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summary

The Automatic Identification System (AlS) is used in the maritime domain to improve sea traffic
safety by requiring vessels to broadcast real-time information such as identity, speed, location,
and course. As it allows global monitoring of almost any larger vessel and has the potential to
considerably improve vessel traffic services and collision risk assessment, AlS has been used
in an increasing number of applications. This emphasizes why the quality of data transmitted
is critical. We are also becoming more aware of the possibilities of spoofing or fabrication of
AlS data, which has a direct impact on the dependability of AIS data. To find the possibility of
the same in Inland Water Transport a research gap was found with the help of literature, and
the following question was established

"How can video surveillance aid in identifying and reducing instances of overlapping or spoofed
Automatic Identification System (AIS) data in maritime environments?”

Several sub-research questions were developed to solve the research gap. The first sub-
question focuses on defining current state-of-the-art methods for determining AlS data quality,
object recognition, and identifying anomalies in AIS data. The second question included the
creation of an algorithm capable of identifying vessels and comparing them to AIS data. A
process architecture graphic was created to explain the entire process, from the acquisition of
input data through the results. To provide a complete comprehension of the code, the rationale
of the method was discussed in the Pseudo code section.

The third sub-question was based on the object detection model’s accuracy, which is dis-
cussed in the results and discussion chapter. With tables illustrating the actual number of
vessels in the video, the number of vessels detected, and the object detection model’s per-
formance for each of the three days. A Sensitivity study also demonstrated the numerous
aspects that could alter the model’s performance or efficiency.

The fourth sub-question asked about the disparity between AIS data and results from the
Object detection model. The tables containing the data and vessel matches from the video
are provided in the results chapter, along with an overall statistics table displaying the total
number of matches to the number of boats obtained. To bridge the gap between the perfor-
mance of the object detection model and the actual number of vessels in the video, a manual
verification process was carried out. The identified vessels were then manually matched with
the AIS data, and once the vessels in the video were accounted for, a graph depicting the num-
ber of matches acquired by the model, manually, and unmatched data was shown for each of
the three days, and the average was calculated. The fifth sub-question implied the model’s
practicability in real-world applications and discussed whether the approach was effective in
identifying data mismatches along with the constraints that the proposed algorithm currently
holds.

By compatring video surveillance with Automatic Identification System (AIS) data, the method

was developed to detect data overlap or spoofing in the maritime environment. The effort to
solve the aforementioned constraints and potential work are discussed in the section on future
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work. Finally, while this thesis shows promise in terms of the model’s wider implementation
and spotting deviations, it still has some limitations that must be addressed. The step-by-step
execution, the dataset and the source code are available in the Github Repository [49].
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Introduction

Around 90% of global transportation occurs via maritime routes, encompassing activities such
as Fishing, Sailing, and Cruising [1]. According to the standards, ships of 300 gross tonnes
or more on international voyages, 500 tonnes or more on non-international voyages, and pas-
senger vessels must be equipped with AIS devices [37]. Over 1,490,776 vessels are currently
being tracked globally, according to [55]. While, in Europe, all Vessels above the length of 15m
are required to provide/transmit AlS data [44]. The International Maritime Organisation (IMO),
International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA), Inter-
national Telecommunication Union (ITU), and International Commission (IEC) collaborated in
the 1990s to create the Automatic Identification System to improve navigation safety, collision
risk assessment, anomaly detection, trajectory analysis, and vehicle emission analysis [24].
An Automatic Identification System device is a maritime transponder that broadcasts critical
vessel information to other nearby vessels and shore-based stations, such as position, course,
speed, and identity. This real-time data exchange promotes safe navigation, helps to avoid
collisions, and improves maritime situational awareness. This includes both AIS class A and
class B devices, with the former being required and the latter optional. Class A devices are
installed on vessels required by standards to communicate AlS data, while class B devices are
installed on vessels that choose to freely submit data [21]. By localizing vessels and charting
maritime traffic, AIS data significantly enhances safety, efficiency, navigation, life at sea, and
environmental protection. It effectively improves Vehicle Travel Surveillance (VTR), waterway
management, collision avoidance, and location tracking [17].

Despite the mandatory AIS data transmission, validating the accuracy of the transmitted in-
formation remains a challenge [51]. The absence of verification mechanisms leaves room
for data falsification and spoofing, where deceptive AIS data can create non-existent ves-
sels or obscure true vessel identities [31]. Detecting this spoofing is complex due to the co-
pious amounts of transmitted information [54]. Vessels that opt not to transmit signals are
termed "dark vessels,” with motivations varying from legitimate to illicit [54]. In December
2022, a non-profit organization dedicated to ocean governance discovered instances of posi-
tion falsification by Venezuelan crude tankers, including the Russian-flagged vessel KAPITAN
SCHEMILKIN, which broadcasted bogus positions [4]. Synthetic aperture radar (SAR) aids
geospatial analysis, compensating for cloud-obscured satellite images [20]. Research indi-
cates that higher channel loads correlate with increased message loss in AIS data transmis-
sion, eroding reliability [35, 24].

This study conducts a comprehensive literature review on AlS data, its applications, and quality
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concerns, shedding light on potential data falsification and related challenges. Furthermore, it
addresses the rising interest in machine learning for maritime risk analysis and safety improve-
ment [42]. This investigation tries to make up for the lack of research on AIS data anomalies
by using live video surveillance to look into the ability of machine learning to find vessels and
compare them with AIS data. We shift our focus to critical research inside this study, strength-
ening marine data integrity. The primary question of our investigation is:

"How can video surveillance aid in identifying and reducing instances of overlap-
ping or spoofed Automatic Identification System (AIS) data in maritime environments?

The Main research question is answered in the form of the below sub-research questions:
SQ1: What are the current state-of-the-art methods and technologies for detecting and miti-
gating instances of overlapping or spoofed AIS data in maritime environments?

SQ2: How can an algorithm be systematically selected and designed to effectively identify and
mitigate instances of overlapping or spoofed AIS data, considering factors such as accuracy,
real-time processing, scalability, and integration with video surveillance?

SQ3: How accurate is the proposed object detection algorithm in identifying and localizing
ships from video surveillance in various maritime conditions and environments?

SQ4: What are the discrepancies and variations between the AlS data and the ship detections
obtained through the object detection algorithm, and how can these differences be quantified
and analyzed?

SQ5: Can combining video surveillance of ships with existing AlS data help spot and recog-
nize cases of overlapping or fake AIS information, and what difficulties and constraints might
arise from adopting this approach?

The following chapters will go over the research process. Chapter 2 delves into existing in-
formation to identify research gaps. Chapter 3 which is titled AIS Data Validation is a critical
component of our study journey, offering insight into the basic issue that needs this endeav-
our. Delving into the main issues and establishing the compelling reasons for conducting this
research. Chapter 4 breaks down how the study puts the algorithm into practice. Following
that, Chapter 5 gives the empirical results of the technique, followed by insightful deliberations
on the implications and significance. Finally, Chapter 6 helps summarize the findings and em-
phasize the broader implications by answering the research questions and suggesting future
research possibilities.



Literature Overview

The primary goal of this chapter is to investigate the most recent state-of-the-art methods for
detecting or identifying the Quality of AlS data, advancements in the field of object detection
and its application in the detection of vessels in the marine environment, and current methods
for detecting spoofing in AIS data. By dissecting these essential areas, this chapter lays a
robust foundation for our research, offering a holistic view of the integration of these technolo-
gies and methodologies. It not only provides valuable insights into the present state of the
field but also illuminates promising avenues for further research and development in the realm
of maritime data analytics and security. In the following sections, this Chapter delves into the
literature on AIS data quality, object detection advancements, and AIS data spoofing.

2.1. Quality of AIS data

This section delves into the literature on AIS data quality to comprehend the evolving land-
scape and advancements, essential for enhancing maritime data reliability and security. This
exploration aids in uncovering insights to fortify AlS data’s accuracy and effectiveness in mar-
itime operations. Within the academic literature, there exist studies[22], and [1] where scholars
develop algorithms which are trained using a curated dataset. After the model is trained, it is
subjected to the evaluation process using live and authentic AlS data collected in real-time.
The objective is to assess the model’s capability to accurately discern instances of spoofing,
which involves the intentional manipulation or insertion of false information into the AIS data
stream.

The papers [14], [43] address security concerns surrounding the Automatic Identification Sys-
tem in maritime traffic control. AIS plays a vital role in enhancing marine domain awareness
but has vulnerabilities that could be exploited. The research explores ldentity-Based Public
Cryptography and Symmetric Cryptography as potential solutions to bolster AIS security. The
paper [53] explores how AIS data can be leveraged for tasks such as traffic anomaly detec-
tion, route estimation, collision prediction, and path planning, all aimed at improving the safety
of seafaring. This add more context to why the quality of AIS data is important. The article
[10] reviews methods for analyzing waterway risks using non-accident critical events from AlS
data. It focuses on five questions: definition, accident-theoretical basis, ranking, method use,
and validation. The results suggest that more focus is needed on defining non-accident critical
events and understanding the relationship between their occurrence and accident involvement
for effective waterway risk analysis. The article emphasizes the importance of addressing foun-
dational issues in risk research and safety science.
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Whereas [32] suggests calculating the Haversine distance, a formula used to determine the
shortest distance between two points on the surface of a sphere, for each pair of sequential
position messages of a vessel. Subsequently, the time interval between these positions is
evaluated, utilizing the timestamps recorded by AlS receivers. By dividing the calculated dis-
tance by the time interval, the speed of the vessel is estimated. To ensure the validity of the
data, this derived speed is then checked against a feasible range, considering that a vessel’s
average speed is constrained, for instance, not exceeding 50 knots. If the derived speed falls
within this acceptable range, the subsequent AIS message is accepted as the updated and
legitimate position for that vessel.

2.2. Object detection

This research project intends to identify vessels using an object detection model, so it is impor-
tant to understand the current improvements and advancements in the field. The paper [39]
addresses technical hurdles in maritime image processing and machine vision from camera-
generated video streams. Basic tasks like horizon detection and frame registration are tough
due to dynamic backgrounds, lack of static cues and lighting effects. The paper [41] aims to
run an object detection algorithm on every video frame, detecting all objects, including peo-
ple, vehicles, and animals. This system is crucial for computer vision and automated driving
systems. With growing computing power and deep learning popularity, high-performance al-
gorithms are becoming more prevalent. The model allows users to detect only needed objects
despite training on a larger dataset. The research [11] introduces an improved real-time ob-
ject detection and recognition technique using web camera video. Using Single Shot Detector
(SSD) and YOLO models, the system detects and recognizes objects in adverse environments
like excess light, rotation, mirroring, and backgrounds. The convolutional neural network clas-
sifies the objects, achieving 63-90% accuracy in detection and classification.

Advances in deep learning, like R-CNN, Fast-RCNN, Faster-RCNN, YOLO, and SSD, improve
accuracy. Study [2] focuses on YOLO for swift and precise object detection in images and
videos, analyzing YOLOv3 and Yolo3-tiny. Paper [45] highlights YOLO’s speed: base YOLO
handles 45 frames/sec, Fast YOLO hits 155 frames/sec, with higher mAP. YOLO excels by
reducing false positives on backgrounds and generalizing across domains, even shifting from
natural images to diverse contexts.

In Inland waterways, video surveillance is crucial for ship detection, ensuring safety and auto-
matic identification. A new algorithm for ship detection on waterways uses stationary cameras
and works in variable lighting conditions. The algorithm in [19] detects all moving ships, elim-
inating non-ships using logic rules. The paper [28] presents a novel method for detecting
and tracking ships in marine transportation systems using machine vision. The method in-
volves two stages: the detection stage, where edges are calculated, and the tracking stage,
where bounding rectangles are selected and judged as ships. A comprehensive review of aca-
demic literature [42] on maritime accident risk assessment reveals the potential of supervised
machine learning and big data applications. Challenges include dataset availability, trans-
parency, model development, and results evaluation, highlighting both novel applications and
challenges. The study [12] presents a real-time object recognition and tracking system for
remote video surveillance, using a statistical morphological skeleton for low computational
complexity, localization accuracy, and noise robustness. The system compares an analytical
approximation of the skeleton function with model objects and uses an extended Kalman filter
for tracking. This paper [40] focuses on enhancing maritime traffic surveillance in inland water-
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ways by integrating AIS and visual data. AIS provides vessel identity and position data, while
cameras offer visual information but lack detailed vessel parameters. The proposed method
employs anti-occlusion vessel tracking, synchronizes AIS and visual data, and utilizes multi-
feature similarity measurements to robustly fuse them. The approach is evaluated using a
new multi-sensor dataset and demonstrates improved maritime traffic surveillance, address-
ing vessel occlusion issues and enhancing safety and efficiency in inland waterway traffic.

2.3. Data spoofing with AIS data

This investigation delves into strategies to detect and mitigate spoofing, safeguarding the in-
tegrity of AIS data and bolstering maritime security. The current methods to detect spoofing
are identified in the following literature. The ISOLA (Integrated System for Onboard Lineage
Analysis) system as suggested in the work [48] enhances maritime vessel tracking by using
advanced data analysis and machine learning to detect spoofing attacks in AlS data to es-
tablish vessel behaviour baselines, identifies anomalies, and validates data through external
sources, bolstering maritime security. The authors of [16] suggest the usage of Doppler fre-
quencies to detect spoofing, where the algorithm establishes theoretical cones based on the
position of the satellite and velocity.

This study proposes a method to validate AIS data using drone-captured video imagery. By
employing an enhanced algorithm for ship image extraction and position calculation, the ap-
proach cross-references AIS data with derived positions to ensure accuracy and authentic-
ity. Experimental results in Shanghai’s inland waterways show real-time UAV verification en-
hances maritime supervision [61].

The study [20] proposes merging spaceborne Synthetic Aperture Radar and Cooperative AlS
data for improved ship detection. It explores the relationship between AlIS data gaps and
SAR-based detection using point-to-point and point-to-line associations. By using filtered and
classified AIS transmissions, SAR positions are predicted to identify and match detected tar-
gets. A practical case study demonstrates this approach’s effectiveness in regions with AIS
blackouts, using Sentinel-1 satellite imagery and AIS data in the central Adriatic Sea.

To combat data processing challenges, including errors, noise, and gaps, compromising data
quality for maritime safety research, innovative approaches have emerged. The study [59]
suggests Kinematic features filter out noise, Deep Kernel Convolution identifies anomalies,
and piecewise cubic spline interpolation reconstructs missing data. These techniques collec-
tively enhance data quality, ensuring more reliable AIS data for critical maritime applications.
The paper [23] proposes a method based on data mining and clustering methods combined
with an integrity assessment of AIS messages for anomaly detection, with a proposition of
software architecture for data processing done both on the fly and with archived data. A data
mining approach is proposed in [47] for the probabilistic characterization of maritime traffic
and anomaly detection off the continental coast of Portugal. The approach groups historical
traffic data based on ship types, sizes, and final destinations. It identifies waypoints along a
route where significant changes in navigational behaviour are observed, using trajectory com-
pression and clustering algorithms. This vector-based representation of ship routes facilitates
route probabilistic characterization and anomaly detection. The approach uses the Douglas
and Peucker algorithm to detect heading changes and clusters them using density-based spa-
tial clustering. The method is applied to southbound maritime traffic from Cape Roca to Lisbon,
Setubal, and Sines.
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In conclusion, the literature reviewed showcases the multifaceted advancements in maritime
domain research, particularly in the areas of AlS data quality assessment, object detection,
and countermeasures against data spoofing. The surveyed literature eloquently addresses
the first research question, shedding light on the current state-of-the-art methodologies.

2.4. Comparitive Analysis of Related Studies

This section aims to compare the findings of the study to significant works in the field, empha-
sizing our distinct contributions. This analysis emphasizes the importance of our work. The
table 2.1 compares the proposed model to approaches employed in the current literature that
are thought to be relevant to this study. The study [11] employs SSD and Yolo models for
detection, but the proposed model simply employs Yolo and achieves efficiency in the range
specified by the study of 63-90%.

The particle filter method is used in the Research article [28] to track vessels in the frame,
which means that it represents an object’s position by a set of particles and continuously up-
dates its positions based on measurements and motion models, providing an estimation of
the object’s location and uncertainty over time. The centroid method was chosen, which will
be detailed in full along with the justification for selection in chapter 4. In the publication [31],
Haversine distance is used to assess the authenticity of the AIS message, however, our ap-
proach is based on employing an object detection run on video surveillance data to detect the
mismatch or abnormality in the AIS data.

The study [46] suggests the collaboration of data sources such as Radar(SAR) and AlS data
to verify the transmitted signal; similarly, we intend to do so in the combination of object detec-
tion algorithm and AIS data sources, which will allow us to compare the results with the data
and, of course, find data mismatches.

In a study conducted in Shanghai, China, as described in [61], aerial imagery captured by
a drone was utilized to validate transmitted data, revealing the presence of dark vessels. Our
proposed model shares a fundamental goal with this study — data verification through im-
age analysis. However, our model extends this concept to real-time camera-generated video
surveillance in marine environments.

Citation Paper Method Proposed Model

Object Detection and Classification Single shot Detector

[11] from a Real-Time Video Using SSD and Yolo model Yolo model
and YOLO models
Examination of automatic detection and Particle filter
[28] tracking of ships on camera in marine method for Centroid Method
environment tracking
Counter!ng Real-Time Strgam Poisoning: Haversine Distance | Object detection on
[31] An Architecture for Detecting Vessel on the dataset Video Surveillance
Spoofing in Streams of AIS Data
Mapping Dark Shipping Zones Using Combination of two . .
[46] Multi-Temporal SAR and AIS Data data sources in Z;ddezls‘sug‘;‘:!'ance
for Maritime Domain Awareness SAR and AIS
Verification of AIS Data by using Video Drone captured Camera generated
[61] : .
Images taken by a UAV imagery video

Table 2.1: Comparison of state-of-the-art vs. the proposed model
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2.5. Method Proposed in this work

This section helps elucidate the rationale behind our chosen methodology and its alignment
with the current state-of-the-art in object detection, including automated vehicle detection. By
carefully justifying our approach, this section aims to demonstrate the relevance, effective-
ness, and potential for innovation within the context of the broader research landscape. This
rationale not only underpins our research direction but also provides critical insights into how
the study’s methodology addresses the intricacies of the research problem.

Similarities emerge between the study [5], which focuses on the identification of cars in traf-
fic using video surveillance from a camera mounted on the inside of the windshield, and the
research conducted in the article [33], which centres around a traffic monitoring system em-
ploying computer vision techniques to detect overspeeding vehicles using multiple reference
lines and the total duration of frames the vehicle took to cross the reference lines help de-
termine the speed. While the specific objectives and motivations of these studies differ, a
commonality lies in the surface-level methodology of using a YOLO model and approach to
addressing the respective research questions. Both studies leverage computer vision and
real-time video analysis to monitor and classify vehicles on the road, exemplifying the versa-
tility and applicability of such methods across various traffic-related research domains.

Furthermore, the cited studies, such as the work[5] and [33], provide valuable insights into
the application of computer vision and object detection techniques in real-time traffic moni-
toring scenarios, which bears resemblance to the core approach undertaken in this research.
Although the specific research objectives may diffe—car detection in traffic in their cases
and vessel detection in ours—the foundational methodologies and the use of object detec-
tion models share common ground. These studies served as a source of inspiration, guiding
our approach toward creating an object detection model and training it to accurately identify
vessels, aligning our research with the best practices established in the broader context of
automated detection of objects in dynamic environments. The lessons learned from these
studies facilitated the development of a robust framework for vessel detection, reinforcing the
relevance and effectiveness of our approach.



AIS data validation

Inland Waterway Transportation is vital for global commerce, but its complex traffic demands
advanced analysis. This research centres on using object detection to identify vessels, aug-
menting existing methods, notably the Automatic Identification System (AlS). Object detection,
a cutting-edge technology, offers opportunities to enhance safety and navigation by comparing
its results with AIS data. The sections that follow will embark on a comprehensive exploration
of key facets within the realm of IWT, AIS data, the discerned gap in existing literature, and
the overarching goal of this thesis.

3.1. Inland Water Transport

In modern economies and transportation networks, inland water transport is essential. Its sig-
nificance is multifaceted and extensive. To begin with, IWT is well-known for its exceptional
environmental sustainability. It emits significantly fewer greenhouse gases than road and rail
transportation, making it a more environmentally friendly choice in an era of growing environ-
mental awareness and concerns. Second, IWT is an important artery for the transportation
of bulk goods and commaodities, such as raw materials and agricultural products. Its ability to
efficiently transport large volumes of cargo contributes to cost savings and economic compet-
itiveness. Furthermore, IWT promotes regional development by connecting landlocked areas
to international markets, thereby promoting economic growth and decreasing regional dispar-
ities. Furthermore, it reduces traffic congestion and infrastructure wear and tear, resulting
in cost savings for governments and taxpayers. In conclusion, inland water transport is more
than just a mode of transportation; it is a sustainable, cost-effective, and necessary component
of global trade, economic development, and environmental stewardship.

3.2. Automatic Identification System

AIS data has become a critical component of modern maritime traffic management and vessel
tracking. Its significance cannot be overstated because it provides real-time information on
vessel positions, speeds, and identities, which improves navigational safety, collision avoid-
ance, and search and rescue efforts. AIS data is a valuable tool for maritime authorities, port
operators, and shipping companies, and it significantly contributes to efficient traffic manage-
ment in IWT. However, it is critical to recognize its limitations, particularly in terms of spoofing.
Malicious actors can intentionally manipulate AIS signals to transmit false vessel information,
such as location or identity, resulting in potentially hazardous situations. The vulnerability of
AIS to spoofing emphasizes the need for complementary technologies and verification meth-
ods to ensure the accuracy and integrity of vessel tracking data, especially in critical IWT
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scenarios where safety is critical. It is critical for the continued reliability of maritime traffic
management systems to develop robust mechanisms for detecting and mitigating spoofing
attacks on AIS data.

3.3. Gap in Literature

The literature on AIS data is extensive in terms of its significance, future applicability, and
data spoofing and misuse. This system was designed to be used in Navigation, Collision
Risk Assessment, Anomaly Detection, Trajectory Analysis, Vehicle Emission Analysis, and
Fisheries [24] data. A study on the quality of AIS data provided insight into the current methods
for detecting spoofed or mismatched data, and relevant literature is also discussed in chapter
2. This study identified a gap in the literature by demonstrating a lack of research on the use
of video surveillance data to detect and confirm the presence of overlapping AlS data, which
aided in the formulation of the research question "How can video surveillance aid in identifying
and reducing instances of overlapping or spoofed Automatic Identification System (AlIS) data
in maritime environments?” Sub-research questions were formed to be able to answer the
above research question as stated in the chapter 1.

3.4. Goal of the thesis

The project’s goal is to identify vessels in a video surveillance feed by tracking them across
the frame and counting them based on a point of reference set on the video frame. The time
of crossing of the above vessels would then be compared to the timestamps in the extracted
available AIS data and the preceding results would then be saved in an excel file. The steps
to achieving the established goal will be covered in the chapter 4.

3.5. Conclusion

In conclusion, this chapter underscores the pivotal role of Inland Water Transport (IWT) and
the significance of AIS data within this domain. It highlights not only the pivotal role AlS data
plays but also the risks posed by its misuse, emphasizing the core problem under investigation.
Additionally, this chapter establishes the existence of a notable gap in the existing literature,
identified through a comprehensive review, and sets forth the overarching goal of this study.



Architecture and Algorithm Design

The study emphasizes the importance of accurate vessel data for maritime navigation and
security, utilizing the Automatic Identification System (AIS) for real-time ship tracking. The
research aims to develop an algorithm that detects and corrects issues like fake or overlapping
data, considering factors like accuracy, real-time processing, scalability, and integration with
video surveillance. The methodical approach includes algorithm selection, data collection,
design, analysis, accuracy assessment, trade-offs, validation, and testing.

4.1. Data collection and Algorithm Design Process

The conduct of this thesis project required the collection of two sets of data: video footage
of a marine corridor and corresponding AIS data for the same marine corridor and timing as
the video. The initial segment of the graduation project is centred around the Rhine Corridor
in Germany. The aforementioned data sources are categorized as secondary forms of data,
implying that they were not gathered or generated specifically for this project, but rather are
pre-existing datasets. The picture 4.1 below denotes the location of the camera, it is located
in the level tower on the Rhine promenade, Vor dem Rheintor 5, 46459 Rees, Germany and
on the bank of the Rhine River. The blue lines show the field view of the Rhine River that is
captured through the camera. The AIS data is collected for a radius of 15 km from the position
of the camera, as marked in the figure. Figure 4.3 that is displayed shows the field of view
that is available from the camera placed in 4.1, and where the object detection is performed
in this project.

10
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Figure 4.1: Position of the Camera [13]

The project’'s workflow is carefully structured as shown in 4.2 across four distinct work en-
vironments to facilitate the detection and analysis of vessels within a maritime context. Each
environment plays a crucial role in handling specific tasks and processing data effectively.
Firstly, Amazon Web Services (AWS) provides the foundation for the project’s operations. A
virtual server hosted on AWS is responsible for recording and downloading video footage. This
initial step is fundamental as video data serves as a primary source for vessel detection and
analysis.

Once the video is acquired, it's stored on Google Drive, forming the second environment in
the process. Google Drive acts as a central repository for project data, ensuring easy access
and collaboration across various stages of the workflow.

The third environment, Roboflow, plays a pivotal role in dataset creation and preparation. Ves-
sel images are uploaded to Roboflow, and meticulous annotation is performed to identify ves-
sels within each image. Additional post-processing steps, such as adding blur and noise, are
applied to enhance the dataset’s quality and diversity. Once these steps are completed, the
dataset is generated and exported to the drive.

For the days when AIS data is required, it's obtained via an API. AIS data files are then
copied to the hard drive, adding another layer of critical information to the project. The fourth
environment, Google Colab, serves as the computational powerhouse for running code and
performing data comparisons. Here, the Object Detection method is employed, leveraging
the YOLOv5 model. The YOLOv5 model is trained on the dataset, resulting in the creation of
weights files. The accompanying Readme file [49] provides detailed instructions on the code
execution process.

Throughout the project’s logic and code development, a key focus is flexibility, ensuring that
the solution can be applied across diverse maritime environments rather than being limited to
specific cases. The ultimate goal is to create a versatile solution that can benefit a broad user
base.
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Figure 4.3: Field of view

4.1.1. Tracking of the vessels

Object tracking is a pivotal component of computer vision and surveillance systems, enabling
the continuous monitoring and analysis of object movement and behaviour. To detect ships
in the video and count them precisely. Two distinct methods emerged for this purpose: the
Centroid Method and the Intersection over Union (IOU) Method.

The centroid detection method is a straightforward yet effective approach to object detection.
In this method, instead of outlining the entire object with bounding boxes, the algorithm identi-
fies and marks the centroid of the object. The centroid represents the object’s centre of mass
or average position. To detect an object’s centroid, the algorithm typically calculates the spa-
tial average of the object’s pixels or features. This method is especially useful for detecting
objects of varying sizes, shapes, and orientations, as it provides a precise point of reference
within the object.

IOU, or Intersection over Union, is a crucial metric used in object detection to evaluate the
accuracy of bounding box predictions. It measures the degree of overlap between the pre-
dicted bounding box and the ground truth bounding box for an object. Specifically, IOU is
calculated as the ratio of the area of intersection between the two bounding boxes to the area
of their union. A higher IOU score indicates a better alignment between the predicted and true
bounding boxes. IOU is often used to assess the quality of object detection models during
training and evaluation, helping to determine whether a predicted bounding box sufficiently
covers the actual object.

Centroid-based object tracking is favoured over Intersection over Union (IOU) primarily be-
cause it provides a more robust and continuous means of tracking objects in various scenar-
ios. Unlike IOU, which relies on bounding box overlap and can be sensitive to object size
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changes and occlusions, centroid tracking focuses on the centre point of objects. This allows
for smoother tracking even when objects undergo scale variations or temporary obstructions,
making it a versatile and reliable choice in dynamic environments. Counters were installed to
help ships count when they crossed a predefined reference point. Furthermore, the trajectory
of centroid values was critical in determining the direction of each ship. The time of crossing
the reference line was recorded using the video’s initial timestamp, which was included in the
input data. This methodical approach not only allowed for accurate ship tracking and count-
ing but also provided information on ship directions and crossing times. The crossing time is
saved and used to compare the AlS data’s 'timelastupdate’ to obtain the results. These results
are then stored in an Excel file.

4.2. Data Analysis

The obtained AIS data is subject to a comprehensive comparative analysis and anomaly de-
tection examination. This analytical process involves juxtaposing the outcomes of object de-
tection with the acquired AIS data. The path delineated by the acquired AIS data serves as
a crucial input, both for comparative assessment and for conducting anomaly detection anal-
yses. This dataset is organized into a structured data frame, facilitating systematic analysis.
The "timelastupdate” column, which holds temporal information, is subsequently transformed
into a local time format for enhanced interpretability. To enhance data integrity, a vital step
involves the removal of duplicate entries associated with the same MMSI. This de-duplication
process ensures data accuracy and prevents redundant information. In scenarios where mul-
tiple entries correspond to the same MMSI, the "timelastupdate” column is adjusted to reflect
the temporal range spanning the first and last entry for that specific MMSI.

Subsequently, this refined and processed AlS data is juxtaposed with the time instances when
vessels cross designated reference lines captured in the video. By aligning the AIS data with
the video-derived crossing times, the analysis endeavours to identify any anomalies or devia-
tions in vessel behaviour and movement. This step serves as a pivotal juncture for anomaly
detection, where irregularities in vessel trajectories, crossing times, or other relevant parame-
ters can be scrutinized and potentially flagged for further investigation. In essence, this analyti-
cal process forms the core of the comparative and anomaly detection analysis, harnessing the
synergy between object detection results and acquired AlS data to unveil noteworthy patterns,
deviations, and potential anomalies within maritime scenarios.

MMSI, location, speed, course, heading, status, vessel type, dimensions, draught, destina-
tion, projected arrival time, safety messages, cargo details (for some), and static information
(vessel name, call sign, registration country) could all be present in the unpacked AIS data.
The entities required for comparison in this project are MMSIs, and the time since the last
update is necessary. Despite the fact that the whole data file is transferred into a data frame
for the procedure, only the fields listed above are used in the final results column.

4.3. Accuracy and False positive/Negatives Trade-offs

The realm of object detection introduces the critical concepts of False Negatives and False
Positives, which are inherently intertwined with the accuracy of the model. A False Negative
emerges when the model fails to identify an object that indeed exists in the image. In simpler
terms, the model overlooks a genuine object. This circumstance poses a challenge as it in-
dicates that the model is not encompassing all relevant objects present in the scene. False
Negatives can lead to missed opportunities and a reduction in recall — a metric gauging the
proportion of true objects successfully detected. Conversely, a False Positive transpires when
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the model erroneously predicts the presence of an object that is absent from the image. This
situation results in the model erroneously flagging objects that are not actually there, conse-
quently introducing inaccuracies in the reported information. False Positives can introduce
noise, diminish precision, and impose unnecessary computational burdens.

Achieving equilibrium between false negatives and false positives is of paramount importance
in developing a dependable and accurate object detection model. The optimization process
involves striking a delicate balance. The reduction of false positives contributes to refining
precision, while the minimization of false negatives augments recall. A pivotal metric, the F1-
score, harmonizes both precision and recall, providing a comprehensive evaluation of object
detection model performance. The process of striking the balance between false negatives
and positives hinges on adjusting the confidence threshold. A low threshold may inadvertently
result in an abundance of false positives, whereas an excessively high threshold could lead
to arise in false negatives. Therefore, finding the right equilibrium becomes pivotal. It's about
identifying the optimal balance that yields the most favourable outcomes, ensuring the model’s
performance aligns with the complex interplay between precision, recall, and the overarching
accuracy of object detection.

4.4. Validation algorithm

This section delves into the practical implementation of our ship detection and tracking method-
ology. As discussed in earlier chapters, the automated detection and tracking of ships in
maritime videos hold immense importance for various applications, ranging from vessel traffic
monitoring to maritime security. To achieve this goal, a comprehensive code implementation
that employs a combination of computer vision techniques and machine learning models is
presented. The code is designed to process video data, detect ships, track their movement,
and determine their crossing direction with respect to a reference line. This chapter provides
an in-depth breakdown of the code structure, functions, and logic employed, aiming to of-
fer readers a clear understanding of how our proposed methodology translates into practical
execution. Detailed explanations of the code blocks help highlight the critical stages of the
ship-tracking approach and elucidate the role of each component in achieving accurate and
efficient results. The chapter concludes by summarizing the objectives of the code implemen-
tation and setting the stage for further exploration and analysis of the obtained outcomes. The
complete algorithm is attached as part of the Appendix B.

4.41. Functions

Algorithm 1 Functions

1: function calculate_centroid(box)

2 xl,yl,x2,y2 + box

3 centroid_x < (z1 + x2)/2

4 centroid_y <« (y1 + y2)/2

5: return (centroid_x, centroid_y)

6: end function

7. function calculate_distance(centroid1, centroid2)
8 x1,y1 + centroid1

9 x2,1y2 « centroid2

10:  distance « /(22 — 21)2 + (y2 — y1)?
1: return distance

12: end function
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Within the provided code, two critical functions serve as the backbone of ship tracking and
counting operations. The first function, calculate_centroid(box), operates by taking a box’s
coordinates (x1, y1, x2, y2) as input. It then proceeds to compute the centroid’s coordinates
by averaging the corners of the box. Specifically, it calculates the midpoint on the x-axis and
the midpoint on the y-axis, returning these values as the centroid’s coordinates. The second
function, calculate_distance(centroidl, centroid2), is equally instrumental. It accepts two sets
of centroid coordinates, denoted as (x1, y1) and (x2, y2), and calculates the Euclidean dis-
tance between them. This distance is computed using the square root of the sum of squared
differences in both x and y coordinates, providing an accurate measure of the spatial separa-
tion between two centroids. These two functions cooperatively enable the code to precisely
track and count ships, offering a foundation for various spatial analytics and applications.

4.4.2. Loading model and Video Processing

This snippet presents a continuous loop designed to process video frames utilizing the YOLOv5s
model for object detection. The loop is configured to operate indefinitely ("WHILE True”) until
the video reaches its conclusion. During each iteration, a video frame is read from the desig-
nated source (cap.read()). In cases where the frame is empty or devoid of content, the loop
is terminated. The frame number is extracted and retained for reference. Subsequently, the
code assesses whether the current frame number corresponds to a multiple of skip_frames.
If this condition is not met, the loop proceeds to the next iteration. Simultaneously, the count
of processed frames is incremented. Employing the YOLOv5s model, object detection is con-
ducted on the present frame. Detected objects that possess confidence scores surpassing
conf_thresh are collated and stored within the variable "detections.” This code segment lays
the groundwork for the initial stages of object detection, priming the frame data for subsequent
analysis or display.

Algorithm 2 Processing Video Frames

1: while True do

2 ret, frame <« cap.read()

3 if frame is None then

4 break

5: end if

6 if frame_number mod skip_frames # 0 then
7 continue

8 end if

o: detections «— model(frame)

10: detections «— detections.pred|0][detections.pred|0][:, 4] > conf_thresh]
11: end while

4.4.3. Ship Detection and Tracking

The Algorithm provided plays a pivotal role in a video processing system, focusing on object
matching and tracking. Its core purpose is to process a sequence of object detections, assess
their confidence levels, and determine whether each detection corresponds to a previously
tracked object or represents a new one. This functionality is vital in scenarios where objects,
such as ships, require continuous monitoring and tracking as they traverse a video stream.
One of the code’s key functions is the confidence-based filtering of object detections. Each
detection is assigned a confidence score, indicating the algorithm’s confidence in the presence
of the object. Detections with confidence scores below a specified threshold, referred to as
conf_thresh, are filtered out.
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Algorithm 3 Detections and Tracking

1: for all detection in detections do

2
3
4
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

confidence <« detection[4]
if confidence > conf_thresh then

get — zl,yl, 22,92
centroid_x, centroid_y < calculate_centroid((z1, y1, 22,y2))
matched_ship + None
previous_centroid «+ None
for all ship in previous_ships do
previous_centroid <« ship[’centroid”]
if previous_centroid is an array then
for all centroid in previous_centroid do
distance « calculate_distance(centroid, (centroid_x, centroid_y))
if distance < centroid_distance_threshold then
previous_centroid < centroid
matched_ship < ship
break
end if
end for
else
distance < calculate_distance(previous_centroid, (centroid_x, centroid_y))
if distance < centroid_distance_threshold then
matched_ship + ship
break
end if
end if
end for
if matched_ship is not None then
if previous_centroid is an array then
for all centroid in previous_centroid do
if calculate_distance(centroid, (centroid_x, centroid_y)) <

centroid_distance_threshold then

31 matched_ship[’centroid’] < (centroid_x, centroid_y)

32 break

33: end if

34: end for

35: else

36: matched_ship[’centroid’] + (centroid_x, centroid_y)

37: end if

38: end if

39: if matched_ship is None then

40: matched_ship <« {’centroid” : centroid_x,centroid_y), direction”
None, "counted” : False}

41: previous_ships.APPEND (matched_ship)

42: end if

43: end if

44: end for

This step ensures that only highly reliable detections are considered for tracking, minimiz-
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ing false positives and enhancing tracking accuracy.

The code snippet computes the centroid, which represents the central point, of each detected
object’s bounding box. This centroid calculation provides a stable reference point for tracking
purposes. Subsequently, it proceeds to match the centroids of newly detected objects with
those of previously tracked objects. This matching process involves measuring the distance
between centroids and assessing whether they fall within a certain threshold, known as cen-
troid_distance_threshold. Successful matches indicate that the detected object corresponds
to an already known object, facilitating its continuous tracking.

In cases where no match is established between a newly detected object and any previously
tracked object, the code initializes tracking for the new object. It creates a new object entity
that includes essential information such as its centroid, direction (initially set to None), and
counting status (initially set to False). This new object is then added to the list of previously
tracked objects, allowing for its ongoing monitoring and tracking as it appears in subsequent
frames.

In summary, this code snippet serves as a crucial component of an object tracking and count-
ing system. Its primary role is to associate detections with known objects, update their tracking
information, and initialize tracking for new objects. This systematic approach ensures the ac-
curate tracking and counting of objects, thereby enhancing the capabilities of video analysis
and surveillance systems in a variety of applications.

4.4.4. Direction

The provided snippet encompasses a conditional statement geared towards assessing the ex-
istence of a matched_ship object and the unassigned status of its "direction” attribute. Should
these criteria align, the code proceeds to extract the coordinates of the preceding centroid, de-
noted as prev_centroid_x and prev_centroid_y. Within this context, the code undertakes an
evaluation to discern whether the current centroid’s coordinates suggest a left-to-right move-
ment. This assessment hinges upon a comparison between the x and y coordinates of the
present centroid and those of the previous centroid. Specifically, if both the x and y values of
the current centroid surpass their corresponding values in the previous centroid, it signifies a
motion from left to right. In this scenario, the "direction” attribute of the matched_ship object
is assigned the value "Left to Right”, effectively indicating that the ship is progressing from left
to right. Conversely, if the aforementioned condition is not satisfied, the code ascribes the
opposite direction to the ship, thereby encompassing the full spectrum of potential movement
directions. This comprehensive approach ensures that the ship’s movement direction is accu-
rately captured based on the spatial relationship between the current and previous centroids.

Algorithm 4 Check and Set Ship Direction

1: if matched_ship # None and matched_ship[direction] is None then

2 prev_centroid_x, prev_centroid_y < previous_centroid

3 # Check if the centroid's coordinates indicate Left to Right direction
4: if centroid_x > prev_centroid_x and centroid_y > prev_centroid_y then

5 matched_ship[direction] < "Left to Right”

6 end if

7: end if
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4.45. Counting

This code segment encapsulates a conditional statement that evaluates three distinct criteria.
Firstly, it verifies whether the ship’s designated direction is labelled as "Right to Left.” Subse-
quently, it examines if the leftmost x-coordinate of the ship’s bounding box (x_1) is smaller
than a predetermined reference line value, denoted as ref_line. Lastly, the statement ensures

[}

that the ship’s "counted” flag has not yet been marked as True.

Upon the fulfillment of all these conditions, a sequence of actions is executed. The code
proceeds to increment a count that monitors the tally of ships exhibiting a right-to-left move-
ment. Subsequently, the "counted” flag associated with the matched_ship object is updated
to True. Additionally, the code generates a printed message, serving as an indication that
the ship has successfully traversed the line from right to left. This code sequence succinctly
manages the process of detecting and marking ships following a right-to-left trajectory as they
cross the designated line of reference.

Algorithm 5 Update Count

1. if matched_ship]direction] = "Right to Left” and x1 <
ref_line and matched_ship[counted] then

2: right_to_left_count +=1

3: matched_ship[counted| < True

4: end if

4.4.6. Data Processing

The algorithm presented in this code snippet focuses on the crucial task of matching and count-
ing ships within a data frame. Its primary goal is to determine if a ship, previously identified and
stored in the ‘previous_ships’ list, corresponds to any records in the DataFrame ‘df’. This pro-
cess involves evaluating both temporal attributes and certain conditions to establish matches.
The code employs a nested loop structure to systematically examine each ship in the ‘previ-
ous_ships' list and compare it with rows in the DataFrame. The following steps outline the
core matching process:

1. Checking for Prior Counting:
Within the nested loop, the code first checks whether the ship has already been counted. This
verification ensures that each ship is considered for matching only once.

2. Temporal Attribute Conversion:
The code extracts and converts relevant time attributes for analysis. It transforms the "timelLas-
tUpdate” attribute from the DataFrame row into a datetime format. Additionally, it processes

the ship’s "time” attribute, representing the time of crossing a designated reference line.

3. Time-Based Matching Logic:
The code distinguishes between two scenarios:

« If "timeLastUpdate” in the DataFrame is represented as a dictionary (likely denoting a
time range), the code compares whether the "time_of crossing” falls within this spec-
ified time range. When a match is found, the code marks the corresponding row as
a "Matched ship” in the DataFrame, increments the "Number of matches” count, and
concludes the loop for that ship.

* In cases where "timeLastUpdate” in the DataFrame is not a dictionary, the code checks if
the "time_of_crossing” is within a two-minute window (plus or minus) of the "timeLastUp-
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date.” Successful matches result in the same actions: marking the row as a "Matched
ship,” increasing the "Number of matches” count, and exiting the loop.

In summary, this code segment plays a vital role in the object tracking and counting system,
specifically in the context of ship monitoring. It effectively matches ships stored in ‘previ-
ous_ships' with relevant rows in the Data Frame, taking into account temporal attributes and
predefined conditions. This systematic approach enhances the tracking and counting of ships
within the dataset, facilitating comprehensive analysis and monitoring of maritime activities.

Algorithm 6 Matching Ships in DataFrame

. for all ship in previous_ships do
for all index, row in df.iterrows() do
if ship[’counted”] then
# Convert timelLastUpdate to datetime

# Convert time of crossing the line to datetime

time_of crossing < datetime.datetime.strptime(ship['time”], "% Y-%m-%d %H:%M:%S”)

1
2

3

4:

5: timeLastUpdate < row[’timeLastUpdate”]

6

7

8 if isinstance(row[”timeLastUpdate’ : [ first’/last’]”], dict) then
9

if time_of crossing > row[”timeLastUpdate’

[ first') last']"][" first”] and time_of_crossing < row[”timeLastUpdate’
[ first’/last’]”]["last”] then

10: df.at[index, "Matched ship”] + "Yes”

1: df.at[index, "Number of matches”] +— df.at[index, "Number of matches”]-+
1

12 # PRINT "Matched ship: " + str(ship) + " with " +
str(row["mmsi"])

13: break

14: end if

15: else

16: if time_of crossing > timelLastUpdate - datetime.timedelta(minutes=2) A
time_of crossing < timelLastUpdate + datetime.timedelta(minutes=2) then

17: df.at[index, "Matched ship”] + "Yes”

18: df.at[index, "Number of matches”] + df.at[index, "Number of matches”]+
1

19: # PRINT "Matched ship: " + str(ship) + " with " +
str(row["mmsi"])

20: break

21: end if

22: end if

23: end if

24: end for

25: end for

4.5. Validation and Testing

The validation and testing phase commences with the creation of succinct code snippets metic-
ulously designed for testing the algorithm’s functionality and results. To delve deeper into
the outcome analysis, a Design Chart Exploration is undertaken. This exploration involves
probing the interactions between key variables, namely the Confidence Threshold, Centroid
Distance Threshold, Number of Frames Processed, and the Discrepancy between Actual and
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Detected Counts. These variables exhibit interconnectedness in terms of their influence on
the generated results. The Centroid Distance Threshold exhibits a correlation with the Frames
Skipped variable, where an increase in the latter leads to a proportional elevation in the for-
mer. Similarly, the Confidence Threshold directly impacts the model’s accuracy, influencing
the propensity for false negatives and positives. A comprehensive Design Space Exploration
chart is formulated, showcasing the outcomes across varying values of the aforementioned
variables. This exploration extends to different snippets as well, amplifying the robustness of
the analysis.

For each experimental value, accuracy is meticulously calculated, facilitating the identifica-
tion of the optimal set of values that yield the most desirable algorithmic performance. This
systematic approach empowers the testing of diverse value combinations, aiding in the de-
termination of the most effective parameters for the algorithm. Furthermore, the validation
process extends to the post-processing segment of the code, where results from object detec-
tion are meticulously compared. The previously generated snippets are leveraged to evaluate
the efficacy of this comparison process and the subsequent interpretation of results within an
Excel file.

4.6. Results

The results of the object detection phase of the code that is stored in the previous_ships
dictionary are extracted to be compared with the AIS data that has been called for in the
inputs and uploaded into a data frame. The previous_dictionary is used to store details like
the centroid values of the ship, the direction of the ship if that has been assigned, a flag that
sets itself to true if the ship has been accounted for, and the time that the ship crosses the line,
which is calculated based on the starting time of the video that has been provided as one of the
input arguments. The time of crossing of the ships is then compared with the ’timelastupdate’
column of the AIS data in the data frame. Then an additional column is created to show 'yes’ if
there is a match between the entries in the data and the vessel in the video. Once a range was
initialized for 'timelastupdate’ it was also important to check the number of matches a particular
entry had, to maximize the impact of the current results. This counter would later allow us to
compare the total detections with the matches. A representation of the final table 4.1. The
script also generates a plot at the end to depict the number of matches per MMSlI/entry in the
data.

timeLast ves r EYE k) et . | Matched Number
Update timeLastUpdate’: [’first’, ’last’] mmsi ship of matches
YYYY-MM-DD | {first: Timestamp('YYYY-MM-DD HH:MM’), Yes/No
HH:MM ‘last’: Timestamp('YYYY-MM-DD HH:MM’)}

Table 4.1: Results table



Results and Discussions

This chapter of the study’s research endeavours explores the potential for improved reliabil-
ity of maritime data. This section is pivotal to our study, addressing Research Questions 3,
4, and 5. Question 3 (SQ3) prompts an in-depth analysis of our object detection algorithm’s
performance across diverse maritime conditions. This examination helps uncover both the
strengths and limitations in ship identification and localization via video surveillance, show-
casing its potential to enhance maritime safety and operational efficiency. Question 4 (SQ4)
directs our attention to the intricacies within the data, compelling a quantitative evaluation of
disparities between Automatic Identification System (AIS) data and algorithm-generated ship
detections. This scrutiny deepens our grasp of real-world data variations, advancing strate-
gies for precision improvement. Lastly, Question 5 (SQ5) guides us to explore the intersection
of video surveillance and AIS data, shedding light on the challenges and opportunities of de-
tecting falsified AIS information while integrating AlS into operational practices. This chapter
bridges practical observations with theoretical foundations, yielding tangible results with wide-
reaching implications for maritime reliability, precision, and integrity.

Throughout this study, data was collected and analyzed over three separate days to derive
comprehensive results. Each day’s analysis involved deploying the algorithm for ship detec-
tion and matching, using video surveillance and AIS data. The Videos acquired were for a
period of 6 hours, for three days — May 31, August 6, and August 7, 2023, from the camera
located in Rees as shown in figure 4.1. The model that is to be used for object detection was
trained using a dataset created using over 100 images of the inland vessels in the Roboflow
environment as mentioned in chapter 4. This is done keeping the factor of overfitting in mind,
i.e., Having too many images, especially if they are similar, where the model performs well on
the training data but poorly on new, unseen data. A detailed explanation of the process archi-
tecture is shown in figure 4.2. The process entailed running the algorithm on the specific day’s
video footage to detect ships in real-time. A Python script was developed to use the detection
of the model and count based on the directions in accordance with a reference point that is set
on the frame using the centroid point of the bounding box. To ensure accurate counting, the
vessels had to be tracked across the frame to avoid being counted multiple times. To identify
the directions, the code should have been able to save the last two centroid values of each ves-
sel tracked so that the trend of these values could be used to determine the direction and their
position on the screen concerning the reference line to increase the counters in that direction.
The challenge was following the ships throughout the frames because, to make the process-
ing shorter, not every frame could be handled, hence a parameter (explained in chapter4.4)
named “centroid_distance_threshold” was developed to accommodate for this. Because this

22
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parameter takes into consideration the distance (pixels) travelled by vessels in the following
frames, its value is exactly proportional to the number of frames omitted. It was difficult to
find the value that would balance the false positives and negatives. Subsequently, matches
were identified by comparing the algorithm’s detections with corresponding entries in the AIS
data. The number of detections and matches were recorded for each day. To ensure robust-
ness and reliability, this procedure was repeated for the above three consecutive days. The
collected data encompassed the number of ships detected and the instances where matches
were successfully identified. These data sets were then meticulously analyzed to draw mean-
ingful conclusions about the algorithm’s performance, accuracy, and capacity to identify and
mitigate instances of overlapping or fake AlS data. The aggregation of results from these three
days provided a comprehensive and representative understanding of the algorithm’s effective-
ness across varied maritime conditions and scenarios.

5.1. Results

This section embarks on a detailed exploration of the outcomes derived from our research
project’s approach. Our analysis encompasses a thorough examination of the results for each
of the three distinct days—May 31, August 6, and August 7. For each day, this study will
meticulously present and discuss the number of ships detected, the corresponding matches
identified in the AIS data, and any notable trends or patterns that emerged. By scrutinizing the
results for each specific day, the results chapter aims to provide a comprehensive understand-
ing of how our algorithm performed across different instances and timeframes. Following the
presentation of individual day results, we will then engage in a broader discussion that delves
into the implications of our findings in addressing our research questions. In the process crit-
ically evaluating the algorithm’s accuracy, its capability to detect discrepancies between AIS
data and detections, and its effectiveness in spotting instances of overlapping or fabricated AIS
information. Furthermore, the following subsections will explore how these insights contribute
to enhancing maritime navigation, safety, and security.

Left to Right: O
Right to-Left: O

Figure 5.1: A snippet from the Detection

Manual verification played a crucial role in compensating for the inherent limitations and en-
suring the reliability of our object detection model. While the model demonstrated impressive
efficiency in detecting and localizing vessels, there were instances where manual verification
became indispensable. The frames were processed was recorded and the vessels that the
object detection model didn’t detect were identified and the frame numbers of the vessels
were noted. The frames using a Python script were converted to timestamps of the video and
matched with the AIS data. By doing the manual verification process we are thereby account-
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ing for all the vessels in the video, and this helps find the discrepancies or the mismatches
between the results and the AIS data. Finally, a graph is plotted between the number of
matches acquired by object detection, manual verification and the unmatched data. Through
this comprehensive analysis, this study aims to draw meaningful conclusions and highlight the
potential real-world impact of our research.

5.1.1. Results for May 31, 2023

On May 31, 2023, the data collection process was initiated to evaluate the algorithm’s perfor-
mance in detecting and matching ships using video surveillance and AIS data. The algorithm
was applied to the day’s specific video footage, and its detections were compared with cor-
responding AIS data entries. This endeavour aimed to provide insights into the algorithm’s
effectiveness in real-time ship identification and its ability to uncover instances of overlapping
or fake AlIS data. The outcomes of this analysis, including the number of ships detected and
the successful matches achieved, shed light on the algorithm’s initial performance in diverse
maritime conditions. A comprehensive assessment evaluated the algorithm’s effectiveness
in ship detection and matching using video surveillance and AIS data. Out of the 60 ships
detected in the video, the analysis revealed that 16 of them were successfully matched with
corresponding entries in the AIS data. This examination provides an initial understanding of
the algorithm’s performance in real-time ship identification, emphasizing its potential to identify
instances of overlapping or fake AIS data in the maritime environment. Table 5.1 shows the
statistics of the algorithm for the video of the first day, where it was identified manually that
the total number of vessels crossing in those 6 hours was 83 and the object detection model
managed to detect 60, which depicts an accuracy of 74%. The deficit shown by the model
would be accounted for by manual verification.

Video Date | No.of Ships | Detected | Efficiency
31/05/2023 | 83 60 74%

Table 5.1: Object detection statistics (day1)

The Overall statistics after the completion of the manual verification process are presented
in the table 5.2. The mentioned table shows the split between the total number of ships de-
tected by the model which is 60. The manual verification process yielded another 29 vessels
and when the obtained vessels were matches with the AIS data, they produced 34 matches.

Detected Overall
Video Date by Model Manually detected | Matches with
AIS data
31/05/2023 | 60 29 34

Table 5.2: Overall Statistics(31/05/2023)

The table 5.3 shows the results acquired from the video it shows the data from the AIS
data. This is done by comparing the data acquired from the video and AlISd data. To eliminate
multiple entries of the same MMSI(s), the range of the first and final signals broadcast is taken.
The matched ships are then compared and matched. This result shows a total of 16 ships
that have been matched, and the highest falling to the timestamp "2023-05-31 18:37:45” with
the mmsi "244690451” because of its huge range of timeLastUpdate’: [first’, 'last’] = first’
Timestamp('2023-05-31 18:37:45.312), ’last’: Timestamp(’2023-05-31 20:15:35.713’) which
corresponds to about two hours of the video this directly correlates to the high number of
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matches in the matches done by the algorithm and also manually. The Entries without a
range are provided with a threshold of 2 minutes on either side of their entry, so the time of
crossing is checked in accordance and matched in the data frame. Here the matches for the
entries without a range are depicted for the MMSI’(s): 244620968, 211667460. A graph 5.2 is
plotted to show the number of matches per MMSI'(s) that were acquired for this particular day
and particular time range.

ﬂr::;.tzst ‘timeLastUpdate’: [first’, ’last’] mmsi mr‘::(':::s Manual
fg:Z432-05-31 205271390 | 0
?2:21?;:05-31 244620968 | 4
?2:2135-05-31 244750327 | 0
?2:213505-31 211667460 | 2 1
?2:2139-05-31 244790070 | 0
fg:zz3(;05-31 205248590 | 0
?2:2435-05-31 253242513 | 0
o o st gy | 2ot o
?3:2135-05-31 244690224 | 0
?g:zo32-05-31 244077643 | 0
1657 | laot: Tmeeismp(2023-05.31 20,15 | 244690451 |10 | 15
?2:2539-05-31 211115500 | 0
oo | it gy | 2ueTomo
?8:2133-05-31 211476070 | O
s s iy |21 |
?8:2332-05-31 226015720 | 0
B oo gory | 241001
1951 | st Tmesiamp(2023-05.31 2016 | 244680720 |0
e | e e 2oy | o1
oo it zoigy | s
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Table 5.3: Results - 31/05/2023

12

H Number of matches

10
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205271390
244620968 K
244750327
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244790070
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244670089
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244660720
244850275
244001635

Figure 5.2: Matches per MMSI(s) - 31/05/2023

The Pie chart shown in figure 5.3 shows the split up of the total vessels identified, the same
is shown in the tables 5.1,5.2. This chart shows the split between the total number of vessels
that have been matched by the model, by manual verification and data that is unmatched by
both processes. This helps understand the mismatch between the inland vessels travelling
and the available AIS data. The unmatched data represented in the graph is both due to
missing vessels and missing data.
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B Matched by the model B Matched by Manual verification B Unmatched data

Figure 5.3: Comparison of data - 31/05/2023

5.1.2. Results for August 6, 2023

In the pursuit of robust and comprehensive insights, our investigation extends to the second
day of analysis, namely August 6, 2023. This distinct day brings forth a new set of challenges
and scenarios within the maritime environment, enriching our understanding of the proposed
methodology’s effectiveness. Delving into the results of this specific day helps gain a deeper
perspective on the algorithm’s performance and its ability to withstand varied conditions. By
systematically scrutinizing different days, the study not only bolsters the credibility of our find-
ings but also subjects our approach to diverse scenarios, fortifying its real-world applicability.
The meticulous analysis of the second day’s data stands as a testament to the adaptability and
potency of our method in addressing the intricate intricacies of maritime data reliability and se-
curity. Table 5.4 shows the statistics of the algorithm for the video of the first day, where it
was identified manually that the total number of vessels crossing in those 6 hours was 66 and
the object detection model managed to detect 68, which depicts an accuracy of 102%. The
excess in the detection model’s results is because of false positives and on this particular day,
there were situations where many vessels passed concurrently at the same time, which led to
the generation of false positives. This could be neglected by the alteration of the parameters
in the code but at the cost of the generation of false negatives. So the parameter that led to the
attainment of the best possible balance between false positives and negatives was chosen.

Video Date | No.of Ships | Detected | Efficiency
06/08/2023 | 66 68 102%

Table 5.4: Object detection statistics (day2)

Following the meticulous manual verification process, the overarching statistics are thought-
fully outlined in Table 5.5. It's noteworthy that the total count of vessels detected stands at 66,
which exceeds the actual number observed in the video. Depicts the total number of ships
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identified manually, here it stands at 18 vessels and the overall matches that have been at-
tained including the manual verification which is 48, underscoring its efficacy in confirming
vessel identities amid the intricacies of the maritime environment.

Detected Overall
Video Date by Model Manually detected | Matches with
AIS data
06/08/2023 | 68 18 48

Table 5.5: Overall Statistics(06/08/2023)

With a keen eye on the dynamics of this specific day, a comprehensive exploration of ship
detection and matching results was embarked on. The statistics from this day stand as a testa-
ment to the algorithm’s robustness and its ability to perform admirably across distinct maritime
scenarios. The recorded count of 68 ship detections, of which 38 were successfully matched
with AIS data, reinforces the efficacy of our approach in identifying and mitigating instances
of overlapping or falsified data. Meticulously examining the results of this day, expands the
understanding of the algorithm’s performance within diverse maritime contexts, further rein-
forcing the credibility of our method and its potential to reshape the landscape of maritime
data analytics. Similarly, the Range for the timelastupdate is attained to eliminate the dupli-
cation of MMSI(s) and the time of crossing is compared to the dataset of this particular day
in 5.6. The highest number of ships have been detected and matched for the time range of
first’: Timestamp('2023-08-06 10:09:46.886’),’last’: Timestamp('2023-08-06 10:40:16’) with
12 ships matched and the next highest is matched with 8 detections for the range ’first”
Timestamp('2023-08-06 11:45:18.339’), ’last’: Timestamp('2023-08-06 12:24:27.212’). The
matches for the timelastupdate of each MMSI are shown in 5.4.

timelLast o
Update timeLastUpdate’: [first’, 'last’] mmsi of Manual
matches
1000 | ast: Tmestomp(2025.08-06 10407 | 244615688 | 12 |3
e ooy | 710950 |7 |
e (o nemameearas oy | 2o
?8:2531-08-06 244630075 | 0
e | s iy | 22070
?;):203;3-08-06 211455520 | 0
??:23?8-08-06 211386900 | O
a5 last: Tmestamp(2025.08-06 12247 | 244620698 |8 |3
ey | 215705 | o
???51;-08-06 211667460 | O
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2023-08-06
11:54 205268790 | O
2023-08-06
12:34 211328590 | 6
2023-08-06
13:02 244660361 | 1 1
2023-08-06 | {first’: Timestamp(’2023-08-06 14:10’),
14:10 last’: Timestamp('2023-08-06 14:11°)} 244377391 | 0
2023-08-06 | {first”: Timestamp(’2023-08-06 15:02°),
15:02 last’: Timestamp(’2023-08-06 15:03’)} 244670667 | 0
2023-08-06
15:19 248094000 | O 1
2023-08-06 | {first’: Timestamp(’2023-08-06 15:23’),
15:23 last’: Timestamp('2023-08-06 17:02’)} 244660495 | 2 1
2023-08-06 | {first’: Timestamp(’2023-08-06 16:10’),
16:10 last’: Timestamp(’2023-08-06 16:12’)} 244007308 | 0
Table 5.6: Results -06/08/2023
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Figure 5.4: Matches per MMSI(s) - 06/08/2023

Figure 5.5 presents a visual breakdown of the total vessels identified, which amounts to
86 vessels for the specified date. This data is also presented in Tables 5.4 and 5.5 for a com-
prehensive reference.
The pie chart serves as a valuable tool to illustrate the distribution of these vessels into three
distinct categories: those matched by our object detection model, those verified through man-
ual inspection, and those that remain unmatched by either process. This breakdown provides
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valuable insights into the degree of concordance between vessels observed in the field and
those accounted for in the available AIS data.

Of particular note is the segment representing unmatched data, a critical aspect of our analy-
sis. This portion encompasses both missing vessels, which are present but undetected, and
instances of absent AIS data, where vessels recorded visually are not corroborated in the
AIS dataset. This visual representation aids in uncovering discrepancies in inland vessel traf-
fic data, shedding light on the intricacies of maritime vessel identification and the challenges
posed by data gaps. It underscores the need for further research and improvements in both de-
tection methodologies and AlS data completeness to enhance our understanding of maritime
traffic dynamics.

® Matched by the model ® Matched by manual verification Unmatched data

Figure 5.5: Comparison of data - 06/08/2023

5.1.3. Results for August 7, 2023

Embarking upon the third day of investigation, which unfolded on August 7, 2023, provided an
invaluable opportunity to elevate the depth of our analysis. This additional day of scrutiny was
not merely an arbitrary extension, but a purposeful endeavour to enhance the comprehensive-
ness of our study. Incorporating a third day into the examination aimed to fortify the credibility
of our findings and validate the patterns observed across multiple instances. This pragmatic
approach enabled us to glean insights that transcend temporal idiosyncrasies and reveal recur-
ring themes. While the scale of this day’s engagement is relatively modest—yielding 68 ship
detections and 38 matches—it is emblematic of a strategic choice to triangulate our observa-
tions. This expanded endeavour serves to underscore the method’s resilience and adaptability
across varying conditions, thereby providing a more nuanced understanding of its efficacy. By
weaving together the threads of consecutive days, our exploration extends beyond isolated
incidents, unfolding a more holistic narrative that substantiates the viability of our approach.
Table 5.7 shows the statistics of the algorithm for the video of the first day, where it was identi-
fied manually that the total number of vessels crossing in those 6 hours was 48 and the object
detection model managed to detect 45, which depicts an accuracy of 94%. As seen in the ex-



5.1. Results 31

perimentation of the previous day, this efficiency percentage of 94% isn’t a perfect reflection
of the capability of the model, since it contains false positives and quite a few vessels were
obtained by the manual verification process.

Video Date | No.of Ships | Detected | Efficiency
07/08/2023 | 48 45 94%

Table 5.7: Object detection statistics (day3)

Upon the conclusion of the manual verification process, the comprehensive statistics are
presented in Table 5.8. It's noteworthy that the total count of vessels detected by the model
stands at 45 and 17 vessels have been manually detected. The attained vessels were then
matched with the data, and 44 matches were found.

Detected Overall
Video Date by Model Manually detected | Matches with
AIS data
07/08/2023 | 45 17 44

Table 5.8: Overall Statistics(07/08/2023)

The most significant number of matches occurred on August 7, 2023, specifically within the
time ranges 'first’: Timestamp('2023-08-07 14:06:00’), ’last’: Timestamp('2023-08-07 15:26:50.513000’)
and ‘first’: Timestamp('2023-08-07 13:28:26.510000’), ’last’: Timestamp(’2023-08-07 13:54:25’).The
Detailed results from processing the video are shown in the table 5.9. The results in the data of
the third day of the sample set, help us understand the pattern of the results and consistency
of the model. The matches per MMSI are depicted in the graph5.6.

timeLast Number
Update ‘timeLastUpdate’: [first’, ’last’] mmsi of Manual
P matches
2023-08-07 | {first’: Timestamp('2023-08-07 12:15’),

12:15 last’: Timestamp('2023-08-07 12:39)) | 244690451 15
2023-08-07 | {first: Timestamp(2023-08-07 12:20"),

12:20 last; Timestamp('2023-08-07 13:18")) | 244660297 | 2
2023-08-07

T 244660955 0
2023-08-07 | {first: Timestamp(2023-08-07 12:32),

12:32 last’: Timestamp('2023-08-07 12:35)) | 2+4690881 | 0
2023-08-07 | {first: Timestamp(2023-08-07 12:40"),

12:40 last Timestamp('2023-08-07 12:43')) | 2448°0318 110
2023-08-07 | {first’: Timestamp(’2023-08-07 12:56’),

12:56 last’: Timestamp('2023-08-07 13:06")) | 211001260 | 0
2023-08-07

1306 211552670 | 0
2023-08-07 | {first: Timestamp(’2023-08-07 13:08:’),

13:08 last’: Timestamp('2023-08-07 13:097) | 211083180 | 0
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2023-08-07
13:28

{first’: Timestamp('2023-08-07 13:28’),
‘last’: Timestamp('2023-08-07 13:54’)}

211274030

2023-08-07
13:28

{first’> Timestamp(’2023-08-07 13:28’),
‘last’: Timestamp(’2023-08-07 13:30’)}

211535300

2023-08-07
13:30

{first’> Timestamp(’2023-08-07 13:30’),
‘last’: Timestamp('2023-08-07 13:54’)}

211894840

2023-08-07
13:54

244690528

2023-08-07
14:01

211785210

2023-08-07
14:04

{first’: Timestamp(’2023-08-07 14.04’),
‘last’: Timestamp(’2023-08-07 14:16’)}

244130422

2023-08-07
14:06

{first’: Timestamp(’2023-08-07 14:06’),
‘last’: Timestamp('2023-08-07 15:26’)}

244700493

2023-08-07
14:10

{first’: Timestamp('2023-08-07 14:10’),
‘last’: Timestamp('2023-08-07 14:13’)}

244150799

2023-08-07
14:56

{first’: Timestamp('2023-08-07 14:56’),
‘last’: Timestamp('2023-08-07 15:11°)}

244660499

2023-08-07
15:03

211798640

2023-08-07
15:46

{first’: Timestamp('2023-08-07 15:46’),
‘last’: Timestamp(’2023-08-07 16:19°)}

244670396

2023-08-07
16:01

226008660

2023-08-07
16:08

211845090

2023-08-07
16:13

{first’: Timestamp(’2023-08-07 16:13’),
‘last’: Timestamp('2023-08-07 16:17°)}

244002399

2023-08-07
16:20

{first’: Timestamp('2023-08-07 16:20’),
‘last’: Timestamp(’2023-08-07 16:41’)}

244314912

2023-08-07
16:54

211883520

2023-08-07
17:15

211513810

2023-08-07
17:16

244630683

2023-08-07
17:17

244660684

2023-08-07
17:35

{first’: Timestamp('2023-08-07 17:35’),
‘last’: Timestamp(’2023-08-07 17:50)}

244710183

2023-08-07
17:38

{first’> Timestamp(’2023-08-07 17:38’),
‘last’: Timestamp('2023-08-07 17:51°)}

244660720

Table 5.9: Results -07/08/2023
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Figure 5.6: Matches per MMSI(s) - 07/08/2023
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Figure 5.7 presents a detailed breakdown of the total vessels identified. This data is also
comprehensively detailed in Tables 5.7 and 5.8.
The pie chart offers a visual representation that categorizes these vessels into three distinct
groups: vessels matched by our object detection model, vessels verified through manual in-
spection, and vessels that remain unaccounted for by either process. This categorization
provides crucial insights into the alignment between vessels observed in the field and those
captured in the AIS dataset.
Of particular significance is the segment denoting unmatched data. This segment encom-
passes vessels that are either present but undetected or absent from the AIS dataset. This
graphical depiction allows us to discern disparities in inland vessel traffic data, illuminating the
complexities of maritime vessel identification and highlighting data gaps. It underscores the
imperative for further research, aiming to refine both detection methodologies and AlS data
integrity. Enhancing our comprehension of maritime traffic dynamics hinges on addressing
these challenges and improving the completeness of AIS data.
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B Matched by model B Matched by manual verification =~ B Unmatched data

Figure 5.7: Comparison of data - 07/08/2023

5.1.4. Comparison of Results

The results obtained from the three days of analysis provide a comprehensive review of the ob-
ject detection algorithm’s performance and insight into the mismatch between the actual and
AIS data. The accuracy of the model, i.e., the ratio of the number of ships in the video to the
total number of ships detected in the model, got better in the last two days. While the model’s
efficiency has been emphasized, it is important to note that these results were obtained under
daylight conditions, which are susceptible to lighting nuances.

Comparing the three days of data collection, it's evident that all three days consistently yielded
more vessels detected by the object detection model than the actual number present in the
video. This overestimation is primarily due to the presence of false positives, which can be
attributed to the camera angle and challenges in tracking ships passing each other closely.
It's crucial to note that the above results also shed light on the quality of the AIS data itself.
The mismatches between detected vessels and AlIS data entries can be attributed to various
factors. These include the absence of vessels in the AlS data, and inaccuracies or delays in
AIS data transmission. The sample set on day 2 includes a segment capturing heavy rain,
and this meteorological condition did not undermine the model’s accuracy, highlighting its ro-
bustness even in challenging weather. It's also significant to note that, according to the tables,
there were different numbers of vessels crossing the said point every three days.

When looking at the tables 5.1, 5.4,5.7 the efficiencies of the object detection model are con-
trastingly different. Day 2 has the highest efficiency, but that was highly attributed to the false
positives which have been explained under the results section each day. Shedding more light
on the explanation of the false positives, one of the major instances that seemed to occur
across the three days was the concurrent passing of ships also called occlusion. This caused
the tracking system to fail since with the current field of view as seen in 4.3 when the ships
pass at the same time, the ship on the other side is completely covered. This causes the
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creation of new vessels even though the entries for these ships have been made already, so
a new entry creates a flag which is turned to be false and gets counted again or the algorithm
tends to confuse the vessel between the entries and this creates a jump in the centroid values
over the set threshold, which again identifies this vessel as a new vessel. The angle of the
camera adds this constraint to this project.

The number of entries in the AIS data after the elimination of duplicates, where day 3 has
AIS messages from 35 different MMSIs and days 2 and 1 have 21 and 20 entries, respec-
tively. Now, with this in perspective, the matches column in the above table would be of much
greater relevance, and the difference between the detected vessels and matches is evident.
One factor that did affect the detections was that when a video with a higher data rate was
obtained, it was known to affect the balance of the false positives and negatives by generating
a lot more false positives. So for day 3, the value of the centroid distance threshold had to be
determined and used for tracking.

The graphs plotted to show the split between the data matched by the algorithm, by man-
ual process and unmatched data drawn for the three days, same can be seen in 5.5, 5.7, 5.3.
The three days have 56, 38, and 32 entries that are unmatched with the data. This is due to
both the factors of missing vessels for the data and also missing data, As mentioned above
it could also be because of irregularly transmitted messages. As further research in this field
spans, it would be possible to acquire information regarding the ship while they cross would
help negate the false positives because with such information the tracking system could be
made much better and the wrong creation of new vessels could be prevented.

B Matched by the model B Matched by manual verification Unmatched data

Figure 5.8: Results - Average AIS data matches

Figure 5.8 contains the average number of matches that are obtained by the algorithm, by
manually identifying the vessels and the data that has been left unmatched over the three days.
On average, there is a total of 28 entries that are matched by the model and a mere 14 which
is matched due to the manual verification process, and 38 entries on average per day are left
unmatched. The Significance and importance of AlS data are discussed in the chapters 1, 2
and the future scope of the fields that this data could be used in. It is important to examine
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the quality of this data, this being said the validation and testing part is complete. Based
on my interpretation, the aforementioned findings suggest a deviation from the established
standards regarding the transmission time limit for various classes of transponders. These
standards dictate a maximum limit of three minutes. The results suggest that if the prescribed
standards had been adhered to, specifically the threshold of two minutes set for this study, a
significantly higher number of matches would have been observed.

5.2. Discussion

In this chapter, we reach a critical point in our research, embarking on a thorough examination
of our method’s results. We embark on a comprehensive journey through the implications of
our research findings by unravelling the intricate interplay of data, insights, and interpretations
derived from earlier sections. This chapter represents the culmination of our investigation, as
we dissect underlying patterns, correlations, and insights hidden within the depths of the data.
We hope to extract nuanced understandings and illuminate the narrative that emerges from
the fusion of video surveillance, AIS data, and algorithmic precision through this thorough ex-
amination.

Our primary goal throughout this chapter is to reveal the practical implications of our research
findings and shed light on their broader implications for maritime operations and security. Fine-
tuning the algorithm’s parameters helped effectively balance false negatives and false posi-
tives, which was possible due to the creation of a chat called Design Space Exploration. The
Appendix contains the chart that aided in this delicate calibration by adjusting parameters
such as confidence threshold, centroid distance threshold, reference line placement, and the
frames to skip. This iterative process produced results that aided in the creation of the chart.

While the model’s efficiency has been emphasised, it is important to note that these results
were obtained under daylight conditions, which are susceptible to lighting nuances. When
tested during nighttime scenarios as stated in the section 2.2, these figures may show varia-
tions. Furthermore, a significant change in ship types may necessitate additional training to
ensure the model's adaptability. Surprisingly, the sample set on day 2 includes a segment
capturing heavy rain, and this meteorological condition did not undermine the model’s accu-
racy, highlighting its robustness even in challenging weather.

The results of the developed anomaly detection algorithm show gaps in the number of ves-
sels identified in the video and matched with the AIS data. This shows promise in terms of
the model’'s wider implementation and efficiency in detecting deviations, but it is untouched in
terms of narrowing down to the specific vessel or ship that is responsible for the anomaly. The
above is a constraint that we are currently dealing with because it not only provides us with the
option of narrowing down the anomalies but also opens a horizon where we could check if the
ships transmit data as per the standards of their class of AIS Transponders. The standards
set by AIS are, [38]

» Class A AIS Transponders: Class A AIS transponders are typically used on larger ves-
sels, and they are required to transmit AIS data every 2 to 10 seconds when the vessel
is underway, depending on its speed. The faster the vessel’s speed, the more frequently
it transmits data.

» Class B AIS Transponders: Class B AIS transponders are often used on smaller vessels.
They transmit AIS data less frequently compared to Class A transponders. Class B
transponders transmit data every 30 seconds if the vessel is moving faster than 2 knots,
and every 3 minutes if the vessel is stationary or moving slower than 2 knots.
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» SARTs (Search and Rescue Transponders): SARTs are emergency devices used to aid
in the location of a vessel or lifeboat in distress. They transmit AIS data at a rate of once
every 8 seconds.

» AIS Base Stations and AtoNs (Aids to Navigation): These transmit AIS data at a fixed
interval, usually every 3 minutes.

To avoid duplicates of the MMSI, the 'timelastupdate’ was to be considered in ranges in the
Post-processing section of the code. Because of the aforementioned constraint, this method
was chosen. This also meant that the process was less accurate because it resulted in the
formation of ranges that spanned more than an hour. For example, in the first day’s results,
MMSI: 244690451 generated the range first’: Timestamp('2023-05-31 18:37:45.312000’),
‘last’: Timestamp('2023-05-31 20:15:35.713000°). This is more than 2 hours, which resulted
in this entry accumulating 10 matches and also denying matches to other entries with 'time-
lastupdate’ within this range.

5.3. Sensitivity Analysis

In our never-ending quest to understand the complexities of our research results, we take a
step into the world of sensitivity analysis. This section breaks down the big effects that changes
in key variables can have on our research results and final conclusions. Sensitivity analysis
is an important tool that helps us figure out how strong our models are and how reliable our
findings are when we have to deal with changing parameters. We carefully and methodically
change these variables and pay close attention to what happens as a result. This gives us
deep insights into how stable and universal our research results are.

One significant factor to consider is the time of data acquisition, as observations during the
day may yield different results compared to nighttime conditions, necessitating adjustments to
parameters. Additionally, the quality of the video, often indicated by a high data rate, directly af-
fects our analysis, requiring potential adaptations in parameters like 'Centroid_distance_threshold.’
Framerate, or the number of frames processed, influences our analysis by altering the distance
vessels travel between frames. This, in turn, may necessitate modifications to the centroid dis-
tance threshold value.

Furthermore, the confidence threshold parameter plays a pivotal role in balancing false pos-
itives and false negatives, with sensitivity to low-light conditions and dynamic environmental
factors being crucial. Surprisingly, diverse weather conditions, such as rain, appeared to have
a limited impact on our results during the second day of data collection.

These sensitivity analyses underscore the importance of considering various parameters and
conditions, ensuring the robustness and applicability of our research outcomes across differ-
ent contexts.



Conclusion

Finally, the goal of the thesis was to assess the feasibility of using video surveillance to identify
mismatches in AIS data. An object detection model was trained to detect vessels and compare
the results with AIS data. This chapter focuses on answering research questions and drawing
conclusions from the research. Additionally, the chapter concludes with recommendations for
future research in this area.

6.1. Answering Research Questions
This section answers the Main research question, for which an answer would be reached by
answering the following sub-research questions.

1. What are the current state-of-the-art methods and technologies for detecting and mitigating
instances of overlapping or spoofed AlS data in maritime environments?

» The Literature overview conducted earlier helped us determine the literature gap ’ the
lack of research in the application of video surveillance in the detection of overlapping
AIS data. This instigated to test of the usage of the object detection algorithm on video
surveillance’ This helped frame the basis for this research and set up the questions

» The Literature review in chapter 2 conducted as a part is this study helped determine the
current state-of-the-art methods and technologies that are being used or suggested to
determine the Quality of AIS data, in Object detection in general and in the specific case
of Inland Water Transport, and in anomaly detection of AIS data.

2. How can an algorithm be systematically selected and designed to effectively identify and
mitigate instances of overlapping or spoofed AlS data, considering factors such as accuracy,
real-time processing, scalability, and integration with video surveillance?

» This sub-research question is answered in chapter 4, where the methodology for the
project is from the Data collection, algorithm design process, data analysis, False Neg-
ative/positive Trade-offs, and Validation testing.

» The Process architecture is clearly described in 4.2

» The detailed process to set up and execute the project is mentioned in a Readme file
along with the other files in the Github Repository [49].

3. How accurate is the proposed object detection algorithm in identifying and localizing ships
from video surveillance in various maritime conditions and environments?

38
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The accuracy of the proposed object detection algorithm in identifying and localizing ships from
video surveillance in diverse maritime conditions and environments has been a central focus
of this study. Through extensive testing and analysis, it has been revealed that the algorithm
demonstrates a practical efficiency ranging from 75%, as measured by the ratio of detected
ships to the total number of ships within the video footage. The actual efficiency for each of the
videos is presented in the tables 5.1, 5.4, and 5.7. This accuracy has been achieved by care-
fully fine-tuning the algorithm’s parameters, effectively addressing the trade-off between false
positives and false negatives. However, it's important to acknowledge that these results were
attained under daylight conditions, which can influence the accuracy due to lighting variations.
Further investigations are needed to assess the algorithm’s performance under varying light-
ing, weather conditions, and diverse ship types. Despite these considerations, the algorithm’s
performance signals its potential to contribute significantly to ship detection and localization
tasks within maritime environments, offering a valuable tool for enhancing safety, security, and
operational efficiency.

4. What are the discrepancies and variations between the AIS data and the ship detections
obtained through the object detection algorithm, and how can these differences be quantified
and analyzed?

» The variations between the results of Object detection and AlS data for the three days
are run and the results are shown in the chapter 5.

» There proved to be clear deference in each of the three days between the matched and
Detected ships as shown in the tables 5.2,5.5, and 5.8 and the split between the data
are shown in the graphs 5.3, 5.5, and 5.7.

» The final results with the entries of the AIS data and the time of crossing of ships are
presented as tables in 5.3, 5.6 and 5.9.

5.Can combining video surveillance of ships with existing AlS data help spot and recognize
cases of overlapping or fake AlS information, and what difficulties and constraints might arise
from adopting this approach?

This sub-research question is answered more in detail in the discussion(5.2) part of the re-
sults chapter. The constraints that are currently applicable to the method employed are

* The constraint that might arise is localising the cause of the anomaly, which at least
currently isn’t possible.

+ Video footage can be affected by lighting, weather, and visibility conditions, potentially
leading to false positives or false negatives.

* Improving the overall accuracy of the object detection model.

In conclusion, the application of a machine learning model to enhance the detection of
anomalies and mismatches in data holds great promise. However, it is evident that for the
successful real-world implementation of this algorithm, there remain numerous unexplored
areas and compelling research avenues to be thoroughly investigated. These aspects will be
further discussed and explored in the future research section.
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6.2. Future Work

Future research in maritime object detection could extend beyond the current focus on object
detection and result comparison. One of the primary objectives could be to address the chal-
lenge of pinpointing the specific vessel responsible for anomalies. This challenge arises from
the complex and dynamic nature of maritime environments. Researchers may explore the de-
velopment of adaptive algorithms capable of dynamically adjusting detection thresholds and
parameters. These algorithms would consider factors such as changing illumination, varying
weather conditions, and atmospheric effects. By tailoring algorithms to specific scenarios en-
countered in inland water transport, researchers aim to ensure robust performance across a
wide range of conditions.

A critical aspect of future research is the continuous quest to enhance the accuracy of object
detection models. The target could be to achieve an accuracy rate exceeding 99%. Achieving
such precision is crucial for reliably identifying vessels and anomalies in complex maritime set-
tings. Researchers may explore various strategies, including fine-tuning model architectures,
optimizing hyperparameters, and employing larger and more diverse datasets. Rigorous test-
ing across different environmental settings will help identify areas for parameter optimization
and fine-tuning, ultimately leading to higher accuracy rates.

Additionally, researchers should explore innovative data sources, such as satellite imagery,
to enhance anomaly detection and improve data reliability. Research has already been done
regarding the merging of data sources as mentioned in section 2.1. This multi-source ap-
proach would enable the detection of 'dark vessels’ that may attempt to evade AIS tracking.
By cross-referencing satellite data with AIS broadcasts and video surveillance, researchers
could significantly enhance the comprehensiveness of vessel tracking.

Beyond inland water transport, object detection models find applications in diverse domains.
One promising area is offshore wind farm surveillance, where cameras placed on wind turbines
can identify vessels in offshore areas. This technology enhances the safety and security of
offshore operations.

Furthermore, object detection models can play a vital role in port security. Deploying these
models provides real-time insights into vessel traffic, improving port security measures. By
monitoring vessel movements and identifying potential anomalies or security threats, ports can
bolster their security infrastructure. Future research might focus on tailoring object detection
algorithms to meet the unique requirements of port environments, ensuring their effectiveness
in safeguarding critical infrastructure.

Access to vessel-specific information, such as the MMSI, presents an additional opportunity
to enhance object detection systems. This data can assist in localizing vessels and determin-
ing their time of crossing, adding a layer of precision to data comparison. In cases where
data mismatches occur, having access to ship-specific information enables the identification
of vessels that haven’t adhered to established AIS data standards. Future research avenues
may explore efficient methods for retrieving and integrating this vessel-specific data into object
detection processes.

In conclusion, the future of research in maritime object detection holds exciting possibilities.
By developing adaptive algorithms, improving model accuracy, leveraging innovative data
sources, exploring new applications, and utilizing vessel-specific information, researchers can
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significantly advance maritime safety, security, and operational efficiency. These advance-
ments will not only benefit inland water transport but also expand the applications of AIS data
analysis in various domains, ultimately contributing to safer and more secure maritime opera-
tions.
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Code

import cv2

import numpy as np
import torch

import json

import pandas as pd
import sys

import datetime

# Get JSON file in argument of the script
json_file = sys.argv[1]

video_file = sys.argv[2]

start_time = sys.argv[3]

# Initialize a dictionary that saves previous ship's centroids, Direction and counted statu
previous_ships = []

def calculate_centroid(box):
x1l, y1, x2, y2 = box
centroid_x = (x1 + x2) / 2
centroid_y = (y1 + y2) / 2
return (centroid_x, centroid_y)

def calculate_distance(centroidl, centroid2):
xl, y1 = centroidl
X2, y2 = centroid2
return np.sqrt((x2 - x1)**2 + (y2 - yl)*x2)

# Load YOLO and import my weights
model=torch.hub.load('ultralytics/yolov5', 'custom',path="C:/Users/surya/yolovs/best.pt")

# Load video
cap = cv2.VideoCapture(video_file)

# Set minimum confidence threshold for detections
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conf_thresh = 0.75

# Reference line for counting for right to left direction
ref_line = 1000

# Define centroid distance threshold for ship matching
centroid_distance_threshold = 25

#initialize a parameter for the number of frames to skip
skip_frames = 20

#Initialize counts
left_to_right_count
right_to_left_count

o
o O

#Initialize frame count

count_frames = 0

#print total number of frames in the video

print ("Total number of frames: " + str(cap.get(cv2.CAP_PROP_FRAME_COUNT)))

FPS = cap.get(cv2.CAP_PROP_FPS)

while True:
# Read frame from video
ret, frame = cap.read()

# Stop if end of video or if its a blank frame
if frame is None:
break

# Count the frame number
frame_number = int(cap.get(cv2.CAP_PROP_POS_FRAMES))

# process every other frame
if frame_number % skip_frames != O:
continue

# Count the frames that are processed
count_frames = count_frames + 1

# Pass frame through YOLOv5s model
detections = model(frame)

# get detections with confidence higher than conf_thresh
detections = detections.pred[0] [detections.pred[0][:, 4] > conf_thresh]

# loop through detections
for detection in detections:
# get confidence score and class index
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confidence = detection[4]
class_index = int(detection[5])

# chech if the confidence is higher than the threshold
if confidence > conf_thresh:
# get bounding box coordinates
xl, yl, x2, y2 = detection[:4].detach() .numpy().astype(np.int32)

#centroid of the bounding box
centroid_x,centroid_y = calculate_centroid((x1, y1, x2, y2))

# Check if the current centroid is near any previous centroid only
then consider it as the same ship
matched_ship = None
previous_centroid = None
for ship in previous_ships:
previous_centroid = ship["centroid"]
if isinstance(previous_centroid, np.ndarray):
for centroid in previous_centroid:
distance = calculate_distance(centroid, (centroid_x, centroid_y))
if distance < centroid_distance_threshold:
previous_centroid = centroid
matched_ship = ship
break
else:
distance=calculate_distance(previous_centroid, (centroid_x,centroid_y))
if distance < centroid_distance_threshold:
matched_ship = ship
break

# Also check if the direction is not assigned and save the direction based
on the previous centroid centre point, even if the difference is small
if matched_ship is not None and matched_ship["direction"] is None:
prev_centroid_x, prev_centroid_y = previous_centroid
# print("Previous centroid: " + str(previous_centroid) + "\n")
if centroid_x > prev_centroid_x and centroid_y > prev_centroid_y:
matched_ship["direction"] = "Left to Right"
print("Direction assigned: Left to Right for "+str(matched_ship))
#print co-ordinates of the ship
# print("Ship co-ordinates: " + str((x1l, y1, x2, y2)) + "\n")

elif centroid_x < prev_centroid_x and centroid_y < prev_centroid_y:
matched_ship["direction"] = "Right to Left"
print("Direction assigned: Right to Left for " + str(matched_ship))
# print("Ship co-ordinates: " + str((xl, y1, x2, y2)) + "\n")

# Update the centroid of the matched ship if it's relatively close to
the previous centroid
if matched_ship is not None:
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if isinstance(previous_centroid, np.ndarray):
for centroid in previous_centroid:
if calculate_distance(centroid, (centroid_x, centroid_y))
< centroid_distance_threshold:

matched_ship["centroid"] = (centroid_x, centroid_y)
break
else:
matched_ship["centroid"] = (centroid_x, centroid_y)

# If no match found, create a new ship
if matched_ship is None:
matched_ship = {"centroid": (centroid_x, centroid_y), "direction":
None, "counted": False}
# Print values of the new ship
print ("New ship found: " + str(matched_ship) + "+++++++++++++\n")
previous_ships.append(matched_ship)

#Check if the box border is crossing the line and
cross check with the direction of the ship
if matched_ship["direction"] == "Right to Left" and x1 < ref_line
and not matched_ship["counted"]:
# print values of the matched ship
right_to_left_count += 1
# print("Coordinates of the matched ship: " + str((x1, y1, x2, y2)))
matched_ship["counted"] = True
print("Ship crossed the line from Right to Left: " + str(matched_ship))
# Also based on FPS and current frame number, note the time of
crossing the line
match_time = (frame_number / cap.get(cv2.CAP_PROP_FPS))
matched_ship["counted_frame"] = frame_number
# print("Time of crossing the line: " + str(match_time) + " seconds\n")
matched_ship["time"] = match_time

print("Ship crossed the line from Left to Right: " + str(matched_ship))

elif matched_ship["direction"] == "Left to Right" and x2 > ref_line
and not matched_ship["counted"]:
# print values of the matched ship
left_to_right_count += 1
#print coordinates of the matched ship in the frame
# print("Coordinates of the matched ship: " + str((x1, y1, x2, y2)))
matched_ship["counted"] = True
# Also based on FPS and current frame number, note the time of
crossing the line
match_time = (frame_number / cap.get(cv2.CAP_PROP_FPS))
matched_ship["counted_frame"] = frame_number
# print("Time of crossing the line: " + str(match_time) + " seconds\n")
matched_ship["time"] = match_time
print("Ship crossed the line from Left to Right: " + str(matched_ship)\)
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# Draw bounding box to fit the detected object
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)

# Draw centroids for ships

cv2.circle(frame, (int(centroid_x), int(centroid_y)), 5, (0, 255, 0), -1)

# Draw reference line for counting
cv2.line(frame, (ref_line, 0), (ref_line, 720), (0, 0, 255), 2)

# Display counts on frame
cv2.putText (frame, "Left to Right: " + str(left_to_right_count), (10, 50)

, cv2.FONT_HERSHEY SIMPLEX, 1, (0, 255, 255), 2)

cv2.putText (frame, "Right to Left: " + str(right_to_left_count), (10, 100)

, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)

# Display frame
cv2.imshow("YOLOv5", frame)

# Press Q on keyboard to exit
if cv2.waitKey(1) & OxFF == ord("q"):
break

# When everything done, release the video capture object

cap.release()

# Closes all the frames
cv2.destroyAllWindows ()

# Print counts

print("Left to Right: " + str(left_to_right_count))

print ("Right to Left: " + str(right_to_left_count))

print ("Total number of frames: " + str(count_frames) + "\n\n")

# Print total number of ships which is the sum of left to right and right to left
print ("Total number of ships: " + str(left_to_right_count + right_to_left_count))

# based on the start time of the video, calculate the time of

crossing the line for each ship

start_time = datetime.datetime.strptime(start_time, "%Y-Ym-%d %H:%M:%S")
for ship in previous_ships:

if ship["counted"]:
# Find the time of crossing the line and save as string in the ship
dictionary in format YYYY-MM-DD HH:MM:SS
time_of_crossing = start_time + datetime.timedelta(seconds=ship["time"])
ship["time"] = time_of_crossing.strftime ("%Y-Ym-%d %H:%M:%S")
print(ship)
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# Load JSON file
with open(json_file) as f:
json_data = json.load(f)

# Convert JSON to DataFrame
df = pd.DataFrame(json_data)

# Convert timestamp to datetime
df ['timeLastUpdate'] = pd.to_datetime(df['timelLastUpdate'], unit='ms"')

# Sort DataFrame by timestamp in ascending order
df = df.sort_values('timeLastUpdate')

# add a column to the DataFrame to save the matched ship(yes/no)
df ["Matched ship"] = ""

# create a column to the dataframe to save the number of matches per range or timestamp
df ["Number of matches"] = ""

# assign O to all the entries in the column

df ["Number of matches"] = 0

# make the varable type as int

df ["Number of matches"] = df ["Number of matches"].astype(int)

# add a column to save the timelasupdate as a range of values
df ["'timeLastUpdate': ['first', 'last']"] = ""

# if multiple entries with the same mmsi, keep one entry with the timestamp value being
the range of the first and last timestamp, enter this value in the new column
# After a range is obtained for a ship, delete all other entries with the same mmsi
for index, row in df.iterrows():
if df [df ["mmsi"] == row["mmsi"]].shape[0] > 1:
df.at[index, "'timeLastUpdate': ['first', 'last']"] = {"first": df[df["mmsi"]
== row["mmsi"]] ["timeLastUpdate"].iloc[0], "last": df[df["mmsi"] ==
row["mmsi"]] ["timeLastUpdate"].iloc[-1]1}
df .drop(df [df ["mmsi"] == row["mmsi"]].index[1:], inplace=True)

# Try to mach the previous_ships list by comparing the time of crossing the line
with the timelLastUpdate
for ship in previous_ships:
for index, row in df.iterrows():
if ship["counted"]:
# convert timelLastUpdate to datetime
timelLastUpdate = row["timeLastUpdate"]
# Convert time of crossing the line to datetime
time_of_crossing = datetime.datetime.strptime(ship["time"],
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"%Y-%m-%d %H:%M:%S")
# print("Time of crossing the line: " + str(time_of_crossing) +
" Time Last Update " + str(timeLastUpdate) + "\n")
# if the time last update is a range of values, check if the time of
crossing the line is in that range
if isinstance(row["'timeLastUpdate': ['first', 'last']"], dict):
# if time of crossing the line is in the range of timelastUpdate,
then match the ship
if time_of_crossing >= row["'timeLastUpdate': ['first', 'last']"]
["first"] and time_of_crossing <= row["'timeLastUpdate':
['first', 'last']"]["last"]:
df .at[index, "Matched ship"] = "Yes"
# increase the number of matches for that range
df.at[index, "Number of matches"] = df.at[index, "Number of
matches"] + 1
print ("Matched ship: " + str(ship) + " with " + str(row["mmsi"]))
break
# if the time last update is not a range of values, check if the time
of crossing the line is within 2 minutes of the timeLastUpdate
else:
if time_of_crossing >= timeLastUpdate - datetime.timedelta(minutes=2)
and time_of_crossing <= timelLastUpdate + datetime.timedelta(minutes=2):
df .at[index, "Matched ship"] = "Yes"
# increase the number of matches for that range
df .at[index, "Number of matches"] = df.at[index,
"Number of matches"] + 1
print ("Matched ship: " + str(ship) + " with " + str(row["mmsi"]))
break

# Also print the sum of the number of matches column in the end of the column
print ("Total number of matches: " + str(df["Number of matches"].sum()) + "\n\n")

# Save only timelastUpdate, mmsi column and if the ship is matched to that entry

into excel file from the DataFrame and print it to excel and save it in the same folder as
df .to_excel ("AIS_0608_data.x1lsx", columns=["timeLastUpdate","'timeLastUpdate':

['first', 'last']", "mmsi", "Matched ship", "Number of matches"], index=False)

import matplotlib.pyplot as plt

# plot a bargraph of the number of matches per timelasupdate
df .plot.bar (x="mmsi", y="Number of matches", rot=90)
#decrease the size of the label on x axis
plt.xticks(fontsize=b)

#make the label of y axis whole numbers instead of decimals
plt.yticks(np.arange(0, 20, 1))

plt.show()

#save the plot as a png file

plt.savefig("Number of matches per mmsi.png")



Design Space Exploration

. length Confidence | Centroid | Frames | Ref. Actual Algoritm

Video (mins) FPS threshold threshold | skipped | line count count
L-R|R-L|L-R|R-L
Snippet 1 | 00:58 | 30 60 67 15 500 | 2 1 2 1
Snippet2 | 15:00 | 30 75 50 15 500 | 4 2 4 1
Snippet2 | 15:00 | 30 75 35 15 500 | 4 2 4 1
Snippet2 | 15:00 | 30 75 30 15 500 | 4 2 4 1
Snippet 2 | 15:00 | 30 70 25 15 500 | 4 2 8 3
Snippet 2 | 15:00 | 30 72 26 15 500 | 4 2 8 1
Snippet2 | 15:00 | 30 75 67 15 500 | 4 2 6 1
Snippet2 | 15:00 | 30 75 15 15 500 | 4 2 6 1
Snippet2 | 15:00 | 30 70 25 15 500 | 4 2 8 3
Snippet2 | 15:00 | 30 78 25 15 500 | 4 2 4 0
Snippet2 | 15:00 | 30 78 22 15 500 | 4 2 5 0
Snippet 2 | 15:00 | 30 78 20 15 500 | 4 2 5 1
Snippet 2 | 15:00 | 30 76 21 15 500 | 4 2 5 1
Snippet 3 | 15:00 | 30 76 25 15 850 |1 3 4 2
snippet 3 | 15:00 | 30 75 25 15 850 | 1 3 3 4
shippet 3 | 15:00 | 30 75 30 15 850 | 1 3 3 3
snippet 3 | 15:00 | 30 75 45 15 850 | 1 3 3 2
shippet 3 | 15:00 | 30 60 30 15 850 | 1 3 3 2
Snippet 3 | 15:00 | 30 80 30 15 850 | 1 3 3 3
Final 6 hour | 30 78 25 15 850 | 49 35 | 34 22
Final 6 hour | 30 75 25 15 850 | 49 35 |33 21
Table C.1: Design Space Exploration
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