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Abstract

The Multi-armed Bandit (MAB) is a classic problem in reinforcement learning that
exemplifies the exploration-exploitation dilemma - deciding when to gather more in-
formation and when to act on current knowledge. In its sparse variant, the feature
vectors often contain many irrelevant components, which is common in real-world sce-
narios and poses a significant efficiency bottleneck. Querying the entire vector is often
unnecessary when only a small subset of it is informative. In this work, we introduce
two novel algorithms for dynamic feature selection in sparse linear bandit settings.
These algorithms adaptively select relevant features at each round, enabling more ef-
ficient learning and decision-making. Empirical results demonstrate that our methods
consistently outperform standard approaches such as LinUCB in sparse environments.

1 Introduction
Stochastic linear bandits are a class of decision-making problems where a learning agent has
to choose between a set of actions, each of which returns a different reward. The reward for
every action is unknown to the agent and has to be estimated. This problem lies at the heart
of reinforcement learning: should the agent exploit the information it already has, choosing
the action with the best reward? Or should it explore actions it has less information about
in an attempt to get better rewards in the long term?

Bouneffouf et al. outline some of the numerous cases in which the bandit framework has
been applied in recent years [4]. Some of the real-life applications include treatment alloca-
tion procedures [12] [10], recommendation systems [22], and anomaly detection [9]. Bandit
algorithms can also be used as the building blocks for better machine learning algorithms,
for example, in hyperparameter optimization [17] and online feature selection [19].

In many of those real-world scenarios, decisions must be made based on high-dimensional
data, where only a small subset of features truly influences the outcome. For instance, a
system can recommend thousands of articles to a user, but only a few will genuinely cap-
ture their interest. This sparsity presents both a challenge and an opportunity: identifying
and exploiting the relevant features can lead to more efficient learning and better perfor-
mance. To solve this, there exist sparse bandit algorithms, which theoretically offer improved
regret bounds 1. However, they often do not explicitly incorporate feature selection mech-
anisms. These mechanisms could further enhance empirical performance, particularly in
highly sparse regimes or when feature costs are constrained.

In this paper, we study how adaptive feature selection can be used to improve the perfor-
mance of bandit algorithms in the sparse setting - that is, at every round, the algorithm has
to pick a subset of the available features and decide on an action based on them alone. We
focus specifically on the sparse case where most of the features do not influence the reward,
making feature selection both relevant and beneficial. The question we want to answer is
then: How can we leverage feature selection strategies to design bandit algo-
rithms that perform well in the sparse setting? To address this, we introduce two
algorithms and investigate various feature selection strategies through empirical evaluation.

1Formally defined in subsection 2.2
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The first algorithm builds on a reduction from the bandit problem to an online linear re-
gression problem, specifically leveraging the SquareCB approach [11]. We use two regression
oracles to solve the resulting problem - sparse linear regression with adaptive feature selec-
tion [14] and Bayesian Linear Regression [21]. The second algorithm is inspired by FS-SCB
[18] and operates using an ensemble of M models, each employing a different strategy to
approximate the reward. These models serve as experts, each using a distinct subset of
features, and their predictions are aggregated to guide action selection. The aim is for their
combined output to approximate the reward of a model that has access to the optimal subset
of features.

2 Problem Formulation
Throughout the paper, we use mathematical notation that might be unfamiliar to some
readers, which we introduce in this section. Additionally, we give a formal description of
contextual linear bandits.

2.1 General mathematical notation
The dot product between two vectors a, b ∈ Rn is indicated by ⟨a, b⟩. For any positive integer
n ∈ Z+ we use [n] to indicate the set {1, 2, ..., n}. By a◦ b we denote the Hadamard product
of two vectors, also known as the element-wise product. A vector is said to be s-sparse if it
has s non-zero entries. xi is used to denote the i-th entry of the vector x.

For a subset S ⊆ [n] we define x(S) to be the projection of x such that

x(S)i =

{
xi if i ∈ S

0 otherwise

Moreover, we define the support of a vector x ∈ Rn, supp(x), to be the set of all of its
non-zero coordinates or supp(x) = {i | i ∈ [n] ∧ xi ̸= 0}.

2.2 Contextual Linear Bandits
A linear bandit problem can be defined as a game over T rounds where T ∈ Z+ is called
the horizon. At every round t ∈ [T ], an agent is given a context ct ∈ C. It then plays an
action at ∈ A where A = [K] is the set of all possible actions and receives a reward rt(at, ct)
based on both the context and the action that was picked. Here, K is the number of actions
available to the agent. To generate the reward, the environment picks a parameter θ∗ ∈ Rd

unknown to the agent. Note that θ∗ does not change for the duration of the game. Our
estimation of θ∗ does, and we denote it by θ̂. The reward in round t for action at would
then be rt(at, ct) = ⟨ϕ(at, ct), θ∗⟩ + ηt where ϕ : A × C → Rd is a known function that
transforms the action and the context into a feature vector. ϕ is also called the feature map
of the model. ηt is σ-sub-gaussian noise. A random variable is called σ-sub-gaussian if there
is some C > 0 such that for every a ≥ 0

P(|X| ≥ a) ≤ 2 exp (−a2/C2)
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The goal of the agent is to maximize the total reward, or equivalently, to minimize the regret,
which can be defined as the difference in total reward between the best-performing strategy
that has full information about θ∗, and the total reward of our strategy. Mathematically,
this can be expressed as follows,

R(T, θ∗) =

T∑
t=1

(
⟨ϕ(a∗t , ct), θ∗⟩ − ⟨ϕ(at, ct), θ∗⟩

)
With at we indicate that action a was chosen at round t by our agent. a∗t is the optimal
action at round t or a∗t = argmaxat∈A⟨ϕ(at, ct), θ∗⟩. A bandit is called sparse if θ∗ is a
sparse vector, i.e. it has many zero entries. Sparsity influences the problem because only a
small subset of its coordinates of θ∗ will influence the reward. Learning the structure of θ∗
can therefore be beneficial for improving the regret bounds.

3 Related work
Stochastic linear bandit algorithms are subject to a Ω

(
d
√
T
)

regret lower bound regardless
of how many features are informative [8]. This implies that regret scales linearly with the
dimension of θ∗, d, even if only a few features matter. To address this, sparse linear bandits
assume that the true parameter θ∗ is s-sparse, where s ≪ d. In this setting, the lower bound
of the regret improves to Ω

(√
sdT

)
, which matches the standard linear bandit regret when

s = d.

Abbasi-Yadkori et al. [1] achieve this bound with a variant of UCB tailored to the sparse
setting. Hao et al. [3] achieve the optimal regret bounds in the data-poor regime where
d ≫ T , showing their algorithm achieves Θ(

√
sdT ) regret when d ≤ T 1/3s2/3, and degrades

to Ω(T 2/3) when d > T 1/3s2/3. Assuming a different model for the noise and the action set
one can achieve an algorithm with regret bounds that does not scale with d. Carpentier and
Munos [6] achieve a O

(
s
√
T
)

regret bound by assuming that the action set is the unit ball
(vectors with length ≤ 1) and that there is noise in the features, or rt = ⟨ϕ(at, ct), θ∗ + ηt⟩.
Lattimore and Szepesvári [16] achieve the same regret bound under the assumption that the
action set is a hypercube A = [−1, 1]d and the noise is bounded in [−1, 1].

An example of a field that could benefit from feature selection in bandits is that of distributed
bandit algorithms. Several efforts have addressed the problem of minimizing the commu-
nication costs between distributed bandits. Those communication costs are often highly
dependent on the dimensionality of the data. Hanna et al. [13] establish a lower bound
on the number of bits required for agents to communicate rewards to a central learner in a
distributed setup. In their model, agents do not have memory and receive only the action to
play, responding with a bit sequence encoding the observed reward. While they show promis-
ing results, the setting is restricted since there is only one central learner. Wang et al. [20]
examine a multi-agent setting where agents operate in a shared environment and coordinate
to minimize regret. They provide a communication complexity bound of O(M1.5d3) when
the set of available actions changes over time, where M is the number of agents. Since the
dimensionality is cubed, these communication bounds can be vastly improved upon with an
appropriate feature selection strategy, especially in the sparse setting. However, to the best
of our knowledge, no previous work has explicitly explored feature selection in the context
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of sparse bandit problems.

4 Bayesian Feature Selection
For the rest of the paper, we make extensive use of a strategy for feature selection called
Bayesian Feature Selection. We describe it here and introduce the relevant notation.

Bayesian Feature Selection is a version of Bayesian Linear Regression [2]. It leverages the
posterior probabilities of the weights to calculate a distribution over the features and de-
termine which ones are important. It works by introducing a new random variable γk such
that the prior for θ̂k can be written as

θ̂k | (γk = 0) ∼ N (0, τ2)

θ̂k | (γk = 1) ∼ N (0, cτ2)
(1)

where τ ≪ 1 is a very small positive constant and c ≫ 1 is a large positive constant. This is
to make the density of θ̂k shrink to 0 when γk = 0. The goal of the algorithm is to estimate
P(γ | X,Y ). We can do this by numerically calculating the value of the following integral,
which we do using Gibbs sampling [15].

P(γ | X,Y ) =

∫
P(γ, θ̂ | X,Y )dθ̂ (2)

Note that a regular numerical integration scheme will fail due to the high dimensionality of
the integral, which scales with the dimension of θ∗. A full description of the method can be
found in [21].

The probability P(γk = 1 | X,Y ) shows how likely it is for a feature to be informative, or
to correspond to a non-zero entry of θ∗. We can therefore do feature selection by sampling
from that distribution.

5 Adaptive feature selection with a regression oracle
In this section, we explore an approach to solving bandit problems using a linear regression
oracle, SquareCB [11]. We use two different oracles to perform adaptive feature selection,
mainly Bayesian Feature Selection and FSSLR [14].

SquareCB

SquareCB [11] is an optimal and universal reduction from bandits to online regression. It
allows us to transform an oracle for online linear regression into an algorithm for linear
bandits. The reduction can be treated as a black box, meaning that it will take any regres-
sion oracle and use it to solve the bandit problem. Under the assumption of realizability,
i.e. that there exists a regressor f in the class of regressors we have chosen such that
f(ϕ(at, ct)) = E[rt | (at, ct)] we know that the regret can be bounded as O

(√
KT · Rsq(T )

)
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where Rsq is the regret of the regression oracle.

It has been shown that the regret of regularized linear regression, such as Ridge, scales
logarithmically with T but linearly with d, the dimension of the data [7]. This means that
while it can be a good choice for a regression oracle if the data is low-dimensional, its
performance will deteriorate as the dimension increases. Therefore, for the sparse setting,
we would benefit from an oracle whose regret scales better with d. Our first choice for such
a regression oracle is the Bayesian Regression with Feature Selection algorithm mentioned
in section 4. The second choice is a special type of sparse online linear regression, which we
call FSSLR [14] (Feature Selection Sparse Linear Regression).

Bayesian Regression with Feature Selection

The approximation of the integral in Equation 2 involves computing the posterior distribu-
tion of θ̂ ∼ P(θ̂ | γ,X, y) which gives us an approximation of the real value of θ∗. Here, γ
is a binary vector that indicates which features have been selected, with ones at positions
corresponding to the chosen features and zeroes elsewhere. The predicted reward is then
given by rt = ⟨ϕ(at, ct) ◦ γ, θ̂⟩.

Since we use a Gaussian prior as described in Equation 1, sampling from the posterior
simplifies to sampling from a Gaussian distribution whose mean is given by the closed-form
solution of the Ridge estimator - a standard result in Bayesian linear regression [2]. This
implies that the regret of this regressor will scale linearly with the dimension of θ∗, d. Formal
analysis on whether incorporating feature selection alters this scaling behavior remains an
open problem. We explore it through empirical analysis, which shows an improvement.

FSSLR

FSSLR is a variant of sparse online linear regression that performs random feature selection
at every round. It then uses a modified version of the Dantzig selector [5] to find an optimal
choice for the weights of the regression. For any δ > 0 its regret can be bounded as

R(T ) = O
(
s2 log

(
d

δ

)(
d

k

)3

log(T )

)
(3)

with probability at least 1 − δ. Here k is used to indicate how many features are selected
every round. Equation 3 shows that when the data is sufficiently sparse, the algorithm can
achieve more efficient regret bounds than Ridge.

At round t, FSSLR receives a feature vector xt. It generates a random set St ⊆ [d] with
|St| = k, which is used to generate an unbiased estimate of xt by x̂t =

d
kxt(St). d

k is debiasing
factor to ensure that E[x̂t] = xt. This is appended to the feature matrix X̂t−1 and is used in
the calculation of the weights of the linear regression. A major drawback of this approach is
that since we are randomly generating St at every round, if k is too close to s, the probability
that any of the significant features of xt are captured in x̂t decreases drastically. Since θ∗

is the sparse weight vector that the linear regression is trying to approximate, we can write
down the probability of capturing all important features as

P(supp(θ∗) ⊆ St) =
Cd−s

k−s

Cd
k

(4)
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where Cd
k is the number of all possible combinations of size k that we can take from a set of

size d. That means that when k decreases, the algorithm will need significantly more rounds
for X̂t to be a good enough estimator of the actual feature matrix, resulting in significantly
worse regret bounds. This is also reflected in the factor of d/k in the regret, which is cubed.
On the other hand, when the sparsity increases, we see an improvement in the performance
because the probability of randomly finding the full support of θ∗ is larger.

Another drawback of this approach is that FSSLR assumes that its data follows the Re-
stricted Isometry Property (RIP) [5]. When dealing with real data, this will rarely hold, so
for our analysis, we did not explicitly ensure that RIP holds. This means that the theoretical
guarantees that the original paper provides might not necessarily hold in this setup.

6 Adaptive feature selection with model selection
In this section, we explore another strategy for feature selection based on FS-SCB [18].
It works by defining multiple models that it treats as experts. Their predictions are then
averaged using an algorithm for aggregating expert advice. We also introduce two strategies
for creating the models. The first one is random, the second one observes the structure in
a short warm-up period and then performs Bayesian Feature Selection.

FS-SCB

FS-SCB [18] is an algorithm designed to identify the correct feature map from a set Φ =
{ϕi}Mi=1 of M distinct feature maps (or models), assuming at least one of them lies in
the linear span of the true reward function i.e. there is some i ∈ [M ] such that E[rt] =
⟨ϕi(at, ct), θ

∗⟩. We propose a modification to FS-SCB to enable adaptive feature selection,
where each feature map is defined as a projection of the original d-dimensional feature vector
onto a k-dimensional space with d > k. This way we are effectively simulating feature selec-
tion where k is the number of features that we want to select. Unlike the original FS-SCB,
which relies on the presence of a correctly specified feature map within Φ, our approach
deliberately excludes the true feature map from Φ. Instead, we aim to discover a reduced
representation that still captures the essential structure of the reward function.

The theoretical guarantees of FS-SCB largely depend on the fact that it can detect mis-
specified maps and remove them from Φ. That being said, this is not as effective in our
setting, since the true map might not be in Φ. Given that we are assuming a sparse θ∗, it
is still possible to generate a feature map that retains all relevant information. This feature
map would retain all coordinates in the feature vector corresponding to a non-sparse entry
in θ∗. However, since we do not know θ∗, we cannot guarantee that. Furthermore, be-
cause most feature maps are deliberately constructed to closely approximate the true map,
it becomes challenging to determine whether any are truly outside the linear span of the
reward function or just a good approximation. The limitation of this approach is that the
algorithm’s elimination threshold is rarely exceeded if the maps are similar enough to the
true one, which leads to no models being removed. This limitation arises not from a flaw in
the algorithm itself but from the nature of our map construction. Importantly, this does not
compromise the algorithm’s theoretical guarantees, as Φ was designed to include maps that
are structurally close to the true one. Model elimination is therefore omitted from further
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discussions since it has no impact on the performance of the algorithm.

As mentioned above, the best candidate for a feature map would be the one that projects
only the set of coordinates in the feature vector that correspond to non-sparse entries in θ∗.
To get as close as possible to that, we have developed multiple strategies for feature map
selection, which we describe now.

Random model selection

With random model selection, we uniformly select a random subset Si ⊆ [d] for each feature
map with |Si| = k. The feature map is then defined as ϕi(x) = x(Si) where x(Si) is k-
sparse. The probability of an individual feature map being in the span of the reward is
shown in Equation 4. Since we have M distinct feature maps and want at least one of them
to be true, the probability becomes

P
( M∨

i=1

supp(θ∗) ⊆ Si

)
= 1−

(
1−

Cd−s
k−s

Cd
k

)M

(5)

Notice that since in this case we treat each of the M models as an expert whose predictions
we aggregate, Equation 5 is not necessarily indicative of the performance of the algorithm,
although it can show us a theoretical region in the hyperparameter space where the algorithm
is sure to perform well (i.e. the one where the probability will be high). From it we see that
increasing M will increase our chance of capturing the true feature map exponentially. That
being said, increasing M results in a huge runtime overhead. The only other parameter
we can vary is k, the number of features selected every round. Ideally, we would like k
to be as close as possible to s if we want to find the optimal feature set Si = supp(θ∗).
However, when k approaches s, the probability of finding it decreases significantly. To put
it into perspective, if we have d = 100, s = 5, and k = 20, we would need more than 85000
randomly generated feature maps if we want ≥ 95% chance of finding the true one. The
runtime-accuracy tradeoff that this selection strategy offers us calls for a more sophisticated
method of selecting the models, which has a better probability of finding feature maps close
to the real one.

Informed model selection

Many meaningful alternatives to random feature selection exist. However, all of them re-
quire that the algorithm observes some of the data and makes an informed decision based
on what it has seen. This will come at the cost that the algorithm needs to sacrifice the
first tw rounds just to observe the data so that it can make a meaningful decision after.

Our chosen approach for feature selection is the Bayesian Feature Selection algorithm de-
scribed in section 4. We can incorporate it into FS-SCB as follows: for the first tw rounds,
we observe the data by using a single feature map that contains the full set of features. At
round tw+1 we calculate the distribution P(γ | X,Y ) and we sample it M times to construct
our feature maps as follows

ϕi(at, ct) = γi ◦ ϕ(at, ct)

where ϕ is the true feature map and γi ∼ P(γ | X,Y ).
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7 Experimental Setup and Results
In this section, we explain the experimental setup in which we empirically test the perfor-
mance of the algorithms, explain how they are assessed, and finally give the results. All
results are accompanied by a discussion.

Environment

Testing of the algorithms happened in a synthetic environment. For action ai we generate a
normal distribution with mean µai ∼ U(−2, 2) and variance σ2 ∼ U(0, 1) where U represents
the uniform distribution. The feature vector for action ai is then ϕ(ai) ∼ N (µai , σ

2). Note
that the context is not directly used in the calculation of the feature vector, but instead,
we have a separate context behind each action, namely the normal distributions that we
create in the beginning. This does not change the problem statement as we generate the
feature vector directly. Similar approaches have been used in [18]. The dimensionality of
our environment is d = 100. Unless otherwise specified the number of actions is K = 100
and sparsity of θ∗ is s = 5. The noise was sampled from N (0, 0.01).

Assessment of performance

We assess the performance of the algorithms based on plots of their cumulative regret. A
completely random algorithm will have a linearly increasing regret, so we say that an al-
gorithm is learning if it has sub-linear cumulative regret. Ideally, we want the cumulative
regret to grow as slowly as possible, where a cumulative regret of 0 can be attained only by
an algorithm with full information about the hidden parameters from the start. Each plot
shows how the algorithm performed over multiple trials (5 or 10, depending on the variance
and runtime of the algorithms). In all plots, we indicate the variance of the algorithms
between runs by coloring a region of one standard deviation around the mean.

Performance is assessed relative to LinUCB, which we use as a baseline. To get a more
accurate idea of how our algorithms compare, we also include a version of LinUCB that
has access to a limited subset of the features at every round. These subsets are selected
uniformly and at random.

Performance of SquareCB with FSSLR

We evaluate SquareCB using FSSLR as the regression oracle to test its ability to adapt to
sparsity under different configurations. The performance of this algorithm is highly depen-
dent on the hyperparameter k, which determines the number of features selected at each
round.

As shown in Figure 1, the algorithm achieves sublinear cumulative regret only when k is
sufficiently large compared to the sparsity s of the hidden parameter θ∗. When k is close
to s, the probability of capturing the full support of θ∗ in any given round becomes small,
leading to a poor estimate of the full feature matrix X and nearly linear regret growth. In
contrast, increasing k improves the coverage of the relevant feature set, resulting in signifi-
cantly better performance.
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Figure 1: SquareCB with FSSLR for different values of the selected features and the sparsity.
Shows that decreasing the number of features selected increases the regret, and making the
environment sparser decreases the regret.

SquareCB with FSSLR is specifically designed for sparse data and consistently outperforms
LinUCB in such settings if it has access to a sufficiently large subset of the features. The
results, shown in Figure 6, demonstrate that SquareCB with FSSLR can achieve signifi-
cantly lower regret for high values of k. However, this trade-off is of limited practical value:
reducing k inevitably compromises accuracy while offering minimal gains in runtime effi-
ciency. That said, it may still be useful in scenarios where memory constraints are critical,
as limiting k reduces the number of features that need to be queried and stored.

Some readers might then wonder why we still use random feature selection with FSSLR if
it does not perform well for small values of k. Why not use a smarter strategy for feature
selection, for example, looking at the estimate of the weights in θ̂ and picking the features
corresponding to the highest weights in θ̂? Assume that St ⊂ [d] is the set with the indices
with the highest absolute values in θ̂ at round t. The expectation of a single element of the
projected matrix X̂ = X(St) would then be

E[X̂ij ] = P(X̂ij ̸= 0 | i ∈ Si)P(j ∈ Si)X̂ij + P(X̂ij = 0 | j /∈ Si)P(j /∈ Si)X̂ij

The probability P(j ∈ Si) is the probability that the Dantzig selector picks a feature j at
round i, which at least to our knowledge, cannot be computed. This means that each entry
of the matrix will be inherently biased by a factor of P(j ∈ Si). Our experiments show that
this reduces the quality of the predictions significantly.

Performance of SquareCB with Bayesian Feature Selection

SquareCB with Bayesian Feature Selection shows much better performance than with FSSLR,
as shown in Figure 6.

A critical implementation detail concerns how we store the feature matrix X. If X con-
tains only the selected (projected) features rather than the full feature vectors, performance
degrades significantly. However, storing the full matrix undermines the goal of feature selec-
tion, as predictions are effectively made using all features. Despite the drop in performance,
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we choose to store only the selected features and use this version throughout the paper. Note
that FSSLR also stores the projected matrix. The difference between both implementations
for Bayesian Feature Selection is shown in Figure 2. To debias the projected matrix, we
would need to divide it by P(γ = 1 | X,Y ). However, this probability converges rapidly,
making debiasing attempts ineffective and leading to larger errors due to numerical and
approximation issues.

Figure 2: SquareCB with Bayesian Feature Selection. The left plot shows how the regret
scales with changes in k. Access to a bigger subset of the features always leads to better
regret bounds. On the right, we see the difference between Bayesian SquareCB with full
and projected matrix. Storing the full matrix leads to better regret bounds.

Performance of FS-SCB

FS-SCB consistently achieves sublinear regret across a wide range of hyperparameters. Its
ability to aggregate predictions from different models makes it more robust to suboptimal
feature subsets. The Bayesian model selection strategy computed after an initial warm-up
phase significantly outperforms random selection by increasing the probability that relevant
features are consistently included in the selected subsets.

As illustrated in Figure 4, increasing M improves the approximation of the true reward
function, though the gains diminish rapidly beyond a certain point, as only one of those M
models has to be a good enough approximation of the true feature map. Figure 3 illustrates
how both selection strategies depend on the parameter k.

Interestingly, Bayesian feature selection with FS-SCB performs better when fewer features
are selected, up to a certain point. This is likely due to the estimates of the zero entries in θ̂
being noisy. By selecting features that are more likely to correspond to non-zero entries in
θ∗, the resulting reward estimates become significantly less noisy. This is the only algorithm
we present that exhibits improved performance with a reduced feature set. In contrast, the
other algorithms generally degrade in performance under similar constraints. We attribute
this to the use of an ensemble of M models, which can collectively compensate for missing
features. If one model overlooks an important feature, others in the ensemble are likely to
capture it.
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Figure 3: FS-SCB performance with varying k, using 10 fixed models. Informed selection
strategies (left) show better regret bounds with smaller feature subsets (up to a certain
point), while random selection’s (right) regret degrades significantly as k decreases.

Figure 4: FS-SCB with a varying number of models. Shows how increasing the number of
models has diminishing returns in the performance, which is especially evident with Bayesian
feature selection.
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Discussion on the relative performance of all algorithms

Generally, all strategies that made feature selection randomly performed worse than the
ones that did it in an informed way. For high values of k, random strategies still outperform
the baseline algorithm LinUCB, but for small values of k their performance degrades to
nearly linear, except for FS-SCB with Bayesian Feature Selection (see Figure 6). This is
visualized in Figure 5, where we show the probability from Equation 5. With yellow, we
indicate regions where the probability of capturing the feature set is near one. This means
that in those regions, the algorithms will perform well with a very high probability. Note
that, especially for FS-SCB, a dark region does not necessarily mean poor performance.
However, there is a significant correlation between how well an algorithm performs and the
probability of it finding the correct feature subset.

The plot on the right has M = 1, which reduces to Equation 4. This shows that aggregation
of model predictions can improve regret bounds significantly by increasing the probability
of the correct feature map being selected. On the other hand, when relying on only one
model (as is the case with SquareCB with FSSLR), performance is highly sensitive to k, as
indicated by the size of the low probability regions when M = 1 in Figure 5. Both contour
plots are only for strategies with random feature selection.

Figure 5: Contour plot of Equation 5 showing the dependence on M and k (left) and k and
s (right). Dark blue indicates near-zero probability regions, and yellow indicates near-one
probability regions.

Informed feature selection strategies, which we implemented with Bayesian Feature Selec-
tion, showed a much better performance for all tested values of k. They consistently out-
perform not only both baselines but also their random counterparts. FS-SCB with Bayesian
Feature Selection shows the best performance across all tested configurations, as shown
in Figure 6. In contrast, random selection strategies rapidly degrade in performance with
smaller feature sets.
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Figure 6: Full comparison of all algorithms under different values of k. Random feature
selection works well for high values of k, but its performance degrades quickly as k decreases.

8 Responsible Research

Ethical implications of our work
The bandit framework has many real-world applications, and with that comes the responsi-
bility to consider the ethical implications of research in this area. Since our algorithms were
trained and evaluated solely on synthetically generated data, issues such as data privacy
and the ethical handling of real user data were not a concern in our work.

Nevertheless, it is essential to reflect on how these algorithms might be applied in practice.
Since bandit algorithms are inherently online and adaptive, their initial performance is often
suboptimal. In practical settings, this limitation can be mitigated through pretraining on
existing datasets, where available, to improve early-stage performance.

The ethical considerations associated with bandit algorithms can differ significantly across
domains. In high-stakes areas like healthcare, for instance, using bandit algorithms to op-
timize treatment strategies must be approached with caution. It is critical not to over-rely
on automated decision-making, as clinicians often possess nuanced insights that cannot be
captured by data alone. In contrast, in recommender systems, bandit algorithms might be
employed to manipulate user behavior, such as encouraging engagement with advertisements
or content that users would not typically seek out, raising concerns about autonomy and
informed consent.

Ultimately, the ethical use of these algorithms depends largely on those who implement
them. While our role is primarily in developing the underlying methods, we believe it is
important to highlight their potential risks. By doing so, we aim to equip practitioners
and researchers with the awareness needed to make responsible choices in deploying these
algorithms.
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Reproducibility of research
We took great care to ensure that all results in this paper are fully reproducible. To this
end a framework was developed that enables saving and loading experiment configurations
using JSON files. These configuration files include all relevant hyperparameters for both the
environments and the algorithms, allowing experiments to be rerun with exact precision. To
account for the inherent randomness in our setup, each algorithm was executed multiple
times, and the results were averaged to obtain consistent and reliable performance metrics.

The configurations for all experiments in this paper and the code have been made public
and can be accessed at our GitHub 2. Additionally, the exact code used to generate all plots
in this paper is provided in accompanying Python notebooks within the repository.

9 Conclusion
Adaptive feature selection can be leveraged in bandit problems to effectively exploit sparsity.
With well-tuned hyperparameters, the algorithms presented in this paper achieve notable
improvements in regret bounds over the chosen baseline, LinUCB. That said, each variant
of SquareCB and FS-SCB exhibits distinct strengths and limitations, as summarized in Ta-
ble 1. While feature selection can enhance regret bounds in sparse settings, it offers minimal
impact on the overall runtime of the algorithms. Moreover, these algorithms were not de-
veloped with theoretical optimality as the primary goal; instead, we prioritized practical
performance.

Table 1: Comparison of Contextual Bandit Algorithms with Adaptive Feature Selection

Algorithm Strengths Weaknesses Best When

SquareCB +
FSSLR

Fast execution; strong
theoretical guarantees
under RIP

Highly sensitive to the
size of feature sets;
assumes RIP (often
invalid)

Feature relevance is
unknown, approximate
results are acceptable, and k
can be large; runtime is a
priority

SquareCB +
Bayesian Feature
Selection

Robust to choice of k;
consistently better
empirical performance
in sparse settings

Computationally
heavier than FSSLR;
depends on the quality
of posterior estimation

Prior observations can be
used to inform feature
relevance

FS-SCB +
Bayesian Model
Selection

High accuracy; robust
across different k;
consistently best
performance

Requires a warm-up
period; significant
runtime and memory
overhead

A short initialization phase
is acceptable; very low values
for k are a priority

Future work could explore establishing theoretical regret bounds for the algorithms intro-
duced in this paper that depend on various feature selection strategies, or deriving strategies

2https://github.com/Martin092/ResearchProject
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with a better theoretical performance (or one that is easier to prove). Additionally, it would
be valuable to conduct an empirical and theoretical comparison with existing bandit al-
gorithms specifically designed for high-dimensional sparse settings, such as the approach
proposed in [3] or in [1]. Such comparisons could help clarify the relative advantages and
limitations of adaptive feature selection in various sparse regimes.
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Appendix A Use of Generative Artificial Intelligence in
this work

AI (free version of ChatGPT 3) was used solely for improving the writing style and clarity
of the paper. Typical prompts were along the lines of: "Rewrite this paragraph and improve
the wording where appropriate, without altering the underlying facts.". The given feedback
was then carefully assessed, and only relevant parts were applied. No AI assistance was used
for coding or idea generation.

3https://chatgpt.com/
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