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Fine energy splitting of overlapping Andreev bound states in multiterminal
superconducting nanostructures
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The recent proposals of experiments with single Andreev bound states make relevant a detailed analysis of
these states in multiterminal superconducting nanostructures. We evaluate the energy splitting of degenerate
Andreev bound states that overlap in a superconducting lead, and find that the splitting is reduced in comparison
with their energy by a small factor

√
RGQ, with RGQ being the dimensionless resistance of the overlap region in

the normal state. This permits quantum manipulation of the quasiparticles in these states. We provide a simple
scheme of such manipulation.

DOI: 10.1103/PhysRevResearch.1.033004

I. INTRODUCTION

The superconducting nanodevices are in focus of modern
experimental research, in particular because they are a promis-
ing platform for various qubit realizations, e.g., Josephson-
based qubits of several kinds [1–5] or Majorana bound
states [6–10]. These structures, containing superconductor-
semiconductor or superconductor-insulator junctions, host
Andreev bound states (ABS), which can also be used as
a qubit [11,12]. Andreev reflection between normal metal
and superconductor was first discussed in Ref. [13] and has
been a subject of intense theoretical and experimental re-
search [14–23] that spans far beyond quantum information
topics. The variety of ABS in various nanostructures is so rich
as to mimic almost any quantum state known in physics.

It is known and commonly used that the ABS forming in
nanostructures are defined by the properties of the nanostruc-
ture, not depending on the details of electron scattering in the
adjacent superconducting leads, which is a consequence of
Anderson’s theorem [24]. For short nanostructures between
two leads, each transport channel with transmission T gives an
ABS at the energy [25] E = ±�

√
1 − T sin2 [(φ1 − φ2)/2],

� being the superconducting gap in the leads and φ1,2 being
the superconducting phases of the leads. ABS extend to the
leads at distances of the order of the correlation length ξ0;
this is much larger than the nanostructure size. ABS can be
realized in semiconducting-nanowire-superconducting struc-
tures, the technology of those has advanced strongly owing to
the applications in the field of Majorana bound states [10,26–
29] and can be characterized experimentally [27,28]. There
is much recent progress in multiterminal devices [30–32] that
has been partially inspired by theoretical predictions of Weyl
points and quantized transconductance [33].

Published by the American Physical Society under the terms of the
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Very recent experimental and theoretical developments
concern so-called Andreev molecules in various lay-
outs [34–37]. The term “molecule” refers to the situation
where two single ABS have close energies; this enables
their hybridization and formation of the superpositions. Ref-
erences [34,35] discuss ABS in quantum dots, where ABS
overlap through the tunnel barrier separating the dots. Refer-
ence [36] considers the hybridization of two Andreev quasis-
tates at two superconductor-ferromagnet interfaces that over-
lap in the superconductor. An interesting alternative has been
put forward in Ref. [37]. The proposed three-terminal setup
encompasses two single-channel junctions that connect three
superconducting leads; see Fig. 1(a). Two single ABS may
overlap and hybridize in the middle lead. The overlap and the

FIG. 1. (a) The “Andreev molecule” setup. Two ABS are formed
in the two single-channel junctions, A and B, that are separated by
L and connect three superconducting leads S1,2,3 with the same �.
The ABS wave functions spread over the scale of ξ0, overlapping
in S3. (b) The energy spectrum of ABSs versus ϕ3 (ϕ1 = π , ϕ2 =
3π/2, the junction transmission coefficients being TA = 0.95, TB =
0.98), manifests avoided crossings at the degeneracy points. We show
that the energy splitting at the crossings is fine even for a significant
overlap, δD ∝ �

√
RGQ, where R is normal resistance of the overlap

region.

2643-1564/2019/1(3)/033004(5) 033004-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.1.033004&domain=pdf&date_stamp=2019-10-02
https://doi.org/10.1103/PhysRevResearch.1.033004
https://creativecommons.org/licenses/by/4.0/


KORNICH, BARAKOV, AND NAZAROV PHYSICAL REVIEW RESEARCH 1, 033004 (2019)

corresponding energy splitting must cease exponentially as
exp (−L/ξ0), provided the separation of the junctions L � ξ0.
The authors of Ref. [37] indicate that Andreev molecules have
potential applications in quantum information, metrology,
sensing, and molecular simulation.

In this paper, we have evaluated the energy splitting of
overlapping ABS. We have found that it is an interference
effect similar to mesoscopic fluctuations of conductance [38].
Such fluctuations develop in the lead on the scale of ABS
overlap that encompasses a large number of quantum chan-
nels. Importantly, this makes this energy splitting fine at the
scale of �.

We have estimated the typical energy splitting δD ∼
�/

√
N , N being the number of channels, that can be estimated

as the inverse of the normal dimensionless resistance of the
overlap region, N ≈ (RGQ)−1, with GQ ≡ e2/(π h̄) being con-
ductance quantum. Therefore, δD remains fine at the energy
scale of �. This big difference in energy scales is known to
facilitate various quantum manipulation schemes, the simplest
example of which we provide. We have derived concrete
expressions for 〈|δD|2〉, relating it to semiclassical propagation
of an electron between the junctions, and employed it for an
experimentally relevant setup. Observation of energy splitting
gives an interesting and unusual way to see and explore
mesoscopic fluctuations.

II. GENERAL MODEL AND RESULTS

Let us first describe the setup under consideration (Fig. 1)
in general terms, specifying the details later. The setup
consists of three superconducting leads, connected by two
single-channel junctions, and there is an ABS formed in each
junction. If one neglects their hybridization, their energies
are EA(B) = �

√
1 − TA(B) sin2 [(φ1(2) − φ3)/2]. We plot the

energies in Fig. 1(b) for φ1 − φ2 = π/2 and TA = 0.95, TB =
0.98; the degeneracy at EA = EB is avoided. The separation
between the junctions is L � λF , with λF being the Fermi
wave length. This implies that the electron transport in the
region covered by the ABS wave functions occurs in a big
number of transport channels. The exact number depends on
the geometry of the device, material and morphology of the
leads, and the detailed characteristics of electron transport,
that can be ballistic, diffusive, or intermediate between the
two. At the level of an estimate, all these details can be
incorporated into the effective resistance R of the region
spanned by the ABS wave functions, so that N ∼ (RGQ)−1.
The wave functions of the ABS overlap as shown in Fig. 1(a)
and hybridize. The hybridization is big near each avoided
crossing and can be described with an off-diagonal matrix
element δD, which is a complex number.

Let us estimate the energy splitting 2|δD| near an avoided
crossing. The energies of the states are EA,B ∼ �. These states
are formed by electrons coming in and out of a junction to and
from the adjacent leads and returning as holes to the same
junction. The electron wave function is distributed among
N transport channels involved. The contributions of different
channels to Andreev scattering amplitude come with the same
sign and phase; this is precisely the reason for the energy
of ABS not to depend on the details of the scattering in the
leads. This implies that the contribution of each channel to

the ABS energy can be estimated as �/N . As to δD, it is
determined by the electron and hole propagation from the
junction A to the junction B. Since these points are distinct
and separated by L � λF , one expects the contributions of
different channels to come with the different and generally
random complex amplitudes. These random amplitudes may
be related to mesoscopic fluctuations of electron propagation
between the junctions A and B. Averaging over these random
amplitudes leads to vanishing 〈δD〉 = 0. The average 〈|δD|2〉
is contributed by independent contributions of N channels
and therefore the energy splitting can be estimated as |δD| ∼
�/

√
N ∼ �

√
RGQ.

The junctions between the superconducting leads may have
various characteristics, such as disorder, shape, and material.
It is known, however, [39] that the only characteristic relevant
for ABS is the transmission of these junctions. Therefore, we
are free to choose any microscopic model so we opt for a
convenient resonant impurity model [40,41] that involves a
localized state of energy Eimp with the tunnel couplings t and
t ′ to the leads. We label with A and B these characteristics in
the corresponding junctions; see Fig. 1(a). The width of the
resonant level is given by 	 = 2πν(|t |2 + |t ′|2), with ν being
the density of states assumed equal in all leads. To model weak
energy dependence of the scattering, we set 	 � �, so the
transmission coefficient of the junction A is

TA = 4π2ν2|tA|2|t ′
A|2

(	A/2)2 + E2
imp,A

, (1)

and similar for the junction B.
To find the ABS energies, we derive a Dyson equa-

tion for the Green’s function Gi j (E ) defined at the reso-
nant impurities i, j = {A, B}: G(E ) = ([G0]−1 − �)−1, where
the blocks are the matrices in the Nambu space G0

AA,BB =
(E − Eimp,A,Bσz )−1, and the self-energy part � describes the
tunneling. The diagonal blocks are �AA = T ′

AG(r′
A, r′

A)T ′∗
A +

TAG(rA, rA)T ∗
A , where T j = [t∗

j (σz + σ0) + t j (σz − σ0)]/2,
j = {A, B}, and G(r, r′) is a superconducting Green’s function
in the corresponding leads upon neglecting the tunneling,
�BB is similar. The Green’s function in close points does
not depend on the details of the scattering in the lead; this
is a consequence of Anderson’s theorem [24]. The nondi-
agonal blocks �AB and �BA are �AB = TAG(rA, rB)T ∗

B and
�BA = TBG(rB, rA)T ∗

A . We see that the diagonal blocks con-
tain Green’s functions in coinciding points, while nondiagonal
ones contain Green’s functions in two points separated by
L � λF . Since Green’s functions are associated with prop-
agation amplitudes, G(rA, rB) � G(rA, rA), G(rB, rB). Thus,
�AB, �BA � �AA, �BB and can be handled by means of the
degenerate perturbation theory. This already implies |δD| �
�.

The energies of ABS correspond to the poles of G(E ) [42],
so we need to find zero eigenvalues of G−1(E ). We find zero
eigenvalues in each diagonal block and project G−1(E ) onto
the corresponding eigenvectors |A〉 and |B〉. We work near
the crossing point E0 where the unperturbed ABS energies
are almost degenerate EA ≈ EB ≈ E0. By expanding up to
linear order near the crossing point and transforming G−1(E ),
we find that ABS energies are obtained from the effective
Hamiltonian describing the level repulsion, Heff = (EA δD

δ∗
D EB

),
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FIG. 2. (a) The concrete setup under consideration comprises three superconducting leads covering a single-channel semiconducting
nanowire. Two hybridizing ABSs are forming at the junctions A, B. The gates (yellow) affect the potential in the wire and might be used
to tune the transmission of the junctions. The middle lead is a film of thickness d and width L and is characterized by the resistance per square
R�. The ABS wave functions overlap strongly provided L � ξ0. (b) Dependence of the energy splitting |δD|/δD(L = 0) on L. The splitting
vanishes exponentially upon increasing L.

where

δD = −
〈A|�AB|B〉

√
�2 − E2

0√
	A	B

∝ G(rA, rB). (2)

The Green’s function G(rA, rB) changes much on a scale of λF

upon changing the position of rB. This is the origin of meso-
scopic fluctuations in electron transport [43]. The components
of G(rA, rB) can be regarded as random values with zero
averages. The informative quantities are the products of these
components averaged over rB at the scale exceeding λF . These
averaged products can be expressed with a normal-state qua-
siclassical propagator [44] P (rA, rB, t ), that gives the proba-
bility to find an electron at rB at the time moment t provided
it was at rA at t = 0 (Greek letters denote Nambu indices):

〈G(rA, rB)αγ ∗G(rA, rB)βν〉

= π2ν

�2 − E2

∫
dtP (rA, rB, t )e−2

√
�2−E2|t |

×{δαγ δβνδαβ (2�2 − E2)

+�E [(1 − δαγ )δβνe−iεαγ ϕ3 − δαγ (1 − δβν )eiεβνϕ3 ]

+�2[δαβδγ ν (1 − δαγ ) − δαγ δβν (1 − δαβ )

+ δανδγβ (1 − δαγ )e−i2εαγ ϕ3 ]}. (3)

Let us reproduce the main estimation of this paper, |δD| ∝
1/

√
RGQ, with this method. Combining Eqs. (2) and (3),

we estimate (|δD|/�)2 ∝ ν−1
∫

dtP (t )e−�|t |. In the course of
its propagation, an electron covers the region whose spatial
dimensions are defined by the dwell time tdw  �−1. The
P (tdw) is estimated as inverse volume V of the region. With
this, we can estimate (|δD|/�)2 ∼ tdwδs, δs = (νV )−1. If we
now compare this with the Thouless estimation [45] of the
conductance of such region, GTh  GQ(δstdw)−1, we repro-
duce (|δD|/�)2 ∝ RThGQ.

III. RESULTS FOR CONCRETE SETUP

Let us specify the concrete setup. It comprises the semicon-
ducting nanowire covered by three superconducting leads [see

Fig. 2(a)]; such devices have been recently fabricated [46].
The middle lead is a film of thickness d and width L. If
L � ξ0, the ABS wave functions overlap strongly. We assume
diffusive transport in the lead, which is characterized by the
resistance per square R�. We also assume that the interface
between the nanowire and the metal is sufficiently transparent,
so that the electrons escape the nanowire to metal at the
distances �ξ0.

The semiclassical propagator in the film obeys diffusion
equation (

∂

∂t
− D∇2

)
P (r, t ) = 1

d
δ(t )δ(r − rA). (4)

This diffusion equation is subject to boundary conditions
of zero probability flow across all boundaries. One satisfies
these boundary conditions by introducing infinite number of
imaginary sources, spaced with 2L. The propagator we obtain
is

P (rA, rB, t ) = 1

dL

√
1

πD|t |
∞∑

n=−∞
(−1)ne−D π2

L2 n2|t |
. (5)

With this, we compute |δD|2 using Eqs. (2) and (3) to obtain

|δD|2
�2

= π

2
MGQReff F

(
L

ξ (E0)

)
, Reff = R�

ξ (E0)

L
, (6)

with Reff being the effective resistance of the part of the
lead covered by ABS wave functions, the dimensionless
F (z) = 4z/π

∑∞
n=0 K0((2n + 1)z), K0 being modified

Bessel function of the second kind, F (0) = 1, which
incorporates information of the decay of ABS wave functions
at the scale of ξ (E ) = ξ0(1 − E2/�2)−1/4, that is, the
energy-dependent correlation length. The prefactor M  1
incorporates information about transmissions of the junctions
M = 2|tA|2|tB|2{2 cos(χA − χB)E2 + [2 + cos(χA + χB) −
cos(χA − χB)]�2 − 2E�(cos χA + cos χB)}/[�2(|tA|2+|t ′

A|2)
(|tB|2 + |t ′

B|2)], where χA and χB are the phases of
the eigenvectors |A〉 and |B〉, respectively, with eiχA =
[|t ′

A|2eiϕ1 + |tA|2]�/(E [|tA|2 + |t ′
A|2]) and analogously for χB.

Here, ϕ1 and ϕ2 denote phase differences with respect to ϕ3

and we set Eimp,A,B = 0. M → 1, in the limit E0 → 0; this
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requires TA,B → 1. Thus, in the limiting cases, we have

|δD|2
�2

=
⎧⎨
⎩

π
2 MGQReff , L → 0,

MGQReff

√
2πL
ξ (E0 ) e

− L
ξ (E0 ) , L → ∞,

(7)

We plot the normalized energy splitting |δD|/δD(L = 0) ver-
sus L in Fig. 2(b), δD(L = 0) = �

√
πMGQReff/2.

For the experimentally relevant parameters � = 200 μeV,
ξ0 = 96 nm [27], R� = 1.43 � [47], L = 50 nm, TA = TB =
1, we find the crossing point at ϕ2 = 2.36, ϕ1 = 3.93, and
E0 = 76.54 μeV, and obtain the splitting 2|δD| = 11.26 μeV.
The value for |δD|  �/40 even though R�GQ ≈ 10−4, which
seems to be small.

The separation of scales between δD and � permits in-
teresting quantum manipulation schemes for involved states.
Let us describe the simplest one: quasiparticle swap between
A and B. Let us take a point in parametric space of ϕ1,2,3,
where the ABS energies are well split [for instance, ϕ3 = 0
in Fig. 1(b)] and put a quasiparticle to the state A. We pass
the avoided crossing slowly to avoid Landau-Zener tunneling
in this point (for instance, changing ϕ3 from 0 to π/2); this
brings the quasiparticle to B. If we get back to the initial
point very quickly, the quasiparticle will remain in B; this
completes the manipulation protocol. The same swap occurs
if the quasiparticle is in B initially.

There is an interesting case, when both junctions have
almost ideal transmission TA,B = 1 − RA,B, RA,B � 1, and
ϕ1,2 = π + δϕ1,2, δϕ1,2 � 1. In this case, the crossing occurs
at E0 � �, which can also be comparable with |δD|. The
perturbation theory does not work here, but we can describe
the situation with the following 4 × 4 effective Hamiltonian:

Heff = �

⎛
⎜⎝

0 hA g f
h∗

A 0 f −g
g f 0 hB

f −g h∗
B 0

⎞
⎟⎠, (8)

where hA,B = √
RA,B + iδϕ1,2. The terms f and g come from

�AB,BA, 〈 f 2〉 = 〈g2〉 = 16π3ν2|tA|2|tB|2GQReff F (L/ξ (E0)). In
the limit RA,B = 0, the ABS energies are given by

E =
√

δ̃2 + (δϕ)2

4
+ �2

4
± �

√
δ̃2 + (δϕ)2

4
, (9)

where δ̃ =
√

f 2 + g2, δϕ1,2 = �/2 ± δϕ/2. Interestingly, if
|�| < 2δ̃, the energies never cross zero, while there are
two symmetric zero-energy crossings if |�| > 2δ̃ [Figs. 3(a)
and 3(b)]. In this approximation, two ABS energies are pre-
cisely degenerate at � = 0; this degeneracy is lifted upon
increasing energy. At finite RA,B, the zero-energy crossings are
avoided [Figs. 3(c) and 3(d)].

IV. DISCUSSION AND CONCLUSIONS

Before we conclude, let us mention that the fact that the
energy splitting is fine makes relevant a set of topics to
research that we list here. For semiconducting nanowires, the

FIG. 3. Spectra of the system for E ∼ 0 for f /δ̃ = √
3/5, g/δ̃ =√

2/5, and (a) �/δ̃ = 4, RA = RB = 0; (b) �/δ̃ = 1.5, RA = RB = 0;
(c) �/δ̃ = 4 and

√
RA/δ̃ = 0.1,

√
RB/δ̃ = 0.4; (d) �/δ̃ = 1.5 and√

RA/δ̃ = 0.1,
√

RB/δ̃ = 0.4. The dashed line shows the case of
f = g = 0 and for other parameters as described. The asymmetry
in panels (c) and (d) comes from RA �= RB.

electron escape length can be �L, this confines the overlap
region to the nanowire and greatly enhances δD. The spin-orbit
splitting [48] of ABS that is usually negligible can become
relevant for small δD. Many-body effects shall provide small
energy differences for doublet and singlet quasiparticle states
in ABS [23]. Interestingly, the hybridization of degenerate
singlet states in the setup under investigation can also occur
without direct overlap of ABS wave functions, that is, at L �
ξ0. It would be also interesting to consider with our method
the ABS in superconductor-ferromagnetic structures [36].

We have investigated the energy splitting in an Andreev
molecule, where in distinction from the common molecules
the quantum superpositions are formed at a macroscopic
level and can be engineered by changing the superconduct-
ing phases. Such molecules may become a playground for
interesting few-body quantum interactions. We establish that
the energy splitting is fine even in the case of strong overlap.
This is in contrast to common molecules either natural or
artificially made in nanostructures. We relate the splitting to
mesoscopic fluctuations, so that the splitting manifests the
intrinsic randomness of the setup and provides the means of its
experimental observation. The smallness of the splitting opens
up possibilities for quantum manipulation and application as
mentioned in Ref. [37].
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