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Abstract

As is already known, large- and medium-scale energy storage solutions are required for
the much needed energy transition. Batteries become their most relevant in this cir-
cumstance, and specifically solid state batteries may have the key to solve the biggest
drawbacks of current battery technologies. At their best, they offer safety and light-
ness while increasing storage capacity. Nonetheless, there are still hurdles to overcome,
namely the complex ion kinetics in solids. Herein we present a computational study of
the diffusion properties of Li3InCl6, a member of the emerging family of halide-based
solid electrolytes. We also investigate two prominent approaches to enhancing ionic
conductivity: cation-site disorder and high entropy. Additionally, we embark on the
machine learning venture for molecular dynamics with the implementation of machine
learning trained potentials in our simulations.
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Nomenclature

Listed in order of first appearance.

Term Definition Explanation

LIC Li3InCl6 -

In layer indium layer Layer in Li3InCl6 along the c axis where In exclusively resides,
comprised of sites 2b and 4g. Lithium atoms can also access
this layer via 4g sites, but In is never found outside it.

Li layer lithium layer Layer in Li3InCl6 along the c axis only visited by Li ions,
comprised of sites 2c and 4h.

ordered ordered structure Li3InCl6 structure where In exclusively sits at 2b sites in the
indium layer.

disordered disordered structure Li3InCl6 structure where an indium atom per 2×1×2 super-
cell (1/8 atoms) is displaced from site 2b to site 4g.

O ordered structure

ELC even, low clustering disordered structure where the In dislocation with low clus-
tering of indium polyhedra and same number of In atoms in
all layers (4).

EHC even, high clustering disordered structure where the In dislocation with higher
clustering of indium polyhedra and same number of In atoms
in all layers (4).

OHC odd, high clustering disordered structure where the In dislocation with higher
clustering of indium polyhedra and different number of In
atoms in every two layers (3 vs. 5).

OLC odd, low clustering disordered structure where the In dislocation with low clus-
tering of indium polyhedra and different number of In atoms
in every two layers (3/5).

within-layer - Hops in the crystal structure between two sites that belong to
the same layer. Not to be confused with ”In layer”, referring
to the indium layer.

cross-layer - Hops in the crystal structure between two sites that belong
to different layers.
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Term Definition Explanation

pristine - Li3InCl6. Structure where the cationic lattice is composed
only of In atoms.

HE High entropy Structure where the cationic lattice from the original Li3InCl6
is substituted by a mixture of several elements.

HE5 High entropy 5 Structure where the cationic lattice is composed of five ele-
ments: In, Sc, Yb, Zr and Lu

HE4 High entropy 4 Structure where the cationic lattice is composed of four ele-
ments: Sc, Yb, Zr and Lu

PT Pretrained The pretrained CHGNet MLTP before fine tuning, as trained
by the 2022 Materials Project database

FT Fine tuned The in-house fine tuned CHGNet MLTP



1
Introduction

Energy has been the driver of human development since its dawn, from the Middle Paleolithic–marked
by the Homo erectus harnessing fire–to the Neolithic Revolution–shaped by the advent of agriculture–
all the way until the development of steam engine technologies in the Industrial Revolution[1].

While the exploitation of energy seems to drive this timeline, its storage has always been crucial:
for example, the very act of wearing clothes emerged in an effort to preserve our own energy and
permitted the geographical expansion of the species. In a more contemporary fashion, the issue of
energy storage was already a concern in 1917, when it was written that it had ”long been recognized
that [hu]mankind must, in the near future, be faced by a shortage of power unless some means were
devised for storing power from the intermittent sources of nature.”[2]. The extent to which that future
was indeed near remains a subject of discussion, but it is unequivocally the present now. Perhaps we
are facing the next stage in the energetic timeline of humanity.

1.1. The quest for advanced energy storage devices: solid-state bat-
teries

The relentless accumulation of CO2 in the atmosphere, coupled with the consequential global warming,
is leading to drier ecosystems with escalating consequences. This includes an increase in water
evaporation outpacing that of precipitation, and a surge of extreme weather events, for example[3].
Oceans, responsible for about 70% of the total oxygen production, are susceptible to unexpected shifts
from which ecosystems might not recover[4]. The thawing of the no-longer-permanent permafrost,
which houses more than twice as much carbon as the atmosphere, silently amplifies the issue and
may entail more serious and unforeseeable consequences. Amidst these challenges, it is evident the
current energy system, reliant anyway on finite resources, is unsustainable. Great efforts across all
of society are striving for change.
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1.2. Challenges in solid-state batteries and Li3InCl6 as a proposed solid electrolyte 2

However, this push towards decarbonization and the pursuit of sustainable energy sources often means
the implementation of renewable energy sources such as solar or wind, which are intermittent and
unreliable to a certain degree. Consequently, there arises a need for this energy to be stored. Studies
throughout the past decade show that to power Europe with fully renewable energies, storage capacity
must be at least 300 TWh. This is approximately equivalent to the batteries of 3 billion electric
cars[5, 6, 7, 8], almost 12-fold the number of passenger cars in the continent[9]. The electrification of
mobility is another key factor in the energy transition, as 23% of global emissions are produced by the
transportation sector[10]. Hence, also medium-scale, mobile energy storage devices are indispensable.

The demand for electrochemical energy storage for transportation, grid storage and residential power-
backup applications emphasizes safety as a pivotal aspect of these technologies. In light of this,
safety standards must now be acceptable for large, energy-dense components close to each other
and humans[11]. While traditional liquid lithium-ion batteries have significantly influenced energy
storage and electronics since the 1990s, they grapple with limitations in energy density, safety, and
sustainability[12]. Therefore, ongoing research explores advanced energy storage solutions, primarily
categorized into two branches: advanced Li-ion, focused on improving the properties of already
established traditional Li-ion batteries, and post Li-ion. The latter reaches for improved devices that
use different cations, metallic anodes, or solid electrolytes (SEs)[13]. This will be the focus of the
presented work.

Solid-state batteries (SSBs) represent an enticing alternative since they completely avoid the flammable
(liquid) electrolytes from traditional Li-ion batteries and offer the potential for higher energy density.
Their improved capacity would result from the realization of metallic anodes, if proven feasible, larger
voltage windows[12], the necessity of less packing, and the implementation of bipolar stacking setups.
Furthermore, by substituting liquid electrolytes for their solid counterparts–more stable, rigid, and
at no risk of freezing or boiling–SSBs are expected to have longer cycling lives, no bulk polarization
and wider working temperature ranges, respectively, as well as better prospects for recyclability[12, 13].
Yet, the realization of solid-state batteries hinges on discovering suitable solid electrolyte materials
and a deeper understanding of how these materials behave at the atomic level and their interface
behavior.

1.2. Challenges in solid-state batteries and Li3InCl6 as a proposed
solid electrolyte

In the pursuit of realizing the potential benefits of solid-state batteries (SSBs) at a practical scale,
inherent challenges arise owing to their solid nature. The transition to solid state introduces high ionic
resistance, which hinders ion transport kinetics, and brittleness, which limits applications with high
current and capacity. Thus, special care must be taken to prevent or minimize broken physical contact,
increased resistivity, uneven current distribution and shortened cycle life[12, 13]. Besides mechanical
considerations, narrow electrochemical windows also significantly curtail storage capacity and reduce
cycle life, as they cause degradation of the active materials of the cell. Chemical degradation of
the materials is also possible during fabrication, since active materials are often highly sensitive to
oxygen and moisture. Besides reducing the cycle life, this also complicates manufacturing, which is
a challenge in itself: achieving cost-effective processes is vital to advance SSB technology. Finally,
another key point for improvement is interfaces: uneven metal deposition, causing dendrite growth,
has become a focus of investigation in SSBs, originally unexpected due to their rigidity[13]. Interface
stability is crucial since decomposition products are likely to increase resistance to ion transport,
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enabling electronic conductivity, or threatening cycling stability[11, 12, 13].

Solid-state electrolytes are generally divided into families depending on the nature of their anions.
Until recently, two main electrolyte families were prevalent, namely oxide-based and sulfide-based.
While oxide-based options offer favorable air stability and wide electrochemical windows, they are
often limited to conductivities below 1 mS/cm[14]. This value falls significantly behind the esti-
mated 10 mS/cm necessary for the comparable performance of SEs and LEs (liquid electrolytes), and
their stiffness and processability difficulty also remain significant drawbacks[15]. On the other hand,
sulfide-based SEs are attractive due to their ultra-high ionic conductivity and mechanical softness.
Still, instability towards ambient air, oxide cathodes and external voltages, as well as the release of
toxic H2S when exposed to ambient atmosphere, renders them less favorable for market implementa-
tion. Their high cost and difficult integration with cathode components further contribute to these
challenges. Below, Figure 1.1 serves as a visual summary of the average main properties of these two
families and introduces a promising new contender, which will be the focus of this work: halide-based
SEs.

Figure 1.1: Comparison of the main families of SEs (sulfides and oxides) against
upcoming halides. Adapted from ref. [16]. Licensed under CC by 4.0.

Halide electrolytes contain halogen atoms (F, Cl, Br, I or At) as their anions and have recently
emerged as significant contenders in the realm of solid electrolytes. Despite their longstanding
presence—LiAlCl4 was first reported in 1923[17] with applications in solid electrolytes dating back
to the 1930s[18]—, their unimpressive room-temperature conductivities (∼ 10−7S/cm) hindered their
application. It was not until 2018 when Asano et al. presented highly conductive and stable Li3YBr6
and Li3YCl6[19] that the halide family gained relevance. Since then, many halide SEs with conductiv-
ity over 1 mS/cm at room temperature have been discovered, and broad research has been carried
out to study enhancement techniques such as doping. Let Figure 1.2, collected in 2022, be testament
to the recent surge in interest on halides.

It is now known that halides offer the potential for good ionic conductivities due to Li+ interacting
more weakly with the monovalent halide atoms than with divalent sulfur or oxygen anions[19]. More-
over, they exhibit favorable mechanical softness, as well as high oxidation stability (>4V) and good
chemical stability against many cathode materials in absence of protective coating[14, 21, 22]. Strik-
ingly good cyclability performance for SE standards can be observed from Figure 1.3 (left), where
the halide SE Li3YCl6 shows remarkably stable capacity in the absence of protective coating, espe-
cially in contrast with the sulfide-based SE Li6PS5X or typical liquid electrolytes. To the right, a
similar study on Li3InCl6 from 2019[23] again favors the halide SSE vs sulfide SSE in a cell against
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Figure 1.2: Map of halide SEs recently developed, where different geometries and enhance-
ment techniques are explored. Reprinted with permission from reference [20] (Copyright 2022
American Chemical Society)

LCO. Another advantage from halide-based electrolytes is shown in Figure 1.4, where it can be seen
that halides (fluorides and chlorides) are the only ones to reach the 4V line, where current cathode
materials sit.

Figure 1.3: Outstanding stability of halide SSEs vs. sulfide SSEs is shown
in these figures. Left: Li3YCl6 remains stable after 200 cycles while stan-
dard liquid electrolyte and argyrodite electrolyte counterparts lose capac-
ity. Reprinted with permission from reference [20] (Copyright 2022 Amer-
ican Chemical Society), modified from original source [22] (Copyright 2021,
Wiley-VCH).Right: Performance of Li3InCl6 SSE outperforming sulfide SSE.
Reprinted with permission from ref. [23]. Copyright 2019 Royal Society of
Chemistry.

However, halide SEs are not without shortcomings. They are still away from conquering the whole
voltage window available, since they are unstable against metal Li anodes (one of the ambitions of
SSBs) or common graphite or silica alternatives. Moreover, only a few of them present sufficiently
high conductivities for applicability, and they are generally vulnerable to moisture and dry oxygen
exposure[14, 19]. The renovated interest in halides does not arise only from enhanced conductivities
but also from reported air- and moisture-stable halides. Such is the case of the focus of this study,
Li3InCl6[23, 24].
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Figure 1.4: Overview of the chemical stability of different electrolyte families. Repro-
duced with permission from ref [25] Copyright 2019, Wiley-VCH

In the following work, Li3InCl6 (LIC) will be studied as a solid electrolyte candidate, as it has been
recently reported by Li and colleagues to have especially favorable properties for the role[23]. The
material, as presented, solves many of the issues of halide-based electrolytes. Noteworthy as one
of the few of halides with experimental conductivity surpassing 10−3 S/cm at room temperature[12],
LIC excellently withstands ambient conditions. After humidity exposure, Li et al showed that this
superionic conductor can recovers its original properties. Other reported attributes include thermal
stability (-25ºC – 75ºC), good electronic insulation and electrochemical stability against high-voltage
cathodes such as LiCoO2

[23]. Moreover, specific synthesis techniques seem to passivize side reactions
between the SE and the cathode in absence of interfacial treatment. Overall, these qualities make
Li3InCl6 a species worth thorough investigation to take its kinetics further

Additional to research on specific materials, it is interesting to investigate how structural properties
affect their performance in hopes to unlock a set of general favorable design principles. In par-
ticular, different synthesis methods have impacted the conductivity in halide materials giving rise
to questions about how order/disorder in the ionic lattices might affect it[19, 23, 26, 27, 28]. Similarly,
high-entropy mixes have been shown to also improve conductivity and stability of electrolytes and
electrodes by creating percolation pathways and showing larger tolerance to lattice distortions, for
example[29, 30, 31, 32, 33] . In this work, besides characterizing the diffusion properties of Li3InCl6 we
will also explore if and how disorder and high entropy change its performance.

As a final remark, it is important to recognize that lithium and cobalt are broadly studied and
accepted as essential to the technology of a low-carbon future. However, these materials and tech-
nologies do not materialize out of thin air, but instead emerge through human labor on natural
resources. The extraction of these raw materials demands substantial water and energy quantities
and often relies on precarious and vulnerable labor under unsafe conditions. Approximately one-third
of the global lithium is sourced from Chile and Argentina, consuming vast amounts of water and dis-
charging byproducts into the soil, potentially contaminating the groundwater of already severely arid
regions. In China, battery-grade lithium production involves high-temperature processes that come
with large energy requirements. Meanwhile, in Europe more sustainable processes are under study,
prompting the question of why certain techniques are employed in certain places but deemed unac-
ceptable in others. The case of cobalt, of which 70% is concentrated in the Democratic Republic of
Congo, faces severe moral concerns, as child labor and unsafe working conditions are prevalent and
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routinely denounced by Amnesty International and violent conflicts over cobalt availability are daily
happenings. Environmental and human losses are invaluable all around. Having acknowledged these
challenges, addressing the ethical implications behind our vision of the future becomes imperative.

1.3. Computational modeling for optimizing electrolyte materials
Understanding the mechanisms that allow the diffusivity of ions in solid-state battery materials
is key for their design and the optimization of this technology[14, 34]. To unlock the full potential
of Li3InCl6–through doping or introducing defects, for example–we must thoroughly comprehend its
properties and mechanisms at the atomic level. Computational studies play a crucial role in achieving
this. Ab initio molecular dynamics (AIMD) simulations serve as a microscopic lens, enabling precise
examination of ion movement within the material and structural information, while also offering
insight into the energetic and thermodynamic properties. Moreover, in simulation studies the systems
are merely observed and do not suffer any inherent alterations through the process of measuring, as
is a common limitation in experimental investigations[35]. In fact, for this reason computational
research can help the interpretation of experimental data. For a newly introduced candidate like
LIC, computational studies can shed light on the best paths towards enhanced diffusivity.

Nonetheless, ab initio studies face challenges due to their computational-resources-intensive nature.
As can be read in more detail in Section 2.4, the first-principles approach does not rely on empirical
information; instead, it continually and iteratively solves fundamental quantum-mechanical equations,
demanding significant computational power. Consequently, these simulations are limited to the sub-
nanosecond scale and small samples, where only a few diffusion events can take place. Even simulating
only at high temperatures (500K-1200K) and then extrapolating the results, as is the norm, resting
on the assumption that the behavior of the material will not change too drastically, the statistical
quality of the studies is often somewhat limited[36].

In an effort to overcome these constraints, computational research on battery materials is heavily fo-
cusing on the development of machine-learning trained potentials (MLTPs) to implement in a classical
setup[37]. In the rapidly evolving landscape of materials science, the synergy between first-principles
simulations and machine learning offers a promising avenue. Computational strain is significantly
reduced, since computational costs in AIMD scale as O(∼N3

e ), Ne being the number of electrons in
the system, while classical simulations generally follow O(∼ n), having n symbolize the number of
atoms[38, 39]. At the same time, MLTPs create more reliable predictions of material properties than
the fully classical alternative, having the potential to reach ab initio-level accuracy[40]. By training
the potentials on AIMD simulations, the objective is to capture the vast nature and complexity of
the quantum interactions in crystals in a much computational- and assumption-affordable fashion,
to allow simulations of much larger systems and during longer times.

1.4. Goals of this work and outline
By improving the transport the Li ions, not only will the desired kinetic performance be achieved, but
structural issues, such as the formation of dendrites, can also be mitigated by minimizing hotspots,
for example. By improving diffusivity, the traffic of ions will be swifter and no such hot areas will be
created, or the rate at which they are formed will be significantly reduced. Therefore, even without
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tackling the structural issue directly, the study of diffusion properties can contribute to the general
performance and cyclability of SSBs.

At the same time, ameliorating the performance of the electrolyte could conceal poorer performance
from cathodes. Perhaps outstanding kinetics in the electrolyte will enable the cells to afford more
sluggish cathodes from more available sources[41, 42].

On the other hand, the inclusion of machine learning in research methods has become of extreme
interest over the past few years, justifiably[43]. In the same way that theory is developed from empirical
observation through human reasoning, refined algorithms can take it a step further in recognizing
complex high-dimensional relationships that elude our abstract thinking abilities. Marrying the
precision of AIMD and the efficiency of classical simulations, a new dimension of computational
research of materials can be opened for the first time in the SEE group.

With all these considerations in mind, in this work we will try to shed light on three main questions: i)
computational characterization of the kinetics of Li3InCl6 as a solid electrolyte, ii) effects of cationic-
site disorder and high entropy on its diffusive properties, and iii) application of machine learning
techniques for its investigation. For the realization of these tasks, computational tools were enhanced
and developed along the way.



2
Theoretical Background

2.1. Principles of (solid-state) batteries
A battery is a device that stores and releases energy through electrochemical reactions during charge
and discharge. Two simultaneous movements allow these processes to occur: electrons traverse an
external circuit while the corresponding ionic charge moves internally through the electrolyte, as can
be seen from the simplified diagram in Figure 2.1. The electrons and ions originate from the splitting
of atoms at the electrodes, which engage in reduction/oxidation reactions at the cathode and anode
respectively, creating a difference in potential. In such a redox reaction, the cathode undergoes
reduction, gaining electrons, while the anode undergoes oxidation, losing them. This ensures the
flow of current and allows the use of electrical energy to power our devices, like a light bulb in the
example below.

For lithium batteries the discharge process is driven by the difference in lithium chemical potential
in the electrodes. During discharge, the cathode (low lithium chemical potential) undergoes elec-
trochemical reduction through the insertion of Li+ ions coming from the electrolyte and electrons
from the external circuit, to constitute complete Li atoms. Meanwhile, the anode (with high lithium
potential) is oxidized, releasing Li+ ions and electrons separately to the electrolyte and wire. The
movement of the electrons generates an electrical current, which is the energy that can ultimately be
retrieved from the system. In charging, the reverse process takes place by the application of exter-
nal potential. Therefore, an effective electrolyte must deliver good ionic conductance and electronic
insulation to minimize the risk of having the electrons move through the electrolyte instead of the
external circuit, which would cause a short-circuit and would render no extractable energy[34] from
the battery.

This working principle is universal in batteries, whether with a solid or liquid electrolyte[34]. The only
difference in the process, besides the obvious change in the aggregation state of the electrolyte and
therefore the different diffusion mechanisms, is that in liquid electrolyte batteries a porous membrane
is set up to separate the electrodes and prevent a short circuit. A short would impede the whole

8
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Figure 2.1: Diagram of a traditional Li-ion battery and a solid state battery
(Murata Articles, 2022)

functioning of the system. In the case of all-solid-state batteries, the solid nature of the electrolyte
itself should ensure no contact between the electrodes.

Whereas ion movement does not pose a big challenge in liquid electrolytes, solid diffusion is less
straightforward. Solid electrolytes are typically crystalline structures with a specific short-range and
long-range order, and for ions to disperse effectively they must access a limited number of sites
that are free and energetically accessible. Briefly, favorable diffusion of ions in the solid electrolyte
necessitates: a) free sites available, b) sufficiently low activation energies, and c) that the free sites
create a continuous path to ensure macroscopic diffusion of the ions.

2.2. Principles of diffusion in solids
Diffusion comes from the Latin word ”diffundere”, which means ”to spread out”. Molecular diffusion
is the thermal motion of all particles at temperatures over 0K. In gases, this movement is fast and
particles move centimeters every second; for liquids, it is slower and only fractions of a millimeter
are advanced per second. For solids, only distances in the range of nanometers to micrometers can
be traveled in the same timescale. The free movement of diffusing species is restricted in solids
and displacement happens in the form of ”hops” between permitted spots. In the case at hand,
that of crystalline solids, the lattice restricts the possible movements and allows their description in
somewhat simpler terms.

In the pursuit of our goal to study the movement of Li ions in the different configurations possible
for Li3InCl6, and perhaps infer a way to improve it, we must stop to consider the mechanisms that
allow this transport in the first place. In crystals, atoms hop from site to site in the lattice quite
fast (timescale of 10−13s) and then stay there for much longer times until the next jump. The energy
toll required to perform these jumps is considerably larger than the average thermal energy kBT , so
the atoms cannot jump incessantly. Until the statistics align and the atoms obtain enough energy
to jump, though, they do not stay put. Instead, they oscillate around their equilibrium positions
causing lattice vibrations with Debye frequency 10−12 − 10−13Hz. When diffusing atoms do perform
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a jump, their migration path happens between stable sites. An overview of diffusion mechanisms in
solids can be seen in Figure 2.2 and a more detailed explanation of the most relevant cases for our
study will follow Figure 2.3.

Figure 2.2: Overview of diffusion mechanisms in solids. A more detailed explanation of
those relevant to cationic diffusion in crystals can be found following figure 2.3. Reprinted
and modified with permission from ref. [44]. Copyright 2007 Springer Nature BV.

Let us proceed to briefly list and explain diffusion mechanisms in solids presented in the figure above.
In solid solutions where solute atoms are smaller than solvent atoms, direct interstitial diffusion
takes place as solute atoms occupy interstitial sites within the host matrix and move between these
stable positions. This mechanism requires the displacement of neighboring matrix atoms, increasing
energy requirements. Alternatively, indirect interstitial diffusion (interstitialcy mechanism) involves
movement between interstitial and proper lattice sites, often found when atom sizes are comparable,
and necessitates coordinated displacements. Temporary displacement of the lattice atoms is required
for both of these mechanisms to create space for the displacement of the diffusing species. Direct
exchange and ring diffusion also are part of the collective mechanisms, as they require more than one
atom to move simultaneously. These require large lattice distortions, making them less relevant due
to high energy demands.

On the other hand, vacancy mechanisms dominate the diffusion of both matrix atoms and substitu-
tional solutes. Atoms from the lattice jump into neighboring vacancies, in a sort of direct exchange
with the vacancy itself, creating no distortion. There can exist cases of bound groups of vacancies
that disperse together, such as divacancies or the less likely trivacancies, that work similarly to the
monovacancy case. Finally, complex combinations of diffusion mechanisms are also possible, such
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as interstitial-substitutional exchange. In the following, the focus will be on mechanisms especially
relevant for the cationic diffusion in ionic crystals, as shown in Figure 2.3.

Figure 2.3: Schematic representation of the diffusion mechanisms of ions in solids .
Reprinted with permission from ref. [13]. Copyright 2019, Springer Nature Limited.

In solid electrolytes, the cation can occupy energetically stable (shaded orange in Figure 2.3) or
metastable positions (shaded green). If the cations move directly from a stable lattice site to an
empty stable lattice site, cationic vacancy diffusion happens. If the same direct movement occurs but
between metastable positions, then it is interstitial cation transfer. Alternatively, a correlated motion
can take place: a cation in a metastable site moves into a stable site as another cation leaves that
same stable site for another metastable position, and the first one takes its place. This is referred to
as correlated interstitialcy mechanism[13].

Whichever the case, the atoms will always move from a (meta)stable position to another (meta)stable
position passing through unstable states. There will be an intermediate state that has the highest
lattice strains and overall energy requirements. That point in the trajectory is named saddle point
(refer to Figure 2.4) and gives the measure of the energy required of the atom to perform the jump
(Em). It is commonly said that the atoms move in an energy landscape that represents the energy
barrier necessary to overcome.

Figure 2.4: Simplified representation of an energy landscape.
Reprinted with permission from ref. Mdiffusion_solids. Copy-
right 2007 Springer Nature BV
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Lastly, it is important to consider that ion diffusion in the bulk is a multi-scale process governed
by mechanisms natural to different length scales. All of them will collectively determine the final
impedance of the material and overall device. At the atom scale, ion-lattice and ion-ion interac-
tions occur. Microscopically, important phenomena such as grain boundaries might intervene in the
movement of ions, and macroscopically the formation of interfaces between electrolyte and electrode
(SEIs) must be considered, as they tend to hinder conductivity. To comprehensively and concurrently
investigate ionic diffusion at all scales in batteries, advanced computational techniques that allow
larger and longer simulations of more complex systems are indispensable. The integration of such
techniques is also an objective of this work.

2.3. The crystal Li3InCl6
Understanding the structure of our material is a crucial point for our concern, the study of how lithium
moves through it. Li3InCl6 crystallizes in the monoclinic structure (α = 90°, β ̸= 90°, γ = 90°) with
the C2/m space group, as extensively reported from experimental studies[23, 27, 45, 46]. It exhibits a
distorted rock-salt lattice reminiscent of LiCl, where Li and In ions occupy interstitial sites in the
anion sublattice. This sublattice, composed of chlorine anions Cl–, adopts a ccp (cubic close-packed)
lattice configuration.

(a) (b)

Figure 2.5: Construction of a ccp lattice. a) A single layer where the
empty space between the atoms can be clearly seen. b) A second layer
signaled in orange is added to build the bulk. Tetrahedral interstitial
sites (shown under the semi-transparent orange atoms) and octahedral
instertitial sites (spaces peaking through both layers) are formed.

The ccp lattice, represented in Figure 2.5, gives rise to octahedral and tetrahedral interstitial sites.
Tetrahedral interstitials are formed in the spaces between atoms that belong to the same layer and
which are then covered by the adjacent layers in the ccp arrangement, as can be seen in Figure 2.5
under each orange ball. This interstitial site is 4-coordinate, meaning that it is coordinated with four
atoms in the lattice, while the alignment of empty spaces in consecutive layers creates octahedral
interstitials, coordinated with six atoms. For the rock-salt crystal LiCl, all interstitials would be
occupied with lithium. By introducing also indium, a reorganization of the cations takes place.

An imbalance is inherent to Li3InCl6 due to the insertion of indium in the LiCl structure. The cations,
namely Li+ and In3+, have different charges, and to respect the principle of charge conservation only
one In3+ is needed per every three Li+. Therefore, each trivalent indium ion (In3+) introduced creates
two cation vacancies, interstitials that would otherwise be filled with Li+ but remain empty instead,
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giving a 3-1-2 Li-to-In-to-vacancy ratio. These intrinsic vacancies create the opportunity for ionic
diffusion in LIC, hence the Li partial occupancies shown in Figure 2.6.

Indeed, experimental studies report partial occupancies of indium[46] in mechanochemically synthe-
sized samples (0.89 in 2b and 0.05 in 4g). This creates a certain disorder in the arrangement of the
indium cations, and therefore in the paths available to lithium too. These proportions mean that
approximately one in every eight indium atoms are ”displaced” from the 2b position into 4g. There-
fore, a multiple of eight atoms of indium is needed to represent this distribution, which corresponds
to four unit cells. In this project we study the four possible indium configurations which arise from
the combination of indium positions 4g and 2b in the 2x1x2 supercell. Further details can be found
in the Methods Section 3.1.

Interestingly, this type of disorder has been reported to improve the conductive properties of some
halide SEs by distorting the lattice and broadening the energy ranges of sites, favoring ionic trans-
port[18, 28, 47]. A focus of this work will be to study the effects, if any, of this disorder in the lithium
diffusion properties.

Regardless, the cationic structure of LIC is layered along the c axis (Figure 2.6 left). In the 001 plane,
the filled Wyckoff positions 2b and 4g can be found, whereas 2c and 4h are present in the 002 plane.
Because In is confined to the sites 2b and 4g, we will call layer 001 ”In layer”, and the ”Li layer” will
be that corresponding to 002, where only Li can be. Nonetheless, it is noteworthy that lithium ions
may also occupy the 4g position in the so-called ”In layer”.

Figure 2.6: Left: Layered structure of two stacked Li3InCl6 unit cells along the c axis. In
and Li sites are mostly octahedral positions but for the one tetrahedral position in the Li layer.
Within each layer (center, right), a honeycomb-like structure can be observed where 6 sites
with multiplicity 4 (4g and 4h) enclose one 2b or 2c site, respectively.

Between the layers there are also tetrahedral sites partially occupied by lithium (8j), as depicted in
Figure 2.7. Whereas the octahedral sites are edge-sharing with each other, the tetrahedral site shares
a face with all the Li octahedra, which makes for 3D connectivity of Li sites. Per the literature,
the tetrahedral sites are expected to be mere transition states between the more stable octahedral
spots[19, 33, 46, 48]. If this is validated, for clarity of the analysis tetrahedral positions shall be disre-
garded in the coming investigation. Not registering the ions’ visits to 8j enables the detection of
cross-layer jumps without any loss of information.

Therefore, diffusion in LIC occurs via the vacancy mechanism, where the diffusion species ”hops”
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Figure 2.7: 2c, 4h and 4g lithium sites with partial occupancies and 8j tetrahedral
sites (pink sites, not to scale and not showing partial occupancies). The tetrahedra sit
between 4h and 4g sites creating a cross-layer path along the c axis.

between the empty sites created by the In substitution in LiCl. These hops or jumps can be classified
into three categories: cross-layer jumps (when the cation moves from an In layer to a Li layer or
vice versa, along the c-axis) and In or Li within-layer jumps, when the cation stays confined to the
respective layer. Therefore, jumps 2b-2b, 4g-4g, 2b-4g and 4g-2b will be called ”In layer jumps”;
jumps 2c-2c, 4h-4h, 2c-4h and 4h-2c will be ”Li layer jumps” and 2b-2c, 2c-2b, 4g-4h, 4h-4g, 4h-2b,
2b-4h, 4g-2c and 2c-4g will be ”cross-layer jumps”.

2.3.1. High entropy: origin and interest
A recent approach to enhancing diffusivity and also stability of SEs is high entropy[49], previously
popular in metallic alloys. High entropy ceramics are complex solid solutions characterized by the
presence of multiple principal elements occupying specific lattice sites in near-equimolar ratios and
causing high configurational entropy. The configurational entropy Sconfig is calculated via Equa-
tion 2.1, where R represents the gas constant, i indicates the species in the system and xi is their molar
concentration, assuming dispersed distribution of all species. Generally, this entropy should be above
1.5R as per Equation 2.1 for the multiply-substituted material to be considered high-entropy and
more than five species should share a single site[50, 51]. Likewise, the term medium entropy has been
used to describe those structures with between two and four substituents and R ≤ Sconfig ≤ 1.5R[33].

Sconfig = −R
∑
i

xiln(xi) 2.1

Since 2015, interest in high entropy mixes outside alloys proliferated due to reports of improved
corrosion resistance and mechanical properties, introduced by lattice distortion[29]. In the case of
electrolytes, such distortion is suspected to broaden the energy ranges of the sites, resulting in
overlapping energies that create a percolation path for the ions to move through[30]. Moreover, in
[33] they report 250% improved cyclability over 500 cycles owing to the anionic confinement as a
result of lattice distortion. It must be noted that these effects are not expected to be the result of
the presence of a specific element or even a specific combination, but rather an emerging property of
the presence of multiple species[49].

Alongside the five configurations of ordered/disordered Li3InCl6, we will analyze the effects of entropy
on the diffusion properties of the solid electrolyte by substituting In by In-Lu-Sc-Yb-Zr.
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2.4. Density functional theory as an atomistic microscope

Li diffusion in the electrolyte is atomistic. Considering the size of the Li atom (145 pm, ∼ 10−10m[52])
and its associated de Broglie wavelength (up to ∼ 10−9m), the wave-like behavior of the atoms is not
negligible and quantum considerations become essential for an accurate description of Li+ diffusion
in electrolytes. The observation of the diffusion events is not accessible through experiments, and we
just established that non-quantum computation methods are not fit to represent it. Hence, we rely
on ab initio calculations constructed from the fundamental laws of physics for its study[12]. Since the
first-principles problem inherent to our crystalline problem cannot be solved analytically, we must
resort to density functional theory (DFT) as the tool to solve it.

Starting from the beginning, the ground state of a system can be described by the time-independent,
nonrelativistic Schrödinger equation[53] (eq. 2.2). H stands for the Hamiltonian of the system and E
represents the ground-state energy of the system. Ψ = Ψ({r⃗i, si, R⃗j}) is the wavefunction containing
the information of the whole system: electronic positions and spin (r⃗i, si) and nuclei positions R⃗j .

HΨ = EΨ 2.2

Although this equation seems simple enough, its complexity escalates quickly when considering the
terms of the Hamiltonian. H includes the kinetic energy of all the components and the interaction
energy of nuclei with each other, nuclei with electrons, and electrons with each other. This is not
trivial. Fortunately, others before us have done the heavy lifting and we can use their approximations
and theorems to simplify the task. Considering the slow movement of the nuclei in reference to that of
the electrons, due to their significantly larger mass (over 1,000 times bigger), nuclei can be considered
static in their interaction, following the Born-Oppenheimer approximation[53, 54]. Now the electron
problem can be tackled on its own:

[
h2

2m

N∑
i=1

∇2
i︸ ︷︷ ︸

kinetic
energy

+
N∑
i=1

Vl(r⃗i)︸ ︷︷ ︸
interaction with
nuclei lattice

+
N∑
i=1

∑
j<i

U(r⃗i, r⃗j)︸ ︷︷ ︸
electron-electron

interactions

]
Ψ = EeΨ; Ψ = Ψ({r⃗i, si}) 2.3

Here, h represents Planck’s constant, m is the mass of the electron and N is as usual the total number
of particles (electrons) in the system. In this case, Ψ only depends on the degrees of freedom of the
electrons (both position r⃗i and spin si), and the energy Ee is also that of the electrons alone.

Continuing, making use of the Hohenberg-Kohn theorems[55] it can be stated that the electron density
(giving name to the name the Density Functional Theory) contains all the information of the electronic
system, and that the density that minimizes the functionalH is that of the ground state configuration.
The electron density can be calculated as follows, accounting for spin multiplicity of electrons, 2S :

n(r⃗) = 2S

N∑
i

ψ∗
i (r⃗)ψi(r⃗) 2.4

The electron density can be used to calculate the electron-electron interactions, namely in the Hartree
and exchange-correlation potentials VH and Vxc. Then, the electronic contributions can be decoupled



2.4. Density functional theory as an atomistic microscope 16

into the Kohn-Sham equations (Equation 2.5). Each electron is treated separately by including the
classical electron-electron interaction into the Hartree potential VH and the exchange-correlation
potential Vxc, quantum-mechanical[56]. Vxc encapsulates the complexities of the electron exchange
and correlation effects within the quantum many-body system. The final set of Schrödinger-like
equations follows:

[
h2

2m
∇2 + Vl(r⃗) + VH(r⃗) + Vxc(r⃗)

]
ψi(r⃗) = εiψi(r⃗); VH(r⃗) = e2

∫
n(r⃗′)

|r⃗ − r⃗′|
d3r′ 2.5

It must be noted that all the electrons are no longer included in a wavefunction, but instead ψi

represents the wavefunction of each of the individual electron. {εi} represent fictional energies that
do not relate to anything directly; instead, the energy of the system must be computed including
some corrections.

The exact expression of the exchange-correlation potential is, nonetheless, unknown for the den-
sity functional expressions. Different approximate functionals are available, the choice of which can
affect the accuracy of the DFT calculations. Different functionals such as LDA (local density approx-
imation), GGA (generalized gradient approximation) or meta-GGA are tailored to address specific
challenges for specific systems[57].

Finally, this system is a self-consistent, iterative solution to the many-bodies problem proposed at the
beginning of the section. An initial guess for the electronic density starts the iterations, from which
ψi(r⃗) is solved for in Equation 2.5, and then used to calculate the new guess for n(r⃗) (Equation 2.4).
When a certain convergence criterion is reached between consecutive iterations of the density, the loop
will be stopped and a solution will have been obtained. The lowest-energy electronic configuration is
known.

The DFT method can be used in conjunction with different algorithms to perform many calculations,
such as optimization of structures or molecular dynamics simulations in our case.

2.4.1. DFT in practice: structure optimization and molecular dynamics
Structure optimization
The lowest-energy electronic configuration of a system, where the lowest-energy distribution of nuclei
is achieved, can be obtained for any structure. Conveniently, the Hellmann-Feynman theorem[58, 59]

states that once the electronic configuration of the system is derived from the Schrödinger equation,
all the forces between nuclei and electrons in the system can be derived from classical electromagnetic
theory. This means that an easy calculation of Coulombic interactions will provide all the necessary
information about the electronic-ionic interaction.

The process for structure optimizations is as follows: for a specific configuration of the ions of the
system, the lowest energy electron density is obtained through the method described above. Then,
all is left is the minimization of the classical forces acting on the nuclei. This is achieved by adjusting
their positions until all the forces upon them vanish. Once again, we are presented with an iterative
calculation where slight changes to the lattice are introduced until a convergence threshold is reached.
The final result of such process will be the lowest-energy configuration of the provided structure. This
process is also commonly known as (static) relaxation of the structure, geometry or volume.
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It must be remarked that since the DFT relaxation is a strictly ground-state solver, only relaxations
at 0K are obtained. Moreover, due to the sensitivity of the algorithm, convergence might not be
reached if the structure is initialized too far from equilibrium or is caught in a metastable state, for
example.

Ab initio molecular dynamics

Molecular dynamics (MDs) are studies of the evolution of systems at the molecular level based on
the evaluation of the forces that act upon their components. The positions of the elements in the
systems are updated according to these forces, prompting a new configuration and new interactions,
resulting in new forces and a new update. Further explanation of molecular dynamics can be found
in Section 2.5, while herein the role of DFT in molecular dynamics is briefly explained. DFT can be
integrated into the MD routine to obtain quantum-mechanical-level accurate forces for the simulations.
This is the definition of ab initio molecular dynamics, as they involve first principles calculations to
obtain the forces in the system. This is performed analogously to the evaluation in forces for structure
optimization.

These obtained forces are then integrated according to the classical equations of motion, giving the
natural evolution of the positions of the ions while retaining quantum-mechanical accuracy. New
positions trigger a new optimization of the electronic structure, similarly to the previous case. How-
ever, in molecular dynamics the subsequent configurations owe to the integration of the equations
of motion, resulting in a causal correlation between them, contrary to structure optimizations where
the updates are caused by an optimization algorithm to find the vanishing of the forces.

Also, importantly, in contrast with the previously explained DFT method of relaxation, AIMDs
happen at finite temperature; otherwise, there would be no dynamics to be studied in the first place.

2.5. Principles of molecular dynamics simulations
Experimentally, values of physical quantities of many-body systems can be understood as an ensemble
average, or put simply, as an average over all possible system configurations that are present in the
bulk material. This is however impossible to achieve with computational methods, since considering
all accessible states is too large of a task. The solution to this lies in statistical mechanics, as for
ergodic systems proper statistical averages can provide the same information. Molecular dynamics
simulations study the time evolution of many-body systems and provide (sufficiently) approximate
statistical predictions about their properties.

From MD simulations, whichever their nature, the instantaneous particle coordinates and velocities
are extracted and used to infer observables of interest. Naturally, these same observables are not
obtained from experimental studies in the same way, and therefore care must be taken in equating
results. In the case of experiments, each measurement is a sort of pre-averaged value over the number
of particles that constitute the system and over the many configurations that took place throughout
the measurement, for example. A comparable averaging is then required from simulations as well.
The ergodic hypothesis is accepted in the following work, and hence the observables computed from
time-averaged functions of the coordinates and momenta of a many-particle system are taken as
equivalent to the ensemble-averaged quantities from experimental studies, under sufficiently long
simulations[54, 60].
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Isolated systems can be studied under molecular dynamics using pair-additive forces. this way, by
disregarding external forces such as gravitational pull for example, the force over particle i F⃗i can be
expressed as

F⃗i(r⃗i) =

N∑
j ̸=i

F (r⃗i − r⃗j)r̂ij 2.6

where j represents the rest of the particles in the system (or closest images created by periodic
boundary conditions), r⃗ is the position of a particle and r̂ij is the unit vector directed along r⃗i − r⃗j .
From this equation, the equation of motion for particle i can only be Equation 2.7, wheremi represents
the mass of particle i and t is the time variable.

d2r⃗i(t)

dt2
=
F⃗i(r⃗i)

mi
2.7

At this point, the key to the simulations resides in the choice of forces. They can only be approximated
whether it is because the study is restricted to the classical realm of physics (classical molecular
dynamics), or due to the impossibility of solving the quantum-mechanical problem (ab initio molecular
dynamics) or even because of method limitations such as system sizes, inexact arithmetic or the
imprecision of integration algorithms used to integrate the equation of motion.

Here, novel machine learning techniques pose a bridge without inherent compromises between ab initio
accuracy and classical convenience. The potentials used in classical MDs are empirically modelled
to represent the relevant interactions in different materials, while AIMDs numerically solve the most
fundamental of equations possible. Machine learning trained potentials (MLTPs) have the ability to
also model data from ab initio calculation but in much higher-dimensional and complex spaces than
human minds can grasp, providing ab inito-level accurate results at a much lower computational
cost[40, 61].

Regardless of the method to calculate the forces, as indicated by Equation 2.7, they must be integrated
to reveal the dynamics of the particles r⃗i(t). A widespread integration algorithm[54], and the one that
concerns us, is the Verlet algorithm that predicts the position r⃗ of a particle with mass m at time
t+∆t with precision ∆t4 like:

r⃗(t+∆t) ≈ 2r⃗(t)− r⃗(t−∆t) +
F⃗ (t)

m
∆t2 2.8

Some benefits of the Verlet algorithm are time reversibility and conservation of energy. The inte-
gration algorithm is routinely altered depending on the restrictions imposed on the dynamics of the
system such as temperature or pressure limitations.

Ensembles: NVT and NPT
A final statistical concept is required: the aforementioned ensemble. An ensemble is a set of virtual
copies of the system under study that serves as a bridge between the study of individual particles
and the bulk properties of a system. This set includes all the possible system configurations under
the restrictions imposed by keeping three thermodynamic state variables fixed. These might be the
number of particles N , pressure p, temperature T , volume V , energy E, etc. Ensembles can ensure
physical meaning from our simulations and help mimic relevant experimental conditions[62, 63].
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⟨K⟩ = 3

2
NkBT 2.9

⟨K⟩ = 1

2

N∑
i

miv
2
i 2.10

For NVT, the number of particles, volume and temperature are kept constant. To this end, there are
many algorithms available that control the temperature via the kinetic energy of the system, related
according to Equation 2.9 and scaled by the Boltzmann constant kB. Thus, the average kinetic
energy must be kept constant to ensure constant T , which can be granted through the instantaneous
velocities of all the particles in the system (vi), as per Equation 2.10. Differences between the
algorithms lie in how the velocities are adjusted.

To keep the temperature to the desired value, the Nosé-Hoover thermostat introduces an extra
degree of freedom in the Hamiltonian of the system to account for the fictional heat bath the system
is ”submerged” in. It comes with associated kinetic and potential energy as well as mass (Q), which
will modify the equations of motion of the system (Equation 2.11). Therefore, the typical Verlet
equations[64] will be slightly modified to include ζ, the fictional friction from the bath. This friction
is special considering that it not only slows particles down but might also accelerate them if the
temperature needs to be increased (Equation 2.12).

mi
d2r⃗i
dt2

= F⃗i − ζ(t)miv⃗i 2.11

dζ(t)

dt
=

1

Q

[
N∑
i

1

2
miv⃗i

2 − 3N + 1

2
kBT

]
2.12

The friction mass Q dominates the relaxation of its dynamics and the second term inside the brackets
is the updated expression of the average kinetic energy now that an extra degree of freedom has been
introduced. In this way, the temperature of the simulated system is intrinsically regulated[54].

On the other hand, keeping the volume constant is as easy as not moving the boundaries of the
system and making them periodic. The particles are free to move and cross them, in which case it
will reenter the simulation region from the opposite side. This not only maintains N constant but
also allows to simulate a bulk material using a very reduced sample.

An analogous approach can be taken to maintain the pressure in the NPT ensemble, adopting then
the Nosé-Hoover barostat. Barostats can also include random collisions between the particles to
better portray the stochastic nature of materials, adding a gaussian random force with mean 0 to
the equations of motion. Such is the case of the Langevin thermostat.

2.5.1. Study of conductivity from molecular dynamics simulations
From the molecular dynamics simulation, our aim is to study charge conduction in the electrolyte via
the ions. The conductivity of a material (σ) only depends on the ability of its ions to move through
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the electrolyte, regardless of the specific mechanism. This ability is strongly impacted by the available
(thermal) energy of the system, as it will make it easier or harder to overcome energy barriers between
sites. Therefore, this quantity can be described as an Arrhenius phenomenon (Equation 2.13) and
the conductive properties of the system can be extrapolated from simulations at high temperature
by applying this relation.

σ = σ0
1

T
e−Ea/kBT 2.13

The pre-factor σ0 encompasses ion charge and concentration, but also other elements such as migra-
tion entropy, jump distance, attempt frequency, and geometric information. A key aspect in our
study, the activation energy Ea, governs the relation above. It includes both the energy needed
to form mobile defects (creating vacant or interstitial sites in the crystal lattice), and the energy
barrier that must be overcome for the defects to migrate. Unsurprisingly, T signals the operating
temperature and kB is the Boltzmann constant.

Another commonly discussed property of electrolytes is diffusivity (D). The Nernst-Einstein relation-
ship in Equation 2.14 links the two of them, with N representing the total number of mobile ions,
V the total volume of the system and q the associated charge. Therefore, an Arrhenius relation for
D can also be deduced (Equation 2.15), in which D0 represents the characteristic diffusivity of the
material, quite analogous to σ0.

σ =
Nq2

V kBT
D 2.14

D = D0 e
−Ea/kBT 2.15

Magnitudes such as conductivity and diffusivity can be extracted from atomistic simulations following
the procedure described by de Klerk in reference [65]. From tracking the positions of each atom
throughout the simulation, the diffusivity can be calculated for each temperature in two ways: from
the mean squared displacement of the species (MSD, Equation 2.16), or from the jump rate (the rate
at which the diffusing species moves in form of jumps, Equation 2.17).

DMSD =
1

2dNt

N∑
i=1

[ri(t0 + t)− ri(t0)]
2 2.16

DJ =
∑
j

Γja
2
j

2d
; Γj = Jj/Nt 2.17

Equation 2.16, 2.17: In addition to the previously introduced quantities, d rep-
resents the diffusion dimensions and t represents the total time of the simulation.
As is usual, ri(t) indicates the position of atom i at time t. In equation 2.17, Γj

is the jump rate of a specific jump j, aj is the distance of such jump, and Jj the
number of jumps of that nature that occur throughout the simulation.

Both of these expressions have advantages and disadvantages. DMSD is a straightforward calculation
as it only uses information we directly obtain from the simulation without making any assumptions,
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but it only provides insight into the bulk behavior of the material. On the other hand, more precise
information about the diffusion mechanism and preferences is obtained through DJ when observing
specific jumps or types of jump, restricting the summation over j. However, this jump study requires
the definition of radii for the sites as a way to categorize in which position an atom is at each timestep.
Therefore, an element of possible error is introduced.

A significant difference between both methods to extract D is back-and-forth jumping between two
sites. By definition, its contribution to DMSD will be null but not so for DJ . Therefore, an overesti-
mation of the diffusivity can be expected fromDJ . Notwithstanding this detail, jump- or type-specific
DJ is valuable to compare with other jump diffusivities calculated in the same way to detect preferred
directions of diffusion or diffusion blockages.

Due to the limitations of AIMD, namely the length of the simulations, good statistics are only feasible
for high temperatures at which the diffusion events are more numerous. To extrapolate the activation
energy and the diffusivity at working temperatures (∼ 300K), a linear fit can be drawn if Arrhenius
behavior is assumed (Equation 2.15). The total activation energy can be extrapolated using DMSD,
or jump-specific activation energy from DJ datapoints. An in-between approach was taken in the
following study. Category-specific diffusivities, which consider only a subgroup of all the possible
jumps, were used to compare migration in different directions and domains of the material.

2.6. Brief introduction to machine learning
From Turing’s question: ”can machines think?” we find ourselves decades later wondering ”can ma-
chines learn?”. Just like him, we must concretize this question in order to solve it. Therefore: what
is machine learning?

The term machine learning (ML) was introduced in 1959 at IBM when employee Arthur Samuel
created a program that could play checkers. Previous to that, there had already been interest in
studying and reproducing human cognitive processes dating back to 1949[66], which laid the ground
for what we now know as artificial neural networks. In 1951 the first neural network machine, the
SNARC, was built[67].

Not long after, the field started to leave behind the intention to model human cognition and to
focus on potential applications. In the 1970s, the realization that technology was not developed
sufficiently to achieve the expected level of artificial cognition prompted the so-called “AI winter”,
when little funding and attention was paid to the topic. Still, during this time algorithms different
than the artificial neural networks were designed[68], and the technical background for AI and ML
slowly expanded.

In the next years, owing to the development of sophisticated fitting algorithms and the growth in data
availability, machine learning gradually morphed into what we currently understand by the term[69].
Surprisingly, the first ML software was commercialized for personal computers as early as 1989 to
solve optimization problems such as resource allocation. Finally, in the decade of the 2010s machine
learning became a cornerstone of many software services and in the last years the popularization of
generative AI has brought machine learning to daily life in much of the world.
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2.6.1. Principles of machine learning
The general machine learning problem is formally given by the definition[43]:

“given a known set of information X, called feature space and composed of many x (feature
or attribute vectors), predict or approximate the unknown function f(X)”

The goal in a machine learning problem is then to produce an approximate f̂ that reproduces f
sufficiently well. Therefore, given enough data to accurately represent the dynamics of a system, the
machine learning process will decipher the underlying connection between its attributes and resulting
behavior. This allows it to precisely predict the outcomes of systems unknown to it. This property
is called the generalization of the model.

From this basic definition stem many different categories of the machine learning problem. When
the so-called set of labels f(X) = {f(x)} is known, then (X, f(X)) is called the training set and the
problem is a supervised learning problem. The two main types of supervised learning are classification
and regression, depending on whether the outcome is continuous (regression) or discrete (classifica-
tion). In the opposite case, when the machine must find a pattern in the data without any reference
results, then it is a problem of unsupervised learning. Clustering or density approximation (depend-
ing on the finitude of the output space) are the most common types among such problems. There
exist other less widespread categories like semi-supervised (when only a few of the datapoints have a
label) or reinforcement problems (when the model is trained to make decisions based on feedback). A
summary of this categorization can be found in Figure 2.8, together with a graphical representation
of some of the cases.

Figure 2.8: Visual summary of the most common machine learning problems and diagrams
of clustering, classification and regression as representative examples of such problems.

Each of the aforementioned problems requires a particular strategy to solve it, naturally, leading to
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a variety of algorithms. For instance, common approaches to unsupervised learning are k-means or
hierarchical clustering algorithms, while linear regression, k-nearest neighbors or decision trees are
well-established techniques for supervised problems. Detailed discussion of algorithms is beyond the
scope of this report, as our focus are complex nonlinear regression problems. In this case, artificial
neural networks (ANNs) and kernel-based methods dominate[69], and only the former are used in this
study. Further discussion of ANNs can be found in Section 2.6.2. For more extensive discussion of
ML algorithms it is recommended to refer to [70], [71].

In the supervised regression problem, the output can either be the model itself f̂ or the set of predicted
labels ŷ = f̂(x) = θTx. As can be seen from the expression, the attributes obtained by the algorithm
are a result of applying the transformation ΘT to the feature vector x. Θ represents the parameter
vector, and it is the element that is optimized to produce the desired output. On the other hand, the
feature vector x is composed of the descriptors of the system.

The descriptors contain the properties of the system(s) under study that inform the training process.
They must accurately represent the system in a physical way, and be systematic and computation-
ally efficient. Descriptors ought to be a direct measure of how different two systems are from the
mathematical point of view, and they can highlight or conceal the underlying mechanisms that the
model must recognize. Hence, thorough understanding of the problem at hand is needed for their
proper choice and ultimately the success of the model.

Figure 2.9: Schematic of the ML workflow and a focus [top] on the training of the model
[bottom] including an visualization of the dataset splitting and relevant quantities such as
errors. Extracted from [72], licensed under CC-BY-NC-ND 4.0.
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On the other hand, the parameter vector Θ contains the weights and hyperparameters that define
the model. The weights determine the relative importance of specific descriptors and other inputs at
different levels of the model, while the hyperparameters control characteristics of the model itself such
as details about the architecture or training process. To find optimal values for these quantities, the
model is trained. A synoptic view of this process is depicted in Figure 2.9 (top). Data collection and
preparation steps (1-2) refer to the previous paragraph, whereas steps (3-4) represent the training
outlined in the following.

During training, the available data points (X, f(X)) are divided into test and training sets, the
latter of which is further split into training and validation subsets, as depicted in Figure 2.9 bottom
(step 1). An initial set of hyperparameters is chosen, and the weights of this initial model are
optimized accordingly (step 2). For regression problems, this optimization consists on minimizing a
loss function, which can range from standard options like those in Equation 2.18 to more task-specific
ones. The selection of the loss function is not trivial, as it affects model performance by penalizing
errors differently. For instance, while RMSE might overcompensate for some outliers, potentially
skewing generalization, a robust regression approach like the Huber loss function may ignore minor
discrepancies to achieve a generally accurate model. The goal of the machine learning task should
inform the choice of loss function to ensure the desired results.

After the first training, the first iteration of Θ (preset hyperparameters and optimized weights) is
tested on the validation set, providing the validation error (Figure 2.9 bottom, step 2). This error
measures the deviation of the predictions on the validation set with respect to its known labels
according to the metrics of choice (common metrics summarized in Equation 2.18). Then, a new set
of hyperparameters is selected, the corresponding optimal weights are found, and the validation error
is evaluated again. As a final step, the choice of hyperparameters that provides the lowest validation
error is finally adopted, together with its optimal weight set, conforming the final Θ and therefore
the trained model. This trained model is evaluated on the test set to obtain its generalization error,
and is ready to be used (step 3).
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Equation 2.18: Four most common choices for evaluating metrics are presented here:
MAE–mean absolute error–, MSE–mean squared error–, RMSE–root mean squared
error–and the Huber loss Lδ. In the first three cases, y and ŷ represent the actual and
predicted labels of datapoint i, of which there are n in total. For the case of the Huber
loss, depending on the magnitude of the residual yi − ŷi compared to a threshold δ, it
is weighted quadratically or linearly scaled to avoid overcompensation of outliers. The
combination of the losses at each datapoint is linear and can be weighted to determine
priorities in the fitting.

The performance of the trained model is a delicate balance influenced by several factors. The size and
quality of the data pool, the choice of descriptors, algorithm, and hyperparameters all play a crucial
role. The data must be enough to allow the algorithm to identify the trends in it, and the descriptors
must facilitate the task. Likewise, the ideal algorithm with appropriate hyperparameters must be
able to recognize such trends efficiently among the available datapoints and consequent noise.
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Figure 2.10: A schematic representation of the main magnitudes
in ML training, model complexity and test set error, and their re-
lationship with different extremes of the model performance. Re-
produced from ref.[71]. Licensed under CC by 3.0.

In the case that any of these links fails, the model performance will be inadequate. Two extremes
of poor performance are shown in Figure 2.10: underfitting and overfitting. Insufficient data or an
inadequate model, among others, can lead to underfitting, when the model fails to detect or accurately
represent the relevant information. If underfitted, the model will present large errors on all datasets.
Conversely, a too-complex model or a small dataset can result in overfitting. The overfitted model will
perform extremely well on the training set but fail to generalize. Therefore, careful data collection,
sampling, and the appropriate choice of algorithm and hyperparameters are essential for the success
of the model.

2.6.2. Principles of artificial neural networks
Artifical neural networks are an algorithm initially inspired by the brain structure. In this spirit,
the processing units that make up consecutive computation layers are called neurons, and they are
interconnected by links or edges in resemblance to synapses in the brain. Nonetheless, current day
ANNs no longer strive for biomimetics, and today efforts are focused on efficiency and performance of
the trained models[71]. They are especially relevant in modeling complex systems with large datasets.

In artificial neural networks, an artificial neuron receives a signal from each of its connected neurons
as represented by Figure 2.11, interprets their input, processes it applying non-linear activation
functions, and outputs it to the next neuron(s). These neurons, or processing units, are organized
in layers that can handle different aspects of the ML problem, or at least use different non-linear
transformations on them. Two layers are always needed: input and output. Nonetheless, this is a
somewhat naïve architecture and complex problems require more layers (hidden layers). Usually at
least one hidden layer is also present. Any more hidden layers are denominated deep layers, giving
rise to the term deep learning. Thanks to this intricate architecture, artificial neural networks can
mimic convoluted patterns in data structures[73, 74].

Despite the numerous varieties of ANNs, it is possible to define a general routine for their functioning.
First, each neuron must combine all the information it receives from the connected neurons. The
input z(k)j to the neuron j in layer k is given by Equation 2.19, where w(k)

ji is the weight associated
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Figure 2.11: Schematic of a neural network showing layers of neurons, di-
vided into input, output and hidden layers, and and example of their in-
terconnection. Many possible interconnection arrangements are possible for
different architectures of ANNs. Reproduced from ref.[71]. Licensed under
CC by 3.0.

with the connection from neuron i in layer k−1 to neuron j in layer k, a(k−1)
i is the output of neuron

i in layer k − 1, and w(k)
j0 is the bias of neuron j in layer k.

z
(k)
j =

∑
i=1

w
(k)
ji a

(k−1)
i + w

(k)
j0 2.19

Once the neuron has created the global input value zkj , it will perform a non-linear operation on it
called called activation function, and its output will be called the activation of the neuron. Below, a
few common examples of activation functions: sigmoid, for binary classification problems, the more
advanced and common rectified linear unit (ReLU) and the newer swish function, which provides
continuity and differentiability in the whole domain, hence facilitating the optimization process.

Given the layered structure of the processing centers in artificial neural networks, it is possible to
refine a trained model by continuing the training only on specific layers, typically those closer to
the output. This method is known as fine tuning. Fine-tuning allows to maintain the fundamental
knowledge from extensive prior training encapsulated in the deeper layers, while still tailoring the
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model to the particular features of a specific application.

Artificial neural networks can be classified depending on the design of the interconnections between
neurons (feedforward neural networks FNNs vs. recurrent neural networks RNNs), on the presence
of specific layers that perform specific tasks like convolutional neural networks (CNNs) or based on
the structure of the data. This is the case of graph neural networks (GNNs), favored in materials
science for handling graph-like data structures, which are organized in nodes and edges between them
that encapsulate their interactions. This aligns perfectly with the interconnected nature of material
interactions, as opposed to the grid-like or array-like data structures used in other domains[75, 76, 77].

2.6.3. Machine learning trained potentials
The role of machine learning in materials science is still incipient, but some major contributions have
already been made. There are many possible applications where machine learning can be beneficial,
like materials classification[78] or high-throughput studies of stability to discover new materials as
back as 2003[79]. Another application of machine learning is machine learning trained potentials, also
machine learning interatomic potentials (MLIPs), which are the tools used in this work.

These potentials serve as a replacement to the estrenuous AIMD protocol. They can predict the
interactions in atomic configurations without the quantum considerations, thus lightening the process
significantly. With MLTPs, interatomic forces can be used directly into the equations of motion
(Equation 2.8). In this way computational costs are reduced from O(N3

e ) in DFT calculations,
increasing with the number of electrons of the system, to a linear increase with the number of atoms
O(n)[38, 39]. To our ease of minds, it has been proved that no accuracy is lost by neglecting electrons
in the MLTP approach[40]. Therefore, as represented in Figure 2.12, simulations closer to the working
conditions of battery materials have become achievable: longer times, lower temperatures and larger
complex systems could be studied atomistically while showing grain formation or degradation, for
example.

Figure 2.12: Enter Caption

The machine learning problem to fit an interatomic potential is a supervised regression one. There is
a a feature set (atomic structures) with its labels (total energy and forces from ab initio calculations),
mapped over a continuous infinite variable. Ultimately, the goal is to obtain the function f̂ that
relates both of them, namely the machine learning trained potential itself or the forces it causes. All
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the required characteristics of regression problems are fulfilled. As such, several algorithms can fit
them. Nonetheless, artificial neural networks have been generally prevalent, starting as early as the
1990s[69, 80, 81].

Despite all, MLTPs did not flourish until 2007, when descriptors symmetric under translation, ro-
tation and permutation were introduced[82]. Since then, many algorithms have been used[69] such
as kernel-based Gaussian approximation potentials (GAPs)[83], spectral neighbor analysis potential
(SNAP)[84] or moment-tensor potential (MTP)[85] for many applications in the study of cathodes, an-
odes, electrolytes and interfaces[86, 87, 88, 89, 90]. Today, they are widely considered as the new paradigm
in computational materials science and the key to high efficiency research[69].



3
Methods

3.1. Bringing disorder and high entropy to Li3InCl6
2x1x2 and 2x2x2 supercells were created for the study of disorder and high entropy, respectively. As
explained below, the indium and substituted frameworks were carefully designed, whereas the lithium
distribution was chosen to minimize Li-Li repulsions. The same lithium sublattice was maintained
across ordered and disordered structures, and across pristine and high entropy ones for consistency.

Cationic-site disorder

Partial occupancies are reported in the indium sublattice of Li3InCl6[46]. Approximately 11% of the
In ions (≈ 1/8) were located outside the main site 2b and placed in 4g. Once the symmetry in the
supercell is broken by the removal of indium from 2b, the choice of destination 4g will impact the
overall structure of the cationic lattice of LIC. To represent such distribution of indium, a multiple of
4 unit cells is required. To this end, we created 2×1×2 supercells where one indium atom was moved
from 2b to 4g. Therefore, in the disordered structures there will be 7 indium atoms in 2b positions,
and 1 in a different 4g per structure. In this study, the so-called ordered structure (indium only in
2b) was analyzed in contrast to the four different disordered structures. The disordering process and
resulting structures can be seen in Figure 3.1.

Two main effects are caused by the displacement of the one indium atom: changes in the parity of
atoms in adjacent indium layers, and different aggregation of indium polyhedra (see Figure 3.2). This
results in two differentiated indium layers: the one that indium is removed from, hence resulting in
3 or 4 indium ions there (top layer in the figure, in yellow), and the other layer that might receive it
or not, resulting in 4 or 5 ions (bottom layer, brown polyhedra).

29
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Figure 3.1: Schematic of In sublattice in 2×1×1 supercell omitting periodic boundary
conditions to illustrate the origin of the disorder in the cationic sublattice of Li3InCl6 The
four resulting structures (ELC, EHC, OHC and OLC) and the original ordered structure
are studied in the following sections.

Figure 3.2: Different indium sublattices for the five structures O, ELC, EHC, OLC and OHC and their
effects on available sites and paths to lithium distribution in the indium layers (top) and lithium layers
(bottom). Especially relevant strangling or open distributions of the octahedra are signaled by colored circles
and discussed in the text.

The structures are named accordingly with E (even) or O (odd) to describe the distribution of In
atoms (4:4 or 3:5, respectively), and LC or HC to describe the low or high level of clustering in every
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second In layer. In the even configurations, low and high clustering is determined by the number
of aggregated indium polyhedra (3 or 4), whereas in the odd case there are always 4 conjoined
polyhedra in the clustered layer. The difference then lies in how the indium aligns along consecutive
layers (OHC–three, one at each end–, or OLC–two, at the base). This can be seen in both Figure 3.1
and Figure 3.2.

As per the latter, the different configurations in the indium sublattice may affect the diffusion of
lithium, the study of which is the focus of Section 4.1.4. EHC and the odd structures display four
edge-sharing octahedra, enclosing one of the 4g positions in the lithium layer a 4h in the indium layer
in a very unfavorable area due to Coulombic distributions (marked by blue circles in the case of 4g
and green ones in the case of 4h). At the same time, the even distributions create wider spaces in the
indium layer for the lithium to disperse through, signaled by the pink dashed circle. It is expected
that the specifics of these arrangements will impact the preferred sites for lithium and have an effect
on its transport.

High entropy
For the creation of high-entropy structures, the indium in the original ordered configuration is changed
into a mix of five (HE5) or four (HE4) elements: Sc, Yb, Zr and Lu, including indium or not for
HE5 and HE4 respectively. All of them share ionic charge 3+ but for Zr, with charge 4+, and have
atomic radii ranging between 155pm and 194pm[52]. These differences introduce a degree of lattice
distortion which is suspected to play a role in diffusion kinetics.

The high-entropy Li2.8125In0.1875Lu0.1875Sc0.25Yb0.1875Zr0.1875Cl6 (onwards, HE5) and the medium-entropy
variation Li2.75Lu0.25Sc0.25Yb0.25Zr0.25Cl6 (HE4) were studied. Notably, an exact equimolar configura-
tion for HE5 is unattainable within the limits of DFT and AIMD, as 10 unit cells (200 atoms) would
be needed. The computational toll of that system size is too large for ab initio methods. There-
fore, 2x2x2 supercells (160 atoms) were simulated as a close alternative, which allowed for a cationic
ratio of 3:3:4:3:3 (In:Lu:Sc:Yb:Zr) in HE5. Equimolarity is possible in the case of HE4, where all
substituents have x = 0.25 (four atoms of each are present in the 2x2x2 supercell).

Five structures were selected for the study of each HE5 and HE4 from the many that emerge from
the combination of species. The structures considered for each HE5 and HE4 range from the most
ordered configuration possible (substituents organized in layers) to the most dispersed one, including
an in-between distribution and two randomized configurations for completeness (Figure 3.3). From
each group of HE structures, that with the lowest ground state energy was selected for the subsequent
analysis of diffusivity (Figure A.4).
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Figure 3.3: Diagram of the creation of HE structures for the case of five (HE5) and four (HE4)
elements in the cation sublattice, originally composed of only In. Five different configurations were
built for each of the compositions with different degrees of order in the sublattice, including two
randomized configurations.

In both cases the lowest energy was achieved in the randomized distributions shown in Figure A.3.
However, all the considered configurations had energies within the expected thermal fluctuations,
rendering all of them potentially present in bulk materials.

3.2. Computational specifications

The supercells were created with Materials Studio[91] and VESTA[92] from crystallographic informa-
tion from ref. [46]. Using an in-house Python script, 30,000 randomly assigned lithium configurations
were generated for the 2x1x2 supercells. For the 2x2x2 supercells, 100,000 configurations were gener-
ated. In this pre-screening, the chemically appropriate amount of lithium was positioned in a random
selection of sites among those available to them, and only electrostatic Li-Li interactions were con-
sidered by the method of undamped shifted force[93]. The configuration with the smallest repulsions
was selected to start the usual ab initio calculations with the Vienna Ab Initio Simulation Package
software (VASP)[94].

For AIMD studies, first DFT relaxations of the supercells were performed using the projected-
augmented wave approach (PAW)[95]. The generalized-gradient approximation (GGA) Perdew-Burke-
Ernzerhof potential with correction for solids PBEsol[96] was chosen after a study of volume conver-
gence against other common pseudopotentials. The electronic convergence was defined at 10−4 eV.
For the study of disorder with 2x1x2 supercells, we set the plane-wave energy cutoff at 520 eV and



3.2. Computational specifications 33

k-mesh 3x3x3 over Γ. For the high entropy samples with 2x2x2 supercells, an energy cutoff of 400
eV and k-mesh 2x1x2 over Γ were selected.

The ab initio molecular dynamics simulations were performed in the NVT ensemble from the relaxed
structures, with a timestep of 2fs and using the Nosé-Hoover thermostat. The cutoff energies were
chosen at 400 eV for the smaller supercells and 300 eV for the larger ones. The pseudopotential
and convergence criterion were maintained the same as in the relaxations. For the study of disorder,
NVTs were recorded at 550K, 700K, 775K, 850K, 925K and 1000K for 200ps. For high entropy, they
ran at 700K, 800K, 900K, 1000K, 1100K and 1200K during 120ps in the case of HE5 and 90ps in the
case of HE4 (due to the expensive computational requirements of such big AIMD simulations).

The classical molecular dynamics simulations were exclusively conducted using machine learning
trained potentials. In particular, a fine-tuned model of CHGNet[97] (referred to as FT or CHGNet-
FT hereafter) was utilized via the LAMMPS software[98]. Similarly to the ab initio studies, first a
static relaxation was conducted and the NVT simulations were started from the resulting structure,
all using the FT potential. Only relative values for the energy convergence criterion for relaxations
can be passed to LAMMPS, so a blind estimation for this value was chosen (10−16). The relaxations
stopped before arriving at this criterion but reached ∆E = 10−12 eV, exceeding the ab initio criteria
and were therefore considered satisfactory. In the molecular dynamics simulations, for consistency
with the ab initio studies, the timestep was also chosen to be 2fs and the simulations span the same
duration at the same temperatures as AIMDs, kept by a Nosé-Hoover thermostat as well.

In all scenarios, the first 2.5ps were considered to be the equilibration time of the system, and
therefore disregarded in the calculations. The simulation data was analyzed with the Python packages
GEMDAT[99] and Pymatgen[100]. Additionally, we developed code based on the GEMDAT library to
analyze the diffusivity contributions per axis and per category of jump (cross-layer, within In layer
or within Li layer), as discussed in Section 2.5.1 (Appendix B).

3.2.1. Fine tuning of a machine-learning trained potential
CHGNet was the pretrained MLTP model chosen to initiate the machine learning methods in the
group, as it has been praised for its integration of charge-based phenomena through magnetic mo-
ments without the necessity to explicitly include electrons[101]. Its impressive pretraining dataset of
over a million structures and streamlined fine tuning process made it an attractive choice. More-
over, CHGNet contains 412,525 parameters to describe the complexity of atomic interactions. The
pretrained model was subsequently fine tuned to better represent our system.

The dataset used for fine tuning consisted of static force calculations and a few full relaxations of
uncorrelated frames from the previous AIMDs of the 2x1x2 cells. To this end, an autocorrelation
analysis was performed using block-bootstrapping[54] (Figure A.6), and the autocorrelation time was
decided to be 5,000 steps. Therefore, 600 uncorrelated frames were obtained (120 per each structure–
O, ELC, EHC, OHC and OLC). For all of them, a static calculation of their forces was performed
with ENCUT = 450 eV and EDIFF = 10−6 eV. Additionally, 20 full relaxations of the ELC structure
at 505K were included (≈ 3% of the full set), introducing some volume variability in the dataset as
well.

For the fine tuning, thanks to the streamlined process by CHGNet, formatting and transformation
into descriptors is not required to do manually. The VASP output files from the relaxations were
processed directly by CHGNet functions and no hands-on work was needed. CHGNet is pretrained
on the structures from the 2022 Materials Project database, so given the limited size of our dataset
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and the smaller historical interest on halide electrolytes we chose a training set larger than typical.
The training set represented 95% of the total data, and 20% of it was allocated for validation. This
left a reduced test set which could lead to skewed generalization metrics. This was an intentional
trade off to prioritize the thorough training of the model. As a consequence, the performance of
CHGNet-FT was manually assessed, including the 2x2x2 supercell which was not a part of the fine
tuning dataset.

The FT model was trained on energies, forces and stresses with relative weights of 1:1.5:0.15 using
the optimizer Adam and scheduler CosLR. The training encompassed 50 epochs with learning rate
10−3 using the Huber loss (Equation 2.18). Only the embedding layers were retrained (atom, bond
and angle embedding), together with the reference energy AtomRef. This was needed to reconcile the
data from the pretraining of CHGNet and our own data, which had been calculated using different
pseudopotentials.



4
Results and discussion

The broad topic investigated in this work must be narrowed down to concise and manageable research
questions that can be tackled systematically. Therefore, research will be addressed in three main steps.
First, cationic disorder in the In layer was studied as an approach to the general characterization of the
diffusive properties of Li3InCl6 and the effect of disorder itself: ordered vs. disordered LIC. Secondly,
high-entropy structures where In was substituted by a mix of several elements were compared to the
pristine In-only sample: pristine vs. high entropy. Finally, the first strides towards incorporating
machine-learning techniques as a key complement of ab initio studies have been taken: ab initio vs.
MLTP. In this way, the three aforementioned research questions can be examined to shed light on
each of the topics.

4.1. Characterization of the diffusivity of Li3InCl6 and effects of dis-
order

In this section, we present the study of the diffusion characteristics of Li3InCl6 for different atomic
arrangements of the material. The ordered structure O and the four disordered structures ELC,
EHC, OLC and OHC in the 2x1x2 supercells are analyzed side by side in an effort to understand
and characterize the diffusion of lithium in this solid electrolyte.

First, the structural integrity of the cells is verified, as formation of stacking faults has been reported
experimentally in similar materials and found computationally in LIC itself[47, 102, 103]. Following,
the diffusivity in the different structures is investigated in two ways: MSD diffusivity and jump
diffusivity via jump analysis. Previous literature agrees that diffusion in Li3InCl6 is dominated by the
vacancy mechanism and that Li movement follows octahedral-tetrahedral-octahedral paths[19, 46, 48].
Nonetheless, there is less consensus on activation energies, conductivity at room temperature and
dimensionality of diffusion. Our contribution to this discussion is presented in this section, alongside
with the study of possible differences arising from different lattice configurations.
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A comprehensive summary of all results and errorbars introduced in this section can be found in
Appendix A.

4.1.1. Structure stability
To confirm the stability of the electrolyte, the movement of indium and chlorine atoms in the NVT
simulations was studied. While lithium is expected to diffuse and move throughout the simulation
cell, well-behaved cationic and anionic sublattices should remain in place. However, and interestingly,
unexpected movement was detected in the cationic sublattice of indium for all the disordered struc-
tures, as per the indium MSD plots in Figure 4.1. Notably, the ordered structure does not present
any indium displacements.

Figure 4.1: Mean square displacement evolution of the indium atoms at different temperatures
for each structure. While all the disordered structures present a varying degree of mobility, the In
sublattice in the ordered structure O remains intact.

While this movement does not represent the formation of stacking faults, a certain degree of instability
is introduced. In that case, a coordinated movement of whole lattice planes would occur. For us,
the displacement of indium was not accompanied by the chlorine sublattice, as formation of stacking
faults would entail. Instead, more detailed examination shows that only one or two atoms move in
each case. Indeed, this movement has a more erratic nature: its presence and magnitude do not
directly correlate with temperature, and often atoms return to their original positions or close by
them.

The specific movements of the indium atoms can be seen in Figure 4.2, not revealing any particular
tendency. As a reminder to the reader, positions 4g and 2b belong to the indium layer, and 4h and 2c
belong to the lithium layer. In structure O all indium is in site 2b, and in the disordered structures
one of the indium atoms has been removed from 2b and placed in site 4g. Notably, the movements
do not seem to represent reconfigurations towards a preferred, more stable arrangement common to
all structures. ELC (the even, low clustering structure) returns to the ordered configuration, while
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Figure 4.2: Bar plot summarizing the indium hops during the NVTs (temperature indicated by
bar color). On the x-axis, the labels of the jumps, while the y-axis shows how many jumps have
occurred. Positions 4g and 2b belong to the In layer, and 4h and 2c belong to the Li layer.

its high-clustering counterpart EHC has an opposite behavior, moving an indium to the Li-layer. In
the odd configurations OLC and OHC, the indium in 4g tends to be joined by a second atom that
leaves its original position 2b. Sometimes, indium even visits the Li layer.

Given the seeming randomness in this movement no further conclusions can be drawn from this
analysis apart from identifying a certain degree of indium mobility at high temperatures. The analysis
of lithium diffusivity is carried out normally in the following sections despite these small displacements
in the indium sublattice.

4.1.2. Bulk diffusivity and activation energy
The MSD curves from the NVT simulations between 700K and 1000K are well behaved, growing suffi-
ciently linearly with time and increasing their slope as temperature increases (Figure 4.3). Therefore,
they are adequate to perform typical Arrhenius studies of diffusivity and extrapolate the activation
energy and the conductivity at room temperature, as per Section 2.5.1. In contrast, the runs at
550K displayed step-like MSD curve in several of the structures and were therefore excluded from
the analysis.

The fits for each structure are collected in Figure 4.4, resulting in σ ∼ 0.2 − 0.3 mS/cm for all
disordered structures, and σ = 0.856mS/cm for structure O at room temperature. Recently published
experimental results concur in conductivities around 0.47-2.04 mS/cm for LIC[19, 23, 26, 27, 46], showing
good agreement. Computational studies[47, 104, 105] report more varied results, ranging from 0.001-0.01
mS/cm to 12 mS/cm. Disparity between experimental and computational investigations is natural
and expected[48, 106], as experimental studies often account for phenomena happening at many length
scales and impurities, for example. Meanwhile, computational methods are limited due to small viable
system sizes and simulation times, and are sensitive to specific settings and initial configurations,
which also explains the discrepancies among them. For that reason, comparison with literature will
focus on qualitative aspects like diffusion mechanisms or preferred diffusion direction.
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Figure 4.3: Mean squared displacement of the lithium atoms at different temperatures (700K,
775K, 850K, 925K and 1000K) for each structure.

Figure 4.4: Arrhenius plots for the total MSD diffusivity of each structure. Datapoints at 700K,
775K, 850K, 925K and 1000K. Activation energies from the slope of the fit are shown in the graphs,
as well as the extrapolated value of ionic diffusivity at room temperature. Errorbars can be seen in
Figure 4.6 and in Appendix A.

From the fittings we obtained sensible activation energies, well aligned with the experimentally re-
ported data for similar halide solid electrolytes such as Li3YCl6, Li3YBr6, Li3YBr3Cl3 (0.2-0.4 eV)
and LIC itself (0.347-0.325 eV)[19, 23, 24, 48, 102, 103]. Computational evidence also supports our results,
having found an activation energy of 0.294 eV[105]. Only one other computational study[47] presents
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a significant deviation, publishing energies of 0.13-0.15 eV. However, the limited simulation times
analyzed in this study (20ps) could affect the statistical robustness of its results, and the ballistic
regime may have significantly influenced the outcomes. In light of these observations, our results,
which are in good consonance with the majority of the literature, seem to represent a well-contrasted
behavior for the diffusion of Li in this solid electrolyte.

Figure 4.5: Lithium density plot to show the diffusion path between octahedral positions and
connectivity (structure O, 775K). Tetrahedral positions 8j are signaled by pink dashed circles,
clearly visited in the diffusion path. Moreover, 3D connectivity is evident. High temperature
was chosen to show all possible paths, but equivalent features are observed across all structures
and temperatures.

Additionally, the expected oct-tet-oct diffusion path is confirmed by our results, as exemplified by
Figure 4.5 (left), and consistent across all temperatures and structures. All movements between
layers necessarily pass through the 8j tetrahedra, with the tetrahedrals acting as transitional states.
While they are clearly visited by the ions, 8j positions do not show as prevalent concentration of
lithium as the other sites, hence validating the hypothesis that 8j positions are only intermediate
steps. Moreover, no lithium is visible outside the expected paths, and the density probability plot
exhibits three-dimensional connectivity, further confirming previous results.

This preliminary investigation is in reasonably good agreement with current knowledge. It demon-
strates an average activation energy of 0.294 eV across all configurations, being slightly lower for
the ordered structure, and suggest conductivities at room temperature around 10−7 − 10−6 S/cm.
Moreover, 3D connectivity is proved and the diffusion path across layers was found to be octahedral-
tetrahedral-octahedral in the cross-layer transport.

4.1.3. Dimensionality of diffusion
There has been contradictory evidence regarding the dimensionality of diffusion in C2/m halide SEs:
Helm described isotropic 3D diffusion in LIC[46], whereas others found preferences for both within-
layer diffusion[104] or cross-layer diffusion[103]. To investigate any preferences in the diffusion direction
in LIC, we performed an Arrhenius fit on DMSD separated per axis and found no distinct preferred
direction. From our data, we could restrict the expression of MSD diffusivity Equation 2.16 from
∆ri = |ri(t0+t)−ri(t0)| to ∆ai, ∆bi or ∆ci. The results from this analysis are collected in Figure 4.6
and analyzed below.

The first result to extract from the graph is the pronounced agglomeration of datapoints, with
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no distinct outliers, especially when considering the errorbars. No clear favorite direction can be
observed, as the a priori lower activation energy along direction b is concealed by the large errorbars.
In conjunction with the upcoming study of lithium density distribution (Figure 4.9), 3D diffusion is
concluded for LIC.

Figure 4.6: Comparison of activation energies from MSD diffusivities
for each structure (symbol) and axis (color). The dashed line across each
cluster represents the simple average of the cluster (average activation
energy per axis).

Nonetheless, the dimensional study per axis contains convoluted information for the vastly different
indium and lithium layers in the a and b axes, which could be responsible for the large errorbars.
To rid our data from the such large uncertainties, a study of diffusivity per layer was carried out.
The total jump diffusivities from all jumps in a same category (In within-layer, Li within-layer or
cross-layer) were fitted to an Arrhenius relation to deconvolute the lithium migration in both layers.
This resulted in improved resolution of the activation energies as per Figure 4.7.

The activation energies via jump diffusivity per layer exhibit reduced errorbars compared to the
study per axis. Furthermore, the suspected pattern is confirmed: diffusivity in the lithium layer
is favorable and comparable to that across layers, whereas movement in the indium layer is more
restricted. Hence, larger errorbars are concentrated in the indium layer and activation energy is
higher as well, although inconclusive for this reason.

The elevated activation energy of cross-layer jumps in structure O is of particular interest. this is
especially relevant as cross-layer jumps directly correlate with migration along c, for which structure
O showed no distinctive behavior. Further investigation showed that a significant amount of lithium
density was not captured as belonging to any specific sites for this structure (Figure 4.8, left), leading
to diminished values for the jump diffusivity of cross-layer jumps in structure O. Thus, the cross-
layer activation energy for structure O is deemed an artifact of the analysis tools. The disordered
structures, however, show acceptable density capture rates (around 90%) and therefore no other
points from the figure need to be disregarded.

Considering both dimensionality analyses, no strongly preferred direction has been found: diffusion
in the ab plane (within-layer) is almost as probable as diffusion along c (cross-layer). The only
discernable differences lie in the diffusivity in the In layer due to the scarce movement in that
layer. Regardless, our findings suggest that the interlayer connectivity renders the diffusion process
tridimensional, in support of [46].
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Figure 4.7: Activation energies per layer (axis, color) and structure
(symbol) calculated from jump diffusivity, and total MSD diffusivity for
reference

4.1.4. Effect of cationic-site disorder
Our study of the lithium occupation per site revealed that for the ordered structure around 35%
of lithium is unaccounted for (Figure 4.8 left), as suspected. Furthermore, the density distribution
within the cell (Figure 4.9) ensures that lithium does not visit sites other than 2c, 4h, 2b, 4h and
8j, and including 8j in the occupation analysis does not significantly increase the total capture for
structure O (Figure A.2). Therefore, the missing lithium in structure O is not at a site outside our
scope. It must then be distributed in the space between the known sites.

This hypothesis is sustained by the study of occupation at the sites when their radii are increased
selectively (Figure 4.8, right). It shows increasing concentration of lithium beyond 1.8Å, which, as
previously noted, cannot be attributed to the tetrahedra (at around 2.2Å from all the sites shown).
The density distribution in Figure 4.9 offers easier access to these considerations. The figure shows
better ion transport in O in opposition to ELC (as an example of disorder, for clarity, showing
characteristics shared by all the disordered structures).

Indeed, the density distribution in the cell shows connections along the a axis in the ordered structure
that are absent in the disordered case (green rectangle). At the same time, the existing paths in the
disordered structure are less pronounced and uniform, as indicated by the shade of blue (purple, and
red rectangles), and are narrower (red rectangle). Additionally, lithium concentrates at certain sites
(black circle), in contrast with structure O. Therefore, lithium mobility is expected to be higher in
the ordered structure, as backed by the calculated conductivity.

The enhanced conduction of lithium in the ordered structure is contrary to the conclusions from a
computational study on LIC from 2022[47], which reported enhanced mobility of Li ions in a disordered
configuration, and other findings for similar halide SEs, as previously established. Concurrently,
nonetheless, the experimental investigation from Li et al.[23] concluded that a less crystalline sample
of Li3InCl6 showed lower diffusivity than its crystalline counterpart. Our results are consistent with
the latter experience.

Naturally, in experiments the crystallinity of the sample is impacted by a broader definition of
disorder than the one we are studying, such as including defects and impurities. Therefore, only a
cautious correlation can be established with our observations, but such a correlation is nonetheless
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Figure 4.8: Analysis of occupation of lithium. Snapshots correspond to 550K, but consistent results
are found across all temperatures. Left: distribution of the lithium density among the defined sites, per
structure. The percentage of time that lithium spends on average in each of the sites is shown. Right:
evolution of the total lithium density assigned to a site as only the radius of that site increases, per
structure (color). On the left column, the percentage captured at that site. On the right, how that impacts
the total lithium count. The vertical lines represent the radius selected for the analysis (double the vibration
amplitude, in black) and the distance until overlap with the nearest site (red). Site 2b omitted as it is fully
occupied for O.

present. Moreover, the same detrimental effects of disorder have been found in samples of Li3YCl6
synthesized with the same methods[19] as Li3InCl6. In that case, the lower crystallinity was even
directly attributed to cation-site disorder, further backing our findings.

Finally, a comparison can be established among the different types of disorder. ELC, EHC, OHC and
OLC exhibit considerably different characteristics which could have an impact on lithium mobility.
Due to the aforementioned movements of indium, the activation energies and conductivities extracted
from the Arrhenius relation contain information pertaining to many indium configurations outside
our initial set. Therefore, they are not adequate to compare the consequences of clustering or parity
of indium. Yet, data at 550K and 700K is representative of the original structures and can be used to
establish a comparison. Figure 4.8 shows a trend in the distribution of indium that correlates with
the specifics of the configurations.

At 550K and across all temperatures, odd structures show less indium layer occupation, which is
expected due to the large indium clusters caused by five indium octahedra in every other layer.
Within this first split, OLC and OHC also show different distributions of lithium in the lithium layer.
In OHC the indium cluster completely surrounds the 2c position (four at the bottom and three on
top, as per Figure 3.2), and this is likely a reason for the preference of 4h rather than 2c. Occupation
of 2c is easier in OLC, where 2c likely feels smaller repulsion from indium as it is less concentrated
around it.

In contrast, for the even configurations clustering appears to have minimal effects. It seems that
the space created by the removal of indium from 2b, when not overly blocking the adjacent layer as
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Figure 4.9: Density distribution plots for the disordered structure ELC versus the ordered
structure, at 550K. Differences in the lithium distribution are signaled by dashed rectangles.
In green, the better connectivity of O. In red and purple, the stronger and wider paths along b
and c. In black, the higher concentration at sites in the disordered structure. Structure ELC
is chosen for ease of comparison, but EHC, OHC and OLC show the same features).

in the odd cases (Figure 3.2), is sufficient to facilitate the presence of lithium in the indium layers
overall, regardless of the agglomeration.

It is difficult to say how and if the specifics of the cationic-site disorder impact lithium transport in
Li3InCl6, as statistics at lower temperatures are not enough to obtain estimations of the diffusivity
independent of the higher temperatures. Nonetheless, the effects on the occupation of sites are not
drastic and from our results it is likely that the nature of the disorder has little impact on the overall
performance of LIC as a solid electrolyte. However, it is possible to conclude that any disordered
configuration is outperformed by the ordered structure as has been proved quantitatively by the
activation energy and qualitatively by the distribution of lithium in the supercells.

4.2. Effects of high entropy: multicationic substitution
To test the effect of high entropy in the performance of Li3InCl6 we chose to substitute In with a mix-
ture of five elements (In, Lu, Sc, Yb and Zr), resulting in Li2.8125In0.1875Lu0.1875Sc0.25Yb0.1875Zr0.1875Cl6
(HE5). This introduces a certain variability in the radii (155-194 pm) and charge of the cations (3+
for all except Zr, with 4+), which could lead to the creation of favorable percolation paths due to
lattice distortions[30] and improve the diffusive properties of the electrolyte.

A second structure with only four substituents was also studied to corroborate the entropic origin of
the possible enhancements. The physical principle behind the improved properties of high entropy
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electrolytes is, justifiably, under question[107]. Doubts are raised regarding whether these enhance-
ments are in turn due to the selective addition of species. Therefore, we included in our study a third
structure with only four substituents. We chose it to be Li2.75Lu0.25Sc0.25Yb0.25Zr0.25Cl6 (HE4).

In the following we present a comparison between all three configurations as obtained for the 2x2x2
supercells. It must be noted that only 90ps were obtained for the NVT simulations of HE4, whereas
120ps are available for the pristine sample (LIC) and HE5. Due to the short timescales under
consideration, this difference could impact the results. For consistency, results are shown for LIC
and HE5 for the full 120ps, and for LIC, HE5 and HE4 restricted to the 90ps duration, so they can
be compared directly. Moreover, the particular HE5 and HE4 used in this investigation were those
with the lowest energies among the five options explained in Section 3.1.

Figure 4.10: Left: MSD curves for the pristine structure (LIC, solid) and HE5 (dashed)
at selected temperatures. Right: MSD curves at the same temperatures, also including
HE4 (shorter dashes). Only shorter simulations for HE4 were obtained (90ps), hence
different limits between the figures must be noted.

We found that HE4 outperforms the pristine structure by almost an order of magnitude in its con-
ductivity at room temperature compared to the full length LIC simulation, whereas HE5 shows little
to no improvement (Figure 4.10, Figure 4.11). In the 90ps comparison, LIC shows a quite higher
conductivity than for 120ps. That is not outside the ordinary since due to the exponential relation
between activation energy and conductivity, expected ranges of conductivity at room temperature
are quite high. Moreover, LIC presents large errorbars for 90 ps, which leads to doubt this result. On
the other hand, HE4 has lower smaller errorbars, comparable to those for the long simulation times
of LIC and HE5, and even better. This is probably due to the higher kinetics just providing better
statistics. Therefore, we consider the conclusion that HE4 is more conductive and reliable.

Indeed, HE4 lowers the energy barrier considerably in all dimensions and layers, as per Figure 4.12.
This challenges expectations about high entropy effects. A similar study from 2024 also reported
moderate improvement in ionic conductivity in a HE-LIC with Y, Yb, Er, In and Zr[33]. However,
their three-element substitution (Y, In and Zr) did not show as distinctive behavior as our HE4, and
instead seemed to back the high entropy hypothesis. The opposite is deduced from our investigation.

Having negated the pure high entropy mechanism, two main features of HE4 that could impact its
diffusive properties remain: reduced indium content and increased vacancy concentration from Zr
substitution. An investigation of exactly this aliovalent substitution in LIC was carried our in [46]. For
Li3–xIn1–xZrxCl6 with 0 ≤ x ≤ 0.5, the optimal concentration of lithium was found at xLi = 2.6, nearly
tripling the conductivity. In our case, HE4 displays a 6-fold increase in conductivity at xLi = 2.75
whereas at xLi = 2.8125 HE5 does not exhibit improvements. These results show similar trends and
suggest that the introduction of vacancies could be responsible for the enhanced properties in HE4.
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Figure 4.11: Arrhenius fits for LIC and HE5 (left), and including HE4 (right). Annotated,
the conductivity at 300K (room temperature, RT) and the activation energy

Figure 4.12: Dimensionality analysis of the three structures over 90ps. Left shows the diffusivity along
each axis, while right shows it per layer. Figures for the full 120ps for LIC and HE5 were omitted as
they show no changes. The label ”In layer” is retained for simplicity despite now having a multi-cationic
framework. Circle marker represents LIC, square represents HE5 and triangle represents HE4.

Finally, we studied the distribution of the distribution of lithium among the crystallographic sites and
found comparable occupations for the pristine and the five-element structures, whereas the previously
called indium layer is less occupied for HE4 (Figure 4.13, top left). In this case, slightly less lithium is
captured throughout the three sites, and the allocation between the layers becomes more equitable.

Lithium specifically occupies more the site 2c in HE4. However, per the density distribution plots
(Figure 4.13, bottom left), the site does not trap the ions. The concentration of lithium remains low
around them but more connected. In the plane ab (Figure 4.13, right) more channels are open for
lithium along a in HE4, and lower concentration of lithium is seen around specific sites than in its
two counterparts. LIC and HE5 show extremely comparable distributions albeit a timid preference
for the a direction. Although faint, due to the short simulation times and the relative scale of the
plots, these changes in the observed mobility of lithium in HE4 make for a much better connectivity
in the material and easy movement of charge across the electrolyte, as obviously demonstrated by its
activation barrier 0.252eV versus 0.3eV from LIC and HE5.
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Figure 4.13: Top left: Lithium occupation distribution at 700K for the pristine structure, structure HE5
and structure HE4. Bottom left, right: Arrows indicate higher concentration around sites (left) or diffusion
channels (right) present most relevantly in the high-entropy-4 configuration.

.

Overall, findings from the analysis of high entropy are insightful. They reveal that other factors can
be behind improved properties in high entropy solid battery materials rather than the claimed con-
figurational entropy. In this case, enhancement of conductivity due to the introduction of vacancies
via substitution with Zr seems most probable.

4.3. Implementing machine learning trained potentials for solid elec-
trolyte analysis

As already established, machine learning trained potentials promise to enable many key features for
computational materials research, especially for solid battery materials. Here we present the first
steps towards implementing these methods in the research group.

First, the performance of the pretrained universal CHGNet model is presented, compared with the
performance of fine tuned model trained as per Section 3.2.1, and taking the DFT simulations as
reference. Consequently, we evaluate how well the MLTP represents the diffusion phenomena found
in Li3InCl6, and finally we test some of the premises that make machine learning trained potentials
attractive. We present 1ns-long and low-temperature simulations as an example.

4.3.1. To fine tune or not to fine tune
Given the large training set of the pretrained model of CHGNet (PT), the model was introduced as
universal. Nonetheless, as can be seen in Figure 4.14, the original model is far from accurate for our
Li3InCl6. Further refinement of CHGNet-PT is necessary to use it in our investigation. Without it, in
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the NVT-MD at 700K the structure decomposes and the lattice is no longer existent. The fine tuned
model, however, mimicked remarkably well the displacement curves shown in that figure, which we
compared as a preliminary test.

Figure 4.14: NVT simulations of the 212-ordered structure at 700K using the pretrained CHGNet
model (PT), the previous ab initio results and the fine tuned CHGNet model (FT).

The fine tuned model achieved satisfactory metrics in its training, with 3 meV/atom in the energy, 50
meV/Å in the force and 0.052 GPa for the stress. These values are sensible for CHGNet but slightly
higher than reported in cases where fine tuned CHGNet models were used[28, 97]. The generalization
error was null, unsurprisingly given the small test set (explained in Section 3.2.1). For that reason, the
model was manually tested on the static and NPT relaxations of structures O and OHC (Section 3.1),
yielding excellent results when compared with ab initio as shown in Figure 4.15. The NPT-MD was
carried out with the same settings as NVT (Section 3.2), and using the Langevin barostat for VASP
and the Nosé-Hoover barostat for LAMMPS.

Figure 4.15: Top: Performance of the pretrained and fine tuned models
of CHGNet in relaxing the structures 2x1x2-O (top row) and 2x1x2-OHC
(bottom row). Left: static relaxations. Right: NPT relaxations at 300K.

The agreement is practically perfect for the static relaxations (Figure 4.15 left), and the improvement
with respect to the pretrained model is even more striking for the NPT case. This suggests that the
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fine tuning was of high quality, as it correctly predicted the evolution of a system under conditions
far from the training data.

Therefore, whereas the pretrained model failed to represent the physical interactions in our system,
the FT model reproduced correctly the volume of the structures and the initial NVT simulation.
Herein we present further analysis of the electrolyte using the fine tuned MLTP, focusing on the
simulation of its diffusive properties.

4.3.2. Reproducibility of ab initio results
Once established that the FT model provides good baseline results for Li3InCl6 in its two tested
configurations, 2x1x2-O (O from now on) and 2x1x2-OHC (OHC), we include the 2x2x2-O structure.
2x2x2-O is the same structure as O but doubled along b. It was referred to as the pristine structure
in Section 4.2 and hereafter referred to as 2x2x2.

To further corroborate the ability of the FT-MLTP to simulate ionic diffusion in LIC, we studied the
MSDs and associated activation energies for the three structures, and compared them with their ab
initio counterparts. To ensure a fair comparison, the simulation settings were kept as consistent as
possible: simulations spanned 200ps for O and OHC at 550K, 700K-1000K and 120ps for 2x2x2 at
700K-1200K. The lithium distribution for each of the structures was also inherited from the ab initio
investigation.

Figure 4.16: Top: MSD curves for the three structures at selected temperatures (550K,
700K, 850K and 1000K for O and OHC; 700K, 900K, 1000K and 1200K for 222). Solid
lines represent the FT trajectories and the dashed lines are the corresponding ab initio ones.
Bottom: Lithium density probability for each of the structures at 1000K.

The FT model provides reasonable results that can be observed in Figure 4.16. The MSD curves
grow linearly and are sensitive to temperature increases, while the lithium density distributions and
diffusion paths are analogous to the ab initio simulations. Furthermore, the disordered structure
OHC also presented small indium movements like observed in Section 4.1.1. The high accordance
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of results for the 2x2x2 supercell is especially encouraging, since the training set for FT was only
made up of 2x1x2 supercells. This suggests that smaller systems could provide sufficient training for
simulating large systems with the FT-MLTP.

Some deviations from the ab initio reference can be seen in the MSD curves of structure O at high
temperature (Figure 4.16, top left), and most importantly from the activation energies in Figure 4.17.
The fits for both structures O and OHC are notably different from the ab initio ones, although
interestingly structure O still shows lower activation energy than the disordered OHC. However,
considering the large errorbars, which include the ab initio values, we cannot pass a judgement too
strict on these results.

Moreover, there is great accordance between FT and ab initio for 2x2x2, arguably the truest to
the physics of the material given the improved statistics and larger system size. The simulations
are therefore deemed generally satisfactory to the end of verifying the applicability of MLTPs in our
study. They preserve the physical behavior of the system and exhibit the expected features of lithium
transport in Li3InCl6, even though exact reproducibility was not been achieved.

Figure 4.17: Arrhenius fits for FT (solid line) and ab initio (dashed line) NVTs for each structure.

This is especially true when considering the limited size of the training data, 30 times smaller than
used by the creators of CHGNet in a similar study[28], or the lack of intuition to choose the fine tuning
hyperparameters. We consider this a successful first implementation of machine learning techniques
into the computational research at the research group. Following studies using this method will
undoubtedly benefit from the knowledge acquired during this first approach.

Finally, an illustration of the improvement in computational costs of of MLTP-MDs versus ab initio
MDs throughout this investigation is shown on Table 4.1. The lightness and scalability of machine
learning trained potentials, when combined with the proper training and usage, has the potential to
revolutionize the state of the art, if it is not doing so already.
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2x1x2 2x2x2

VASP 3,045.53 18,791.63

LAMMPS 66.00 138.80

Table 4.1: CPU hours required for 200 ps NVT simulations for 2x1x2 (struc-
ture O) and 2x2x2 supercells using an ab initio software (VASP) or the clas-
sical software with the MLTP implementation (LAMMPS). Illustrative data
from simulations at 700K is shown.

4.3.3. Beyond the limits of ab initio
To conclude, we tested the FT-MLTP on two of its biggest attractions, namely the ability to perform
simulations for long times and at lower temperatures. We experimented increasing the simulation
times of the previous structures to 1 ns, and we also included an extra simulation at 300K. Fig-
ure 4.18 (top) shows the effect of longer simulation times in the Arrhenius study. At the bottom, the
conductivity calculated from the simulation at 300K compared to the extrapolations from the high
temperature simulations.

Figure 4.18: Arrhenius fits for the three structures showing data from the ab initio (dashed black) and FT
simulations (color), for the short simulation times (dashed) and 1ns (solid). Top: Bounds are the simulation
temperatures (550K to 1000K for 2x1x2 and 700-1200K for 2x2x2). Bottom: The plot is expanded to include
T=300K, and the diffusivity directly calculated at that temperature
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The longer simulations reduced the errorbars significantly, and in the case of O the calculated activa-
tion energy also suffered a major change (Figure 4.18 top). Under these conditions, its value matches
perfectly the activation energy of OHC, which was also reduced slightly. However, both of them are
still far from the ab initio results (colored representing the FT fits and black representing the ab
initio ones) even considering the large errorbars. 2x2x2 remains essentially unchanged and in good
alignment with the reference data, on the other hand, probably due to the already good statistics in
the short simulations due to the large system size.

Notwithstanding the match in activation energies, the diffusivity calculated at 300K for 2x2x2 is
also far from the extrapolated value from the high temperature simulations, just as for O and OHC.
Interestingly, all three structures coincide in σ ∼ 2−4mS/cm. Although minute details should not be
deduced from our FT model, as previously noted, we have settled that the simulations do not seem
unphysical. Therefore, it is likely that simulations around 300K would return a different slope than
at high temperatures for all three structures. This finding highlights the importance of unlocking the
ability to simulate materials close to their working temperatures.

This incursion into the range of possibilities offered by MLTPs, almost anecdotic, is a timid presen-
tation of the reach of current-day computational techniques. We have shown two examples of how
machine learning methods can surpass the limitations of ab initio, and We hope it will inspire further
exploration in this area.



5
Conclusions

In this investigation we examined the diffusion properties of the promising halide solid electrolyte
Li3InCl6 through computational analysis. Simultaneously, we sought to answer three questions: i)
how and if cationic-site disorder affects them, ii) how and if high entropy affects them, and iii) how
machine learning techniques can enhance the computational investigation of materials, specifically
molecular dynamics simulations. We have found answers to all these questions.

First, we found that Li3InCl6, which belongs to the C2/m symmetry group, exhibits an activation
energy for the diffusion of lithium of around 0.25-0.31 eV and ionic conductivity at room temperature
between 0.2-0.8 mS/cm via a octahedral-tetrahedral-octahedral path. Moreover, through a study of
the diffusion dimensionality, we found that there is no strongly preferred direction. Li3InCl6 presents
isotropic three-dimensional diffusivity.

Throughout this study we compared the effect of cationic-site disorder of indium, and observed that
the most ordered structure shows the highest conductivity. We created four structures disordered in
the indium sublattice and compared them to the ordered structure to see what effects this could have
on the transport of lithium. Despite creating quite dissimilar lattices, all the disordered structures
showed similar properties and the ordered structure outperformed them all.

Next, we created a high entropy structure where the indium in Li3InCl6 was substituted by five
elements (In, Lu, Sc, Yb and Zr) and another one with only four substituents, completely removing
the indium. Our results contradict the high entropy claim that more is better. The five-element
structure shows virtually no improvement over the pristine one, while the four-element configuration
showed a 400% improvement in lithium diffusivity. We have defended that this is the effect of the
introduction of vacancies, and not entropy.

Finally, we have implemented a machine learning trained potential into the computational research
methods of the SEE group. We fine tuned the CHGNet artificial neural network to better represent
our system, achieving a drastic improvement in the simulation of Li3InCl6 from the general pretrained
model, and were able to analyze the diffusion mechanisms as usual. In this way, we established a
pipeline for including machine learning trained potentials in the computational study of materials at
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the group. As a closing note, we demonstrated the appeal of using machine learning in molecular
dynamics experimenting beyond the limits of ab initio. We were able to perform nanosecond-long
simulations and go to temperatures as low as 300K.
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Appendix: supporting information

Figure A.1: Summary of the calculated activation energies per structure and
axis/layer in the Li3InCl6/disorder analysis.
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Figure A.2: Captured percentage of lithium density when including site 8j

Figure A.3: Lowest energy structures among the five candidates for
the study of high entropy effects with HE4 and HE5
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Figure A.4: Relaxation energies of the 5 high entropy structures for HE4 and HE5

Figure A.5: Summary of the calculated activation energies per structure and
axis/layer in the high entropy analysis
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Figure A.6: Saturation of the error in MSD (axis y) as a function
of the block length in which to group the coordinates (x)



B
Appendix: Python tools

Required packages
1 from gemdat import Trajectory , SimulationMetrics , SitesData
2 from gemdat.io import read_cif, load_known_material , get_list_of_known_materials
3 import typing
4 if typing.TYPE_CHECKING:
5 from gemdat.trajectory import Trajectory
6 from pymatgen.core import Structure
7 from pymatgen.core.structure import Lattice
8 from pymatgen.core.units import FloatWithUnit
9 import numpy as np

10 from scipy.constants import Boltzmann , angstrom, elementary_charge
11 import tqdm
12 from collections import defaultdict
13 from itertools import product
14 from MDAnalysis import Universe
15 from typing import Dict

Diffusion per axis
1
2 def distances_from_base_per_dimension(trajectory: Trajectory) -> np.ndarray:
3 """
4 Calculate the total distances from base positions for each dimension.
5
6 This function ignores periodic boundary conditions.
7
8 Parameters
9 ----------

10 trajectory : Trajectory
11 The trajectory data.
12
13 Returns
14 -------
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15 total_distances : np.ndarray
16 The total distances from base positions for each dimension.
17 """
18 lattice_vectors = np.array(trajectory.get_lattice().abc)
19 all_distances = [diff_vectors for diff_vectors in trajectory.

cumulative_displacements]
20 total_distances = all_distances * lattice_vectors[None, None, :]
21 return total_distances
22
23
24 def dir_diffusivity(trajectory: Trajectory , *, dimensions: int = 3) -> F:
25 """
26 Calculate the tracer diffusivity.
27
28 The tracer diffusivity is defined as the mean square displacement (MSD) divided by
29 twice the product of the number of diffusion dimensions and the total time.
30
31 Parameters
32 ----------
33 trajectory : Trajectory
34 The trajectory data.
35 dimensions : int, optional
36 The number of diffusion dimensions. Default is 3.
37
38 Returns
39 -------
40 dir_tracer_diff : FloatWithUnit
41 The tracer diffusivity in m^2/s.
42 """
43 distances_dir = distances_from_base_per_dimension(trajectory)
44 distances_tot = trajectory.distances_from_base_position()
45 msd_dim = np.mean(distances_dir[-1]**2, axis=0) # Angstrom^2
46 msd_tot = np.mean(distances_tot[:,-1]**2)
47
48 msd = np.concatenate([[msd_tot], msd_dim])
49 dir_tracer_diff = (msd * angstrom**2) / (2 * dimensions * trajectory.total_time)
50 return dir_tracer_diff

Diffusion per layer
1
2 def get_indices_jump_type(sites: SitesData , selected_type: str) -> list:
3 """
4 Get the indices of the jumps corresponding to the selected jump type.
5
6 Parameters
7 ----------
8 sites : SitesData
9 The sites data.

10 selected_type : str
11 The relevant direction.
12
13 Returns
14 -------
15 jump_combinations : list
16 The combinations of indices for the jump type.
17 """
18 relevant_jumps = direction_dict[selected_type]
19 indices_map = defaultdict(list)
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20
21 for index, label in enumerate(sites.site_labels):
22 indices_map[label].append(index)
23
24 jump_combinations = []
25 for jump in relevant_jumps:
26 start, stop = jump[0], jump[1]
27 if start in indices_map and stop in indices_map:
28 start_indices , stop_indices = indices_map[start], indices_map[stop]
29 jump_combination = list(product(start_indices , stop_indices))
30 jump_combinations.extend(jump_combination)
31
32 return jump_combinations
33
34
35 def select_transitions(transitions_matrix: np.ndarray, selected_indices: list) -> np.

ndarray:
36 """
37 Select transitions from the transitions matrix based on the selected indices.
38
39 Parameters
40 ----------
41 transitions_matrix : np.ndarray
42 The transitions matrix.
43 selected_indices : list
44 The selected indices.
45
46 Returns
47 -------
48 selected_transitions : np.ndarray
49 The selected transitions.
50 """
51 mask = np.zeros_like(transitions_matrix , dtype=bool)
52 for indices in selected_indices:
53 mask[indices[0], indices[1]] = True
54
55 selected_transitions = transitions_matrix.copy()
56 selected_transitions[~mask] = 0
57 return selected_transitions
58
59
60 def jump_diffusivity_per_type(sites: SitesData , selected_jump_type: str, dimensions: int

) -> tuple:
61 """
62 Calculate the jump diffusivity per type of jump.
63
64 Parameters
65 ----------
66 sites : SitesData
67 The sites data.
68 selected_jump_type : str
69 The selected jump type.
70 dimensions : int
71 The number of diffusion dimensions.
72
73 Returns
74 -------
75 mean_jump_diffusivities : float
76 The mean jump diffusivities.
77 std_jump_diffusivities : float
78 The standard deviation of the jump diffusivities.
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79 """
80 lattice = sites.trajectory.get_lattice()
81 structure = sites.structure
82 total_time = sites.trajectory.total_time
83
84 pdist = lattice.get_all_distances(structure.frac_coords , structure.frac_coords)
85 transitions_parts = sites.transitions.split(n_steps=len(sites.trajectory))
86 selected_indices = get_indices_jump_type(sites, selected_jump_type)
87
88 jump_diffusivities = np.zeros(len(transitions_parts))
89
90 for i, part in enumerate(transitions_parts):
91 transitions_matrix = part.matrix()
92 selected_transitions_matrix = select_transitions(transitions_matrix ,

selected_indices)
93
94 jump_diff = np.sum(pdist**2 * selected_transitions_matrix)
95 jump_diff *= angstrom**2 / (2 * dimensions * sites.n_floating * total_time)
96 jump_diff = FloatWithUnit(jump_diff , 'm^2␣s^-1')
97
98 jump_diffusivities[i] = jump_diff
99

100 return np.mean(jump_diffusivities), np.std(jump_diffusivities)
101
102
103 def get_activation_per_jump_type(sites: SitesData , selected_temperatures: Optional[list]

= None) -> tuple:
104 """
105 Get the activation per jump_type.
106
107 Parameters
108 ----------
109 sites : SitesData
110 The sites data.
111 selected_temperatures : list, optional
112 The selected temperatures. If None, all temperatures are used.
113
114 Returns
115 -------
116 plot_data : list
117 The plot data.
118 E : np.ndarray
119 The activation energy.
120 """
121 diff_per_direction = np.zeros((len(direction_dict), len(sites), 2))
122 jump_types = list(direction_dict.keys())
123
124 if selected_temperatures is None:
125 selected_temperatures = temperatures
126
127 missing_temperatures = np.setdiff1d(np.array(selected_temperatures), np.array(

temperatures))
128 if len(missing_temperatures) > 0:
129 warnings.warn(f"The␣following␣temperatures␣are␣not␣present:␣{

missing_temperatures}")
130
131 indices = np.where(np.isin(temperatures , selected_temperatures))[0]
132 x = 1000/np.array(temperatures)
133 selected_x = x[indices]
134
135 y = np.zeros((len(direction_dict), len(sites)))
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136 sy = np.zeros((len(direction_dict), len(sites)))
137
138 selected_y = np.zeros((len(direction_dict), len(selected_temperatures)))
139 selected_sy = np.zeros((len(direction_dict), len(selected_temperatures)))
140
141 b = np.zeros((len(direction_dict), 2))
142 yr = np.zeros((len(direction_dict), len(temperatures)))
143
144 for j in range(len(direction_dict)):
145 for i, traj in enumerate(sites.keys()):
146 diff_per_direction[j][i] = jump_diffusivity_per_type(sites[traj],

selected_jump_type=jump_types[j], dimensions=3)
147 y[j,i] = np.log(diff_per_direction[j, i, 0])
148 sy[j,i] = 1/diff_per_direction[j, i, 0]*diff_per_direction[j, i, 1]
149
150 selected_y[j] = y[j][indices]
151 selected_sy[j] = sy[j][indices]
152 a, b[j,0], _, b[j,1], _, _ = weighted_fitting(selected_x , selected_y[j],

selected_sy[j])
153 yr[j] = a + b[j,0]*x
154
155 E = -b*1000*Boltzmann/elementary_charge
156 E[:,1] = np.abs(E[:,1])
157 plot_data = [x, y, sy, selected_x , selected_y , selected_sy , yr]
158 return plot_data , *E.flatten()

LAMMPS xyz trajectory to GEMDAT Trajectory object
1 from typing import Dict
2
3 def make_trajectory(coords_file: str, box_file: str, species_dict: Dict[str, int],

temperature: float, time_step: int = 2, constant_lattice: bool = True, format: str =
'xyz', atom_style: str = 'atomic ') -> Trajectory:

4 """
5 Generates a trajectory from given coordinates and box files.
6
7 Parameters:
8 coords_file (str): Path to the coordinates file.
9 box_file (str): Path to the box file.

10 species_dict (Dict[str, int]): Dictionary mapping species names to their counts.
11 temperature (float): Temperature for the simulation.
12 time_step (int, optional): Time step for the simulation. Defaults to 2.
13 constant_lattice (bool, optional): Whether the lattice is constant. Defaults to True

.
14 format (str, optional): Format of the coordinates file. Defaults to 'xyz'.
15 atom_style (str, optional): Atom style for the simulation. Defaults to 'atomic '.
16
17 Returns:
18 Trajectory: The generated trajectory.
19 """
20
21 metadata = {'temperature ': temperature}
22
23 # Extract species names and numbers
24 species_names = species_dict.keys()
25 species_number = species_dict.values()
26
27 # Create universe from coordinates file
28 u = Universe(coords_file , format=format)
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29
30 # Get lattice from box file
31 l = LammpsData.from_file(filename=box_file , atom_style=atom_style).structure.lattice
32
33 # Generate species list
34 a = [name for name, count in zip(species_names , species_number) for _ in range(count

)]
35
36 structures = [Structure(lattice=l, species=a, coords=ts.positions ,

coords_are_cartesian=True) for ts in u.trajectory]
37
38 traj = Trajectory.from_structures(structures , time_step=time_step , constant_lattice=

constant_lattice)
39 traj.metadata = metadata
40
41 return traj
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