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Introduction

The role of Unmanned Aerial Vehicles (UAVs), more commonly known as drones, in society
continues to become more significant every day. The civil market alone is estimated to be worth
7.2 billion USD in 2022 and this value is expected to grow to 19.2 billion USD in 2031 [1].
Applications range from agriculture over disaster response to package deliveries. But also its
military use has become more relevant. Already in the Vietnam War, the US army deployed
drones as a weapon [4]. When surveillance technology improved, it became clear that drones
could also be used for survey missions in enemy terrain [3]. Moreover, these automated missions
need not be performed by aerial systems, depending on the terrain and the characteristic of the
mission, an automated ground vehicle (UGV) or an unmanned under water vehicle (UUV) may
be more adept. The ongoing wars in Ukraine and Gaza have shown the importance of hybrid
warfare [7]. In such warfare, the distinction between different modes of warfare (conventional
warfare, cyber warfare, political warfare) tend to blurred. This makes the adversary in such war
fluid and harder to predict [5]. Intelligence in physical and non-physical infrastructure is key in
gaining advantage. Hence the scale in which unmanned vehicles are used for both offensive as
well as reconnaissance missions is at an all time high [8].
To expand the number of operational systems while managing costs, it is desirable to deploy
systems that can operate fully independently. For a survey mission, this requires a planning of
the complete mission before the drone leaves for enemy territory. The setting of such a mission
can be stated as follows: starting from a secure base, multiple surveillance locations need to be
safely reached and the acquired information has to be brought back to the base. There are three
possible ways of bringing back information. At every surveillance location, there is the possibility
of transmitting information back to the base camp. Hence the first option is that the drone travels
to a surveillance location, gathers the info and immediately sends it back to the base. Secondly,
the drone could also store the information and go to the next surveillance location. After having
obtained the information there, the totality of info could then be transmitted together at that
location. Thirdly, the drone could also store information and return to the base. In this case
the information is physically obtained back from the drone. However, each action in the mission
carries the risk of detection – the drone could be spotted during flight, or transmissions might
be intercepted. Both ways of detection give away the position of the drone, ending the mission
abruptly.
This report investigates how to find the optimal strategy of these reconnaissance missions. Such
an optimal strategy consists of two elements: both the route and the send strategy have to be
optimal to maximise the amount of retrieved information. Hence the specific questions for which
an answer is sought in this research are:

• In which order should the different locations be travelled to?

• Where is it beneficial to make a transmission and where is it better to hold on to the
gathered information?
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The report is structured in four chapters. First of all, the problem is described mathematically.
A model based on weighted graphs is proposed and two ways to compute the expected value of
retrieved information are discussed. Furthermore, it is investigated whether the problem can be
written as an Integer Program and a motivation is given for the choice of a heuristic algorithm.
Secondly, the case where one drone is deployed during the mission is examined in great detail.
A genetic program that yields the optimal strategy is presented. This genetic program is tested
on several mission scenarios and different algorithms are compared in terms of success rate and
complexity. Thirdly, the scope is extended to missions with multiple drones. The best genetic
program from the single drone scenario is adapted and improved such that it can also solve the
multiple drone scenario. This improved algorithm is tested in the same way as the single drone
scenario and a comparison is made. Lastly, the conclusion is presented. Results are put within
their mathematical and societal perspective and open questions are addressed.
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Chapter 1

Mathematical Exploration of the
Problem

1.1 How to Model a Reconnaissance Mission?

Two mathematical formulations of a recon mission are presented in this chapter: one focusing
on the transmissions and one considering the journey of the information from each vertex. The
first one is more intuitive and is suitable for the first part of the research. However, the intuitive
formulation leads to a less useful objective function. Therefore a second formulation is stated
which is slightly less straightforward to construct, but easily generalised to scenarios with multiple
drones.

1.1.1 Focus on the Transmission Vertices

A mission on k surveillance locations can be naturally formulated as a problem on a weighted
graph G = (V,E), with V = {0, . . . , k}. The weights consist of both edge weights and vertex
weights.
Every edge ij has weight qij ∈ [0, 1]. These weights correspond to the crossing probabilities: the
survival chance of crossing from i to j. Moreover, every vertex i has two weights. The first one
pi ∈ [0, 1] is the transmission probability: the probability of making a successful transmission
at vertex i. The second weight zi is the amount of information that can be gathered at that
vertex. Having these weights and probabilities, finding the optimal strategy of the mission, boils
down to finding a walk with corresponding send strategy that maximises the expected amount
of retrieved information. In such a strategy, the following rules apply:

• Vertex 0 corresponds to a safe base camp: successful transmission has probability one, but
there is no information to retrieve here. This means that p0 is equal to 1 and z0 is 0.

• The walk can have repeated vertices. However, once the information has been retrieved at
a vertex i, zi is set to 0.

• If information is retrieved but not transmitted, it is carried to the next vertex in the walk
and can be transmitted there or further down the walk. A transmission always sends all
information that has been retrieved but not yet transmitted. At the last vertex of the walk
– the base camp – a transmission is always made, but this transmission can be empty.
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• Once a crossing or a transmission fails, the mission is over and no more information can
be retrieved nor transmitted.

Following the above rules, the expression for the expected amount of received information for a
walk with corresponding send strategy is formulated. By looking at the different vertices where
information is transmitted, it is computed how much information every transmission is expected
to contain. Let R = [v1, v2, . . . , vm] with v1 = vm = 0 be the sequence of vertices that make
up the walk. Say vi has transmission probability pvi and the probability of crossing from vi to
vi+1 is qvivi+1

. Moreover, let S = [vs1 , vs2 , . . . , vsn ] be the subsequence of R of n vertices where
information is transmitted. Then we compute the probability to survive the entire route with
corresponding send strategy with

P(survival) =
m−1∏
j=1

qvjvj+1

n∏
i=1

psi .

And if X is the random variable that denotes the amount of retrieved information, then the total
expected information is given by

E[X] =

n∑
i=1

si−1∏
j=0

qvjvj+1

∏
u:vsu∈S

u≤i

psk
∑

si−1<h≤si

1.

Example 1.1.1. To get a better insight in the above formula, it is useful to work out an
example. Consider a mission which is given by the graph in Figure 1.1. This graph consists of a
base camp at vertex 0 and three surveillance locations at vertices 1, 2 and 3. The crossing and
transmission probabilities are shown on the graph. At every surveillance location there is one
unit of information to be retrieved. Now let’s assume that the following strategy is chosen:

Route: 01230

Send: 01001.

This send strategy means that a transmission is made at vertex 1 and back in the base camp
upon return.
Let X be the random variable for the amount of well-received information for this route and send
strategy. X1 is the random variable that defines the amount of received information at the first
transmission and X2 at the second one. By linearity of expectation: E[X] = E[X1] + E[X2]. To
compute E[X1], first the probability of safely reaching vertex 1 needs to be computed. That is
0.6. The transmission probability is 0.9 and there is one unit of information being transmitted.
So:

E[X1] = 0.6 · 0.9 · 1 = 0.54.

We make a similar computation for the second transmission. The probability of reaching the
base camp is 0.6 · 0.9 · 0.3 · 0.9 · 0.6. The transmission probability is 1 and there are two units
of information transmitted: the information from vertices 2 and 3. The expected amount of
transmitted information with the second transmission then becomes:

E[X2] = 0.6 · 0.9 · 0.3 · 0.9 · 0.6 · 1 · 2 = 0.17496.

Combining this yields the total expected value:

E[X] = 0.54 + 0.71496 = 0.71496.
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So for this graph, if the route 01230 is chosen with transmissions at vertices 1 and 0, the mission
is expected to retrieve 0.71496 units of information out of the possible 3 units. The question
can be raised whether it is worth setting up a reconnaissance mission if only a small fraction of
information is expected to be retrieved. In the following sections we will investigate whether this
value can be increased using an algorithm to find a better strategy.

Figure 1.1: Example of a graph with send and crossing probabilities.

1.1.2 Focus on All Vertices

Intuitively, it makes sense to focus on the transmission vertices, as we are interested in the
expected amount of transmitted information. However, this formula is hard to generalise to the
case of multiple drones, since information sent by multiple drones should only be counted once
towards the total retrieved information. Therefore in this case it makes sense to construct an
equivalent formulation that focuses on how much information from each vertex is expected to
reach the base camp.
The expected amount of information that is safely transmitted can also be formulated as the
sum of the expected fraction of each unit of information that is safely transmitted. If vertex i
contains zi units of information, then we compute E [Xi]: the expected amount of information
from vertex i that reaches the base.
In the case of one drone, this is equal to the product of zi with the probability that the drone
safely reaches the first transmission vertex after i and the probability that the transmission at
this vertex is successful.
For the case with two drones, some more notation is required. Let D1i be the event that drone
number 1 succeeds in transmitting the information from vertex i. Similarly, let D2i be the
event that drone number 2 succeeds in transmitting the information from vertex i. Then we are
interested in the probability that D1i or D2i happens. Note that this is an inclusive disjunction.
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Using independence of probabilities we obtain:

P (D1i ∨D2i) = P (D1i) + P (D2i)− P (D1i ∧D2i)

= P (D1i) + P (D2i)− P (D1i) · P (D2i) .

Hence this leads to a formula for the expected value E [Xi]:

E [Xi] = zi · (P (D1i) + P (D2i)− P (D1i) · P (D2i)) .

Linearity of expectation provides an alternative formula for the total expected value:

E[X] =

|V |∑
i=1

E [Xi] .

This perspective on the expected value might be a little less computationally advantageous: for
every vertex we need to recompute the probability that the drone reaches the next transmission
vertex and is able to make a transmission. But it gives rise to a formula for an arbitrary amount
of drones. The formula for the union probability can easily be adapted to ℓ drones, as

E[Xi] = zi · P (D1i ∨ · · · ∨Dℓi) ,

which we again compute using the independence of probabilities.

Example 1.1.2. Returning to Figure 1.1, the expected value of the strategy

Route: 01230

Send: 01001

can be computed with the new formula as well. There are three surveillance locations, so the
expected value of retrieved information is decomposed in a sum over these three vertices:

E[X] = E[X1] + E[X2] + E[X3].

The three terms are computed separately. The one unit of information from vertex 1 is immedi-
ately transmitted at this vertex. The probability of reaching this vertex is 0.6, the transmission
probability is 0.9, plugging this in yields

E[X1] = 1 · 0.6 · 0.9 = 0.54.

The information from vertex 2 is sent at vertex 0. The probability of this information reaching
its transmission vertex is 0.6 ·0.9 ·0.3 ·0.9 ·0.6 and the transmission probability is 1. Additionally,
The information from vertex 3 is also transmitted at vertex 0, so we compute both values with
the same formula:

E[X2] = E[X3] = 1 · 0.6 · 0.9 · 0.3 · 0.9 · 0.6 · 1 = 0.08748.

The sum of the above values provides the total expected value:

E[X] = 0.54 + 0.08748 + 0.08748 = 0.71496.

Indeed, this is the same value as obtained in Example 1.1.1.
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1.2 How to Construct the Optimal Strategy?

1.2.1 The Optimal Send Strategy

Even though the task at hand is to find an optimal route and corresponding send strategy, it is
insightful to first look how to choose the best send strategy for a given (optimal) route. Suppose
we were able to find the best route, can we then easily find the best send strategy?
Finding this best send strategy was the subject of the bachelor thesis of Abe Boswinkel. [2] This
section is mostly based on that thesis. Suppose a route is presented for which the send strategy
is wanted. At every vertex in the route, the choice needs to be made whether it is better to
send the information now, or hold on to it and send it at a later stage. Both options involve
a risk and to decide if the information should be transmitted at a certain vertex, all possible
next transmission vertices need to investigated. However, for one vertex there is no choice: at
the last vertex of the route, all remaining information should be transmitted. This means that
a dynamic program can be used that starts at the last vertex and work its way back.
Such a program requires multiple parameters. Again, let pi be the probability that the trans-
mission at vertex i is successful and let qij be the probability of crossing safely from vertex i to
vertex j. Moreover, it is assumed that there are zi units of information available at vertex i. Let
Ci(h) be the potential gain in information at vertex i, holding h units of information. Suppose
the considered route is [v1, . . . , vm]. Then the dynamic program then becomes

Cvi(h) = max
(
pvi ·

(
h+ zvi + qvivi+1

· Cvi+1
(0)

)
, qvivi+1

· Cvi+1
(h+ zvi)

)
Cvm(h) = pvm

· (h+ zvm).

The first line consists of a maximum of two values, pvi
(
h+ zvi + qvivi+1 · Cvi+1(0)

)
corresponds

to the probability of making a successful transmission at vertex vi, sending h + zvi units of
information and then crossing to vertex vi+1 where the drone arrives with 0 units of information.
Since it is impossible to cross to the next vertex when the transmission is intercepted, qvivi+1

·
Cvi+1(0) is multiplied with pvi . The other value is the crossing probability to the next vertex,
where the drone arrives with h+ zvi units of information.
The second line is the potential gain in information at the last vertex. Since there is no other
vertex to travel to, the only option is to send all information that was still held on to. This leads
to the probability pvm multiplied with h + zvm . Note that since vm is the base camp, we know
that pvm = 1 and zvm = 0.
The strength of this dynamic program is that it can quickly find the optimal send strategy for
any given route. This shows that if the optimal route can be found, the problem is basically
solved. This seems to simplify the problem to finding the best route.

1.2.2 The Optimal Route

The ideal case to find the optimal route would be the existence of some heuristic or local decision
rule to decide which vertex to travel next to. A first possible approach would be to try to find a
so called Hamilton cycle. This is a route that starts at the base, passes by every vertex exactly
once and returns to the base. Such a cycle requires the least number of crossings, so this might
be a good idea in terms of the survival probability. It also has practical applications in terms
of distance. As a way of choosing the best Hamilton cycle, one could look at the cycle with the
largest product of edge weights i.e., the cycle with the highest survival probability not taking
into account the transmissions.
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Example 1.2.1. Let us return to Example 1.1.1. For this graph, the best such cycle is 01230
or 03210. Using the dynamic program, one can find that the first cycle has an expected value of
retrieved information equal to 0.715 and the second one has expected value 0.613. The former
is the best possible Hamilton cycle in terms of expected value. These values are not that high,
considering there are three units of information to be retrieved from this graph. Furthermore,
one can note that vertex 3 in this graph only has one edge with high crossing probability. Hence
it could make sense to go back and forth over that edge, for example with route 012320. And
indeed, this yields to an expected value of 0.776. So a Hamilton cycle is not necessarily the
best route. For this graph it is possible to work out that the route with the highest possible
expected value is actually 0232010. This means that it is optimal to return to the base, but
not to fly back and forth the base and every single surveillance location. This is partly because
the graph is not metric, so the triangle inequality doesn’t hold. Travelling from vertex 3 to the
base camp at vertex 0 is more secure via vertex 2. Then the survival probability is 0.81 instead
of the 0.6 probability of directly going from 3 to 0. The send strategy that yields the optimal
value is 0000111 and the expected value ends up to be 1.666. All considered strategies and their
respective expected values are shown in Table 1.1. The table shows that the optimal expected
value is more than twice the value of the best Hamilton cycle. But if a Hamilton cycle is not
necessarily the best route, what does characterise the optimal one?

Option 1
Route: 01230

Expected Value: 0.715
Send: 01001

Option 2
Route: 03210

Expected Value: 0.613
Send: 00111

Option 3
Route: 012320

Expected Value: 0.776
Send: 010001

Option 4
Route: 0232010

Expected Value: 1.666
Send: 0000111

Table 1.1: Table with possible routes, send strategies and their corresponding expected values.
0 in a send strategy means not to send, while 1 means that a transmission is made. Clearly, it
can be worth it to not choose a cycle but go back and forth through the graph.

1.2.3 The Necessity of Large Enough Probabilities

As the problem is formulated now, the edge and vertex weights can be any probability, i.e. any
value between 0 and 1. But what happens if every such value is small? From a mathematical
point of view this is allowed: the optimal route can still be computed. But from a practical point
of view something has to be noted: as the risk of being detected is very high everywhere, is the
mission still worth it? To formulate an answer to this question, we study the following example.

Example 1.2.2. Consider Figure 1.2. In this graph, the crossing or transmission probability is
never greater than 0.3. So that means, there is only a 30 percent change the mission even makes
it to the first point. Let’s work out what the best strategy is in this high risk environment.
Travelling to any additional vertex will always lead to a strictly positive extra term in the sum
that makes up the expected value. Hence this expected value will be maximised by a route that
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passes by all points. As the graph is still small, it is possible to find out that the optimal strategy
is given by:

Route: 0102030

Send: 0010101.

This corresponds with going to a point and returning the information to the base in decreasing
order of probability of getting there. This yields an expected value of 0.0985. Knowing that there
are three units of information to be retrieved, this is not a great score. Computing the expected
value of every transmission gives more insight in this mission. There are three transmissions
made – all at the base camp – so let X1, X2 and X3 be their corresponding random variables.

E[X1] = 0.3 · 0.3 = 0.09

E[X2] = (0.3)4 = 0.0081

E[X3] = (0.3)4 · (0.25)2 = 0.00050625

This shows that the only transmission vertex that actually contributes to the expected value
is the first one. The second vertex only adds a value that is ten times smaller than the first
one. So even though the optimal value is attained after having passed all points, it seems more
reasonable to only maximise the expected value of the first transmission and then not visit any
other point. In that case there is still a chance that the drone returns home.

Figure 1.2: Example of a graph where the probability of crossing is low everywhere.

But doesn’t this hold for any graph with probability weights? Travelling to a next vertex and
transmitting the gathered information will always lead to at least two additional elements in the
product that makes up expected value of the corresponding transmission. Since all these terms
are between 0 and 1, the product can rapidly decrease. It seems that the first term has by far
the most influence on the entire expected value.
The question arises whether maximising the first transmission of a route followed by some other
way to order the remaining nodes imply an optimal or near-optimal solution. To investigate
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this, one can look into the opposite of the previous example: a graph with high probabilities
everywhere.

Example 1.2.3. An example of a high probability graph is depicted in Figure 1.3. Suppose
purely the first transmission is maximised. Since the probability of crossing is high everywhere,
the expected value of the first transmission is maximised if the drone stores all information and
sends the three units of info at the third point or fourth. It can be found that the best such
strategy is

Route: 03120

Send: 00011.

The expected value then becomes 2.134350. But if the send strategy is changed to 01111, so a
transmission is made at every vertex, the total expected value increases to 2.33110, even though
the expected value of the first transmission decreased. So for this route the strategy isn’t optimal.
Moreover, the strategy

Route: 01230

Send: 01111.

yields an expected value that is even higher with a value of 2.334820. So even for very small
graphs the considered strategy is not the way to go. On larger graphs, the transmission would
be further postponed, increasing the gap between the expected value given by this strategy and
the optimal one. Therefore a better approach to find the optimal route needs to be researched.

Figure 1.3: Example of a graph where the probability of crossing is high everywhere.

It can be concluded from this section that for the problem to be mathematically interesting and
also practically worth investigating the probability on the edges and vertices need to be high
enough. Otherwise the only term that really adds to the expected value is the first one and the
probability of actually obtaining information is too low to start the mission in the first place.
Also, since there is no clear way of predicting what the optimal route for a graph looks like,
the route and send strategy have to be simultaneously optimised. Both have an impact on the
expected value that is maximised and one cannot be looked at without the other.
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1.2.4 Formulating the Problem as an ILP

Ideally, the problem can be stated as an Integer Linear Program (ILP). Since there exist efficient
solvers for this type of program, it might provide a way to consistently find the optimal strategy.
When using the formulation of the expected value in terms of the expected amount of retrieved
information from each vertex as proposed in subsection 1.1.2, we need to know at which moment
every vertex is visited and at which moment the gathered information is transmitted. This allows
to compute the probability that the drone successfully transmits the information. This can be
encoded with the following decision variables:

Xit =

{
1 vertex i is visited at time t
0 otherwise

Yit =

{
1 a transmission is made at vertex i at time t
0 otherwise.

These two decision variables are enough to represent a strategy and given a strategy, we can
always construct the corresponding nonzero Xit and Yit.

Example 1.2.4. Suppose we are given the following strategy:

Route: 03120

Send: 00011.

Then X01 = 1, X32 = 1 etc. Similarly, the only Yit not equal to 0 are Y24 = 1 and Y05 = 1.

We will also need two decision variables that are closely related to Xit and Yit:

Aijt =

{
1 there is a crossing from vertex i to vertex j at time t
0 otherwise

Bijst =

 1 information gathered from vertex i at time s
is transmitted at vertex j at time t

0 otherwise.

Now the required constraints for such a program can be formulated. Immediately, the first issue
arises. All vertices are part of the vertex set V . Similarly, a time set T is needed that consists of
all possible values of t. But it is not known how long the optimal strategy actually is. However,
from the examples we have seen so far and those we will see in the next chapters, it is a reasonable
assumption that the length of the optimal strategy lies between |V | and 2|V |. This means the
program can be run for all different options for T . This seems tedious, but let’s assume this is
possible, for the sake of investigating the required constraints.
First of all, at each moment in time, there is only vertex that can be visited. This can be imposed
with ∑

i

Xit = 1 ∀t ∈ T. (1.1)
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Moreover, the same vertex cannot be visited twice in a row. A crossing can only be made between
two sequential vertices and there are |T |−1 crossings in each route. This leads to four additional
constraints:

Aiit = 0 ∀i ∈ V,∀t ∈ T (1.2)

Aijt ≤ Xit ∀i, j ∈ V,∀t ∈ T (1.3)

Aijt ≤ Xjt+1 ∀i, j ∈ V,∀t ∈ T (1.4)∑
i,j,t

Aijt = |T | − 1. (1.5)

A transmission at a vertex can only be made at the moment that vertex is visited. This relates
Yit and Xit with

Yit ≤ Xit ∀i ∈ V,∀t ∈ T. (1.6)

Since the information from each vertex has to be transmitted exactly once, the following con-
straints also arise:

Bijst ≤ Xis ∀i, j ∈ V,∀s, t ∈ T (1.7)

Bijst ≤ Yjt ∀i, j ∈ V,∀s, t ∈ T (1.8)∑
i,j,s,t

Bijst = |V |. (1.9)

Lastly a variable is wanted that indicates whether the information of vertex i is has been gathered
and is gone at time t. This binary variable allows for only considering the probabilities up until the
transmission of the information to compute the expected transmitted portion of this information.
The indicator variable needs to have the following form:

Zit =

{
1 information from vertex i has been transmitted before time t
0 otherwise.

Using the existing decision variables, this becomes:

Zit =

{
1

∑
s≤t

∑
s≤q≤t

∑
j∈V Bijsq ≥ 1

0 otherwise.

This indicator variable is encoded with two constraints [9]. First of all, a new variable is defined:

Cit =
∑
s≤t

∑
s≤q≤t

∑
j∈V

Bijsq − 1. (1.10)

For a large enough value of M , this inequality holds:

−2 ≤ Cit ≤ M.

So to impose the implication Cit ≥ 0 ⇒ Zit = 1, the following constraint can be used:

MZit − Cit > 0 ∀i ∈ V,∀t ∈ T. (1.11)

At the same time, the implication Cit < 0 ⇒ Zit = 0 has to hold. This can be obtained with:

2 (1− Zit) + Cit ≥ 0 ∀i ∈ V,∀t ∈ T. (1.12)
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Lastly, all decision variables need to be binary:

Xit, Yit, Aijt, Bijst, Zit ∈ {0, 1} ∀i, j ∈ V,∀s, t ∈ T. (1.13)

These 13 constraints enable deciding which route to take and where to send. But now it is
desired to use them to maximise the expected value from subsection 1.1.2. This expected value
was formulated as:

E[X] =

|V |∑
i=1

E [Xi] ,

where everyXi is the random variable that states how much information of vertex i is successfully
transmitted. If qij is the crossing probability between vertices i and j, pi is the transmission
probability at vertex i and zi the amount of information to be retrieved at i, E[Xi] is optimised
by maximising the objective function

fi(x) = ln(zi) +
∑
i

∑
j

∑
t

[(ln(qij)Aijt + ln(pi)Yit) (1− Zit)] .

The logarithmic function is used to turn the product of all probabilities into a sum. However,
the objective function is the sum over all E[Xi]. Therefore it is unclear how to make the entire
objective function linear, as taking the sum over all fi clearly doesn’t work. Finding a linear
objective function seems to be a hard task where the best idea so far is to use a binary decision
variable for each route that is 1 if that specific route is chosen and 0 otherwise. This is a silly
way of setting up the program, as it would be equivalent to a search over all possible routes. The
hope remains that (parts of) the above method could still be improved to obtain some integer
program, but further research is required. In any case, such an IP would require a lot of decision
variables and the choice was made to research an efficient and reliable heuristic instead.
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Chapter 2

Single Drone Missions

2.1 The Genetic Algorithm

Instead of looking for an integer program, which would be able to consistently find the optimal
strategy, this chapter investigates how to construct a heuristic algorithm when the mission de-
ploys a single drone. Such a heuristic does not necessarily return the optimal strategy, but if
it does so often enough and the algorithm is fast, it provides a good alternative. If the graph
is small, it is still possible to go over all routes and find the optimal ones. Yet the number of
routes increases extremely fast as the number of vertices increases. The only known property in
advance of the optimal route is that it starts and ends at the base camp and passes by all other
vertices, so there are a lot of possible routes to consider.

Example 2.1.1. Consider a complete graph on six vertices with probabilities as given in the
following graph: 

1 0.97 0.81 0.97 0.95 0.96
0.97 0.93 0.92 0.87 0.89 0.87
0.81 0.92 0.96 0.81 0.98 0.93
0.97 0.87 0.81 0.85 0.93 0.93
0.95 0.89 0.98 0.93 0.91 0.89
0.96 0.87 0.93 0.93 0.89 0.90

 .

The diagonal entries correspond to the transmission probabilities, the off-diagonal entries are
the crossing probabilities. For this larger mission scenario, it is extremely difficult to find the
optimal route by trial and error. A more clever approach is needed.

As the length of the optimal strategy is not known in advance and the route and send strategy
have to be optimised simultaneously, the approach of a genetic algorithm seems a great fit.
Genetic programming is based on the idea of survival of the fittest and natural selection. Suppose
a list of possible strategies is given. This list can be seen as a generation in the program. From
this list, natural selection would like to pick the best routes to become the parents of new routes.
Hence a new generation is created in which we hope that the children are even better strategies.
This is repeated until hopefully at some point the optimal route is found.
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2.1.1 Detailed Explanation of the Genetic Program

Natural selection and crossing strategies to find new ones may sound like a great idea, but how
does this algorithm work practically? First of all, the algorithm needs to be initialised. In the
first iteration, a list of random routes is generated. These routes are constructed by taking a
number of random steps through the graph starting from the base. The length of this walk is
chosen in terms of the size of the considered graph. For example, for K6, the length chosen
uniformly at random be between the number of vertices of the graph minus four and the number
of vertices plus four. If the last vertex of this walk is not the base, the shortest path between
those two vertices is added. One can imagine that when the graph becomes large, the length of
these routes can become large as well. But eventually, the first generation is filled, as sketched
in Figure 2.1.

Figure 2.1: To initialise the genetic program, a lot of random routes are generated. Every number
represents a vertex in K6.

To know which routes are great and which we don’t want to use for a next generation, we need
to compute the expected value. Therefore we need a send strategy. Hence for every route, the
dynamic program is run and the expected values are stored with their routes. The send strategies
are not stored, as in every generation, we create new ones with the dynamic program. Based on
these values, the routes are ranked from best to worst. Three categories are created: the best
±10%, the worst ±7% and all other routes (see Figure 2.2).

Figure 2.2: The generation is split in three categories: the best ± 10%, the worst ± 7% and all
other routes.
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At this point the algorithm has a list of ranked strategies and their expected values. Now a new
generation has to be constructed. Thus, first the routes with the very best expected values are
put directly in the next generation. This means that the best value of this new generation cannot
be worse than the previous best value. Then, the worst routes from the previous generation are
deleted. To construct a route in the next generation, two routes are picked uniformly at random
from the remaining ones. These two routes will become the parents of new route, hoping that
the good genes of the parents will be inherited by the child. To cross these two parents, a vertex
that is present in both routes is randomly chosen and the parent routes are sliced in two parts
at the first occurrence of this vertex. From the one route we use the first part, from the other
route the second part.

Example 2.1.2. Suppose the two routes picked uniformly at random are 015412342050 and
030120250410. The next step is to pick at random one vertex in the graph. Let’s say that vertex
2 was picked to make the crossover. The first occurrences of vertex 2 are 015412342050 and
030120250410. Hence the crossing of these two routes becomes 0154120250410.

It is possible that two routes are not compatible to construct a child route. If two attempts
of finding a vertex present in both routes fail, two new routes are picked and these are crossed
instead.
This strategy keeps being repeated: the routes in this generation are ranked from best to worst
using the dynamic program and a new generation is constructed. After enough generations the
hope is that eventually the globally optimal strategy will appear.

Figure 2.3: The best routes are immediately put in the next generation. Thereafter, the next
generation is filled with crossings from the previous generation.

To test this algorithm, the graph from Example 2.1.1 was used. 60 generations of 500 routes
were constructed. In each generation, the 30 best routes were chosen and the 20 worst routes
were deleted. This algorithm was run ten times. The best strategy in these runs is given by

Route: 010304250

Send: 001010101

with expected value 4.115090. This strategy was found in five out of ten runs. Since the
algorithm is fast enough, it is feasible to run it for example ten times, which results in almost
always finding this solution. So for K6, the genetic algorithm in its current form is sufficient.
However, in subsection 2.2.2, a better genetic algorithm is required and proposed. This genetic
algorithm was run a hundred times on the above example and the same strategy was found 98
times. This strengthens the belief that this is indeed the optimal strategy.
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2.2 Results

2.2.1 Sparse Graphs

The first generation of the genetic algorithm is a list with randomly generated routes. When
dealing with a complete graph, these are easily generated: construct a vector where every element
is picked uniformly at random from all vertices of the graph and delete repeated vertices.
Just as easy, two routes in a complete graph can be crossed: pick a vertex in each route and
slice the route in two at these points. Since the graph is complete, these slices can just be put
together and the solution will always be feasible. However, things become more complicated
when the graph is not complete, or equivalently, complete but with crossing probability zero
for non-existing edges. If the genetic algorithm with the aforementioned naive initialisation and
crossing techniques is used, the generations are almost exclusively filled with non-feasible routes.
This means that the optimal solution is almost never found. To make sure that only feasible
routes are considered in the initialisation, a random walk starting from the base is used. The
length of this walk is also randomly chosen. Such a random walk does not necessarily end back
in the base, which is a requirement for a feasible route. Hence Dijkstra’s algorithm is used to
take the shortest route back to the base from the last vertex of the random walk. The crossover
method from Example 2.1.2 is constructed in such a way that only feasible routes are constructed
in the following generations as well.

Example 2.2.1. In certain scenarios, a complete graph does not model the reality of a recon-
naissance mission adequately. There might be an enemy base that cannot be flown right over
between surveillance locations, or there might be a river flowing through the enemy terrain,
with only a few bridges that can be crossed. Both in aerial and ground operations, the graph
corresponding to the mission could be sparse. Such a graph is depicted in Figure 2.4. With
the implementation of this approach, the genetic algorithm with 60 generations of 500 routes,
again with the best 30 immediately to the next generation and the worst 20 deleted, the global
minimum for this graph was found in 9 out of 10 times. This best route is given by

Route: 013245678790

Send: 001000010101

and has expected value 6.113745. The fact that this optimal route is found in so many iterations
shows the strength of the genetic algorithm. Could this be further extended to even larger
graphs?

2.2.2 Nine Surveillance Locations

For a recon mission, it is realistic to assume there are around nine points to be explored in one
mission. If there are more points to be explored, the mission becomes hard to plan and to execute
safely. Yet it is not hard to believe that in certain scenarios the ten points (base camp included)
can be formulated as a complete graph where one can travel from any point to another. Such a
complete graph on ten vertices further increases the number of possible strategies compared to
the sparse example from Example 2.2.1.
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Figure 2.4: This graph is not complete. One could for example think of this graph as a river
dividing the points in two and a bridge crossing this river. Naive initialisation and crossing
methods don’t work on this graph.

Example 2.2.2. The matrix which will be considered in this section is the following one:

1 0.95 0.87 0.93 0.99 0.96 0.92 0.88 0.9 0.93
0.95 0.9 0.86 0.97 0.93 0.85 0.82 0.91 0.93 0.96
0.87 0.86 0.94 0.92 0.96 0.98 0.99 0.82 0.85 0.91
0.93 0.97 0.92 0.99 0.87 0.93 0.9 0.9 0.89 0.95
0.99 0.93 0.96 0.87 0.9 0.94 0.82 0.85 0.92 0.9
0.96 0.85 0.98 0.93 0.94 0.95 0.91 0.92 0.91 0.96
0.92 0.82 0.99 0.9 0.82 0.91 0.93 0.98 0.92 0.93
0.88 0.91 0.82 0.9 0.85 0.92 0.98 0.95 0.99 0.87
0.9 0.93 0.85 0.89 0.92 0.91 0.92 0.99 0.94 0.85
0.93 0.96 0.91 0.95 0.9 0.96 0.93 0.87 0.85 0.92


.

The previously used parameters don’t suffice anymore to find the optimal strategy. Nevertheless,
when increasing the number of generations and the number of strategies per generation, the
optimal one can be found. Specifically, the genetic algorithm was used with 200 generations of
1000 routes. In each iteration, the best 50 routes and the worst 40 routes are separated. The first
generation was again made with random walks of length between 10-4 and 10+4. This yields
the following best strategy:

Route: 0405267813930

Send: 0010001001011,

with value 7.305181.
Out of 100 runs, this planning is found 19 times. Compared to the previous graphs - where the
optimal strategy was almost always found - this is not a high success rate. With this performance,
a lot of runs are required to be pretty sure of finding the optimal planning. If we want to have
a probability greater or equal than 0.95 to find the optimal strategy assuming a success chance
at every try of 19/100, we need to solve the following equation:

1−
(

81

100

)n

≥ 0.95,
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which gives that n ≥ 15. While this is not an infeasible number of runs, it would be more
compelling to increase the success rate of a single try.
To see how the genetic algorithm behaves, one can look at the best value of the strategies in
each generation. This is depicted in Figure 2.5 for four runs of the algorithm. The x-axis shows
the generation, the y-axis the best expected value. In all four figures, it is clear that the most
progress is in the first generations of the algorithm. After a while no further progress is made,
even though the optimal value has not been found yet. One of the plots only finds an optimal
value of approximately 7, which is quite far away from the optimal 7.305181.

Figure 2.5: Four runs of the genetic algorithm for Example 2.2.2. The x-axis shows the gener-
ation, the y-axis the best expected value. The plot in the bottom right corner is of a run that
finds the optimal solution, the other ones get stuck in a local maximum.

The plots show that the algorithm gets stuck more often in local optima. This could be caused by
a lack of variation in the different generations which means that other routes are left unexplored.
Indeed, the 200th generation of the algorithm contains almost always exactly only one strategy
that fills the entire list: the (local) maximum where it got stuck. Thus it is clear that the
variation throughout the algorithm should be increased to hopefully find the optimal strategy
more often.
To emphasize the strength of the genetic program and at the same time investigate the sudden
drop in performance for a graph with nine surveillance locations, it is worth noting how many
possible strategies there actually exist. This enables comparing the searched space with the
entire solution space.
A feasible strategy consists of a feasible route and a feasible send strategy. We define a feasible
route as a route which begins and ends at the base vertex and passes via all other vertices at least
once. Moreover, it is assumed that the maximum length of a route is twice the total number of
vertices. This leads to a lower bound on the total number of possibly considered strategies by
the algorithm, but makes the computations easier. A feasible send strategy needs to have the
same length as the corresponding route. The first entry should be a 0, the last one a 1.
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Proposition 2.2.1. Let the number of possible routes of fixed length n in Km, n > m, be
denoted by Rm,n. Then the following inequality holds:

Rm,n ≥
(
n− 2

m− 1

)
· (m− 1)!

Proof. This inequality follows from the fact that every vertex that is not the base camp has to
be visited at least once in the route. As the first and last vertex in each route is the base camp,
there are

(
n−2
m−1

)
ways to pick m− 1 locations in the route where these vertices are visited once.

The (m− 1)! term follows from the number of ways to order the m− 1 unique vertices over the
chosen locations.

Proposition 2.2.2. Let the number of possible strategies of fixed length n in Km, n > m, be
denoted by Sm,n. Then the following inequality holds:

Sm,n ≥
(
n− 2

m− 1

)
· (m− 1)! · 2n−2.

Proof. This follows immediately from Proposition 2.2.1 and the fact that there are 2n−2 possible
send strategies for a route of length n.

2.2.3 Computation of the Number of Feasible Solutions

Proposition 2.2.2 shows that the number of feasible solutions increases exponentially. Thus the
number of possible solutions for K10 is way larger than the number of possible solutions for K6.

• For K6 the genetic program consisted of 60 generations of 500 strategies, so at most 30000
strategies were explored. Proposition 2.2.2 gives a lower bound of 40 638 720 possible
strategies in K6. This implies that at most a fraction of

30000

40638720
≈ 7.382122 · 10−4

of the total solution space is searched.

Length of route # routes # send strategies Total
7 5! 25 3840

8
(
6
5

)
· 5! 26 46 080

9
(
7
5

)
· 5! 27 161 280

10
(
8
5

)
· 5! 28 1 720 320

11
(
9
5

)
· 5! 29 7 741 440

12
(
10
5

)
· 5! 210 30 965 760

Sum of all strategies: 40 638 720

Table 2.1: Computations to find a lower bound on the number of possible strategies in K6.
For every length of the route the lower bound given by Proposition 2.2.1 is given in the second
column. The exact value of the total number of send strategies is given in the third column. The
product of both that makes up the total number of strategies of this length is given in the last
column.
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• For K10, where the genetic algorithm computed 200 generations of 1000 strategies, the
same analysis can be made. The fraction of solution space that is explored by the genetic
algoirthm is upper bounded by

200000

6127308575539200
≈ 3.264076 · 10−11.

Length of route # routes # send strategies Total
11 9! 29 185 794 560

12
(10
9

)
· 9! · 8 210 3 715 891 200

13
(11
9

)
· 9! · 82 211 40 874 803 200

14
(12
9

)
· 9! · 83 212 326 998 425 600

15
(13
9

)
· 9! · 84 213 2 125 489 766 400

16
(14
9

)
· 9! · 85 214 11 902 742 691 840

17
(15
9

)
· 9! · 86 215 59 513 713 459 200

18
(16
9

)
· 9! · 87 216 272 062 690 099 200

19
(17
9

)
· 9! · 88 217 1 156 266 432 921 600

20
(18
9

)
· 9! · 89 218 4 625 065 731 686 400

Sum of all strategies: 6 127 308 575 539 200

Table 2.2: Computations to find a lower bound on the number of possible strategies in K10.
For every length of the route the lower bound given by Proposition 2.2.1 is given in the second
column. The exact value of the total number of send strategies is given in the third column. The
product of both that makes up the total number of strategies of this length is given in the last
column.

The above mentioned fractions show that it is stunning that the genetic algorithm manages to
repeatedly find the same strategy that maximises the expected value. The large gap between
the K6 and K10 fractions also explain why it is not that surprising that the algorithm doesn’t
perform equally well.

2.3 Improving the Genetic Algorithm

2.3.1 Variation through Crossovers

It is clear that the complete graph on ten vertices requires some more creativity to increase
variation throughout the algorithm. A first method is to include longer routes in the first
generation. Even though these longer routes are not necessarily better than the shorter ones – at
some point all information has been transmitted and making an additional loop doesn’t change
the expected value – the final part of a route with useless and unnecessary walks can become
useful after a crossover. Moreover, after running some experiments, it has become clear that it
could be better not to have only optimal send strategies. For example, send strategies are added
that are not completely filled with zeroes after all information has been transmitted. The send
strategy can then be included in the crossing process of the genetic program. Then the parts
that didn’t count towards the expected value of some route can suddenly become relevant for
the child strategy formed with this route.
To implement this, the first generation is filled with longer random routes. Moreover, to find the
send strategy, a local search algorithm is used instead of the dynamic program. In such a local
search, a random send strategy is constructed firstly. This is a vector filled with 0’s and 1’s of
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the same length as the route. Next, all possible send strategies that can be obtained by flipping
one 0 to a 1 or vice versa are considered. For all these new send strategies the expected value can
be computed. The next considered send strategy is the one with the highest expected value out
of those new strategies. This process is repeated until there is no more improvement possible.
Note that this method does not guarantee a global optimum. It is possible that the search gets
stuck in a local maximum while there is a different send strategy with an even better expected
value. But this increases the variation of the algorithm.
To further increase the variation and to make the algorithm faster, these send strategies are
only computed in the first generation. After this generation, the send strategies are also added
to the crossing mechanism of the algorithm. So the send strategy of the child strategy is the
combination of the send strategies of the parents. Note that this again does not imply that the
send strategy for the kid is optimal. Yet the routes can be ranked based on these send strategies
and the idea is that the genetic algorithm would eventually generate the best route with the best
send strategy combined while exploring more solutions in the process.

Example 2.3.1. To construct the next generation, two routes are again picked at random. But
this time, their respective send strategies are also considered. Suppose we pick two strategies

Strategy 1
Route: 015412342050
Send: 001010010011

Strategy 2
Route: 030120250410
Send: 011011011001

and say the crossover is made at vertex 2. With the send strategies added, this becomes:

Strategy 1
Route: 015412342050
Send: 001010010011

Strategy 2
Route: 030120250410
Send: 011011011001

Combining the first strategy up until and including vertex 2 with the second strategy after vertex
2 gives the child strategy:

Route: 0154120250410

Send: 0010101011001.

2.3.2 Variation through Mutations

While refraining from running the dynamic program in each iteration allows some gains in both
variation and speed of the genetic algorithm, the greatest increase in variation is obtained by
adding mutations. In this case, a route has a certain probability to mutate after the crossover.
This mutation changes the route in some form and then the changed route is added to the new
generation. Three mutations have been chosen to increase the number of considered strategies:

• Added random walk. Uniformly at random, one point that is not the last one is chosen in
the route. After this point, a random walk of random length is added to the route. This
mutation increases the length of the route.

• Vertex flip. One random vertex in the route is changed to some other vertex that wasn’t
a vertex directly before or after the flipped vertex.
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• Send flip. Uniformly at random one element in the send strategy is flipped: a 0 becomes
1 or vice versa.

These mutations are not always performed and for each strategy, there is at most one mutation
performed. The added random walk mutation is actualised with a probability of 0.01. Since
this mutation increases the length of the route, a new send strategy has to be constructed as
well. This is done by performing a local search for this new route. The initialisation of this local
search on the send strategy is a random vector where an entry is zero with probability 2/3 and
one with probability 1/3. The vertex flip mutation is performed with a probability of 0.2 and
the send flip with a probability of 0.1. Since the length of the route doesn’t change in either
one, the send strategy is not changed after these mutations (this wouldn’t make any sense for
the send flip either).
Having implemented these mutations, the new version of the genetic algorithm can be tested.
This was again done for Example 2.2.2 with 200 generations of 1000 routes, where the best 50
and the worst 40 routes are isolated. For four of these tests the plots of the evolution of the best
expected value is given in Figure 2.6. The top two plots depict a run of the genetic algorithm
where only a local maximum is found rather than the optimal value. In the bottom two plots,
the optimal value is found. These plots are especially promising, as they show improvement in
later generations too. In these runs the algorithm was able to explore enough other routes to get
out of local maxima.

Figure 2.6: Four runs of the genetic algorithm with mutation. The x-axis shows the generation,
the y-axis the best expected value. The bottom two runs find the optimal route and the optimal
send strategy, the top two do not.

2.3.3 Comparison of the Different Versions

Figure 2.6 shows that the mutations can enable the genetic algorithm to get out of local optima
and eventually find the best planning. But how often does this actually happen? To test this,
the genetic algorithm was run a hundred times for Example 2.2.2. Out of these 100 runs, the
optimal value was found 61 times. Given the fact that one run takes less than a minute, it is
feasible to run the genetic algorithm ten times. Assuming that the optimal value is found with
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a probability of 61/100 per run, the probability to find the the optimal value after ten runs is
0.9999.
To put this result into perspective, the comparison of four different genetic algorithms can be
made. The first considered algorithm does not contain any mutations, the second one has a
vertex flip mutation with a probability of 0.25. Then there is the genetic algorithm with only the
added random walk mutation with probability of 0.01 and lastly there is the genetic algorithm
with all mutations combined as explained above.

Genetic algorithm # of successful runs
No mutations 19/100
Vertex flip 32/100

Added random walk 55/100
Combination 61/100

Table 2.3: Performance of different versions of the genetic algorithm on hundred runs for Exam-
ple 2.2.2.

There is a clear difference in the performance between the different versions. Adding a mutation
increases the probability of finding the optimal value. The vertex flip on its own does perform
better, but 32/100 is still not amazing. Adding the random walk increases the odds of success
more. In more than half of the runs the optimal planning was found. The genetic algorithm
where three types of mutations are combined is still a little bit better, but since the genetic
algorithm includes a lot of randomness, it is hard to determine whether this is actually better
than only adding a random walk. Since both algorithms have no distinguishable speed difference,
they seem interchangeable.
In any case, the version of the algorithm with the combination of the mutations provides a tool
to quickly and accurately find the optimal planning for larger graphs.
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Chapter 3

Multiple Drone Missions

Now that the genetic program has been tested and has proven its use for a model where one
drone moves over the graph, the logical extension is to increase the number of drones. As already
noted in subsection 1.1.2, the models for different numbers of multiple drones are very similar.
Therefore this chapter will focus on two drones. This does lead to some new modelling choices
and of course an adaptation of the existing algorithm. First of all the following modelling choices
have been made:

• Both drones start from the safe base camp, where there is no information to be retrieved.
The base camp is also the last vertex in the routes of both drones.

• Routes and send strategies are determined before the mission, so there is no way modifying
the mission if a drone is intercepted by the enemy. Also, if this happens, it is assumed that
the other drone can continue its mission.

• Both drones are allowed to retrieve the same information. This means that information is
more considered to be a picture taken at a location rather than a package that is retrieved.

• If information is successfully transmitted by a drone, the other drone can still submit the
same information. But t his information should not be double counted. The expected value
of transmitted information per vertex does increase if its information is sent twice, but can
never exceed the total amount of information available at that specific vertex.

The last assumption was the reason that the formula for the expected value in subsection 1.1.2
has been constructed. In the case of multiple drones the expected value is always computed as
the sum of the expected amounts of transmitted information from each vertex.

3.1 Adapting the Genetic Algorithm for Multiple Drones

Having the formula for the expected value when deploying multiple drones from subsection 1.1.2,
the different strategies can be ranked in a genetic program. Therefore the existing algorithm can
be adapted such that it considers strategies for the wanted number of drones.
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Initialisation

The main idea behind the initialisation is the same as before. The algorithm randomly construct
walks through the graph of a random length between the number of vertices minus four and the
number of vertices plus 100. Again, if the walk does not end back at the base camp, Dijkstra’s
algorithm is used to return. The send strategy is found using a local search algorithm based
on the total expected value combining both drones. This local search is started with a random
vector where an entry is zero with probability 2/3 and one with probability 1/3. The obvious
difference now is that two routes and two send strategies are needed to form one gene. That
means that for 1000 genes in the first generation, 2000 routes should be created. Since this takes
longer in comparison with the time of performing the crossovers, the genetic algorithm has been
adapted to enable differentiation between the number of genes in the first generation and all
following generations.

Crossover

The crossover is very similar to the crossover in the single drone case. Two strategies are picked
to be the parents of a new strategy. Every parent now consists of two routes and send strategies,
so the first step is to randomly order the routes belonging the father and accordingly sort the
corresponding send strategies. Now we pairwise cross the first routes and send strategies of the
parents and the second routes and send strategies to obtain the crossing.

Mutations

The mutations have the same flavour as in the single drone case. First of all there is the Added
random walk. This is the same mutation as described in subsection 2.3.2: one of the two routes
is picked and a random walk is added somewhere in the walk. This continues to be a useful
mutation to increase the variation in the genetic program. But it slows the algorithm down,
because it requires a local search for the optimal send strategy in terms of the expected value for
two drones. Therefore this mutation is only actualised with a low probability. If a generation
consists of n strategies, the mutation probability is set around 2

n .
A second important remark that can be made is that with the formulation of the expected
value as it is now, both drones are incentivized to still travel to all vertices of the graph and
try to gather information everywhere. However, it does make sense that the drones fly more or
less in ‘opposite directions’ through the graph. Then more vertices have a high probability of
their information being successfully transmitted by at least one of the drones. This inspired the
reversed mutation. In this mutation, exactly one of the two routes is completely reversed. The
same holds for the corresponding send strategy. This mutation is way cheaper than the other
one so this is actualised with 20% chance.
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3.2 Results

To test the performance of the algorithm for two drones, the same approach as for one drone is
followed. The considered graphs will get larger step by step, increasing the number of possible
strategies. First, the K4 example is considered, then the K6 example, followed by the sparse
graph on ten vertices and finally K10.

3.2.1 Three Surveillance Locations

Returning to Example 1.1.1, this time it is assumed that two drones are deployed to gather
information. This might seem a bit overkill, as there are only three locations to be surveyed by
our drones. But it forms a small and suitable first test for the genetic program. For this smaller
graph, the parameters for the genetic program don’t have to be large either: all 30 generations
consist of 200 strategies, of which the best 15 are directly put in the next generation and the
worst ten are not taken into consideration. The optimal strategy given by this approach is the
following:

Drone 1
Route: 0232010
Send: 0000111

Drone 2
Route: 0232010
Send: 0000111

The expected value of this strategy is 2.346529. This is quite a large increase compared to the
expected value of 1.666494 with one drone. However, from a practical point of view this strategy
raises some questions. Both drones follow the same route and the same send strategy, namely the
optimal strategy for one drone. This doesn’t seem to be practically feasible while still assuming
independence in the crossing probabilities for both drones. Nevertheless, under these modelling
assumptions the genetic program manages to find this optimal solution ten out of ten runs. So
even though the practical applications for two drones to survey three locations are rather limited,
the genetic program does perform well.

3.2.2 Five Surveillance Locations

The model becomes more interesting in the case of five surveillance locations. For such a mission,
there are way more routes to be considered and it makes sense to not let the two drones follow
the same strategy. As there are more options, the parameters of the genetic algorithm have to be
increased too. For the test on this K6 described in Example 2.1.1, all 100 generations have 1000
strategies. The best 50 and the worst 40 are separated. This results in the following optimal
strategy of expected value 4.859738:

Drone 1
Route: 030504210
Send: 001010101

Drone 2
Route: 010425030
Send: 001010101

This strategy is also found in ten out of ten runs. The genetic program performs well in finding
the optimal strategy. There are a couple of things to note from this strategy. First of all,
the two drones do not follow the same strategy. This makes intuitive sense, as it seems more
reasonable to divide and conquer. However, there is no penalty for the drones for surveying
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all locations in their route, because the objective is solely to maximise the expected value of
retrieved information. Therefore the two routes indeed go past all surveillance locations, but the
order seems almost reversed. This seems logical, both drones first focus on gathering information
at different vertices. Hence these first vertices have a higher probability of getting reached by at
least one drone and thus contribute more to the expected value. After having visited their first
vertices, the drones take the optimal route to the group of vertices already visited by the other
drone, further increasing the total expected value. Secondly, the optimal strategy for one drone
from subsection 2.1.1 is not copied by one of the two drones. Rather, both drones use a different
strategy to optimise their joint efforts. Lastly, it is worth noting the expected value is 4.859838,
while there are 5 possible units to be retrieved by the drones. This shows that using more than
two drones to survey five locations is not an efficient use of resources. These two drones are
already expected to retrieve almost all wanted information. Considering the expected value for
one drone of 4.115090, the question could be asked whether two drones are really needed. The
answer to this question seems to be specific to the objectives and resources for each distinct
mission.

3.2.3 Sparse Graph on 10 Vertices

With the new insights from the previous section, looking at Figure 2.4 leads to the natural
prediction that both drones start of in a different direction and first focus on a different cluster
of vertices, before crossing to the other cluster. Using the same parameters as for K6 (1000
strategies per generation, separate the 50 best and 40 worst and repeat for 100 generations)
shows that this is indeed true. The optimal strategy is again found in ten out of ten runs and is
given by:

Drone 1
Route: 013245678790
Send: 001000010101

Drone 2
Route: 09787654231310
Send: 00000100110101

The expected value of this strategy is 7.981840. In comparison to the expected value of the one
drone scenario, 6.113745, this is a large value. This type of graph is an example of a mission that
is very suitable for two drone being used. Curiously, the strategy for drone 1 from subsection 2.2.1
is equal to the optimal strategy for the one drone case. The fact that the second drone increases
the probability of also exploring vertices 6-9 yields this large improvement.

3.2.4 Nine Surveillance Locations

Up until now, all optimal strategies were quickly and consistently found by the genetic algorithm.
This changes drastically when considering Example 2.2.2. For this graph the success rate of the
genetic program decreases. The best found strategy is

Drone 1
Route: 0526787625931040
Send: 0000001000010101

Drone 2
Route: 0401395267876240
Send: 0010100001010001

with expected value 8.653276. The genetic algorithm was run over three hundred times with
different parameters and this was the best strategy that was found. Moreover, it was found
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more than once, which leads to believe that this is the optimal strategy. However, just as in the
single drone case, the success rate dropped significantly. Furthermore, the genetic algorithm is
slow because it needs to explore more and larger strategies. Hence a balance between speed and
reliability has to be found. The parameters that were chosen take into account this trade-off.
The first generation consist of 700 strategies, all following generations consist of 1200 strategies.
Each time a new generation is computed, the best 50 strategies are copied and the worst 30 are
not taken into account. In total, 100 generations are computed. With these parameters, the best
route is found in around two out of ten times.
To investigate whether the performance of the genetic algorithm on K10 can be improved, the
evolution of the best found value throughout the algorithm is again plotted. This gives insight
in the capability of the algorithm to get out of local maxima. Four of these plots are shown in
Figure 3.1.

Figure 3.1: Four runs of the genetic algorithm for K10 The x-axis shows the generation, the
y-axis the best found expected value. The only run that was able to find the global maximum is
at the bottom right.

Looking at these evolution plots, it is hard to distinguish which run actually found the optimal
value and which didn’t. Even if the optimal value isn’t found, the local maximum that is
obtained instead comes very close to the best possible expected value. This is great from a
practical viewpoint, as the proposed strategy will always have a high expected value. But it
would be more satisfactory to find the optimum more often. It can be noted that the four plots
have the same behaviour: a steep increase in the first thirty iterations, less change afterwards.
Comparing this with the algorithm for one drone, where the steep increase lasted approximately
eighty iterations, it seems that the current algorithm is not able to explore enough different
routes to get out of local maxima. The most important tool so far for exploring other routes
is the added random walk mutation. However, this mutation takes a while to compute as this
random walk has to be generated and then the send strategy has to be recomputed as well. In
order to keep the program quick - at this point the program can be run in a couple of minutes -,
the probability of this mutation has to be kept low (around 0.001). Increasing this value increases
the exploration, but also the run time.
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Since additional exploration is mostly required in the later generations and a higher mutation
probability implies a higher running time, it could be beneficial to use an adjustable probability
based on the considered generation. So for example, the mutation probability can be computed
with the following function:

f(x) =
tanh (0.1 · (x− 50))

500
+

1

500
,

where the variable x denotes the generation. This implies the domain is given by [0, 100]. The
codomain is then approximately [0, 0.004] with a steep increase around x = 50. See also Figure 3.2
for a plot of the function. Hence the second half of generations has a way larger probability of
mutation that the first half. This is exactly what is wanted. However, the results are not as
hoped. Instead of a higher success rate to find the optimal value, this rate stays at 2/10 successful
runs. When looking at the evolution plots in Figure 3.3, it becomes clear what is happening.

Figure 3.2: Function that relates the adaptable mutation probability with the generations.

The initial increase, which was very steep in the case of a fixed mutation probability, is now way
more spread out. This means that even though the later generations have a higher probability of
still finding a better strategy than the previous one, the optimal value is not found more often.
The only solution seems to be to let the mutation probability stay one fixed value, but a higher
one that the one that is used now. To make significant progress, it seems that the probability
has to be increased to a value that makes the algorithm so slow that it is not feasible to test
whether it actually performs better. Since this alternative mutation probability did not increase
the performance of the genetic algorithm, the best code remains to have a success rate of around
20%. In practical applications this is sufficient. But if it is desired to increase this, it seems that
the entire algorithm needs to be rewritten in such a way that it becomes faster. This would be
a good first step in future research.
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Figure 3.3: Four runs of the genetic program with adjustable mutation probability. More progress
is made in the later generations compared to the runs with fixed mutation probability. However,
the initial increase is way less steep.
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Chapter 4

Summary and Further Work

The ongoing wars in Ukraine and Gaza have shown the importance of unmanned vehicles in
modern warfare. These drones and carts are not only used in offensive missions, but also in
survey missions. There are multiple advantages of using them instead of manned missions for
surveillance. First of all, surveillance missions are dangerous and the use of autonomous systems
reduces the risk for our troops. And there are practical applications too. Because of its speed, a
drone can cover more distance in less time and it is cheaper to deploy a lot of drones instead of
a lot of manned missions. Therefore the covered ground increases. In a reality where unmanned
vehicles are gaining importance on the battlefield and a lot of gains can be obtained by smartly
deploying them, it is important that the Dutch military does not fall behind and explores all
viable automated possibilities.
In that regard, this reports investigated how to find the optimal strategy for an autonomous
reconnaissance mission. Specifically, two questions have to be considered to obtain the optimal
strategy.

• In which order should the different locations be travelled to?

• Where is it beneficial to make a transmission and where is it better to hold on to the
gathered information?

To figure out the answer to the above research questions, a mathematical model is proposed in
chapter 1. The enemy terrain can be represented by a weighted graph where the vertices are
given by the base camp and surveillance locations. The different detection probabilities and the
information to be gathered become weights on the graphs. The objective then becomes to find
a walk through the graph together with a send strategy that maximises the expected value of
retrieved information.
Using this mathematical formulation, it was hoped that the problem could be solved as an Integer
Linear Program. However, it became clear that such a program would be complex and seems to
require a lot of decision variables. Therefore, the approach of a genetic algorithm was preferred.
This algorithm has been studied in great detail in chapter 2, where it is assumed that one drone
is deployed. A first and more simple version of the algorithm worked neatly on smaller graphs,
but when the number of feasible strategies was increased, it had to be improved. The number
of searched solutions was augmented by implementing a local search algorithm and by adding
mutations. The new algorithm performed satisfactorily on larger graphs as well, providing a
quick and reliable method to propose the optimal strategy for single drone missions.
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Having obtained a solver for one autonomous system, the scenario was made even harder by
considering multiple systems during one mission in chapter 3. Instead of one route and one
send strategy, two of each are wanted, that jointly maximise the expected value of retrieved
information. This squares the number of possible strategies, making it less likely to find the
optimal one. The existing algorithm was adapted to this scenario and continued to perform
extremely well on smaller graphs. But for K10, the algorithm finally met its limits. Even with
further improvements, the optimal strategy is only found in around 20% of the runs. From a
practical point of view this is not a disaster - the returned strategies come very close to the
optimal one in terms of expectation -, but from a mathematical viewpoint this leads to some
open research questions.
First of all, it is clear that there is still room for improvement regarding the genetic program. In
the two drone case on K10, the mutation probability is kept low, because other run time becomes
too high. If the algorithm is further optimised, perhaps this probability can be increased. In the
single drone case, a smart choice of mutations tripled the success rate of the algorithm. A logical
next research step would be to explore whether this is also possible in the two drone case.
If it is discovered that the solution space has just become too large for a fast genetic program,
another method could be researched. Maybe this research was not profound enough and there
does exist an efficient formulation of an ILP to solve this problem. Also the possibility of a
stochastic optimization program could be an interesting research topic [6]. In such a program,
the objective function is allowed to be an expected value. Furthermore, the constraints can be
probabilities. Finding a way to rewrite this as a linear program is an entire research field in
itself and this optimal planning of reconnaissance missions would be an interesting case study
for those methods.
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