BAMBOO AND THIN GLASS

STRUCTURAL ANALYSIS OF BENDING BAMBOO AND THIN GLASS FOR GRIDSHELL

PRIYANKA GANATRA | 4409841

MATERIAL MATTERS

THIN GLASS

Fusion Overflow Process ref: glasscon

Thin glass ref: agc.com

ion exchange process ref: agc.com

THESIS MAIN GOAL

To explore the potential and feasibility of bamboo and thin glass structure.

INTRODUCTION

PART 1: STUDYING BENDING BEHAVIOUR OF BAMBOO

PART 2: STUDYING BENDING BEHAVIOUR OF THIN GLASS

PART 3: TO DEVELOP CONNECTIONS BASED ON DRAWBACKS AND STRENGTH OF BAMBOO AND THIN GLASS

PRE-BENT BAMBOO STRUCTURES

Naman Retreat, Vo trong Ngheia

Ecological Center, 24 Architects

Community Center, Vo Trong Ngheia

PRE-BENDING PROCESS

Steaming bamboo ref: www.bamboocraft.net

Bamboo bending form work ref: www.bamboocraft.net

Bamboo bending grid system ref: 24H Architects

Bolted and Lashing Connection ref: http://constructpix.com/?attachment_id=2

Chemical treatments 2 years Bamboo canes for structural purpose Chemical treatments Research focus area Joint deterioration cladding system

Durability of bamboo structure.

SITE

SITE _ IMPRESSION

LOCATION: INDIA

FUNCTION: WAREHOUSE

SPAN: 20x10 METERS

BASIC FORM

BAMBOO + THIN GLASS

- To obtain free form geometry Increase stiffness of the overall structure by
- pre-stressing the members.

To obtain overlap between the panels Flow of water directed in a specific manner Increase stiffness of individual panels

THIN GLASS FEA MAXIMUM CURVATURE/ BENDING To determine panel size To determine bamboo grid distance

THIN GLASS BENT

PART 1

STUDYING BENDING BEHAVIOUR OF BAMBOO

PART 1 STUDYING BENDING BEHAVIOUR OF BAMBOO

REQUIRED BAMBOO CURVATURE

SPRING BACK DEFLECTION

EXPERIMENT 2

Bamboo size:

Length: 920mm

Diameter:1.7-1.5cm

Soaked in water for 9 days

	Length	Dout	Thickness	Constant dl	Time	F _{max}	Ffinal	Final dL	Springback
	mm	mm	mm	mm	mins	N	N	mm	%
Specimen 1	920	16	4	60	30	464.76	341.86	15.61	73.9
			—650 —920	Deflection r	required as p	65 ————————————————————————————————————	12		

TESTING MAXIMUM CURVATURE

EXPERIMENT 2

Bamboo size:

Length: 920mm

Diameter: 5-5.5cm

Soaked in water for 4 days

YIELD LIMIT

3-point bending test. Graph showing maximum deflection and yield limit.

BAMBOO EXPERIMENT CONCLUSION

4 POINT BENDING TEST

BAMBOO DIAMETER OF 4CM

INCLINATION OF THE ROOF

PART 2

STUDYING BENDING BEHAVIOUR OF THIN GLASS

THIN GLASS _ CLADDING SYSTEM

Double curved surface

Developable surfaces

THIN GLASS _ CLADDING SYSTEM (OPTION 1)

- X NO ADDITIONAL MEMBERS
- X CLAMPING IN ONE DIRECTION
- OVERLAP REQUIRED IN ONE OR TWO DIRECTION

MyZeil (Fuksas Studio)

THIN GLASS _ CLADDING SYSTEM (OPTION 2)

- √ NO ADDITIONAL MEMBERS
- X CLAMPING IN ONE DIRECTION
- OVERLAP REQUIRED IN ONE OR TWO DIRECTION

THIN GLASS _ CLADDING SYSTEM (OPTION 3)

- √ NO ADDITIONAL MEMBERS
- √ CLAMPING IN ONE DIRECTION
- ✓ OVERLAP REQUIRED IN ONE OR TWO DIRECTION

Double curved surface

PROBLEMS AND CHALLENGES

Tolerances due to:

Grid difference

PROBLEMS AND CHALLENGES

Cladding to accommodate tolerances.

- Cold Bending glass on site. Keeping the curvature of the glass varying to adjust the grid difference.

Thin Glass Properties:

Density: 2.48g/cm³

Young's Modulus: 74GPA

Poisson's Ratio: 0.23

PVB Properties:

Density: 1.07g/cm³

Young's Modulus: 2.36MPA

Poisson's Ratio: 0.45

Multi-linear elasticity:

3	σ	3	σ	3	σ
[-]	[N/mm ²]	[-]	[N/mm ²]	[-]	[N/mm ²]
0.1	0.98	1.1	17.45	2.1	73.86
0.2	1.96	1.2	20.61	2.2	82.08
0.3	2.93	1.3	24.24	2.3	90.46
0.4	3.91	1.4	28.39	2.4	99.07
0.5	5.32	1.5	33.11	2.5	108.03
0.6	7.11	1.6	38.49	2.6	117.46
0.7	8.55	1.7	44.51	2.7	127.55
8.0	10.27	1.8	51.13	2.8	138.34
0.9	12.31	1.9	58.28	2.9	149.13
1	14.69	2	65.89	3	159.30

ref: Finite element analysis of laminated structural glass plates with polyvinyl butyral (PVB) interlayer.

Gergely Molnár / László Gergely Vigh / György Stocker / László Dunai

PANEL SIZE

GLASS THICKNESS

PVB THICKNESS

$$\sigma_{\text{max}} = 196.57 \text{MPa}$$

THIN GLASS BENDING CONCLUSION

Glass Panel

Size: 1000x1000mm

Glass thickness: 0.56mm

PVB thickness: 1.14mm

PART 3

TO DEVELOP CONNECTIONS BASED ON DRAWBACKS AND STRENGTH OF BAMBOO AND THIN GLASS

CONNECTION CRITERIA

Bamboo connection using bolts ref: (Chris Davies)

Bamboo connection using hemp rope ref: (Jaap Overal)

Bamboo connection using composite rope ref: (Jaap Overal)

MECHANICAL FIXTURES

CONNECTION CRITERIA

WATEPROOF / WATER TIGHT

- Overlaping panels (both directions)
- Water tight joints

TOLERANCE

- Varying bamboo grid distance

DEGREE OF FREEDOM.

- Allow glass to extend or bend.
- Vertical movement of glass clamps required.

CLAMPING ONLY IN ONE DIRECTION (TWO PARALLEL SIDES)

- To reduce labour, cost and avoid complexities.

Maximum and minimum curvature of thin glass

Glass panel attached at different levels

CYLINDRICAL CURVE TOLERANCE Tolerance by bending the glass Tolerance by vertical movement in mechanical fixture

CYLINDRICAL CURVE (OPTION 1)

CYLINDRICAL CURVE (OPTION 2)

CYLINDRICAL CURVE (OPTION 4)

Panels overlapped in both directions.

CYLINDRICAL CURVE

Glass Clamps Hinged to adjust glass curvature Glass Clamps fixed, glass curvature asymmetrical

THIN GLASS ASYMMETRICAL CURVATURE

CYLINDRICAL CURVE (OPTION 3)

√ WATER PROOF

√ TOLERANCE

DEGREE OF FREEDOM.

CLAMPING ONLY IN ONE DIRECTION

Waterproofing on both direction, one side glass overlap, other side water tight mechanical fixture.

Detail 1:1- Both glass clamps form one single component.

CYLINDRICAL CURVE (OPTION 3)

BAMBOO AND THIN GLASS JOINT ASSEMBLY

bamboo clamps fixed

connecting glass clamps to bamboo

clamps bolted after placing glass in between.

JOINT EVALUATION

JOINT EVALUATION

Reaction force of last panel is considered. Reaction forces of in between panels will negate each other.

Applied moment wind torque τ_w + glass torque τ_g = [F_w+ (F_g/3)].R 36.26 N.m

A: Static Structural

Resisting moment frictional torque $\tau_f = F_c.R.\mu$ 63.36 N.m

SECONDARY CONNECTIONS

i) Side arms of shell 2 and shell 4

Bamboo sliced and tapered using aluminium ring ref: (Val. 2011)

iii) Side arms of shell 1 and shell 3

ASSEMBLY SEQUENCE

BAMBOO ROOF BUCKLING ANALYSIS

LAYER 6 - 1 STEM OF DIA 4CM

LAYER 5 - 4 STEM OF DIA 4CM

Total force (layer6+self-weight+wind+snow) = 369.69N/m Critical load = 93.39N/m

First in-plane buckling mode of 3 hinged parabolic arch

ref: (Bjorn Andersson and Gustaf Larsson.)

LAYER 4 - 5 STEM OF DIA 4CM

Total force (layer6+layer5+self-weight+wind+snow) = 477.93N/m Critical load = 118.83N/m

Critical load under uniform loading: (Timoshenko and Gere, 1961)

$$q_{cr} = \gamma_4 \frac{EI}{L^3}$$

SIDE ARMS - 1 STEM OF DIA 6CM

Total force

(layer6+layer5+layer4+self-weight+wind+snow) = 579.73N/m Critical load = 597.84N/m

MIDDLE ARCH - 6 STEM OF DIA 6CM

Total force

(layer6+layer5+layer4+self-weight+wind+snow) = 2175.19N/m Critical load = 375.23N/m

where

EI - bending stiffness of the arch.

L - span

'Y- numerical factor depending on ratio f/L and no. of hinge connections.

REFLECTION

BAMBOO + THIN GLASS CONSTRUCTION FOR TROPICAL CLIMATIC CONDITIONS

- DURABLE
 - Choice of material for cladding
 - Choice of material for connections
 - Connection detail
- THIN GLASS overcoming drawbacks of bamboo in terms of construction
- BAMBOO is natural and local material.
- LIGHT WEIGHT STRUCTURE
- ORGANIC FREE FORM GEOMETRY
- WATERPROOF SYSTEM
- ALLOWING NATURAL DAYLIGHT
- ONE STANDARD MODULE
 Same size module repeated throughout the structure.

- ACCURACY
 More accuracy required while constructing main bamboo structure.
- CAREFUL PLANNING
 Detailing and understanding limitations of both the materials at design stage.
- THIN GLASS is expensive and needs to be imported.
- EXCESS THERMAL GAIN
 Due to glass cladding
- NOT AIRTIGHT
- MIGHT REQUIRE 3RD MATERIAL
- ALUMINIUM, TIMBER PANELS

ALTERNATIVES

	THIN GLASS	POLYCARBONATE	ALUMINIUM	TENSILE FABRIC PTFE(TEFLON)	ТНАТСН НЕМР
STRENGTH	200 MPa	70 MPa	120 MPa	25 MPa	200 MPa
WEIGHT	2.48 g/cm ³	1.15 g/cm ³	2.65 g/cm ³	2 g/cm ³	1.48 g/cm ³
TRANSLUSCENCE	TRANSPARENT	TRANSPARENT	OPAQUE	TRANSPARENT	OPAQUE
FLEXIBILITY	COLD BENDING	MOLDED REGULAR	COLD BENDING	STRETCHED	BUNDLES
TEXTURE	REGULAR 595 HV		REGULAR	REGULAR	IRREGULAR
HARDNESS	393 H V	6 HV	36 HV	6 HV	
ACOUSTICS		HIGH TEMPERATURE		LUCH TEMPERATURE	
ODOUR		HIGH TEMPERATURE		HIGH TEMPERATURE	
FIRE RESISTANT	NON FLAMMABLE	SELF EXTINGUISHING	NON FLAMMABLE	NON FLAMMABLE	FLAMMABLE
THERMAL RESISTANT	1 m.C/W	5 m.C/W	0.00435 m.C/W	4 m.C/W	5 m.C/W
WEATHER RESISTANT					
SCRATCH RESISTANT					
CHEMICAL RESISTANT					
RENEWABLE					
RECYCLABLE					

BAMBOO STRUCTURES CLADDING

Panyaden School - 24H Architects

Bamboo and thatch roof connection

Community Center, Vo Trong Ngheia

Polycarbonate roofing

BAMBOO - ALTERNATE MATERIAL

Steel Reinforced Concrete

Bamboo Reinforced Concrete - Future Cities laboratory, Singapore

