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Terugkomen is niet hetzelfde als blijven. | “Coming back is not the same as staying.”

Belle van Zuylen

Seen in the city of Amsterdam between Het Noord and Singel. Artwork by Regina Verhagen.
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Summary

Machines that interact with humans can do so better if they can also visually understand us,
but they have limited resources to do so. The main topic of this dissertation is contrasting
the use of resources by machine vision systems against the accuracy obtained by them.
This thesis focuses on reducing the need for data, memory, and computation in real-world
machine vision systems, applied to human observation and face analysis.

This dissertation tackles annotation effort by exploring how weakly-supervised object
/person detectors can be improved. Findings show that prior knowledge about objects’
bounds in images helps the detector learn the spatial extent of objects using only weak
image-level labels. The proposed implementation enables single-shot detection, thus
improving computational efficiency of this data-efficient method.

The thesis also demonstrates how prior knowledge about eye locations can be used to
reduce the computational burden of gaze tracking: non-vital parts of the input image can
be discarded without losing accuracy. Additionally, this thesis finds how a priori known
geometrical relations can be leveraged upon to project gaze onto a screen with little human
annotation effort.

Findings of this dissertation further suggest that spatial structures in images can be
exploited for improving efficiency of vision tasks. The proposed solution allows for learning
detection of facial occlusions and anomalies from only a few examples. Results also indicate
that this solution can be used as a loss function for unsupervised pre-training of neural
networks when resources are constrained.

Lastly, this thesis showcases how prior know-how about blood-flow physiology in
faces can be applied in a camera-based vital signs estimator. Even when data is available,
this hand-crafted method performs better than deep learning methods — both in terms of
accuracy and efficiency. At the same time, the results also reveal the pitfalls of assumptions
made in the prior knowledge when exposed to more complex tasks — such as video
compression noise filtering.

Through its common theme of incorporating prior knowledge, this dissertation brings
attention to the costs incurred by machine vision systems to achieve high accuracy.
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Samenvatting
Machines kunnen beter met mensen samenwerken als ze de wereld kunnen begrijpen
met hun ogen. Een bottleneck voor dit begrip wordt gevormd door de alle middelen
die zelflerende systemen hiervoor nodig hebben. In dit proefschrift bestuderen we de
accuraatheid van machines versus de middelen die deze systemen nodig hebben. We
richten ons op het verminderen van deze bronnen, zoals de hoeveelheid data, geheugen
en rekenkracht van machines. We bestuderen systemen die echt in de wereld worden
toegepast, voor gezichtsuitdrukking-analyse en menselijke observatie.

In dit proefschrift kijken we hoe we met minder annotaties nog steeds goede systemen
kunnen bouwen, door simpelere annotaties van beelden te gebruiken. Simpele annotaties
zijn bijvoorbeeld slechts annotaties waar alleen wordt geconstateerd dat er een voorwerp
in een beeld zichtbaar is, maar niet waar het voorwerp zich bevind. Verder voegen we
voorkennis toe: namelijk waar objecten zich vaak bevinden in beelden. Met deze twee
elementen kan een zelflerend systeem alsnog uit zich zelf leren hoe groot voorwerpen zijn.
Ons gebouwde systeem kan door slechts één keer te kijken naar een beeld (“single shot”)
alsnog meerdere objecten tegelijkertijd detecteren, waardoor de rekentijd en hoeveelheid
data beiden worden verminderd van deze zelflerende systemen.

We gebruiken ook dezelfde soort voorkennis, namelijk waar ogen zich bevinden in
beelden, om de hoeveelheid rekentijd voor het volgen van de blik van mensen te verminde-
ren. Zo kan ons systeem een deel van het beeld weggooien om herkenning te versnellen
zonder dat de accuraatheid hier onder lijdt. Verder kan ook voorkennis van de geometrie
tussen de mens en een scherm worden gebruikt om de blik te projecteren op het scherm
door een systeem dat slechts weinig data nodig heeft om te leren.

De resultaten van dit proefschrift suggereren dat de structuur in beelden kan worden
gebruikt om kijkende systemen sneller te maken. Zo ontwerpen we een systeem dat kan
herkennen of een gezicht zichtbaar is of niet, of deels wordt bedekt, en kan ook rariteiten
in gezichtsafbeeldingen herkennen. Dit is zelfs mogelijk als er weinig data beschikbaar is.
Onze wiskundige functie die wordt gebruikt om te leren kan ook worden gebruikt voor
het pre-trainen van neurale netwerken in dat geval.

Tenslotte gebruiken we ook voorkennis van de biologie, namelijk hoe bloed zich ge-
draagt in gezichten, en gebruiken dit om een nieuw systeem te bouwen dat met een camera
de hartslag kan meten. Zelfs wanneer er veel data beschikbaar is, is ons systeem dat voor-
kennis gebruikt, beter dan een diep neuraal netwerk. Ons systeem is niet alleen accurater
maar kan zelfs nog goed leren als er weinig data beschikbaar is. Tegelijkertijd illustreren
onze resultaten ook dat voorkennis ook een probleem kan vormen, vooral als de voorkennis
niet meer geldig is een nieuwe complexere situaties. Dit vormde vooral een probleem bij
video compressie en het bouwen van een ruisfilter.

De hoofdstukken in dit proefschrift draaien om het gebruik van voorkennis voor het
maken van zelflerende systemen. Verder benadrukken we de enorme kosten die nodig zijn
om accurate zelflerende systemen te bouwen.
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सारांश

इंसानों के साथ परस्पर पर्भाव डालने वाले यंतर् यह काय

र्

बेहतर कर सकते है अगर वह हम

ें

दृिष्गत रूप

से भी समझ सके, परन्तु उनके पास यह करने के िलए सीिमत साधन ह

ैं

। इस शोध लेख का मुख्य िवषय

यंतर् दृिष् पर्णािलयों (“मशीन िवज़न िसस्टम्स ”) द्ारा साधनों के उपयोग को उनके द्ारा पर्ाप् सटीकता के

साथ तुलना करना है। यह लेख वास्तिवक द

ु

िनया के यंतर् दृिष् पर्णािलयों म

ें

डाटा/जानकारी, मेमोरी/स्मृित,

और अिभगणना की मांग को घटाने पर क

ें

िदर्त है, जो मनुष्यों के िनरीक्षण और चेहरों की िवश्लेषण के िलए

लागू िकए जाते ह

ैं

।

यह शोध लेख अंकन काय

र्

से यह खोज कर के िनपटता है िक िकस तरह कमजोर-पय

र्

वेिक्षत वास्तु /

व्यिक् संसूचकों को बेहतर बनाया जा सके। जाँच-पिरणाम यह िदखाता है िक िचतर्ों म

ें

वस्तुओं के सीमाओं

का पूव

र्

ज्ञान केवल कमजोर छिव-स्तर के अंिकतकों का उपयोग कर के वस्तुओं की स्थािनक िवस्तार

सीखने म

ें

संसूचक की मदद करता है। पर्स्तािवत कायार्न्वयन िचतर् को एक ही बार देख के (“िसंगल-शॉट ”)

आकलन संभव बनता है, िजस द्ारा इस डाटा-दक्ष िविध की अिभगणनीय दक्षता सुधरती ह

ैं

।

यह लेख यह भी पर्दिश

र्

त करता है िक कैसे आँखों के स्थान का पूव

र्

ज्ञान का पर्योग िनगाहों के अनुमान

लगाने के काय

र्

म

ें

अिभगणनीय बोझ को घटाने के िलए िकया जा सकता है — इनपुट छिव के गरै-महत्वपूण

र्

भागों को िबना सटीकता खोये िनकाला जा सकता है। साथ ही, यह शोध पता लगता है िक कैसे नज़रों को

एक िचतर्पट पर पर्क्षेिपत करने म

ें

पूव

र्

ज्ञात ज्यािमतीय संबधंों का लाभ उठाया जा सकता है।

इस शोध लेख के िनष्कष

र्

आगे यह सुझाव देते ह

ैं

िक यंतर् दृिष् सम्बन्धी कायोर्

ं

की दक्षता बढ़ने के

िलए िचतर्ों म

ें

स्थािनक संरचनाओं का फायदा उठाया जा सकता है। पर्स्तािवत समाधान केवल क

ु

छ ही

उदाहरणों से संसूचकता सीखना मुमिकन बनाता है। पिरणाम यह भी दशार्ते ह

ैं

िक यह समाधान तंितर्का

जालो (“न्य

ू

रल नेटवक्स

र्

”) की गरै-पय

र्

वेिक्षत पूव

र्

-पर्िशक्षण (“अंसूपवार्इज़ड पर्ी-टे

र्

िनंग ”) म

ें

एक “लॉस ”

फलन के तौर पर इस्तेमाल िकया जा सकता है जब संसाधनों की िववशता हो।

अंततः, यह लेख यह दशार्ता है िक कैसे चेहरों म

ें

रक् पर्वाह के बारे म

ें

पूव

र्

जानकारी को एक कैमरा-

आधािरत जीवन-संकेत आगणक म

ें

लागू िकया जा सकता ह

ैं

। डाटा उपलब्ध होने पर भी, यह हस्तिनिम

र्

त

िविध “डीप-लिन

र्

ग ” िविधयों से बेहतर पर्दश

र्

न देता ह

ैं

— सटीकता और दक्षता दोनों के मामले म

ें

। साथ

ही, पिरणाम ज्यादा जिटल कायोर्

ं

के सामने पूव

र्

ज्ञान म

ें

छुपी धारणाओं के नुकसानों का भी ख

ु

लासा करते

ह

ैं

— जसेै िक वीिडयो कम्पर्ेशन शोर की छनाई।

पूव

र्

ज्ञान के समावेश के सामान्य िवषय के माध्यम से, यह शोध लेख यंतर् दृिष् पर्णािलयों द्ारा उच्च

सटीकता पर्ाप् करने के िलए िकए गए लागत पर ध्यान आकिष

र्

त करता है।
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Introduction

If we wait for the moment when absolutely everything is ready, we shall never begin.

Ivan Turgenev



1

2 1 Introduction

F aces and facial expressions are prominent ways of human social communication [1].
Faces visually communicate not only the dynamic emotional and cognitive states of

a person, but several other static aspects such as age, gender and ethnicity [2]. Several
internal physiological states can also be measured from the face, such as heart rate [3] and
blood pressure [4]. Body pose [5] and gesture [6] analysis constitute the other important
components of human observation, since humans also give out social signals through these
mediums [7]. With the advent of technology, interactions between humans and machines
become more prevalent. These interactions can be more effective if machines are also
able to interpret information from faces to understand humans. This thesis focuses on the
application area of human observation and facial analysis using machine vision.

As a sub-field of Artificial Intelligence (AI), Machine/Computer Vision aims to let ma-
chines ‘see’: using computations on the input of visual sensors to detect humanly mean-
ingful concepts. Machine vision system are able to automate several visual tasks such as:
detection/localization — detecting presence of certain objects and locating them, e.g., face
detection [8]; recognition — identifying the type of the presented object/scene, e.g., anomaly
detection [9]; measurement — estimating the intensity of an underlying phenomenon, e.g.,
visual heart-rate estimation [10]; modelling — building a geometric model of the objec-
t/scene, e.g., face modelling [11]; filtering/transformation — modify the given visual data
into another form, e.g., image restoration [12]; etc. Several of these topics are covered in
the chapters of this thesis.

Machine vision system achieve automation of visual tasks either by relying on manual
programming of the algorithm based on the designer’s knowledge, or by learning the
algorithm directly from available data. For machine vision systems to have any societal
impact, they should work in the real world where the available resources are limited. These
are resources used for computational execution/inference, but also information/data is a
resource which is used for the design and training of the system. Figure 1.1 showcases the
typical resources used by such a system. Machine vision systems need to be efficient in
their use of these resources during their design as well as during their deployment. In this
thesis, we explore machine vision techniques that maximize the utility gained by efficient
use of these resources.

1.1 Resources in Machine Vision
1.1.1 Computational Resources
The number of computational operations available per second on the computing device is a
resource for machine vision systems. Because only a limited number of operations can be
performed in a given time: if fewer operations are required, the time spent by the system
on computation reduces. Computation time is important for practical use of vision systems.
For example, facial expression recognition by a robot should work in real-time, otherwise
interaction with a human is impossible. Also for developing the methods themselves, it is
important to have fast execution because it allows for quicker prototyping. Thus, reducing
the number of computational operations is essential for real-world applications, as we
explore in this thesis.
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Figure 1.1: A diagram showing the various resources used by a machine vision systems. The resources shown in
green represent informational resources, while blue represents computational resources. The machine vision
system is designed/trained using collected training data, potentially along with their manual labels (supervision).
This system then process the information in the provided input (also considered a resource) while expending
computational resources (time and memory) to generate the required output.

Another computational resource is memory, which determines how many bytes can be
used during execution. If fewer bytes are needed, then the machine vision system can be
deployed on a wider range of devices because several devices have limited memory. For
example, edge devices like smartphones may not be able to load recent face detectors on
their limited memory. Also, high memory requirements limit what hardware can be used
for design and development. For example, training deep neural networks requires high-
end GPUs. Therefore, reducing the computational memory requirements has significant
practical value.

Time and memory limitations can typically be solved by using more expensive high-end
hardware. Yet, even for the exceptionally deep pockets of tech companies, this is not always
feasible because of inherent restrictions in the use cases. For example, portable electronics
need to run on low power from small batteries, and therefore their processing capabilities
are low; mass-market consumer devices need to be low-cost for commercial viability, and
this makes high-end processors unaffordable. For such real-world problems, developing
computationally efficient systems is often the only viable solution.
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1.1.2 Informational Resources
Machine learning has recently shown excellent results for vision tasks (e.g., AlexNet

image classifier [13], Dall⋅E-2 image generator [14]). The parameters of machine learning
based methods are determined by optimizing for a training dataset of input examples and
their expected outputs. Typically, increasingly better parameters can be learned from
increasingly larger training datasets. However, creating such datasets require significant
manual effort: samples in the dataset must be collected, filtered and annotated with their
expected outputs. Due to this manual effort in combination with increased storage needs,
amassing large datasets is expensive. Therefore, it is often desirable to design systems that
provide a high accuracy while requiring lower quantity of training data.

Concurrent to the quantity of training data, the quality/size of the data samples is also
an informational resource. The quality and richness of the input data, i.e., the amount of
information present in it, can make the task easier for the system leading to improved
accuracy. For example, RGB color images are more information rich than grayscale images
and this can be useful for classifiers. However, in several situations, access to such high
quality input data may not be available. In other situations, the information held in the
input could be redundant and distracting for the system to perform a given task. Designing
methods to use pruned input to reduce the amount of non-vital information can improve
the input-data efficiency of the system. For example: roughly the same facial expression
recognition accuracies can be obtained from smaller 48×48 sized input images as larger
72×72 images [2]; downsizing a noisy image (from a cheap camera) can help reduce noise
levels [15] which could have be distracting; cropping images to focus on known key
regions can avoid processing of non-vital information [16]. As an additional consequence
of reducing the input size, the system is required to do less computation, thereby lowering
its computational resource needs as well.

Just as input data is a resource, the annotation labels associated with them are also a
resource. These annotation labels are the source of supervision during the training phase
of machine learning based systems, and supervision is typically vital for good performance.
The quantity and quality of labels directly affect learning: the more abundant, cleaner and
informative the labels are, the better the model can learn and perform. While the collection
of training input samples itself can be an effort, manual labelling of these samples is
typically far more laborious (see Figure 1.2 for an illustration). This becomes especially true
when the labels are required to be fine-grained and noise-free (e.g., pixel-level semantic
segmentation maps [17], facial action unit annotations [18]). Therefore, reducing the
dependence on the quantity and quality of labels can greatly help bring down manual
developmental effort.

1.2 Efficiency Methods for Machine Vision
1.2.1 Informationally Efficient Techniques

The computer vision systems that are crafted by hand are based on the knowledge held
by the expert designer. Therefore, development of hand-crafted methods involving no
machine learning do not require access to substantial training datasets. Due to this lack
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of training data requirement, such hand-crafted prior-knowledge based systems can be
considered very information efficient, specifically training-data quantity efficient. As a
caveat, such methods are more dependant on the assumptions made in this prior knowledge.
Incorrectness of such assumptions can lead to wrong design choices, which may not be
easily undone.

At the same time, the prior domain knowledge that the system design depends upon is
created based on the experts’/designers’ experiences with/understanding of the task, and
this can also be considered as a sort of information gathering. In addition, the designer may
still need access to a relatively small dataset for iteratively testing the system through its
design process. For example, in the design of signal processing pipelines for estimating heart
rate from face videos, a data collection effort was still necessary to iteratively validate the
method [3, 19, 20]. Thus, hand-crafted systems still have some amount of data requirements,
albeit small, even in the absence of machine learning.

Hand-crafted techniques have dominated low and mid-level task in computer vision
until very recently [21–23]. These include detectors like Canny edge detector [24], Harris
corner detector [25] at the low-level, and feature descriptors like SIFT [26], SURF [27] at
the mid-level. Techniques utilizing Gaussian filters and derivatives for scale-invariance
are examples of hand-crafted methods based on scale-space theory [28] as their prior
knowledge. These priors have also been incorporated into machine learning models such as
convolutional neural networks by replacing its kernels with Gaussians [29, 30]. However,
with the increase in the availability of training data and powerful computing hardware,
learning based methods like deep learning have taken over as the state-of-the-art in several
tasks. This thesis explores the incorporation of prior knowledge into machine vision
systems to make them more efficient.

Fully supervised learning is the standard approach for training a learning-based model
for a given task, which requires access to a labelled dataset. Typically for a given model, the
larger the amount of data available for training, the better the performance. However, after a
certain amount, increasing the size of the training set yields diminishing results. Therefore,
a data-efficient way of performing supervised training would be to limit collection of
training data to this point (e.g., using learning curves [31, 32]). Additional ‘tricks’ like data
augmentation [33] can further maximise the utility of existing data. A popular approach
is to generate synthetic data for training based on prior-knowledge driven data models
(e.g., a graphics engine) [34]. These techniques can be used to make supervised learning
function with a reduced quantity of training data.

For several vision tasks, a full resolution image of the whole scene as input may not be
necessary/useful for the model. Pre-processing techniques such as image cropping can
be performed to only select the relevant parts of the input. Additionally, the input image
may be downscaled to make the model compatible with lower resolution images. While
a majority of informational resources relate only to the training phase of learning-based
systems, input-data concerns both: training as well as inference; since input is processed
the same way in both phases.
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Semi-supervised learning aims to reduce the labelling/annotation requirement of the
training dataset. Predominantly during data collection in computer vision, input samples
are far more easily available thanmanual labels for them. Semi-supervision takes advantage
of the relatively high abundance of unlabelled input samples by also learning from them.
This is achieved in practice through several methods such as un/self-supervised pre-training
followed by supervised fine-tuning [35] and pseudo-labelling [36].

Un/Self-supervised pre-training works by first extracting knowledge by training the
model to recreate (parts of) the unlabelled input itself [37], and later fine-tuning the pre-
trained model to fit the available labelled data [38]. In contrast, pseudo-labelling works by
first training on the labelled data, and using the trained model to assign pseudo-labels for
the unlabelled data [39]. A more extreme form of semi-supervised learning is few/zero-shot
learning, where the objective is to learn from only a handful (or none) training examples
of a target domain/class, labelled or otherwise [40]. Generally for a given task and model,
semi-supervised learning can obtain better results than fully supervised learning when
the labelled training dataset size is limited. These techniques can therefore improve the
label-efficiency of the system, and are studied in this thesis.

Apart from reducing the required quantity of the labelled data, another way to ease
labelling effort is to lower the requirement on the quality/richness of the labels. Learning
with such a weakened form of supervision is known as weakly-supervised learning. These
weak labels are usually in the form of imprecise annotations (e.g., bounding boxes instead
of segmentation maps) or inaccurate labels (e.g., crowdsourced labels) [41]. Figure 1.2
shows examples of strong and weak labels with varying degrees of supervision.

Weakly-supervised learning is implemented in several forms and several tasks such as
object localization and segmentation. The strategies range from obtaining and combining
multiple candidate outputs from the weakly-trained model to produce a more precise
output [42, 43], to extracting fine-grained information from the internal activations of the
model [44, 45]. We study ways to improve the efficieny of weakly-supervised methods in
this thesis.

1.2.2 Computationally Efficient Techniques
The size and complexity of the models used in computer vision systems are the primary

factors affecting the use of computational resources. Larger models perform a higher num-
ber of computational operations (e.g., matrix multiplications), thereby resulting in longer
computation times. Larger models also contain a greater number of parameters, storing
which consumes more memory. Therefore, utilizing smaller models with fewer parameters
and operations in computer vision systems directly improves the overall computational
efficiency.

However, it is not straightforward or trivial as to how model sizes can be kept small for a
given task. Understanding and analysis of the underlying operations (such as convolutions)
can provide hints as to how the model architecture can be optimized [46]. Regardless,
discovery of such ‘tricks’ usually involves relatively large scale iterative hyper-parameter
search experimentation. A significant body of research has contributed several design
principles geared towards improving the computational efficiency of deep neural network
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Figure 1.2: An illustration showcasing different levels of supervision used in the training of learning-based
computer vision models, in this case for object localization. Rich/fine-grained labels such as pixel-wise segmenta-
tion maps are high in informational content, but require maximum labelling effort. Bounding boxes and point
supervision require progressively less manual effort but also contain less information about the object’s location.
Image-level labels represent a weak form of supervision, containing minimal information but also requiring
minimal effort. Label-efficient methods attempt to match richly supervised models using weaker labels.

models [47, 48]. These techniques essentially leverage upon known prior-knowledge about
the task/mechanism to optimize the design of the model.

Alternatively, automated machine learning (AutoML) [49] techniques can automate the
search for a computation-efficient architecture [50, 51] at the cost of additional design-time
computation. Knowledge distillation [52] is another technique whereby the ‘knowledge’
learnt by a large ‘teacher’ model can be transferred into a smaller ‘student’ model [53].
Reducing the size of models can also be attempted with more direct approaches: model
pruning [54, 55] and model quantization [56–58]; whereby redundant parameters are
pruned, and their numeric precision is quantized down (e.g., 32-bit to 16-bit floats [56]).
A caveat of these techniques is that they sometimes add to the computational expenses
during training; even though they can eventually result in an efficient deployable model.

Computational-time efficiency of machine vision systems can also be improved by
reducing the size of the input. This is because the smaller the input data, the fewer
the number of computation operations needed to process it. For example, the image
resolution in machine vision systems for real-time applications are often kept low to
minimize computation-time. However, reducing image resolution excessively can also lead
to loss of vital information leading to erroneous outputs. Nevertheless, input reduction is a
simple solution for reducing computational needs, as studied in this dissertation.
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1.3 Contributions
The research presented in this dissertation makes the following contributions towards
improving the efficiency of deployable machine vision systems. A summary linking the
presented work with the efficiency concepts discussed so far is illustrated in Figure 1.3. A
majority of these contributions have been applied to facial analysis and human observation,
and form parts of a commercially available software: FaceReader1.

Chapter 2: Weakly Supervised Single-Shot Localization This chapter [45] presents
a way of performing weakly supervised object detection in a computationally efficient
manner. The proposed method includes an object extent pooling layer, that is able to
capture the extent of the detected objects through weak image-level labels. Because of this,
this method is the first of its kind to demonstrate weakly supervised localization in a single
network pass, bringing the computational speeds on par with fully supervised single-shot
methods. Thus, the presented work contributes towards improving the computational
efficiency of an informationally efficient object detection technique.

Chapter 3: Input and Data Efficiency in Webcam Gaze Tracking
This chapter [16] investigates the role of contextual input information in predicting gaze
direction from images; and calibration-data efficiency for projecting gaze onto a screen.
The presented study weights up the computational cost of processing larger context-rich
inputs against the accuracy gained from them. Additionally, this chapter analyzes the
data efficiency of multiple screen calibration techniques in terms of the impact of prior
knowledge. The results aid in improving input and computational efficiencies of webcam
gaze tracking methods, as well as the data efficiency of gaze calibration techniques.

Chapter 4: Exploiting Spatial Context for Anomaly Detection & Feature Learning
In contrast to the previous chapter, this work [59] attempts to maximize the gains from
spatial context in image data. This chapter identifies the lack of locational sensitivity as
a drawback of a commonly used distance function (mean squared error), and presents a
proximally sensitive error function that takes the location of differences into consideration.
Insights into the applicability of this error function is provided through informationally
efficient implementations: few-shot learning for anomaly detection, and unsupervised pre-
training for classification. The presented discussion suggests conditions under which the
data, computation, and label requirements can be reduced using the proposed technique.

1vicarvision.nl/products/facereader; noldus.com/facereader

vicarvision.nl/products/facereader
noldus.com/facereader
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Figure 1.3: An illustration of the link between the presented work from this dissertation and the efficiency
concepts in machine vision. The thickness of the coloured linking lines represents the strength of the connections.
Chapters 3, 4, and 5 demonstrate applications in facial analysis. Incorporating prior knowledge is a common
theme among all chapters, and this leads to improvement in computational and informational efficiency.

Chapter 5: Prior Knowledge driven Efficient Vital Signs Estimation from Faces
The last chapter [19, 20] presents an in-depth analysis of an unsupervised pipeline for
measuring vital signs like heart rate and variability from faces. The presented work avoids
learning from video data by relying upon prior knowledge, which greatly minimizes
data collection effort. Also, the lack of computationally heavy components (like deep
neural networks) makes this method computationally light, thereby enabling real-time use.
Through an exhaustive study, this chapter shows how this unsupervised approach is able
to surpass or match fully supervised methods. Low computational load and independence
from training data makes this approach computationally and informationally efficient.
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2
Weakly Supervised

Single-Shot Localization

In the face of scarcity in detailed training annotations, the ability to perform object localization
tasks in real-time with weak-supervision is very valuable. However, the computational cost of
generating and evaluating region proposals is heavy. We adapt the concept of Class Activation
Maps (CAM) into the very first weakly-supervised ‘single-shot’ detector that does not require
the use of region proposals. To facilitate this, we propose a novel global pooling technique
called Spatial Pyramid Averaged Max (SPAM) pooling for training this CAM-based network
for object extent localisation with only weak image-level supervision. We show this global
pooling layer possesses a near ideal flow of gradients for extent localization, that offers a good
trade-off between the extremes of max and average pooling. Our approach only requires a
single network pass and uses a fast-backprojection technique, completely omitting any region
proposal steps. To the best of our knowledge, this is the first approach to do so. Due to this, we
are able to perform inference in real-time at 35fps, which is an order of magnitude faster than
all previous weakly supervised object localization frameworks.

This chapter is based on � Gudi, A., Van Rosmalen, N., Loog, M., & Van Gemert, J. (2017). Object extent pooling for
weakly supervised single-shot localization. In British Machine Vision Conference 2017, BMVC 2017 (British Machine
Vision Conference 2017, BMVC 2017). BMVA Press. https://doi.org/10.5244/c.31.36 [1].

https://doi.org/10.5244/c.31.36
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2.1 Introduction

W eakly supervised object localization methods [2, 3] can predict a bounding box
without requiring bounding boxes at train time. Consequently, such methods are

less accurate than fully-supervised methods [4–7]: it is acceptable to sacrifice accuracy
to reduce expensive human annotation effort at train time. Similarly, blazing fast fully
supervised single-shot object localization methods such as YOLO [7] and SSD [6] make a
similar trade-off of running speed versus accuracy at test time. More accurate methods [4, 5]
are slower and thus exclude real-time embedded applications on a camera, drone or car.
In this chapter, we optimize for speed at train time and at test time: We propose the first
weakly supervised single-shot object detector that does not need expensive bounding box
annotations during train time and also achieves real-time speed at test time.

Exciting recent work has shown that object detectors emerge automatically in a CNN
trained only on global image labels [8–10]. Suchmethods convincingly show that a standard
global max/average-pooling of convolutional layers retain spatial information that can
be exploited to locate discriminative object parts. Consequently, they can predict a point
inside the ground truth bounding box with high accuracy. We take inspiration from these
works and train only for image classification while exploiting the spatial structure of the
convolutional layers. Our work differs in that we do not aim for predicting a single point
inside the bounding box, we aim to predict full extent of the object: the bounding box itself.

For predicting the object’s extent, we have to decide how object parts are grouped
together. Different object instances should be separated while different parts of the same
object should be grouped together. Successful state-of-the-art methods on object local-
ization have therefore incorporated a local grouping step in the form of bounding box
proposals [4, 5]. After grouping, it is enough to indicate object presence and the object
localization task is simplified to a bounding box classification task. In our work, we use no
bounding boxes during training nor box proposals during testing. Instead, we let the CNN
do the grouping directly by exploiting the pooling layer.

The pooling in a CNN groups pixels in a high-resolution image to a lower resolution one.
Choices in pooling determine how the gradient is propagated back through the network.
In average-pooling, the gradient is shared over all underlying pixels. In the case of a global

Figure 2.1: Accumulation of ground
truth bounding boxes of Pascal VOC
2007 centered at the object’s maximum
activation. Note that the average extent
follows a long-tailed distribution.

Figure 2.2: Gradient flow from our re-
gion pooling layer centered around the
max activation. Note that our pooling
follows the average extent illustrated in
Figure 2.1.
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image label, average-pooling will propagate loss gradients to all pixels in the image equally,
which will cover the object but will also cover the background. In contrast, max-pooling
only promotes the best point and will thus enforce only a single discriminative object part
and not the object extent. Average-pooling is too wide, and max-pooling is too narrow; a
regional pooling is needed for retaining the extent. Consider Fig 2.1, where we center the
ground truth bounding boxes around its most discriminative part, given by the maximum
filter response [9]. The average object extent is peaked, but has heavy tails. This motivates
the need for regional pooling. In Fig 2.2, we show the gradient flow of our proposed pooling
method centered around the maximum response. Our pooling method not only assigns
gradients to the maximum or to the full image: it pools regionally.

We present the very first weakly-supervised single-shot detector. It has the following
novelties. (i) Speed: we extend the idea of class activation maps (CAM) [10] onto a single
stage CNN-only architecture for weakly supervised object localization, that achieves good
accuracy while being 10-15 times faster than other related methods. (ii) Extent pooling:
a ‘regional’ global pooling technique called the Spatial Pyramid Averaged Max (SPAM)
pooling for capturing the object extent from weak image-level labels during training. (iii)
No region proposals: We demonstrate a simple and fast back-projection pipeline that
avoids the need for costly region proposal algorithms [11]. This allows our framework to
perform real-time inference at 35fps on a GPU.

2.2 Related Work
Fully Supervised Object Localization. The state of the art is based on the R-CNN [12]
pipeline which CNN combines the power of a classification network (e.g. ResNet [13]) with
an SVM classifier and unsupervised region proposals [11]. This idea was sped up by [14]
and [15] and many different algorithms emerged trying to propose the best regions [16–18],
including a fully convolutional network [19] based version called R-FCN [4]. Recently
published object detectors [6, 7] achieved orders of magnitude faster inference speeds
with good accuracies by leaving region-proposals behind and predict bounding boxes in a
single-shot. The high speed of our method is borrowed from the single-shot philosophy,
albeit without requiring full supervision.

Weak Supervised Object Localization. Most methods [2, 3, 20, 21] follow a strategy
where first, multiple candidate object windows are extracted using unsupervised region
proposals [11], from each of which feature vector representations are calculated, based
on which an image-label trained classifier selects the proper window. In contrast, our
single-shot method does away with region proposals all together by directly learning the
object’s extent.

Li et al. [2] sets the state-of-the-art in this domain. They achieve this by filtering the
proposed regions in a class specific way, and using MIL [22] to classify the filtered proposals.
Bilen et al. [3] achieves similar performance by using an ensemble of two-streamed deep
network setup: a region classification stream, and a detection steam that rank proposals.
Wang et al. [20] starts with the selective search algorithm to generate region proposals,
similar to R-CNN. They then use Probabilistic Latent Semantic Analysis (pLSA) [23] to
cluster CNN-generated feature vectors into latent categories and create a Bag of Words
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(BoW) representation to classify proposed regions. The work of Cinbis et al. [21] uses MIL
with region proposals. In our work, we also are weakly-supervised, however, we perform
localization in an end-to-end trainable single-pass without using region proposals.

A recent study by [9] follows an alternate approach [24] of using global (max) pooling
over convolutional activation maps for weakly supervised object localization. This was one
of the first works to use this approach. Their method gives excellent result for predicting a
single point that lies inside an object, while predicting its bounding boxes, via selective
search region proposals, yields limited success. In our work, we focus on ascertaining
the bounding box extent of the object directly. Further efforts by [8] improve upon [9] in
bounding box extent localization by using a tree search algorithm over bounding boxes
derived from all final layer CNN feature maps. In our work, we perform extent localization
of an object by filtering CNN activations into a single feature map instead of using a
search algorithm, which makes our approach faster and computationally light, achieving
high-speed inference.

Finally, the concept of class activation mappings in [10] serves as a precursor to our
architecture. Like us, they make the observation that different global pooling operations
influence the activation maps differently. We build upon their work and introduce object
extent pooling.

2.3 Method
To allowweak supervision training for localization for a convolutional-only neural network,
we use a training framework ending in a convolutional layer with a single feature map (per
object class). This is followed by a global pooling layer, which pools the activationmap of the
previous layer into a single scalar value, which depends on the pooling method. This output
is finally connected to a two-class softmax cross-entropy loss layer (per class). This network
setup is then trained to perform image classification by predicting the presence/absence of
objects of the target class in the image using standard back-propagation using image-level
labels. A visualization of this setup is shown in Figure 2.3.

During inference, the global pooling and the softmax loss layers are removed, thereby
the single activation map of the added final convolutional layer becomes the output of the
network, in the form of an 𝑁 ×𝑁 grid. Due to the flow of backpropagated gradients through
the global pooling layer during training, the weights of this convolutional layer get updated
such that the location and shape of the strongly activated areas in its activation map
essentially have a one-to-one relation with the location and shape of the pixels occupied
by positive class objects in the image. At the same time, the intensity of the activation
values in this activation map essentially represent the confidence of the network about the
presence of the objects at the specific location. Borrowing notation from [10], we call this
single feature-map output activation a Class Activation Map (CAM).

Consequently, to extract the location of the object in the image, the CAM activations are
thresholded and backprojected onto the input image to localize the positive class objects.

2.3.1 The Class Activation Map (CAM) Layer
The class activation map layer is essentially a simple convolutional layer, albeit with a single
feature map/channel (per object class) and a kernel size of 1×1. When connected to the
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final convolutional layer of a CNN, the CAM layer has one separate convolutional weight
for each activation map of the previous layer (see Figure 2.3). Training the network under
weak-supervision through global pooling and softmax loss updates these kernel weight
of the CAM layer through the gradients backpropagated from the global pooling layer.
Eventually, the feature maps (of the previous conv layer) that produce useful activations
for the training task of presence/absence classification are weighted higher, while the
feature maps whose outputs are uncorrelated with the presence/absence of the positive
class objects are weighted lower. Hence, the CAM output can be seen as the weighted
sum combination of the activations of all the feature maps of the previous convolutional
layer. Finally after training, the CAM activation essentially forms a heatmap of location
likelihood of positive class objects in the input image.

The CAM layer used here is based on the concept of class activation mapping introduced
in [10]. While being algorithmically similar, it should be noted that our CAM layer setup
is different from the one in [10] in the following way: we perform the global pooling
operation after the weight multiplication step (via a 1×1 conv.), while [10] does this before
the weight multiplication step (via a FC layer). The reason for this difference is to allow
greater ease of implementation and lower computational redundancy (requiring pooling
on just one feature map).
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Figure 2.3: Visualization of the training setup for a CAM-augmented CNN. An extra conv. layer with a single
feature map, the CAM, extracts the relevant feature information from the CNN’s last conv layer. For weakly
supervised training with present/absent annotation, the CAM is followed by a global pooling layer and connected
to a softmax output/loss layer.

Inference
The complete pipeline is illustrated in Figure 2.4. A peak of CAM’s activations would occur
at the location corresponding to the most discriminative part of the object. The height of
the peak is related to network confidence, whereas the extent of the object is captured by
the width. To get a localization proposal, we can investigate which pixels in the original
image where responsible for the activations that form a peak in the CAM. First, only the
CAM peaks above the CAM threshold (computed based on the ratio of biases/weights of
the output layer, learnt during training) are considered. Next, using a floodfill algorithm,
all activated pixels belonging to the ‘mountain’ of this peak (including those below the
threshold) are selected, as illustrated on the central plot in Figure 2.4. These pixels are
then backprojected onto the input image via a fast-backprojection technique explained in
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Algorithm 1: Fast-backprojection
Input: [X], [Y], layerCAM, 𝑟 // activation pixels in CAM
layer, the CAM layer, resize ratio

Output: bpImage // backprojection on input image
/* for each activation pixel in the CAM layer */

1 foreach {𝑥,𝑦} in {[X], [Y]} do
2 𝑥0 = 𝑥1 ←𝑥; 𝑦0 = 𝑦1 ←𝑦; 𝑙 ← layerCAM // init

/* loop through all layers from CAM to input */
3 while 𝑙 ≠ layerinput do

/* s, p, k = stride, padding, kernel size */
4 {𝑥,𝑦}0 ← {𝑥,𝑦}0 × 𝑠 −𝑝
5 {𝑥,𝑦}1 ← {𝑥,𝑦}1 × 𝑠 −𝑝 +𝑘 −1
6 𝑙 ← layerCAM−1 // Go to next layer

/* If ratio is provided, correct locations */
7 if 𝑟 ≠ 0 then
8 {𝑥,𝑦}0 ← {𝑥,𝑦}0 + ({𝑥,𝑦}1 − {𝑥,𝑦}0) × 𝑟 / 2
9 {𝑥,𝑦}1 ← {𝑥,𝑦}1 + ({𝑥,𝑦}1 − {𝑥,𝑦}0) × 𝑟 / 2

10 bpImage[𝑦0 ∶ 𝑦1, 𝑥0 ∶ 𝑥1] = 1 // fill bpImage
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Figure 2.4: Visualization of the full inference pipeline. The
central plot explains the thresholding and floodfilling steps.
The outputs of the pipeline are positive class object bound-
ing boxes.

Algorithm 1. We call it ‘fast’ because it computes the mapping between CAM pixels and
the input pixels without actually performing a backward pass through the network. As
can be inferred, this algorithm backprojects onto all pixels in the input image that could
have contributed to the CAM activations (its receptive field). Therefore, we use a ratio
parameter 𝑟 to influence the size of the backprojected area. This parameter can be set by
heuristics, or optimised over a separate validation set. Finally, by performing a contour
detection on this backprojection, we can fit simple rectangular bounding boxes on the
detected contours to localize the extent of the object.

2.3.2 Global Pooling
During training, the gradients computed from the loss layer reach the CAM layer through
the global pooling layer. The connecting weights between the CAM and the previous conv
layers are updated based on the distribution/flow of the gradients defined by the type of
global pooling layer used. Hence, the choice of global pooling layer and its distribution
of gradients to bottom layers is an important consideration for this framework for weak
supervision.

Equation Legend In the equations hereafter, we consider a CAM activation map of
𝑁 ×𝑁, where 𝑥𝑛 is an arbitrary pixel in it. The backpropagated gradients from the top loss
layer is denoted by 𝑔.

Max and Average Pooling (GMP & GAP)
Global Max Pooling (GMP) layer is essentially a simple max pooling layer commonly
used in CNNs, albeit whose kernel size is the same as the input image size. During the
forward pass, this essentially means it always returns a single scalar pixel whose value is
equal to the pixel with the highest value in the input image. During the backward pass,
Equation 2.1 depicts how the gradients (∇𝐺𝑀𝑃) are computed for all pixel locations in the
CAM layer.
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∇𝐺𝑀𝑃 = 𝑔 ⋅ {
1, if 𝑥𝑛 = max

0<=𝑛<𝑁
(𝑥𝑛)

0, otherwise
(2.1)

It can be seen from the equation that the
gradient is passed only to the location with the
maximum activation in the CAM. During train-
ing with a positive object image, this implies
that the detectors that additively contributed
in making this pixel value high are encouraged
via a positive weight update. Conversely, for a negative object image, the detectors that
contributed in creating the highest value in the CAM are discouraged. Therefore, the
network only learns from the image area that produces max activation in the CAM, i.e.,
the most discriminative object parts.

Global Average Pooling (GAP) layer performs a similar global pooling such that the
single output pixel is the average of all input pixels during the forward pass. During the
backward pass, the gradients are computed as denoted in Equation 2.2.

∇𝐺𝐴𝑃 = 𝑔 ⋅
1
𝑁 2 (2.2)

It can be seen that every location in the CAM gets the
same gradient. Due to this, over multiple epochs of training,
the detectors that fire for parts of the positive class object are
strongly weighted, while detectors that fire for everything else
are weighted very low. Thus, the network learns from all in-
put image locations with an equal rate due to GAP’s uniform

backpropagated gradient.
The visualization of the gradient flow through these pooling layers is shown in Figure

2.5. Due to the single-location max-only gradient distribution of the global max pooling
layer, it can be hypothesised that a GMP trained CAM can be quite ideal at pointing
to the discriminative parts of an object. Conversely, due to the equally spread gradient
distribution of the global average pooling layer, a CAM trained with GAP would activate
for the full body of object plus parts of correlated or closely situated background.

Spatial Pyramid Averaged Max (SPAM) Pooling
Based on the properties of the global max and average pooling layers and from a study
of pooling published in [25], we propose a pooling layer that is more tuned for training a
CAM network for extent localization under weak supervision.

The approach consists of multiple local average pooling operations on the CAM activa-
tion map in parallel with varying kernel sizes. The kernel size of these average pooling
operations is increased in steps (e.g., 1, 2, 4, ...), thus forming a spatial pyramid of local
average pooling activation maps. Next, these activation maps are passed through global
max pooling operations, which selects the maximum values among these average pooled
activation maps. Finally, the output single pixel values of these combined pooling op-
eration are averaged together to form the single scalar output of this layer. Due to the
spatial pyramid structure and the use of average and max pooling operations, we call this
layer global Spatial Pyramid Averaged Max Pooling, or simply SPAM pooling layer. A
visualization of the architecture of SPAM layer is shown in Figure 2.6.

During the backward pass, the gradients are computed as depicted in Equation 2.3.
Here, we consider a SPAM layer with 𝑃 pyramid steps, each having a local average pooling
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Figure 2.6: Architecture of the SPAM layer. First,
local average pooling operations are applied in par-
allel with different kernel sizes, forming a pyramid
of output activations. Next, global max pooling is
applied and finally, its outputs are averaged. At the
ends of the spatial pyramid, we directly show the
equivalent GMP and GAP steps.

kernel size of 𝐾𝑝 ×𝐾𝑝; the backpropagated gradients from the top loss layer is represented
𝑔.

∇𝑆𝑃𝐴𝑀 = 𝑔 ⋅
1
𝑃

𝑃
∑
𝑝=1

{
𝐾𝑝

−2, if �̂�𝑛 = max
𝑛∈𝑁max

𝑝
(�̂�𝑛),∀�̂�𝑛 = mean

𝑛∈𝑁 avg
𝑝

(𝑥𝑛)

0, otherwise
(2.3)

where the average/max pool kernel size at pyramid step 𝑝 is 𝑁 avg/max
𝑝 ×𝑁 avg/max

𝑝 .
The detectors responsible for creating maximal activation receives the strongest update,

while the areas surrounding it receive an exponentially lower gradient that is inversely
proportional to its distance from the maximal activation. As a result, while it strongly
updates the weights of detectors of discriminative parts responsible for maximal activation,
similar to GMP, it still ensures all locations receive a weak update, like in GAP. Due to
this property, SPAM layer forms a good middle ground between the extremes of GMP and
GAP. This can also be seen in Figure 2.5, which shows the gradients of SPAM layer, in
comparison with that of global max and average pooling layers.

The gradient distribution of the SPAM layer is also shown in 3D in Figure 2.2, in
comparison with the distribution of ground truth bounding boxes w.r.t the object’s most
discriminative part (given by CAM’s maximal activation). As can be seen, SPAM’s gradients
are able to match the distribution of the objects’ actual extent.

2.4 Experiments and Results
2.4.1 Evaluation of Global Pooling strategies on MNIST128
Setup As a proof of concept, we conduct experiments on a modified MNIST [26] dataset:
MNIST128. this set consists of 28×28 MNIST digits placed randomly on a blank 128×128 im-
age, thus creating a localization task. Further, we convert the 10-class MNIST classification
problem to a two-class task where the digit 3 (chosen arbitrarily) is considered the positive
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Method mean Average Precision
Classification Pin-pointing Extent

GMP (Max) 99.8 98.9 69.5
GAP (Avg) 99.4 82.3 79.1
SPAM 99.9 95.8 95.8

Table 2.1: Results of the pooling ex-
periments on MNIST128. Bold entries
are the ones that perform ‘well’ on the
two-class task (>95 mAP).

inside box: 31K
outside box: 6K

(a) GMP

inside box: 88K
outside box: 22K

(b) SPAM

inside box: 417K
outside box: 518K

(c) GAP

Figure 2.9: Visualization of the sum of nor-
malized CAM activations, such that the object
size present in the image is constant (denoted
by the black box). The numbers denote the
quantity of activated pixels (correctly) inside
vs (wrongly) outside the objects’ bounding
box.

class, and rest are negative. We consider three types of tasks: classification, bounding box
localization with at least 0.5 IoU (detection/extent localization), and localization by pin-
pointing. Pin-pointing is identifying any single point that falls within the object bounding
box [9]. We use a FC-less version of LeNet-5 [27] with our CAM extension, trained with
softmax loss via various global pooling techniques. The SPAM pooling layer used here
consists of a spatial pyramid of 4 steps, with local average pool kernel sizes 1 × 1, 2 × 2,
5×5, and 𝑁 ×𝑁, where 𝑁 is the size of the CAM activation map. After training, the layers
succeeding the CAM were removed, and inference was performed as explained in 10.

The results of this experiment are in Table 2.1. As hypothesised, GMP is good at locating
the most discriminative part of the object, and thus succeeds at pin-pointing, but fails at
extent. In comparison, GAP performs worse in pin-pointing, and better in extent. The
global SPAM pooling is actually able to perform fairly better overall than both the other
forms of pooling for object localisation.

2.4.2 Experiments on PASCAL VOC
Setup We adapted an ImageNet pre-trained version of VGG-16 [28]. We replaced the
fully connected layers with our CAM layer, followed by our global SPAM pooling layer plus
softmax output layer. Once again, the SPAM pooling used here consisted of 4 pyramid steps
with kernel sizes of 1×1, 2×2, 5×5, and 𝑁 ×𝑁, where 𝑁 is the size of the CAM activation
map. To train our CAM layer weakly on the PASCAL VOC 2007 training set, we assigned a
CAM-SPAM-softmax setup, see Fig 2.3, to each of the 20 VOC classes. After the training,
we removed the layers succeeding the CAMs, as was done in the previous experiment. We
also fine-tuned the ratio parameter in Algorithm 1 on a separate validation set.

Analysis ofCAMbehaviourtrainedviavariousGlobalPoolingtechniques
To investigate our method further, we normalize and sum the CAM activations over the
whole test set (only images contained one object), such that the size of the object in all
the images is constant and centered. In Figure 2.9, we visualize the distribution of CAM’s
activated pixels w.r.t the object bounding box.

Figure 2.9 illustrate that the GMP trained CAM activations strongly lie within the
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Method mAP
PASCAL VOC 2007 test set

SPAM-CAM[Ours] 27.5
GMP-CAM (Max Pool)[Ours] 25.9
GAP-CAM (Avg Pool)[Ours] 15.6
LiRP+MIL [2] 39.5
BilenRP+Ensemble [3] 39.3
WangRP+pLSA [20] 30.9
CinbisRP+MIL [21] 30.2
BencyRP+TreeSearch [8] 25.7

PASCAL VOC 2012 validation set
SPAM-CAM[Ours] 25.4
GMP-CAM (Max Pool)[Ours] 22.6
GAP-CAM (Avg Pool)[Ours] 19.3
BencyRP+TreeSearch [8] 26.5
OquabRP+GMP [9] 11.7

Table 2.2: Detection results on PASCAL VOC 2007 & 2012. Entries marked with RP denote their use of region
proposal sets.

Figure 2.10: Localization examples: The highlighted areas in the images indicate the backprojection of CAM
activations; green b.boxes match the ground truth, while red do not. Note how wrong b.box predictions are
mostly either due to closely occurring objects, or closely correlated background.

bounding region of the object, but fail to activate for the full extent of the object. Conversely,
GAP trained CAM activations spread well beyond the bounds of the object. In contrast,
the activations of SPAM trained CAM do not spread much beyond the object’s boundaries,
while still activating for most of the extent of the object. This observations support our
hypothesis that SPAM pooling offers a good trade-off between the adverse properties
of GMP and GAP, and hence are better suited for training CAM for weakly supervised
localization.

Comparison with the State of the Art
The results obtained with this network can be found in Table 2.2, in comparison with prior
work. While evaluating these results, it should be noted that all the previous work in this
field rely on region proposals, which is an extra computationally heavy step. [2] uses
a combination of region proposals, multiple instance learning and fine-tuned deepnets,
and [3] uses region proposals and an ensemble of three deep networks to achieve this
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Figure 2.11: Speed and performance comparison between different localization methods on PASCAL VOC 2007
test set.

performance. In contrast, our method is purely single-shot, i.e., it requires a single forward
pass of the whole image without the need of region proposals, which makes the method
computationally very light. To the best of our knowledge, this is the first method to perform
WSOL without region proposals.

Here, we see that the best methods [2, 3] using proposals perform significantly better.
However, we are able to match the performance of other methods that also use region
proposals [8, 9, 20, 21] and rely on similarly sized CNNs as ours. This observation suggests
that region proposals themselves are not vital for the task of weakly supervised localization.

Speed Comparison In Figure 2.11, the performance of several methods is shown against
the speed at which they can achieve this performance (on the PASCAL VOC 2007 test set).
The test speeds for all methods have been obtained on roughly ~500×500 sized images
using their default number of proposals, as reported in their respective papers. Because
some studies ([9, 20, 21]) do not provide details on processing time, we make an estimation
based on details of their approach (denoted by *). In the figure, we also include information
on some well known fully-supervised R-CNN approaches [6, 7, 12, 14, 15, 29] for reference.
As can be seen, the VGG-16 based SPAM-CAM performs about 10-15 times faster than
all other weakly supervised approaches. In fact, even a CPU-only implementation of
our approach roughly performs in the same speed range as other TitanX/K40 GPU based
implementations. Additionally, we are able to match the speeds of existing fully supervised
single-shot methods like [6, 7, 29].
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2.5 Conclusion
In this chapter, a convolutional-only single-stage architecture extension based on Class
ActivationMaps (CAM) is demonstrated for the task of weakly supervised object localisation
in real-time without the use of region proposals. Concurrently, a novel global Spatial
Pyramid Averaged Max (SPAM) pooling technique is introduced that is used for training
such a CAM augmented deep network for localising objects in an image using only weak
image-level (presence/absence) supervision. This SPAM pooling layer is shown to posses
a suitable flow of backpropagating gradients during weakly supervised training. This
forms a good middle ground between the strong single-point gradient flow of global max
pooling and the equal spread gradient flow of global average pooling for ascertaining the
extent of the object in the image. Due to this, the proposed approach requires only a
single forward pass through the network, and utilises a fast-backprojection algorithm to
provide bounding boxes for an object without any costly region proposal steps, resulting
in real-time inference. The method is validated on the PASCAL VOC datasets and is shown
to produce good accuracy, while being able to perform inference at 35fps, which is 10–15
times faster than all other related frameworks.
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3
Input and Data Efficiency in

Webcam Gaze Tracking

Efficiency and ease of use are essential for practical applications of camera based eye/gaze-
tracking. Gaze tracking involves estimating where a person is looking on a screen based on face
images from a computer-facing camera. In this chapter, we investigate two complementary
forms of efficiency in gaze tracking: 1. The computational efficiency of the system which is
dominated by the inference speed of a CNN predicting gaze-vectors; 2. The usability efficiency
which is determined by the tediousness of the mandatory calibration of the gaze-vector to a
computer screen. To do so, we evaluate the computational speed/accuracy trade-off for the
CNN and the calibration effort/accuracy trade-off for screen calibration. For the CNN, we
evaluate the full face, two-eyes, and single eye input. For screen calibration, we measure the
number of calibration points needed and evaluate three types of calibration: 1. pure geometry,
2. pure machine learning, and 3. hybrid geometric regression. Results suggest that a single
eye input and geometric regression calibration achieve the best trade-off.

This chapter is based on � Gudi, A., li, X., & van Gemert, J. (2020). Efficiency in Real-time Webcam Gaze Tracking.
In A. Bartoli, & A. Fusiello (Eds.), Computer Vision – ECCV 2020 Workshops: Proceedings (1 ed., pp. 529 - 543).
(Part of the Lecture Notes in Computer Science book series (LNCS, volume 12535) Also part of the Image Processing,
Computer Vision, Pattern Recognition, and Graphics book sub series (LNIP, volume 12535); Vol. 12535). Springer.
https://doi.org/10.1007/978-3-030-66415-2_34 [1].

https://doi.org/10.1007/978-3-030-66415-2_34
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3.1 Introduction

I n a typical computer-facing scenario, the task of gaze-tracking involves estimating where
a subject’s gaze is pointing based on images of the subject captured via the webcam. This

is commonly in the form of a gaze vector, which determines the pitch and yaw of the gaze
with respect to the camera [2]. A more complete form of gaze tracking further extends this
by also computing at which specific point the subject is looking at on a screen in front of
the subject [3, 4]. This is achieved by estimating the position of the said screen w.r.t. the
camera (a.k.a. screen calibration), which is not precisely known beforehand. We present
a study of some core choices in the design of gaze estimation methods in combination
with screen calibration techniques (see Figure 3.1), leaning towards an efficient real-time
camera-to-screen gaze-tracking system.

Computational efficiency: Input size
Deep networks, and CNNs in particular, improved accuracy in gaze estimation where CNN
inference speed is to a large extent determined by the input image size. The input size for
gaze estimation can vary beyond just the image of the eye(s) [2, 5], but also include the
whole eye region [4], the whole face, and even the full camera image [3]. Yet, the larger
the input image, the slower the inference speed. We study the impact of various input
types and sizes with varying amounts of facial contextual information to determine their
speed/accuracy trade-off.

Usability efficiency: Manual effort in screen calibration
Most work focus on gaze vectors estimation [6–10]. However, predicting the gaze-point,
point on a screen in front of the subject where he/she is looking, is a more intuitive
and directly useful result for gaze tracking based applications, especially in a computer-
facing/human-computer interaction scenario. If the relative locations and pose of the
camera w.r.t to the screen were exactly known, projecting the gaze-vector to a point on
screen would be straightforward. However, this transformation is typically not known in
real-world scenarios, and hence must also be implicitly or explicitly estimated through
an additional calibration step. This calibration step needs to be repeated for every setup.
Unlike gaze-vector prediction, you cannot have a “pre-trained” screen calibration method.
In practice, every-time a new eye-tracking session starts, the first step would be to ask
the user to look at and annotate predefined points for calibration. Therefore, obtaining
calibration data is a major usability bottleneck since it requires cooperation of the user
every time, which in practice varies. Here, we study usability efficiency as a trade-off
between the number of calibration points and accuracy.

We consider three types of calibration. Geometry based modelling methods have the
advantage that maximum expert/geometrical prior knowledge can be embedded into the
system. On the other hand, such mathematical models are rigid and based on strong
assumptions, which may not always hold. In contrast, calibration methods based on
machine learning require no prior domain knowledge and limited hand-crafted modelling.
However, they may be more data-dependent in order to learn the underlying geometry. In
this chapter, we evaluate the efficiency trade-off of various calibration techniques including
a hybrid approach between machine learning regression and geometric modelling.
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Figure 3.1: An overview illustration of our camera-to-screen gaze tracking pipeline under study. (Left to right)
Images captured by the webcam are first pre-processed to create a normalized image of face and eyes. These
images are used for training a convolutional neural network (using L2 loss) to predict the 3D gaze vector. With
the cooperation of the user, the predicted gaze vectors can finally be projected on to the screen where he/she is
looking using proposed screen calibration techniques.

Contributions
We have the following three contributions:

(i) We evaluate computational system efficiency by studying the balance of gains from
context-rich inputs vs their drawbacks. We study their individual impact on the
system’s accuracy w.r.t. their computational load to determine their efficiency and
help practitioners find the right trade-off.

(ii) We demonstrate three practical screen calibration techniques that can be use to
convert the predicted gaze-vectors to points-on-screen, thereby performing the task
of complete camera-to-screen gaze tracking.

(iii) We evaluate the usability efficiency of these calibration methods to determine how
well they utilize expensive user-assisted calibration data. This topic has received little
attention in literature, and we present one of the first reports on explicit webcam-
based screen calibration methods.

3.2 Related Work
Existing methods for gaze tracking can be roughly categorized into model-based and
appearance-based methods. The former [11, 12] generates a geometric model for eye to
predict gaze, while the latter [13] makes a direct mapping between the raw pixels and the
gaze angles. Appearance driven methods have generally surpassed classical model-based
methods for gaze estimation.

Appearance-based CNN gaze-tracking
As deep learning methods have shown their potentials in many areas, some appearance-
based CNN networks are shown to work effectively for the task of gaze prediction.

Zhang et al. [2, 14] proposed the first deep learning model for appearance-based gaze
prediction. Park et al. [5] proposed a combined hourglass [15] andDenseNet [16] network to
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take advantage of auxiliary supervision based on the gaze-map, which is two 2D projection
binary mask of the iris and eyeball. Cheng et al. [17] introduced ARE-Net, which is divided
into two smaller modules: one is to find directions from each eye individually, and the
other is to estimate the reliability of each eye. Deng and Zhu et al. [18] define two CNNs
to generate head and gaze angles respectively, which are aggregated by a geometrically
constrained transform layer. Ranjan et al. [19] clustered the head pose into different groups
and used a branching structure for different groups. Chen et al. [7] proposed Dilated-Nets to
extract high level features by adding dilated convolution. We build upon these foundations
where we evaluate the speed vs accuracy trade-off in a real-time setting. The image input
size has a huge effect on processing speed, and we control the input image size by varying
eye/face context.

The seminal work of Zhang et al. [2, 14] utilized minimal context by only using the
grayscale eye image and head pose as input. Krafka et al. [3] presented a more context-
dependent multi-model CNN to extract information from two single eye images, face image
and face grid (a binary mask of the face area in an image). To investigate how the different
face region contributes to the gaze prediction, a full-face appearance-based CNN with
spatial weights was proposed [4]. Here, we investigate the contribution of context in the
real-time setting by explicitly focusing on the speed/accuracy trade-off.

A GPU based real-time gaze tracking method was presented in [6]. This was imple-
mented in a model ensemble fashion, taking two eye patches and head pose vector as input,
and achieved good performance on several datasets [2, 6, 20] for person-independent gaze
estimation. In addition, [7, 8] have included some results about the improvements that
can be obtained from different inputs. In our work, we perform an ablation study and add
the dimension of computation load of each input type. Our insight in the cost vs benefit
trade-off may help design efficient gaze tracking software that can run real-time beyond
expensive GPUs, on regular CPUs which have wider potential in real world applications.

Screen calibration: Estimating point-of-gaze
In a classical geometry-based model, projecting any gaze-vector to a point on a screen
requires a fully-calibrated system. This includes knowing the screen position and pose
in the camera coordinate system. Using a mirror-based calibration technique [21], the
corresponding position of camera and screen can be attained. This method needs to be re-
applied for different computer and camera setting, which is non-trivial and time-consuming.
During human-computer interactions, information like mouse clicks may also provide
useful information for screen calibration [22]. This is, however, strongly based on the
assumption that people are always looking at the mouse cursor during the click.

Several machine learning models are free of rigid geometric modelling while showing
good performance. Methods like second order polynomial regression [23] and Gaussian
process regression [24] have been applied to predict gaze more universally. WebGazer [22]
trains regression models to map pupil positions and eye features to 2D screen locations
directly without any explicit 3D geometry. As deep learning features have shown robust-
ness in different areas, other inputs can be mixed with CNN-based features for implicit
calibration, as done in [3, 4]. CNN features from the eyes and face are used as inputs to a
support vector regressor to directly estimate gaze-point coordinates without an explicit cali-
bration step. These methods take advantage of being free of rigid modelling and show good
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performance. On the other hand, training directly on CNN features makes this calibration
technique non-modular since it is designed specific to a particular gaze-prediction CNN.
In our work, we evaluate data-efficiency for modular screen calibration techniques that
convert gaze-vectors to gaze-points based on geometric modelling, machine learning, and
a mix of geometry and regression. We explicitly focus on real world efficiency which for
calibration is not determined by processing speed, but measured in how many annotations
are required to obtain reasonable accuracy.

3.3 Setup
The pipeline contains three parts, as illustrated in Figure 3.1:

1. Input pre-processing by finding and normalizing the facial images;

2. A CNN that takes these facial images as input to predict the gaze vector;

3. Screen calibration and converting gaze-vectors to points on the screen.

3.3.1 Input Pre-processing
The input to the system is obtained from facial images of subjects. Through a face finding
and facial landmark detection algorithm [25], the face and its key parts are localized in the
image. Following the procedure described by Sugano et al. [20], the detected 2D landmarks
are fitted onto a 3D model of the face. This way, the facial landmarks are roughly localized
in the 3D camera coordinate space. By comparing the 3D face model and 2D landmarks, the
head rotation matrix R and translation vector T, and the 3D eye locations e are obtained in
3D camera coordinate space. A standardized view of the face is now obtained by defining
a fixed distance 𝑑 between the eye centres and the camera centre and using a scale matrix
S = diag(1,1, 𝑑

||e||
). The obtained conversion matrixM = S ⋅R is used to apply perspective

warping to obtain a normalized image without roll (in-plane rotation). For training, the
corresponding ground truth vector g is similarly transformed: M ⋅g.

3.3.2 CNN Prediction of Gaze Vectors
We use a VGG16 [26] network architecture with BatchNorm [27] to predict the pitch and
yaw angles of the gaze vector with respect to the camera from the normalized pre-processed
images.

Training Following the prior work in[2], the network was pre-trained on ImageNet [28].
For all the experiments conducted in this work, we set the following hyperparameters for
the training of the network for gaze-vector prediction:

(i) Adam optimizer with default settings [29];

(ii) a validation error based stopping criteria with a patience of 5 epochs;

(iii) learning rate of 10−5, decaying by 0.1 if validation error plateaus;

(iv) simple data augmentation with mirroring and gaussian noise (𝜎 = 0.01).
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Inference This trained deep neural network can now make prediction of the gaze vector.
The predicted gaze-vector (in the form of pitch and yaw angles) are with respect to the
‘virtual’ camera corresponding to the normalized images. The predicted virtual gaze vectors
can be transformed back to the actual gaze vector with respect to the real camera using
the transformation parameters obtained during image pre-processing. These vectors can
then be projected onto a point on the screen after screen calibration.

3.3.3 Screen Calibration: Gaze Vectors to Gaze Points
To project the predicted 3D gaze vectors (in the camera coordinate space) to 2D gaze-points
on a screen, the position of the screen with respect to the camera must be known which
is difficult to obtain in real world settings. The aim of screen calibration is to estimate
this geometric relation between the camera and the screen coordinate systems such that
the predicted gaze vectors in camera coordinates are calibrated to gaze-points in screen
coordinates. Because we focus on the task of eye-tracking in a computer-facing scenario,
we can simplify the setup by making some assumptions based on typical webcam-monitor
placement (such as for built-in laptop webcams or external webcams mounted on monitors):

(i) the roll and yaw angles between the camera and the screen are 0°,

(ii) the intrinsic camera matrix parameters are known, and

(iii) the 3D location of the eye is roughly known w.r.t the camera (estimated by the eye
landmarks in the face modelling step in camera coordinate space).

With these assumptions in place, we can design user-aided calibration techniques where
the user cooperates by looking at predefined positions on the screen.

3.4 Screen Calibration Methods
As calibration is tedious and needs to be performed multiple times, we evaluate efficiency
in terms of how much manual effort is required for three calibration versions:

1. calibration by geometry;

2. calibration by machine learning;

3. calibration by a hybrid: geometry and regression.

3.4.1 Geometry-based Calibration
To perfectly project a gaze-vector w.r.t the camera to a point on a screen, we are essentially
required to determine the transformation parameters between the camera coordinate
system (CCS) and the screen coordinate system (SCS). With our assumptions about roll
and yaw in place, this transformation can be expressed by the rotation matrix R and the
translation vector T between the camera and the screen:

R = [
1 0 0
0 cos(𝜌) −sin(𝜌)
0 sin(𝜌) cos(𝜌)

] & T = [Δ𝑥 Δ𝑦 Δ𝑧]𝑇 , (3.1)
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Figure 3.2: A illustration of the geometric setup between the eye and the screen in the screen coordinate space.
{X,Y,Z}CCS and {X,Y,Z}SCS represent the directions of the {𝑥,𝑦,𝑧}-axes of the camera and screen coordinate
systems respectively; Origin

SCS
represents the origin of the screen coordinate system.

where 𝜌 denotes the vertical pitch angle (about the 𝑥-axis; along the 𝑦-axis) between
the camera and the screen norm, and Δ𝑥,Δ𝑦,Δ𝑧 represent the translational displacement
between the camera and the screen. An illustration of the geometric setup is shown in
Figure 3.2 (3.2a and 3.2b).

Step 1 The first step is to estimate the location of eye in the screen coordinate system.
This can be done with the aid of the user, who is asked to sit at a pre-set distance 𝑧 from
the screen and look perpendicular at the screen plane (such that the angle between the
gaze vector and the screen plane becomes 90°). He is then instructed to mark the point of
gaze on the screen, denoted by {𝑥,𝑦}. In this situation, these marked screen coordinates
would directly correspond to the 𝑥 and 𝑦 coordinates of the eye in the screen coordinate
space. Thus, the eye location can be determined as: eSCS = {𝑥eyeSCS , 𝑦

eye
SCS , 𝑧

eye
SCS} = {𝑥,𝑦,𝑧}.

During this time, the rough 3D location of the eye in the camera coordinate system
is also obtained (from the eye landmarks of the face modelling step) and represented as
eCCS. With this pair of corresponding eye locations obtained, the translation vector 𝑇 can
be expressed by:

eSCS = R ⋅eCCS +T ⟹ T = eSCS −R ⋅eCCS. (3.2)

Step 2 Next, without (significantly) changing the head/eye position, the user is asked to
look at a different pre-determined point on the screen {𝑥screen, 𝑦screen}.

During this time, the gaze estimation system is used to obtain the gaze direction vector
in the camera coordinate system:

gCCS = [𝑥gazeCCS 𝑦gazeCCS 𝑧gazeCCS ]
𝑇
. (3.3)

This is a normalized direction vector whose values denote a point on a unit sphere. Both
the pitch 𝛼 (about the 𝑥-axis) and the yaw 𝛾 (about the 𝑦-axis) angles of the gaze w.r.t the
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camera can be re-obtained from this gaze direction vector:

𝛼 = arctan2(−𝑦gazeCCS , 𝑧gazeCCS ) & 𝛾 = arctan2(𝑥gazeCCS , 𝑧gazeCCS ). (3.4)

Once 𝛼 is determined, we can calculate the camera pitch angle 𝜌 between the camera
and the screen:

𝜌 = arctan(
−𝑦eyeSCS +𝑦screen

𝑧eyeSCS

) −𝛼. (3.5)

Using this in Equation 3.1, the rotation matrix R can be fully determined. This known
R can now be plugged into Equation 3.2 to also determine the translation vector T. This
procedure can be repeated for multiple calibration points in order to obtain a more robust
aggregate estimate of the transformation parameters.

Step 3 Once calibration is complete, any new eye location ̂eCCS can be converted to the
screen coordinate space:

̂eSCS = [�̂�eyeSCS , �̂�
eye
SCS , ̂𝑧eyeSCS] = R ⋅ êCCS +T. (3.6)

Using the associated new gaze angles �̂� and ̂𝛾, the point of gaze on the screen can be
obtained:

�̂�screen = ̂𝑧eyeSCS ⋅ 𝑡𝑎𝑛( ̂𝛾 ) + �̂�eyeSCS & �̂�screen = ̂𝑧eyeSCS ⋅ 𝑡𝑎𝑛(�̂� + 𝜌)+ �̂�
eye
SCS , (3.7)

3.4.2 Machine Learning (ML)-based Calibration
Since the task of gaze vector to gaze point calibration requires learning the mapping
between two sets of coordinates, this can be treated as a regression problem. In our
implementation, we use a linear ridge regression model for this task for it’s ability to avoid
overfitting when training samples are scarce. The input to this calibration model includes
the predicted gaze-vector angles and the 3D location of the eye, all in the camera coordinate
system. The outputs are the 2D coordinates of the gaze-point on the screen in the screen
coordinate system.

During calibration, the user is asked to look at a number of predefined points on the
screen (such that they span the full region of the screen) while their gaze and eye locations
are estimated and recorded for each of these points. These calibration samples are then
used to train the model. Given enough training/calibration points, this model is expected
to implicitly learn the mapping between the two coordinate systems.

3.4.3 ‘Hybrid’ Geometric Regression Calibration
To combine the benefits of geometry based prior knowledge with ML based regression, a
hybrid geometric regression technique can be derived where machine learning is used to
infer the required geometric transformation parameters.

As before, we assume the roll and yaw angles between the camera and the screen are
0°. The only unknown between the pose of the camera w.r.t the screen is the pitch angle
𝜌. The rotation and translation matrices are the same as given by Equation 3.1, and the
formulations of gaze pitch and yaw angles 𝛼 and 𝛾 stay the same as defined by Equation
3.4.
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Again, during calibration the user is asked to look at a number of varied predefined
points on the screen while their gaze directions and eye locations are recorded. These
data samples are then used to jointly minimize the reprojection errors (squared Euclidean
distance) to learn the required transformation parameters 𝜌,Δ𝑥,Δ𝑦,Δ𝑧:

argmin
𝜌,Δ𝑥,Δ𝑦,Δ𝑧

𝑁
∑
𝑖=1

((𝑥 𝑖point − �̂� 𝑖screen)2 + (𝑦
𝑖
point − �̂�𝑖screen)2) , (3.8)

where 𝑁 is the number of training/calibration points; {𝑥point, 𝑦point} denote the ground
truth screen points, while {�̂�screen, �̂�screen} are the predicted gaze points on screen as
estimated using Equation 3.7.
We solve this minimization problem by differential evolution [30].

3.5 Experiments and Results
3.5.1 Datasets
We perform all our experiments on two publicly available gaze-tracking datasets:

MPIIFaceGaze [4] This dataset is an extended version of MPIIGaze [2] with available
human face region. It contains 37,667 images from 15 different participants. The images
have variations in illumination, personal appearance, head pose and camera-screen settings.
The ground truth gaze target on the screen is given as a 3D point in the camera coordinate
system.

EYEDIAP [31] This dataset provides 94 video clips recorded in different environments
from 16 participants. It has two kinds of gaze targets: screen points and 3D floating targets.
It also has two types of head movement conditions: static and moving head poses. For
our experiments, we choose the screen point target with both the static and moving head
poses, which contains 218,812 images.

3.5.2 Exp 1: Speed/Accuracy Trade-off for Varying Input Sizes
Setup
A gaze vector can be predicted based on various input image sizes, as illustrated in Figure 3.3:

• Full face image: The largest and most informative input;

• Two eyes: Medium sized and informative;

• Single eye: Minimal information and smallest size.

To assess the performance gains of different input sizes vs their computational loads and
accuracy, we setup an experiment where we vary the input training and testing data to the
neural network while keeping all other settings fixed. We then measure the accuracy of
the system and compute their individual inference-time computational loads.

For this experiment, we individually train our deep network on each of the multiple
types and sizes of the pre-processed inputs shown in Figure 3.3. In order to obtain a reliable
error metric, we perform 5-fold cross-validation training. This experiment is repeated for
both the MPIIFaceGaze and EYEDIAP dataset.
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Figure 3.3: Examples of three input types used in the
experiments: (left) face crop, sized 224×224 and 112×112;
(right top) two eyes region crop, sized 180×60 and 90×30;
(right bottom) single eye crop, sized 60×32 and 30×18.

Results
The results of this experiment can be seen in Figure 3.4. As expected, we observed that the
lowest error rates are obtained by the largest size of input data with the maximum amount
of context: the full face image. We also observe that using this input type results in the
highest amount of computation load.

As we reduce the input sizes, the accuracy only marginally degrades while the compu-
tation load gets cut down severely. In fact, even if we simply use a crop of the eye region or
just the crop of a single eye, we obtain accuracies comparable to that from full face input
albeit with a fraction of the computation.

3.5.3 Exp 2: ScreenCalibrationUsability/AccuracyTrade-off
Setup
To evaluate the three screen calibration techniques proposed, we train and test them
individually using calibration data samples from MPIIFaceGaze and EYEDIAP. This data
for screen calibration consists of pairs of gaze-vectors and their corresponding ground
truth screen points. Using this, calibration methods are trained to predict the 2D screen
points from the 3D gaze-vectors. We evaluate on noise-free ground truth gaze-vectors
and on realistic predicted gaze-vectors (using 30×18 eye crop as input) so as to assess the
accuracy of the complete camera-to-screen eye-tracking pipeline. As training data, we
obtain calibration data pairs of gaze-vectors and points such that they are spread out evenly
over the screen area. This is done by dividing the screen in an evenly-spaced grid and
extracting the same number of points from each grid region.

Results
The results of these experiments can be seen in Table 3.1 for a fixed calibration training
set size of 100 samples. For the ‘theoretical’ task of predicting gaze-points from noise-free
ground truth gaze-vectors, we see in Table 3.1a that the hybrid geometric regression method
outperforms others. We see that the gap in performance is smaller when head poses are
static, while the hybrid method does better for moving head poses. This suggests that
for the simplest evaluation on static head poses with noise-free gaze-vectors, all methods
perform well; however, as movement is introduced, the limitations of the purely geometric
method and the advantage of hybrid method becomes clearer.

When calibration is performed on actual gaze-vectors predicted by the system, overall
accuracy deteriorates by one to three orders of magnitude. Comparing the methods, the
hybrid geometric regression method also does well compared to others in most conditions,
as seen in Table 3.1b. We observe that the purely geometric method actually copes better
than the ML based method when head poses are static. However, it’s performance severely
degrades with moving head poses. Also, the ML method is able to marginally outperform
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(b) EYEDIAP

Figure 3.4: Scatter plots of the performance of a VGG16 based gaze tracking network trained on different input
types vs their computation load/time in FLOPS/seconds. The error bars represent the standard deviation of the
errors (5-fold cross-validation). While the computation cost of these inputs vastly vary, they all perform in
roughly the same range of accuracy. The red dashed line represents approximate real-time computation at 15 fps
on an Intel i7 CPU.
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Ground Truth
Gaze Vector Dataset

Screen Calibration Method
[Prediction Error in mm]

Pure
Geometric

Pure 
M.L.

Hybrid
Geo. Reg.

MPIIFaceGaze N/A 9.27 1.23
EYEDIAP [Static] 5.98 2.73 2.35

EYEDIAP [Moving] 22.45 8.55 2.39

(a) Groundtruth gaze-vector calibration

Predicted
Gaze Vector Dataset

Screen Calibration Method
[Prediction Error in mm]

Pure
Geometric

Pure 
M.L.

Hybrid
Geo. Reg.

MPIIFaceGaze N/A 50.92 42.19
EYEDIAP [Static] 67.72 80.63 61.6

EYEDIAP [Moving] 101.53 82.7 86.37

(b) Predicted gaze-vector calibration

Table 3.1: Performance of calibration methods (trained with 100 samples) on different datasets and conditions
expressed in gaze-point prediction errors (in mm). Hybrid geometric regression technique significantly outper-
forms both purely geometric and purely machine learning (M.L.) based calibration methods in most conditions.
Legend: [Static] denotes static head poses, [Moving] denotes moving head poses.
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Figure 3.5: Learning curves of the calibration techniques on MPIIFaceGaze and EYEDIAP dataset (log scale). The
purely geometric method performs better than ML method when calibration data is scarce, but does not improve
further when more data is available. The ML method improves greatly when calibration data becomes abundant.
The hybrid geometric regression method performs the best over a wide range of calibration data points used.

the hybrid method on moving head poses. This is likely because given sufficient training
samples, the ML method is able to learn features from the input that the other—more
rigid—methods cannot do. Note that only the EYEDIAP dataset results are reported for the
purely geometric technique, since this method can only be trained on static head poses
and MPIIFaceGaze does not have any static head poses (the geometric method can still be
tested on the moving head poses of EYEDIAP).

To assess the efficiency of these calibration methods, wemust ascertain the least amount
of calibration samples required with which satisfactory performance can still be attained.
This can be assessed by observing the learning curves of the calibration methods, where
the prediction errors of the methods are plotted against the number of calibration/training
points used. This is shown in Figure 3.5.

The hybrid method is able to outperform both the other methods even when a low
number of calibration points are available. An interesting observation seen in Figure 3.5b
is that the purely geometric method actually performs better than the ML method when
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the number of calibration points is low ( 9). This can be due to the rigid and pre-defined
nature of the geometric model which has prior knowledge strongly imparted into it. On
the other hand, the ML model requires more data points to learn the underlying geometry
from scratch. This is also seen in the results: as the number of points increase, the ML
model’s performance improves while the geometric model stagnates. Overall, the lower
error rate of the hybrid model over a broad range of used calibration points affirms its
strengths over the overtly rigid geometric model and the purely data-driven ML approach.

3.6 Discussion
The experiments related to input types and sizes produce some insightful and promising
results. The comparison between them with respect to their performance vs their compu-
tational load indicate that the heavier processing of larger inputs with more contextual
information is not worth the performance gain they produce. Roughly the same accuracies
can be obtained by a system that relies only on eye image crops. In contrast, the gap in the
computational load between these two input types is a factor of 20. This supports our idea
that for an objective measurement task like gaze-vector prediction, the value of context is
limited. These results can help in guiding the design of eye tracking systems meant for
real-time applications where efficiency is key.

Outputs in the form of gaze-vectors are not always readily useful in a computer-facing
scenario: they need to be projected onto the screen to actually determine where the
person is looking. This area has received little attention in literature, and our experiments
provide some insight. Our comparison of three calibration techniques show that a hybrid
geometric regression method gives the overall best performance over a wide range of
available calibration data points. Our results show that purely geometric modelling works
better when calibration points are very few, while a purely ML method outperforms it
when more points become available. However, a hybrid model offers a robust trade-off
between them.

3.7 Conclusion
In this work, we explored the value of visual context in input for the task of gaze tracking
from camera images. Our study gives an overview of the accuracy different types and sizes
of inputs can achieve, in relation to the amount of computation their analysis requires.
The results strongly showed that the improvement obtained from large input sizes with
rich contextual information is limited while their computational load is prohibitively high.
Additionally, we explored three screen calibration techniques that project gaze-vectors
onto screens without knowing the exact transformations, achieved with the cooperation of
the user. We showed that in most cases, a hybrid geometric regression method outperforms
a purely geometric or machine learning based calibration while generally requiring less
calibration data points and thus being more efficient.
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4
Exploiting Spatial Context
for Anomaly Detection and

Feature Learning

Mean squared error (MSE) is one of the most widely used metrics to expression differences
between multi-dimensional entities, including images. However, MSE is not locally sensitive as
it does not take into account the spatial arrangement of the (pixel) differences, which matters
for structured data types like images. Such spatial arrangements carry information about the
source of the differences; therefore, an error function that also incorporates the location of errors
can lead to a more meaningful distance measure. We introduce Proximally Sensitive Error
(PSE), through which we suggest that a regional emphasis in the error measure can ‘highlight’
semantic differences between images over syntactic/random deviations. We demonstrate that
this emphasis can be leveraged upon for the task of anomaly/occlusion detection. We further
explore its utility as a loss function to help a model focus on learning representations of
semantic objects instead of minimizing syntactic reconstruction noise.

This chapter is based on � Gudi, A., Büttner, F., & van Gemert, J. (2019). Proximally Sensitive Error for Anomaly
Detection and Feature Learning. Extended abstract, ICT.OPEN, Hilversum, 2019. ArXiv:2206.00506. https://arxiv.
org/abs/2206.00506 [1]

https://arxiv.org/abs/2206.00506
https://arxiv.org/abs/2206.00506
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4.1 Introduction

S ince its introduction by Eukleídēs [2] in ∼300BC, Euclidean/L2 distance has widely been
used to express distances between points. The simplicity, robustness, and mathematical

convenience of this metric makes it a popular choice as a similarity/distance metric in
computer vision and machine learning in the form of mean squared error (MSE) [3–5],
where it finds wide use for all domains of data types including images [6, 7]. In this
work, we present an alternate to MSE for structured data types (images) in the form of a
proximally sensitive error function.

MSE iswell suited formeasuring differences between scalarswhich are single-dimensional,
or vectors which are multi-dimensional. Such data types have no information in the spatial
arrangement of values/elements within, i.e., there are no patterns in the way their elements
are located (they are only required to be consistent). For example, a feature vector describ-
ing an object’s important characteristics. For such non-structured data types, the relative
locations (indexes) of the differences does not matter. On the other hand, for structured
data types like images, relative locations of the differences do matter because information
is also encoded in the the underlying spatial arrangement of values. For example, pixels
composing a visual image of an object. However, this is not considered by the mean squared
error, as illustrated with an example in Figure 4.1 (column 3). In this study, we attempt to
address this drawback of MSE by introducing a locally sensitive metric.

An error function that incorporates spatial location of errors can lead to a more mean-
ingful error metric for images, since the meaning of the content of an image relies heavily
on the location of the pixel values that represent semantic or meaningful objects. Based
on the observation that adjacent pixels often form regions of semantic meaning (in other
words: objects in the image) while sparse spread-out errors are caused by random or
syntactic noise, we hypothesise that an error function that emphasizes regions with high
concentrations of pixel-wise reconstruction error forms a better metric (see example in
Figure 4.1, column 4). Towards this end, we introduce Proximally Squared Error (PSE), that
implements this spatial dependence via Gaussian convolutions.

In the field of computer vision, one of the utilities of such a location sensitive error metric
can be in tasks involving image reconstruction. Typically for such tasks, the difference
between a reconstructed image and the original image is computed to iteratively improve
the reconstruction [6, 8] and/or make a downstream classification [9, 10]. To empirically
evaluate our hypothesis, we examine proximally sensitive error against mean squared error
for the tasks of image anomaly detection and unsupervised pre-training, both involving
image reconstruction.
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Figure 4.1: Comparison PSE vs MSE: A face image (left) is subtracted by two variants (col 2): one with sunglasses
(bottom), and one with some random noise addition (top). MSE between the original image and the two variants
is equal (col 3). However, PSE of the image with sunglasses is much higher than with random noise (col 4). This
illustrates that MSE cannot distinguish between syntactic/random and semantic/meaningful errors, while PSE
can.

Contributions This work has the following contributions:

(i) We present proximally sensitive error (PSE), a novel locally sensitive error func-
tion that also takes into account the relative locations of differences between such
structured data types.

(ii) We examine and provide insights into the applicability of PSE versus MSE for image
reconstruction powered tasks of anomaly detection and unsupervised pre-training.

4.2 Related Work
Distance metrics for images The straight-forward pixel-wise L2/Euclidian distance,
equivalent to the mean squared error (MSE), is a popular choice for expressing differences
between images [4–7]. MSE has been used in the image reconstruction terms of loss
functions for training several neural network approaches such as sparse autoencoders [4],
variational autoencoders [5], convolutional autoencoders [7], and generative adversarial
networks [6]. In this work, we propose proximally sensitive error (PSE) as an alternative
to MSE to express differences between images.

MSE does not match well with visually perceived differences between images by
humans [11, 12]. To counter this, Wang et al. [13] introduced the structured similarity
metric (SSIM), an distance metric specifically designed for assessment of image/video
quality loss due to compression. SSIM is able to look at neighbouring pixels within a
pre-defined window. Concurrently, Li et al. [14] discovered heuristics from a large dataset
to design the dynamic partial distance function (DPF) that better represents perceptual
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similarity. In our work, we propose a simplified distance function for structured data like
images by incorporating regional sensitivity.

Image anomaly detection Anomaly detection in images can be divided into two broad
classes (among others) [15, 16]: direct inference/classification of anomalies [17–19]; and
reconstruction and comparison based anomaly detection (typically un/semi-supervised)
[8, 20, 21]. Bergmann et al. [22] examined SSIM as a distance metric for autoencoder
reconstruction anomaly detection, which yielded results similar to L2. In our work, we
focus on a PCA reconstruction based anomaly detection setup where we examine the
applicability of PSE as a distance metric.

Unsupervised pre-training Unsupervised pre-training was discovered to provide a
superior alternative to fully stochastic parameter initialization of deep neural networks
[23–25]. The use of end-to-end pre-training on image data has been widely studied due to
its potential benefits [9, 10], typically using the pixel-wise L2/MSE reconstruction loss for
optimization. In this chapter, we explore PSE as a location-sensitive image reconstruction
loss for unsupervised pre-training with images, and examine if this can lead to better
feature learning.

4.3 Method
For two-dimensional images, the residuals between two images is simply the differences
between individual pixel values of the two images. This can be expressed mathematically
as:

R𝑖,𝑗 = �̂�𝑖,𝑗 −𝑌𝑖,𝑗 ∀ 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁 (4.1)

where 𝑌𝑖,𝑗, �̂�𝑖,𝑗 represents the 𝑖th and 𝑗th pixel in images 𝑌 and �̂� of size 𝑀 ×𝑁.

The Mean Squared Error (MSE) between these two images is essentially the average of
the squares of the residuals between the two images. This is expressed as:

MSE =
1

𝑀𝑁

𝑀,𝑁
∑
𝑖,𝑗=1

(R𝑖,𝑗)
2

(4.2)

Figure 4.2: Illustration MSE vs PSE: MSE magnitude in the areas with more spread-out errors is the same as areas
with concentrated grouping of residuals. In contract, PSE error is higher for closely grouped areas.
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As can be seen, the squared error values do not take the neighbourhood of individual
errors into consideration. Thus, residuals that are grouped tightly and residuals that are
spread-out contribute equally towards the mean. This is illustrated in Figure 4.2.

To counter this, we propose a Proximally Sensitive Error (PSE) function:

PSE =
1

𝑀𝑁

𝑀,𝑁
∑
𝑖,𝑗=1

([R ∗ 𝑘(𝜎)]𝑖,𝑗)
2

(4.3)

where ∗ denotes the convolution operation and 𝑘(𝜎) denotes a Gaussian kernel with 𝜎 as
its standard deviation, given by:

𝑘(𝜎)𝑥,𝑦 =
1

2𝜋𝜎2
𝑒−

𝑥2+𝑦2

2𝜎2 ∀ 𝑥,𝑦 ∈ 2𝜎 (4.4)

Through the convolution operation, every error value incorporates the error value in its
local neighbourhood (defined by 𝜎). This way, PSE is able to give a higher importance to
residuals grouped close together versus residuals sparsely spread-out. This is also visualized
in Figure 4.2.

Image reconstruction based anomaly detection
Assuming closely grouped errors denote themoremeaningful/semantic differences between
images (our hypothesis), we can leverage upon PSE’s ability to highlight them to perform
anomaly detection. The pipeline for anomaly detection based on image reconstruction
involves the following steps, and illustrated in Figure 4.3.

• A principle component analysis (PCA) model [26], which is capable of image recon-
struction, is trained on purely non-anomalous images of a particular object/class.

• The input image is passed through this PCA model and its reconstructed image is
obtained. Due to the model’s training, the non-anomalous parts of the input image
are reconstructed correctly, but the model fails to reconstruct any anomalies in the
image that it hasn’t seen during its training. This effect can further be enhanced by
reducing the number of PCA components used to reconstruct the image.

• Next, the pixelwise PSE (with a set 𝜎 parameter) between the original and recon-
structed image is computed. This pixelwise PSE ‘image’ can essentially be seen as a
heatmap of differences between the two images.

• Finally, themaximumPSE value in this computed heatmap is chosen denoting the area
with the highest difference, and this value provides and estimate of anomalousness
in the image.

The 𝜎 parameter of the PSE function and the number of PCA components used for im-
age reconstruction can be optimized/learnt (e.g., via grid search) based on examples of
anomalous and non-anomalous images available in the training set.
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PCA
Encode

PCA
Decode

Input image PCA reconstruction

Anomaly heatmap

PSE •,• =
Anomaly

Figure 4.3: Illustration of the anomaly detection pipeline using proximally sensitive error (PSE). A PCA model
trained on non-anomalous images is unable to reconstruct anomalies present in the input (the crushed part of the
capsule in this example). PSE can be used to highlight this difference, as seen in the produced heatmap.

Feature learning via unsupervised pre-training
If the closely-grouped errors assigned a higher value by PSE are indeed more semantic in
nature (our hypothesis), PSE can essentially perform as a more meaningful loss function
for unsupervised image reconstructing. This is because the model can be made to focus
more on minimizing the reconstruction of the closely grouped semantic errors over the
spread-out syntactic errors during training, leading to better feature learning.

Such unsupervised image reconstruct can be used as a pre-training step for a downstream
task such as classification using a autoencoder-style neural network. The steps involved in
this setup are as follows given a semi-supervised dataset of unlabelled and labelled samples:

• First, an autoencoder is trained end-to-end for image reconstruction with PSE as the
loss function using the large set of unlabelled samples.

• Next, the encoder part of the autoencoder is appended with classification layer(s)
(e.g. fully connected layer with softmax activation) while the decoder is discarded.
This new model is now trained on the smaller set of labelled samples.

Image classification can now be performed with this trained encoder-classifier model.

4.4 Experiments and Results
4.4.1 Anomaly/Occlusion Detection
We focus on the task of few-shot anomaly detection in these experiments.

Setup The task of anomaly detection consists of classifying if a particular object in a
given input image has an abnormality. For example, picture of a bottle with a crack in it
can be classified as anomalous since normal bottles do not have cracks. Under the few-shot
learning regime for anomaly detection, the vast majority of available training samples
belong to the non-anomalous class, and only a handful of samples contain anomalies.

Datasets We perform this set of experiments on two publicly available datasets: The
MVTecAD dataset [22] for industrial anomaly detection, and the AR Face dataset [27] for
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facial occlusion detection. The MVTecAD dataset consists of ∼5300 images of 15 categories
of object classes, with ∼4100 non-anomalous samples and ∼1200 images with multiple types
of anomalies. The AR Face dataset consists of 2600 frontal images of faces with varying
illumination and facial expressions, with 1200 of them containing occlusions caused by
sunglasses and scarf. Images from both datasets are resized and converted to 128×128
grayscale. Examples from these datasets can be seen in Figure 4.5 (first rows).

Industrial Anomaly Detection
The results of 5-shot industrial anomaly detection on the MVTecAD dataset are shown in
Figure 4.4a in terms of average precision. Only 5 labelled samples per anomaly class are
used for optimizing the 𝜎 hyper-parameter of the PSE function and the number of PCA
components used for image reconstruction.

As can be seen, the use of PSE attains a higher average precision (0.73±0.2) than MSE
(0.66±0.3) on average. Better performance is obtained by PSEw.r.t MSE on 11 of the 15 object
categories in the dataset. In few categories like toothbrush and bottle, the performance gap
between PSE and MSE is marginal while the performance is very high. This is likely due
to the straight-forward appearance of anomalies in the images, thereby making the task
trivial for both PSE and MSE.

On the other hand, images from two of the categories where PSE performer poorer than
MSE (hazelnut and screw) are not pose-normalized and contain rotation. This results in a
very high variation in terms of the object’s pose, which a simple PCA model is unable to
model and reconstruct. For images of the tile category, some anomalies are in the form of
transparent occlusions which leads to unreliable performance. Lastly, anomaly detection
performance for cable is the lowest for both MSE and PSE. This is because most anomalies
in this category are in the colour space (e.g., differently coloured wires are swapped), and
this information is lost due to the grayscale conversion. These observations can be seen in
the examples shown in Figure 4.5.

Facial Occlusion Detection
Figure 4.4b summarises and compares the results of 5-shot facial occlusion detection on the
AR Face dataset using PSE and MSE. Similar to the previous experiment, 5 labelled samples
per class are used to determine the model hyper-parameters (𝜎 and PCA components).

It can be seen that PSE significantly outperforms MSE: PSE obtains an average precision
of 0.84 ± 0.05 while MSE scores 0.43 ± 0.07 over all classes. Both PSE and MSE perform
better with detecting sunglasses as compared to scarf, likely due to the scarf occluding the
lower part of the face that contains more variation due to facial hair and expressions.

Overall, PSE based occlusion detection on faces from the AR dataset works a lot better
than anomaly detection on the MVTecAD dataset. This can be attributed to the pose-
normalisation of face crops in AR and themuch higher number of training samples available,
as compared to that of the individual object categories of MVTecAD.
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Figure 4.4: Results of 5-shot anomaly/occlusion detection
on the MVTecAD industrial dataset ((a)) and AR face
dataset ((b)). PSE performs better than MSE in almost all
categories. Poor performance in some categories are due
lack of pose normalization (screw, hazelnut), transparent
occlusions (tile), loss of colour information (cable), and
higher variation in lower face (scarf ).
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Figure 4.5: Examples of 5-shot anomaly/occlusion detec-
tion on the MVTecAD industrial dataset ((a)) and AR face
dataset ((b)). The PCA is unable to reconstruct (middle
rows) the anomaly in the input image (top rows). Using
this, PSE essentially provides a heatmap of the anomaly
(bottom rows). Reconstructions of screw and metal nut
are especially poor due lack of pose-normalization in the
images.
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Figure 4.6: Example images from the modified MNISTX (top row) and STL-10 datasets (bottom row). The depicted
classes are (left to right): 1, 2, 3, 4, 5 from MNIST; and airplane, ship, truck, monkey, bird from STL-10.

4.4.2 Unsupervised Pre-training
In these experiments, we evaluate the use of PSE vs MSE as a loss function for the task of
unsupervised pre-training.

Datasets Two classification datasets are used in this set of experiments: a modified ver-
sion of MNIST handwritten digits dataset [28] (hereby called MNISTX) composed of 70,000
labelled samples (10 classes); and a grayscale version of the STL-10 image classification
dataset [29] containing 100,000 unlabelled and 500 labelled images (10 classes). Examples
from both datasets are shown in Figure 4.6. The MNIST dataset has been modified by
padding the original image such that its size is tripled (84×84 pixels) and adding salt-and-
pepper noise to the image. The STL-10 dataset images are 96×96 pixels and converted to
grayscale.

Setup We consider a simple autoencoder neural network architecture composed on an
input layer, a fully connected hidden layer with ReLU that serves as the bottleneck, and a
fully connected output layer with a sigmoid activation function. Another fully-connected
softmax layer serves as the classification layer whose dimensions match the number of
classes in the dataset, i.e., 10. The dimensions of the input and output layers match the
number of pixels in the input images (i.e., 84×84 for MNISTX and 96×96 for STL-10). The 𝜎
parameter of the PSE loss function is set to 0.5 (determined empirically).

Computational Efficiency
The resulting accuracy obtained by the model using PSE and MSE with respect to the
autoencoder bottleneck size (i.e., dimension of the hidden layer) can be seen in Figure 4.7.
For both datasets, it can be seen that using PSE results in higher accuracy than MSE on
average per bottleneck size. This means PSE can achieve the same results as MSE in spite
of using smaller models. In the STL-10 dataset, the accuracy gap between PSE and MSE is
largest when the autoencoder’s bottleneck is the smallest, and this gap reduces gradually
as the bottleneck size increases. On the MNISTX dataset, such an observation is not as
clear (standard deviations overlap), however the accuracy gap does become smaller/inverts
for large bottleneck sizes.
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Figure 4.7: Results of unsupervised pre-training using PSE and MSE on MNISTX ((a)) and STL-10 ((b)) datasets in
terms of the autoencoder bottleneck size (error bars represent standard deviations). PSE performs better than
MSE for models with smaller bottlenecks, but this gap reduces for higher complexity models.

These observations can be attributed to the the fact that a model with fewer parameters
benefits the most from PSE’s ability to focus the learning on minimizing semantic errors,
thereby leading to more computationally efficient feature learning. On the other hand, the
higher learning capacity of larger models might enable them to learn meaningful features
in spite of no explicit boosting of semantic errors over syntactic ones in MSE.

Data Efficiency
Figure 4.8 shows the accuracy obtained by using PSE and MSE for varying amounts of
unsupervised pre-training data used. As can be seen, PSE consistently outperforms MSE
as a loss function on both datasets over all sizes of the unsupervised pre-training set. This
suggests fewer data is required by PSE to achieve the same results as MSE.

On MNISTX, the accuracy gap between PSE and MSE is larger for lower training set
sizes, and this gap appears to close in when more training data is introduced. This could
suggest that PSE’s focus on more meaningful errors helps the model learn more efficiently
from the data, and this effect is magnified when the available training data is limited.

On the STL-10 dataset, such an observation is not apparent. However, PSE seems to
producemore consistent results thanMSE, both across andwithin different training set sizes
(the standard deviation of accuracies is smaller). This could potentially be caused by the
strong attention on the more semantic errors in PSE overcoming the effect of stochasticity
in the model’s parameter initialization that could have lead to learning distractions.
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Figure 4.8: Results of unsupervised pre-training using PSE and MSE on MNISTX and STL-10 datasets in terms of
the size of the pre-training set (error bars represent training sets). Overall, PSE performs better than MSE over all
sizes of training data used. PSE results are also more consistent, evident by the smaller standard deviation error
bars.

4.5 Discussion
Experiments performed on the application of proximally sensitive error (PSE) for few-shot
anomaly detection appeared to show promising results. PSE was able to outperform mean
squared error (MSE) in detecting anomalies on a large majority of object categories. This
potentially supports our suggestion that closely grouped differences are primarily semantic
in nature and PSE is able to boost them in comparison with spread-out differences, which
are largely syntactic, i.e., caused by random noise.

In these experiments, the parameter defining the amount of spread of errors (i.e., the 𝜎
of the Gaussian kernel) did require to be estimated/optimized per object category. This
suggests that for different types of objects, the spatial definition of semantic objects vs
syntactic noise is different. Also, inferring/learning this parameter automatically (along
with the number of PCA components used) can improve the applicability of the proposed
anomaly detection pipeline from few-shot towards zero-shot detection.

Experiments on the use of PSE as a loss function for unsupervised pre-training suggested
that PSE can lead to better feature learning than MSE under constrained conditions: when
themodel’s computational capacity is limited, or when the availability of training data is low.
This can make PSE a promising choice for training models for low-powered computational
devices and novel image tasks. However, the results lack certainty and a wider range of
experiments on different types of datasets and more complex model architectures can shed
further light on the generalizability of these results.
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5
Prior Knowledge driven

Efficient Vital Signs
Estimation from Faces

Remote photo-plethysmography (rPPG) uses a camera to estimate a person’s heart rate (HR).
Similar to how heart rate can provide useful information about a person’s vital signs, insights
about the underlying physio/psychological conditions can be obtained from heart rate vari-
ability (HRV). HRV is a measure of the fine fluctuations in the intervals between heart beats.
However, this measure requires temporally locating heart beats with a high degree of precision.
We introduce a refined and efficient real-time rPPG pipeline with novel filtering and motion
suppression that not only estimates heart rates, but also extracts the pulse waveform to time
heart beats and measure heart rate variability. This unsupervised method requires no rPPG
specific training and is able to operate in real-time. We also introduce a new multi-modal
video dataset, VicarPPG 2, specifically designed to evaluate rPPG algorithms on HR and HRV
estimation. We validate and study our method under various conditions on a comprehensive
range of public and self-recorded datasets, showing state-of-the-art results and providing
useful insights into some unique aspects. Lastly, we make available CleanerPPG, a collection
of human-verified ground truth peak/heart-beat annotations for existing rPPG datasets. These
verified annotations should make future evaluations and benchmarking of rPPG algorithms
more accurate, standardized and fair.

This chapter is based on:
� Gudi, A., Bittner, M., & van Gemert, J. (2020). Real-TimeWebcam Heart-Rate and Variability Estimation with Clean
Ground Truth for Evaluation. Applied Sciences, 10(23), 1-24. [8630]. https://doi.org/10.3390/app10238630 [1];
and
� Gudi, A., Bittner, M., Lochmans, R., & van Gemert, J. (2019). Efficient real-time camera based estimation of heart
rate and its variability. In Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019
(pp. 1570-1579). [9022193]. https://doi.org/10.1109/ICCVW.2019.00196 [2].

https://doi.org/10.3390/app10238630
https://doi.org/10.1109/ICCVW.2019.00196
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5.1 Introduction

H uman vital signs like heart rate, blood oxygen saturation and related physiological
measures can be measured using a technique called photo-plethysmography (PPG).

This technique involves optically monitoring light absorption in tissues that are associated
with blood volume changes. Typically, this is done via a contact sensor attached to the
skin surface [3]. Such contact sensors can detect the underlying vital signs quite reliably
owing to their proximity to the subject, and therefore have applications in critical areas
like patient monitoring. However, the ability to obtain such measurements remotely via a
camera/webcam, albeit less accurately, can enable applications outside the medical domain
(e.g. affective computing, human-computer interaction), where contact sensors are not
feasible. Remote Photo-plethysmography (rPPG) detects the blood volume pulse remotely
by tracking changes in the skin reflectance as observed by a camera [4, 5]. In this chapter,
we present a novel framework for extracting heart rate (HR) and heart rate variability
(HRV) from the face. This work is an extension of the work done in [2].

Vital signs from videos The process of rPPG essentially involves two steps: detecting
and tracking the skin colour changes of the subject, and analysing this signal to compute
measures like heart rate, heart rate variability and respiration rate. Recent advances in
computer video, signal processing, and machine learning have improved the performances
of rPPG techniques significantly [4]. Current state-of-the-art methods are able to leverage
image processing by supervised deep neural networks to robustly select skin pixels within
an image and perform HR estimation [6, 7]. However, this reliance upon heavy machine
learning (ML) processes has two primary drawbacks: (i) it necessitates rPPG specific
fully supervised training of the ML model, thereby requiring collection of large training
sets; (ii) complex models can require significant computation time on CPUs and thus can
potentially add a bottleneck in the pipeline and limit real-time utility. Since rPPG analysis is
based on a signal processing task, the use of an end-to-end trainable system with no domain
knowledge leaves room for improvement in efficiency (e.g., we know that pulse signal is
embedded in average skin colour changes [5, 8, 9], but the machine learning system has to
learn this). We introduce an efficient unsupervised rPPG pipeline that performs the full
rPPG analysis in real-time. This method achieves state-of-the-art results without needing
any rPPG related training. This is achieved via extracting regions of interest robustly by
3D face modelling, and explicitly tracking and reducing the influence of head movement to
filter the signal.

Heart rate variability While heart rate is a useful output from a PPG/rPPG analysis,
finer analysis of the obtained blood volume pulse (BVP) signal can yield further useful
measures. One such measure is heart rate variability (HRV): an estimate of the variations
in the time-intervals between individual heart beats. This measure has utility in providing
insights into the physiological and psychological state of a person (stress levels, anxiety, etc.).
While traditionally this measure is obtained based on observation over hours [10], short
and ultra-short duration (≤ 5 mins) HRV are also being studied [11]. Our experiments focus
on obtaining ultra-short HRV measure as a proof-of-concept/technology demonstrator for
longer duration applications.
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Figure 5.1: An overview of the proposed heart rate and heart rate variability estimation pipeline (left to right).
The face in captured webcam images are detected and modelled to track the skin pixels in region of interest.
A single 1-D signal is extracted from the spatially averaged values of these pixels over time. In parallel, 3-D
head movements are tracked and used to suppress motion noise. An FFT based wide and narrow band filtering
process produces a clean pulse waveform from which peaks are detected. The inter-beat intervals obtained from
these peaks are then filtered and used to compute heart rate and heart rate variability. The full analysis can be
performed in real time on a CPU.

The computation of heart rate variability depends on the time-variations between heart
beats, and it therefore requires temporally locating the heart beats with a high degree of
accuracy. Unlike HR estimation, where errors in opposite directions average out, HRV
analysis is sensitive to even small artefacts and all errors add up to strongly distort the final
measurement. Thus, estimating HRV is a challenging task for rPPG and this has received
relatively little focus in literature. Our method extracts a clean BVP signal from the input
via a two-step wide and narrow band frequency filter to accurately time heart beats and
estimate heart rate variability. An overview of our method is illustrated in Figure 5.1.

State of datasets As the field of remote photo-plethysmography receives advances
and the accuracies of rPPG methods improve, the demand for thorough, challenging and
realistic datasets arise. Datasets originally created for alternate uses (e.g. psychological
studies) often get re-purposed for rPPG analysis, which has unintended drawback (video
compression, occlusion, etc.) [12, 13]. A large proportion of research in this field end
up using self-recorded private datasets [14], due to which the results cannot be directly
compared with prior work. These factors hinder proper development, evaluation and
benchmarking of rPPG methods. To help alleviate this, we introduce a new publicly
available multi-modal video dataset specifically designed to aid the study of camera-based
rPPG algorithms for HR and HRV analysis.

Ground truth signals Another significant but overlooked complication with existing
rPPG datasets arises from their provided ground truth signals, typically photoplethysmo-
gram (PPG) or electrocardiogram (ECG) waveform. These signals are often plagued by
artefacts, for example in the form of large spikes caused by unwanted sensor movement and
interference [3, 15]. This causes false peak detections resulting in incorrect ground truth HR
and HRVmeasures, thereby leading to unreliable evaluation. Additionally, directly utilizing
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raw PPG/ECG signals as ground truth leads to another issue in the evaluation process:
evaluatees are free to choose the method of obtaining peaks on them, and they could use
the very same peak detection algorithm that is used by the method under evaluation on
the rPPG signal. Since the estimated rPPG peaks are evaluated against ground truth peaks
generated by the same algorithm, this can lead to a ”detector-bias” in the computed error
measures. For example, an algorithm that blindly detects a fixed number of heart-beats on
all signals will incorrectly report zero error.

To help solve these problems caused by noisy ground truth signals, we introduce
CleanerPPG: a public collection of human-verified peak/heart-beat annotations on ground
truth signals of existing publicly available rPPG datasets. This makes the ground truth heart-
beats absolute and independent, and therefore offers more accurate, fairer and standardized
evaluations and benchmarking. CleanerPPG is made publicly available1 and intended to
develop into a continuously growing community-driven collection for all future datasets.

Contributions We make the following contributions in this work:

(i) We present an efficient unsupervised rPPG pipeline that can estimate heart-rate from
RGB webcams. This method has the advantage that it does not require any rPPG
specific training and it can perform its analysis with real-time speeds.

(ii) Our method is able to time individual heart beats in the estimated pulse signal to
compute heart rate variability. This body of work has received little attention, and
we set the first benchmarks on multiple public datasets.

(iii) We perform an in-depth HR and HRV evaluation on an exhaustive collection of 13
public and self-recorded datasets exploring a varied range of unique facets. We also
demonstrate state-of-the-art level performance on six public datasets.

(iv) We introduce a new publicly available high frame-rate dataset, VicarPPG 2, specifi-
cally designed to evaluate rPPG algorithms under various subject conditions for HR
and HRV analysis.

(v) Lastly, we tackle the problem of noisy ground truth signals and the peak detector
bias by releasing a collection of hand-cleaned heart-beat peaks for existing public
datasets.

5.2 Related Work
Signal processing based rPPG methods Since the early work of Verkruysse et al.[5],
who showed that heart rate could be measured from consumer grade camera recordings in
ambient light, a large body of research has been conducted on the topic. Extensive reviews
of these work can be found in [4, 14, 16]. Most published rPPG methods work either by
applying skin detection on a certain area in each frame or by selecting one or multiple
regions of interest and track their averages over time to generate colour signals. A general
division can be made into methods that use blind source separation (ICA, PCA) [17–19]
vs those that use a ‘fixed’ extraction scheme for obtaining the blood volume pulse (BVP)
1This dataset can be requested via the link: www.vicarvision.nl/datasets/cleanerppg

www.vicarvision.nl/datasets/cleanerppg
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signal [20–24]. The blind source separation methods require an additional selection step
to extract the most informative BVP component signal. To avoid this, we make use of a
‘fixed’ extraction scheme in our method.

Among the ‘fixed’ methods, multiple stand out and serve as inspiration and foundation
for this work. Tasli et al. [22] presented the first face modelling based signal extraction
method and utilized detrending [25] based filtering to estimate BVP and heart rate. The
CHROM [20] method uses a ratio of chrominance signals which are obtained from RGB
channels followed by a skin-tone standardization step. Li et al. [21] proposed an extra
illumination rectification step using the colour of the background to counter illumination
variations. The SAMC [23] method proposes an approach for BVP extraction in which
regions of interest are dynamically chosen using self adaptive matrix completion. The
Plane-orthogonal to skin (POS) [24] method improves on CHROM. It works by projecting
RGB signals on a plane orthogonal to a normalized skin tone in normalized RGB space, and
combines the resulting signals into a single signal containing the photopleytismographic
information. We take inspiration from Tasli et al. [22] and further build upon POS [24]. We
introduce additional signal refinement steps for accurate peak detection to further improve
HR and HRV analysis.

Deep learning based rPPGmethods Most recent works have applied deep learning to
extract either heart rate or the blood volume pulse directly from camera images. They rely
on the ability of deep networks to learn which areas in the image correspond to heart rate.
This way, no prior domain knowledge is needed and the system learns the underlying rPPG
mechanism from scratch. DeepPhys [6] is the first such end-to-end method to extract heart
and breathing rate from videos. HR-CNN [7] uses two successive convolutional neural
networks (CNNs) [26] to first extract a BVP from a sequence of images and then estimate
the heart rate from it. RhythmNet [27] uses a CNN and gated recurrent units to form a
spatiotemporal representation for HR estimation. The recent work of AutoHR [28] employs
neural architecture search to discover temporal difference convolution as a strong backbone
to capture the rPPG signal from frame sequences. These methods have shown state-of-
the-art performance on multiple public and private datasets. Our presented algorithm
is unsupervised and makes use of an active appearance model [29] to select regions of
interest to extract a heart rate signal from. Due to this, no rPPG specific model training is
required while prior domain knowledge is more heavily relied upon.

Heart Rate Variability from rPPG Some past methods have also attempted extracting
heart rate variability from videos [19, 30, 31]. A good overview of this is provided by
Rodriguez et al. [32]. Because HRV is calculated based on variations in inter-beat intervals,
it is crucial that single beats are detected and localized with a high degree of accuracy.
Methods that otherwise show good performance in extracting HR can be unsuitable for
HRV analysis since they may not provide beat locations. Rodriguez et al. [32] evaluate their
baseline rPPG method for HRV estimation. Their method is based on bandpass filtering the
green channel from regions of interest. However, their results are only reported on their
own private dataset (not publicly available), which makes direct comparison difficult. More
recent works have shown and benchmarked video-based HRV measurement on publicly
available datasets. Finžgar and Podržaj [33] introduce a wavelet transform and custom
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inter-beat-interval filtering rPPG algorithm and evaluate it on the publicly available PURE
dataset [34]. They shown good correlation between time-domain ultra-short term HRV
measurements from rPPG and PPG. Work by Li et al. [35] highlight the effectiveness of a
clear signal for peak detection, and apply a slope sum function to create more pronounced
peaks in the rPPG signal. Concurrent work by Song et al. [36] introduces one of the
first deep learning based fully supervised techniques for HRV estimation, relying on a
generative adversarial network to learn denoising of rPPG signals. Both these papers report
their results on the UBFC-RPPG dataset [37], which is publicly available. Our method
also estimates heart rate variability by obtaining precise temporal beat locations from
the filtered BVP/rPPG signal, and we report our HRV results on a large number of public
datasets.

rPPG datasets Due to a scarcity of rPPG datasets in the past, initial attempts at evaluat-
ing rPPG methods were on private self-recorded videos [24, 30, 38]. Some of the earliest
publicly available datasets with heart rate annotations repurposed for rPPG research were
introduced in [12] and [13], both of which were originally recorded for the purpose of
psychological studies. Although the lab setting and video compression makes some of these
datasets less than ideal for rPPG, their public availability and large sample sizes provide a
common platform for benchmarking rPPG methods. More recently, [22, 34, 39, 40] intro-
duced datasets specifically recorded with the intention of being used for remote heart rate
estimation research. These sets include variations in illumination, physical/physiological
conditions, and camera types. In this chapter, we introduce a new high frame-rate video
dataset for rPPG evaluation designed with a focus on evaluating short-term heart rate
variability estimation, which require longer observations. This dataset is made publicly
available for research use2.

5.3 Method
We present a method for extracting heart rate (HR) and heart rate variability (HRV) from
the face in real-time using only a consumer grade webcam and CPU, as shown in Figure 5.1.

5.3.1 Skin pixel selection
The first step in the pipeline includes face finding [41] and fitting an active appearance
model (AAM) [29]. This AAM is then used to determine facial landmarks (from the AAM
shape vector) as well as the head orientation (by measuring angular deviation from the
mean frontal pose). The landmarks are used to define a region of interest (RoI) which only
contains pixels on the face belonging to skin. This allows us to robustly track the pixels
in this RoI over the course of the whole video. Our RoI consists of the upper region of
the face excluding the eyes (determined empirically). An illustration of this can be seen
in Figure 5.1. The head orientation is used to measure and track the pitch, roll, and yaw
angles of the head per frame. Across all pixels in the RoI, the averages for each colour
channel (R,G,B) is computed and tracked (concatenated) to create three colour signals.

2This dataset can be requested via the link: www.vicarvision.nl/datasets/vicarppg2

www.vicarvision.nl/datasets/vicarppg2
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5.3.2 Signal extraction
The colour signals and the head orientation angles are tracked over a running time window
of 8.53 seconds, which corresponds to 256 frames at 30 fps, or 512 frames at 60 fps. To
counteract the impact of variations in frame rates of the input, all signals are resampled
(using linear interpolation) to a fixed sampling rate of 30 or 60 Hz, whichever is closer to
the frame rate of the source video. The choice of this window duration and sampling rate
is based on the resulting signal length being a power of two, which is compatible with
optimized fast Fourier transform operations. Subsequently, the three colour signals from
R, G and B channels are combined into a single rPPG signal using the POS method [24].
This method filters out intensity variations by projecting the R, G and B signals on a plane
orthogonal to an empirically determined normalized skin tone vector. The resulting 2-D
signal is combined into a 1-D signal via a weighted sum with the weight determined by
the ratio of standard deviations of the two signals. This ensures that the resulting rPPG
signal contains the maximum amount of the pulsating component.

5.3.3 Signal filtering
Rhythmic motion noise suppression
A copy of the extracted rPPG signal as well as the head-orientation signals are converted to
the frequency domain using Fast Fourier Transform. The three resulting head-orientation
spectra (one each of pitch, roll, and yaw) are combined into one via averaging. This is
then subtracted from the raw rPPG spectrum after amplitude normalization. This way, the
frequency components having a high value in the head-orientation spectrum are attenuated
in the rPPG spectrum. Subsequently, the frequencies outside of the human heart rate range
(0.7 - 4 Hz / 42 - 240 bpm) are removed from the spectra.

Wide & narrow band filtering
The strongest frequency component inside the resulting spectrum is then used to determine
the passband range of a narrow-bandpass filter with a bandwidth of 0.47 Hz. This bandwidth
has been chosen empirically and depends on the robustness of the subsequent peak detection
algorithm to distinguish heat beat peaks from noise (higher the robustness, wider this
bandwidth can be). This bandpass filter can either be realized via inverse FFT or a high
order FIR filter (e.g. ∼50th order Butterworth). The selected filter is then applied to the
original extracted rPPG signal to produce noise-free BVP.

5.3.4 Post processing
To prevent minor shifts in the locations of the crest of each beat over multiple overlapping
running windows, the signals from each window are overlap added with earlier signals [20,
24, 42]. First, the filtered rPPG signal is normalized by subtracting its mean and dividing it
by its standard deviation. During resampling of the signal, the number of samples to shift is
determined based on the source and resampled frame rates. The signal is then shifted back
in time accordingly and added to the previous/already overlapped signals. Older values are
divided by the times they have been overlap added, to ensure all temporal locations lie in
the same amplitude range. Over time, a cleaner rPPG signal is obtained from this.
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Figure 5.2: Example of heart rate vari-
ability computation: Even when the
heart rate (HR) is almost constant, the
underlying inter-beat intervals (IBIs)
can have many fluctuations. This is
detected by rising squared successive
differences (SSD), a measure of heart
rate variability.

5.3.5 Output calculation
Once a clean rPPG signal is obtained, we can perform peak detection on it to locate the
individual beats in time in the signal. From the located beats, heart rate and heart rate
variability can be calculated. To do this, we first extract the inter-beat-intervals (IBIs) from
the signal, which are the time intervals between consecutive beats.

Inter-beat interval pre-filtering
Before calculating HR/HRV, the extracted inter-beat intervals (IBI) are filtered to remove
noise caused by false positive/negative peak detections. First, all IBIs lying outside the
range of 250 ms to 2000 ms are excluded (corresponding to the human heart rate range of
30 to 240 bpm). To further remove strong outliers from the signals, intervals farther than
three standard deviations from the mean are removed.

Heart rate calculation
Heart rate is calculated by averaging all IBIs over a time window, and computing the
inverse of it. That is, HR𝑤 = 1/IBI𝑤, where IBI𝑤 is the mean of all inter-beat intervals that
fall within the time window 𝑤. This gives the heart rate in Hertz (assuming IBIs in seconds),
and multiplying by 60 gives us the heart rate in beats-per-minute. The choice of this time
window can be based on the user’s requirement (e.g. instantaneous HR, long-term HR).

Heart rate variability calculation
Multiple metrics can be computed to express themeasure of heart rate variability in different
units. In this work, we focus on one of the most commonly used time-domain metric for
summarizing HRV called the ‘root mean square of successive differences’ (RMSSD) [11, 32,
38, 43], expressed in units of time. As the name suggests, this is computed by calculating
the root mean square of time difference between adjacent IBIs:

RMSSD =
√

1
𝑁

𝑁
∑
𝑖=1

(IBI𝑖 − IBI𝑖+1)2, (5.1)

where IBI𝑖 represents the 𝑖th inter-beat interval, and 𝑁 represents the number of IBIs in the
sequence. A graphical example of such HRV calculation is shown in Figure 5.2. Because
RMSSD is more susceptible to noise, only IBIs within the first standard deviation around
the mean are considered. Along with RMSSD, we calculate another time-domain HRV
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metric known as the ‘standard deviation of NN intervals’ (SDNN) [11], which is simply the
standard deviation of all filtered IBIs in the sequence.

In addition, we also compute two frequency-domain metrics of HRV, simply known as
‘low-frequency’ (LF) and ‘high-frequency’ (HF) bands [43] (as well as a ratio of them), that
are commonly used in rPPG HRV literature [17, 30, 32]. The LF and HF components are
calculated using Welch’s power spectral density estimation [44]. Since Welch’s method
expects evenly sampled data, the IBIs are interpolated at a frequency of 4Hz using spline
interpolation and detrended to remove very low frequency components [25]. The power of
each band is calculated as total power in a region of the periodogram: the LF band from
[0.04 to 0.15 Hz], and the HF band from [0.15 to 0.4 Hz]. Both metrics are converted to
normalized units by dividing them by the sum of LF and HF. Details about these metrics
can be found in [11, 45].

5.4 Datasets
To compare against prior work and study the properties of the proposed method, we
evaluate on a comprehensive collection of datasets. Table 5.3 provides summarized details
of existing datasets used in this chapter, while the self-recorded ones are listed below. Some
example frames from these self-recorded datasets are shown in Figure 5.4.

StableSet rPPG dataset To make a proof-of-concept test of our proposed rPPG method,
the StableSet rPPG dataset was collected. This dataset contains recordings of participants
while they were shown short video clip stimuli on a screen facing them. During the
recording of this dataset, the participating subjects’ head movements were physically
stabilized using a chin rest with the intention of minimizing motion induced noise in rPPG
measurements. A total of 24 participants were included in this dataset, aged between
18 and 30 years (with a mean of 21.5 years), and having a male : female gender ratio of
9 ∶ 15. Ground Truth was collected in the form of ECG (via a Mobi8 device) at a sampling
rate of 1 KHz, and the videos were recorded using a front-facing HD camcorder (JVC
GZ-VX815) with a resolution of 1920×1080 pixels at a framerate of 25 fps. Camera settings
like brightness, aperture, backlight compensation and white balance were set to manual on

PURE

10  subjects / 59 videos

Subjects recorded with varying 
movement patterns: talking, 
slow/fast translation, and 
small/large rotation.

480p @ 30fps

PNG images [lossless]

Ground truth PPG @ 60Hz

UBFC-RPPG

42 subjects / 42 videos

Subjects recorded while 
playing a stressful game 
(under “realistic” partition).

480p @~30fps

Raw video format [lossless]

Ground truth PPG @ 30/60Hz

MMSE-HR

40 subjects / 102 videos

Part of a larger multi-modal 
corpus containing recordings 
while subjects exhibit facial 
expressions.

1040x1392p @25fps

JPEG images

Instantaneous HR @ 1KHz

VIPL-HR

107 subjects / 2378 videos

Large dataset with a range of 
movement, illumination, and 
camera types. 

~460x502p face crops

25~30fps – MJPEG format

Ground truth PPG @ 60Hz

ECG-Fitness

17 subjects / 17 videos

Recordings while exercising on 
rower, bike and elliptical 
equipment, and also while 
talking.

1080p @ 30fps

YUV format [lossless]

Ground truth ECG @ ~125Hz

MAHNOB-HCI

27 subjects / 527 videos

Subjects recorded while 
watching video stimuli.

780×580p @ 61fps

H.264 format

Ground truth ECG @ 256Hz.

VicarPPG

10 subjects / 20 videos

Unrestrained subjects 
recorded before and after 
performing strenuous 
workout.

720p @ ~30fps [variable] 

H.264 format

Ground truth PPG @ 30Hz.

DEAP

874 videos of 22 subjects.

Subjects recorded while 
watching music videos. 
Faces are significantly 
occluded by electrodes.

720x576p @ 50fps

H.264 format

Ground truth PPG @ 128Hz.

MoLi-PPG

170 videos of 30 subjects.

Subjects recorded under 
varying illumination, 
movement, and speech.

1080p/720p/600p @ 25/50fps

MPEG-4 Part 2 format

Ground truth ECG @ 256Hz.

COHFACE

164 videos of 40 subjects.

Subjects recorded illuminated 
by a spotlight and by uneven 
natural light.

480p @ 20fps

MPEG-4 Part 2 format

Ground truth PPG @ 256Hz.

[34] [37] [46] [39] [7]

[12] [22] [13] [40] [47]

Figure 5.3: A list of the previously available rPPG datasets used in the this chapter, along with their key details.
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Eat ingSetVicarPPG 2 StableSet

Figure 5.4: Example images from newly introduced datasets: (left to right) VicarPPG 2, EatingSet, and StableSet.
The example from VicarPPG 2 shows subject suddenly turning their head. The EatingSet image shows subject
taking a long sip resulting in face occlusion. The subjects in StableSet were physically stabilized using the shown
chin rest (face removed for privacy reasons).

the camcorder to keep filming conditions ideal and constant. Prior informed consent was
obtained from all participants. However, due to privacy restrictions within the consent,
the videos of this dataset are not made available publicly.

VicarPPG-2 dataset Specifically aimed at evaluating rPPG algorithms at estimating
heart rate and short-term heart rate variability (which requires a minimum observation of
5 minutes [11]), we recorded the VicarPPG-2 Dataset. 10 subjects participated in the data
collection. The male : female ratio was 7 ∶ 3 with an average age of 29±5 years, and skin
types ranging on a Fitzpatrick scale [48] from II to IV.

Participants were asked to sit in front of a computer screen (∼1 meter distance) on which
the instructions were shown, a webcam was mounted on top of the screen and an LED ring
lamp was mounted behind the camera. Screen brightness was reduced as far as possible
to minimize the influence of screen light on the face. All videos were recorded using a
Logitech Brio webcam at a fixed framerate of 60 fps using an H.264 compliant encoder
(Microsoft Media Foundation), and stored in mp4 containers. The recording location was
illuminated by natural ambient light in addition to a LED ring lamp (Falcon Eyes DVR-
300DVC) to prevent strong shadows and influences of large changes in natural light. The
ground truth signals were recoded in the form of synchronized ECG signals at 250 Hz
sampling frequency obtained via an Arduino based ECG board (AD8232), and synchronized
PPG signals at 60 Hz obtained via a pulse oximeter device (CMS50E) attached to the left
index finger of the participant. The following four scenarios/conditions were recorded for
each participant:

(i) Baseline: Participants sitting naturally while watching a relaxing video or reading
an article on screen.

(ii) Movement: participants performing four different types of pre-planned angular
body/head movements: turning head side-to-side (shaking), moving head up and
down (nodding), a combination of head shaking and nodding (round), moving eyes
while keeping head still, and naturally bobbing their heads while listening to music
(dance).
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(iii) Stress: Participants playing a stress-inducing Stroop effect [49] based game.

(iv) Post-workout: Participants sitting unrestrained after performing fatigue-inducing
physical workouts to induce higher heart rates.

Each condition was recorded for a duration of 5 minutes to allow for the computation of
short-term heart rate variability, a total of 200 minutes of video were collected. Out of 400
collected ground truth files, two had to be removed from the dataset due to excessive finger
movement in the PPG device and gradual detachment of the ECG ground electrode, leading
to unusable signals. This dataset stands out as it was explicitly collected for RPPG purposes
featuring 5-minute long 60 fps camera recordings under various physical/physiological
conditions, with simultaneous ECG and PPG ground truth recordings. Informed consent
was obtained from all participating subjects. This dataset is available for research purpose,
and can be requested via the link: www.vicarvision.nl/datasets/vicarppg2.

EatingSet rPPG dataset This is a self-recorded video dataset comprising of 20 subjects,
with a male : female ratio of 14 ∶ 6. The average age in the dataset was 32 ± 8.6 years,
and the subjects had skin types ranging on the Fitzpatrick scale [48] from II to IV. The
recording setup and conditions were similar to those of VicarPPG 2. Participants were
sitting at 1 meter distance to a screen on which instructions were shown, while being
illuminated by an LED ring lamp. All videos were recorded using a Logitech C920 webcam
at 30 fps in uncompressed YUYV422 pixel format. PPG signals were collected as ground
truth, at a frequency of 60 Hz, via a pulse oximeter device (CMS50E) attached to the left
index finger of the participant. During recording participants were asked to consume
4 types of food items with varying consistency. These include a sip of water (drink), a
cookie (crumbly), a marshmallow (chewy) and multiple almonds (hard). Informed consent
was obtained from all participants. However, due to privacy restrictions, the videos of
this dataset are not made available publicly. This unique dataset contains a variety of
natural, non-rhythmic deformations and facial occlusions while eating as they might occur
in real-world situations, and serves as a challenging testbed for rPPG evaluation.

CleanerPPGground truth dataset Finally, we introduce ameta-dataset which contains
cleaned ground truth signals of already existing datasets. All peaks/beats detected from
ground truth signals (ECG, PPG) of all datasets used in this chapter were hand-verified and
corrected by human expert annotators, in order to achieve a more accurate and standardized
evaluation.

To do this, candidate peaks were first obtained using a gradient-based signal peak
detector [50]. Following this, a human verification step was performed wherein an expert
matched, verified and corrected every candidate peak by observing the shape of the raw
PPG/ECG waveform and the inter-beat intervals. A specialized Python tool was developed
for this step, which allow annotation of single peaks as well as zooming and an overview
of the resulting RR intervals. Peaks were annotated at the crest of the PPG signal or at the
highest point of the R peak in the ECG signal. Ectopic beats (genuine extra heart beats
that can occur between two regular beats) in the ECG signal were included for the sake
of completion. Parts of the signal that were too noisy due to movement of electrodes or
finger to make out clear peaks were left blank.

www.vicarvision.nl/datasets/vicarppg2
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These steps led to the removal of false positive and negative peak detections caused
by artefacts in the signal, resulting in a collection of noise-free ground truth heart beat
annotations for an exhaustive set of publicly available rPPG datasets. Annotators spent an
average of ∼30 seconds per minute of signal duration, results in a total of 36 person-hours
of annotation work for cleaning 75 hours of ground truth data. These annotations can be
used to perform a more accurate evaluation of rPPG methods, especially for noise-sensitive
measures like HRV. These peak annotations can also be used for training fully supervised
machine learning methods to be able to distinguish between true heat beat peaks and noise,
thereby improving accuracy of such methods. This collection is available for research
purposes, and can be requested via the link: www.vicarvision.nl/datasets/cleanerppg.
All experiments performed in this chapter utilize these hand-cleaned peaks.

5.5 Experiments and Results

5.5.1 Impact of ground truth peak cleaning: CleanerPPG

To lay foundation for the rest of the experiments in this chapter, we first study the impact
and value of evaluating rPPG methods against hand-cleaned ground truth. Figure 5.5
provides examples of the kind of artefacts that plague raw ground truth PPG/ECG signals
resulting in incorrect peak detections. To provide a more qualitative analysis, we measure
the agreement between the raw ground truth peaks (obtained via a gradient-based peak
detector [50]) and the hand-cleaned ground truth peaks from CleanerPPG. We do this by
computing the mean absolute error/difference between their computed HR and HRV values
on all datasets. The results of this study can be seen in Table 5.1.
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Figure 5.5: Examples of peak detection on artefact-prone raw ground truth PPG signals. Spikes in the amplitude
result in false peak detections while some regions of the signal are attenuated resulting in true peaks not being
detected.

www.vicarvision.nl/datasets/cleanerppg
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Dataset Dataset

PURE 0.34 ±1.8 7.9 ±13.1 MoLi-PPG 1.6 ±9.3 4.4 ±16.1

UBFC-RPPG 0.24 ±0.6 11.2 ±8.4 DEAP 0.41 ±1.7 11.85 ±37.4

MMSE-HR 3.57 ±3.5 VicarPPG 0.01 ±0.02 0.11 ±0.3

VIPL-HR 0.57 ±3 17.33 ±57.9 VicarPPG 2 0.08 ±0.5 4.52 ±19.4

COHFACE 0.46 ±2.2 14.36 ±49.6 EatingSet 4.33 ±1.6 6.54 ±10.1

ECG-Fitness 3.47 ±15.2 19.24 ±76.1 StableSet 1.11 ±6.1 10.15 ±43.6

MAHNOB 0.27 ±1.8 3.31 ±23.0

HRV [RMSSD] (ms)

—

HR (bpm) HRV [RMSSD] (ms) HR (bpm)

Table 5.1: Deviations (in terms of mean absolute error) in HR (bpm) and HRV [RMSSD] (ms) calculations between
the raw ground truth and the hand-cleaned peaks from the CleanerPPG set. Many datasets exhibit notable
deviations due to artefacts in the raw signal. This leads to miscalculation of error metrics used for evaluation.

On average over all datasets, the heart rate values computed from the raw ground truth
peaks deviate from the clean peaks in the range of 0.01 to 4.3 bpm, with almost all datasets
containing videos that deviate over 10 bpm. For some datasets (VicarPPG {1&2}, UBFC,
MAHNOB, PURE, COHFACE, VIPL, DEAP), the raw PPG/ECG signals provided are already
of fairly good quality with few artefacts, resulting in a relatively small average deviation
from the cleaned peaks (less than ∼0.5 bpm). On the other hand, many datasets exhibit
significant deviations from the cleaned ground truth (MoLi-PPG, StableSet), with some
diverging quite heavily (EatingSet, MMSE-HR, ECG-Fitness). Similar but larger deviations
are also observed for HRV (RMSSD) calculations, which is much more sensitive to fine
errors in peak detection.

These deviations can be problematic when comparing/benchmarking the performance
of rPPGmethods against each other. This is especially the case when the gap in performance
between methods is small. For example, the raw ground truth of PURE deviates from
cleaned ones by 0.36 bpm. While small, this is significant since the top two state-of-the-art
methods have a performance gap of only 0.3 bpm on this dataset (as seen in Table 5.2).

These results suggest that using the raw ground truth peaks for evaluation can result
in substantial miscalculations of error metrics, potentially leading to incorrect conclusions.
In all the experiments that follow, the cleaned CleanerPPG peaks are used as the ground
truth.

5.5.2 Benchmarking and comparison against state-of-the-art
In order to study the generalizability of the proposed rPPG method, we benchmark it’s
performance on a range of datasets. To assess accuracy, we measure the deviation of
the predicted HR/HRV measures from the ground truth in terms of mean absolute error
(MAE), which is the average of the absolute differences between predicted and true values
(obtained within a set time window for HR). The results for heart rate and heart rate
variability analysis are listed in Tables 5.2 and 5.3 respectively. These results are also
compared against prior work to provide context w.r.t. the state of the art. In addition,
results of a blind baseline estimator that always predicts a heart rate of 75 bpm (mean HR
of all datasets) are also included in the table for additional context.

Heart Rate Estimation
The results for heart rate analysis are listed in Tables 5.2. Here, while comparing, it
should be noted that the supervised methods train or fine-tune on part of the dataset they
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[59]
[7]
[23] [27]
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[61]
[6] [27]
[27]
[62]
[28]
[63] [28] [28]
[36]

Table 5.2: A comparison of the performances of various methods in terms the mean absolute error in beats per minute (bpm). {15}, {30}, and {∞} represent the HR calculation
windows of 15 s, 30 s, and full-video length respectively. * represent accuracies obtained on a smaller (test) subset of the full dataset. ≤ represents root mean squared
error, which is always greater than or equal to mean absolute error. Baseline represents the accuracy obtained by always predicting a heart rate of 75 bpm (average
HR over all datasets). The reported results of the proposed FaceRPPG method (and the baseline) are against the cleaned ground truth from the CleanerPPG set. The
references next to the results denote the source from which they were obtained. The different colours separate the methods into two different categories: unsupervised
signal processing methods, and fully supervised deep learning methods. Note that the supervised methods also train or fine-tune their parameters on parts of dataset they
are being evaluated on, while unsupervised methods do not. The proposed method outperforms most prior work, including fully supervised ones.
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HRV Metric

RMSSD (ms) 15 ±12.7 16 ±22.5 73 ±57.8 119 ±44.4 82 ±53.2 108 ±51.4 43 ±43.7 74 ±41.4 22 ±13.8 26 ±18.9 37 ±33 21 ±37.9

SDNN (ms) 18 ±10.4 19 ±14.9 49 ±45.5 80 ±39.6 53 ±48.2 107 ±51.8 36 ±30.2 46 ±35.2 44 ±28.1 16 ±15.3 16 ±11.5 22 ±23.8

LF & HF(n.u.) 0.1 ±0.1 0.2 ±0.13 0.3 ±0.18 0.2 ±0.17 0.3 ±0.2 0.3 ±0.2 0.2 ±0.13 0.3 ±0.18 0.1 ±0.1 0.2 ±0.11 0.3 ±0.18 0.1 ±0.1

LF/HF 1.3 ±3.03 1.0 ±0.99 1.6 ±2.8 2.4 ±8.01 3.2 ±4.37 2.9 ±11.8 1 ±1.22 1.9 ±2.76 0.5 ±0.36 1.5 ±1.43 1.5 ±1.44 0.5 ±0.76
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[33]

[35]

[20]
[35]
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[36]

Table 5.3: Heart rate variability estimation performance in terms of mean absolute error. The metrics included are RMSSD and SDNN (in milliseconds), LF and HF (in
normalized units), and the ratio of LF/HF. The different colours separate the different metric types as denoted in the second column. The proposed FaceRPPG method
outperforms all prior work, including fully supervised ones. It performs well on datasets with low video compression noise or limited subject movement, but fails when
these factors become large. FaceRPPG results are reported against the cleaned ground truth from the CleanerPPG set.
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are evaluated on, while unsupervised methods do not. Further note that the results for
most supervised methods and some unsupervised methods (marked with a *) are reported
on a smaller unspecified subset (test set) of the dataset. Also, the reported heart rate
mean absolute errors are computed using different time-window sizes (denoted within
the brackets {} when known). To aid comparison, we report our results on three most
commonly used window sizes: 15 secs, 30 secs and full-video length (denoted by {∞}).

The proposedmethod performswell at the state-of-the-art level or beyond onmost of the
datasets: PURE, VIPL-HR, MoLiPPG, VicarPPG, UBFC-RPPG, MMSE-HR. The performance
on these datasets is not only better than other unsupervised signal-processing methods,
but also better or on par with fully supervised deep learning methods. The very high
accuracy of 0.22 - 0.36 bpm on the PURE dataset can be attributed to the videos being
stored in a lossless format and thus having no compression noise. The low error rate on
StableSet can be attributed to the fact that subjects’ movements were physically stabilized
via a chin-rest (see Figure 5.4). On MMSE-HR, our method is able to perform well despite
the subjects showing a range of facial expressions (e.g. laughter). This can be attributed
to the robustness of the face modelling step. Conversely on DEAP, the accuracy of the
algorithm is moderate, with the likely source of errors being poor face modelling due to
the presence of electrodes occluding the face. On the ECG-Fitness dataset, although the
proposed methods performs better or similar to other unsupervised methods, the accuracy
is quite poor. This is largely caused by the extremely high intensity movements of the
subjects while performing physical exercises.

On VIPL, the source of amajority of the errors are the videos recorded on amobile device.
This could be because of relatively inferior camera sensor and/or stronger compression
on such a device. On the videos of MAHNOB-HCI, which are also highly-compressed,
we see that our method does not achieve a very good accuracy, similar to the majority
of unsupervised signal processing methods. An interesting observation is that the error
produced by almost all unsupervised methods is higher than that of a dummy baseline
method that blindly predicts a heart rate of 75 bpm for any input (this is also the case
for VIPL and COHFACE). Only the supervised methods are able to perform better (direct
comparison not always possible since fine-tuning is performed and the reported results
are on an unspecified test subset). This suggests that the high compression noise distorts
the pulse information in the spatial averages of skin pixels. Deep learning based methods
seem to be able to somewhat overcome this, perhaps by learning to detect and filter out
the spatial ‘pattern’ of such compression noise.

Heart Rate Variability Estimation
The task of assessing HRV is much more noise-sensitive than estimating heart rate. In
Table 5.3, the results of heart rate variability estimation are listed for all datasets. Since
HRV is a relatively long-term measure, these HRV metrics are computed over complete
video lengths. Our unsupervised method sets the first HRV evaluation benchmarks on
most of the datasets, and outperforms all previous methods on PURE and UBFC-RPPG
datasets, including deep learning based fully supervised ones (PulseGAN [36]).

Based on HRV literature [11] and considering that the average human heart rate
variability is in the range of 19-75 ms RMSSD, error rates close to or less than ∼30 ms
RMSSD can be considered acceptably accurate for distinguishing between broad HRV level
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Figure 5.6: Heart rate estimation error
rate (MAE) ratio with varying time-window
lengths with respect to average long-term
heart rate estimation error over the full video.
The graph shows that the task of HR estima-
tion becomes exponentially harder with de-
creasing window lengths. For example, error
rate on PURE over 2-secondwindow is 7 times
worse than over the full video.

groups. Our method shows good performance on datasets that are known to have low
video compression and relatively less movement (PURE, UBFC-RPPG, VicarPPG, StableSet).
Reasonable performance is also obtained on some datasets containing movement (MoLi-
PPG and EatingSet); while good results are obtained on VicarPPG 2 in spite of subject
movement. However, accuracy is very poor on the remaining datasets that either contain
high compression noise (MAHNOB-HCI, COHFACE), or exhibit large/fast movements
(VIPL-HR, ECG-Fitness).

5.5.3 In-depth Analysis
Effect of window length on heart rate computation
Considering the choice of window length over which heart rate is computed is important.
In principle, estimating the average heart rate over larger time windows is an easier task
than estimating instantaneous heart rates over shorter windows. This is because variations
in the inter-beat intervals caused by falsely detected and missed peaks average out over a
large window length, thereby giving the evaluation a higher tolerance to incorrect peak
detections. To illustrate this, Figure 5.6 plots the factor by which the error rate changes
when using different window lengths with respect to the long-term average heart rate error
over the whole video. It can clearly be seen that error rates increase exponentially with
decreasing window lengths for most datasets. The datasets less affected by this are the ones
on which errors caused by other factors (like movement, compression, etc.) overshadow
the effect of window length (e.g. ECG-Fitness, MAHNOB-HCI). This experiment illustrates
the severity by which the chosen window size can affect the heart rate estimation accuracy
and this should be taken into consideration during comparative evaluations.

The rest of the experiments in this chapter are performed with a window length of 16
seconds for heart rate estimation.

Effect of lighting conditions
An important factor that leads to attenuation of the underlying blood volume pulse in the
extracted rPPG signal is the illumination/lighting conditions in the video. We test our
method under various lighting conditions on datasets containing labelled illumination
settings: COHFACE, VIPL-HR, ECG-Fitness, and MoLi-PPG; and the results are presented
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in Figure 5.7. We see that bright frontal lighting counter-intuitively leads to a degradation
in performance in VIPL-HR. This is likely caused by pixel saturation, where the full colour
depth of the camera cannot be exploited. Constantly flickering illumination from a computer
monitor in MoLi-PPG also degrades the performance severely since such fluctuations can
interfere with the pulsating component in the skin pixels. The colour temperature of the
light also seems to have an influence as seen in ECG-Fitness, potentially due to dissimilar
light wavelength absorption characteristics of the skin. In COHFACE, as can be expected,
better performance is obtained when the room is evenly lit in comparison with uneven
natural lighting. Finally, the method has good performance in the case of dark/dim lighting
in MoLi-PPG and VIPL-HR.

Influence of subject movement
The physical movements of the subjects themselves can also introduce noise in rPPG
extraction. This is essentially caused by the interaction of light on the observed skin pixels
as it moves. The performance of our methods while subjects perform different kinds of
movements are shown in Figure 5.8 on datasets containing labelled movement conditions:
VIPL-HR, MoLi-PPG, ECG-Fitness, PURE, and VicarPPG 2. As per expectations, we observe
that the rPPG method is most accurate when no movement is happening or when just
the eyes are moving. All other kinds of movements degrade the performance somewhat,
although the accuracy stay acceptable for some of them. The worst performance is observed
when subjects perform large/sudden movements in multiple axis, as well as ‘freestyle’ head
bobbing/dancing motion. In both MoLi-PPG and VicarPPG 2, an interesting observation is
that vertical angular head movement (nodding) results in poorer accuracy while horizontal
motion (head shaking) is handled quite well by the method. This could be due to the face
modelling step being able to model side faces better than top/bottom looking faces.

Impact of rhythmicmotion noise suppression The impact of explicitly detecting and
reducing the head movement noise in the signal via the rhythmic motion noise suppression
component (Section 5.3.3) can be gauged with the help of an ablation study. The results of
such a study on VicarPPG 2 and MoLi-PPG are shown in Figure 5.9. It can be seen that
the addition of the motion noise suppression component in the rPPG pipeline reduces
heart rate estimation errors significantly under most movement conditions. While the
reduction in error is negligible when subject movement is low (conditions steady, stable,
eye movement; ∼0.05 bpm), this gap in performance becomes large when subjects perform
large intense head movements (∼1 to ∼3 bpm). The exception to this is the relatively small
error difference for the left/right (MoLi-PPG) and tilting (VicarPPG 2) conditions, which
can largely be attributed to poor AAM face fitting during movement resulting in incorrect
head orientation measurement.

A shortcoming of the rhythmic motion noise suppression method manifests itself when
the primary frequency of head movement coincides with the heart rate of the subject.
In such cases, while the suppression effect from low intensity head movements do not
have a dominating effect against the heart rate frequency component, high intensity head
movements can. They can significantly attenuate the heart rate component in the signal
causing incorrect selection of the passband range of the narrow-bandpass filter, which
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Figure 5.7: rPPG performance (MAE; error bars represent standard deviation) under different lighting conditions.
Uneven illumination, oversaturation from by bright frontal lighting, yellowish glow of halogen lights, and the
fluctuating monitor reflection, all somewhat degrade the performance of the rPPG method in comparison with
standard ceiling lighting. However, the method performs well under dim/dark lighting.

can increase estimation errors. This phenomenon is observed in one of the movement
conditions videos from VicarPPG 2 (subject #5).

Influence of facial activity
Another type of subject movement is the movement of facial muscles, commonly observed
during talking, eating, or expressing emotions. Such movement leads to deformations in the
shape of the face and stretching and moving of the skin, potentially leading to interference
with the underlying BVP signal. We study the impact of facial movement on our rPPG
method and present the results in Figure 5.10. The datasets included in this study are those
containing labelled talking/eating condition (PURE, MoLi-PPG, VIPL-HR, EatingSet) as
well as those exhibiting high facial expression activity (MMSE-HR). In all datasets, we see
that talking leads to poorer performance as compared to when the face is static. Videos
with higher facial arousal (an indication of facial expression activity) in MMSE-HR3 also
result in a higher error rate for HR estimation. However, while eating, chewing motion
does not seem to significantly influence accuracy. In fact, closer observation revealed that
occlusion of the face caused when subjects take a bike/sip seem to be the larger cause of
errors. The largest duration of facial occlusion happens when subjects take a sip (glass and
hand covers the face), leading to a lower HR/HRV estimation accuracy.

rPPG in high HR ranges
To study how well the accuracy of the rPPG method spans over the range of heart rates,
we can compare it’s performance for subjects in a rested state versus when they are in
a post-workout state. This can be seen in Figure 5.11b. Furthermore, we can explicitly
3Facial expressions and arousal on MMSE-HR were obtained via an automated facial expression analysis tool
called FaceReader [64].

http://www.noldus.com/facereader
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Figure 5.8: rPPG performance (MAE; error bars represent standard deviation) for different types of subject
movements. Large/sudden multi-axis movement have the largest impact on accuracy. Interestingly, vertical head
nodding motion seems to produce much higher error than horizontal head shaking motion of the same intensity.
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(c) Effect of facial expressions

Figure 5.10: rPPG performance (in terms of MAE; error
bars represent standard deviation) somewhat degrades
when subjects perform facial activity like taking (a) or
expressing emotions (c). This can be partly attributed
to non-trivial facial deformations causing changes in
skin appearance. However, no significant performance
degradation is noticed due to chewing motion of the
mouth. Error while eating (b) is primarily caused by
facial occlusion when subjects take a bite or a sip.

group the videos from all datasets based on their average ground truth heart rate / HRV
and measure the rPPG performance on them separately. Figure 5.11a plots the relative
error rate ratio (MAE) per group for each dataset w.r.t. the average error over the whole
dataset. It can be noticed in Figure 5.11b that while the error rates in the post-workout
condition does seem to be marginally higher than the baseline condition, the proposed
method performs with sufficiently good accuracy in all conditions. On VicarPPG, closer
examination revealed that the variable frame-rate of some videos often drops sharply. This
affects the estimation of higher HRs more severely as the Nyquist sampling frequency
requirement is also higher. More generally, heart rate estimation in higher HR ranges
appears to produce higher errors more often, as seen in Figure 5.11a. A contributing factor
for this could be the presence of higher frequency noise in the same frequency range as
the higher heart rates. For HRV, no such trends could be observed in relation to the HRV
ranges.

Influence of video compression
Pixel-level noise caused by common video compression formats can be a major source of
errors for rPPG methods. In principle, the cleanest signal is obtained from uncompressed
video frames, but this can be impractical due to their large size. To study this further, we
evaluate our methods on a range of video compressions levels and formats to determine
the trade-off between rPPG accuracy and video size/bitrate. The results can be seen in
Figure 5.12 for the PURE dataset. The result show that among lossy encodings (denoted
by circle), H.265 format best retains the rPPG pulsating component in the skin pixels of
the video, resulting in high HR estimation accuracy, while maintaining the lowest bitrate.
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Figure 5.11: rPPG performance for (a)
HR/HRV ranges in terms of MAE ratio
w.r.t the average mean absolute error per
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ditions in terms of MAE (error bars repre-
sent standard deviation). With a few ex-
ceptions, HR estimation in higher ranges
(including during post-workout conditions)
is more often less accurate than in lower
ranges.

For example, accuracy only drops by ∼0.3 bpm while the bitrate reduces by two orders of
magnitude (26 Mbps to 0.26 Mbps). These results agree with the findings in [65]. Note that
even under the lowest compression settings, these formats are not lossless and they result
in a change in rPPG accuracy. Among the truly lossless codecs, FFV1 is able to encode the
videos most efficiently. It results in zero drop in rPPG accuracy while reducing bitrates
by almost an order of magnitude w.r.t raw videos. This can make rPPG dataset storage
management much easier: for example, ECG-Fitness originally takes up 1.05 TB, but can
be compressed with FFV1 to under 150 GB without losing any information.

Effect of camera type
A closely related factor that also affects rPPG analysis is the camera type, which determines
the signal acquisition quality. Figure 5.13 provides a comparison of HR and HRV accuracy
for different camera types used in VIPL-HR and MoLi-PPG datasets. As can be seen, the
HD cameras provide the best performance in both datasets, likely due to their superior
sensor, low internal compression, and higher frame-rate. However, we can also see that
a modern webcam can closely match the performance of an HD camera under realistic
condition (especially in VIPL-HR). The mobile front camera (Huawei P9) produces the



5.5 Experiments and Results

5

83

-2

3

8

13

18

0.01 0.1 1 10 100

H
R

 E
rr

o
r 

R
at

e 
(b

p
m

)

Video Bitrate [Mb/s]

Video Compression on PURE

VP9
H.264
H.265
M-JPEG
MPEG-4
FFV1
HuffYUV
Raw

Figure 5.12: Effect of video compression on
rPPG performance (MAE; PURE dataset).
As videos are compressed to reduce their
bitrate and storage size, rPPG accuracy de-
creases. H.265 offers the best trade-off be-
tween them among lossy encodings (de-
noted by circle). Among truly lossless en-
codings (denoted by diamond), FFV1 stores
videos most efficently without affecting
rPPG accuracy at all.

1080p 
@30fps

720p 
@25fps

1080p 
@30fps

0

20

40

60

80

100

120

140

160

0

5

10

15

20

25

30

HD Camera
[RealS F200]

Webcam
[Logi C310]

Mobile
[Huawe P9]

H
R

V
 E

rr
o

r
[R

M
SS

D
] 

(m
s)

H
R

 E
rr

o
r

[M
A

E]
 (

b
p

m
)

VIPL-HR

HR HRV

1080p 
@50fps

720p 
@25fps

600p 
@25fps

0

20

40

60

80

100

120

140

0

2

4

6

8

10

12

14

HD Camera
[BlackMagic]

Webcam
[Logi C920]

Webcam
[Logi C270]

H
R

V
 E

rr
o

r
[R

M
SS

D
] 

(m
s)

H
R

 E
rr

o
r

[M
A

E]
 (

b
p

m
)

MoLi-PPG

HR HRV

Figure 5.13: rPPG performance (MAE; error bars represent standard deviation) w.r.t camera type. HD cameras
produce the best results likely due to their superior sensor. Modern webcams perform fairly well too.

worst performance in VIPL-HR, likely caused by it’s significantly lower video acquisition
quality.

Processing Speeds

Face Finding & Modelling Skip Pixel Selection rPPG Algorithm Total Frame Rate

31.89±17.2 ms 0.43±0.2 ms 0.56±0.2 ms 32.88±18.8 ms ∼30.4 fps

Table 5.4: The processing speed of individual components of the proposed method’s pipeline and the total frame
rate (640 × 480 pixel input) on an Intel Xeon E5 CPU. The main bottleneck is face finding and modelling, while
the rest require negligible time.

For real time application, processing speed is just as vital as prediction accuracy. The
average CPU processing times of our method and its individual components are listed
in Table 5.4 (on an Intel Xeon E5 processor). The method performs the full analysis with
a good real-time speed for a video resolution of 640×480 pixels. The only bottleneck is
the face finding and modelling step, which is modular w.r.t the rPPG pipeline and can be
swapped out for a faster implementation.
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5.6 Discussion and Conclusions
We were able to obtain successful and promising results from our appearance modelling
and signal-processing based rPPG method. The results show that this unsupervised method
achieves high accuracies, matching or surpassing state-of-the-art on six public datasets:
PURE, VIPL-HR, MoLi-PPG, VicarPPG, UBFC-RPPG, and MMSE-HR. In fact, the accuracy
of our method for heart rate analysis is in the same range or beyond several fully supervised
deep learning methods, albeit without any rPPG specific training or fine-tuning. We also
surpass all existing methods for heart rate variability estimation and set some of the first
benchmarks for heart rate variability analysis on these datasets.

Through an exhaustive 13-dataset evaluation (including release of a new public dataset:
VicarPPG 2), the strengths and weaknesses of our method were highlighted. We showed
that the proposed method handles most realistic variations in illumination, movement,
and facial activity well. This can be attributed to the appearance modelling and noise
suppression steps in the pipeline. However, certain combinations and extreme cases of
these conditions proved challenging: overtly bright or flickering lighting and large head and
body movements (e.g. during exercising). Our study provided some unique insights about
the rPPG analysis in terms of performance while eating and emoting facial expressions:
chewing motion during eating did not result in larger errors, while HR analysis during
high facial arousal proved marginally challenging.

We also explicitly studied the impact of additional recording factors like video compres-
sion and camera type: H.265 and FFV1 emerged as clear winners in terms of preserving
plethysmographic information in the skin pixels efficiently; higher quality rPPG signal
can be obtained from HD cameras, but modern webcams also provide good results. High
video compression noise was observed to be a clear limitation of our signal-processing
method, especially in comparison with deep learning based method. Several deep learning
methods have shown good results on such datasets, while they fail to match our method
in cases with lower compression. This could be because the deep network is able to learn
the spatial patterns of this compression noise and filter them out. In contrast, in lower
compression cases, our prior domain knowledge assumptions perform more accurately.
While this makes our method well suited for modern videos, deep learning might be better
suited for processing archival videos, often subject to higher compression.

Finally, we demonstrated how the ground truth PPG and ECG signals provided with
most datasets can be highly noisy, leading to incorrect peak detection and resulting in
substantial miscalculation of heart rate and heart rate variability measures. To tackle
this, we introduced the CleanerPPG set: a collection of hand-cleaned ground truth peaks
for 13 major public datasets. Using this ground truth ensures a fairer and more accurate
evaluation. This set is intended to continuously grow with community support.
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6
Discussion

T his dissertation studies techniques for reducing the need for resources in machine
vision systems through incorporation of prior knowledge.

In Chapter 2, for the task of localizing objects in images using weak supervision, prior
knowledge about the distribution of objects’ bounding boxes is exploited. This leads to a
novel object-extent pooling technique. Together with a hand-crafted projection algorithm,
this results in a supervision-efficient detector with low computational costs.

Chapter 3 questions the role of full-face spatial context for the primarily local task
of gaze estimation from images. It demonstrates how processing additional context in
the input does not yield meaningful performance gains, yet it adds to the computational
requirements. This chapter also examines data efficiency of different calibration techniques
for gaze projection imparted with varying amounts of prior knowledge.

Chapter 4 attempts to exploit the spatial contextual structures in images by suggesting
a proximally sensitive distance function based on a Gaussian kernel. Results demonstrate
the application of such a function for tasks requiring high data-efficiency such as few-shot
anomaly and facial occlusion detection. Results also hint towards the suitability of such
local sensitivity in loss functions when available training data or model complexity is low.

Finally, Chapter 5 demonstrates how an unsupervised prior-knowledge based method
can be better than (deep) learning models for the task of vital signs estimation from faces:
both in terms of accuracy, as well as informational & computational efficiency. With its
detailed study of affecting factors, the chapter also provides insights into the validity of
prior-knowledge assumptions in the face of video compression noise and task complexity.

Several common themes emerge in the observations from these chapters. These themes
are discussed in the following sections.
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6.1 Prior Knowledge and Efficiency
Incorporation of human learning Prior knowledge about a particular task developed
by the human expert is based on her/his experience with the task. Humans are known to
be good few-shot learners [1] and can generalize about a task from relatively few examples.
Therefore, incorporation of prior knowledge into the model can be seen as assimilating the
findings of humans’ few-shot learning capability into the system.

For example, in Chapter 2, since the human designer already understands the correlation
between the activation and object location extent (by observation), this can be ‘hard-coded’
into the model. This is realized in the form of the SPAM pooling layer. Similarly, the
geometric and hybrid calibration methods studied in Chapter 3 follow the same principle:
since the geometric relations between gaze angles and gaze points are already known,
this can be programmed into the system. The introduction of the fixed gaussian kernel
in the proximally sensitive error function in Chapter 4, and the design of wide/narrow
band frequency filter in Chapter 5 are other examples of this. These instances show how
understanding of the underlying mechanism learnt by humans can be valuable in designing
informationally efficient systems. Therefore, a greater focus must be placed on the study
of the underlying fundamental processes at work in various computer vision tasks, rather
than on just optimizing the learning algorithm/model.

Training data and learning capacity Given sufficient input information and no re-
strictions on training data/supervision, a capable machine learning model could learn the
relevant associations required for performing a task directly from the data. The value of
prior knowledge shines when the availability of training data/supervision is scarce, or
when the model’s learning capacity is low. Because the model has limited opportunity to
learn by itself, pre-programmed prior knowledge mechanisms incorporated in the system
become more beneficial.

In Chapter 2, this phenomenon might be attributed to the strong performance of the
hand-crafted SPAM pooling layer, where location labels were not available for training.
Given full supervision, the model can learn by itself to associate maximum activations in the
feature maps with the location/extent of the object. However, since only weak-supervision
is available, the model is given this knowledge a priori by means of hand-crafting the
pooling layer; and the model benefits from it.

This observation is more explicitly seen in Chapter 3: when the number of calibra-
tion data points are fewer, geometric and hybrid calibration methods (which use prior
knowledge) perform better than machine learning calibration. However, when the data
points become abundant, machine learning surpasses geometric calibration. Quite similar
observation is also partially seen in the results of Chapter 4: the gap in accuracy between
using PSE (with gaussian kernel) over MSE as loss functions is largest when the amount of
training data or the model complexity is lowest, and this gap reduces when these parame-
ters are increased. These examples demonstrate some of the suitable scenarios where prior
knowledge can overcome the limitations in informational and computational resources.
These scenarios motivate against abandoning research into ”hand-crafting” computer vision
solutions in favour of only training learning-based models.
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(Deep) Learning is not always better While learning based systems typically perform
well with sufficient training data, there do exists certain image processing tasks for which
prior knowledge based system can be better suited than learning based system even when
data is abundant. These are tasks for which the underlying mechanism is well understood
and implementable.

An example of this is seen in the comparison of hybrid and machine learning calibration
methods in Chapter 3. The purely data-driven machine learning method is never able to
match/surpass the accuracy of the prior-knowledge based hybrid method. This is likely
because the implemented geometrical/mathematical relations between the input and output
are straightforward and well established. Another example is in Chapter 5: the proposed
hand-crafted unsupervised rPPG pipeline estimates vital signs more accurately (and faster)
than several fully supervised deep learning estimators. This is likely because the underlying
mechanism behind estimating vital signs from videos (skin pixel tracking) is well known
and can be squarely implemented as prior knowledge. Conversely, while end-to-end trained
deep neural networks also are able to learn an approximation of it from the given data, this
is not precise enough. These examples demonstrate scenarios where data driven models
can be ill-suited even in the abundance of data.

At the same time, if the complexity of the task increases and requires modelling of
higher level interactions with unclear mechanisms, the assumptions in the prior knowledge
could be incorrect. Consequently, incorporation of such prior knowledge can limit the
generalizability of hand-crafted methods. For example, a failure point of the hand-crafted
rPPG method in Chapter 5 becomes apparent when video compression noise is introduced.
Deep learning methods appear to overcome this, possibly by learning to recognize and filter
out the spatial patters of the compression noise. The mechanism surrounding such noise is
not trivial, and therefore hand-crafting such a filter is not feasible. In these situations with
non-trivial distractors, learning-based models seem better suited than hand-crafted ones.

These sets of observations motive further research into understanding the complex-
ity/simplicity of various computer vision tasks. Such studies can provide insight into
the suitability of different categories of techniques for a given task. This can help avoid
“over-engineering” solutions for tasks that can be solved by simpler approaches.

6.2 Context and Efficiency
Context is beneficial Often context can help the model achieve better results by ex-
ploiting patterns in the scene, such as locations of objects in an image: e.g., ceiling fans are
likely on the ceiling. This can especially be useful for tasks that are subjective in nature
and require placing judgements in a global understanding of the scene. Such tasks may
including image style transfer, scene understanding for image to text translation, detection
of unclear/ambiguous objects in scene, etc. In these cases, adding context almost always
leads to better accuracy, albeit at the cost of efficiency.

Distractions and biases However, overexploiting this context can also be harmful and
lead to edge case failures: e.g., uninstalled ceiling fans can also be placed on the floor.
Context overexploitation is essentially taking advantage of biases in the dataset, which
can result in better reported accuracy. However, real-world application can have unseen
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scenarios where such a model can fail. For example, for the task of facial expression
classification, a model analyzing a colour image of a face might overexploit the skin colour
information to make its prediction due to potential biases in the training dataset. This issue
can be somewhat rectified by pruning the colour context information out of the input and
training the model on grayscale images, which forces the model to focus on other features.
Thus, limiting contextual information can potentially simplify the task for the model and
reduce overfitting/biases.

Computational costs Another drawback of processing excessive context in the input
is the computational costs associated with it. In this thesis, Chapter 3 studies the role of
contextual input information for the task of gaze tracking from webcams. While several
work have shown good performance using full face as input [2–4], the results from this
chapter demonstrated how similar performance can be achieved by using single eye crops
instead, which require a fraction of computational resources. This is also seen in Chapter 5,
where the hand-crafted rPPG pipeline relies on pre-computed spatial averages of skin pixel
values. This contributes to making the core algorithm run with beyond-real-time speeds. In
contrast, majority of the supervised deep learning methods rely on analysing all the pixels
in the face region, which can be several orders of magnitude larger, thereby requiring more
processing. Therefore, contextual information has computational costs, and this must be
taken into account when considering any potential accuracy benefits.

Informational costs A pitfall of training models with rich contextual information is
that it raises the informational needs of the model. Data collection, storage, and labelling
requirements can all increase if additional contextual information needs to be captured,
saved or annotated. Further, to ensure that a model does not overfit on the contextual
information in the input, the training data must ensure good diversity of this context,
which further increases collection effort. For example, for the gaze estimation model form
Chapter 3, it is likely that a large quantity of training data is required if full-face images
are used, so as to avoid overfitting on non-eye facial features. In comparison, it might be
possible to train models with much less data if only the smaller eye-crops are used. This is
a research direction that beckons further investigation.

6.3 Developmental Effort
Finally, based on the experiences from this dissertation, it can be said that manual incorpo-
ration of prior-knowledge and hand-crafting is a tedious task requiring significant manual
effort with prototyping and experimentation. This is especially true when comparing with
end-to-end training of (deep) learning models based off of standard architectures /‘founda-
tion models’ [5]. While experimentation and prototyping is still required for optimizing
the performance of learning methods (model architecture, learning strategy, etc.), this is
typically less effort than implementing non-standard pipelines designed from scratch.

Domain expertise One of the advantages of developing learning based systems is that
domain expertise of the task is not required. Expertise in the learning mechanism is
typically sufficient, and this can in theory be applied to any task without necessarily
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requiring complete understand of the task domain. In contrast, such task domain expertise
is usually critical for the design of hand-crafted systems. In fact, this expertise is the basis
of prior knowledge. This can be seen as a disadvantage of hand-crafted systems.

A prime example of this disadvantage is the design of the prior-knowledge driven
hand-crafted rPPG algorithm in Chapter 5. The knowledge of the underlying principle
of remote photo-plethysmography was absolutely critical in making the design decisions.
Such expertise is also the basis of the design of the geometric and hybrid calibration
techniques introduced in Chapter 3: the 3D geometry and all mathematical relations need
to be known for them to be implemented. The design of the object-extent SPAM pooling
layer and the back-projection algorithm in Chapter 2, and the formulation of the proximally
sensitive error in Chapter 4 also fall under this category. Therefore, developing hand-crafted
methods must not be considered as a stand-in replacement for training learning-based
methods.

6.4 Final Word
In the face of ever increasing amount of the informational availability and computational
power, efficiency in machine vision systems still matters. Development of practical real-
world applications of computer vision methods is constrained by several computational
and informational limitations, where only well-efficient systems can operate adequately.
The dazzle of high accuracy numbers can sometimes overshadow the costs being incurred
to achieve them, and this dissertation attempts to shine the spotlight on these costs.
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