears a critical point, its recovery
from disturbances slows down. This slowing down is a result of the dominant eigenvalue approaching zero,
which means the system takes longer to return to equilibrium after a perturbation. This characteristic
of CSD provides an effective early warning signal, with specific indicators such as increased lag-1 auto-
correlation and a rise in variance of system fluctuations signaling an imminent critical transition. Essentially,
CSD increases the ’memory’ of the system, making its current state more similar to its past states, which
can be observed through patterns in lag-1 auto-correlation and variance.

The primary causes of LoC in quadrotors is actuator saturation [72], which causes non-linear actuator
responses, phase lags, and instability. When saturated, control authority deteriorates, and without control
authority, the ability to counteract external disturbances is lost. Recognizing this, the detection of such
lag is considered for use as an additional indicator of LoC. From the results it was found that if a phase
lag between the commanded and actual rotor speed can be detected, the time delay variable 𝜏 acts as an
effective EWS for LoC maneuvers. In addition, the integrated version of time delay 𝜏, the delay duration
𝑡𝜏 acts better as an indicator of LoC, as nominal flights that contains fast throttle changes also do show
instaneous occurrences of 𝜏, that are not related to approaching LoC. However, the results show that no
(measurable) phase lag in smaller drones (DataCan, GimbalDrone), pointing to a correlation between
actuator size and 𝜏 detection. This seems plausible, since larger actuators, with their mass distributed
away from the rotation axis, have a higher moment of inertia and thus exhibit a slower response times. In
contrast, smaller actuators exhibit lower inertia and quicker response times. Considering this, increasing
the sampling rate for smaller drones could offer a finer resolution for detecting shorter lags, given their
rapid response capabilities. Ideally, CSD would serve as an EWS indicator and LoC detector, with 𝑡𝜏acting
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as a redundancy layer to minimize false positives, and increase detection rate. Future research should
delve deeper into the time delay variable, exploring how variations in sampling rate or different controller
designs might influence lag detection. Additionally, testing Roll LoC maneuvers on larger drones with
gimbal setups could substantiate the assumption that 𝜏, detection correlates with actuator size and not
LoC mode, ensuring that the results are applicable across various drone configurations.

To integrate multiple indicators, a Fuzzy Logic Inference System (FLIS), combining CSD indicators, 𝜏,
and stick inputs. This integration improved LoC detection rates and significantly reduced the occurrence
of false positives (Type I errors). Specifically, for Yaw and Roll induced LoC scenarios, the detection rates
were impressively high (96% and 98%, respectively). However, relying solely on the CSD parameter AR1 led
to false positives due to its sensitivity to the detrending method used. By incorporating a stick-neutrality
condition, numerous variables, and indicators, the CSD outputs could be inferred in an effective way, the
final false positive rate at 8% and 9% for yaw and roll induced LoC, respectively.

Evaluating the model’s predictive performance, the most relevant metrics were the Detection Rate,
False Positive Rate, and Time to Detection. These metrics provide a comprehensive understanding of the
model’s effectiveness in predicting and detecting LoC across different quadrotors and different LoC modes.

RQ3: To what extent can these LoC events be detected through parameters such as CSD and
actuator phase lag?

• How do aggressive yaw, and roll maneuvers influence these parameters and contribute to
LoC risk?

• Do different maneuvers exhibit consistent global trends in CSD, and actuator saturation that
can be used for early LoC detection and prediction?

• How are these indicators affected by nominal flight?

Sub-Research Questions

In addressing the third sub-research question, this research investigated the nature of Roll induced LoC
and Yaw induced LoC.

For yaw-induced LoC, perturbations are introduced in roll and pitch oscillations stemming from the
”anti-gravity” feature of BetaFlight (the flight controller), which induces oscillations due to a misalignment
between the c.g and the IMU. The high yaw rates results in translational accelerometer measurements
due to the c.g and IMU misalignment. Consequently, the flight controller misinterprets these readings as
disturbances in roll and pitch angles, endeavoring to counteract them, which induces oscillations around
the roll and pitch axes. While manageable at low rotational rates or when actuators are not saturated,
these oscillations intensify and become unstable under saturation, ultimately leading to controller-induced
LoC. Conversely, roll-induced LoC introduces perturbations in yaw through the coupling of roll and
yaw axis due to gyroscopic precession. This phenomenon, observed in rotating bodies, redirects angular
momentum around the z-axis, causing yawing motion. As yawing intensifies, it also triggers pitch oscillations,
culminating in LoC when BetaFlight deactivates the I term to avoid integrator windup, halting the roll
motion. Although roll-induced LoC also ultimately occurs due to the controller killing the I term, the
reasons differ: for Yaw-LoC, the anti-gravity feature induces error accumulation due to corrective measures,
whereas for Roll-LoC, the error accumulates due to the coupling of roll and yaw. Integrating findings
from both types of LoC maneuvers underscores a key takeaway: despite differing dynamics, CSD analysis
consistently identifies trends applicable across various LoC scenarios. This highlights the efficacy and broad
applicability of CSD as a method for detecting potential LoC events, irrespective of their specific causes or
maneuvers involved.

As CSD focuses on identifying decreased resilience within the signal’s residuals, the detrending process
should primarily reveal the system’s response to external disturbances. However, the detrending methods
would occasionally retain gyro oscillations from intended maneuvers. To address this, a stick-neutrality
condition was imposed, allowing Gyro AR1 inference only when no stick inputs occurred in the past 450
time steps. This duration of 450 time-steps is due to the nature of a rolling window analysis for generating
AR1 values. As the AR1 is calculated using a window of the previous 450 time-steps, the impact of a
stick input may persist within the AR1 calculation window. While Gyro AR1 sufficed for detecting LoC in
uncoupled flights, coupled maneuvers like those in Yaw-LoC SysID flights necessitated additional measures
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due to the stick neutrality condition. Therefore, CSD-𝜏 rules were used as an auxiliary measure to enhance
LoC detection rates and address the limitations of the stick neutrality condition when using Gyro-AR1
rules. Since the GYRO-AR1 rules are contingent on the absence of stick inputs, the CSD-𝜏 rules provide a
supplementary indication of stability when GYRO-AR1 rules are inapplicable, such as during maneuvers
that involve stick inputs in all three axes. These rules utilize Gyro IQR, measured rotor speed’s AR1, and
the time delay duration variable 𝑡𝜏 to assess the quadrotor’s risk of LoC.



5
Recommendations

This chapter provides a brief overview of the primary recommendations for the future continuation of this
research project.

Recommendation 1 - Detrending using stick-neutrality condition
The primary limitation of CSD lies in its sensitivity to the detrending method used. Ideally, detrending
should isolate oscillations stemming solely from the quadrotor’s response to external perturbations. However
the detrending method cannot selectively filter out intended oscillations, occasionally retaining some
oscillations caused by intended maneuvers.This leads to false positive rates, notably pronounced in Yaw
LoC scenarios, which required corrective maneuvers prior to the LoC maneuver due to free flight conditions.
To mitigate this, a stick-neutrality condition was introduced, allowing Gyro AR1 inference only in the
absence of stick inputs over the past 450 time steps. While this reduced false positives, it remains limited,
especially in flights with coupled maneuvers across all axes, rendering Gyro-AR1 outputs obsolete. Therefore
future work should explore methods to integrate the stick condition into detrending, dynamically adjusting
the bandwidth/cutoff frequency based on stick inputs. This adaptive approach could enhance filtering
during stick inputs, and reduce it during their absence. Additionally, FLIS could also assign weights to the
Gyro AR1 outputs, adjusting their significance based on the magnitude of stick input for a given axis.

Recommendation 2 - Furhter investigation of the Time Delay Indicator
The main limitation of the Time Delay indicator was its generalizability. From the analysis, it was revealed
that no (measurable) phase lag was detected in smaller drones (DataCan, GimbalDrone), pointing to
a correlation between actuator size and 𝜏 detection. This seems plausible, since larger actuators, with
their mass distributed away from the rotation axis, have a higher moment of inertia and thus exhibit a
slower response times. In contrast, smaller actuators exhibit lower inertia and quicker response times.
Therefore, future work should examine how variations in sampling rate or different controller designs might
influence lag detection. Additionally, testing Roll LoC maneuvers on larger drones with gimbal setups could
substantiate the assumption that 𝜏, detection correlates with actuator size and not LoC mode, ensuring
that the results are applicable across various drone configurations.

Recommendation 3 - Causal Filtering for HPF
Currently, real-time and onboard calculation of LoC detection is not feasible. However, potential solutions
exist to make this achievable. The primary challenge lies in the detrending process, particularly in the
HPF implementation. The HPF is designed using the filtfilt function from SciPy’s Signal library in
Python. This function utilizes filter coefficients obtained from the Butterworth filter and employs a forward-
backward filtering technique. This technique filters the data both forward and backward, ensuring zero
phase distortion. However, the backward filtering makes this method non-causal, limiting its application to
offline use once all data has been collected. An alternative approach is to use the lfilter function from
SciPy’s Signal library, which performs single forward pass filtering. While this maintains causality, enabling
online application, it introduces phase distortion. Therefore future work should explore the feasibility of
detecting EWS using lfilter for the IQR values.
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