
The impact of the semantic matching within interpolation-based re-ranking

Alexandru Nistor1

Supervisor(s): Avishek Anand1, Jurek Leonhardt1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Alexandru Nistor
Final project course: CSE3000 Research Project
Thesis committee: Avishek Anand, Jurek Leonhardt, Alan Hanjalic

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
The crucial role of information retrieval (IR) is
highlighted by its presence across a wide range of
tasks, such as web search and fact-checking, and
domains, including finance and healthcare. Effec-
tive and efficient IR systems are critical for find-
ing relevant information from vast amounts of data.
Traditional sparse retrieval methods such as BM25
are efficient but often fail to capture the context,
while more recent dense retrieval models are highly
inefficient in terms of resources and latency.
In our research, we evaluate multiple Transformer-
based models to understand the impact of the
semantic re-ranking phase within interpolation-
based re-ranking, using the FAST-FORWARD in-
dexes framework, a retrieve-and-re-rank approach
which combines the benefits of both lexical and se-
mantic matching. We focused on identifying spe-
cific scenarios in which particular models excel in
terms of ranking performance or latency, aiming to
provide model recommendations tailored to differ-
ent settings. Our evaluations reveal that no single
model outperforms others across all datasets. We
hypothesise that the main factors influencing en-
coder performance are the datasets used for fine-
tuning and the method employed for computing the
contextualised vector embedding. However, ab-
lations studies would be beneficial for validating
these observations.

1 Introduction
Ad-hoc retrieval is the process of retrieving a ranked list of
documents from a large collection, known as a corpus, based
on their relevance to a specific query. This method is consid-
ered the basis of web search engines, which index the inter-
net and produce ranked lists of websites in response to user
queries.

Sparse retrieval is represented by fast and efficient meth-
ods such as BM25 [1], based on Term Frequency and Inverse
Document Frequency, which are still widely used for docu-
ment retrieval tasks. However, since they rely solely on exact
matches between the terms in queries and documents, it is
difficult to capture the similarity between their meanings.

To address this challenge of lexical mismatch, dense re-
trieval can be employed, which utilises low-dimensional vec-
tor representations for text [2]. The embedding models used
offer outstanding retrieval performance without the need for
additional training, making them a preferred choice in IR [3].
They are able to capture the meaning beyond simple token
overlap. This capability allows them to embed semantically
similar queries, such as ”What is the capital of France?” and
”Where is the Eiffel Tower located?”, closely within the vec-
tor space. For this reason, text embedding has become essen-
tial in numerous natural language processing tasks, including
text retrieval, text classification, question answering, and dia-
logue systems [4]. Encoders, which are based on large Trans-
former [5] architectures, are employed for creating the em-

beddings. They are often inefficient in terms of latency and
require significantly more resources than sparse retrievers.

Hybrid approaches use both sparse and dense retrieval,
combining their retrieved sets of documents and then comput-
ing the final score as an interpolation of the sparse and dense
scores [6]. One challenge with this approach is handling cases
in which a document is retrieved by only one method. In such
instances, approximations are employed to estimate the miss-
ing score. Additionally, its dense retrieval utilises an (approx-
imate) nearest neighbour search, which requires a significant
amount of resources (i.e., GPUs).

The retrieve-and-re-rank method [7] mitigates the down-
sides of sparse, dense and hybrid retrievals. It uses an effi-
cient lexical retriever to obtain a candidate set of documents,
followed by a complex neural ranker that re-ranks the re-
sults based only on semantic similarity (dense retrieval score).
However, these models generally use cross-encoders, which
compute relevance scores based on the concatenation of a
query and a document. This approach is computationally
expensive, thus requiring a low retrieval depth in the lexical
retrieval phase for maintaining low latency, which results in
worse ranking performance as fewer documents are retrieved.

In our study, we focus on interpolation-based re-ranking,
using FAST-FORWARD indexes [3]. This approach leverages
dual-encoders within the re-ranking process, exploiting the
merits of both lexical and semantic matching via score in-
terpolation. Its pipeline has two stages for document re-
trieval: the first one uses an efficient lexical (sparse) retriever
to collect relevant documents for a given query, and the sec-
ond one employs an expensive semantic re-ranker, which re-
ranks the documents using the interpolation between the lex-
ical and semantic scores. Addressing the limitations of the
retrieve-and-rerank [7] method, the framework enables re-
ranking at high retrieval depths by using independent query
and document encoders. The separation within the index-
ing phase makes dual-encoders a perfect fit for re-ranking, as
document representations, which are the most expensive part,
are pre-computed. However, this approach remains slower
than sparse retrieval because queries are encoded at runtime,
which is a resource-intensive task.

In previous research, most of the dual-encoder architec-
tures used a symmetric design, in which both the query
and the document encoders follow the same architecture [8].
Asymmetric approaches were also addressed by Lassance
and Clinchant [9], who used separate document and query
encoders and Leonhardt et al. [3], who identified runtime
text encoding as a bottleneck of the FAST-FORWARD indexes
framework. For this reason, the lightweight query encoders
were explored with the aim of reducing latency without com-
promising ranking performance [3]. More recent state-of-
the-art models, such as Nomic, use the same encoder for
both query and document encoding but add specific prefixes,
such as ”search query:” or ”search passage:”, before each
text span in a pre-processing phase [10]. Although these en-
coders are designed for general text embedding, unlike TCT-
ColBERT [11], which is optimised for ranking tasks, they
yield superior ranking performance.

The neural models used for query and document encod-
ing are usually based on pre-trained large language models,
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following various architectures such as GPT, trained in an au-
toregressive manner, where the model predicts the next to-
ken in a sequence given the previous tokens [12]. In con-
trast, BERT is trained using masked language modelling
(MLM), which enables it to understand the context bidirec-
tionally [13]. XLNet combines the strengths of both ap-
proaches by adopting a permutation-based training strategy
that incorporates bidirectional context while retaining the pre-
dictive capabilities of autoregressive models [14].

We recognise that while it is ideal for a text retrieval
method to have an outstanding ranking performance and low
latency across all tasks and domains, achieving this goal is
challenging. Therefore, our first key idea is to analyse spe-
cific scenarios in which certain models demonstrate superior
performance when employed within the semantic re-ranking
phase of the FAST-FORWARD indexes pipeline. This analysis
allows us to provide recommendations on which dense en-
coders are best suited across various settings while consider-
ing different trade-offs between ranking accuracy and latency.

In this paper, we focus on symmetric Transformer-based
dual-encoders within the re-ranking stage of the FAST-
FORWARD indexes framework to address the question: ”What
is the impact of the re-ranking model?”, alongside its sub-
questions:

RQ1: What is the ranking performance impact of different
models during the semantic re-ranking stage?

RQ2: What is the latency impact of different models during
the semantic re-ranking stage?

We conduct comprehensive experiments on established
ranking benchmarks and identify that both the ranking and
latency performances are influenced by the vector embedding
computation approach (mean pooling of token embeddings
as opposed to utilizing the [CLS] token embedding). We hy-
pothesise that the ranking outcomes are further affected by
specific datasets used within the fine-tuning stage. Addition-
ally, we find that latency is significantly dependent on the
dataset features, particularly on the average query length.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a background discussion on the basics of re-
ranking in IR, alongside a review of the Transformer archi-
tecture [5] and the BERT model [13]. Section 3 delves into
the state-of-the-art encoders used for general text embedding.
Section 4 outlines the experimental setup employed in this
study. Section 5 presents the results, along with a discussion
of latency and ranking performance. Section 6 explores the
ethical considerations and responsible research practices un-
derlying our study. Section 7 identifies potential directions
for future work. Lastly, Section 8 concludes the paper by
summarizing the key findings and reiterating our hypotheses.

2 Background

This section delves into the basics of re-ranking in IR, the
significant impact of the Transformer [5] architecture within
this process, and its influence on subsequent models such as
BERT [13].

2.1 Document re-ranking
The FAST-FORWARD indexes pipeline begins with a sparse
retriever, which fetches a set of candidate documents for a
specific query. They are associated with lexical scores, which
are based on term matching only, thus not taking the con-
text into consideration. Subsequently, within the semantic re-
ranker, the vector representation of each query is computed
using an expensive Transformer-based encoder running only
on the CPU.

The pre-computed document embeddings are then fetched
from the FAST-FORWARD dense index using their unique
identifier. These documents can either be represented by a
single comprehensive embedding or by multiple embeddings
corresponding to consecutive text chunks known as passages.
For the latter, the semantic score is derived by computing
the dot product between each passage representation and the
query embedding, followed by taking the average or the max-
imum of these scores. A similar method is applied for docu-
ments with a single embedding, which treats this representa-
tion as a single passage.

The final score for each document associated with a
query is determined by interpolating (cf. Eq. (1)) its sparse
(ϕS(q, d)) and dense (ϕD(q, d)) scores, using the α hyperpa-
rameter. Ultimately, the documents are sorted based on this
interpolated score, thus combining the merits of both lexical
and semantic matching.

ϕ(q, d) = α · ϕS(q, d) + (1− α) · ϕD(q, d) (1)

2.2 Transformers
In the realm of language processing, prior to the release of
the Transformer [5] architecture, sequence transduction mod-
els were dominantly based on recurrent networks [15]. How-
ever, this approach is significantly limited by its inability to
parallelise computations. This constraint arises because the
hidden state at each time step, Ht, is computed as a function
of the previous hidden state Ht−1 and the input for position t.
Unlike its predecessors, the Transformer architecture avoids
recurrence and relies completely on the attention mechanism
for deriving global dependencies between input and output,
allowing the weights for important tokens to be increased and
ones for less important tokens to be diminished [5]. Similar
to other neural sequence transduction models, the architec-
ture proposed by Vaswani et al. follows an encoder-decoder
structure based on multi-head self-attention mechanisms, de-
signed to efficiently capture in parallel diverse relationships
across the input sequence [5]. Within the decoder, a masking
technique is employed, which sets future positions to −∞
as the attention mechanism should not share any information
about subsequent tokens when giving a prediction based on
the previous tokens. To further support this goal, the output
embedding is also shifted back by one position. Many large
language models (LLMs) adopt the Transformer architecture,
with BERT [13] being a particularly popular choice due to its
bi-directional nature.

2.3 BERT
Unlike previous heavily engineered task-specific architec-
tures, BERT (Bidirectional Encoder Representations from
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Transformers) is conceptually simple yet highly effec-
tive [13]. This model overcomes a major limitation of the
standard language models: their unidirectional nature. Typi-
cally, prior models, such as OpenAI’s GPT [12], process text
in one direction, usually from left to right, where each token
can only attend to previous tokens within the self-attention
layers [5]. However, in question-answering (QA) tasks, it is
essential to understand the context, namely the relationship
between different parts of the text, to accurately pinpoint the
answer. Hence, there is a need to incorporate context from
both directions, thereby making BERT an excellent choice
for IR tasks.

The input representation of BERT makes it compatible
with a variety of downstream tasks as it can accommodate
both single text spans as well as text pairs (e.g., <query,
passage> for passage retrieval). For each input sequence,
a special [CLS] token is prep-ended to the embedding. The
final hidden state corresponding to this token aggregates the
overall sequence representation, which is typically utilised for
classification tasks (e.g., sentiment analysis). For text pairs, a
[SEP] token is used to separate the segments. The input rep-
resentation for each token is formed by summing the Word-
Piece [16] embedding of the token, the segment identifier (in-
dicating whether it belongs to the first or second text span),
and its position within the segment.

Devlin et al. proposed two unsupervised tasks for pre-
training the deep bidirectional transformer, namely the
“masked language model” (MLM) task, which enables merg-
ing the left and right context across all layers of the neural
network and the Next Sentence Prediction task, which pre-
trains using consecutive text-pairs [13].

Within the MLM task, 15% of the input tokens are masked
at random. The model then tries to predict the masked to-
kens by feeding the final hidden vectors corresponding to the
masked tokens to an output softmax function over the vo-
cabulary. However, the authors highlighted the drawback of
this approach: a mismatch between the pre-training and fine-
tuning stages, as the [MASK] token is not present in the latter.
In order to mitigate this to some extent, when a position is
chosen to be masked, instead of replacing it with the [MASK]
token every time, a random token is used in 10% of the cases,
or it remains unchanged 10% of the time [13].

Additionally, the Next Sentence Prediction task trains the
model to determine whether one sentence logically follows
another, which is not explicitly addressed within MLM. This
training improves the model performance on downstream
tasks that require an understanding of the relationships be-
tween sentences, such as question answering (QA) and natu-
ral language inference (NLI).

3 State of the art models
Recent research in general text embedding presented state-
of-the-art models that build upon BERT-based architec-
tures. The models we experimented with, namely BGE [17],
GTE [18], E5 [19], Nomic [10] and Arctic-Embed [4], dif-
fer primarily in their training datasets and minor architectural
details. A summary of the specifications of these models can
also be found in Table 3 within Appendix A.

3.1 Architecture details
On top of the Transformer [5] architecture, GTE, E5 and
Nomic employ mean pooling over the deeply contextualised
token representations. More precisely, they compute the av-
erage of the token embedding vectors, serving as the repre-
sentation of the entire sequence.

The 768-dimensional Arctic-Embed is based on
e5-base-unsupervised, as its weights were preferred to
the detriment of the general purpose ones. However, it was
concluded that this design choice had a weak impact on per-
formance but increased the convergence speed, which proved
useful during the model development. Additionally, the
384-dimensional Arctic-Embed is based on MiniLMv2 [20],
featuring 23M parameters. Inspired by the ablation study
made by Li and Li [21], rather than employing mean pooling
strategy as GTE [18], the final state of the [CLS] token is
used as the embedding vector within Arctic-Embed [4], thus,
aligning with BGE’s architecture [17].

Nussbaum et al. aimed to address the main drawbacks of
existing models, namely their limited (input) sequence length,
which is typically capped at 512 tokens [10]. To overcome
this issue, Nomic is built upon an adapted BERT architec-
ture, nomic-bert-2048, that targets a sequence length of
8192 tokens. The proposed modifications include replac-
ing absolute positional embeddings with rotary positional
embeddings [22], utilising SwiGLU activation instead of
GeLU [23], and implementing Flash Attention [24], an IO-
aware attention algorithm.

3.2 Training data
In order to create an embedding model that is highly dis-
criminative, hundreds of millions of training instances are
needed [19], which is significantly greater than task-specific
datasets such as MS MARCO [25]. Additionally, the data
should be extracted from a diverse set of resources to enhance
the general nature of the model across different tasks.

Merrick et al. emphasised the reliance on its highly curated
datasets used within both the pre-training and fine-tuning
phases of Arctic-Embed, outlining that quantity is less im-
portant than quality and an excessive amount of low-quality
data can lead to lower-quality models [4]. Quality filtering
is applied to individual text pieces and text pairs to improve
overall data quality. Each piece of the pair undergoes lan-
guage and text quality filtering, while text pairs are carefully
assessed for semantic similarity within the consistency filter-
ing, thus enhancing the relevance of the dataset. Long se-
quences were truncated to 512 words, as it was observed that,
within web-based corpora, answers were usually found at the
beginning of the text span.

The pre-training phase utilises 308 million query-
document pairs, of which 71% consist of web search doc-
uments paired with queries and titles. This methodology
draws inspiration from Wang et al.’s insights on the effec-
tiveness of training on large-scale datasets using web-crawled
title-document pairs [19]. Meanwhile, the fine-tuning dataset
comprises approximately 1 million pairs, which is created by
merging the web search data with public datasets, including
HOTPOTQA, NQ, FEVER, and STACKEXCHANGE. Due to
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the scarcity of high-quality data and the need to add negative
documents, the dataset is augmented using a synthetic mining
strategy. This approach involves generating synthetic queries,
as it has been observed that LLMs struggle to produce high-
quality hard negatives (documents) that match the quality of
those in existing corpora [4].

Li et al. [18] highlighted that a significant limitation within
prior research was the reliance on in-house data for pre-
training, which is also the case of Arctic-Embed. In con-
trast, GTE uses only open-source data without employing
any filtering or cleaning methods, except for deduplication on
text pairs. With almost 3 fold increase compared to Arctic-
Embed, 800M text pairs were utilised for the unsupervised
pre-training stage. These were extracted from a wide range of
sources such as web pages, scientific papers, community QA
forums, social media, and code repositories. The presence of
hyperlinks is also leveraged, as it makes text extraction eas-
ier. What enhances the fine-tuning stage’s effectiveness are
the human-annotated datasets, summing up to around 3M text
pairs from a variety of tasks and domains (e.g., web search,
open-domain QA, fact-checking).

Xiao et al. released a publicly available dataset for gen-
eral English embedding used for training the BGE mod-
els, encompassing around 200M text pairs employed for
the model training [17]. The main source of data is web
corpora, for which various structures are extracted, such
as <title, body>, <title, passage>, <question,
answer>, <paraphrased titles> and <paraphrased
answers>. The data is thoroughly curated, similar to the pro-
cess used for Arctic-Embed and E5, removing non-textual,
duplicated, and malicious content.

E5 is also trained on an in-house dataset, CCPairs,
which provides high-quality and diverse text pairs from web
sources [19]. Most of the data comes from Reddit and Com-
mon Crawl, comprising 270M text pairs for contrastive pre-
training. A remarkable approach was used for consistency-
based filtering. Initially, a model is trained on 1.3B noisy text
pairs, which is then employed to rank each pair against 1M
random passages [19]. A text pair is retained only if it ranks
within the top two passages. This technique draws inspiration
from the memorization patterns observed in neural networks
when employed on noisy datasets [26]. These mechanisms
tend to learn the clean labels at the beginning and then grad-
ually begin to overfit the noisy ones.

Nomic leverages publicly available data to form pairs, ap-
plying a consistency filtering process similar to that used in
E5, yielding approximately 235 million pairs [10]. Since
the majority of these datasets contain fewer than 2048 to-
kens, additional datasets that provide longer contexts are
utilised to facilitate the learning of long-range dependencies.
This includes <title, article> pairs from Wikipedia and
<abstract, paper body> pairs from S2ORC [27].

3.3 Loss function
One of the most popular choices in terms of loss functions for
training embedding models is infoNCE (cf. Eq. (2)), which
values not only positive pairs but also the relationship be-
tween positive and negative pairs. More precisely, the train-
ing instances are formed from a query q, a positive (relevant)

document d+, and a set D− of negative (irrelevant) docu-
ments [28]. Cosine similarity is used to compute the distance
between the embeddings (ϕ(q, d)).

LCL = − log

(
eϕ(q,d

+)/τ

eϕ(q,d+)/τ +
∑n

i=1 e
ϕ(q,d−

i )/τ

)
(2)

The in-batch strategy is employed, which treats all doc-
uments in the minibatch that are associated with queries
different from the current one as negative instances [29].
Karpukhin et al. highlighted the substantial improvement
yield by enhancing the set of negatives with one ”hard” neg-
ative retrieved by BM25, which has a high lexical score for a
given question, despite not containing the answer [29]. These
documents are difficult to differentiate as less relevant com-
pared to those explicitly labelled as relevant, thus improving
the model’s ability to discriminate [4].

Unlike all the other models explored, which use the stan-
dard form of infoNCE, GTE features a bi-directional im-
proved version (cf. Eq. (3)), which enhances the negative
samples with both in-batched queries and documents [18].

LICL = − 1

n

n∑
i=1

log

(
eϕ(qi,di)/τ

Z

)
(3)

Z =
∑
j

eϕ(qi,dj)/τ +
∑
j ̸=i

eϕ(qi,qj)/τ

+
∑
j

eϕ(qj ,di)/τ +
∑
j ̸=i

eϕ(dj ,di)/τ
(4)

Thus, both query to document contrast (first two terms
(cf. Eq. (4))), and its inverse (last two terms (cf. Eq. (4)))
are utilised. Additionally, the temperature τ hyperparameter
is fixed to 0.01 within GTE.

3.4 Training methods
The training procedure employed is consistent across GTE,
E5 and Arctic-Embed models, which undergo two training
rounds using different kinds of datasets: a large pre-training
and a fine-tuning. The initial phase leverages in-batch nega-
tives of query-document pairs, while the second one improves
the performance of the model by introducing “hard” negative
documents.

Arctic-Embed employs a tunable negative mining strategy,
using positive query-document pairs, accompanied by a set
of hard negatives. From these, a refined subset is selected by
applying upper and lower thresholds on the relevance level
between the query and the documents.

Within GTE’s pre-training with in-batch negatives, larger
batch sizes are preferred with the aim of reducing the gap
between training and inference, thus using a maximum se-
quence length of 128 for facilitating this objective. In con-
trast, within Arctic-Embed, Merrick et al. [4] highlighted
through an ablation study that better performance can be ob-
tained when using a maximum sequence length of 256 and
a batch size similar to those employed by BGE [17] and
GTE [18]. During the fine-tuning stage, GTE’s max sequence
length is increased to 512 to improve the model’s ability to
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handle longer text. Additionally, a multinomial distribution-
based sampling strategy is employed to address the significant
size differences in the datasets used for GTE’s pre-training.

Unlike the other models, BGE’s training recipe features
one more step before the contrastive learning, namely the
pre-training with plain text, aiming to support the embedding
task [17]. The MAE-style approach is employed in which
the polluted text is encoded in a low-dimension representa-
tion, followed by the recovery of the clean text version utilis-
ing a lightweight encoder. Additionally, Xiao et al. outlined
that the impact of different downstream tasks can be mutu-
ally contradicted [17]. For this reason, instruction-based fine-
tuning is used by adding a specific instruction such as ”Rep-
resent this sentence for searching relevant passages:” before
each type of query: q′ ← It + q.

Even though E5 employs a fine-tuning strategy similar to
GTE’s, it uses only a subset of the datasets included in this
phase, namely MS MARCO, NLI, and NQ. Wang et al. re-
ported the results for both the pre-trained only and fine-tuned
version of E5, emphasising that the pre-trained only encoder
(e5-base-pt) was the first unsupervised model to outper-
form BM25 on the BEIR benchmark [19]. For that reason,
we were interested in finding the impact of both E5 versions
within the FAST-FORWARD indexes framework.

Unlike the standard BERT model, used as the base
for most of the analysed models, during the training of
nomic-bert-2048, the base model of Nomic, the MLM task
masks 30% of the tokens instead of 15% and the Next Sen-
tence Prediction task is removed. This model uses a sequence
length of 2048 during the contrastive pre-training phase for
scaling up to a sequence length of 8192 during inference.
Throughout fine-tuning, seven hard negatives per pair are em-
ployed, as it has been observed that additional hard negatives
do not significantly enhance performance [10].

4 Experimental Setup
In this section, we present the experimental setup, delving
into the model versions and datasets utilised, as well as details
about latency and ranking performance measurement.

4.1 Pipeline
The pipeline used is based on the FAST-FORWARD in-
dexes [3], employing BM25 for the first stage retrieval,
which relies on exact term matching between queries and
documents for candidate selection. This choice is moti-
vated by the widespread use of BM25 [3; 30; 25; 31], be-
ing one of the earliest sparse retrieval models, renowned
for effectively handling term frequency saturation, where
additional occurrences of a word do not linearly increase
the document relevance, and adjusting scores based on doc-
ument length. Within our pipeline, the sparse retrieval
depth (number of documents retrieved per query) is set to
ks = 1000. During the semantic re-ranking, Transformer-
based encoders are employed. We explored models with
dimensions of 384 and 768 to balance the trade-offs be-
tween memory usage and ranking performance. Larger di-
mensionalities were avoided due to large memory footprints,
long indexing times, and impracticality in many production

environments [4]. Therefore, our experiments feature the
768-dimensional versions of Arctic-Embed, BGE, GTE, E5
(both the pre-trained only and the fine-tuned versions) and
Nomic, alongside the smaller 384-dimensional bge-small,
arctic-embed-xs and e5-small. These models range
from 23M (arctic-embed-xs) to 137M (nomic) parame-
ters, allowing for flexibility in balancing between efficiency
and effectiveness within the semantic re-ranking stage.

4.2 Datasets
We extensively evaluate the ranking performance on various
datasets, utilizing large-scale open-evaluation benchmarks. A
detailed summary of these datasets’ specifications, including
the average number of relevant documents per query and the
average number of words per query and document, is pro-
vided in Table 4 in Appendix A.

The BEIR (Benchmarking-IR) benchmark [30] was em-
ployed, providing a robust and heterogeneous evaluation set
for IR, aggregating a significant range of retrieval tasks across
multiple domains. For our evaluation, we selected all datasets
that included a development set because we found that tun-
ing hyperparameters, specifically the α value for interpo-
lating lexical and semantic scores, was essential. There-
fore, we were able to analyse the following datasets along
with their associated tasks and domains: NFCORPUS (bio-
medical IR, bio-medical domain), HOTPOTQA (question an-
swering, open-domain), FIQA (question answering, financial
data), QUORA (duplicate question retrieval, open-domain),
DBPEDIA-ENTITY (entity retrieval, open-domain), FEVER
(fact checking, open-domain) and SCIFACT (fact checking,
scientific domain).

The TREC Deep Learning track was utilised for the web
search task, evaluating on the MS MARCO corpora [25],
which features an extensive scale and real-world nature. This
benchmark comprises of questions corresponding to real user
queries from Bing’s search log, each with a human-generated
answer. In our experiments, the TREC-DL-PSG’19 (web-
search, open-domain) ranking test set is employed, simulat-
ing a question answering scenario in which the system re-
trieves a short answer for the user’s query [31].

4.3 Evaluation details
Latency evaluation. Our latency experiments are performed
using a single machine featuring an Intel Core i7-10750H
CPU (Comet Lake-H architecture). The latency per query
is measured within the semantic re-ranking phase, includ-
ing operations like encoding queries, retrieving document
representations from the FAST-FORWARD indexes, comput-
ing similarity scores using the dot product between <query,
document> pairs, interpolating lexical and dense scores and
sorting documents. Both sparse and dense indexes are loaded
into memory before experimentation to obtain faster retrieval
times. However, as Leonhardt et al. outlined, the primary bot-
tleneck remains encoding queries without GPU acceleration,
which relies solely on the encoder capabilities [3]. This limi-
tation allows us to assess the true performance of the models
accurately.

The command line interface of the timeit Python mod-
ule is employed, which performs seven runs of each exper-
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iment, reporting the average of these measurements. How-
ever, as Beazley et at. highlighted, the module relies on
time.perf counter() function, which measures wallclock
time and can be impacted by many different factors, such as
machine load [32]. We have tried to mitigate this risk by en-
suring the latency tests were the main active tasks on the ma-
chine despite the presence of essential system processes.

Ranking evaluation. The Pyterrier [33] toolkit is used for
creating the sparse indexes for the first stage retrieval, while
the encoders available on HuggingFace1 were employed for
generating query and document vector embeddings. More-
over, Pyterrier was also utilised to assess ranking perfor-
mance as it provides a streamlined way of conducting exper-
iments and computing ranking results. In terms of evaluation
metrics, we used nDCG@10 (Normalised Discounted Cumu-
lative Gain), which assesses the quality of an ordered list of
the first 10 documents, and RR@10 (Mean Reciprocal Rank),
which evaluates the position of the first relevant document.

Prior to interpolation, we normalise both lexical and se-
mantic scores to address the significant variations in seman-
tic scores across different models. This normalization is em-
ployed with the aim of having a standardised approach to tune
the α hyperparameter used for score interpolation, which is
optimised based on the nDCG@10 metric for each dataset.

5 Experimental Results and Discussion
In this section, we present the results of our experiments,
showing the impact of the semantic re-ranking within the
FAST-FORWARD indexes pipeline. Although the model rec-
ommendations can be trivially retrieved from the result tables
based on the metrics users want to optimise, we aim to present
our hypothesis regarding the underlying reasons for the model
performance. Each of the following subsections corresponds
to one research question.

5.1 What is the ranking performance impact of
different models during the semantic
re-ranking stage?

5.1.1 Baseline model
Considering that tct-colbert was employed within the
FAST-FORWARD framework when introduced by Leonhardt
et al. [3], and its performance does not surpass that of state-
of-the-art models, we considered it an appropriate choice for
a baseline model.

5.1.2 Tasks and Domains
As outlined in Section 4.2, each task is represented by one
dataset, with the exception of QA and fact-checking tasks.

For the QA task, we observed that there is no model that ex-
cels in both HOTPOTQA and FIQA. In contrast, for the fact-
checking task, within FEVER and SCIFACT, GTE demon-
strates superior performance for both datasets. Considering
this variation, alongside the fact that the other tasks are repre-
sented by only one dataset, we propose focusing our analysis
on individual datasets.

Similarly, each domain is represented by only one dataset,
with the exception of the open-domain. The dataset-specific

1https://huggingface.co/models

analysis is further justified by the observation that within
the open-domain datasets (TREC-DL-PSG’19, HOTPOTQA,
QUORA, DBPEDIA-ENTITY, FEVER), no model demon-
strates outstanding performance consistently. Therefore, for
the remainder of this section, we concentrate on analyzing the
results based on individual datasets.

5.1.3 Supervised Fine-tuning Data
First, we believe that the datasets utilised during the super-
vised fine-tuning stage significantly influence the ranking re-
sults on specific datasets. For instance, GTE’s superior results
in the web-search task within the TREC-DL-PSG’19 evalua-
tion set can be attributed to its inclusion of the MS MARCO
dataset in its fine-tuning stage, unlike Arctic-Embed, which
relies on its in-house curated web-search datasets for fine-
tuning.

Similarly, Nomic and Arctic-Embed, unlike GTE, are fine-
tuned on HOTPOTQA, which may contribute to their out-
standing nDCG@10 results on this dataset. The impact of fine-
tuning datasets on semantic re-ranking performance is further
supported within the NFCORPUS dataset evaluation. Since it
is not included in the fine-tuning datasets of any model, as
expected, all encoders exhibit similar results on this dataset,
with the 368-dimensional versions showing slightly inferior
ranking outcomes, as they fail to embed all the informa-
tion, given the high (232.26) number of words per document
within this dataset compared to the average (103.29).

Fine-tuning’s impact on the MS MARCO corpus can also
be observed in the case of e5-small, which outperforms
all the other 384-dimensional encoders on the TREC-DL-
PSG’19 evaluation set, being the only encoder of its size that
includes it in its fine-tuning collection. It is also worth notic-
ing that there are some instances in which the fine-tuned ver-
sion of E5 performs worse than the pre-trained only model,
showing that fine-tuning on a less diverse set can lead to over-
fitting.

We also encountered datasets such as FEVER, which are
part of the fine-tuning datasets for multiple models, including
both Arctic-Embed and GTE. For this reason, we explored
additional factors influencing their ranking outcomes.

5.1.4 Mean polling and CLS token embedding
Our analysis reveals that GTE outperforms both BGE and
Arctic-Embed on all the datasets with an average document
word length exceeding 50 words: TREC-DL-PSG’19, NF-
CORPUS, FIQA, FEVER and SCIFACT. We hypothesise that
GTE’s superior performance is due to its use of mean-polling
across the token representations to form the text embedding,
while the other two models rely on the [CLS] token embed-
ding, which is usually used for classification tasks [13] and
might not always capture the most nuanced details of the in-
put. Furthermore, in scenarios in which the document length
is below 50 words, the [CLS] token-based models (BGE and
Arctic-Embed) yield better results. For example, despite GTE
including QUORA (11.44 words per document) in its fine-
tuning datasets and BGE incorporating it during pre-training,
BGE achieves superior outcomes on this dataset, which we
attribute to the usage of the [CLS] embedding.
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768-dimensional 384-dimensional

BM25 tct-colbert gte-base bge-base arctic-m e5-base e5-base-pt nomic bge-small arctic-xs e5-small

TREC-DL-PSG’19 0.4795 0.6924 0.7137 0.6897 0.7042 0.6921 0.5889 0.6977 0.699 0.6924 0.7086

NFCORPUS 0.3223 0.3362 0.3649* 0.3623* 0.3619* 0.355* 0.359* 0.3582* 0.3593* 0.3408 0.3479*

HOTPOTQA 0.5128 0.6363 0.687* 0.7087* 0.7255* 0.6987* 0.6342 0.7307* 0.6873* 0.668* 0.6906*

FIQA 0.2526 0.3139 0.4755* 0.4103* 0.4241* 0.4148* 0.4169* 0.3878* 0.4084* 0.3555* 0.4038*

QUORA 0.7676 0.8464 0.8939* 0.8944* 0.8795* 0.8832* 0.8669* 0.8656* 0.893* 0.8718* 0.8734*

DBPEDIA-ENTITY 0.2744 0.4004 0.4145 0.4101 0.4443* 0.4313* 0.3898 0.4439* 0.4122 0.4071 0.4152*

FEVER 0.4273 0.6887 0.8672* 0.8058* 0.8155* 0.7528* 0.7045* 0.8171* 0.7983* 0.7608* 0.7659*

SCIFACT 0.6722 0.6901 0.7599* 0.7458* 0.7471* 0.7308* 0.7541* 0.7218* 0.7211* 0.7128* 0.7255*

Table 1: Ranking results of the FAST-FORWARD Indexes Framework on BEIR and TREC-DL benchmarks (nDCG@10). A retrieval depth
of kS = 1000 was used for the sparse (first stage) retrieval. For each dataset, the best-performing model is underlined. Statistical significant
differences (p < 0.05) between the baseline model (tct-colbert) and the analysed models are reported with ∗.

5.1.5 Reciprocal Rank and Normalised Discounted
Cumulative Gain

It is important to note that some datasets, including QUORA,
FEVER and SCIFACT, contain few relevant documents per
query (< 2) [30]. For these datasets, the position of the first
relevant document, namely the reciprocal rank (RR@k), might
be more important than nDCG@k, which takes into considera-
tion the relevance of all first k documents. However, within
our experiments for these datasets, the same models excelled
in both metrics (see Table 2 in Appendix A).

5.1.6 Sequence length impact
Despite architectural improvements, Nomic is outperformed
by models that use a sequence length of 512 tokens. This out-
come was expected, as the datasets employed in our experi-
ments had an average maximum document length of 232.26
words (NFCORPUS), making regular models a well-suited
choice. Future research could extensively explore Nomic’s
capabilities within the re-ranking stage by utilizing bench-
marks specialised for evaluating long-context scenarios such
as LoCo [34].

5.2 What is the latency impact of different models
during the semantic re-ranking stage?

Latency is measured only for the semantic re-ranking stage,
as the first-stage (sparse) retrieval is constant for all meth-
ods [3]. Additionally, due to limited hardware resources
and the fact that the indexes are loaded into memory for la-
tency measurement, only FIQA (Figure 1), NFCORPUS (Fig-
ure 2) and SCIFACT (Figure 3) are evaluated. Additionally,
the Pareto front [35] is displayed for each figure, signifying
that no solution can enhance one metric, namely latency or
nDGC@10, without degrading the other metric.

Firstly, when analysing the BGE, E5 and Arctic-embed
models, we observe that the 384-dimensional versions are al-
ways faster, but they also lose context, thus achieving a lower
nDGC@10. The main reason for this reduction in latency is the
decreased number of computations required during inference,
as each layer of the model performs smaller matrix multipli-
cation operations.

In Figures 2 and 3, we can observe that arctic-xs ex-
cels in terms of latency across all datasets. However, when

Figure 1: Latency vs. nDGC@10 on FIQA
Dataset

Figure 2: Latency vs. nDGC@10 on
NFCORPUS Dataset

Figure 3: Latency vs. nDGC@10 on
SCIFACT Dataset
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analysing it against its 768-dimensional version, the drop in
ranking performance (nDGC@10) is significant. In contrast,
the 384-dimensional BGE and E5 do not follow the same pat-
tern, as their ranking differences are insignificant, except for
BGE on SCIFACT and E5 on NFCORPUS.

In our analysis, GTE demonstrates superior performance in
terms of nDCG@10 compared to other models. However, when
models with an embedding vector of 768 are used, GTE does
not demonstrate outstanding latency performance. We hy-
pothesise that this may be due to GTE’s use of mean pooling,
which averages all token embeddings, in contrast to faster
models like Arctic-Embed and BGE, which utilise the [CLS]
token embedding.

It is also worth noticing that the latency achieved is also
dependent on the datasets. For instance, most models have
latency in the range [5, 20] ms for the NFCORPUS dataset,
while for SCIFACT, the range is [15, 50] ms. We believe
that the difference is mainly due to the average number of
words per query, which are 3.30 and 12.37, respectively. The
Transformer-based encoders employed are quadratic in the
length of the input [36]. For achieving the same vector size,
the input is padded with [PAD] tokens, which are effectively
ignored by the model’s attention mechanism, thus resulting
in lower latency for shorter inputs. Additionally, as shown in
Figure 4, we observed that query encoding takes the largest
part of the semantic re-ranking latency compared to other
operations such as retrieving document representations from
the FAST-FORWARD (dense) index, computing the scores as
dot-products and sorting the results. Besides query encod-
ing and document representation retrieval, these operations
remain constant, regardless of the model employed.

Figure 4: Breakdown of Latency per Query (ms)

6 Responsible Research
In this section, we discuss the broader implications of our
research, ensuring that all experiments are reproducible, the
data employed is publicly accessible, and our work adheres
to ethical standards.

6.1 Reproducibility
Our study is compliant with the Netherlands Code of Con-
duct for Research Integrity (2018), and the FAIR (Findability,
Accessibility, Interoperability, and Reusability) principles for
scientific data management [37].

The code used within this research is findable and ac-
cessible, as it is uploaded to a public GitHub repository 2,
which is an open-source platform. The datasets selected for
model evaluation are part of widely used benchmarks (BEIR
and TREC DEEP LEARNING), which are also publicly avail-
able 3. Both the pre-trained models employed in our analysis,
which are available on HuggingFace 4, as well as the Pyterrier
library 5, used for evaluating the pipeline, are open-source.

The experimental results are both interoperable and
reusable due to the comprehensive documentation provided
with the codebase. This is also accompanied by the detailed
Experimental Setup presented in Section 4. Additionally, we
have stored the ranking results for each model across various
α values used within the interpolation of sparse and dense
scores. This data supports the selection of the α parameter in
our final experimentation. The codebase is designed to priori-
tise extensibility, thereby facilitating researchers in replicat-
ing existing experiments, initiating new ones, and evaluating
the impact of future state-of-the-art encoders on the semantic
re-ranking of the FAST-FORWARD indexes framework.

We acknowledge that there are also some challenges re-
lated to replicability. Considering that we rely on multiple
open-source resources, it is possible that underlying changes
in these libraries could affect the functionality of our setup.
Additionally, future users will benefit from faster indexing
times when creating the dense indexes if a graphics card with
CUDA cores is available. However, such hardware is not a re-
quirement for conducting experiments within our codebase.

6.2 Ethical impact
The aim of our analysis is to offer guidelines for encoder us-
age in different scenarios while focusing solely on ranking
and latency performance. While the FAST-FORWARD indexes
framework can be employed within search engines or other IR
tasks, it can also amplify biases, given its reliance on encoders
that are based on neural networks. We recommend that future
users explore the potential biases these models may introduce
before utilizing them.

7 Future work
There are multiple paths future research can take to enhance
our understanding of the impact of semantic re-ranking.

One potential direction is to conduct ablation studies on
the hypotheses concerning the model’s ranking performance,
discussed in Section 5.1. For the encoders where we suggest
that specific fine-tuning datasets might enhance results, a pre-
trained version of the same model can be used. This model
would undergo fine-tuning on all datasets on which the actual
model is fine-tuned, excluding the one that is thought to have
a significant impact in a particular scenario. This approach
would allow us to isolate and assess the influence of that spe-
cific dataset on the ranking results.

Another line of research that can be followed is the impact
of substituting dual-encoders with cross-encoders within the

2https://github.com/anistor09/Neural Ranking Models
3https://ir-datasets.com/
4https://huggingface.co/models
5https://github.com/terrier-org/pyterrier/
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semantic re-ranking stage. Although cross-encoders are com-
putationally more expensive and require a reduced retrieval
depth within the sparse retrieval phase for reasonable latency,
they might still achieve competitive ranking results at lower
depths.

8 Conclusion
Our research evaluated the impact of the semantic re-ranking
stage within interpolation-based re-ranking, using the FAST-
FORWARD indexes framework, by analyzing specific scenar-
ios in which certain models demonstrate superior ranking per-
formance and lower latency.

The results indicate that no single model excels across
all datasets. Considering this, GTE [18] is a preferred
choice for most datasets, but it is outperformed on HOT-
POTQA by Nomic [10], on DBPEDIA-ENTITY by the 768-
dimensional Arctic-Embed and on QUORA by the 768-
dimensional BGE [17]. We hypothesise that these ranking
performances are influenced primarily by the datasets em-
ployed during the fine-tuning stage and the vector embedding
computation approach (mean pooling of token embeddings as
opposed to utilizing the [CLS] token embedding) [21].

It can also be concluded that although GTE yields superior
results for all datasets in the latency analysis, this model does
not excel in efficiency. We believe that the reason for this is,
similarly to ranking results, the approach employed for com-
puting the vector embedding alongside the larger matrix mul-
tiplications employed at each layer. If latency optimization
is crucial, the 384-dimensional Arctic-Embed [4], BGE [17]
and E5 [19] are preferred. Additionally, it is important to note
that the average query length has the most significant impact
on latency for all models, as query encoding is a resource-
intensive task and takes place only on the CPU.

In summary, this study offers detailed guidance on se-
lecting the most appropriate models for various IR scenar-
ios, highlighting the outstanding performance that the FAST-
FORWARD indexes pipeline can achieve. It demonstrates how
to balance ranking efficiency and effectiveness without rely-
ing on expensive GPU-accelerated re-ranking, thereby mak-
ing IR techniques based on semantic understanding more ac-
cessible and cost-effective for diverse applications.
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A Appendix

Fast-Forward Indexes: BM25 >>

768-dimensional 384-dimensional

BM25 tct-colbert gte-base bge-base arctic-m e5-base e5-base-pt nomic bge-small arctic-xs e5-small

TREC-DL-PSG’19 0.7944 0.82 0.7953 0.8463 0.8503 0.8178 0.6975 0.8643 0.8684 0.8585 0.8779

NFCORPUS 0.5344 0.5496 0.5852* 0.5767 0.5786* 0.5666 0.581* 0.5668 0.5853* 0.5507 0.5679

HOTPOTQA 0.6624 0.8007 0.8608* 0.8579* 0.8785* 0.8461* 0.7961 0.8777* 0.8359* 0.8327* 0.8376*

FIQA 0.3103 0.3853 0.5587* 0.4901* 0.5033* 0.4955* 0.4868* 0.4607* 0.4881* 0.427* 0.4721*

QUORA 0.7584 0.8382 0.8877* 0.8888* 0.871* 0.8766* 0.8579* 0.8575* 0.8871* 0.8645* 0.8661*

DBPEDIA-ENTITY 0.5268 0.7199 0.7381 0.7237 0.7827* 0.7671* 0.7229 0.7438 0.7423 0.7212 0.7412

FEVER 0.3839 0.6694 0.8854* 0.8058* 0.8164* 0.7378* 0.6829* 0.8165* 0.799* 0.7512* 0.7555*

SCIFACT 0.6324 0.6567 0.7217* 0.7106* 0.7041* 0.6998* 0.7163* 0.6849* 0.6867 0.6788* 0.6915*

Table 2: Ranking results of the FAST-FORWARD Indexes Framework on BEIR and TREC-DL benchmarks (RR@10). A retrieval depth of
kS = 1000 was used for the sparse (first stage) retrieval. For each dataset, the best-performing model is underlined. Statistical significant
differences (p < 0.05) between the baseline model (tct-colbert) and the analysed models are reported with ∗.

Model Specifications

Number of Parameters Embedding Method #Pre-training Pairs #Fine-tuning Pairs Fine-tuning Datasets

GTE 137M Mean Pooling 788M 3M MS MARCO, NLI, NQ, FEVER, QUORA
ARCTIC-EMBED 23M/109M CLS Token Embedding 308M 1M NQ, FEVER, HOTPOTQA, STACKEXCHANGE TITLE-BODY
BGE 34M/109M CLS Token Embedding 200M - -
E5 34M/109M Mean Pooling 270M <3M MS MARCO, NLI, NQ
NOMIC 137M Mean Pooling 235M - MS MARCO, NLI, NQ, FEVER, HOTPOTQA

Table 3: Overview of the Transformer-based models employed within the semantic re-ranking of the FAST-FORWARD indexes pipeline. The
table provides insight into the number of parameters (for each dimensionality) of each model employed in the analysis, the number of pairs
used within pre-training and fine-tuning, and the datasets utilised for fine-tuning. If specifications are absent from this table, it indicates that
the corresponding papers did not explicitly state them.

Dev Test Avg. Word Length

Task Domain Dataset #Query #Query #Corpus Avg. D/Q Query Document

Passage-Retrieval Open-domain (Bing) MS MARCO (TREC-DL-PSG’19) 6,980 200 8,841,823 58.61 5.96 55.98
Bio-Medical IR Bio-Medical NFCORPUS 324 323 3,633 38.2 3.30 232.26

Question Answering (QA) Open-domain (Wikipedia) HOTPOTQA 5,447 7,405 5,233,329 2.0 17.61 46.30
Question Answering (QA) Finance FIQA-2018 500 648 57,638 2.6 10.77 132.32

Duplicate-Question Retrieval Open-domain (Wikipedia) QUORA 5,000 10,000 522,931 1.6 9.53 11.44
Entity-Retrieval Open-domain (Wikipedia) DBPEDIA 67 400 4,635,922 38.2 5.39 49.68
Fact Checking Open-domain (Wikipedia) FEVER 6,666 6,666 5,416,568 1.2 8.13 84.76
Fact Checking Scientific SCIFACT 809 300 5,183 1.1 12.37 213.63

Table 4: Statistics of datasets in the BEIR [30] and TREC Deep Learning track [31] benchmarks, which were used to evaluate the impact of
the semantic re-ranking of the FAST-FORWARD indexes. ”Avg. D/Q” indicates the average number of relevant documents per query.
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