
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Towards a Catalog Format for Software
Metrics

Eric Bouwers, Joost Visser and Arie van Deursen

Report TUD-SERG-2014-004

SERG

TUD-SERG-2014-004

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication at the 5th International Workshop on Emerging Trends in Software Metrics
(WETSoM 2014)

c© copyright 2014, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Towards a Catalog Format for Software Metrics

Eric Bouwers
Software Improvement Group
Amsterdam, The Netherlands

e.bouwers@sig.eu

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
Arie.vanDeursen@tudelft.nl

Joost Visser
Software Improvement Group
Amsterdam, The Netherlands

j.visser@sig.eu

ABSTRACT
In the past two decades both the industry and the research
community have proposed hundreds of metrics to track soft-
ware projects, evaluate quality or estimate effort. Unfortu-
nately, it is not always clear which metric works best in a
particular context. Even worse, for some metrics there is
little evidence whether the metric measures the attribute it
was designed to measure.

In this paper we propose a catalog format for software
metrics as a first step towards a consolidated overview of
available software metrics. This format is designed to pro-
vide an overview of the status of a metric in a glance, while
providing enough information to make an informed decision
about the use of the metric. We envision this format to be
implemented in a (semantic) wiki to ensure that relation-
ships between metrics can be followed with ease.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

General Terms
Documentation, Measurement

Keywords
Software Metrics, Catalog Format, Information Overview

1. INTRODUCTION
Software metrics are a popular tool to track the progress of

a project, to determine the quality of a software product or
process, or to evaluate a software development team. Over
the past decades, literally hundreds of software metrics have
been proposed, in varying level of detail and accompanied
with different types of validation [12].

In most cases, the format in which a (suite of) software
metrics is introduced is ad-hoc, differentiating in style, for-
mat, and notation. Moreover, the terminology used to intro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WETSoM ’14, June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2854-8/14/06 ...$15.00.

duce software metrics is not consistent, and the discussion
of aspects of software metrics are often incomplete.

Given these diverse descriptions, it is hard to answer ques-
tions such as: “does the metric quantify what I want to mea-
sure?”, “which side-effects has the introduction of this met-
ric?”, or “is it normal that this metric changes so much?”.
Because of this, it is challenging for both practitioners and
researchers to choose the most appropriate metric(s) for the
task at hand.

In order to assist practitioners and researchers to select
the most appropriate set of metrics for their current task
it is needed to define a catalog of software metrics which
encodes, amongst others, the definition, the benefits, and
the limitations of software metrics [1, 13].

As a first step towards such a catalog, this paper proposes
a Software Metric Catalog Format (SMCF), containing 16
fields separated into two columns. The purpose of this for-
mat is to provide a concise overview of a software metric,
while containing enough information to make an informed
decision about whether to use a software metric for a certain
task.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work and the sources of inspiration
for the proposed format. After this, Section 3 outlines the
format and explains its fields. Section 4 discusses the format
and explains how we intend to implement the format, after
which Section 5 outlines the next steps.

2. BACKGROUND
The categorization of software metrics has long been a

topic of interest and considerable effort has been made to
create overviews of software metrics based on structured lit-
erature reviews. The result of these efforts are, for example,
overviews of object-oriented metrics [12] or architecture met-
rics [8]. In addition, more qualitative overviews discussing
the types of validations of software metrics have been per-
formed as well [7].

Unfortunately, these overviews do not provide enough in-
formation to make a decision about which metrics to use
in a specific situation. As Kaner et al. [6] point out, there
are several questions that need to be answered before this
decision can be made. These questions address basic prop-
erties of the metric such as “what attribute are we trying to
measure?”, up until more social questions such as “what are
the natural and foreseeable side effects of using this instru-
ment?” [6].

Especially this last question is often not considered in the
introduction of a software metric, nor in the overview stud-

SERG Bouwers, Visser & van Deursen – Towards a Catalog Format for Software Metrics

TUD-SERG-2014-004 1

ies. However, according to our experience this is an impor-
tant question to answer. One of the most common pitfalls
of using software metrics is the situation in which changes
are being made purely to satisfy a metric value [2].

Closely related to our proposal is the template as pro-
posed by Olsina et al. [11]. This template contains 29 fields
including the name, the objective, related metrics and po-
tential beneficiaries. In our opinion, this template is not
sufficient because it does not contain a specific field dedi-
cated to explaining the effects of using the metric, nor does
it contain a space to explain the variability of the metric. In
addition, some fields are considered to be too detailed for a
first glance, a topic we discuss in Section 4.

Lastly, a recent proposal of Saraiva et al. [13] outlines sev-
eral domains in which software metrics can be categorized.
Based on these domains a catalog of metrics can be gener-
ated. We see the SCMF as one candidate to describe the
metrics in such a generated catalog.

3. SOFTWARE METRIC CATALOG FOR-
MAT

The catalog format we propose consists of 16 fields divided
over two columns and is displayed in Figure 1. The left-hand
side of the format contains qualitative information about
the metric such as the name, the insights it can provide
and possible solution strategies. The right-hand side of the
catalog is reserved for more quantitative information such
as the expected value of the metric, the expected range and
the relationship towards other metrics.

3.1 Qualitative fields
The left-hand side of the format consists of eight fields

which contain qualitative information about the metric. The
combination of these fields should enable a reader to under-
stand what the metric is, how it is measured, why this is an
interesting metric, and the actions which should (or should
not) be taken to react on a metric value in a particular con-
text. Lastly, it should help a reader to identify situations
in which actions are taken solely to treat the value of the
metric.

Name: The full name of the metric accompanied by its
abbreviation. When multiple metrics share the same name
(or abbreviation) a postfix, for example the name of the au-
thor of the metric, is added. An example here is “Duplicated
lines”.

Entity, Attribute: A metric quantifies a certain at-
tribute of an entity [4]. For example, “Duplicated lines”
measure the“duplication”(attribute) of a“Software System”
(entity).

Definition: In order to calculate a metric one or more
steps need to be taken to transform the input (the entity) to
a number. In some cases this can simply be a mathematical
formula describing the transformation on numbers, while in
other cases a more detailed description is needed. Since the
aim of this format is to provide a condensed overview, the
level of detail should be carefully chosen. For example, a
naive definition of “Duplicated Lines” could be: count all
lines which appear more than once in the system.

Rationale (theoretical): In some cases it is easy to
understand why the definition given above quantifies the
desired attribute, e.g. the definition given above for “Dupli-
cated Lines” is a straight-forward implementation. In other

cases the relationship might not be immediately clear and
should be explained in more depth in this field.

Implications (practical): The fields above provide the
necessary information to understand what the metric quan-
tifies and how this is done. This field must provide the
information towards why this metric is interesting to use.
For example, the metric “Duplicated Lines” is interesting
because duplication in a system is considered to be an indi-
cation of poor design [9]. Thus, it is desirable to have a low
value for this metric.

Applicable in context: A metric can be useful in gen-
eral, or can only be applied in certain contexts. This field is
used to describe only those contexts in which it is useful, or
to outline contexts in which the metric has less added value.
For example, “Duplicated lines” is applicable in a wide range
of contexts, but in a migration project with a well-defined
end-date a higher value of “Duplicated lines” might be ac-
ceptable.

Solution strategies: This field offers one (or more) so-
lution strategies to reach a more desired value of the metric.
Each strategy consists of a short description and is marked
as either treating or solving. The first category indicates
strategies in which changes are made only to alter the value
of the metric without addressing the underlying cause [2].
The second category marks more desirable strategies.

For example, a strategy to reduce the number of “Dupli-
cated lines” is to rename variable or switch the ordering of
statements. Since this does not address the root-cause of
the higher value this strategy is marked “treating”. Alter-
natively, “Duplicated lines” can be reduced by abstracting
out common pieces of functionality in dedicated units or by
introducing a library, both of which are “solving” strategies.

3.2 Quantitative fields
The right-hand side of the catalog is reserved for quanti-

tative information about the metric. Together, these fields
should enable a reader to place the information on the left-
hand side in perspective.

Level: This field indicates whether the metric is either
a base metric (cannot be expressed in other metrics), or a
derived metric, i.e., a combination of other metrics. Our
example metric “Duplicated lines” is a base metric, while a
metric such as “Duplicated lines percentage” is derived by
dividing “Duplicated lines” by the total “Lines of code”.

Type: A metric can either be internal or external [5].
An internal metric typically quantifies static properties in-
herent to the measures entity, while an external metric typ-
ically quantifies dynamic properties of the entity in a con-
text. “Duplicated lines”is therefore an internal metric, while
“Number of requests” would be an external metric.

Range: The range of a metric specifies which values the
metric can exhibit, for “Duplicated lines” this would be the
range [0,∞], while for“Duplicated lines percentage” it would
be [0, 100]. This information helps to detect incorrect mea-
surements.

Expected value: This field indicates one (or a range of)
values which are considered to be “normal” for a metric, for
example based on a benchmark of systems. In addition, it
is unlikely that there are no “Duplicated lines” in a system,
thus the expected value would not be 0. This information
provides the context for the implications described in the
Implications-field. In other words, it helps to put the terms
“high” and “low” used in that field in perspective.

Bouwers, Visser & van Deursen – Towards a Catalog Format for Software Metrics SERG

2 TUD-SERG-2014-004

Name: (abbreviation) Level: Base/Derived
Entity: Type: Internal/External
Attribute: Range: …
Definition: Expected<value: …

Variability: …
Scale<type: …
Related<metrics:
<metric81> <how?*>
<metric82> <how?*>

Validation:
<name> <type*>
<name> <type*>

Solution<Type
Treating/solving
Treating/solving

<solution1>
<solution2>

what8characteristic8does8it8quantify?

Applicable<in<context:
When8is8this8metric8useful?

what8is8the8measurement8procedure?

what8is8the8subject8of8the8measurement?

Solution<Strategies

full8name

Rationale<(theoretical):
why8does8this8metric8quantify8the8defined8attribute8of8the8entity?

Implications<(practical):
Definition8of8undesired8metric8values8and8explanation8of8the8
implications8of8these8undesired8metrics8values,8e.g.8why8does8the8
metric8matter?8

Figure 1: The proposed Software Metric Catalog Format outlined in cells with black text. Cells with cursive,
grey text indicate which information must be filled in.

Variability: The variability of a metric indicates the ex-
pected variance in metric values over a certain period of
time. This helps to understand which changes in the value
of the metric can be considered as outliers and require more
attention. For example, the variability for the metric“Dupli-
cated lines percentage” metric is expected to be low, maybe
in the range of [−1, 1]. Note that this field is less useful
for absolute metrics, since the variability for those metrics
can theoretically be endless (e.g., [−∞,∞] for “Duplicated
lines”).

Scale type: There are five different scale types which,
amongst others, indicates which mathematical operations
may be performed on a metric [4]. For example, “Dupli-
cated lines” is on an absolute scale, which means that all
operations are allowed. However, a metric such as “Project
type” is nominal, which means that only equivalence opera-
tions are allowed.

Related Metrics: A metric is related to other metrics in
various ways. Metrics can, for example, measure the same
attribute, be orthogonal, be strongly correlated, or can in-
fluence each other. For example, “Duplicated lines” is influ-
enced by “Lines of Code”, since more “Lines of code” will
typically lead to more “Duplicated lines”. Moreover, “Du-
plicated lines” is related to a metric such as “Duplicated
functionality” in the sense that all “Duplicated lines” nor-
mally imply “Duplicated functionality”. By specifying these
types of relationships it becomes easier to choose a metric
with better (or worse) precision, or to find complementary
metrics in order to make it more likely to reach a goal.

Validation: This field is dedicated to listing studies which
confirm (or reject) the information contained in the other
fields. These studies are listed in the same reference format
as used within the research literature. Apart from this in-
formation, the field contains a type sub-field labeling each

study with the type(s) of validation the study performs. The
47 different types of validation as introduced by Meneely
et al. [10] is used as a starting point for this labeling. As
an example, the study of McConnel [9] can be labelled with
“external validity” as it associated “Duplicated lines” with
several desirable properties. Note that this study should
also be labelled with “experience based” since it does not
contain (or refers to) experiments to validate its hypothe-
ses.

4. DISCUSSION
The proposed format is designed to provide a concise overview

of the most important information about a metric. Based
on this information it should be possible to select a (set of)
metric(s) to measure an attribute of interest.

With this information we can answer seven out of the 10
questions of Kaner et al. [6]. The ones that cannot be an-
swered are questions related to the scale and the variability
of the attribute to be measured (questions four and five),
or the measurement error of the measurement instrument
(question number eight).

Not being able to answer these questions using the pro-
posed format is not seen as problematic. We consider the
selection process of metrics to consist of three steps: iden-
tify the attribute to be measured, select the appropriate
metric(s), and then choose the measurement tools.

The proposed format is targeted towards the second step,
identifying the metric(s), thus we assume that the informa-
tion about the attributes have already gathered. Moreover,
we see the selection of the measurement instrument to be
the next step in the process and thus out of scope of the
format. Based on this reasoning the SMCF provides enough
information for its purpose.

Although the SMCF only contains 16 fields our first ex-

SERG Bouwers, Visser & van Deursen – Towards a Catalog Format for Software Metrics

TUD-SERG-2014-004 3

periences with the format indicate that it is not trivial to
fill out all of them. For example, for most metrics the Ex-
pected value and the Variability data is not readily avail-
able. Moreover, creating a complete overview of all Related
metrics and Validation studies is not a small task, and
can potentially result in large amounts of information.

To counter both problems we plan to build upon the pro-
posal of Olsina et al. [11] and implement an on-line wiki in
which the semantic links between metrics and studies can
be stored in a structured manner. Using an on-line environ-
ment would allow for the incremental collection of informa-
tion. In addition, this approach allows us to dynamically
hide or show information based on the information need of
the user. For example, we can show only a condensed expla-
nation of the definition on the front-page to allow users to
quickly scan the metrics, while still providing a link to all the
details of the metric for those users that need to implement
the metric in a tool.

5. CONCLUSION AND NEXT STEPS
This paper introduces the Software Metrics Catalog For-

mat (SMCF) consisting of 16 fields divided into two columns,
one column for qualitative information and one column for
quantitative information. The purpose of the SMCF is to
provide practitioners and researchers with a concise overview
of information about a metric. Based on this information it
should be clear whether the metric is appropriate to be used
in a given context.

In order to validate whether SMCF can be used for this
goal we plan to perform a validation study inside the Soft-
ware Improvement Group1, a consultancy firm specialized
in conducting risk assessments on software systems using
software metrics [3].

To conduct this study, we will create a first version of the
catalog with those software metrics which are often used
during the risk assessments, consolidating the information
available for those metrics. After this version is made avail-
able we plan to validate the usefulness and usability of the
catalog format both quantitatively as well as qualitatively.
For the first part we monitor the online usage of the cata-
log, while for the second part we conduct in-depth interviews
with users.

After this first iteration, we plan to make the catalog avail-
able to a larger audience. By again monitoring the usage as
well as conducting interviews with users we plan to identify
which information fields are unnecessary and which infor-
mation is missing.

As a side-product, this catalog can provide a quantitative
basis to describe the current body of knowledge about soft-
ware metrics. This way, the catalog does not only provide
researchers with the means to easily navigate related work,
but it also allows for the identification of those research areas
that are in need of more attention.

1http://www.sig.eu

6. REFERENCES
[1] E. Bouwers. The next step in software metrics

research. TinyToCS, 2, 2013.

[2] E. Bouwers, J. Visser, and A. van Deursen. Getting
what you measure. Communications of the ACM,
55(7):54–59, July 2012.

[3] A. v. Deursen and T. Kuipers. Source-based software
risk assessment. In ICSM ’03: Proceedings of the
International Conference on Software Maintenance.
IEEE Computer Society, 2003.

[4] N. Fenton and S. Pfleeger. Software Metrics: A
Rigorous and Practical Approach. PWS Publishing
Co., 2nd edition, 1998.

[5] International Organization for Standardization.
ISO/IEC 25010: Systems and software engineering -
Systems and software Quality Requirements and
Evaluation (SQuaRE) - System and software quality
models, 2011.

[6] C. Kaner and W. Bond. Software engineering metrics:
What do they measure and how do we know? In 10th
International Software Metrics Symposium - Metrics
2004. IEEE Computer Society Press, 2004.

[7] B. Kitchenham. What’s up with software metrics? A
preliminary mapping study. Journal of Systems and
Software, 83(1):37 – 51, 2010.

[8] H. Koziolek. Sustainability evaluation of software
architectures: a systematic review. In Proceedings of
the joint ACM SIGSOFT conference – QoSA and
ACM SIGSOFT symposium – ISARCS on Quality of
software architectures – QoSA and architecting critical
systems – ISARCS, QoSA-ISARCS ’11, pages 3–12.
ACM, 2011.

[9] S. McConnell. Why you should use routines...routinely.
Software, IEEE, 15(4):96, 94–95, 1998.

[10] A. Meneely, B. Smith, and L. Williams. Validating
software metrics: A spectrum of philosophies. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 21, 2012.

[11] L. Olsina, G. Lafuente, and O. Pastor. Towards a
reusable repository for web metrics. Journal of Web
Engineering, 1(1):61–73, Oct. 2002.

[12] J. Saraiva, E. Barreiros, A. Almeida, F. Lima,
A. Alencar, G. Lima, S. Soares, and F. Castor.
Aspect-oriented software maintenance metrics: A
systematic mapping study. In Evaluation Assessment
in Software Engineering (EASE 2012), 16th
International Conference on, pages 253–262, 2012.

[13] J. Saraiva, S. Soares, and F. Castor. Towards a
catalog of object-oriented software maintainability
metrics. In Emerging Trends in Software Metrics
(WETSoM), 2013 4th International Workshop on,
pages 84–87, 2013.

Bouwers, Visser & van Deursen – Towards a Catalog Format for Software Metrics SERG

4 TUD-SERG-2014-004

TUD-SERG-2014-004
ISSN 1872-5392 SERG

