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Abstract-Heimovaara et al. (2015) have developed a solute transport model (STM) so as to paint a dire portrait
of  the leachate  generation and transport  in  the  Braambergen landfill  (located in the western portion of the
Netherlands) with the ultimate goal of quantifying the chemical composition of the landfill's overall emissions. In
fact, the model simulates the Chloride  (Cl-) concentration in the outflowing from the landfill leachate and the
mass of Cl- that remains in the landfill  by using an ordinary differential equation  (ODE) that describes dual-
porosity,  mobile-immobile  solute  transport  phenomena.  This  environmental  model,  developed  in  MATLAB,
simulates these state variables by solving the aforementioned ODE by means of the well-known ode45 solver in
MATLAB. In spite of that, the computational expense of the ode45 solver does not seem to be identical (~20-30
seconds of calculations). As is widely known, various  ODE solvers  usually  require different computing times.
Namely, the selection of the method for solving such insightful equations most often affects the time efficiency of
ODE-based models. In the light of these considerations, this paper exploits the robustness of several explicit and
implicit Runge-Kutta  methods  to solve the STM's ODE in an effort to make this model more cost-effective.  By
virtue of the results, the fourth order explicit Runge-Kutta method along with the fourth and sixth order implicit
Runge-Kutta methods have successfully managed to drastically reduce the computational cost of the STM (~4-9
seconds of calculations). 

Keywords-STM, ODE, Cl-, ode45, Explicit, Implicit, Runge-Kutta

1. Introduction and preliminaries

Computerized forecasting models utilize the predictive power of ODEs to simulate state variables that portray
the dynamics of natural systems. In other words, making it simpler and more comprehensive, the model states
delineate the properties of a real-world system that evolve over time and they are commonly expressed in the
form of ODEs as follows (Gill 1951; Saito and Mitsui, 1996; Kloeden et al. 1999; Butcher 2007):

 ∂ y
∂t

= f ( y (t) ,u(t ) , t )                                                                                                                                                                     (1)

Equation  (1) is  the classical  definition of a first  order ODE,  where  ∂y(t)/∂t represents  the rate at  which  y
changes over time t, y(t) ∈ ℝn illustrates the state of the system at time t, n is the number of states, u(t) ∈ ℝm is the
input vector at time t (such as model parameters, model forcing data, etc.), m is the number of inputs , and finally,
the function f contains the mathematical rules that determine how y varies over time. 

In this regards, Runge-Kutta (RK) methods are attracting widespread interest due to their ability to powerfully
solve ODEs.  In  particular,  the past  decade has seen a  renewed importance in improving the accuracy  or the
flexibility  (to accommodate problems of  diverse  nature) of  the RK  methods (Kaar 2006;  MackCormack 2011;
Durran et al. 2012; Haas 2013; Jonson 2013). Among existing RK methods, the explicit RK (ERK) and the implicit
RK (IRK)  methods are widely used for solving non-stiff and stiff ODEs,  respectively1  (Kwizak and Robert, 1971;
Alexander 1977; Hairer et al. 1993; Verner 1996; Ascher et al. 1997; Hairer and Warrer, 2010). As a general rule,
IRK methods perform better for large time steps, by contrast, ERK methods are more effective by using small time
steps, which is however regarded a time-consuming process.  It is also broadly recognized that IRK methods are
most often quite problematic for solving non-linear ODEs (Babolian and Mordad, 2011; Pulliam 2011).  Actually,
the fundamental problem in the implementation of IRK methods lies in the hardness of  solving  implicitly  non-
linear system of equations. 

1

1Stiff ODEs are the equations that include a term that decays exponentially to zero as time increases.
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 On another note, the advection-dispersion equation (ADE) for a single porosity porous medium is often used to
delineate the transport of solutes. Nevertheless, there have been several dissenters against the ADE model (Hawsa
et al., 2005; Martinez  et al., 2010; Russo  et al.,  1989; Hu et al., 2014) that is most of the times inappropriate in
describing transport in heterogeneous and fractured media.  In the STM, Heimovaara,  et al.  (2015) selected to
describe the transport  of pollutants through the Wieringermeer  landfill  by making use of an alternative time
based dual porosity model (DPM) combined with the mobile-immobile (MIM) principle. In a few words, the DPM-
MIM concept assumes the existence of mobile and immobile categories of water (i.e. leachate) in the landfill. With
other words,  it is conceptualized that the mobile water flows easily out of the landfill  whereas the stationary
water is continually accumulated inside the landfill body.

In a similar manner, it can be seen that the chemical compounds that are present in the landfill are dissolved
either in the mobile or in the immobile water content of the landfill. It can, therefore, be posited that a portion of
these toxic  particles  either  remains in  the landfill  or  escapes from there.  Under these assumptions,  the  STM
exploits  interdependent equations  as  a  means  of  predicting  a) the Cl-  concentration dissolved  in  the  mobile

contaminated water that leaves the landfill (state) and b) the Cl- mass present in the motionless landfill water that
is stored within the landfill (state). Given all these points, these model states are estimated with the way indicated
below. First of all, the joint mobile-immobile mass of Cl- is estimated using the following ODE:

      

 
∂ F (MM ,M ΙM)

∂ t
=−k ex ⋅ℋ⋅F (M M ,M ΙM)                                                                                                            (2)

  
In which, M

M 
(kg) represents the mass of Cl- flowing out of the landfill and M

IM
 (kg) is the stored mass of Cl- in

the landfill.  Moreover,  ℌ  is  a non-linear function that propagates  M
M

 and  M
IM 

forward in time and k
ex

 (input

parameter) illustrates the interaction between the mobile and immobile Cl - particles. Furthermore, F is a function

that describes the relationship between the interdependent state variables M
M

 and  M
IM

.  Thereafter, the mobile

concentration of Cl- [C
M 

(mg/L)] is obtained with ease as follows: 

 CM =
M M

V M

                                                                                                                                                 (3)

In equation (2),  V
M

 (m3/day)  and V
ΙM

 (m3/day) are the mobile and immobile volumes of water in the landfill

that are always assumed to be known. The derivation of equation (2) is included in appendix A of this paper.
Another important thing to point out is that the amount of leachate which is produced in the  Braambergen

landfill and then escapes from there is collected from a drainage system that is installed across the landfill base.
Thereafter, the leachate from this drainage well is daily pumped out from two pump pits installed in the north and
south part of the landfill. In addition, the Cl- concentration (mg/L) present in leachate samples (obtained from the
north and south part of the landfill) was measured twice or thrice per month between the period of 1 August 2012
and 1 May 2015.  Namely,  this  means that  there is  available  quantitative  information  regarding the modeled
mobile concentration of Cl- (C

M 
).

In this study, in the STM, the estimation of M
M 

and M
IM

 is achieved by solving equation (2) with the use of a) the

fourth order  ERK method  (ERK4),  b)  the second order  IRK  (IRK2), c)  the implicit  two-stage Gauss-Legendre
method of order four  (GL4), and finally,  d)  the implicit three-stage Gauss-Legendre method of order six  (GL6).
After that, the remaining state of interest C

M
 is calculated according to equation (3). 

With  all  these  in  mind,  it  can  be  said  that  the intention of  this  research is  primarily  to  implement  the

aforementioned  ERK  and  IRK  methods  for  the  estimation  of C
M

 and  M
IM  

with  the  STM.  Secondly,  and  more

importantly, the  results obtained by  these  RK methods are  compared with  each  other  and  with  the  results
provided by the reference method (ode45 solver) with regard to their efficiency to minimize the computational
cost of this environmental model. Moreover, the current paper demonstrates the feasibility of solving non-linear
ODEs (such as equation (2)) using IRK schemes. In conjunction with the above considerations, the estimates of the
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mobile  concentration of Cl- (C
M
)

 
are compared with available observations so as to assess the reliability of the

solutions provided by the implemented methods. 
The remainder of this paper is structured as follows. The second section contains a concise description of the

RK methods. Then, the third section detailedly outlines the  construction and implementation of the previously
mentioned RK schemes for the estimation of the STM state variables. Thereafter, the fourth section explains the
results of this research, and finally, the conclusions are drawn in the fifth section.

2. Background

2.1. Introduction to RK methods

As  alluded  to  previously,  the  RK  methods  are  used  to  solve  ODEs that  are  given  by  equation  (1)  by
preconditioning that y

0
 =  y(t

0
), where

 
y

0  
illustrates the solution of  y at the initial time t

0
. As a matter of fact,  the

solution of  equation (1) is accomplishable by means of ERK and IRK methods  as follows  (Gill 1951; Saito and
Mitsui, 1996; Kloeden et al. 1999):

   yn+1 = yn + dt ⋅∑
i=1

s

bi⋅k i                                                                                                                                                                (4)

In which, y
n+1 

is the RK approximation of y(t
n+1

) that is computed based on the present value y
n 

and the weighted

average of the k
i
·b

i
 increments, multiplied by the size of the time interval,  dt. In ERK methods, the k values from

equation (4) are calculated as follows:

k1 = f (t n , yn)                                                                                                                                                                                      (5)

k 2= f (t n + c2⋅dt , yn + dt⋅(a21⋅k 1))                                                                                                                                            (6)

Likewise, the rest of k values are obtained as such:

k s= f (t n + c s⋅dt , yn + dt ⋅(as1⋅k 1 + as2⋅k 2 + …+ as , s−1⋅k s−1))                                                                                         (7)

In equation (7), the integer s denotes the number of stages, the coefficient a
ij
 (for 1 ≤ j < i ≤ s) is known as the RK

matrix, and b
i
 (for i = 1, 2, ..., s) and c

i 
(for i = 2, 3, ..., s) are known as the weights and the nodes, respectively. These

coefficients are rearranged in the so-called Butcher tableau (Butcher 2007). In ERK methods, the Butcher tableau
is given as shown in Table 1:

   Table 1
   Butcher tableau in ERK methods.

0

   c
2

a
21

   c
3

a
31

a
32

⋮ ⋮ ⋮ ⋱

   c
s

a
s1

a
s2

... a
s,s-1

b
1

b
2

... b
s-1

b
s

In IRK methods, the k values are computed according to the following equation:
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k i = f (t n+ci⋅dt , yn+dt⋅∑
j=1

s

a ij⋅k j) , j=1, ... , s                                                                                                                        (8)

Where the Butcher tableau in the IRK methods is given as indicated in Table 2:

  Table 2
  Butcher tableau in IRK methods.

0 a
11

a
12

... a
1s

   c
2

a
21

a
22

... a
2s

   c
3

a
31

a
32

... a
3s

⋮ ⋮ ⋮ ⋱ ⋮

   c
s

a
s1

a
s2

... a
ss

b
1

b
2

... b
s

By comparing Table  (1)  and Table  (2),  one sees  immediately  that  the Butcher tableau is  constructed in a
different manner in the ERK and IRK methods.  Actually,  the coefficient matrix  a

ij
 of  an ERK method is lower

triangular. On the contrary, the coefficient matrix a
ij
 of an IRK method is clearly not triangular. This discrepancy

yields  different  solutions  for  the  k values  shown  in  equations  (7)  and (8),  which  in  turn  leads  to  different
solutions of the ODEs expressed by equation (1).

       2.1.1. The explicit fourth order RK method

 In the ERK4 method, equation (1) is solved as follows:

yn+1 = yn +
dt
6

⋅(k 1 + 2⋅k 2 + 2⋅k 3 + k 4)                                                                                                                                  (9)

With, t
n+1

 = t
n
 + dt, and k

1
, … ,k

4 
are

 
defined as shown below:

k1 = f (t n , yn)                                                                                                                                                                                    (10)

k2 = f (t n +
dt
2

, yn +
dt
2

⋅k 1)                                                                                                                   (11)

k 3 = f (t n +
dt
2

, yn +
dt
2

⋅k2)                                                                                                                    (12)

k 4 = f (t n + dt , yn + dt ⋅k 3)                                                                                                                      (13)

Here,  y
n+1  

is the ERK4 approximation of  y(t
n+1

) and is calculated as the sum of the current value  y
n 

and the

weighted average of the  k
1
, … ,k

4
 increments, where each increment is the product of the time interval, dt, and an

estimated rate of change that is expressed by function f on the right-hand side of the ODE. More analytically, these
k values are defined as such:

a) k
1
 is the slope at the beginning of the time interval dt, using  y

n
 (Euler's method).

b) k
2
 is the increment based on the slope at the midpoint of the interval dt, using yn +

dt
2

⋅k 1 .

c) k
3
 is the increment based on the slope at the midpoint, using yn +

dt
2

⋅k 2 .

4
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d) k
4
 is an estimate of the slope at the endpoint, using yn + dt ⋅k3 .

      2.1.2. The implicit second order RK method

The IRK2 method is based on the trapezoidal rule and its Butcher tableau is defined as presented in Table 3:
  
  Table 3
  Butcher tableau in the IRK2 method.

0 0 0

  1 1
2

1
2

1
2

1
2

In this case, equation (1) is solved according to: 

yn+1 = yn +
1
2

⋅dt ⋅k 1 +
1
2

⋅dt⋅k 2                                                                                                                                              (14)

In addition, k
1
 and k

2
 are given by:

k1 = f (t n , yn)                                                                                                                                                                                    (15)

k 2 = f (t n + dt , yn +
1
2

⋅dt ⋅k 1 +
1
2

⋅dt ⋅k 2) = f (t n + dt , yn+1)                                                                   (16)

                                                   yn+1             

      2.1.3. Gauss-Legendre methods

A particular class of IRK methods is the  Gauss-Legendre  (GL) method that is based on the GL quadrature. A
review of the recent literature suggests that there are three GL methods  (Haas 2013; Jones 2013).  Firstly, the
implicit midpoint rule that is the one-stage GL method. Secondly, the GL4 method that is a two-stage method, and
finally, the GL6 method that is known to be a three-stage GL method.  As  it is known up to now, there are GL
schemes up to order six. The construction of GL methods higher than 6 is nearly infeasible owing to the zeros of
Legendre polynomials of order 4 and above that are unduly complicated. 

                2.1.3.1. Fourth order Gauss-Legendre method

The GL4 has Butcher tableau of the next form:

  Table 4 
  Butcher tableau in the GL4 method.

1
2

−
1
6

⋅√3 1
4

1
4

−
1
6

⋅√3

 1
2

+
1
6

⋅√3 1
4

+
1
6

⋅√3 1
4

1
2

1
2

5
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With no doubt,  it  can be asserted that  the Butcher tableau above is  not diagonal.  Consequently,  it  can be
deduced that the k values are not independent of each other. On account of this fact, the GL4 method is considered
an  IRK method, or as it is frequently called a collocation method. In this GL method, the  k values  are given by
equations (17) and (18).

k 1 = f (t n + (
1
2

−
1
6

⋅√3)⋅dt , yn +
1
4

⋅dt⋅k 1 + (
1
4

−
1
6

⋅√3)⋅dt⋅k2)                                                        (17)

 k 2 = f (t n + (
1
2

+
1
6

⋅√3)⋅dt , yn + (
1
4

+
1
6

⋅√3)⋅dt⋅k1 +
1
4

⋅dt⋅k2)                                                        (18)

It is generally agreed that the GL4 method is fairly difficult due to the fact that the k values from equations (17)
and (18)  are dependent of each other. This also implies that it is only attainable to estimate these  k values by
means of solving equations  (17)  and (18)  with some iterative method.  In doing so, an initial guess for each  k
should be assumed. Then, this initial guess is replaced into equations (17) and (18) in order to estimate the next k
values. This operation is performed iteratively with the purpose of obtaining convergent k values. If this condition
is satisfied, the solution of equation (1) is then obtained according to the following equation:

yn+1 = yn +
1
2

⋅dt ⋅k 1 +
1
2

⋅dt⋅k 2                                                                                                                                             (19)

                2.1.3.2. Sixth order Gauss-Legendre method

 The butcher tableau of this method is illustrated in Table 5:

  Table 5
  Butcher tableau in the GL6 method.

1
2

−
1

10
⋅√15 5

36
2
9

−
1

15
⋅√15 5

36
−

1
30

⋅√15

1
2

5
36

+
1

24
⋅√15 2

9
5

36
−

1
24

⋅√15

1
2

+
1

10
⋅√15 5

36
+

1
30

⋅√15 2
9

+
1

15
⋅√15 5

36

5
18

4
9

5
18

Following this, the k values from the GL6 method are found as follows: 

k 1 = f (t n + (
1
2

−
1

10
⋅√15)⋅dt , yn +

5
36

⋅dt ⋅k 1 + (
2
9

−
1

15
⋅√15)⋅dt ⋅k 2 + (

5
36

−
1

30
⋅√15)⋅dt⋅k 3)      (20)

k 2 = f (t n +
1
2

⋅dt , yn + (
5

36
+

1
24

⋅√15)⋅dt ⋅k 1 +
2
9

⋅dt⋅k2 + (
5

36
−

1
24

⋅√15)⋅dt⋅k3)                           (21)

k 3 = f (t n + (
1
2

+
1

10
⋅√15)⋅dt , yn + (

5
36

+
1
30

⋅√15)⋅dt⋅k1 + (
2
9

+
1

15
⋅√15)⋅dt ⋅k 2 +

5
36

⋅dt⋅k3)      (22)

In the GL6 method, the k values are estimated similarly to the GL4 method using the afore-described iterative
method. Provided that, equation (23) illustrates the GL6 solution of the ODE given by equation (1).

6
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yn+1 = yn +
5

18
⋅dt⋅k1 +

4
9

⋅dt⋅k2 +
5

18
⋅dt⋅k 3                                                                                       (23)

3. Methodology

 This section serves as a window to an understanding of how the ERK4, IRK2, GL4 and GL6 methods  are used to
estimate the STM states C

M
 and M

IM
. Before explaining the implementation of these methods it is worth mentioning

that the sparse command in MATLAB has been applied to the matrix ℌ from equation (2). By doing so, any zero
elements from this matrix are squeezed out resulting in less memory consumption (Shampine and Reichelt, 1997).

3.1. Implementation of ERK4

The  k values from the ERK4 scheme are readily calculated without the need to use any iterative method for
estimating them. In consequence, this fact renders  very easy the process of estimating  C

M
 and M

IM
. Under these

considerations, the computation of C
M

 and M
IM

 using the ERK4 method is detailedly described in Algorithm 1. 

3.2. Implementation of IRK2

The implementation of the IRK2 method is grounded on the following simplifying considerations. First of all,
the solution of equation (2) is written in a form similar to equation (14) (from the IRK2 scheme) as such:

F (M Mn+1
,M ΙMn+1

) = F (M Mn
,M ΙMn

) +
1
2

⋅dt⋅k1 +
1
2

⋅dt⋅k 2                                                                                                  (24)

In what follows, the k
1
 and k

2 
values are computed by substituting equations (15) and (16) into equation (2) as

such:

k 1 =− dt⋅k ex⋅ℋ⋅F (M M n
, M ΙMn

)                                                                                                                 (25)

k 2 =− dt⋅k ex⋅ℋ⋅F (M M n+1
,M ΙM n+1

)                                                                                                             (26)

Then, the insertion of equations (25) and (26) into equation (24) results in:

F (M Mn+1
,M ΙMn+1

) = F (M Mn
,M ΙMn

) +
1
2

⋅(−dt⋅k ex⋅ℋ⋅F (M Mn
,M ΙMn

)) +
1
2

⋅(− dt⋅kex⋅ℋ⋅F (MM n+1
, MΙM n+1

))  

   

F (M Mn+1
,M ΙMn+1

) =

1 −
1
2

⋅dt⋅k ex⋅ℋ

1 +
1
2

⋅dt ⋅k ex⋅ℋ
⋅F (M Mn

,M ΙM n
)                                                                                  (27)

Here, equation  (27)  represents  the analytical IRK2 solution of equation  (2).  In this manner,  M
M  

and  M
IM  

are

obtained from equation (27) and C
M

 
 
is then calculated according to equation (3).

3.3. Implementation of GL4

In the GL4 method, the model states are calculated by using an iterative technique for estimating the k
1
 and k

2

values as told above. The current study opted for the notorious Newton-Raphson method to calculate iteratively
the  k

1
 and  k

2   
values. In the approach presented here, an initial guess for  k

1
 and  k

2
 at time  t

n
 is obtained with

Euler’s method as such:

7
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k 1n
= f (t n , F (M M n

, M ΙMn
))                                                                                                                          (28)

k 2n
= f (t n , F (M M n

, M ΙMn
))                                                                                                                          (29)

 Thereafter, the computation of  k
1
 and k

2
 values is attainable by writting equations (17) and (18) as follows:

k 1 = f (t n + (
1
2

−
1
6

⋅√3)⋅dt , yn +
1
4

⋅dt⋅k 1 + (
1
4

−
1
6

⋅√3)⋅dt⋅k2) = f 1(k1 ,k2)                                      (30)

                                               f 1(k1 ,k 2)

k 2 = f (t n + (
1
2

+
1
6

⋅√3)⋅dt , yn + (
1
4

+
1
6

⋅√3)⋅dt⋅k1 +
1
4

⋅dt⋅k2) = f 2(k 1 , k2)                                      (31)

                                                        f 2(k1 , k 2)

Then, equations (30) and (31) are defined as such:

F 1(k1 ,k2) =k1 − f 1(k 1 ,k 2) =0                                                                                                                                                    (32)

F 2(k1 ,k2) =k2 − f 2(k 1 ,k 2) =0                                                                                                                                                    (33)

The k
1
 and k

2
 values are obtained by solving equations (32) and (33). In the Newton-Raphson method, this is

achieved according to:

k 1ℓ+1
= k1ℓ

−
F 1(k1 ,k 2)

F ' 1(k1 ,k2)
                                                                                                                                                               (34)

k 2ℓ+1
= k2ℓ

−
F 2(k1 ,k 2)

F ' 2(k1 ,k2)
                                                                                                                                                               (35)

Equations (34) and (35) are iteratively computed for ℓ = 1, … ,L number of iterations, at every time step, until
the difference between subsequent k

1
 and k

2
 values are within some pre-specified error tolerance. The derivative

terms in equations (34) and (35) are computed by using the complex-step derivative approach as indicated below
(Martins et al. 2003):

F '1(k 1 ,k 2) = imag(
F1(k 1 +i⋅h , k 2 +i⋅h)

h
)                                                                                                                          (36)

F '2(k 1 ,k 2) = imag(
F2(k 1 +i⋅h , k 2 +i⋅h)

h
)                                                                                                                          (37)

Here, i=√−1 that represents a pure imaginary step and h is a real number that is usually set to very small

values; i.e.  h ≃ eps. After the convergence of k
1
 and k

2 
values, M

M  
and M

IM  
are computed at every new time step t

n+1

as follows:

8
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 F (M Mn+1
,M ΙMn+1

) = F (M Mn
,M ΙMn

) +
1
2

⋅dt⋅k1 +
1
2

⋅dt⋅k 2                                                                                                 (38)

Notice that equation  (38)  illustrates the GL4 solution of equation  (2).  Accordingly,  it is easy to estimate  C
M

using
 
equation (3).  The  afore-described implementation  of  the  GL4 method  is  more  rigorously  illustrated in

Algorithm 3.

Algorithm 1
Implementation of the ERK4 method for the calculation of the STM states.

Step 1: Set the time interval, dt.

Step 2: Set M M0
=M M(t 0) and M ΙM0

=M ΙM(t 0).

-FOR t
n
 = 1, 2, ...

Step 3: Compute k
1
, k

2
, k

3
 and k

4  
according to equations (10), (11), (12) and (13), respectively.

Step 4: Update the solution of equation (2) using equation (9) and obtain the M
M 

and M
IM 

estimates.

Step 5: Given that V
M  

is known calculate C
M

 by making use of equation (3). 

-END  FOR

Note: M M0
=M M(t 0) and M ΙM0

=M ΙM (t 0) are the solutions of M
M 

and M
IM  

at the initial time t
0
.

Algorithm 2
Implementation of the GL4 method for the calculation of the STM states.

Step 1: Set the time interval, dt.

Step 2: Set M M0
=M M(t 0) and M ΙM0

=M ΙM(t 0).

Step 3: Set the initial values of k
1 

and k
2  

according to equations (28) and (29) that illustrate the initial iteration 

ℓ  = 1.

Step 4: Set an initial error value that represents the difference between the k
1 

and k
2
 values; e.g. error = 1.

Step 5: Set an error tolerance value; e.g. tol = 1·10-08.

-FOR t
n
 = 1, 2, ...

-IF error > tol

Step 6: Update the k
1 

and k
2
 values

  
according to equations (34) and (35), respectively.

Step 7: Update the difference; i.e.  error between the  k
1  

and  k
2
 values  that are estimated in Step 6 and from  a

previous iteration.

ℓ  = ℓ  + 1

-ELSE IF error ≤ tol go to steps 8 and 9.

-END IF

Step 8: Update the solution of equation (2) using equation (38) and obtain the M
M 

and M
IM 

estimates.

Step 9: Given that V
M  

is known calculate C
M

 by making use of equation (3).

-END FOR

Note: M M0
=M M(t 0) and M ΙM0

=M ΙM (t 0) are the solutions of M
M 

and M
IM  

at the initial time t
0
.

9
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3.4. Implementation of GL6

Finally, the GL6 approach is implemented in a manner similar to the GL4 method, with the only difference that an
additional k increment is involved in the solution of equation (2) as outilined in section 2. In this particular case,
the k

1
, k

2 
and k

3 
values are calculated based on the above-mentioned Newton-Raphson method by solving the next

equations:

k 1ℓ+1
= k1ℓ

−
F 1(k1 ,k 2 ,k 3)

F ' 1(k1 ,k2 ,k 3)
                                                                                                                                                        (39)

k 2ℓ+1
= k2ℓ

−
F 2(k1 ,k 2 ,k 3)

F ' 2(k1 ,k2 ,k 3)
                                                                                                                                                         (40)

k 3ℓ+1
= k3ℓ

−
F 3(k1 ,k 2 ,k 3)

F ' 3(k1 ,k2 ,k 3)
                                                                                                                                                         (41)

Where

F 1(k1 ,k2 ,k 3) =k1 − f 1(k 1 ,k 2 , k3)=0                                                                                                                                      (42)

F 2(k1 ,k2 ,k 3) =k2 − f 2(k 1 ,k 2 , k3)=0                                                                                                                                      (43)

F 3(k1 ,k2 ,k 3) =k3 − f 3(k 1 ,k 2 , k3)=0                                                                                                                                      (44)

and

F '1(k 1 ,k 2 , k3) = imag(
F 1(k 1 +i⋅h , k2 +i⋅h ,k 3 +i⋅h)

h
)                                                                                                  (45)

 F '2(k 1 ,k 2 , k3) = imag(
F 2(k 1 +i⋅h , k2 +i⋅h ,k 3 +i⋅h)

h
)                                                                                                 (46)

F '3(k 1 ,k 2 , k3) = imag(
F 3(k 1 +i⋅h , k2 +i⋅h ,k 3 +i⋅h)

h
)                                                                                                  (47)

Likewise, the initial guess for k
1
, k

2 
and k

3  
is obtained with Euler’s method at each time step t

n
 as follows:

k 1n
= f (t n , F (M M n

, M ΙMn
))                                                                                                                          (48)

k 2n
= f (t n , F (M M n

, M ΙMn
))                                                                                                                          (49)

k 3n
= f (t n , F (M M n

, M ΙMn
))                                                                                                                          (50)

After ensuring the convergence of k
1
, k

2 
and k

3 
using the Newton-Raphson method, M

M 
and M

IM  
are calculated at

every new time step t
n+1

 as such:

F (M Mn+1
,M ΙMn+1

) = F (M Mn
,M ΙMn

) +
5

18
⋅dt⋅k 1 +

4
9

⋅dt ⋅k 2 +
5

18
⋅dt⋅k 3                                                                      (51)

10
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In  the  end, C
M

 is  found according  to  equation  (3). The  entire  implementation  of  the  GL6 method for  the

calculation of C
M

 and M
IM  

is extensively indicated in Algorithm 3.

Algorithm 3
Implementation of the GL6 method for the calculation of the STM states.

Step 1: Set the time interval, dt.

Step 2: Set M M0
=M M(t 0) and M ΙM0

=M ΙM(t 0).

Step 3: Set the initial values of k
1
,  k

2  
and k

3 
according to equations (48), (49) and (50) that illustrate the initial

iteration ℓ  = 1.

Step 4: Set an initial error value that represents the difference between the k
1
, k

2 
and k

3  
values; e.g. error = 1.

Step 5: Set an error tolerance value; e.g. tol = 1·10-08.

-FOR t
n
 = 1, 2, ...

-IF error > tol

Step 6: Update the 
 
k

1
, k

2 
and k

3
 values

  
according to equations (39), (40) and (41), respectively.

Step 7: Update the difference; i.e. error between the k
1
,  k

2 
and k

3
 values that are estimated in Step 6 and from a

previous iteration.

-ELSE IF error ≤ tol go to steps 8 and 9.

-END IF

Step 8: Update the solution of equation (2) using equation (51) and obtain the M
M 

and M
IM 

estimates.

Step 9: Given that V
M  

is known calculate C
M

 by making use of equation (3).

- END FOR

Note: M M0
=M M(t 0) and M ΙM0

=M ΙM (t 0) are the solutions of M
M 

and M
IM  

at the initial time t
0
.

4. Results and discussion 
In the present research, the ode45 reference solver along with the ERK4, IRK2, GL4 and GL6 methods are used

to solve equation (2). In this manner, the STM simulates the states of interest C
M

 and M
IM

. The RK methods have

been implemented for three different time steps, dt (dt = 1/8, 1/4 and 1), with a view to assessing how the time
step size affects the quality of the computational results and the efficiency of the simulations.  Additionally, the
current study compares the simulation results of this prediction model using the above-mentioned RK methods
and the reference ode45 solver so as to determine to which extent the RK methods have reduced or increased the
computational cost of the model. Further insight into the  ode45 MATLAB solver is given in appendix B of this
paper.

In this context, the Mean Absolute Error (MAE) has been selected to assess the performance of the STM with
regard to the C

M 
estimates obtained with the implemented RK methods (y

n
) and the reference ode45 solver (z

n
) at

time t
n
 = 1, … ,N. Given this, the MAE is defined as such:

                
  MAE = ∣ ̄yn −zn ∣                                                                                                                                                                              (52)

Another important thing to highlight is that  m = 3 input parameters expressed as  C
ini

,  k
ex  

and  N
ex

 (see their

description in Table 6) have to be found prior to running the STM. In this prediction model, these parameters have
been calibrated (see Heimovaara et al. 2015) through the model performance optimization that is effectuated by

11
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comparing  simulated  and  measured  data  of  Cl- concentrations  in  the  mobile  landfill  water.  This  was
accomplishable by utilizing the robustness of the DREAM (DiffeRential Evolution Adaptive Metropolis) stochastic
optimization technique that is based on the Bayesian inference scheme. In particular, this method approximates
the posterior distribution of parameters providing acceptable and reasonable values of parameters that describe
the simulated and measured dataset. More details on this topic can be found in Laloy and Vrugt (2012).

In this study, 600000 model evaluations were invoked where DREAM provided two separate parameter sets
where each one consists of nearly 500 different values of C

ini
, k

ex 
and N

ex
 (see Figs. 1 and 2). These two parameter

sets are indicative of the intricate processes that occur in the north (hereafter termed as Case 1) and the south
part (hereafter termed as Case 2) of the Braambergen landfill, where from both these parts the measurements of
the mobile Cl- concentration have been obtained as highlighted in Section 1. It is, therefore, obvious that the STM
focuses  on  estimating  the  state  variables  C

M
 and  M

IM  
in  two  different  locations  (north  and  south)  of  the

Braambergen landfill. In the present study, the average values of these calibrated parameters (C
ini

, k
ex 

and N
ex
)

 
from

both parameter sets (Case 1 and Case 2) are chosen to run twice the STM (see Table 6).

Table 6
Average values of the Case 1 and Case 2 DREAM-derived parameters C

ini
, k

ex 
and N

ex
.

Mean Values of Case C
ini

k
ex

N
ex

1 3.65 -1.72 203

2 4.25 -6.15 394

Note: C
ini 

is the initial Cl- concentration in the landfill in mol/m3, k
ex 

is the interaction between mobile and immobile chemical

solids, and N
ex  

are the days of interaction between the landfill water and the chemical compounds. 

A considerable inconsistency is exhibited by the DREAM-derived parameter values between Case 1 and Case 2
as Figs. 1 and 2 show. In the first place, C

ini 
converges to different values in both cases (Case 1 and Case 2). It is also

evident that k
ex 

centers around a target value in Case 1, but, however, it does not reach convergence in Case 2. On

the other hand, N
ex 

does not converge in Case 1 whereas it converges to a specific value in Case 2.

(a)

(b)

Fig. 1. Histogram of DREAM-derived parameters: a) Case 1 parameters. b) Case 2 parameters.
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(a)

(b)

Fig. 2. Evolution of parameters throughout the implementation of the DREAM algorithm: a) Case 1 parameters. b) Case 2
parameters.

Turning now to the findings of this study, the most striking observation that emerges is the effect of parameters
on the time-efficiency of the STM. Indeed, the model requires a long time to simulate its outputs irrespective of the
methods  used  to  solve  equation  (2)  when  using  the  mean  values  of  the  Case  2  (hereafter  termed  as  MC2)
parameters (check ST in Tables 7, 8 and 9). In contrast, the model runs fast enough (check ST in Tables 7, 8, and 9)
regardless of which method solved equation (2) when using the mean values of the Case 1 (hereafter termed as
MC1) parameters. 

The findings also evince that the  C
M

 and  M
IM

 estimates obtained with the GL4 and GL6 methods are plainly

influenced by  decreasing  the  time  step  values  and  using  the  MC1 parameters.  In  fact,  Figs.  3.a,  4.a,  and  5.a
illustrate the remarkable difference between the GL4 and GL6 predictions and the estimates provided by the
ode45, ERK4 and IRK2 methods when using a step size of 1/8 and 1/4. This conclusion is made more precise by
looking at the corresponding MAEs that relate to the mobile concentration of Cl - (check MAEs in Tables 7, 8, and
9). Nevertheless, it seems that all the RK estimates are nearly the same using the MC1 parameters and a step size
of 1. The findings also reveal that the  GL4 and GL6  predictions are also similar to the  ode45, ERK4 and IRK2
estimates regardless of the time step values by using the MC2 parameters (see Figs. 3.b, 4.b, and 5.b). 

In addition, the findings attest that for both cases (Case 1 and Case 2) the model runs faster by using the ERK4,
GL4 and GL6 methods in comparison to the ode45 solver (check ST in Tables 7, 8, and 9). However, the speed of
predictions is much slower with the IRK2 method than with the reference ode45 solver (check ST in Tables 7, 8,
and 9), except in the case where the MC1 parameters are used to run the model and the time step is set to 1. 

In this respect, one more case that merits mentioning here is the fact that the time step size impacts on the
simulation time (ST) of the STM. Truly, as the time step size increases the model simulates its outputs faster, no
matter which RK method is used to solve equation  (2) (check ST in Tables 7, 8, and 9). As a final remark, it is
salient to mention that the C

M
 estimates provided by either method are not in agreement with the measurements

of the Cl- outflow as shown in Figs. 3.a and 3.b. 
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Table 7 
ST of the STM obtained

 
with the implementation of the reference ode45 solver and using the MC1 and MC2 parameter sets

from Table 6.

Case 1 Case 2

ST 23.43 seconds 33.8 seconds

Note: ST stands for the simulation time of the STM.

Table 8
ST of the STM obtained

 
with the implementation of the ERK4, IRK2, GL4 and GL6 methods and MAEs between the RK (ERK4,

IRK2, GL4 and GL6) and the ode45 estimates of C
M

 using the MC1 parameter set from Table 6.

Method
dt =  1/8 dt = 1/4 dt = 1

ST MAE Acronym ST MAE Acronym ST MAE Acronym

ERK4 4.73 3.06·10-8 ERK4xn1 3.35 3.13·10-8 ERK4xn2 2.26 2.30·10-7 ERK4xn3

IRK2 64.56 7.61·10-5 IRK2xn1 34.33 3.04·10-4 IRK2xn2 12 49·10-3 IRK2xn3

GL4 4.66 221.41 GL4xn1 4.94 172.31 GL4xn2 4.84 1.47 GL4xn3

GL6 6.09 221.41 GL6xn1 6 172.31 GL6xn2 5.91 1.47 GL6xn3

Note: ST stands for the simulation time of the STM and is measured in seconds, MAE is measured in mg/L, and the Acronym
names correspond to the legend names shown in Figs. 3.a-b, 4.a-b and 5.a-b.

Table 9
ST of the STM obtained

 
with the implementation of the ERK4, IRK2, GL4 and GL6 methods and MAEs between the RK (ERK4,

IRK2, GL4 and GL6) and the ode45 estimates of C
M

 using the MC2 parameter set from Table 6.

Method
dt =  1/8 dt = 1/4 dt = 1

ST MAE Acronym ST MAE Acronym ST MAE Acronym

ERK4 10.63 2.32·10-10 ERK4xn1 9.27 2.28·10-10 ERK4xn2 7.72 2.32·10-10 ERK4xn3

IRK2 276.48 4.52·10-9 IRK2xn1 156.24 3.92·10-9 IRK2xn2 56.67 8.93·10-9 IRK2xn3

GL4 11.45 0.94 GL4xn1 11.37 0.81 GL4xn2 11.28   4.22·10-7 GL4xn3

GL6 12.91 0.94 GL6xn1 12.86 0.81 GL6xn2 12.69   4.22·10-7 GL6xn3

Note: ST stands for the simulation time of the STM and is measured in seconds, MAE is measured in mg/L, and the Acronym
names correspond to the legend names shown in Figs. 3.a-b, 4.a-b and 5.a-b.
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(a)

(b)

Fig. 3. Simulated and measured concentration of Cl- for the period 1 August 2012 and 1 May 2015: a) Model estimates are
obtained using the MC1 parameters from Table 6 and the measurements are taken from the north part of the Braambergen
landfill. b) Model estimates are obtained using the MC2 parameters from Table 6 and the measurements are taken from the
south part of the Braambergen landfill.
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(a)

(b)

Fig.  4.  Simulated concentration  of  Cl- for  the period 01 January  2008 and 15 September 2015: a) Model  estimates  are
obtained using the MC1 parameters from Table 6. b) Model estimates are obtained using the MC2 parameters from Table 6. 
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(a)

(b)

Fig. 5. Simulated immobile mass of Cl- for the period 31 May 2012 and 3 December 2015: a) Model estimates are obtained
using the MC1 parameters from Table 6 and b) Model estimates are obtained using the MC2 parameters from Table 6. 
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4. Conclusions and future work

This study has implemented the ERK4, IRK2, GL4 and GL6 methods to solve the ODE given by equation (2) with
the goal to reduce the simulation time of the STM. Recall that the model primarily solves equation (2) based on the
ode45 solver in MATLAB. Also, it is worthwhile to remember that this computational model simulates the states
under interest (C

M
 and M

IM
)

  
for the north and south part of the Braambergen landfill.. 

In the first place, this study has shown that it is practically feasible to apply high order IRK (such as GL4 and
GL6) methods for solving non-linear ODEs such as equation (2). More importantly,  the  findings of this research
indicate that the  ERK4, GL4 and GL6 schemes have enormously contributed to enhancing the time-efficiency of

this environmental model. In spite of that, the C
M 

estimates provided by either method used in this study are not in

compliance agreement with the measurements of the Cl- outflow. 
In addition, it was shown that the performance of these RK methods was mostly affected by using different

parameter sets (MC1 and MC2) and to a much lesser extent by the time step size. This might have been caused due
to the inconsistently DREAM-derived parameters as discussed in Section 4. This points to the likelihood that the
model parameters are associated with a certain degree of uncertainty which might impacts on the model outputs.

In consideration of the foregoing, further work needs to be done to determine whether the model parameters
are correctly calibrated and examine by which means it is possible to obtain better state and parameter estimates.
For this reason, future research should concentrate on the application of the notorious data assimilation methods
that powerfully correct unreliable model states and parameters. 
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DPM-MIM principle is given according to the following equation:
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∂ F (MM ,M ΙM)

∂ t
=−k ex ⋅(C M −C ΙM)                                                                                                                  (53)

It is also know that the relationship between mass and concentration of both mobile and immobile solutes is
given as such:

CM =
M M

V M

                                                                                                                                               (54)

CΙM =
M ΙM

V ΙM

                                                                                                                                              (55)

Then, the insertion of equations (54) and (55) into equation (53) yields:

∂ F (MM ,M ΙM)

∂ t
=−k ex ⋅(

M M

V M

−
M ΙM

V ΙM

)                                                                                                             (56)

By multiplying the right hand side of equation (56) by V
M

  leads to:

∂ F (MM ,M ΙM)

∂ t
=−k ex ⋅(V M ⋅

MM

V M

−V M ⋅
M ΙM

V ΙM

) =−kex ⋅( M M −M ΙM ⋅
V M

V ΙM

)                                                   (57)

Thereafter, by rearranging Eq. (57) into matrix form, it becomes:         
                                       

 
∂ F (MM ,M ΙM)

∂ t
=−k ex ⋅[

−1
0
0

0 … V M/ V ΙM

−1 … ⋮
0 … ⋮

1 1 … ∑ V M / V ΙM
]⋅[

M M

⋮

⋮

∑ M M / MΙM
]                                                       (58)

After that, it can be defined that:
 

ℋ= [
−1

0
0

0 … V M / V ΙM

−1 … ⋮
0 … ⋮

1 1 … ∑ V M / V ΙM
]                                                                                                             (59)

F (M M ,M ΙM) = [
M M

⋮
⋮

∑ M M / MΙM
]                                                                                                                        (60)

Finally, the substitution of equations (59) and (60) into equation (58) leads to:

∂ F (MM ,M ΙM)

∂ t
=−k ex ⋅ℋ⋅F (M M , MΙM)                                                                                                                                    (61)
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Beyond doubt, equation (61) is equivalent to equation (2).
 
Appendix B. Description of the ode45 MATLAB solver

The ode45 solver integrates a system of ODEs using four and five order Runge-Kutta formulas (Shampine and
Reichelt, 1997). The command that is used in MATLAB to perform the ode45 solver is the following one:

[t , y ] =ode45 (' odefun' ,t span , y0)                                                                                                                                              (62)

In which, t
span

 = [t
0
 t

final
] integrates the ODE given by equation (1) from time t

0
 to t

final
 with initial conditions y

0
,

'odefun'  is a string containing the name of an ode file, and each row in solution array  y corresponds to a time
returned in column vector t.
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