
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Thesis report
Integrating space mapping and machine learning
techniques for enhanced optimal control mapping

AE5211: Thesis
Guy Maré

Thesis report
Integrating space mapping and machine

learning techniques for enhanced optimal
control mapping

by

Guy Maré
4670132

Supervisor: C. Varriale
Faculty: Faculty of Aerospace Engineering, Delft

Cover: five-jets-on-sky by María Noel Rabuñal Cantero

Summary

This study explores the integration of machine learning with space mapping techniques to enhance the
mapping of optimal control sequences between low- and high-fidelity flight mechanic models. Space
mapping is a methodology that simplifies the control optimisation process by approximating a high-
fidelity model using less computationally demanding low-fidelity models, which are then iteratively
corrected to converge towards high-fidelity outputs. The main research question investigates how the
integration of space mapping with sequence-to-sequence neural networks can improve control sequence
mapping compared to traditional model predictive control (MPC) methods, particularly in managing the
trajectory differences in non-linear flight regimes.

In the pursuit of sustainable aviation, with a sharp focus on reducing emissions through innova-
tive designs and enhanced flight mechanics, the computational cost of high-fidelity models becomes
a significant limitation. These models, crucial for capturing complex interactions in advanced aircraft
designs, often require simplification to reduce computational demands. This research proposes a novel
approach by combining the strengths of machine learning, particularly sequence-to-sequence neural net-
works like Gated Recurrent Units (GRUs) and transformers, with space mapping techniques to bridge
the gap between low- and high-fidelity models effectively.

The study delves into two main machine learning architectures: GRUs and transformers. GRUs
excel in managing sequences with fewer changes, maintaining stable predictions with minimal error.
Transformers on the other hand are well suited at handling complex sequences with frequent changes,
thanks to their ability to process entire sequences simultaneously through self-attention mechanisms.
This capability makes transformers particularly suitable for dynamic scenarios where anticipating future
states is crucial.

A significant contribution of this study is the implementation of the Prior Knowledge Input-Difference
(PKI-D) architecture, which uses the low-fidelity model output as a baseline that the neural network cor-
rects, providing a robust framework for the machine learning models to accurately predict trajectory ad-
justments. This architecture not only enhances the predictive accuracy but also optimises computational
efficiency by reducing the dependency on extensive high-fidelity simulations.

Comparative analyses reveal that MPC methods typically provides superior mapping performance
for trajectories requiring no anticipation, while the hybrid machine learning-space mapping approach of-
fers improved performance comparably or better in complex scenarios requiring advanced anticipation.
This study highlights the critical role of active learning in adapting the machine learning models to new
data dynamically, a feature that proves essential in maintaining accuracy over prolonged operational
periods.

In conclusion, this research demonstrates that integrating space mapping with machine learning can
significantly enhance the mapping of control sequences in aerospace applications. It provides a starting
point for future studies to explore tailor made machine learning solutions using extremely small data
sets in situations where data availability is sparse. This research could further open up avenues where
the advanced capabilities of machine learning can be applied to problems in aerospace engineering
previously inaccessible.

i

Contents

Summary i

Nomenclature iv

1 Introduction 1

2 Theoretical Foundation 3
2.1 Optimal Control Theory . 3
2.2 Complexity Reduction . 6
2.3 Space Mapping . 9
2.4 Sequence-to-Sequence Neural Networks . 16

3 Space Mapping & Machine Learning: Research Direction & Integration Challenges 27
3.1 Research direction . 27
3.2 Integration challenges . 28
3.3 Space mapping problem formulation . 30
3.4 Test cases . 31

4 Mapping Function Implementation 35
4.1 MPC mapping function . 35
4.2 Mapping function: Machine Learning . 36
4.3 Machine learning model robustness . 40

5 Model Predictive Control Based Space Mapping 47
5.1 Number of segments . 50
5.2 Planning horizon . 52

6 Sequence-to-Sequence Network Based Space mapping 55
6.1 Comparing network types . 55
6.2 Influence of active-learning & retraining . 62

7 Results Analysis & Discussion 67
7.1 Results summary . 67
7.2 Answering the research question . 68
7.3 Discussion . 70

8 Conclusion & suggestions for future research 72
8.1 Conclusion . 72
8.2 Suggestions for future research. 73

References 74

A Low-Fidelity Flight Mechanics Models 79
A.1 Open loop . 80
A.2 Closed loop . 80
A.3 High-fidelity model . 81

B Error Determination Methods 82

ii

Contents iii

C MPC method supporting results 85
C.1 Base implementation . 85
C.2 Number of segments analysis . 87
C.3 Planning horizon analysis . 89

D Machine Learning method results 91
D.1 Network type analysis . 91
D.2 Active learning analysis . 96

Nomenclature

Abbreviations

Abbreviation Definition

DoF Degree of Freedom
RNN Recurrent Neural Network
LSTM Long-Short Term Memory
GRU Gated Recurrent Unit
HBVP Hamiltonian-Boundary-Value-Problem
PMP Pontryagin’s Maximum Principle
LSED Lock-Step Euclidean Distance
LCSS Longest Common Sub-Sequence
DFD Discrete Fréchet Distance
DTW Dynamic Time Warping
RBF Radial Base Functions
GPU Graphics Processing Unit
PKI-D Prior Knowledge Input-Difference model

iv

1
Introduction

To meet the International Air Transport Association (IATA)’s goal of achieving carbon neutrality by
2050, the aviation sector must significantly reduce its emissions. Current projections estimate that an-
nual CO2 emissions could reach nearly two thousand megatons by 2050, nearly double today’s levels,
without effective reduction measures [1][2]. Research is focusing on replacing fossil fuels with sustain-
able aviation fuels and enhancing aircraft efficiency. Innovative designs, such as distributed propulsion
systems and unconventional configurations like blended wing bodies or Prandtl planes, are being ex-
plored to improve aerodynamic and propulsion synergy, potentially reducing drag and improving fuel
economy [3].

However, moving away from the traditional tube-with-wing aircraft configuration introduces numerous
challenges, especially in the design and simulation phases. The increased complexity in aerodynamic-
propulsion coupling in these newmodels makes simulation computationally intensive, a significant con-
cern in design processes relying on iterative methods like multidisciplinary design optimisation. Here,
each cycle of design adjustments and analyses aims to converge to an optimum, including assessing air-
craft handling and determining optimal control input sequences for certain predefined manoeuvres—a
process falling within optimal control theory. Using detailed models for this optimisation quickly be-
comes impractical due to the high number of states and control inputs, compounded by the non-linear
aerodynamics near the flight envelope’s edge.

A common approach to manage computational demands is employing simplified or low-fidelity mod-
els, which, while easier to calculate, often lack the ability to accurately represent complex interactions
between subsystems. A key step in utilising low-fidelity surrogates is to make sure that the output of
these models align. A technique that can be used to align models of varying fidelity is through the use
of space mapping. This method aims to seek a map between the input and output, or parameter space
of models to align their outputs. The key advantage of space mapping is that they offer tailor-made
solutions to surrogate based problems using relatively simple algorithms while keeping the computa-
tional cost to a minimum. Another emerging solution lies in machine learning, where networks can
learn complex behaviours through training. Once trained, these networks can rapidly analyse intricate
inputs and seek out existing patterns.
In theory, both space mapping and sequence-to-sequence based neural networks are designed as map-
ping functions, their approach to mapping diverge fundamentally. As mentioned before, space mapping
offers bespoke solutions, whereas machine learning seeks to find a general mapping functions. Further-
more, machine learning methods often require large data sets, whereas space mapping methods aims to
minimise the amount of data. The central challenge of this research is to merge the advanced sequence-
to-sequence mapping performance of machine learning, with the low computational cost required for

1

2

space mapping. The goal is to effectively bridge the gap between low and high-fidelity models within
the realm of control optimisation, thereby addressing a critical need for more efficient and accurate
modelling techniques for unconventional aircraft and complex flight scenarios.

This report starts with a review of existing literature to build a foundational understanding in optimal
control, space mapping, and machine learning in chapter 2. Then, chapter 3 breaks down how the dif-
ferent core principles of space mapping and machine learning can be combined into a single framework
and introduces the main research question. Then, chapter 4 presents a deep dive into both the space
mapping and a hybrid space mapping-machine learning implementation which leads into a robustness
analysis of the machine learning approach. The method specific results are presented in chapter 5 and
chapter 6. Following the presentation of the main results, chapter 7 combines the main takeaways to
answer the main research question. Lastly, a general conclusion is given in chapter 8, followed by
recommendations for future research based on the lessons learned during this project.

2
Theoretical Foundation

This chapter explores the theoretical foundations necessary for understanding space mapping and ma-
chine learning in the context of control theory. It begins by discussing the roles of low- and high-fidelity
models in control optimisation, followed by an in-depth exploration of space mapping techniques. The
chapter then transitions to an examination of machine learning, with a focus on sequence-to-sequence
networks, crucial for enhancing model integration and performance. This literature review lays the
groundwork for appreciating current advancements and pinpointing the research gaps that this study
seeks to explore.

2.1. Optimal Control Theory
As the name suggests, optimal control theory is about calculating the best set of control inputs for an
aircraft to satisfy a certain objective. The objective in question can range from determining the optimal
flight path considering weather circumstances [4], to evaluating the landing performance of rotorcraft
vehicles [5]. Independent of its specific application, the pursuit of optimising control strategies for air
and spacecraft has been a longstanding endeavour.

Typically, control optimisation starts with a flight dynamics model of the aircraft in question con-
taining all the relevant performance metrics. The equations of motion can be of varying complexity
depending on the level of fidelity that is desired. In general for a continuous time model, the evolution
of the state variables x(t) of the system can be written as a set ordinary differential equations:

ẋ = f(x(t), u(t), t) (2.1)

Here, u(t) represents the control inputs to the system, for example stick movement done by the pilot.
Starting at some initial point, the evolution of the states and inputs are incorporated into the objective
function:

J(x(t), u(t)) =

∫ tf

t0

L(x(t), u(t), t)dt+Φ(x(tf), tf) (2.2)

subject to:

ϕ(x(t0), t0, x(tf), tf) = 0 (2.3)

C(x(t), u(t), t) ≤ 0 (2.4)

The objective function J can be divided into the endpoint cost, and the running cost. The endpoint can
be interpreted in the context of flight trajectory as the penalty in case the desired target is not reached.
The running cost, also called Lagrangian term, represents the cost of performing movements. This

3

2.1. Optimal Control Theory 4

term is given as the Lagrangian L integrated over the time-frame of the trajectory. The terms ϕ and C
represent the boundary and path constraints imposed on the trajectory and control inputs. These can be
incorporated in the Equation 2.2 to arrive at the constrained objective function:

J = Φ− νTϕ+

∫ tf

t0

[
L− µTC + λT (f − ẋ)

]
dt (2.5)

Here ν and µ are the Lagrange multipliers for the boundary and path constraints. Furthermore the
term λ is incorporated. This is the co-state, an important parameter that relates the change in state
to the associated cost for the objective function. The term f − ẋ represents the difference between
the state dynamics and the actual rate of state change. This term is added when performing discrete
optimisation to compensate between any discrepancies between the system dynamics and the actual
trajectory changes. Equation 2.5 can be reduced to its augmented form by introducing the Hamiltonian
function H [6]:

Ja = Φ− νTϕ+

∫ tf

t0

[
H − λT ẋ

]
dt (2.6)

with:

H = L− µTC + λT f (2.7)

Pontryagin's Maximum Principle
Using calculus of variation, Pontryagin’s Maximum Principle (PMP) states that given for an optimal
trajectory x∗ and for any admissible small perturbation of the optimal trajectory δx:

δJ(x∗, δx) = 0, ∀δx (2.8)

This condition ensures that for a given solution, the derivative at that point is zero, meaning it is at least
a local minimum if not a global minimum [7]. Note that even if the solution proves to be a suitable
candidate, it does not automatically mean that it is a global optimal trajectory. This is a limit of PMP.
Further test such as examining the second derivative of J must be done to assess the nature of the solution.
The dynamic constraint, Equation 2.1, is also included to enforce that the solution adheres to the system
dynamics. Because this theorem is assumed to be in continuous time and not in discrete, the term f − ẋ
is simply replaced by f . The set of conditions described above form a Hamiltonian-Boundary-Value-
Problem (HBVP). Solving this problem can be done via two ways which will be discussed next.

2.1.1. Solving HBVPs
Like any optimisation problem, there exist various methodologies to address the problem, each way
having its benefits depending on the nature of the problem. Similarly, solving optimal control problems
in the form of a HBVP has its own challenges depending on how the system is defined.

2.1. Optimal Control Theory 5

Figure 2.1: Overview of different optimisation methods based on problem properties. Adapted from [6].

According to [6], classical optimal control approaches can roughly be divided into direct and indirect
methods. Indirect methods use PMP to solve the problem. These methods are dubbed indirect because
they rely on deriving first order optimality conditions to reach an optimal trajectory, instead of directly
optimising the trajectory.

One of the problems that Figure 2.1 shows is that in practice it is often difficult to derive the HBVP
equations. While this method yields an exact solution, deriving the optimality conditions is very dif-
ficult. If the constraints are changed, which is often the case in system level optimisation, the whole
derivation process has to be repeated. Another issue is that the optimiser is very sensitive to initial start-
ing point and the costate. As the costate is not easily interpretable, this could lead to slow convergence
if not properly set.

Direct methods on the other hand rely on numerical methods to find an optimal solution. These are
in general more easy to work with and more robust, at the downside that it is not possible to determine
if a solution is a global or local optimum.

2.1.2. Practical limits of optimal control theory
Optimal control theory inherently intersects with non-linear optimisation, especially when addressing
complex, real-world control problems. Even moderately high-fidelity flight mechanics models can
introduce non-linear behaviour which imposes various challenges and restrictions to the problem. These
are not just theoretical concerns but directly impact the practical application of optimal control theory.

Like with any optimisation problem, there are limits in terms of size and complexity of the problem
to what can be optimised. A big part of the problem has to do with the so called ”curse of dimension-
ality” first coined by Richard Bellman in 1957 [8]. The problem is that computational effort does not
scale linearly with the size of the problem. A fine example is that matrix operations typically scale
between O(n2.5) and O(n3)[9]. Increasing the amount of states therefore has a significant impact on
the computational cost. This is combined with the fact that higher dimension models are often more

2.2. Complexity Reduction 6

taxing to evaluate adding to the total evaluation time.
In the world of optimisation, there is a notion that regarding optimisers and the problems that they

solve that ”there is no free lunch” [10]. This means that there is no general optimisation algorithm
that is good in any task. In more detail this means that an optimiser designed for a specific task will
under perform if applied to another problem set. Applying this concept to optimal control, this means
that depending on which approach is chosen in Figure 2.1, a different optimiser might be better suited.
The following commonly used optimisation methods exemplify the challenges faced when performing
complex optimisation.

Gradient based optimisation
Gradient based methods are a popular choice for optimisation due to their intuitive operation, ability
to handle constraints, and relatively straight forward approach. If second derivative information is
available, gradient based methods become an even more efficient optimisation tool [9]. A large caveat
to this approach is that if gradient information is not readily available, some of its advantages diminish.
Finite difference methods which are used to calculate gradients are prone to inaccuracies depending
on the problem structure. The objective function might be non-convex, discontinuous, or very noisy
[11]. In such a case, the calculated gradient based on finite difference might not reflect the real gradient.
This could lead to oscillations in the search process or prevent convergence entirely. Another point is
that computing gradients can become computationally expensive if the objective function is difficult to
evaluate.

Nevertheless for lower dimension, well-posed problems are an excellent candidate for gradient
based methods. One such an example is the interior point method employed in [4]. Interior point
methods traverse the space bounded by constraints to search for an optimum. In more detail, interior
point optimisation was applied through an open source python library called ”IPOPT” 1. This library is
a popular choice for solving non-linear optimisation problems.

Bayesian optimisation
Another popular approach is to treat the objective function as a black box without gradient information.
Using Gaussian Processes, a predictive model is constructed by strategically sampling the objective
function. This predictive model can make estimations with a certain degree of confidence. By strate-
gically weighing exploratory and exploitative sampling, the optimiser can refine the optimisation in
regions near the optimal point, while also exploring the whole design space [12]. Especially problems
where the evaluations cost is high, Bayesian optimisation is a good candidate. A downside however is
that Bayesian optimisation does not fare well under high dimensional problems. This is because of the
need of repeated inversion of sample matrices. The more samples are taken the larger this matrix gets.
Typically, Bayesian optimisation is limited to 15 - 20 dimensions [12] [11]. Similar to the IPOPT pack-
age, there exist packages for Bayesian optimisation. For lower dimension problems or parameterised
problems Bayesian optimisation can still be used for trajectory optimisation [13].

2.2. Complexity Reduction
In the realm of optimal control optimisation, a natural strategy when faced with complex modelling
tasks is to explore possibilities for simplification. This approach is not only for convenience, in some
cases it is also a necessity if the problem is too complex to handle. However, this simplification process
comes with its own set of trade-offs. While making a model more computationally manageable, there is
an inherent sacrifice in model accuracy. This section will dive into intricacies of low- and high-fidelity
models.

1https://coin-or.github.io/Ipopt/

https://coin-or.github.io/Ipopt/

2.2. Complexity Reduction 7

2.2.1. High-fidelity flight mechanics model
High-fidelity models, typically represented by 6-DoF frameworks, are based on thirteen equations im-
plemented in closed-form. These models simulate the physical forces and movements affecting an
aircraft, offering a detailed and precise depiction of flight dynamics:

Conservation of Linear Momentum Equations (CLMEs)

u̇ = rv − qw +
1

m

(
Wx + F (A)

x + F (T)
x

)
(2.9)

v̇ = −ru− pw +
1

m

(
Wy + F (A)

y + F (T)
y

)
(2.10)

ẇ = qu− pv + 1

m

(
Wz + F (A)

z + F (T)
z

)
(2.11)

Here,W represents the components of the weight vector, F (A) represents the aerodynamic force, and
F (T) represents the thrust force expressed in the body frame of reference. u, v, w represent the compo-
nents of the velocity vector. p, q, and r represent the angular velocity components. Specific rules can
be setup for the thrust and aerodynamic models. Every force acting on the aircraft can be constructed
from simple polar curves or user defined functions. These can be simple values, to complex equation,
and even 3D lookup tables for complex aerodynamics for a wide range of scenarios.

Conservation of Angular Momentum Equations (CAMEs)
Similar to the CLMEs, the forces and moments can be user defined functions which take the aircraft
states as inputs. These equations can be written as:

ṗ = (C1r + C2p) q + C3L+ C4N) (2.12)

q̇ = C5pr−C6

(
p2−r2

)
+ C7M (2.13)

ṙ = (C8p−C2r) q + C4L+ C9N (2.14)

Here, C1 to C9 are model inertia constants calculated with respect to the body axis. L,M, and N are
the sum of moments for roll, pitch, and yaw respectively. These moments are calculated around the
centre of mass and are determined by aerodynamic and thrust forces.

Flight Path Equations (FPE)
The flight path equations are needed to project the aircraft dynamics to the earth based reference frame.
This transformation is given by: ẋE,G

ẏE,G

żE,G

 = [TEB]

uv
w

 (2.15)

Here the subtext E,G means the location of centre of gravity G in the earth reference frame E. TEB

is a matrix that is based on the aircraft’s attitude quaternion. The components of this quaternion are
calculated from the CLME and CAME equations and the kinematic equations described in the next
section.

2.2. Complexity Reduction 8

Kinematic Equations (KE)
The kinematic equations describe how the attitude quaternion is updated:

q̇0
q̇x
q̇y
q̇z

 =
1

2


0 −p −q −r
p 0 r −q
q −r 0 P
r q −p 0



q0
qx
qy
qz

 (2.16)

The set of CLME, CAME, FPE, and KE gives the complete set of thirteen equations for the aircraft state
[14]. Combined with a user defined input set this describes the motion of the aircraft when simulated
in JSBsim. Based on the definition of the aerodynamic and thrust forces, this can quickly become a
complex model to do optimisation with.

2.2.2. Low-fidelity flight mechanics model
A commonmethod to simplify amodel involves reducing the complexity of the aerodynamic and propul-
sive models. This an inherently difficult task due to the complex interplay of aerodynamic forces and
propulsion dynamics. Due to the non-linearity, this is often computationally very intensive. This com-
plexity is often compounded by the need to accurately capture the effects of these reductions on the
overall system behaviour. Alternatively, other approaches focus on simplifying system dynamics by
reducing the degrees of freedom to three, limiting the system to translation only. For instance, some
models limit the scope to longitudinal motion only, involving two translational movements and one
rotation (pitch), which offers a more manageable but still representative analysis of the system’s dy-
namics. Additionally, simplifications to symmetric flight are frequently employed, where the focus is
on conditions that assume symmetric behaviour of the aircraft about its longitudinal axis. For instance,
some models limit the scope to longitudinal motion only, involving two translational movements and
one rotation (pitch), which offers a more manageable but still representative analysis of the system’s
dynamics. In practice, a general 3-DoF system is commonly defined as:

d

dt



X
Y
h
V
ψ
γ
W


=



V cos(ψ) cos(γ) + ωx

V sin(ψ) cos(γ) + ωy

V sin(γ) + ωz
g
W [(T cos(θ − γ)−D)−W sin(γ)]

g sin(ϕ)
WV [L+ T sin(α)]

g
WV [(L+ T sin(θ − γ)) cos(ϕ)−W cos(γ)]

−CT


(2.17)

Here x, y, z represent translation of the aircraft. θ, ϕ, Ψ present aircraft pitch, roll, and heading angle
respectively. V represent the velocity and W the weight of the aircraft. Furthermore γ represent the
flight path angle, and α represents the angle of attack. θ is the geometric pitch angle of the aircraft.
Drag is calculated using a quadratic drag polar using the lift coefficient [15].

This approach can be adapted to meet specific modelling requirements, as exemplified in [16]. The
equations governing thrust can be refined to account for altitude differences using empirical relations.
Another example is improved dragmodelling. Based on the phase of the flight, the aircraft configuration
and thus drag is changed. This allows for better accuracy in scenarios where the effect of drag on
aircraft performance is significant. Despite the simplistic nature of the model, targeted improvements
can improve accuracy in key areas. An example of such an improvement is to add the inputs as states
to the model, and specify the rates of change as inputs. This mimics the interaction between control
surface deflection and resulting attitude change more closely at limited cost.

2.3. Space Mapping 9

2.2.3. Model limits
As stated in the introduction of this section, simplifications are a matter of trading accuracy for com-
putational speed. When a low-fidelity model is used as described in subsection 2.2.2 instead of the
model described in subsection 2.2.1, there will be a limit to which trajectories can be simulated. These
difference stem from the following differences.

Point mass assumption
When reducing a model’s weight distribution to a point mass, rotational dynamics are disregarded. Ma-
noeuvres involving substantial rotational changes are no longer accurately represented within the model.
This extends to aerodynamic modelling as well. Aerodynamic moments which are a dominant contri-
bution to in the whole flight envelope, but are particularly sensitive near the edge of the flight envelope,
are not incorporated. This limits the use cases for these types of models.

Simplified propulsive modelling
A prevalent methodology in flight mechanics involves setting the thrust as a constant value, modulated
by a pilot-controlled setting to determine the actual thrust generated by the aircraft. However, this
approach often overlooks several critical environmental factors that affect thrust production, such as
altitude and inlet velocity. [16] demonstrated that the impact of these environmental influences could
be effectively modelled using empirical relationships derived from aircraft parameters and state data.
Incorporating these influences as scaling factors to the thrust used during optimisation can significantly
enhance model accuracy while incurring minimal computational overhead. Furthermore, engine spe-
cific behaviour such as spool up time is often not modelled as well.

Simplified aerodynamic modelling
Another simplification is the use of linear aerodynamics. While this is a valid approach for small angle
perturbations, it ignores the effect of stall for higher angles of attack. This limitation becomes particu-
larly pronounced in scenarios characterised by low velocities or high angles of attack, such as during
landing and take-off phases, slow climbs, and slow turns. This means that for low velocities or high an-
gles of attack this approach ignores a dominant factor. Examples of scenarios that operate within these
conditions are landing and take-off, slow climb, and slow turns. Under these conditions, the linearised
approach neglects a dominant aspect of aerodynamic behaviour, potentially leading to significant dis-
crepancies in model predictions.

In practical applications, the strategy of reducing model complexity is a commonly adopted technique,
despite its inherent limitations in accuracy. By carefully defining the scope of the problem and weigh-
ing which aspects to exclude, many of the shortcomings associated with low-fidelity models can be
effectively mitigated. A notable example of this approach is shown in [17]. In this particular study, the
goal was to design an algorithm to assist in deep stall recovery using optimal trajectory planning using
a 3-DoF model. This model choice was strategic, as the primary dynamics in this context involved
rotational motion rather than translational. As a result, the model was specifically adapted to compute
dynamic moments, rather than forces. Subsequent validation using a comprehensive 6-DoF model con-
firmed the adequacy of the results. This case demonstrates that a well-defined and simplified problem
can yield reliable outcomes. However, the effectiveness of such an approach is inherently limited by the
structural constraints of the problem. In contrast, employing a 6-DoF model directly offers a broader
range of capabilities, allowing for a more diverse and detailed exploration of flight dynamics.

2.3. Space Mapping
A crucial part of employing surrogate based optimisation is that the low-fidelity model’s output should
accurately represent the behaviour of the high-fidelity model. The process of aligning the low-fidelity
model with the high-fidelity model in an iterative manner is called space-mapping (SM).

2.3. Space Mapping 10

2.3.1. Space Mapping Principles & Theory
SM seeks to remedy model misalignment via several different approaches. First, the input space of
the low-fidelity model can be adjusted to account for modelling simplifications. An example of this
is adjusting control variables to compensate for modelling differences. Alternatively, space mapping
can be applied to the model’s output through the application of a correction factor or bias to rectify any
differences between the predicted responses of the low- and high-fidelity models. Lastly, the parameters
of the low-fidelity model itself can also be tuned to more accurately reflect the high-fidelity model. In
the context of aircraft trajectory planning, the low-fidelity model could adjust its weight, wingspan, or
other physical parameter to align better with the high-fidelity model. Note that space mapping originally
was intended to fine and coarse meshes, hence the notation ”fine” and ”coarse”. A great way to visualise
the principle of space mapping is through the following illustration [18]:

Figure 2.2: The concept of space mapping visualised. Adapted from [19].

At its core, space mapping is an optimisation problem, striving to minimise the discrepancies between
coarse and fine models [19]. The overarching of space mapping aim is to achieve a satisfactory solution
with a minimal number of computationally expensive “fine” model evaluations[20]. Here in lies also
one of the key characteristics of SM. This technique produces tailor-made solutions for surrogate mod-
elling and optimisation problems. Generating a general mapping would mean that more high-fidelity
function evaluations than necessary would be needed to generate a complete mapping, as opposed to
only mapping the point of interest. In formal terms, space mapping can be stated as:

xc = P (xf) (2.18)

Rc(P (xf)) ≈ Rf (xf) (2.19)

Here R(x) represents the model output for a given input point x, usually in the fine model space. By
taking the inverse of Equation 2.18 and optimising the low-fidelity model, a solution suitable for the
high-fidelity model can be found. The initial implementation of this concept used a linear mapping
between the low- and high-fidelity space[20].:

xc = P (j)(xf) = B(j)xf + c(j) (2.20)

with B(j) ∈ Rn×n, and c(j) ∈ Rnx1. To establish a proper mapping, an initial m points in xf are
evaluated. Then, through parameter extraction, the corresponding xc are found:

x(j)c = argmin
xc

∥ Rf (x
(j)
c)−Rc(xc) ∥ (2.21)

Effectively, for a given set of high-fidelity points, the corresponding low-fidelity points are obtained
through minimisation of the prediction error. Then, with the high-fidelity points and the corresponding
low-fidelity points, the parameters in B and c are iteratively updated:

xf ≈ x
(mj+1)
f =

(
P (j)

)−1
(x∗c) (2.22)

2.3. Space Mapping 11

Here j denotes the iteration number. If the initial m high-fidelity points are not enough to establish a
sufficient mapping, additional high-fidelity evaluations can be performed. This iterative method, while
simple in nature, comes with several considerations. The relationship between low- and high-fidelity
models is rarely linear, complicating the mapping process. Furthermore, an initial set of fine model
evaluations, necessary for creating a mapping, might not be ideally positioned, leading to a sub-optimal
starting point. Additionally, simplifications inherent in the model may result in non-unique solutions
during the parameter extraction phase.

Aggressive Space Mapping
Aggressive Space Mapping (ASM) is an improvement of the original space mapping technique making
use of a quasi-Newton iterative approach. The goal of ASM is to solve the non-linear system:

f(xf) = 0 (2.23)

Here, f (j)(x) is the error vector at iteration J. Each iteration, both the low- and high-fidelity model
are evaluated. Then, using the mapping Jacobian J(p), the parameters in xf are updated and a new
high-fidelity point is found:

J
(j)
(p)h

(j) = −f (j) (2.24)

x
(j+1)
f = x

(j)
f + h(j) (2.25)

Themapping Jacobian can be estimated using finite difference. The algorithm terminates if the mapping
error is sufficiently small. In pseudo code this approach is formulated as follows:

Algorithm 1 Aggressive Space Mapping (ASM)

Require: High-fidelity model Rf , low-fidelity model Rc, initial guess x
(0)
f , tolerance ϵ, maximum

iterations Nmax
Ensure: Optimised parameters x∗f
1: Evaluate initial discrepancy f (0) ← Rf (x

(0)
f)−Rc(x

(0)
f)

2: while ∥f (j)∥ > ϵ and j < Nmax do
3: Calculate the mapping Jacobian J (j)

(p) at x
(j)
f

4: Solve for update step h(j) such that J (j)h(j) = −f (j)

5: Update parameters x(j+1)
f = x

(j)
f + h(j)

6: Evaluate new discrepancy f (j+1) = Rf (x
(j+1)
f)−Rc(x

(j+1)
f)

7: end while
8: return x(j)f as x∗f

A common adaptation of this method is the inclusion of trust regions. Based on the accuracy of the
low-fidelity model, the model can locally be trusted to be an accurate representation of the high-fidelity
model. This allows the optimiser to locally optimise the model, instead of only taking a single step
during the iteration. In the implementation above, this adaptation would be inserted in line 7, and
would increase the overall efficiency of the whole approach.Depending on if the solution is satisfactory,
the trust region can be expanded or decreased.

Compared to the original implementation of space mapping, this adaptation tends to converge faster
while requiring less high-fidelity function evaluations. This is done by remedying on of the main cri-
tiques of the original method; mainly the use of selective evaluations compared to evaluations before-
hand. The problem formulation of ASM also opens up the opportunity to use more advanced optimisa-
tion techniques such as, but not limited to, trust region methods

2.3. Space Mapping 12

Space Mapping as a framework
While earlier discussions have centred on common implementation techniques likeASM, the underlying
principles of spacemapping can be extended into a broader, more adaptive framework. This higher-level
approach allows for the adaptation of the methodology to suit specific application needs rather than
adhering strictly to traditional methods. An example of such a case where this adaptability becomes
essential is in managing control sequences between low- and high-fidelity flight mechanics models.

As noted in previous sections, these models exhibit significant non-linear behaviour, making it
challenging to encapsulate their dynamics within a limited set of parameters. The complexity inherent
in these models often surpasses the capability of conventional space mapping techniques, which are
typically more effective in scenarios where the models and the to-be-mapped variables can be described
with fewer, more direct parameters.

2.3.2. Multi Model Steering Algorithm
The challenge around non-linear trajectories and control sequences inspired the development of the
Multi-Model Steering Algorithm (MMSA) [21]. While not proposed as a space mapping technique, it
embodies the core principles of space mapping to a high degree, making it highly relevant as a bench-
mark method in this study to which other methods are compared to. The core principle behind MMSA
framework is to divide complex motion planning problems where controls cannot be guessed a priori
due to the complexity of the models involved. The MMSA framework is structured as follows:

1. Strategic layer: This layers objective is to define the objective of the motion planning problem.
In terms of control optimisation, this layers is about defining the cost function parameters, start-
and final state, and other parameters of relevance.

2. Tactical layer: With the control optimisation problem defined, a low-fidelity model is used to
solve the optimisation problem. The idea is that the low-fidelity model captures the global dynam-
ics of the high-fidelity model accurate enough to generate a realistic trajectory and accompanying
set of controls. This is also where the first similarity with space mapping can be seen. Instead
of performing control optimisation with a high-fidelity model, a low-fidelity model is used as a
surrogate which will be mapped in the next layer.

3. Reflexive layer: The final layer focuses on planning the actual control inputs for the high-fidelity
model (read: finding a mapping function to map a low-fidelity trajectory to a high-fidelity model
by adjusting the inputs). The planning is realised through Model Predictive Control (MPC). The
calculated optimal trajectory is taken as a reference trajectory for the MPC controller to follow,
also called Model Predictive Tracking (MPT). The way this is done is by splitting the trajectory
in segments. For each segment a smaller optimal control problem is solved using a predictor
model that locally approximates the high-fidelity model. Once a solution is found, the controls
are passed to the high-fidelity model and the segment is simulated. Using the final state as a
starting point for the next segment, the cycle is repeated. This again mimics the principle of
space mapping by using a low-fidelity predictor model in lieu of a high-fidelity simulator.

While the cycle above accounts for the ”multi-model steering” part of MMSA, the ”adaptive” compo-
nent draws even more parallels with space mapping, ASM in particular. Due to inherent misalignment
between the low- and high-fidelity model, the control optimisation step in the tactical layer may not
actually produce an optimal trajectory for the high-fidelity model. Through iterative updates to the
model parameters and subsequent MPT step, the models are gradually aligned. This is highlighted in
the following flowchart of MMSA [21]:

2.3. Space Mapping 13

Figure 2.3: Flowchart of the MMSA process.

In this simplified implementation, the similarity with ASM can be seen in the iterative updates of p
to improve the low-fidelity control optimisation problem. Important to note is that the low-fidelity
model parameters are optimised for each section, and are collectively used during control optimisation
to produce a trajectory that is also optimised for the high-fidelity model. Furthermore, the mapping
error is defined by: e =

∫ Ttrack
T0
||X(target) −X(highfi)|| dt. The algorithm converges if the error between

the optimal trajectory computed in the tactical layer and the trajectory computed in the reflexive layer
is below a certain threshold.

2.3. Space Mapping 14

Model Predictive Control
A key part of MMSA is understanding how MPC address model discrepancies during motion planning
and how local parameters affect mapping performance. A useful illustration of the MPC concept is
given as follows:

Figure 2.4: Visualisation of Model Predictive Tracking. The original paper focused on mapping critical trajectories for
multi-body rotor craft. Adapted from [21].

Looking at Figure 2.4, a few key terms jump out. Starting from above, the tracking window, denoted by
starting time T track

0 , signals the start of the local control optimisation problem to be solved. A key part
of why MPC is a popular choice for motion planning is that it can easily deal with model discrepancies.
The optimisation problem is structured such to reduce trajectory errors over a longer time window and
is formulated as follows:

min
y,u

J track (2.26)

with:

J track =

∫ T track

T track
0

M(y, y∗, u)dt (2.27)

subject to:
f(ẏ, y, u, p∗) = 0 (2.28)

gtrack(y, u) ∈ [gtrackmin , gtrackmax] (2.29)

y(T track
0) = ỹ0 (2.30)

M(y, y∗, u) =∥ y − y∗ ∥Strack
y

+ ∥ u ∥Strack
u

+ ∥ u̇ ∥Strack
u̇

(2.31)

The control optimisation problem extends its horizon to future states as well, using the predicted trajec-
tory y as part of its cost function. The dynamics of the predictor model are given by Equation 2.28, and
are dependent on local parameters p∗. Looking again at Figure 2.4, the high-fidelity model’s simula-
tion extends only through a segment of the tracking window, emphasising the short-term validity of the
predictor model and the substantial impact of local parameter updates. Over time, the motion planning
problem becomes increasingly more representative of the actual dynamics, with the high-fidelity model
serving as validation. Moving on, J track represent the total cost of the trajectory and is defined byM
at every time step. The individual cost terms inM are further scaled by weights S.

To summarise, the key principle behind MPC and MPT is to not only plan for the current time seg-
ment, but to incorporate future segments into the motion planning problem enhancing the realism and
applicability of the trajectory planning. Low-fidelity predictor models play a crucial role in approximat-
ing the high-fidelity model and to reduce computational costs.

2.3. Space Mapping 15

2.3.3. Modern Space Mapping Adaptations
With space mapping gaining traction after its introduction in 1996, the need for more advanced methods
became clear due to the development of more complex simulations. Techniques such as knowledge-
based modelling and neural networks promise to reduce computational demands while maintaining ac-
curacy, particularly in areas where extrapolation and rapid data processing are crucial. This section will
overview these advanced methods, setting the stage for their more detailed exploration and application
in contemporary design practices.

Prior Knowledge Input
Similar to space mapping, machine learning is another emergent method in enhancing surrogate models.
A logical next step is explore where these two methods compliment each other. One such method is
Prior Knowledge Input (PKI) models. A typical PKI model architecture is structured as follows::

Figure 2.5: Architecture of a typical PKI model. Adapted from [22].

The main principle behind PKI is to incorporate prior knowledge in neural network prediction. In the
depiction above, a high-fidelity control sequence xf is passed to the low-fidelity model fc and directly
to the neural network FANN . The output of the coarse model is then used by the neural network as
extra information to base its prediction on, hence the name prior knowledge. The networks output
YPKI is a direct approximation of the high-fidelity model’s output Yf . This way, the model does not
have to start from building knowledge about the problem from scratch but has the low-fidelity model
to provide it with an initial prediction. Model training is done by comparing the network output to the
actual output of the high-fidelity model f(xf) and adjusting its weights accordingly. This drastically
improves learning performance and efficiency, and also reduces the amount of data required.

Prior knowledge Input-Difference method
Another adaptation of the PKI method is through the use of difference methods. Instead of directly
outputting a prediction, the low-fidelity model’s output Yc is used as a base output, to which a predicted
correction Yd is applied to. The advantage is that this aids in overall mapping stability, especially early
on in training. Even more than before, the network is already ’aimed’ in the right direction by the
low-fidelity model when generating an output:

2.4. Sequence-to-Sequence Neural Networks 16

Figure 2.6: An adaptation of the PKI method using a difference correction method. Adapted from [22].

As illustrated, the PKI-D relies even more on prior information of the low-fidelity model by having
its output serve as the basis of the network prediction, and having the machine learning network learn
the discrepancies between the low- and high-fidelity network. In the context of trajectories, the PKI-D
method learns which controls (xf) produce the largest inaccuracy by the low-fidelity model’s trajectory
yc.

The main take-away with methods such a PKI and PKI-D is that they leverage the strengths of
machine learning, while keeping in mind the main principles of space mapping.

2.4. Sequence-to-Sequence Neural Networks
Neural networks have been around for some time already, however only in the last decade have picked
up steam due to a surge in computing power. This section will dive into the fundamentals of machine
learning, specifically sequence based networks.

2.4.1. Fundamentals of Machine Learning
Machine learning has been a revolutionary way to process data, being able to digest vast amounts of
data to search for complex patterns. Given certain attributes of the data set, these models learn from the
data to make predictions or decisions on their own using relatively simple algorithms. This approach
still requires some degree of problem knowledge to define the correct features and problem structure.

Deep learning however takes it a step further. Inspired by human neurons these types of ”deep
learning neural networks” are able to learn even more complex tasks without requiring prior knowledge.
This is approach forms the main differentiation between regular machine learning and deep learning.
Deep learning can be seen as a branch of machine learning, and is responsible for many revolutions
in the field of computer vision, speech, and natural language processing. These capabilities however
do not come for free. In general, deep learning networks are more data and computationally expensive
compared to regular machine learning algorithms.

As alluded to before, deep learning took its inspiration from the way neurons process information.
This is best seen when looking at how a node or neuron connects to inputs in a network:

2.4. Sequence-to-Sequence Neural Networks 17

Figure 2.7: Layout of a single layer, single neuron network. In a network, layers of these neurons are stacked to enable
complex patterns to be unravelled. Adapted from [23].

Indicated in Figure 2.7 are the connections between inputs and the neuron itself called synapses. In real
neurons, the connection strength determines how well a signal travels between two neurons. In deep
learning, this strength is determined by weights. In a network there are usually multiple layers stacked
on top of each other, with multiple neurons per layer. The input signal into a single neuron consists of
a weighted sum of all the outputs of the previous layer of neurons. This signal is then passed through
an activation functions which determines the output of the neuron:

ȳ = σ(wtx̄+ b̄) (2.32)

The weights are specific for each neuron and have a great influence on how the network performs. An
important part of deep learning is the network training. This training process of adjusting the weights
of a network such that the correct output is given in the end. Adjustment is made on the basis of the
loss function which is usually given as the mean squared error of the output and the ground truth. Using
techniques such as gradient descent or other optimisation methods the weights are adjusted [24].

One of the most important developments in deep learning is the back propagation algorithm. This
algorithm allows a network to update its weights based on an the output error. This error is fed in reverse
order through the network. Using the gradient of the loss function, the weights of the neurons with a
strong contribution to the correct output are increased, and neurons who negatively contribute get their
weights reduced. The magnitude of the adjustment is called the learning rate and is usually varied over
the course of training to speed up convergence. It is similar to the step size of an optimiser in regular
optimisation [25].

Another important aspect is the frequency of updates. A common practice is to bundle suggested
updates of multiple data inputs, and combine them into a single update. This is called a batch, and is
often used to promote stability of convergence. During the training, the data set is divided into multiple
batches. Each batch represents an iteration of updates to the network. When the whole data set has been
evaluated, this is called an epoch. Usually a careful trade-off is made between the number of epochs,
batch size, and learning rate to prevent over-fitting of the data and speed of convergence [25].

2.4.2. Recurrent Neural Networks
RNNs are a branch of machine learning which specialises in time sensitive inputs. Conventional neu-
ral networks are designed to process single data entries, where each entry is independent of the order
in which they are given. This also means that individual data points are not influenced by each other.
RNNs on the other hand excel at capturing temporal patterns. Depending on previous inputs a RNN
builds up a ”hidden state”, akin to a memory. The difference between a conventional neural network
and a recurrent network can best be described as:

2.4. Sequence-to-Sequence Neural Networks 18

’Recurrent neural networks are connectionist models that capture the dynamics of sequences via cy-
cles in the network of nodes. Unlike standard feed-forward neural networks, recurrent networks retain
a state that can represent information from an arbitrarily long context window.’ [26]

During each time step evaluation, the hidden state is updated to include the information of the current
time step. This way, information is preserved while evaluating new steps. During each cycle, the hidden
state is updated and passed on to the next time step. A similarity can be drawn to the integral term of a
PID-controller. Both the I term and the hidden state integrate historical information to inform current
output. The I term sums past errors for better control adjustments, while the hidden state in an RNN
accumulates data from past inputs, influencing its response to new information. The way information
is integrated can be seen in the architecture of the RNN:

Figure 2.8: Architecture of a recurrent neural network. Each ”column represent the network during an iteration of data
processing. For clarity, multiple instances of the same network at different instances of data processing are shown. xi and oi
denote the input and output at time step i. hi denotes the hidden state at each time step, updated by the network with weights
Whx, Whh, Wh0, and biases bhh, bho. The set of weights and biases are the same for each time step of the input, but get
updated during training. Adapted from [27].

Common tasks for which RNNs are used are time series prediction and sequence-to-sequence mapping.
The first task is about predicting future states given a certain starting sequence. During processing of
the initial time series, the hidden state is constructed. Then using the last entry in the sequence and the
built up hidden state, a prediction is made. Each subsequent prediction is then used to make the next
prediction.

Where time series prediction tacks on subsequent predictions to the end of a sequence, mapping of
sequences is also an area where RNNs excel. Here, an encoder-decoder structure is used to extract the
essence of a sequence to be able to translate it to another sequence [28]. This will be covered in more
detail in section 2.4.3.

Universal sequence-to-sequence function approximator
RNNs originally gained traction in the field of natural language processing. When dealing with lan-
guage, the order of words is critical for the meaning of a sentence. Advances in RNN architectures led
to significant improvement in translation benchmarks and revolutionised natural language processing
through machine learning [28][29][30].

Mapping input sequence from low to high-fidelity models could be viewed in the same way. Similar
to a word appearing multiple times in a sentence, a certain elevator deflection input could occur multiple
times in an input sequence. In both scenarios, their time of occurrence significantly impacts their effects.
Furthermore if certain patterns are present in a sequence, it is important that these are preserved during
translation. This is visualised in the following example:

2.4. Sequence-to-Sequence Neural Networks 19

(a) Natural language translation from English to french. Note
how translation is not a one-to-one conversion task. The order
changes depending on certain patterns present in a language.

(b) Example of an input sequence translation. Similar to a sen-
tence, a direct conversion may not be possible due to modelling
differences. The low-fidelity aircraft model might use instanta-
neous thrust increase, while the complex aircraft model might
model fuel flow and thrust setting to control thrust.

Figure 2.9: Visualisation of the similarity between natural language translation tasks and control sequence mapping.

This abstraction of sentences to general sequences is supported by [30]. This source suggests that trans-
former models, a type of RNN, can be viewed as a universal sequence-to-sequence function approxima-
tor. One of the ways this is showed is by proving that a network architecture is Turing Complete. This
property means that given enough computational resources, any algorithmic task such as sequence-to-
sequence mapping can be performed regardless of complexity. The implication of this statement is that
RNN networks are theoretically capable of performing tasks such as control input mapping, and are
not limited to language processing. These findings were corroborated by [31][28] for simplified RNN
models. In practice any network is limited by the computational power available. However for limited
size problems this could be a viable approach to sequence mapping for optimal control problems.

Limits of basic RNNs
While Turing completeness is an important theoretical foundation, it does not describe the real-life
performance of a model. The fact that more specialised architectures have emerged signifies that there
is much to be gained in efficiency and performance for certain problem sets. Improvements in network
architecture have been made to specifically address the problem of the vanishing/exploding values, and
the problem of limited memory[26].

Likewith any neural network, theway input valuesmove through the nodes is throughmultiplication
by theweights between nodes. These weighted values are fed into an activation functionwhich produces
the input value for the next layer. In an RNN, values in the hidden state are passed through to each
subsequent input. This is done through a connected layer which has its own set of weights, see Figure 2.8.
In the case of a vanishing gradient, the set weights has a low value. The effect that this has is that
the influence of an early data entry gets progressively diminished compared to later weights. With
exploding weights, the opposite happens [32].

A side effect of the vanishing value problem is that for long sequences, information at the beginning
is forgotten because its contribution also vanishes compared to later information. As a remedy different
activation functions have been proposed. The idea being that other activation functions might preserve
better, however these have met similar drawbacks [33].

2.4.3. Long-Short Term Memory Neural Networks
Another source of memory limitation is the fact that information in the hidden state is constantly over-
written by subsequent updates. In a sense, information is ”flushed out” when new information is added.
A work around for this problem is the addition of a long term memory, where selective bits of infor-

2.4. Sequence-to-Sequence Neural Networks 20

mation are stored regarding long term patterns. The long term memory is also called the ”cell-state”,
similar to the hidden state. This is the essence of a ”Long-Short Term Memory or LSTM for short. A
typical LSTM network architecture is as follows:

Figure 2.10: Architecture of an LSTM model. Input and forget gates determine which information gets passed to the cell
state. Not shown are the weights between input states and activation functions similar to Figure 2.8. Adapted from [34].

The way information gets passed to the cell state is through the inclusion of gates. Gates work on the
basis of activation functions and weights, similar to normal network layers. The forget gate reduces
the values that should be forgotten in the cell based on a weighted sum of the hidden state and input
at that time step, fed into an activation layer. In a similar fashion, the input gate updates the cell state
by adding values to certain cell states. This is done through the input gate which decides which values
should be updated. The candidate value denoted by C (t) determines by how much the cell state should
be updated. The hidden state, which acts as the short term memory, is updated in the same way as in
regular RNNs [34][35].

Based on these improvements, LSTM networks are able to achieve greater performance over longer
time series compared to regular RNNs. The sequence length they are able to process is still limited to
500-1000 entries [36]. This improvement comes at the cost of being more difficult to train due to the
added complexity of the gates.

Encoder-Decoder structure
Regarding sequence-to-sequence mapping, LSTM based networks utilise an encoder-decoder structure
to capture the essence of a sequence and properly translate it. This structure is similar to the encoder-
decoder structure used in standard RNNs:

2.4. Sequence-to-Sequence Neural Networks 21

Figure 2.11: Typical architecture of an encoder-decoder structure using LSTM networks. The network itself consist of a
single LSTM block for encoding and a single block for decoding. Each output is reused as an input for the same block to
create future outputs. The composition of an LSTM block is the same as in Figure 2.10 [37].

The encoder ingest the data sequence step by step. This builds up the hidden and cell state. Once every
step is processed, the cell state containing a memory of the entire sequence is passed to the decoder
network. Using a sequence starting token, which can be a known initial value, outputs are generated
using the previous output as input for the current step. The advantage of this approach is that it allows
for variable length sequences. Standard mapping algorithms require a fixed input and output sequence
length [36][28].

One of the first works pioneering this concept on English to French translation noted that even
for long sentences the network performed well [28]. Furthermore, adding more layers to the network
lead to better translation, implying that more complex patterns could be captured. Another notable
observation is that reversing the source sequence led to better performance. By reversing the sequence,
the beginning of a sequence is processed last, keeping its information more immediate and more present
in memory when starting to generate the target sequence. This can help in better contextual alignment
between the source and target sequences.

In the pioneering studies of machine translation, such as the translation from English to French, it
was observed that networks like LSTMs could handle long sequences effectively, capturing intricate
patterns in sentences [28]. This capability is analogous to the task of translating control sequences from
a low to high-fidelity flight dynamics model. For instance, consider an LSTM trained to translate a
sequence of control inputs optimised for a low-fidelity model of an aircraft’s ascent into a sequence that
would produce the same ascent trajectory in a high-fidelity model.

Just as adding more layers to a network improved language translation by capturing more complex
linguistic structures, increasing the depth of an LSTM network for flight control translation allows it
to better understand and replicate the complex interactions between various control inputs and aircraft
responses. For example, a deeper LSTM might better grasp how throttle settings and pitch attitude
influence the latter stages of ascent in terms of speed and altitude.

Moreover, just as reversing the order of words in a source sentence led to better translation outcomes,
reversing the sequence of control inputs—processing the final inputs first—can keep the most critical
information fresh in the network’s memory. In practice, this might mean that for a complex manoeuvre
sequence, the network first processes the control inputs needed for the final position of the manoeuvre.
This way, when the LSTM begins generating the corresponding high-fidelity control inputs, the crucial
final inputs are more present in its memory, allowing for better contextual alignment. For example, by
reversing the control input sequence for a landing manoeuvre, the network can more accurately predict

2.4. Sequence-to-Sequence Neural Networks 22

the precise throttle and pitch inputs needed during the final approach, enhancing the accuracy and safety
of the landing.It must be noted that these findings are purely empirical observations, and highlight that
machine learning still operates as a black box.

2.4.4. Transformer Networks
While proving to be much more capable then standard RNNs, LSTM networks still struggle with long
sequences. This is where transformer networks seek to find improvement. The approach transformers
take is different compared to RNNs as they eliminate the hidden state, and introduce two new concepts:
positional encoding and self attention. First introduced in 2017, transformer networks drastically im-
proved translation tasks even for long sentences [38]. Their function is best explained when looking at
the model architecture.

Figure 2.12: Architecture of an transformer model. An input sequence is encoded in the block on the left. When an output is
produced, the attention map formed during encoding is used to decoded the sequence. Adapted from [38]

Similar to LSTM sequence-to-sequence models, transformer models also make use of the encoder-
decoder structure. A big advantage of transformer models is that the input can be ingested in paral-
lel instead of sequentially. This gives a large performance boost when training the model on multiple
GPUs. Output generation is done similarly to LSTM models where the current output is used as input
for the next output.

2.4. Sequence-to-Sequence Neural Networks 23

Positional encoding
As input sequences in a transformermodel are not processed sequentially, there is noway for the network
to know the order of the data points. Positional encoding is a way to ”time stamp” the data points using
a sum of sine and cosine functions. This way the order of the sequence is preserved. These time stamps
are added as an extra dimension to the input sequence. Through the ”add & norm” layers the positional
encoding is preserved while data travels through the layers. This is called residual connection.

Self Attention
Self attention is arguably the most important part of a transformer network, as it allows the network to
learn patterns in the data. This is also what makes transformers excel at sequence-to-sequence tasks
[28]. The original paper on transformer models introduced the concept of multi-head attention as can
be seen here:

(a) Scaled dot product attention (b)Multi head attention structure

Figure 2.13: Self-attention mechanism in transformer models. Each head of multi head attention is made up of a single scaled
dot product producing an attention map. Adapted from [38]

Looking at Figure 2.13a, the inputs Q, K, and V can be seen. These stand for Query, Key, and Value
respectively. This structure has its origin in natural language processing. An analogy for the query
key value system would be as follows. Suppose you search the internet using a search term. This
would be the search query. Then search results that are most relevant are returned. These are the
search keys. The information behind these keys are the values, and ultimately is what you wish to
know. Mapping the right keys to a certain value is what a transformer is trying to learn during training.
In essence, self-attention is about determining the correct correlation between entries in a sequence,
thereby ”learning” the correct patterns in data [39]. When applying this concept to the field of flight
mechanics, the relevance of self-attention becomes clear in the context of the previous ascent trajectory
example. In such manoeuvres, yaw and roll inputs typically exert a lesser influence on the aircraft’s
behaviour than pitch inputs. Through self-attention, the transformer network learns to assign greater
importance to the pitch inputs, thus reducing the influence of less critical factors such as yaw and roll.
This focused attention enables the network to generate a more accurate translation of control sequences,
honing in on the inputs that significantly affect the trajectory.

In practice this is done through the use of weight matrices, where each entry in the matrices is a
learnable parameter. Each of the inputs Q, K, and V in Figure 2.13a, are the multiplication of, for
example matrix WQ, with the input matrix. Note that the input sequence is enhanced with an extra
dimension due to the positional encoding. The input matrix has size T × (D + P). Where T is the
amount of time steps, D is the amount of dimensions in the input sequence, and P is the positional
encoding. This allows transformers to map any sequence based data [38] [39]. The result of the dot

2.4. Sequence-to-Sequence Neural Networks 24

product between Q and K is also called the attention filter, highlighting which values are closely related.
The values of this T × T matrix indicate the relative connection strength between each entry in the
sequence. By multiplying this filter with the values V, an augmented matrix of size T × (D + P) is
acquired with important data points being highlighted for future processing. This process is repeated in
each of the attention heads seen in Figure 2.13. The resultingmatrices are then concatenated horizontally
into a single large matrix, and passed into a linear layer to reduce the output to the original dimension
size. The output of this attention mechanism is a filtered matrix containing information about only the
most relevant pieces of information in a sequence. A great visualisation of self-attention is given by
[40]:

Figure 2.14: Example of self-attention in natural language processing. Related words in a sentence are highlighted with a
darker colour connection. Adapted from [41].

Using multiple attention heads in a model allows for more complex and different patterns to be picked
up. The output ofmultiple heads is concatenated and using a linear transformation adjusted to the correct
output dimensions. This can be seen in Figure 2.13. An added benefit that self-attention is evaluated
instantaneously and can be computed in parallel. This greatly enhances computational efficiency.

2.4.5. Training strategies
Training machine learning networks to capture complex behaviours critically depends on both the vol-
ume and structure of the dataset employed. In the realm of seq2seq models, which are instrumental
in tasks such as language translation, the distinction between labelled and unlabelled data underpins
different training methodologies.

Labelled data typically comprises pairs of corresponding inputs and outputs. For instance, in a
translation task, an input sequencemight be a sentence in English, with the corresponding label being the
equivalent sentence in another language. Similarly, in image classification, an input would be an image,
and the label would be the description or category that the image fits into. Training with labelled data
is categorised as supervised learning, where the model learns to predict outputs directly from labelled
examples, using a predefined loss function to measure accuracy against a known ground truth.

Conversely, unlabelled data lacks such direct annotations. In this scenario, the learning algorithm
must infer structures or patterns within the data autonomously, often guided by a loss function that
evaluates the quality of predictions in the absence of explicit labels. This approach requires the model
to develop its own interpretation of what constitutes a ‘correct’ prediction, navigating through the data’s
inherent complexities without predefined answers.

This distinction highlights the fundamental challenges and strategies inherent in training machine
learning models, particularly in how they generalise from training data to perform tasks in real-world
scenarios. The choice between supervised and unsupervised training methods can significantly influ-

2.4. Sequence-to-Sequence Neural Networks 25

ence the effectiveness and applicability of the resulting models[42].
Transitioning from the foundational understanding of training with labelled data, it is crucial to

acknowledge the practical challenges associated with acquiring such data. Labelled data can often be
difficult to obtain and expensive to annotate, typically requiring significant labour or high computational
loads to acquire ground truth labels.

These challenges underline the importance of exploring alternative training paradigms, such as semi-
supervised learning, active learning, and transfer learning, which can leverage unlabelled data more
effectively or reduce the dependency on large initial datasets. Suchmethods aim tomitigate the resource-
intensive demands of traditional supervised learning, offering pathways to more efficient and model
training[43].

Diving deeper into active learning, instead of labelling every data point in advance, this method
starts with an initial smaller labelled data set, and selects the most useful samples using an oracle. An
oracle is the name for the labelling function or person doing the labelling each iteration. In practice, the
iterative approach can look as follows:

Figure 2.15: Active learning loop, adapted from [43]

As can be seen, active learning iteratively adds data from the unlabelled pool of data which is then
labelled by the oracle. An important step here is how the network decides which data points to query,
this is called the query strategy. Amongst others, three methods are highlighted[43][44]:

• Uncertainty sampling: Using a model uncertainty score, new samples are based on how confi-
dent the model is in its prediction. A downside is that this method does not consider the sample
itself, which can cause oversampling in certain regions.

• Bayesian active learning: This method uses the Bayesian framework to reduce uncertainty in
machine learning models. This process focuses on iteratively selecting and labelling data points
that are expected to provide the greatest informational return, thereby optimising the learning pro-
cess and improving model performance with fewer labelled instances. This approach is valuable
in scenarios where data is scarce or expensive to label, andwheremanaging prediction uncertainty
is crucial [45].

• Diversity sampling: Rather than looking at uncertainty, diversity-based sampling primarily fo-
cuses on the diversity of the selected samples. This method ensures that the chosen samples cover
a wide range of data characteristics, aiming to improve the generalisation ability of the model
across various parts of the data space. Unlike uncertainty sampling, diversity-based methods pri-
oritise a broad and representative dataset to mitigate the risk of overfitting and reduce biases in the

2.4. Sequence-to-Sequence Neural Networks 26

learned model. However, for optimal results, many active learning strategies combine elements
of both diversity and uncertainty to balance informativeness with broad data coverage.

To summarise this section, training machine learning models such as seq2seq models requires large
upfront labelled data sets. Labelled data supports supervised learning, allowing models to learn and
predict based on known input-output pairs. Due to the high costs and effort required for labelling data,
an alternative approach such as active learning is employed to reduce dependency on large labelled
datasets. Active learning iteratively selects the most informative samples for labelling using various
strategies to enhance data efficiency, and enable machine learning in data sparse environments.

2.4.6. Contemporary research
As discussed Figure 2.4.2, RNNs have broad applications beyond natural language processing. This
section offers an overview of notable contemporary works that have effectively utilised these networks
in trajectory related tasks.

Originally, RNNs were mainly applied to predictive tasks such time series prediction. In the context
of trajectories, several papers have explored the use of LSTMs combined with auto-encoder-decoder for
trajectory prediction. An example of this combination was applied to predict plausible car trajectories
based on relative positions, demonstrating the capability of LSTMs to generate accurate trajectories
[37]. Similarly in [46], the same structure, enhanced with an attention mechanism, was used to avert
ship collisions in high traffic areas, resulting in performance that surpassed classical collision avoid-
ance models. The integration of the attention mechanism highlights the capability to manage complex
sequence prediction tasks with enhanced accuracy.

Focusing on trajectory adjustment, a recent study done by [47] used LSTMnetworks to learn aircraft
movement patterns under dynamic weather conditions. By integrating convolutional layers, the model
effectively learned both temporal and spatial patterns, leading to improved flight paths. The joining of
LSTMs and CNNs showed comprehensive understanding crucial for accurate predictions in dynamic
environments.

In robotics, LSTMs have addressed complex movement planning issues. In [48], an LSTM was
utilised to augment robotic armmovement to account for sliding of objects, a challenge compounded by
kinematic and dynamic constraints. The network learned from physics simulations to improve sequence
planning, paralleling the complexities encountered in flight mechanics.

In a similar fashion, transformer networks have been used to improve spacecraft trajectories as
shown in [49]. Through the inclusion of system dynamics in the network, the quality of the generated
trajectories improved significantly. This study highlights the potential of incorporating neural networks
in complex dynamic systems to enhance spatial-temporal understanding of trajectories, and improve
generation of optimal control sequences.

In summary, these studies collectively demonstrate the wide-ranging utility of RNNs in trajectory
prediction and planning. Their applications, from generating realistic trajectories in automotive and
maritime contexts to enhancing control in aerospace and robotics, signify a substantial advancement in
the field of trajectory modelling and sequence-related tasks.

3
Space Mapping & Machine Learning:
Research Direction & Integration
Challenges

This chapter outlines the integration of space mapping and machine learning, focusing on the research
directions and challenges of integrating these methodologies. Here, the potential for enhancing space
mapping with machine learning is explored, addressing both the opportunities and hurdles. First the
research direction will be covered, followed by addressing the specific integration challenges this study
faces. Then, the space mapping problem formulation will be presented, followed by an overview of the
test cases to which both MPC as as well as the machine learning method will be benchmarked to.

3.1. Research direction
Despite recent advancements in machine learning and space mapping, significant gaps remain in ef-
ficiently mapping optimal control problems and sequences. Existing studies have demonstrated the
potential of RNNs in trajectory prediction or augmentation of trajectories, however none have covered
the direct mapping of complete sequences. On the other hand, various space mapping techniques have
demonstrated to be able to map control sequences, but lack sophistication provided by modern machine
learning techniques.

To summarise the previous chapter, the primary research gap lies in effectively integrating machine
learning and space mapping techniques to map optimal control sequences across different fidelity flight
models, particularly in non-linear flight conditions. This is however where the crux of the problem lies.
The core principles that make space mapping and machine learning powerful tools is also where they
diverge fundamentally. The distinct nature of space mapping and machine learning presents unique op-
portunities, but it also brings forth significant challenges when attempting to merge them. Addressing
this research gap and integration challenge could lead to significant advancements in the accuracy and
efficiency of trajectory planning in complex flight scenarios. With the research gap outlined above, the
following research question is posed:

How does the integration of space mapping and sequence-to-sequence networks facilitate the mapping
of optimal control sequences between low and high-fidelity flight mechanic models to minimise trajec-
tory differences in non-linear flight regimes?

Besides being a collection of techniques, space mapping can also be seen as a general framework where
other techniques such as model predictive control act as a mapping function. This has also been de-

27

3.2. Integration challenges 28

scribed in subsection 2.3.2. In putting the research question in its proper context, it is important to
realise that space mapping is seen here as a framework in which machine learning is placed to per-
form as the mapping function. The goal of this research is to investigate if an out-performance can be
achieved compared to existing space mapping techniques which in this case is model predictive control.
To help guide answering this research question, the following sub-questions are defined:

(a) Which type of network is best suited for a hybrid space mapping-machine learning implementa-
tion?

(b) How does active learning influence the predictive accuracy and adaptability of machine learning
networks in hybrid space mapping implementations?

(c) How does hybrid space mapping-machine learning compare to existing trajectory mapping tech-
niques such as MMSA in terms of computational cost and mapping error?

The research questions outlined above serve as a guide to steer a comparative study between traditional
space mapping techniques and their integration with modern machine learning technologies. In deter-
mining the scope of this research, it is equally important to determine what is not included.

Although space mapping and machine learning represent a spectrum of mapping solutions with
contrasting methodologies, this study will not encompass a purely machine learning-based approach to
the mapping problem. While such an inclusion could provide a broader perspective, it would diverge
significantly from the core principles of space mapping, potentially complicating direct comparisons.
Therefore, the scope of this research is limited to methodologies that incorporate the core principles of
space mapping, either as a standalone method or through minor adjustments that fall within its natural
capabilities such as active learning. This deliberate limitation to space mapping-focused methodologies
gives space for a thorough overview of the various integration challenge that arise. Another limitation
of this research is to limit trajectory mapping to 2D cases only. This simplification aids in result analysis,
visualisation, and understanding.

The subsequent section will break down these challenges, providing an overview of the complexi-
ties of merging traditional space mapping with advanced machine learning techniques. The following
section continues with developing a methodology to help answer the main research questions

3.2. Integration challenges
As stated before, integrating space mapping and machine learning has tremendous potential to improve
surrogate based optimisation. When thinking about possible implementations, an ideal solution would
harness the power of seq2seq models and their ability to make complex relations, and the low data
requirement of space mapping methods. To get a better grip on the scope of the problem, the following
comparison can be made:

3.2. Integration challenges 29

Table 3.1: Comparison of Space Mapping and Seq2Seq Machine Learning Networks

Feature Space Mapping (SM) Machine Learning (ML) -
Seq2Seq Networks

Objective Tailor-made solution specific to
problem

Generalised model for varying prob-
lems within scope

High-Fidelity Data
Requirement

Minimal, only generated when
needed

Extensive; large datasets required
beforehand

Adaptability None, only valid for the specific de-
sign point

High, general model

Accuracy High within scope, low outside out-
side of scope.

Medium-High data point is similar
to training set

Learning Strategy Gradient based, single data points Batch based, stochastic gradient de-
scent

Applicability to se-
quence based data

Medium, possible through MPC
based methods

High, state of the art sequence based
models available

Reviewing Table 3.1 highlights a fundamental difference in approach. Space mapping is designed to be
precise for specific scenarios, creating tailor-made solutions that are highly accurate at certain points.
On the other hand, machine learning aims to be more versatile, building models that can apply broadly
across various scenarios.

In integrating space mapping and machine learning, the goal is to create a symbiotic approach that
benefits the strengths of each method, rather than forcing one to adapt beyond its intended capabilities.
Any attempt at combining these methods should therefore not go against each method’s fundamental
principles. With this in mind, a solution that favours both methods will be leaning more towards a tailor
made space mapping implementation as opposed to a more generalised machine learning implementa-
tion.

Space mapping is designed, and functions best when it’s fine-tuned with specific data points. This
does not naturally extend to multiple scenarios without significant alterations to its core mechanics. On
the other hand, machine learning can be more readily adapted.

Normally when a model is extensively trained on a small data set, it can suffer from overfitting.
This is where a model fits exactly to its training data but performs poorly on new data. In the context
of integrating with space mapping, this could instead be advantageous. The active learning mechanic,
introduced in subsection 2.4.5, could mimic space mapping’s strategy of tailoring models to fit precise
data points closely.

In an integrated setup, leveraging active learning allows machine learning to mesh with space map-
ping in an organic way. Still, in order to test if an implementation is satisfactory, the following condi-
tions for integration are defined:

1. Accuracy Improvement: The integrated method must demonstrate superior mapping perfor-
mance resulting in a reduced error compared to standalone methods.

2. Data Efficiency: The integrated method should minimise the need for extensive initial datasets,
and only gather new data when needed.

3. Robustness in implementation: The integrated method should provide reliable and consistent
mapping performance.

4. Flexibility: The integrated method should be flexible, allowing for straightforward adaptations
to different trajectory optimisation problems without significant model adaptations.

3.3. Space mapping problem formulation 30

To ensure that a hybrid space mapping-machine learning network effectively leverages the strengths of
both methods, these conditions will serve as guidelines for the development of new frameworks. Re-
garding specific measurable quantities, accuracy and robustness are easily quantifiable by looking at
the error metrics defined in Appendix B. The magnitude of the error correlates with accuracy, whereas
robustness correlates with spread in error for different conditions. This will be further discussed in
chapter 6. Data efficiency is also easily determined by looking at the amount of high-fidelity model
evaluations are required. Lastly, flexibility involves the model’s adaptability to new optimisation chal-
lenges, requiring both fine-tuning and modifications to suit different problems.

One aspect that is not taken into account is the computational load themapping functions themselves.
Machine learning networks are notorious for requiring a lot of computational power to train, however
it important to contextualise this within the landscape of the optimisation problem. Space mapping
is particularly useful when the high-fidelity model is significantly more computationally demanding
than the low-fidelity model, such as in computational fluid dynamics or complex flight simulators. The
resources utilised during mapping are generally overshadowed by the high costs associated with high-
fidelity evaluations. Although reducing computational overhead is beneficial, it is essential to balance
this with the accuracy and efficacy of the mapping process.

3.3. Space mapping problem formulation
Navigating the complexities of integrating space mapping and machine learning begins with a proper
problem formulation. This starts with defining the space mapping problem to which machine learning is
applied to. An important step is the parameterisation of control inputs. For this purpose, Hermite spline
interpolation provides a robust solution by enabling smooth transitions between specified control points.
A downside of regular spline interpolation is that it can be susceptible to overshooting in an attempt to
fit through all the control points:

Figure 3.1: Comparison between different spline interpolation methods for estimating a sampled reference signal.

For the same set of control points denoted in red (sampled from the reference control sequence), it can
clearly be seen that hermit spline interpolation is the superior way to reconstruct a sequence from a set
of point. Especially when the control points find themselves near the edge of the control space, hermit
interpolation limits the overshoot into infeasible ranges.

With the control parameterisation set, the space mapping problem can be introduced along side
which the various mapping functions will be bench marked. Referring to Equation 2.3.1, a space map-
ping problem can be formulated as an optimisation problem:

min J(u) (3.1)

with:

J(u) = ϵ(xref , xf) (3.2)

3.4. Test cases 31

Here ϵ represents the error between the reference trajectory (xref) and the high-fidelity trajectory (xf).
Note that xf is the high-fidelity trajectory which is acquired by simulating control u. Different methods
of estimating error can be used as introduced in Appendix B. Regardless of method, the goal of space
mapping is to reduce the error between a reference or target trajectory and the high-fidelity trajectory.

From this starting point, this research will explore two different approaches to address this mapping
problem. The first method focuses on an adaptation of the MMSA algorithm introduced in subsec-
tion 2.3.2, whereas the second method integrates machine learning networks to enhance the mapping
process. These will be discussed in the next chapter.

3.4. Test cases
In order to prove that a novel approach actually works as intended, it is essential to demonstrate sat-
isfactory performance in multiple scenarios. This section will introduce the different test cases which
will be used in this research to investigate the working of the MPC and machine learning methods.

While the primary focus of this research is on mapping optimal control sequences and trajectories,
it’s important to recognise that real-world scenarios can often exhibit limited variation in control ac-
tuation and flight profiles. This can reduce the complexity and diversity needed for a robust analysis.
Ideally, a control sequences with plenty of control actuation is used which yields a trajectory that reaches
into the non-linear part of the flight regime. It is in this region that simplified mapping architectures
struggle to accurately map trajectories. In turn, the following standard trajectories are introduced:

Test case 1: Isolated elevator deflection
For the first test case, constant thrust with varying elevator deflection has been chosen. The main reason
behind these control is to isolate the effect of the elevator on the aircraft’s trajectory. This setup highlight
the difference in pitch dynamics between the different models, and consequently shows that the network
is able to correct such differences:

Figure 3.2: Test control case 1. The elevators are deflect to 25 degrees, or about 70% of the maximum deflection allowed.
The thrust setting is fixed to 70%. The left plot shows the respective x-z trajectory of the low and high-fidelity model.

The plot reveals significant behavioural differences between the two models. The low-fidelity model,
potentially using less representative control gains, reacts differently compared to the high-fidelitymodel,
which incorporates more complex dynamics and does not assume a simplistic point mass model. This
results in less instantaneous pitch changes compared to the low-fidelity model. In the experimental

3.4. Test cases 32

setup, each aircraft model initiates at the same altitude, with a starting velocity of 240 m/s, which ap-
proximates the cruising speed of the reference Airbus A320, and a zero-degree flight path angle. These
settings are chosen to maintain both stability and relevance to typical flight operations. Operating at
cruise speed provides a stable, steady-state condition that serves as a realistic point of departure for
analysis. At this speed, even minor deviations in control inputs can shift the aircraft into non-linear per-
formance regions, offering an ideal scenario for testing the robustness and efficacy of various mapping
strategies. Furthermore, it is important to note that both models start in untrimmed conditions. Starting
each test case from an untrimmed state is crucial since the high-fidelity and low-fidelity models inher-
ently possess different trim points due to their distinct internal dynamics. Starting from these models’
individual trim conditions could introduce biases in the results, affecting the fairness and accuracy of
the comparisons. By beginning with both models untrimmed, the experiment ensures a controlled and
consistent baseline, allowing any observed differences in performance to be attributed directly to the
unique ways each model handles flight dynamics.

Test case 2: Isolated thrust variation
Conversely, the next case keeps the elevator deflection constant while varying thrust level. This isolates
the difference in thrust modelling used by the respective models:

Figure 3.3: Test control case 2. The elevators are kept at 0 degrees deflection. The thrust setting is varied between 20% and
80%, with an average of 50%. The left plot shows the respective x-z trajectory of the low and high-fidelity model.

Comparing to the first test case, the control steps for the thrust setting are increased in duration. Com-
pared to the elevator deflection, engines require some time to spool up, and time is required to have a
meaningful acceleration. Elevator inputs have a more immediate effect on the path of the aircraft, so to
compensate this, the step duration has increased. Again comparing to the first test case, this case has
significantly less features in the reference trajectory. However this is also a good test for the machine
learning networks ability to track straight lines and changes in velocity.

Test case 3: Combined controls 3-2-1-1 pattern
The last case combines elevator and thrust settings to investigate the combined pitch and acceleration
dynamics:

3.4. Test cases 33

Figure 3.4: Test control case 3. The elevator is excited using a 3-2-1-1 actuation pattern with constant thrust.

For this case a 3-2-1-1 signal has been chosen as it is a common test signal. This signal is chosen
due to its widespread use in control system evaluation, which facilitates bench-marking and compari-
son across different studies. This specific pattern provides a sequence of varying duration amplitudes
that challenges the system’s response mechanisms, making it ideal for testing the robustness and adapt-
ability of control algorithms. In this scenario, thrust remains constant, as variable engine thrust does
not realistically contribute to understanding the dynamic response, nor is it practical for rapid control
changes.

Test case 4: Combined controls varying sine wave input

Figure 3.5: Test control case 4. The elevator is varied using sine waves. Thrust is kept constant to isolate the most dominant
longitudinal effects.

The sinusoidal elevator deflection pattern tests the control optimiser’s ability to anticipate and adjust for
the recurring dynamic effects introduced by this oscillatory control input. By employing a sinusoidal

3.4. Test cases 34

signal, the setup not only challenges the system’s response to continuous changes but also its capacity
to foresee the effects of these changes over time. This is particularly important in ensuring the control
strategy is not merely reactive but proactive, optimising control actions based on predicted future states
rather than solely reacting to past and present states.

Combined, these test cases cover four very different points in the control space of both models, each
displaying different characteristics for the models to adapt to.

4
Mapping Function Implementation

This chapter delves into the practical implementation of the MPC and machine learning methods, pro-
viding a structured approach to their integration and application. The initial sections will outline the
specific implementations of MPC and machine learning models, discussing the unique configurations
and considerations for each approach. Following the detailed introduction of these implementations,
the chapter transitions into a focused case study on machine learning robustness. This case study ex-
amines the robustness of the machine learning implementation through the lens of one of the test cases,
highlighting the challenges associated with prediction variance and reliable predictive performance.

4.1. MPC mapping function
When adapting the MMSA algorithm discussed earlier, it is important to review what the goal of the
implementation is. In this case, the goal is to adjust the control u to minimise the LCSS error. This
actually corresponds to a single iteration of the MMSA algorithm, or a single pass through the reflexive
layer. The reason why only this layer is chosen, and not the whole MMSA algorithm is to restrict the
scope of this research, and focus on the mapping performance only. Effectively, this approach will serve
as a benchmark to which the machine learning approach is compared to. The fundamental operation
of MPC involves two horizons, the steering- and planning-window. These horizons are used in the
following step wise process:

• Model fitting: The first step in a typical MPC iteration step is the model fitting, where a predictor
model is locally fitted with the high-fidelity model. This stage is crucial for ensuring that the
MPC’s predictions accurately reflect the dynamics of the system. For this implementation, fitting
is done over the steering window.

• Manoeuvre planning: Following the local fitting in the previous step, the next stage involves
solving control optimisation using the fitted predictor model to steer themodel along the reference
track. This planning step is done for an extended planning window, not just over the steering
window. This is an essential concept, as this allows the algorithm to somewhat anticipate on
future movements.

• Model steering: Once the optimal controls are determined for the immediate planning window,
these controls are applied to the high-fidelity model for the duration of the steering window. An
important consideration here is the length of the steering window, as short windows are more
accurate, however require more subsequent optimisations. Long windows however might not be
accurate due to modelling differences between the predictor and high-fidelity model.

In pseudo-code, this becomes:

35

4.2. Mapping function: Machine Learning 36

Algorithm 2 Adapted Multi-Model Steering Algorithm (MMSA)
1: Initialize iteration counter niter ← 0
2: Solve planning problem to yield tracking trajectory ŷh on Tplanh and final time T
3: Set manoeuvre start: Tsteer = Ttrack = T0, l = 0, p0 = p∗

4: for i = 0 to number of segments do
5: Set interval initial conditions x0
6: for k = 0 to number of control update iterations do
7: locally fit low-fidelity model parameters p(opt, segment)
8: Solve model predictive tracking problem on the tracking horizon to yield controls
u(opt, segment)

9: Project controls onto global control grid from Tstart to Tsteer
10: Forward simulate using the high-fidelity model with controls u(opt, segment) to yield

x(opt, segment)
11: end for
12: Project outputs x(opt, segment) from Tstart to Tsteer onto global trajectory grid
13: Increment update counter: l = l + 1
14: Local parameter correction yields new parameter estimate pl
15: end for
16: Evaluate tracking error: e =

∫ Ttrack
T0
||ỹh − ỹs|| dt

A critical aspect of implementing MPC is the strategic balance between the steering window and the
planning horizon. This balance represents a trade-off between achieving short-term accuracy and main-
taining effective long-term planning capabilities. For instance, employing a long steering window
paired with a short planning horizon can enhance the accuracy of the predictor model due to the avail-
ability of abundant fitting data. However, the drawback of this configuration is that only a relatively
short-term planning problem is addressed, which might not adequately account for future state require-
ments.

Conversely, a shorter steering window combined with a longer planning horizon may result in a
less accurate predictor model due to limited data for fitting. Yet, this setup can be advantageous for
manoeuvre planning because it allows the MPC to consider a larger portion of the reference trajec-
tory, potentially enhancing the control strategy’s responsiveness to changes. The downside is that the
relevance of the computed manoeuvre decreases over time as the certainty of maintaining accuracy
diminishes the further out the plan extends.

Additionally, the quality of model fitting and the realism of the reference trajectory play significant
roles in determining the overall efficacy of the MPC algorithm.

4.2. Mapping function: Machine Learning
The machine learning-based approach closely follows the principles of trust-region based ASM, which
in turn is adapted to leverage the sequential data processing capabilities of machine learning. This adap-
tation incorporates the PKI-D architecture, as detailed in Figure 2.3.3, combining sparse evaluations
typical of ASM with the robust predictive capacity of PKI-D. The PKI-D model employs a machine
learning network to refine the output of a low-fidelity model, enhancing its approximation to the high-
fidelity model. This refined model is then utilised within an aggressive space mapping framework to
optimise control sequences for the high-fidelity model. This approach harnesses the strengths of both
machine learning and space mapping techniques, aiming to achieve high accuracy in control mapping
with minimal high-fidelity evaluations. The flowchart below shows how this process works:

4.2. Mapping function: Machine Learning 37

Figure 4.1: Process diagram of the hybrid trust-region ASM / PKI-D architecture.

In the proposed machine learning-based space mapping framework above, active learning plays an
important role, particularly in addressing the initial need for training data. Machine learning networks
are notorious for requiring large data sets to base its predictions on. By using active learning, the
network can be initially trained on a minimal dataset, precisely tailored to closely approximate the high-
fidelity model within a localised space around the initial control sequence. Later during the optimisation
process, the network can be further refined by adding additional data points. This approach leverages the
strengths of machine learning to approximate any function, adapted to the principles of space mapping.
A few points to note is that in this study, the upper left block containing control optimisation is replaced
with the test cases introduced in the previous chapter. Furthermore, mapping error evaluation can be
done with any of the methods employed in Appendix B.

During each iteration of the ASM process, the model employs active learning to incorporate new
data points to refine the network’s prediction outside of the initial data set, allowing it to adapt and
maintain accuracy as the control sequence evolves. Such an approach aligns with space mapping prin-
ciples, which prioritises reducing high-fidelity evaluations to the bare minimum. Nonetheless an initial
data set is required for the network to train on. The main idea here is that this hybrid ASM - machine
learning approach is able to outperform conventional mapping techniques in terms of data requirement,
even with the initial high-fidelity simulations required to train the model. Next, each step in Figure 4.1
will be discussed in more detail.

4.2.1. Data set generation
The generation of an initial dataset is a critical element in machine learning applications, especially
in specialised scenarios such as this study. As outlined in section 3.3, the parameterisation of control
sequences is achieved using control points and Hermite splines, which fundamentally support the de-
velopment of the initial dataset around a designated control sequence. An illustration of this process is
provided in Figure 4.2.

4.2. Mapping function: Machine Learning 38

Figure 4.2: Example of a randomly generated control sequence around a starting control sequence. The solid blue line
represents the reference control sequence, and the dashed blue line represent the limits of the random uniform distribution.

The new sample is fitted through red control points

In this implementation, new control points are generated using a uniform random distribution around
each reference control point to ensure a uniform spread within a controlled radius of the initial control
sequence. The utilisation of Hermite splines guarantees that the generated sequences adhere to speci-
fied boundaries, facilitating the creation of smooth and realistic control trajectories. These trajectories
subsequently serve to simulate the low- and high-fidelity models, providing the necessary paired data
for the initial training of the machine learning model.

Unlike conventional machine learning applications that often segregate datasets into training, vali-
dation, and testing sets to evaluate model performance, this study adopts a different approach. Because
of the high costs associated with generating high-fidelity simulations, it is impractical to allocate sep-
arate datasets for validation and testing. Consequently, the network’s performance is evaluated solely
based on its training on an initial dataset and its adaptation during a predetermined number of iterations.
This methodology aligns with the primary goal of space mapping to minimise high-fidelity evaluations,
ensuring that every data point used directly contributes to the optimisation process without the need for
external validation.

4.2.2. PKI-D model implementation
As mentioned in section 4.2, this research focuses on implementing the PKI-D architecture to enhance
a low-fidelity model with the advanced capabilities of seq2seq networks. The choice of PKI-D archi-
tecture is motivated by its efficient and strategic use of training data, the smooth integration of seq2seq
networks, and the effective utilisation of all available data.

Processing all high-fidelity data upfront allows the machine learning training to proceed efficiently
without the need for repeated high-fidelity simulations. This method not only minimises computational
demands but also enables parallel processing, leveraging the full capabilities of modern machine learn-
ing frameworks. Additionally, the architecture accommodates the on-the-fly addition of data, similar
to active learning, which enhances data efficiency.

The PKI-D architecture fully utilises seq2seq models by providing them access to the entire trajec-
tory and control sequence at once. The following diagram illustrates the data flow within the PKI-D
setup, highlighting how low- and high-fidelity models interact through the machine learning network
during both training and application phases:

4.2. Mapping function: Machine Learning 39

Figure 4.3: Data flow within the PKI-D architecture, illustrating the interaction between the low- and high-fidelity models
through the machine learning network during training and usage.

Armedwith an initial trajectory from the low-fidelity model and the initial control sequence, the network
is tasked with predicting differences relative to the high-fidelity model. The integration of a low-fidelity
model as a starting point for predictions ensures that the network’s outputs remain grounded, minimising
potential deviations from actual conditions and enhancing predictive accuracy.

Here, the closed-loop implementation of the low-fidelity is used to prevent significant prediction
drift over time, which is essential for maintaining accuracy in long-term predictions. This configuration
is especially critical in the PKI-D architecture, where the initial ‘guess’ provided by the low-fidelity
model lays the groundwork for the machine learning network’s output.
A large advantage is that the network can be trained using a set of pre-computed high-fidelity trajectories
with their low-fidelity counterparts. These trajectories and control sequences can be crafted on the spot,
or retrieved from a pre-existing collection. This allows for flexible implementation later on. During
network inference, the control sequence and low-fidelity trajectory are used by the network to predict
the difference between the high- and low-fidelity model. This also plays to the strengths of network
architectures such as transformer networks, which are able to evaluate the whole control sequence and
low-fidelity trajectory at once to predict any differences.

4.2.3. Network selection
As discussed in section 2.4, sequence-based data can be managed through two principal methodologies
within neural networks, each developed to address specific challenges in sequence data processing:

• Recurrent approach: This approach ingests data step by step. Introduced as LSTM in sec-
tion 2.4, this study will make us Gated Recurrent Units (GRU) which are a streamlined version
of LSTMs. GRUs merge the forget and input gates into a single update gate. This simplifica-
tion reduces the number of parameters and computational steps, enhancing processing efficiency
while retaining the ability to model complex temporal dynamics.

• Parallel approach: Introduced as transformer networks, these networks processes a sequence
all at once using positional encoding to capture temporal dynamics, and attention networks to
capture important features in the input. In general, these networks excel in longer sequences with
complex dependencies between sequences.

The deliberate selection of GRU and Transformer models for this study highlights their contrasting
approaches to data processing—sequential versus parallel. By exploring these opposites, the study aims
to provide a nuanced perspective on the integration of machine learning techniques with space mapping,
assessing their efficacy in various operational scenarios where these underlying dynamics play a crucial
role.

4.3. Machine learning model robustness 40

4.2.4. Optimiser choice
The control optimiser also plays an important role in the space mapping algorithm, serving not only to
determine the next set of controls for the high-fidelity model but also to (indirectly) select the next data
points for the PKI-D network’s learning process. This function is crucial, especially considering the
limited initial dataset. For this study, a steepest gradient trust region optimiser was selected for several
reasons. Firstly, a steepest gradient descent optimiser is inherently designed to locate a local minimum,
which is sufficient for this study’s objective of demonstrating the integration of space mapping and
machine learning, rather than optimising for the best possible mapping function. Secondly, the trust
region approach is well-established for use with local surrogate models, where it adjusts the trust region
size based on the surrogate’s performance. If the surrogate model performs poorly, the trust region is
reduced, thereby preventing poor predictions. The implementation of this optimiser is guided by the
following pseudocode, which aligns with the operational flow depicted in Figure 4.1:

Algorithm 3 Steepest descent optimiser
1: Setmax_iter
2: Train model on initial dataset for n_training_epoch_init epochs
3: Calculate initial high-fidelity and difference model error for Uopt

4: while iteration count < max_iter do
5: Calculate gradient of error with respect to control points using the PKI-D model
6: Perform line search to find optimal step size α within trust region
7: Update control points using the optimal step size found
8: Run high-fidelity model with new control sequence
9: Add outputs from high-fidelity simulation to database
10: Compute new errors for the high-fidelity and PKI-D model
11: Calculate trust region performance ratio r based on actual and predicted reductions in error
12: if r ≥ 1.0 then
13: Increase size by 10%
14: else if 1.0 > r > 0.5 then
15: Keep size unchanged
16: else
17: Reduce size by 10%
18: end if
19: if r ≤ 0.5 then
20: Retrain network if the
21: end if
22: Constrain trust region size within predefined minimum and maximum bounds
23: Increment iteration count
24: end while

The approach above closely follows the process flow in Figure 4.1. It must be emphasised that the
optimiser plays a crucial role in the mapping process, however in the interest of limiting the scope of
this research, only a single optimiser will be used. Furthermore, it will be treated as a static object for
the network to interact with. As a reminder, the focus of this research is on exploring active learning in
the context of space mapping.

4.3. Machine learning model robustness
The implementation of machine learning models described in section 3.3 utilises networks trained on
small datasets, as dictated by space mapping methodology. This section focuses on the robustness of
these networks, a critical quality ensuring theymaintain stable performance despite input data variations.

4.3. Machine learning model robustness 41

This becomes even more challenging due to this study’s small data sets. While robustness is key to
network and algorithm efficacy, this discussion will not explore specific influencing parameters but
instead provide context to this study’s approach.

Robustness in machine learning is defined as the model’s ability to deliver consistent performance
irrespective of input- or training data changes. This is essential for systems employing finite difference
gradient calculations, where consistent outputs are crucial for ensuring both accuracy and reliability. A
robust model prevents minor input perturbations from causing significant output errors:

Machine learning model robustness denotes the capacity of a model to sustain stable pre-
dictive performance in the face of variations and changes in the input data[50].

Achieving robustness typically requires extensive datasets, guided by principles like the “rule of 10” or
the more stringent “rule of 50,” which recommend that the number of samples be up to 50 times the
number of trainable parameters. While typically applied to image based networks, the same order of
magnitude is expected for sequence based networks. For networks with 300,000 to 600,000 parameters,
this would require a prohibitively large number of high-fidelity model evaluations [51]. This study
however shifts from general robustness to focus on stability only for very specific cases. This greatly
reduces the need for vast datasets, emphasising only the most relevant training samples.

Variability, a key aspect of robustness, refers to howmuch a model’s performance or output changes
under different conditions. To introduce variability and combat overfitting, techniques such as dropout
are employed during network training. Dropout randomly deactivates a subset of neurons, encourag-
ing the network to develop redundant pathways and enhance generalisation. Although disabled during
inference, the stochastic nature of neuron deactivation during training influences overall network per-
formance, especially when trained on smaller datasets.

To achieve repeatable results, fixed random seeds are often used. This method stabilises the inherent
randomness in algorithmic training, ensuring reproducible outcomes by eliminating variations in oper-
ations like data shuffling and dropout between runs. The influence of randomness is less pronounced
in larger datasets where the volume of data averages out specific behaviours and reduces fluctuations,
diminishing the impact of random variability [52].

While robustness and variability are not the primary focus of this study, they remain crucial consid-
erations in any discussion about machine learning and space mapping applications. The next section
will present a case study from the first test case to illustrate how random variability can affect model
performance and robustness. For context, the following diagram outlines the major components of the
machine learning aspect of the study:

Figure 4.4: Schematic overview of influential components in the machine learning mapping process

where this study mostly focuses on the network type and relation between initial and iterative training,
this case study will briefly cover the first block of the mapping process chain, as well as the error type

4.3. Machine learning model robustness 42

in the second block. The specific implementation of the machine learning model as well as data set
generation will be discussed in chapter 6.

4.3.1. Initial data set robustness
As discussed in the previous sections, random variability is a major factor when dealing with small data
sets. Where most datasets’ size are roughly on the same order as the number of trainable parameters,
this study will make use of extremely small datasets on the order of 10-20 samples. This makes the
model vulnerable for variations between random seeds, as shown in:

Figure 4.5: Visualisation of the effect of different random seeds on the prediction of the machine learning network (dotted
lines) for the reference case controls after initial training.

The dashed lines represent the network’s prediction after a fixed amount of initial training for different
random seeds, while they generally all follow the same trend, clearly there is quite some variation
between. Ideally the prediction for different random seeds is consistent, meaning that any optimisation
based on these results is not dependent on picking the right random seed. To quantify the effect of the
random seed, the following graph can be used:

4.3. Machine learning model robustness 43

Figure 4.6: Variation in prediction performance as a function of sample size and training iteration (n).These graphs
illustrates how the standard deviation in predictions changes with different numbers of initial samples and training iterations.
Each data point represents the aggregate outcome from eight distinct random seeds and an initial data perturbation level of

0.15 using a transformer model as predictor network.

The left graph illustrates the average prediction variation at each network time step, highlighting predic-
tion stability and the variability among different random seeds for the same input. There is no clear trend
relating initial training iterations and sample size, though generally, higher training iterations result in
lower prediction variability. However, networks initially trained for n = 400 iterations sometimes show
even lower variability, except at very low sample counts, illustrating the complexities in preparing the
initial dataset.

The right graph shows the average normalised DTW error relative to the number of sequences.
Notably, higher training iterations do not guarantee better performance with a low number of samples.
Furthermore, a significant spike in prediction error occurs across all training iterations, confirming
that these results, averaged over multiple seeds, reflect consistent patterns rather than anomalies from
individual seeds.

In summary, Figure 4.6 shows that while initial training iterations and sample size significantly
affect prediction accuracy and variability, the relationships are complex. The impact of dataset pertur-
bation is explored in the subsequent graph.

4.3. Machine learning model robustness 44

Figure 4.7: Variation in prediction performance as a function of data set perturbation and training iteration (n). This graph
shows the impact of initial sample size perturbation for a fixed number of samples. Each data point represents the aggregate

outcome from eight distinct random seeds using a transformer model as predictor network.

Continuing from previous analyses, the left graph in Figure 4.7 emphasises the role of initial training
iterations in managing network variance. Like Figure 4.6, identifying a clear trend in training iterations
is difficult suggesting that multiple factors influence outcomes. A more defined trend appears in the
impact of dataset perturbation on average prediction error, where excessive training iterations degrade
performance at higher perturbation levels. This may indicate that a network that is over-trained on large
variations struggles with finer details. The unclear trends in other graphs highlight an area for future
research.

4.3.2. Error choice robustness
Regarding model robustness, this case study also investigates the influence of error method on overall
convergence. Especially for long sequences and when values quickly diverge, establishing a fundamen-
tal understanding of how the error estimation method influences the optimiser is crucial. In Appendix B,
fourmethods for establishing errors are presented. Regarding the LCSSmethod, special attention should
be given to setting the correct threshold value to include the whole domain of the problem. The effect
of a threshold value that is too small can be seen as in the following graph:

4.3. Machine learning model robustness 45

Figure 4.8: Influence of LCSS threshold on optimiser convergence. For this graph, a steepest gradient optimiser using a
transformer network has been used.

As can be seen, the optimiser gets stuck in a local minimum with a 0 gradient when the threshold is too
restrictive. As control perturbations introduced by the finite difference method change the trajectory, if
the change happens outside the threshold this is not recorded leading to a zero gradient.

Other methods such a ELS, DTW, and DFD do not have this limitation as these methods don’t have
to deal with thresholds. Their respective impact on convergence can be found in the following graph:

Figure 4.9: High-fidelity trajectories resulting from control optimisation using various error calculation methods.

4.3. Machine learning model robustness 46

Table 4.1: Optimisation results for different error calculation results, recalculated using each respective method

Method used during optimisation ELS (1e3 m) DTW (1e3 m) DFD (m) LCSS error (-)
ELS 310.7 182.3 949.1 0.81
LCSS 334.8 101.6 1160.5 0.47
DTW 441.6 144.5 1442.3 0.58
DFD 457.7 165.7 1438.4 0.59

The analysis of the error calculations in Table 4.1 and Figure 4.9 demonstrates that the LCSS error
method is a suitable error estimation method for optimisation. However this does highlight another
vulnerability in the mapping chain as incorrect settings can still lead to subpar performance. Regard-
ing the other error estimation methods, this highlight another point of attention, mainly that optimiser
performance should not be judged based on error magnitude alone. In the table above, the ELS method
achieves the lowest error for both ELS and DFD error, while visually producing the worst results out of
the different error methods. This contradiction between numerical values and visual interpretation will
be covered in more detail in future section.

To summarise the robustness case study, robustness is a key aspect in performance and requires
careful consideration. Enhancing robustness requires a balance between the number of samples, initial
training iterations, and the degree of sample perturbation. Moreover, choosing the right error method-
ology and setting appropriate threshold values is crucial for improving robustness and significantly
affects the outcomes of the optimisation. While this analysis is not comprehensive, it highlights the
complexities of integrating space mapping with machine learning, which extend beyond the scope of
this study.

5
Model Predictive Control Based Space
Mapping

This chapter will present the results of the sensitivity study of the MPC based approach. As explained in
chapter 5, a crucial aspect of MPC is the balance between short-term accuracy and long-term planning.
This balance will be examined by varying the following parameters:

• Number of segments: In MPC, the entire manoeuvre horizon is typically divided into equal-
length segments, each optimised sequentially. Adjusting the number of segments directly affects
the length of each segment, therebymodifying the duration of the steeringwindow. This alteration
allows exploration of how finer or coarser segmentation impact the controller’s responsiveness
and planning precision.

• Planning horizon: The length of the planning horizon is critical in determining the extent to
which future states influence current decisions. By varying this parameter, the implications of
different horizon lengths on the effectiveness of the control strategy are examined.

By examining these parameters introduced above, this sensitivity study aims to uncover the dominant
factors involved in MPC mapping, laying the groundwork for the eventual comparison with machine
learning models. Before diving into the sensitivity study, the results of test case 3 and 4 are highlighted,
the results of test case 1 and 2 are covered in section C.1:

47

48

Figure 5.1: MPC optimised high-fidelity trajectory for test case 1. Furthermore, n = 45 segments were used, and a
planning window of T = 3s and a manoeuvre duration of 30 seconds.

Immediately notable is that overall, the MPC mapping function is able to track the reference trajectory
to a very high degree. The consecutive control impulses are well preserved in the mapped trajectory,
only deviating by a small amount. The choice of untrimmed models is also visible here. Immediately
from the start, the controls are altered as they do not have to start from a predefined trim point.

Table 5.1: Error comparison between the initial and MPC optimised high-fidelity trajectory error compared to the reference
trajectory for the first test case. For the LCSS error, a spatial threshold of 100 meter was used, and a temporal threshold of

30 steps were used, which is equivalent to 1 second.

Error Type Initial error Optimised error Percentage decrease w.r.t initial
DTW error (1e3 m) 175.2 121.6 30.6%
DFD (leash length) error (m) 1485.2 1445.6 2.7%
LCSS (-) 0.58 0.57 2.8%
ELS (1e3 m) 487.2 463.0 5.0%

Looking at the performance metrics in Table 5.1 only the DTW error seems to decrease by a signifi-
cant amount, matching the visual difference between the initial and optimised trajectory. This can be
explained by taking a look at what the dominating factory in the trajectory is and how that effects each
error method. Starting with DTW and ELS, these are both ways to tracks cumulative error, however
DTW decreased over twice as much, implying that temporal differences have quite an impact on trajec-
tory matching. Furthermore, the DFD error has also decreased less then one would expect looking at
the flight path. This reveals a deceptive trait, mainly that the biggest error is in covered distance and not
in vertical distance. The low-fidelity model is able to reach much further than the high-fidelity model.
This can be attributed to modelling differences. Lastly, the LCSS suffers from a slightly different prob-
lem, mainly the fact of boundary tuning. For the first part, the two trajectories are within the distance
threshold. Later on however, the difference in covered distances consistently falls outside the allowable
threshold, even though it is at least visually better aligned. Moving on to the fourth test case:

49

Figure 5.2: MPC optimised high-fidelity trajectory for test case 1. Furthermore, n = 45 segments were used, and a
planning window of T = 3s and a manoeuvre duration of 30 seconds.

Table 5.2: Error comparison between the initial and MPC optimised high-fidelity trajectory error compared to the reference
trajectory for the first test case. For the LCSS error, a spatial threshold of 100 meter, and a temporal threshold of 30 steps

which is equivalent to 1 second were used.

Error Type Initial error Optimised error Percentage decrease w.r.t initial
DTW error (1e3 m) 319.4 183.7 42.5%
DFD (leash length) error (m) 1714.2 1524.0 11.1%
LCSS (-) 0.81 0.78 3.6%
ELS (1e3 m) 587.7 504.4 14.2%

Looking at the results above for the combination of number of segments, some of the weak points
of the MPC method are shown. The sine wave input causes large vertical variations which requires
anticipation not only of the nearest hump, but also following humps. The repeating pattern highlights
the need for anticipation. An overshoot due to a combination of controls and initial conditions lead to a
phase offset compared to the reference trajectory which is not compensated later on. A similar trend is
observed in Figure C.1. That is not to say that the MPC method cannot be used in increasingly complex
trajectories, only that careful tuning the MPC method is required as will be done in the coming section.
Regarding the error metrics, a similar story unfolds compared to the previous case. Obviously the DTW
error decreases significantly, however the LCSS error decreases by a much smaller amount. Initially
the model seems to fit well, however later on it only coincides with the reference trajectory a handful
of times which contributes to a reduction in score.

To summarise the result of the initial MPC mapping results, the MPC method is quite able to cor-
rectly steer the high-fidelity model along the reference trajectories. However, in cases where anticipa-
tion is required such as in test case 4, this method initially lacks. Furthermore, the resulting error needs
to be critically evaluated, keeping in mind the way error is calculated, low- and high-fidelity model
differences, and which threshold values are used. The coming sections will investigate two important
MPCmetrics, those being the number of segments and planning horizon time to gather a complete view
of the MPC method.

5.1. Number of segments 50

5.1. Number of segments
As stated before, the number of steering segments is an important factor in theMPC basedmethods. The
effect that this has is two-fold, the high-fidelity model is steered for a shorter time, and the low-fidelity
model is also fitted for a shorter time. Varying the amount of segments for each reference case yields
the following plots:

Test case 1

Figure 5.3: Effect of varying the number of segments for a fixed planning time of 3 seconds. Each respective error is
normalised using the mean value of that error type.

Table 5.3: Comparison between the different plot regression lines statistical values for the relation between number of
segments and error for test case 1

Error Type Average value R2 p-value
DTW error (1e3) 145.5 0.000 0.958
DFD error (leash length)(m) 1363.9 0.006 0.837
LCSS (-) 0.61 0.156 0.293
ELS (1e3) 412.1 0.001 0.940

When evaluating the results of regression analysis such as in Figure 5.3, two statistical measures are
crucial: the R2 value and the p-value. The R2 value provides insight into how much of the variability
in the dependent variable can be explained by the independent variables used in the model. A higher
value of R2 such as 0.95 indicates a model that effectively captures the underlying patterns in the data,
whereas a lower R2 such as 0.1 suggests a poor fit. The p-value, on the other hand, tests the statistical
significance of the observed relationships, helping to distinguish effects that are likely true from those
that might occur simply by chance or inherent model variation. Here a high p-value suggest no statistical
significance, whereas a low p-value suggest low chance that the acquired results are the result of random
variation.

Looking at these metrics in Table 5.3, none of the error metrics indicate a significant relation be-
tween number of segments and mapping performance. This is further reinforced by looking at the actual
error values in the plot, where both for high and low number of segments good results can be achieved.
Looking at the DTW error specifically, this parameter sees the largest variance, which is accompanied

5.1. Number of segments 51

by the lowestR2 value. To summarise these results, the MPCmethod is quite able to be tuned to a good
fit at multiple settings as can be seen for the n=30 line in Figure 5.3. However finding a good segments
can be a matter of trail and error for this particular case as there is no clear trend in any parameter to
base adjustments on.

Test case 3

Figure 5.4: Effect of varying the number of segments for a fixed planning time of 3 seconds.

Table 5.4: Comparison between the different plot regression lines statistical values for the relation between number of
segments and error for test case 3.

Error Type Average value R2 p-value
DTW error (1e3 m) 107.8 0.271 0.151
DFD error (leash length)(m) 1293.7 0.313 0.117
LCSS (-) 0.54 0.529 0.026
ELS (1e3 m) 385.8 0.391 0.072

When looking at the third test case, a stark contrast can be drawn compared to the previous test cases.
Due to the increased complexity of the control inputs and the resulting trajectory, increasing the amount
of segments has a slightly positive effect on reducing the error. However, it must be noted that the
amount of error reduction percentage wise is small as indicated by the y-axis. Compared to the first
test case, there are no large variations in error noted for the different number of segments. Looking at
the statistical metrics, the combination of high R2 values combined with a low p-value suggests that in
this case there is a relation between the number of segments. This relation however is relatively weak
as can be seen in the plot. At most, the error drops a few percentages, and due to random variability,
the same situation as in test-case 1 arises where multiple numbers of segments are able to provide good
results. A similar observation is made for test case 4 which can be found in section C.2.

Summarising the main findings above reveals that overall the MPCmethod is quite able to optimise
the high-fidelity model, however it is not quite able to deal with situations where large amounts of
anticipation is required such as in test case 1. Furthermore, no significant relation exists between number
of segments and optimiser performance, tuning the amount of segments is therefor more a case of trail
and error instead of an informed relation. This could be explained by the fact that using more but shorter

5.2. Planning horizon 52

segments leads to more incremental updates, but each update if fuelled by an predictor model that is
fitted to a shorter sequence which means an inferior fit. However because the segment is also short,
the impact of a bad fit is mitigated as only a small portion of the generated controls are executed. On
the other hand, using fewer but longer segments yields a better fit, however now more of the generated
control sequence is executed by the high-fidelity model. As the predictor model is loses accuracy for
long sequence, this partially cancels out the increased accuracy of the initial fit. All in all these effects
seem to cancel out over the duration of the total sequence leading to a roughly equal fit.

5.2. Planning horizon
Previous analysis has focused on a constant planning horizon or fixed ratio for varying amount of seg-
ments. This part will dive into the effect of varying the planning horizon duration.

Test case 3

Figure 5.5: Effect of varying planning horizon duration for a fixed number of 45 segments and a manoeuvre duration of 30
seconds.

Table 5.5: Comparison between the different plot regression lines statistical values for the relation between planning
horizon and error for test case 3

Error Type Average value R2 p-value
DTW (1e3 m) 119.7 0.355 0.1191
DFD (leash length)(m) 1313.5 0.107 0.4282
LCSS (-) 0.524 0.038 0.6427
ELS (1e3 m) 394.7 0.021 0.7307

Surprisingly, increasing the planning horizon yields to an overall worse fit. This can partially be ex-
plained by how the MPC optimiser functions. If it is not able to find an improved set of controls, it
sticks to the starting controls, which explains that the optimised trajectory initially does not deviate
from the initial high-fidelity trajectory. Additionally, the increased planning horizon might actually be
a detrimental factor because of the fact that the predictor model looses accuracy over the course of the
planning segment. Even if the model is refitted for each segment. This means that the newly found
controls for long planning horizons are optimised for a model that in actuality does not capture the

5.2. Planning horizon 53

high-fidelity. By prioritising long term planning by increasing the planning horizon, the whole control
sequence suffers.

In general, the optimiser is able to generate the best results for a modest planning horizon, where
moving beyond a certain point yields worse results which resembles test case 2 found in the appendix.
Looking at Table 5.5, no clear trend can be established, except for the DTW error with a high data fit
and high statistical significance (low P-value). The trend line for the LCSS error remaining constant
can be explained by the fact that all trajectories are within the spatial threshold.

Test case 4

Figure 5.6: Effect of varying planning horizon duration for a fixed number of 60 segments and a manoeuvre duration of 30
seconds.

Table 5.6: Comparison between the different plot regression lines statistical values for the relation between planning
horizon and error test case 4

Error Type Average value R2 p-value
DTW error (1e3 m) 146.4 0.503 0.0488
DFD error (leash length)(m) 1322.7 0.882 0.0005
LCSS (-) 0.66 0.115 0.411
ELS (1e3 m) 400.7 0.896 0.0004

Regarding the last test casewhichwas designed to test anticipatory performance, increasing the planning
horizon seems to have a favourable effect on model fit. Especially the LCSS and DTW error seem to
decrease the most, suggesting a better form fit for a higher planning horizon. This is also confirmed by
the statistical relationswith a highmodel fit parameterR2 and a very low p-value. The trajectory forT =
6s represents the point where further increases in planning horizons yields no improved results. Beyond
this point the predictor model is not accurate enough to generate useful results. Another observation is
that the longer planning horizon trajectories seem to converge to an average of the reference, and are
less willing to locally adapt to altitude variations. For a mix of short term fit and long term anticipation,
a sweet-spot around T = 2s and T = 4s is found.

Summarising the main results in the sensitivity study above reveals that the MPC method is a solid
approach for control optimisation of high-fidelity models. Statistical analysis reveals that planning hori-

5.2. Planning horizon 54

zon duration has a significant impact in mapping performance especially when anticipatory behaviour
is required. Low planning horizons are favourable in most situations, whereas in cases where anticipa-
tion is required, a longer planning horizon duration is better. Again it is crucial to critically review the
problem on a case-by-case basis as there is no clear cut relation.

6
Sequence-to-Sequence Network
Based Space mapping

The purpose of this section is to investigate the key dynamics to integrating machine learning with
space mapping techniques. The analysis is organised around the sub-questions outlined in section 3.1
to help guide answering the main research question. The analysis start with sub-question a, focusing
on determining which type of network is most suitable for hybrid space mapping-machine learning
implementations. This section introduces results for each test case, setting the stage for detailed com-
parisons. Following the comparison of different network types, the study proceeds to sub-question b,
exploring the extent to which active learning affects the optimisation results. This examination is cru-
cial for understanding how iterative retraining impacts the model’s adaptability and accuracy, thereby
informing the practical deployment of the hybrid modelling approach. With a thorough understanding
of both the optimal network architecture and the efficacy of active learning, the machine learning based
implementation can be compared to the MPC based method, thereby answering sub-question c.

6.1. Comparing network types
Starting with the comparison between different network types, a few performance metrics are important
to keep inmind. As discussed in section 4.3, due to the extremely small sample size themachine learning
implementation is vulnerable for random variations between different pseudo-random seeds. In order
to effectively gauge the performance of a network it is therefor key to consider the average prediction,
as well as the spread in prediction for different random seeds. Combining these two parameters tell a
lot about a networks ability to generate correct results through the average, and consistency through
training. This is reminiscent of the difference between precision and accuracy, adapted from 1:

1https://wp.stolaf.edu/it/gis-precision-accuracy/, accessed 04/07/2024

55

https://wp.stolaf.edu/it/gis-precision-accuracy/

6.1. Comparing network types 56

Figure 6.1: Difference between accuracy and precision.

In a similar way, a network can on average generate accurate estimations, but if they vary between
random seeds this still is not very useful. In the coming sections, precision will be visualised as a 95%
confidence interval around a certainmean. Relating this to the graph above, themean error will represent
accuracy, whereas the magnitude of the variance will represent precision, where a low variance implies
high precision.

Network settings
In preparation for the upcoming sensitivity studies, specific network settings were established to ensure
stable and repeatable results. The primary goal in configuring the network was not to optimise it for peak
performance in trajectory mapping, but rather to establish a consistent baseline suitable for investigating
the integration of machine learning with space mapping techniques. Consequently, this approach has
dictated the selection of a fixed network configuration that supports reliable experimentation. This
rationale also underpins the decision to forego a hyper-parameter tuning study, which, while common
in machine learning applications aimed at maximising model performance, would not align with the
exploratory and demonstrative nature of this project. The chosen configuration allows the focus to
be put on demonstrating the potential and challenges of integrating machine learning within the space
mapping framework without the variability introduced by extensive parameter optimisation:

Table 6.1: Overview of network parameters used during this research

Network parameter GRU Transformer
Initial training epochs 400
Retraining epochs 80
Number of control points 30
Hidden dimension size 128
number of layers 3
dropout ratio 0.05
number of initial samples 10
Maximum number of optimisation steps 20
Sample perturbation 0.15
number of attention heads - 8
Trajectory error calculation method DTW
Network learning rate 1.0e-03

Both the GRU and transformer networks are configured with the same number of layers and hidden

6.1. Comparing network types 57

dimensions. However, the transformer network incorporates additional complexity with approximately
50% more trainable parameters, totalling around 595 thousand compared to 295 thousand for the GRU
model. This increase is characteristic of transformer architectures, which inherently require more pa-
rameters due to the implementation of attention mechanisms. Unlike the GRU, the transformer also
utilises positional encoding, which introduces an additional dimension to the input. It’s important to
note that positional encoding does not contribute to the count of trainable parameters, as it provides a
fixed, non-trainable input addition. Furthermore, for the error determination method, DTWwas chosen
as it provides a good balance between robustness and being able to allow for some spatial and temporal
differences.

Test case 1
Starting with the first test case, the optimised controls and resulting trajectory are presented for varying
random seeds:

Figure 6.2: Machine learning optimised controls for test case 1. The controls optimised using a GRU network have a
variance (expressed as a percentage of the maximum control value) of 18.5% and 5.2% for the elevator and thrust setting

respectively. For the transformer network the variance is 19.5% and 5.4% respectively.

6.1. Comparing network types 58

Figure 6.3: Machine learning optimised high-fidelity trajectory for test case 1. For the GRU network, the x and z variance
is 15.9m and 33.9m respectively. For the transformer network the variance is 28.8m and 40.0m.

For the results above, the time history for both the x and z parameter are shown instead of the flight
path (or x-z path). This has been chosen to facilitate the visualisation of prediction spread. Taking
in the results above, the optimised high-fidelity trajectories are very similar in overall shape. This
similarity implies that on average both networks perform equally well, and that the control optimiser
does not appear to favour any one of the network’s prediction in particular. Where some differences
can be noticed is in the average variance in high-fidelity. The GRU-optimised trajectories yielded a
lower variance meaning more prediction stability. This average is however not reflected in the controls,
where both networks have equal variance.

Table 6.2: Optimised high-fidelity trajectory error metrics for test case 1. For the LCSS error, a spatial threshold of 100
meter, and a temporal threshold of 30 steps which is equivalent to 1 second were used.

(a) GRU network

Error Type Mean error
µ

STD σ

DTW (1e3 m) 163.4 20.3
DFD (leash-
length) (m)

1477.9 58.5

LCSS (-) 0.642 0.064
ELS (m) 462.2 15.6

(b) Transformer network

Error Type Mean error
µ

STD σ

DTW (1e3 m) 160.1 16.9
DFD (leash-
length) (m)

1451.5 63.2

LCSS (-) 0.64 0.057
ELS (m) 453.0 28.4

Looking at the calculated error metrics in Table 6.2, both the results and variance is consistent between
the transformer and gru network. Comparing the results to Table C.1 however, similar values can be
seen, even though the underlying trajectories are not similar. This again highlights the short coming
of the error calculation method and the complexity of the situation. Interpreting the trajectories on a
more qualitative base, a noticeable aspect is that the MPC method where it is able to tends to follow the
trajectory more closely. The machine learning approach however fits the general trajectory better. A
point of attention again is in this scenario, the x-distance contributes themost to the error. Themaximum
deviation in z-direction is roughly in the neighbourhood of 200meters, whereas themaximum z-distance
is about 1450m. This undoubtedly has a large impact on the control optimiser.

6.1. Comparing network types 59

Where the results above discuss the resulting high-fidelity trajectory using the different networks,
another aspect of assessing network performance is how well the networks themselves perform in their
role of approximating the high-fidelity model. This is done by looking at the average prediction error
and error variance for the optimised results:

Figure 6.4: Average prediction error and error variance of the GRU and transformer network for test case 1. The average
GRU prediction variance is 19.5m and 22.9m for x and z dimension respectively. The average transformer network variance

is 70.3m and 47.5m.

The figure above tells a much different story compared to the previous figures. Here it can clearly be
seen that the GRU network produces a much more consistent prediction and overall is more precise
and more accurate. This superior consistency likely explain the lower variance in the final optimisation
results. Another notable observation is that the GRU network steadily loses accuracy and precision over
the course of the prediction. This resonates with one of the weaknesses of recurrent neural networks,
where the hidden state memory is depleted too much for long prediction sequences. Furthermore, for
both networks, there seems to be an increase in predictive error after every major change in controls,
suggesting that the networks have a hard time accurately processing the immediate effects of control
inputs, and that only after a short bit that this is compensated.

6.1. Comparing network types 60

Test case 3

Figure 6.5: Machine learning optimised controls for test case 3. The controls optimised using a GRU network have a
variance (expressed as a percentage of the maximum control value) of 2.75% and 2.62% for the elevator and thrust setting

respectively. For the transformer network the variance is 7.77% and 4.52% respectively.

Figure 6.6: Machine learning optimised high-fidelity trajectory for test case 3. For the GRU network, the x and z variance
is 4.79m and 32.2m respectively. For the transformer network the variance is 12.1m and 17.5m.

6.1. Comparing network types 61

Table 6.3: Optimised high-fidelity trajectory error metrics for test case 3.

(a) GRU network

Error Type Mean error
µ

STD σ

DTW (1e3 m) 143.2 3.8
DFD (leash-
length) (m)

1525.0 13.5

LCSS (-) 0.585 0.001
ELS (m) 490.5 3.8

(b) Transformer network

Error Type Mean error
µ

STD σ

DTW (1e3 m) 142.0 11.0
DFD (leash-
length) (m)

1495.4 76.7

LCSS (-) 0.575 0.018
ELS (m) 475.7 28.5

For the third case, a different scenario can be seen. This test case features a more complex initial control
sequence and resulting trajectory. Surprisingly, the transformer network results in superior mapping
performance, both in terms of precision and average. This highlights one of the strengths of transformer
networks. Because they are able to consider the whole sequence at once, they are able to learn better
from complex repeating patterns. Looking at the reference MPC case, it can be seen that this trajectory
actually fits the general shape better, capturing more of the stepped decreases in altitude compared to the
machine learning models. This becomes even more apparent when the parameters are properly tuned
as can be seen in Figure 5.5 where the MPC optimiser was able to steer the high-fidelity model almost
perfectly along the reference trajectory

Figure 6.7: Average prediction error and error variance of the GRU and transformer network for test case 3. The average
GRU prediction variance is 9.96m and 11.9m for x and z dimension respectively. The average transformer network variance

is 39.3m and 12.7m.

Looking at the graph above, the difference in how sequence data is processed is highlighted. The GRU
network quickly loses prediction precision over the course of the manoeuvre, suggesting that it is less
capable in dealing with complex trajectories. The transformer network actually beats the GRU network,

6.2. Influence of active-learning & retraining 62

especially near the end of the trajectory. Notable is that the average error and variance stays relatively
constant in magnitude for the different test cases covered up until now. This suggest that trajectory
complexity is less of a factor in its predictive performance, and that other factors such as data set size
and training iterations are more dominant. Conversely, the GRU network seems to be fare better in
more constant trajectories

Summarising this segment of the sensitivity study reveals that the machine learning method is ca-
pable of optimising high-fidelity controls and trajectories to a reasonably satisfactory extent. However,
it often under performs compared to the MPC-based method when the latter is appropriately config-
ured. Notably, the machine learning approach excels in scenarios requiring anticipatory actions, where
it tends to outperform the MPC-based method.

In terms of network performance, the GRU network generally delivers better results in scenarios
characterised by infrequent control changes. Under these conditions, both the average prediction error
and the variance in prediction at each time step are significantly lower for the GRU network than for the
Transformer network. This stability in the GRU’s performance can be attributed to its design, which
effectively captures dependencies in time-series data with minimal updates, maintaining more stable
error profiles in scenarios with less dynamic control demands.

However, the GRU network’s prediction accuracy deteriorates over time, particularly in scenarios
involving complex control actions, as observed in test case 3. For the Transformer network, errors
are more uniformly distributed throughout the sequence, but both the average error and variability are
higher. This increased spread in variance for the Transformer network stems from its ability to attend to
any part of the input sequence equally, which can introduce greater overall variability in more complex
or varied control sequences, leading to less consistent optimisation outcomes.

6.2. Influence of active-learning & retraining
This section delves into the third research question, which seeks to understand how active learning can
be used to enhance the predictive accuracy and adaptability of machine learning networks within hybrid
space mapping systems. The investigation into active learning is driven by the necessity to reduce the
amount of data, while maintaining flexibility. In this context, the following section examines:

• Predictive Accuracy: How the number of retraining iteration influences the model’s ability to
predict new data points accurately, thereby reducing overall prediction errors as more data is
incorporated into the training process. This will be measured as the average error between the
high-fidelity trajectory and the predicted trajectory for the optimised controls.

• Adaptability: The capability of the model to adjust to new or evolving data scenarios, reflecting
its robustness and flexibility to handle real-world operational dynamics. Here the average error
and variance in error per iteration is key in uncovering how the network adapts as the optimisation
progresses

By comparison, the previous section focused mostly on the actual predicted physical trajectory, and the
impact of the networks on how their prediction changes. This section is more about general predictive
ability and how it changes over the course of the optimisation process and under varying number of
retraining iterations. By exploring these aspects, this section aims to provide insights into the effec-
tiveness of active learning strategies and their practical implications for machine learning networks in
complex mapping tasks.

Test case 1
Starting again with the first test case, the networks predictive ability is shown for multiple retraining
epochs(iterations):

6.2. Influence of active-learning & retraining 63

Figure 6.8: Influence of the number of retraining iterations on the predictive performance for the optimised controls for the
first test case. The shaded region represent the 95% confidence interval for 9 different random seeds.

In the accompanying graph, the average error across various error metrics is displayed for varying
retraining iterations, revealing a consistent trend: GRU networks generally outperform Transformer
networks, particularly with a moderate number of retraining iterations. A critical observation from
the analysis is the identification of an optimal range around 60 retraining iterations, where prediction
accuracy and precision are maximised. This finding is crucial as it illustrates the balance between
insufficient training, which results in underfitting, and excessive training, which leads to overfitting
and subsequently poorer performance.

The key takeaway from this data is that the number of retraining iterations plays a significant role
in the network’s predictive performance concerning the optimised controls. This investigation was cru-
cial to ensure that the optimised controls were not the result of random, inaccurate predictions. By
demonstrating that the network can achieve consistent and accurate predictions with low variance, it
substantiates the reliability of the optimisation results. It confirms that the optimiser effectively in-
tegrates the dynamics of the high-fidelity model into its calculations. Conversely, a high prediction
error would suggest that the resulting trajectory might have occurred by chance, indicating reliance on
an inadequate model approximation rather than a genuine understanding of the high-fidelity model’s
dynamics. Looking at the adaptive ability of the network next:

6.2. Influence of active-learning & retraining 64

Figure 6.9: Average prediction error of the networks at every iteration for multiple retraining iterations for the first test case.
The shaded region represent the 95% confidence interval for 9 different random seeds.

To accurately interpret the graph, it is important to understand its components. The left column dis-
plays the average prediction error at each iteration, indicating how effectively the network adapts to
new controls generated by the optimiser. Note that here, only the ELS is displayed, as this error type
represents the individual error at each time step the best. Initially, the error for n = 60 and n = 120
declines, suggesting that the network is actively learning and improving its ability to predict the control
outcomes. As the error begins to level out after several iterations, it signals a transition from active
learning to stabilisation, where the network is no longer improving significantly but continues to adapt
and correct itself in response to new controls.

The right column presents the average error and variance over the whole optimisation process for
different retraining iterations. This highlights the overall effect of the number of retraining iterations and
acts as a clarification of the left graph. An initial decrease in error affirms that increasing the number of
retraining iterations enhances predictive accuracy and precision. However, extending retraining beyond
a certain point appears to yield diminishing returns on predictive performance.

The combination of data from Figure 6.8 and Figure 6.9 suggests that for this case, the optimum re-
sults are obtained with 60 retraining iterations. This number represents a balance between the frequency
of retraining per optimisation step and the total number of steps taken until the optimiser achieves the
lowest error value. It is crucial to acknowledge that the optimisation landscape is dynamic, continuously
evolving as the network updates. This evolving landscape poses unique challenges, particularly in en-
suring consistent optimisation decisions. The use of a steepest gradient descent approach, which bases
its decisions solely on the current state of the optimisation landscape, helps navigate these challenges
by adapting to the immediate conditions without basing its predictions on outdated or inaccurate data.

6.2. Influence of active-learning & retraining 65

Test case 4

Figure 6.10: Influence of the number of retraining iterations on the predictive performance for the optimised controls for the
fourth test case. The shaded region represent the 95% confidence interval for 9 different random seeds.

The final test case highlight some of the complexity involving the decision on how many retraining
iterations to use. While initially the graph looks similar in shape compared to Figure 6.8, the average
error and variance decreases again, implying that multiple configurations are possible. As the displayed
results are an average of multiple runs, this rules out any one-off results. All in all, the results above
again highlight the out performance of GRU models in terms of average prediction and variance.

6.2. Influence of active-learning & retraining 66

Figure 6.11: Average prediction error of the networks at every iteration for multiple retraining iterations for the fourth test
case. The shaded region represent the 95% confidence interval for 9 different random seeds.

Looking at the prediction error evolution over the course of the optimisation process it is clear that re-
training is absolutely essential in achieving consistent performance. Recalling the initial high-fidelity
state (Figure 3.5), it can be seen that the initial state is quite different from the reference, most impor-
tantly they are out of phase near the end of the control sequence. This requires a significant change in
controls to compensate, which is falls far outside of the initial sample region the model was initially
trained on. Adapting to this change is crucial, which is why the higher number of retraining iterations
manage to score higher than almost no training.

Summarising this section; the results presented underscore the significance of active learning in enhanc-
ing the networks’ ability to adapt to new data points and control adjustments. Active learning is pivotal,
as evidenced by the increase in predictive error and error variance observed when networks operate
without ongoing training.

Notably, the optimal performance for both networks is typically achieved with a medium number of
retraining iterations, although this is influenced by the specific case and the dynamics of the optimisa-
tion process. The GRU networks generally outperform their transformer counterparts, which display a
higher sensitivity to the volume of training. This sensitivity in transformers necessitates more extensive
training to reach comparable levels of accuracy.

In practice, about 60 retraining iterations tend to yield the best results across various test scenarios.
However, this number is not a one-size-fits-all solution as can be seen inFigure D.10; it is dependent
upon the specific requirements and the evolving nature of the optimisation process. This highlights the
nuanced relationship between training frequency, network architecture, and control optimiser, which
collectively dictate the networks’ predictive ability

7
Results Analysis & Discussion

This section will review the primary outcomes of the sensitivity analysis to address the main research
question. It begins with a concise summary of the critical findings. Following this, the results will be
revisited to address the sub-questions systematically, progressively building towards the overarching
research question. The section will conclude with a comprehensive reflection on the integration of
space mapping techniques and a discussion on the limitations encountered during this research.

7.1. Results summary
In this study, two space mapping implementations were studied; a MPC based method, and a machine
learning based method using active learning. These methods represent two fundamental approaches to
mapping trajectories. These are sequential control optimisation of segments, and control optimisation
of the whole sequence at once. Naturally, this has large implication on the resulting controls. The results
presented in the previous chapters are summarised below:

MPC method
The analysis of the MPC method across four test cases demonstrates that, overall, MPC is well-suited
for control optimisation. However, it encounters limitations in scenarios requiring anticipation beyond
the set planning horizon, often resulting in trajectory overshoots, particularly in the first and last cases
examined. The influence of the number of segments, which impacts the low-fidelity predictor model’s
accuracy, does not exhibit a consistent relationship with overall mapping performance. However, cus-
tomising the model’s configuration on a case-by-case basis significantly enhances its effectiveness.

The duration of the planning horizon plays a crucial role, having a pronounced impact on map-
ping performance. Statistical analysis indicates that while shorter planning horizons generally yield
favourable results, extended horizons are necessary in scenarios that demand anticipatory adjustments.
This adjustment is crucial for accommodating future trajectory demands, improving the predictability
and accuracy of the mapped trajectory.

In essence, MPC proves to be a robust mapping tool when finely tuned for specific scenarios. How-
ever, it may fall short in situations that require comprehensivemanoeuvre anticipation due to its focus on
optimising immediate performance rather than the entire manoeuvre. To fully assess the effectiveness
of MPC, a combination of qualitative visual analysis and quantitative methods is indispensable. Dif-
ferent error methodologies reveal various facets of the trajectory discrepancies, and only a combined
approach that integrates both visual and statistical analyses can provide a complete evaluation of the
model’s performance.

67

7.2. Answering the research question 68

Machine learning method
The sensitivity analysis performed in chapter 6 highlights the strengths and limitations of the machine
learning-based space mapping approach compared to the more traditional MPC-based method. While
the machine learning approach, particularly when utilising GRU networks, generally delivers satisfac-
tory results in optimising high-fidelity controls and trajectories, it often falls short of the performance
achieved by a well-tuned MPC method. This discrepancy is most apparent in scenarios that do not
demand anticipatory actions, where the MPC method’s approach of locally tailor solutions are more
pronounced.

In scenarios requiring foresight and complex anticipatory actions however, the machine learning
method often surpasses theMPC approach. This advantage is attributed to themachine learningmethod’s
ability to process entire sequences simultaneously, allowing for a more complete view of the trajectory,
which is crucial in anticipating future states.

The GRU network, in particular, excels in more gradually changing environments with infrequent
control changes, showcasing lower average prediction errors and reduced variance at each time step.
This stability is due to the GRU’s design, which uses its recurrency to capture time-dependent dynamics
with fewer parameter updates, thereby maintaining a more consistent error profile under stable control
conditions.

Conversely, in more dynamic scenarios with complex control actions, such as those presented in test
case 3, the GRU network’s performance begins to decrease, with a noticeable deterioration in prediction
accuracy over time. The Transformer network, while demonstrating a higher overall error and variabil-
ity, maintains a more uniform error distribution across the sequence and for different use cases. This be-
haviour stems from the Transformer’s architecture, which, through its positional encoding mechanism,
considers all parts of the input sequence equally, thereby introducing more variability but potentially
enhancing the model’s responsiveness to changes in the control sequence.

Overall, both networks perform the best with a medium level of retraining iterations, with around
60 iterations proving to be effective in most cases. However, the exact number of iterations for optimal
performance can vary depending on the specific demands and complexity of the optimisation case, as
well as how the optimisation process evolves over time.

These findings highlight the importance of model configuration and the inherent trade-offs between
different types of network architectures in handling the complexities of trajectory optimisation.

7.2. Answering the research question
The ultimate goal of any analysis is to provide a complete answer to the main research question. This
section will systematically address each research question, leading up to the main research question.
Starting with the sub question.

Sub-question a

Which type of network is best suited for a hybrid space mapping-machine learning implementation?

This sub-question can be answered by looking at the results from section 6.1 and section 6.2. The
general trend across all results is that GRU networks on average are a better fit for the high-fidelity
network, and experience lower variance in prediction. This is crucial in reducing the dependency on
a lucky random seed for good optimiser results. To add nuance to this answer, transformer networks,
while experiencing a slightly higher average and average variance are less impacted by adding com-
plexity to the input sequence. In cases where there is significant control input with a high frequency,
transformer networks achieve an error on par with GRU networks. The reason for this difference in
performance can partially be attributed to the almost double amount of trainable parameters for the
transformer network compared to the GRU network, even if the same amount of layers and nodes are

7.2. Answering the research question 69

selected. In more traditional approaches this is compensated by increasing the amount of training data
and training iterations, something that is not feasible in this application.

Sub-question b

How does active learning influence the predictive accuracy and adaptability of machine learning net-
works in hybrid space mapping implementations?

Based on the results from section 6.2, active learning plays a crucial role in ensuring that models are able
to adapt to new control sequences generated by the control optimiser. Especially comparing (almost) no
retraining to even a medium amount of retraining yields significant improvements in network accuracy
and precision over time. Furthermore, active learning is especially influential for transformer networks.
This can be explained again by the almost double amount of trainable parameters, which benefit more
from adjustments. On the flip side, with low amount of retraining, the GRU networks stand out.

Sub-question c

How does hybrid space mapping-machine learning compare to existing trajectory mapping techniques
such as MMSA in terms of computational cost and mapping error

Already briefly mentioned in the results summary above, but reviewing the results in section 5.2 and
section 6.1 reveals that the MPC based method generally outperforms the machine-learning method.
Both in terms of mapping accuracy, as well in the number of iterations required. However, in situations
where anticipation is required such as test case 4, the machine learning approach performed on par
with the MPC based method. Furthermore, MPC methods overall achieve a better fit on the short term,
whereas the machine learning optimised trajectories follow the general trend of the reference trajectory.
Moving on to the main research question:

How does the integration of space mapping and sequence-to-sequence networks facilitate the mapping
of optimal control sequences between low and high-fidelity flight mechanic models to minimise trajec-
tory differences in non-linear flight regimes?

The integration of space mapping and sequence-to-sequence neural networks offers a promising yet
nuanced approach to mapping optimal control sequences compared to traditional MPC-based methods.
While MPC excels in achieving short to medium-term accuracy with fewer iterations, it struggles in
scenarios requiring anticipation of future states—conditions where machine learning approaches can
provide comparable or superior results.

Active learning is crucial within the optimisation architecture, significantly enhancing the integra-
tion of machine learning with space mapping by reducing the initial data requirement. The analysis
shows that active learning not only boosts the predictive accuracy of networks but also enables them to
adapt continuously to new data generated by control optimisers. This adaptability is particularly advan-
tageous in complex scenarios characterised by frequent changes in control inputs, allowing machine
learning models, especially transformer networks, to adjust dynamically and maintain robust perfor-
mance. Their ability to sustain low error rates and variance under evolving conditions underscores the
potential of machine learning-based mapping with minimal datasets.

In conclusion, integrating space mapping with sequence-to-sequence neural networks presents sub-
stantial potential to enhance the mapping of optimal control sequences, leveraging machine learning’s
strengths to manage complex and dynamic control scenarios more effectively than traditional MPC
methods. However, this approach’s reliance on extremely small datasets introduces vulnerabilities to

7.3. Discussion 70

random variability between training sessions, impacting the reliability and consistency of the mapping
results.

7.3. Discussion
This section evaluates the integration of machine learning with space mapping against established con-
ditions and explores the inherent limitations of the methodologies used. This discussion aims to provide
context findings of the previous section with respect to the objective of this study.

7.3.1. Integration conditions
In section 3.2, a set of conditions for defining a successful hybrid mapping algorithm was defined. Re-
viewing each conditions reveals that on all fronts, except for the flexible adaptation to various scenarios,
the current implementation has not succeeded. In this section, these conditions will be briefly discussed,
as well as some of the limitations of this research and their implications.

• Accuracy improvement: The integrated method, while showing potential in scenarios requiring
anticipatory actions, generally under performs in accuracy compared to the MPC method. The
MPC’s precise tuning of control sequences for immediate future states typically results in more
accurate trajectory mapping. It’s important to note that this research is structured as a compara-
tive study focusing not on peak performance but on demonstrating differences in approach. In
scenarios involving more complex or longer sequences, the disparity in accuracy might diminish
as the strengths of the machine learning method become more pronounced.

• Data efficiency: Another nuanced area is data efficiency. Due to the design of this study, an
extensive analysis of the optimiser or exploration of different optimisers was not conducted. In
complex optimisation problems, the architecture of the optimiser can significantly influence con-
vergence rates. Additionally, the dual function of control optimisation and data sampling com-
plicates data efficiency. If an optimiser selects a sub-optimal next point, the machine learning
model must still use this data for updates, potentially training the network on less beneficial data.
However, every high-fidelity data point represents valuable information, enhancing the model’s
knowledge base. All in all, for an extra 10 high-fidelity model evaluation required for the initial
data set, the accuracy did significantly increase.

• Robustness: This aspect is perhaps the most critical challenge in achieving a successful imple-
mentation. As discussed in section 4.3, the small dataset size introduces significant challenges
related to prediction stability and susceptibility to random variations. The complexities associated
with dataset selection, already a hurdle in conventional machine learning, are greatly amplified
in this context due to the limited data. Conversely, the MPC method, which solves a control op-
timisation problem at each segment, also faces challenges. Although these are simpler in nature,
they present multiple opportunities for the optimiser to converge to a local minimum. Such oc-
currences can have prolonged impacts throughout the trajectory, though they are generally easier
to mitigate and better understood compared to the challenges of managing a small dataset.

• Flexibility: Flexibility is the area where the machine learning implementation notably outper-
forms the MPC method. While MPC requires a suitable predictor model that can approximate
the high-fidelity model for a short duration, machine learning networks can bridge fundamental
differences between models, provided there is at least some stable underlying relationship.

The main takeaway from this section is that while the current implementation may not be satisfactory,
there are a lot of nuanced points and complex factors that influence the effectiveness of hybrid space
mapping methods. The next section will dive into some discussing some of the limitations encountered
in this study

7.3. Discussion 71

7.3.2. Research limitations
A common limitation in computational studies, particularly those involving machine learning, is the
constraint imposed by hardware capabilities. However, in this research, the small size of the datasets
ensures that training is exceptionally quick, mitigating typical hardware limitations. This allows the
study to focus more on the inherent limitations introduced by the implementation methodology itself
rather than external hardware constraints.

The primary limitation of this study stems from the chosen methodology, particularly the small
dataset size and the variability it introduces. The use of small datasets, introduces significant challenges
in terms of model stability and predictive reliability. This limitation is further compounded by the
integration of optimisation and machine learning techniques, which inherently introduces complexity
and interdependence between the network performance and the optimisation process. Practically this
means that this study is by no means a complete analysis of hybrid space mapping, but merely an initial
exploration of the concept.

Ultimately, this implementation represents a series of compromises and nuances. The convergence
of machine learning and optimisation within the framework of space mapping presents unique chal-
lenges that are not typically encountered when these disciplines operate independently. This integration,
while innovative, highlights the need for careful consideration of data quality, model training strategies,
and the interpretability of results within such hybrid systems. Further research is needed to address
these challenges, potentially through the development of more robust training methodologies or by cu-
rating the datasets to enhance the generalisability and reliability of the machine learning models within
the space mapping context.

8
Conclusion & suggestions for future
research

In this chapter the main conclusion of this study will be given, followed by some recommendation for
future research.

8.1. Conclusion
In this study, the integration of spacemapping andmachine learning techniques was explored to enhance
themapping of optimal control sequences in aerospace applications. The research focused on comparing
traditionalMPCmethods with a novel machine learning approach utilising active learning and sequence-
to-sequence models like GRU and Transformer networks.

A fundamental component in the successful integration of machine learning networks was the im-
plementation of the PKI-D model architecture. This robust framework enabled the networks to act as
a corrective layer to the low-fidelity model, enhancing the overall predictive accuracy. The PKI-D
architecture leverages the low-fidelity model as an initial approximation, which the machine learning
network subsequently refines. By having access to the low-fidelity models output and the control input,
the network efficiently adjusts its predictions, ensuring a high degree of accuracy and leveraging the
full potential of the available information.

The findings reveal that while MPC generally provides high accuracy and requires fewer iterations
in scenarios with less dynamic control demands, its performance diminishes in complex scenarios re-
quiring foresight beyond its planning horizon. In contrast, the machine learning approach, particularly
when enhanced by active learning, shows promise in these complex scenarios by adapting effectively
to new data and maintaining robust performance.

A key advantage of using machine learning in this context is its flexibility. The machine learning
models, demonstrate the capability to handle sequences with varying control dynamics, an area where
traditionalMPC can be limited. However, the effectiveness of these models heavily relies on the amount
of retraining they undergo during the optimisation process, especially the transformer networks. It was
observed that there is an sweet-spot range of retraining iterations that balances model adaptability with
the risk of overfitting. In general, GRU models appear to be most accurate and precise for the majority
of the test cases discussed

The integration of active learning proved crucial in mitigating the challenges posed by small initial
datasets. By continuously incorporating new data during the optimisation process, the machine learning
models were able refine their predictions, which allowed them to adapt as the optimisation progressed.
This approach aligns well with the principles of space mapping by minimising high-fidelity model
evaluations and leveraging low-fidelity models to accelerate the optimisation process.

72

8.2. Suggestions for future research. 73

Nevertheless, the study also highlights significant challenges. The integration of machine learn-
ing with space mapping introduces complexity in managing the interplay between model training and
optimisation. Additionally, the variability introduced by small datasets and the dependence on initial
conditions underscore the need for robust model design and careful setup of learning parameters.

In conclusion, this research demonstrates that while the integration of machine learning with space
mapping presents notable advantages in handling complex control sequences, it also brings forth new
challenges in model training and data management.

8.2. Suggestions for future research.
This study has touched upon several pathways for further investigation that could significantly enhance
the integration of machine learning with complex engineering systems. One promising area is the ex-
ploration of machine learning models trained on extremely small, tailored datasets. This research could
help refine the efficiency of training processes and improve the adaptability of models to specific appli-
cations, minimising the overall data requirements. Additionally, a deeper understanding of which net-
work architectures best approximate physical processes is crucial. A comparative analysis of sequential
versus parallel processing models will provide insights into which methodologies not only align more
closely with the inherent nature of physical dynamics but also offer enhanced predictive accuracy.

Another critical area of future research involves developing optimiser architectures that effectively
balance the dual objectives of optimising control sequences and strategically curating datasets. Initial
experiments with Bayesian models have shown promising results, suggesting that further exploration
could yield robust optimisation strategies. These strategies could facilitate the seamless integration of
machine learning into traditional engineering simulations, offering a new toolkit for tackling complex
optimisation problems with high precision and reliability.

References

[1] M. Klöwer, M. R. Allen, D. S. Lee, S. R. Proud, L. Gallagher, and A. Skowron, “Quantify-
ing aviation’s contribution to global warming,” Environmental Research Letters, vol. 16, no. 10,
p. 104 027, Oct. 2021, ISSN: 1748-9326, DOI: 10.1088/1748-9326/ac286e.

[2] V. Grewe, A. Gangoli Rao, T. Grönstedt, et al., “Evaluating the climate impact of aviation emis-
sion scenarios towards the Paris agreement including COVID-19 effects,” en, Nature Commu-
nications, vol. 12, no. 1, p. 3841, Jun. 2021, ISSN: 2041-1723, DOI: 10.1038/s41467-021-
24091-y.

[3] H. D. Kim, A. T. Perry, and P. J. Ansell, “A Review of Distributed Electric Propulsion Concepts
for Air Vehicle Technology,” en, in 2018 AIAA/IEEE Electric Aircraft Technologies Symposium,
Cincinnati, Ohio: American Institute of Aeronautics and Astronautics, Jul. 2018, ISBN: 978-1-
62410-572-2, DOI: 10.2514/6.2018-4998.

[4] S. Kamo, J. Rosenow,H. Fricke, andM. Soler, “Robust optimization integrating aircraft trajectory
and sequence under weather forecast uncertainty,” en,Transportation Research Part C: Emerging
Technologies, vol. 152, p. 104 187, Jul. 2023, ISSN: 0968090X, DOI: 10.1016/j.trc.2023.
104187.

[5] C. L. Bottasso, A. Croce, D. Leonello, and L. Riviello, “Optimization of Critical Trajectories for
Rotorcraft Vehicles,” en, Journal of the American Helicopter Society, vol. 50, no. 2, pp. 165–177,
Apr. 2005, ISSN: 21616027, DOI: 10.4050/1.3092853.

[6] S. Hartjes, “An Optimal Control Approach to Helicopter Noise and Emissions Abatement Termi-
nal Procedures,” Ph.D. dissertation, Delft University of Technology, 2015, DOI: 10.4233/UUID:
CA4B93AC-6A39-4C89-8699-E0A351E7FE2F.

[7] V. Boltyanski, R. Gamkrelidze, E. Mishchenko, and L. Pontryagin, “The maximum principle in
the theory of optimal processes of control,” en, IFAC Proceedings Volumes, vol. 1, no. 1, pp. 464–
469, Aug. 1960, ISSN: 14746670, DOI: 10.1016/S1474-6670(17)70089-4.

[8] O. Hernández-Lerma, L. R. Laura-Guarachi, S. Mendoza-Palacios, and D. González-Sánchez,
An Introduction to Optimal Control Theory: The Dynamic Programming Approach (Texts in
Applied Mathematics), en. Cham: Springer International Publishing, 2023, vol. 76, ISBN: 978-
3-031-21138-6 978-3-031-21139-3, DOI: 10.1007/978-3-031-21139-3.

[9] J. R. R. A. Martins and A. Ning, Engineering design optimization, eng. Cambridge: Cambridge
University Press, 2022, ISBN: 978-1-108-83341-7, DOI: 10.1017/9781108980647.

[10] D. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, Apr. 1997, ISSN: 1089778X, DOI: 10.
1109/4235.585893.

[11] J. F. Schumann and A. M. Aragón, A machine learning approach for fighting the curse of dimen-
sionality in global optimization, arXiv:2110.14985 [cs, math], Nov. 2022, [Online]. Available:
http://arxiv.org/abs/2110.14985 (visited on 11/12/2023).

[12] M. L. Santoni, E. Raponi, R. De Leone, andC. Doerr,Comparison of High-Dimensional Bayesian
Optimization Algorithms on BBOB, arXiv:2303.00890 [cs, math, stat], Jul. 2023, [Online]. Avail-
able: http://arxiv.org/abs/2303.00890 (visited on 11/13/2023).

74

https://doi.org/10.1088/1748-9326/ac286e
https://doi.org/10.1038/s41467-021-24091-y
https://doi.org/10.1038/s41467-021-24091-y
https://doi.org/10.2514/6.2018-4998
https://doi.org/10.1016/j.trc.2023.104187
https://doi.org/10.1016/j.trc.2023.104187
https://doi.org/10.4050/1.3092853
https://doi.org/10.4233/UUID:CA4B93AC-6A39-4C89-8699-E0A351E7FE2F
https://doi.org/10.4233/UUID:CA4B93AC-6A39-4C89-8699-E0A351E7FE2F
https://doi.org/10.1016/S1474-6670(17)70089-4
https://doi.org/10.1007/978-3-031-21139-3
https://doi.org/10.1017/9781108980647
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
http://arxiv.org/abs/2110.14985
http://arxiv.org/abs/2303.00890

References 75

[13] A. Jain andM.Morari,Computing the racing line using Bayesian optimization, arXiv:2002.04794
[cs], Feb. 2020, [Online]. Available: http : / / arxiv . org / abs / 2002 . 04794 (visited on
11/13/2023).

[14] A. De Marco, P. M. D’Onza, and S. Manfredi, “A deep reinforcement learning control approach
for high-performance aircraft,” en,Nonlinear Dynamics, vol. 111, no. 18, pp. 17 037–17 077, Sep.
2023, ISSN: 0924-090X, 1573-269X, DOI: 10.1007/s11071-023-08725-y.

[15] J. G.-H. Carretero, F. J. S. Nieto, and R. R. Cordón, “Aircraft trajectory simulator using a three
degrees of freedom aircraft point mass model,” en, in Proceedings of the 3rd International Con-
ference on Application and Theory of Automation in Command and Control Systems, Naples Italy:
ACM, May 2013, pp. 114–117, ISBN: 978-1-4503-2249-2, DOI: 10.1145/2494493.2494509.

[16] J. Sun, J. M. Hoekstra, and J. Ellerbroek, “OpenAP: An Open-Source Aircraft Performance
Model for Air Transportation Studies and Simulations,” en, Aerospace, vol. 7, no. 8, p. 104,
Jul. 2020, ISSN: 2226-4310, DOI: 10.3390/aerospace7080104.

[17] M. Babl and J. Engelbrecht, “Automatic Deep Stall Recovery using Optimal Trajectory Plan-
ning,” en, IFAC-PapersOnLine, vol. 53, no. 2, pp. 15 508–15 515, 2020, ISSN: 24058963, DOI:
10.1016/j.ifacol.2020.12.2377.

[18] S. Koziel, J. Bandler, andK.Madsen, “ASpace-Mapping Framework for EngineeringOptimization—
Theory and Implementation,” IEEE Transactions on Microwave Theory and Techniques, vol. 54,
no. 10, pp. 3721–3730, Oct. 2006, ISSN: 0018-9480, DOI: 10.1109/TMTT.2006.882894.

[19] T. P. Scholcz, A. H. V. Zuijlen, and H. Bijl, “A MULTI-MODEL INCREMENTAL ADAPTIVE
STRATEGY TO ACCELERATE PARTITIONED FLUID-STRUCTURE ALGORITHMS US-
ING SPACE-MAPPING,” en, 2011, Publisher: Unpublished, DOI: 10.13140/2.1.2222.5608.

[20] J. Bandler, Q. Cheng, S. Dakroury, et al., “Space Mapping: The State of the Art,” en, IEEE
Transactions onMicrowave Theory and Techniques, vol. 52, no. 1, pp. 337–361, Jan. 2004, ISSN:
0018-9480, DOI: 10.1109/TMTT.2003.820904.

[21] C. L. Bottasso, C.-S. Chang, A. Croce, D. Leonello, and L. Riviello, “Adaptive planning and
tracking of trajectories for the simulation of maneuvers with multibody models,” en, Computer
Methods in Applied Mechanics and Engineering, vol. 195, no. 50-51, pp. 7052–7072, Oct. 2006,
ISSN: 00457825, DOI: 10.1016/j.cma.2005.03.011.

[22] M. Simsek, Q. J. Zhang, H. Kabir, Y. Cao, and N. S. Sengor, “The recent developments in mi-
crowave design,” en, International Journal of Mathematical Modelling and Numerical Optimi-
sation, vol. 2, no. 2, p. 213, 2011, ISSN: 2040-3607, 2040-3615, DOI: 10.1504/IJMMNO.2011.
039429.

[23] N. McCullum, Deep Learning Neural Networks Explained in Plain English, Jun. 2020, [Online].
Available: https://www.freecodecamp.org/news/deep-learning-neural-networks-
explained-in-plain-english/.

[24] M.M. Taye, “Understanding ofMachine Learning with Deep Learning: Architectures,Workflow,
Applications and Future Directions,” en, Computers, vol. 12, no. 5, p. 91, Apr. 2023, ISSN: 2073-
431X, DOI: 10.3390/computers12050091.

[25] H. Abdel-Jaber, D. Devassy, A. Al Salam, L. Hidaytallah, and M. EL-Amir, “A Review of Deep
Learning Algorithms and Their Applications in Healthcare,” en, Algorithms, vol. 15, no. 2, p. 71,
Feb. 2022, ISSN: 1999-4893, DOI: 10.3390/a15020071.

[26] Z. C. Lipton, J. Berkowitz, and C. Elkan, A Critical Review of Recurrent Neural Networks for
Sequence Learning, arXiv:1506.00019 [cs], Oct. 2015, [Online]. Available: http://arxiv.
org/abs/1506.00019 (visited on 11/15/2023).

http://arxiv.org/abs/2002.04794
https://doi.org/10.1007/s11071-023-08725-y
https://doi.org/10.1145/2494493.2494509
https://doi.org/10.3390/aerospace7080104
https://doi.org/10.1016/j.ifacol.2020.12.2377
https://doi.org/10.1109/TMTT.2006.882894
https://doi.org/10.13140/2.1.2222.5608
https://doi.org/10.1109/TMTT.2003.820904
https://doi.org/10.1016/j.cma.2005.03.011
https://doi.org/10.1504/IJMMNO.2011.039429
https://doi.org/10.1504/IJMMNO.2011.039429
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://doi.org/10.3390/computers12050091
https://doi.org/10.3390/a15020071
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019

References 76

[27] S. Hiriyannaiah, A. Srinivas, G. K. Shetty, S. G.M., and K. Srinivasa, “A computationally intel-
ligent agent for detecting fake news using generative adversarial networks,” en, in Hybrid Com-
putational Intelligence, Elsevier, 2020, pp. 69–96, ISBN: 978-0-12-818699-2, DOI: 10.1016/
B978-0-12-818699-2.00004-4.

[28] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to Sequence Learning with Neural Networks,
arXiv:1409.3215 [cs], Dec. 2014, [Online]. Available: http://arxiv.org/abs/1409.3215
(visited on 11/16/2023).

[29] Chaitanya Bharathi Institute of Technology(Autonomous), K. M.Tarwani, and S. Edem, “Survey
on Recurrent Neural Network in Natural Language Processing,” International Journal of Engi-
neering Trends and Technology, vol. 48, no. 6, pp. 301–304, Jun. 2017, ISSN: 22315381, DOI:
10.14445/22315381/IJETT-V48P253.

[30] C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar, Are Transformers universal
approximators of sequence-to-sequence functions? arXiv:1912.10077 [cs, stat], Feb. 2020, [On-
line]. Available: http://arxiv.org/abs/1912.10077 (visited on 11/06/2023).

[31] S. Bhattamishra, A. Patel, and N. Goyal, On the Computational Power of Transformers and its
Implications in Sequence Modeling, arXiv:2006.09286 [cs, stat], Oct. 2020, [Online]. Available:
http://arxiv.org/abs/2006.09286 (visited on 11/16/2023).

[32] R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training Recurrent Neural Networks,
arXiv:1211.5063 [cs], Feb. 2013, [Online]. Available: http://arxiv.org/abs/1211.5063
(visited on 11/21/2023).

[33] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, Recent Advances in Recurrent
Neural Networks, arXiv:1801.01078 [cs], Feb. 2018, [Online]. Available: http://arxiv.org/
abs/1801.01078 (visited on 11/21/2023).

[34] I. R. Jenkins, L. O. Gee, A. Knauss, H. Yin, and J. Schroeder, “Accident Scenario Generation with
Recurrent Neural Networks,” in 2018 21st International Conference on Intelligent Transporta-
tion Systems (ITSC), Maui, HI: IEEE, Nov. 2018, pp. 3340–3345, ISBN: 978-1-72810-321-1
978-1-72810-323-5, DOI: 10.1109/ITSC.2018.8569661.

[35] R. C. Staudemeyer and E. R. Morris, Understanding LSTM – a tutorial into Long Short-Term
Memory Recurrent Neural Networks, arXiv:1909.09586 [cs], Sep. 2019, [Online]. Available: ht
tp://arxiv.org/abs/1909.09586 (visited on 11/21/2023).

[36] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, Independently Recurrent Neural Network (IndRNN):
Building A Longer and Deeper RNN, arXiv:1803.04831 [cs], May 2018, [Online]. Available:
http://arxiv.org/abs/1803.04831 (visited on 11/22/2023).

[37] S. H. Park, B. Kim, C.M.Kang, C. C. Chung, and J.W. Choi, Sequence-to-Sequence Prediction of
Vehicle Trajectory via LSTM Encoder-Decoder Architecture, arXiv:1802.06338 [cs], Oct. 2018,
[Online]. Available: http://arxiv.org/abs/1802.06338 (visited on 10/20/2023).

[38] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention Is All You Need,” 2017, Publisher: arXiv
Version Number: 7, DOI: 10.48550/ARXIV.1706.03762.

[39] S. Ahmed, I. E. Nielsen, A. Tripathi, S. Siddiqui, R. P. Ramachandran, and G. Rasool, “Trans-
formers in Time-Series Analysis: A Tutorial,” en, Circuits, Systems, and Signal Processing,
vol. 42, no. 12, pp. 7433–7466, Dec. 2023, ISSN: 0278-081X, 1531-5878, DOI: 10 . 1007 /
s00034-023-02454-8.

[40] K. Babić, S. Martinčić-Ipšić, and A. Meštrović, “Survey of Neural Text Representation Models,”
en, Information, vol. 11, no. 11, p. 511, Oct. 2020, ISSN: 2078-2489, DOI: 10.3390/info111
10511.

https://doi.org/10.1016/B978-0-12-818699-2.00004-4
https://doi.org/10.1016/B978-0-12-818699-2.00004-4
http://arxiv.org/abs/1409.3215
https://doi.org/10.14445/22315381/IJETT-V48P253
http://arxiv.org/abs/1912.10077
http://arxiv.org/abs/2006.09286
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1801.01078
http://arxiv.org/abs/1801.01078
https://doi.org/10.1109/ITSC.2018.8569661
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1803.04831
http://arxiv.org/abs/1802.06338
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.1007/s00034-023-02454-8
https://doi.org/10.1007/s00034-023-02454-8
https://doi.org/10.3390/info11110511
https://doi.org/10.3390/info11110511

References 77

[41] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep Learning Enabled Semantic Communication
Systems,” IEEETransactions on Signal Processing, vol. 69, pp. 2663–2675, 2021, arXiv:2006.10685
[eess], ISSN: 1053-587X, 1941-0476, DOI: 10.1109/TSP.2021.3071210.

[42] R. Sathya and A. Abraham, “Comparison of Supervised and Unsupervised Learning Algorithms
for Pattern Classification,” en, International Journal of Advanced Research in Artificial Intelli-
gence, vol. 2, no. 2, 2013, ISSN: 21654069, 21654050, DOI: 10.14569/IJARAI.2013.020206.

[43] P. Ren, Y. Xiao, X. Chang, et al., A Survey of Deep Active Learning, arXiv:2009.00236 [cs,
stat], Dec. 2021, [Online]. Available: http:/ /arxiv .org /abs /2009 .00236 (visited on
07/02/2024).

[44] Y.Gal, R. Islam, and Z.Ghahramani,DeepBayesian Active Learningwith ImageData, arXiv:1703.02910
[cs, stat], Mar. 2017, [Online]. Available: http://arxiv.org/abs/1703.02910 (visited on
07/02/2024).

[45] F. B. Smith, A. Foster, and T. Rainforth, Making Better Use of Unlabelled Data in Bayesian
Active Learning, arXiv:2404.17249 [cs, stat], Apr. 2024, [Online]. Available: http://arxiv.
org/abs/2404.17249 (visited on 07/02/2024).

[46] L. Zhao, Y. Zuo, T. Li, and C. L. P. Chen, “Application of an Encoder–Decoder Model with At-
tention Mechanism for Trajectory Prediction Based on AIS Data: Case Studies from the Yangtze
River of China and the Eastern Coast of the U.S,” en, Journal of Marine Science and Engineering,
vol. 11, no. 8, p. 1530, Jul. 2023, ISSN: 2077-1312, DOI: 10.3390/jmse11081530.

[47] Y. Pang, N. Xu, and Y. Liu, “Aircraft Trajectory Prediction using LSTM Neural Network with
Embedded Convolutional Layer,” Annual Conference of the PHM Society, vol. 11, no. 1, Sep.
2019, ISSN: 2325-0178, 2325-0178, DOI: 10.36001/phmconf.2019.v11i1.849.

[48] K.Kutsuzawa, S. Sakaino, and T. Tsuji, “Sequence-to-SequenceModel for Trajectory Planning of
Nonprehensile Manipulation Including Contact Model,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, pp. 3606–3613, Oct. 2018, ISSN: 2377-3766, 2377-3774, DOI: 10.1109/LRA.
2018.2854958.

[49] T. Guffanti, D. Gammelli, S. D’Amico, and M. Pavone, Transformers for Trajectory Optimiza-
tion with Application to Spacecraft Rendezvous, arXiv:2310.13831 [cs], Dec. 2023, [Online].
Available: http://arxiv.org/abs/2310.13831 (visited on 12/12/2023).

[50] H. B. Braiek and F. Khomh, Machine Learning Robustness: A Primer, arXiv:2404.00897 [cs],
May 2024, [Online]. Available: http://arxiv.org/abs/2404.00897 (visited on 06/30/2024).

[51] A. Alwosheel, S. Van Cranenburgh, and C. G. Chorus, “Is your dataset big enough? Sample size
requirements when using artificial neural networks for discrete choice analysis,” en, Journal of
Choice Modelling, vol. 28, pp. 167–182, Sep. 2018, ISSN: 17555345, DOI: 10.1016/j.jocm.
2018.07.002.

[52] K. Jordan,On the Variance of Neural Network Trainingwith respect to Test Sets andDistributions,
arXiv:2304.01910 [cs], Jun. 2024, [Online]. Available: http://arxiv.org/abs/2304.01910
(visited on 06/30/2024).

[53] R. Shelton and M. Madden, “Six degree-of-freedom (6-DOF) Flight Simulation Check-cases,”
NASA Engineering and Safety Center, Tech. Rep., Apr. 2015, [Online]. Available: https://
nescacademy.nasa.gov/flightsim (visited on 11/29/2023).

[54] J. S. Berndt, Open Source Flight Dynamics Model in C++, [Online]. Available: https://jsbs
im.sourceforge.net/JSBSimFlyer.pdf (visited on 11/29/2023).

[55] K. Toohey and M. Duckham, “Trajectory similarity measures,” en, SIGSPATIAL Special, vol. 7,
no. 1, pp. 43–50, May 2015, ISSN: 1946-7729, DOI: 10.1145/2782759.2782767.

https://doi.org/10.1109/TSP.2021.3071210
https://doi.org/10.14569/IJARAI.2013.020206
http://arxiv.org/abs/2009.00236
http://arxiv.org/abs/1703.02910
http://arxiv.org/abs/2404.17249
http://arxiv.org/abs/2404.17249
https://doi.org/10.3390/jmse11081530
https://doi.org/10.36001/phmconf.2019.v11i1.849
https://doi.org/10.1109/LRA.2018.2854958
https://doi.org/10.1109/LRA.2018.2854958
http://arxiv.org/abs/2310.13831
http://arxiv.org/abs/2404.00897
https://doi.org/10.1016/j.jocm.2018.07.002
https://doi.org/10.1016/j.jocm.2018.07.002
http://arxiv.org/abs/2304.01910
https://nescacademy.nasa.gov/flightsim
https://nescacademy.nasa.gov/flightsim
https://jsbsim.sourceforge.net/JSBSimFlyer.pdf
https://jsbsim.sourceforge.net/JSBSimFlyer.pdf
https://doi.org/10.1145/2782759.2782767

References 78

[56] Y. Tao, A. Both, R. I. Silveira, et al., “A comparative analysis of trajectory similarity measures,”
en,GIScience & Remote Sensing, vol. 58, no. 5, pp. 643–669, Jul. 2021, ISSN: 1548-1603, 1943-
7226, DOI: 10.1080/15481603.2021.1908927.

https://doi.org/10.1080/15481603.2021.1908927

A
Low-Fidelity Flight Mechanics Models

In this section of the appendix, a full overview of the low- and high-fidelity flight mechanics model is
given. This model is based on the airbus A320, with the parameters sourced from JSBsim for consis-
tency with the high-fidelity model:

Table A.1: Overview of aircraft parameters

Parameter Value unit
Lift Curve slope (CLα) 2π rad−1

Wing area (S) 124 m2

Maximum thrust (Tmax) 240 kN
Maximum weight (m) 63956 kg
zero lift drag (Cd0) 0.018 -
Linearised drag polar (K) 0.039 -

Starting of with the low-fidelity model, it is crucial that it is easy to evaluate as that is one of the key
defining traits of a low-fidelity model. Presented earlier in subsection 2.2.2, the flight mechanics model
from [15] presents an ideal candidate as low-fidelity model. Adapted for a 2D case this becomes:

d

dt


x
z
V
γ

 =


V cos(γ)
V sin(γ)

g
W

[
(Tcos(θ − γ)−D)−Wsin(γ)

]
g

WV

[
(L+ Tsin(θ − γ)−D)−Wcos(γ)

]
 (A.1)

T = Tmax ∗ δT (A.2)

L = CLααqS (A.3)

D = Cd0 +K ∗ C2
L (A.4)

Note that for this flight mechanics model, change in mass is neglected as the trajectories in question
are relatively short and fuel consumption is negligible. Another point of importance are the control
inputs of these models. The model above directly sets the geometric pitch angle (θ) and thrust setting
thereby using them as inputs. On the other hand, JSBSim which functions as the high-fidelity model
uses elevator deflection (δe) and thrust setting as input. This modelling difference requires a mapping
from δe to θ. For this mapping two approaches are considered; an open loop and closed loop mapping
approach.

79

A.1. Open loop 80

A.1. Open loop
For the open loop implementation, elevator deflection is linked to θ through the use of input dampening.
Here, the angle of attack is added as an extra state and implemented as follows:

Figure A.1: Block diagram of a closed loop controller. C represents a tuneable gain factor.

dα

dt
= −C ∗ δe (A.5)

During each step, the angle of attack and flight path angle are updated using Equation A.5 and Equa-
tion A.1 which then in allows θ to be calculated. While not a perfect representation of the actual lon-
gitudinal dynamics, this approach captures the general longitudinal dynamics. A problem with this
approach is that it is, among other parameters, very sensitive to gain factor C. Elevator deflection pri-
marily regulates the rate of pitch change, meaning slight adjustments in C can dramatically alter the
resultant angle of attack and geometric pitch angle. Additionally, minor variations in control settings at
a constant gain can lead to significantly divergent trajectories. Such sensitivity poses challenges for ma-
chine learning models, which ideally require that small changes in controls correspond to proportional
changes in trajectories to facilitate simpler learning patterns.

Conversely, sensitivity to model parameters and gain factors are desirable when adjusting the model
to locally approximate the high-fidelity model, such as in model predictive control. Here, the low-
fidelity model serves as a local predictor, where the focus is on short-term accuracy rather than long-
term stability. The tendency for the model’s behaviour to diverge quickly is less problematic due to the
shorter simulation time frames involved.

A.2. Closed loop
To improve model stability, a closed loop proportional controller can be introduced to regulate the
diverging behaviour of direct rate-of-change control:

Figure A.2: Block diagram of a closed loop controller. K represents a tuneable gain factor.

θref = −C ∗ δe (A.6)

The block diagram and Equation A.6 illustrates how a reference geometric pitch angle set by δe is
incorporated in the aircraft equations of motion and forward simulation. The coupling of δe to θref
provides a basic mapping of elevator deflection to pitch angle, which is crucial for ensuring that both
the low- and high-fidelity models operate with the same set of inputs. It is also important to note
that the low-fidelity model in this framework is not designed to mimic high-fidelity models with exact
precision. Rather, its primary role is to provide a simplified and computationally efficient alternative
to the high-fidelity model. The value of these models lies in their adaptability to various scenarios and

A.3. High-fidelity model 81

applications. In an open-loop configuration, the model serves well for short-term approximations, while
in a closed-loop setup, it offers a reliable initial approximation for more extended periods. In summary,
these models are employed either as tools for local approximation in the open-loop configuration or as
a basis for initial predictions in closed-loop scenarios.

A.3. High-fidelity model
In this study JSBsim is used as the high-fidelity model. JSBsim is a well established flight dynamics
simulation tool which has garnered widespread recognition in academic research [53]. Due to its effi-
ciency, extensive support, and numerous capabilities, JSBsim is able to simulate a wide array of aircraft
types. Essentially, it is a 6-DoF non-linear flight dynamics simulator that allows for customisable air-
craft models [54] [14]. Another reason is that JSBsim represents a significant step in model complexity
compared to point mass models, while still not being taxing to run.

In this project, the JSBSimmodel was limited to 2-Dmotion only, excluding any lateral or rotational
movements such as yaw and roll. This was done by setting any lateral velocity and rotational movement
component to zero during each step of the simulation.

Aerodynamic and thrust modelling
Aerodynamic modelling in JSBSim is based on lookup tables, which catalogues aerodynamic coeffi-
cients under various flight conditions and configurations, including different flap settings. These lookup
tables are important because they encapsulate complex aerodynamic relationships within a straightfor-
ward tabular format. Using interpolation techniques, the simulator can accurately derive values for
conditions that lie between defined points in the table. This method allows for modelling aerodynamic
forces with a high degree of fidelity, accommodating non-linear variations that are often observed in
real-world flight dynamics.

Similarly, thrust modelling in JSBSim is handled through a robust approach that utilises both lookup
tables and mathematical models. This is particularly relevant for jet engines, where performance de-
pends on throttle settings, Mach number, and the ambient temperature. The integration of lookup tables
into the standard equations of motion models enables the simulation to determine engine thrust output,
mirroring the actual engine performance.

B
Error Determination Methods

In the realm of flight mechanics and control systems, accurately estimating trajectory errors is crucial
for effective operation. The complexity of flight dynamics and the influence of unpredictable environ-
mental conditions necessitate robust methods to assess the deviation of an actual flight path from its
planned trajectory. Two trajectories might not exactly overlap, but if they are similar in nature this
might also constitute as a ”good” mapping. Other factors such as sampling irregularity and different
sequence lengths make direct comparison more difficult [55]. This section of the appendix outlines sev-
eral computational techniques that have been developed to quantify trajectory discrepancies effectively.

Lock-Step Euclidean distance (LSED)
This method is perhaps the most straightforward approach to trajectory comparison. Here the distance
between points on different trajectories is calculated for each time step. Given as an equation this is:

EU(A,B) =

√√√√ n∑
i=1

dist22(ai, bi) (B.1)

Given a trajectory A and B with length n, this gives the total error between two paths. Note that here the
two trajectories must be of the same length. Factors like sampling irregularity appearing in a sequence
cannot be accounted for in this cases.

Discrete Fréchet Distance (DFD) & Dynamic Time warping (DTW)
These approaches are based on the principle of furthest distance between any point in the trajectory set.
Intuitively this can be explained by the analogy of a person walking a dog with a leash [55]. Throughout
the walk, the dog may vary its speed, halt, or change direction, resulting in a trajectory that differs from
that of the person. However, the trajectories remain approximately similar, influenced by the leash’s
length. Both Dynamic Time Warping (DTW) and Dynamic Furthest Distance (DFD) methodologies
quantify this similarity by metaphorically representing the ’leash length’ required to align both paths,
thus providing an indication of their comparative similarity

The difference in DFD and DTW lie in their respective path scoring approach. The process begins
by constructing a table that calculates the distance between each point on one trajectory and every other
point on the counterpart trajectory. A cost path is defined as the path it takes to go from the start of
one sequence diagonally to the end of the other sequence. DTW takes the sum of the lowest cost path,
where cost refers to the distance between points. DFD only considers the maximum value in this matrix,
emphasising the greatest deviation between the two trajectories.

82

83

(a) Lock-Step Euclidean Distance
(LSED).

(b) Discrete Fréchet Distance (DFD). (c) Dynamic Time warping (DTW)

Figure B.1: Overview of three trajectory similarity scoring methods. Note that DFD and DTW are able to handle varying
sequence lengths whereas LSED cannot. Distances computed in distance table are based on euclidean distances. This approach
can be also be applied to compare trajectories of low and high-fidelity flight mechanics models. Adapted from [56].

As can be seen in Figure B.1, the scoring method has significant influence on how trajectory deviations
are tolerated. In turn, this also has a significant impact on how an optimiser based on these trajectory
differences might behave. This consideration is particularly relevant in the realm of optimal control
trajectories, where accommodating certain levels of variance might be beneficial. For instance, specific
control actions such as adjusting thrust levels, are not instantaneous and can introduce a degree of
trajectory lag. Employingmethods like DFD or DTW can render these variances less punishing, thereby
being more agreeable during optimisation.

Longest Common Sub-Sequence (LCSS)
Another common approach to comparing two sequences is the Longest Common Sub-Sequence (LCSS)
method. Where the previous methods measure distances, LCSS quantifies the similarity between se-
quences through a score. This score reflects the number of similar points within the sequences while
traversing the sequences monotonically. Originally intended for comparing two sequences of letters
which are discrete entities, a threshold value for spatial differences ϵ can be used to adapt this method
for flight trajectories. To allow for temporal differences, a different threshold value δ is used. These
must be chosen with care and are dependent on the situation. In case the expected deviations are small,
a high threshold can cause all the deviations to be acceptable which in turn leads to an incorrect high
score. The following pseudo-code describes how the LCSS score is formed [55]:

84

Algorithm 4 LCSS with Spatial and Temporal Thresholds
1: procedure LCSS(A,B, ϵ, δ)
2: m← length of A
3: n← length of B
4: Initialize matrix dp of size (m+ 1)× (n+ 1) to all zeros
5: for i← 1 tom do
6: for j ← 1 to n do
7: if

√∑d
k=1(A[i− 1][k]−B[j − 1][k])2 ≤ ϵ and |i− j| ≤ δ then

8: dp[i][j]← dp[i− 1][j − 1] + 1
9: else
10: dp[i][j]← max(dp[i− 1][j], dp[i][j − 1])
11: end if
12: end for
13: end for
14: return dp[m][n]/min(m,n)
15: end procedure

Line 7 in the code above is themain point of importance. This is where the spatial and temporal threshold
is incorporated into the score. If the computed distance between point i in trajectory A and point j in
trajectory B is below threshold ϵ, and within a certain number of indexes δ assuming an equal point
sampling rate, this combination of points is added to the total similarity score. By iterating through
both sequences, the total score is built up. A big advantage with LCSS scores is that they are always
normalised between 0 and 1 due to the final step in the algorithm. This makes them highly suitable for
application in optimisation problems.

C
MPC method supporting results

This section of the appendix is dedicated to presenting supporting test cases that complement the main
MPC results discussed in chapter 6

C.1. Base implementation
Test case 1

Figure C.1: MPC optimised high-fidelity trajectory for test case 1. Furthermore, n = 45 segments were used, and a
planning window of T = 3s and a manoeuvre duration of 30 seconds.

Table C.1: Error comparison between the initial and MPC optimised high-fidelity trajectory error compared to the reference
trajectory for the first test case. For the LCSS error, a spatial threshold of 100 meter was used, and a temporal threshold of

30 steps were used, which is equivalent to 1 second.

Error Type Initial error Optimised error Percentage decrease w.r.t initial
DTW error (1e3 m) 606.0 189.9 68.7%
DFD (leash length) error (m) 2195.8 1570.7 28.5%
LCSS (-) 0.74 0.65 12.4%
ELS (1e3) 751.4 511.1 32.0%

85

C.1. Base implementation 86

An initial observation from Figure C.1 shows that although the MPC method initially tracks the refer-
ence trajectory well, it soon diverges. This divergence could be attributed to the optimiser’s failure to
adequately anticipate subsequent trajectory changes, resulting in an overshoot that cannot be corrected
swiftly enough. This underscores the importance of considering the entire manoeuvre, particularly in
trajectories that exhibit large variations. Furthermore, Table C.1 indicates that despite the optimiser’s
inability to accurately follow the reference trajectory throughout, it successfully reduced the error com-
pared to the initial trajectory. This highlights the method’s partial effectiveness, even when facing
challenges with trajectory prediction.

Test case 2

Figure C.2: MPC optimised high-fidelity trajectory for test case 2. Furthermore, n = 45 segments were used, and a
planning window of T = 3 seconds and a manoeuvre duration of 30 seconds.

Table C.2: Error comparison between the initial and MPC optimised high-fidelity trajectory error compared to the reference
trajectory for test case 2

Error Type Initial error Optimised error Percentage decrease w.r.t initial
DTW error (1e3 m) 182.5 87.5 52.1%
DFD (leash length) error (m) 1265.7 1178.3 6.9%
LCSS (-) 0.67 0.53 21.1%
ELS (1e3) 422.2 379.1 10.2%

For the second test case, the optimiser performed much better compared to the first test case. While,
adhering more closely to the intended trajectory, some oscillations around the reference trajectory were
noticeable early on, as indicated by two spikes in elevator control actuation near the beginning. This
overcompensation early in the sequence has ramifications throughout the remainder of the sequence,
highlighting a potential risk associated with the MPC approach. Since the segments are processed
sequentially, a poorly optimised control segment affects every subsequent segment, emphasising the
need for careful selection of the control optimiser to avoid getting trapped in sub-optimal local minima.

Despite these challenges, the optimiser significantly enhanced the trajectory fit, as evidenced in
Table C.2. It is important to note, however, that the discrepancy between different error estimation
methods persists. The LCSS error, for instance, decreased by a smaller margin than one might infer

C.2. Number of segments analysis 87

from a visual inspection of Figure C.2, underscoring the complexity of accurately assessing trajectory
alignment solely through numerical metrics.

C.2. Number of segments analysis
Test case 2

Figure C.3: Effect of varying the number of segments for a fixed planning time of 3 seconds.

Table C.3: Comparison between the different plot regression lines statistical values for the relation between number of
segments and error for test case 2

Error Type Average value R2 p-value
DTW error (1e3 m) 74.1 0.002 0.917
DFD error (leash length) (m) 1056.47 0.055 0.542
LCSS (-) 0.50 0.012 0.782
ELS (1e3 m) 318.7 0.031 0.650

Judging from Figure C.3, the number of steering segments, and consequently the size of each segment,
appears to have little to no impact on the overall trajectory and associated error. This observation is
further corroborated by Table C.3, which details the average error and statistical parameters of the trend
line. For all error values, the R2 value remains below 0.05, and the p-value is notably high (above
0.5). These statistics suggest that the error is not significantly influenced by the number of segments,
indicating that the observed consistency is unlikely to be attributable to fortunate sampling or random
variations in model output.

C.2. Number of segments analysis 88

Test case 4

Figure C.4: Effect of varying the number of segments for a fixed planning time of 3 seconds. for the third case.

Table C.4: Comparison between the different plot regression lines statistical values for the relation between number of
segments and error for test case 4.

Error Type Average value R2 p-value
DTW error (1e3 m) 140.7 0.516 0.029
DFD error (leash length) (m) 1362.8 0.602 0.014
LCSS (-) 0.64 0.009 0.805
ELS (1e3 m) 409.3 0.433 0.054

Looking the low R2 and relatively high p-values again suggest a weak relation between the number
of segments and mapping performance. Referencing Figure C.4 reveals that indeed the trajectories
for the different number of segments are all very similar, with the exception of n=50 segments as an
outlier. This again support the notion that the number of segments is a problem specific and requires
case specific tuning.

C.3. Planning horizon analysis 89

C.3. Planning horizon analysis
Test case 1

Figure C.5: Effect of varying planning horizon duration for a fixed number of 45 segments and a manoeuvre duration of 30
seconds.

Table C.5: Comparison between the different plot regression lines statistical values for the relation between planning
horizon and error for test case 1

Error Type Average value R2 p-value
DTW error (1e3 m) 160.7 0.039 0.637
DFD error (leash length) (m) 1370.5 0.136 0.369
LCSS (-) 0.627 0.330 0.137
ELS (1e3 m) 419.4 0.135 0.371

Looking at the graph above, there seems to be a limit to the planning window duration for which the
optimiser is able to generate good results. Visually this can be seen in the left graph where the trajectory
for T = 4 yields better results compared to T = 2. Increasing the planning horizon even further yields
visibly worse results for both T = 6 and T = 8 seconds. Regarding the T = 8 trajectory and its lower
score, this can be attributed to the fact that it is more or less ”in-line” with the reference trajectory but
without actually fitting well to the reference. As the errors are skewed to the horizontal displacement
as the low-fidelity reference reaches much further due to modelling discrepancies, this is prioritised by
the optimiser. Effectively this means that there is a sweet spot where short-term vertical displacement
is balanced with horizontal displacement which yields a satisfactory fit.

Another complicating factor in this approach is the fact that an optimisation problem has to be
run for every segment, increasing the potential for sub-optimal results. Furthermore, in case the control
optimisation for a segment is not able to converge, this has consequences for every subsequent sequence.

C.3. Planning horizon analysis 90

Test case 2

Figure C.6: Effect of varying planning horizon duration for a fixed number of 60 segments and a manoeuvre duration of 30
seconds.

Table C.6: Comparison between the different plot regression lines statistical values for the relation between planning
horizon and error for test case 1

Error Type Average value R2 p-value
DTW (1e3 m) 90.6 0.612 0.022
DFD (leash length) (m) 1061.0 0.045 0.616
LCSS (-) 0.520 0.380 0.104
ELS (1e3 m) 322.6 0.181 0.294

In the second test case, observations align closely with the patterns identified in the first reference case.
The optimal time horizon for adjustments appears to be around 2-3 seconds; extending beyond this
duration significantly deteriorates performance. However, the error metrics provide only a partial view
of the outcomes. For instance, despite the trajectory for T = 8 seconds showing minimal deviation
from the original path, this is attributed to the structure of the optimiser. If the control optimiser fails
to enhance the controls, it defaults to the original control set. This inability to optimise the trajectory
leads to a modest increase in DFD error by 5% but results in a more pronounced 40% rise in DTW
error. Such outcomes underscore the necessity of considering multiple types of error metrics to fully
understand performance dynamics. Additionally, the DTW error trend proves significant both in model
fit, with a robust R2 , and in data confidence, indicating its reliability as a performance indicator.

D
Machine Learning method results

This section of the appendix is dedicated to presenting supporting test cases that complement the main
machine learning results discussed in chapter 6.

D.1. Network type analysis
Test case 2
Where the first test case investigates the networks’ ability to compensate for elevator deflection, the
second test case highlights the networks’ ability to process variations in thrust

Figure D.1: Machine learning optimised controls for test case 2. The controls optimised using a GRU network have a
variance (expressed as a percentage of the maximum control value) of 3.1% and 2.8% for the elevator and thrust setting

respectively. For the transformer network the variance is 9.1% and 5.0% respectively.

91

D.1. Network type analysis 92

Figure D.2: Machine learning optimised high-fidelity trajectory for test case 2. For the GRU network, the x and z variance
is 10.5m and 16.0m respectively. For the transformer network the variance is 24.0m and 42.0m.

The results indicate that while the machine learning-optimised trajectory has difficulty adhering closely
to the target trajectory, the MPC method achieves a more accurate tracking. Among the machine learn-
ing models, the GRU network consistently outperforms the Transformer network in terms of both op-
timisation outcomes and result variance. In scenarios involving relatively simple tracking trajectories,
the MPC method demonstrates superior performance.

Table D.1: Optimised high-fidelity trajectory error metrics for test case 2.

(a) GRU network

Error Type Mean error
µ

STD σ

DTW (1e3 m) 90.4 5.9
DFD (leash
length) (m)

1160.5 21.1

LCSS (-) 0.513 0.01
ELS (m) 366.6 9.2

(b) Transformer network

Error Type Mean error
µ

STD σ

DTW (1e3 m) 118.3 25.7
DFD (leash
length) (m)

1187.0 67.5

LCSS (-) 0.565 0.082
ELS (m) 383.6 24.7

The performance metrics in the tables clearly show the GRU network’s superior performance. Across
all error types the GRU network not only achieves lower mean errors but also maintains much tighter
variance compared to the Transformer network. This consistency highlights the GRU’s robustness and
reliability in trajectory prediction under varying conditions.

D.1. Network type analysis 93

Figure D.3: Average prediction error and error variance of the GRU and transformer network for test case 2. The average
GRU prediction variance is 8.8m and 10.9m for x and z dimension respectively. The average transformer network variance

is 23.7m and 15.0m.

The dominance of the GRU network is again confirmed by its prediction error and variance. Similar
to the first test case, the GRU network, being a recurrent network, experiences a loss of accuracy and
precision as the prediction extends further into the future. Additionally, a slight increase in prediction
error is observed around each thrust change (around t = 3, t = 11, and t = 18 seconds). This increase
is less pronounced compared to the elevator deflection case, suggesting that the networks are able to
process acceleration changes more efficiently.

D.1. Network type analysis 94

Test case 4

Figure D.4: Machine learning optimised controls for test case 4. The controls optimised using a GRU network have a
variance (expressed as a percentage of the maximum control value) of 2.75% and 2.62% for the elevator and thrust setting

respectively. For the transformer network the variance is 7.77% and 4.52% respectively.

Figure D.5: Machine learning optimised high-fidelity trajectory for test case 4. For the GRU network, the x and z variance
is 4.79m and 32.2m respectively. For the transformer network the variance is 12.1m and 17.5m.

In the final test case, the advantage of considering the entire trajectory at once is evident. The control
optimiser in both the GRU and transformer network cases generates a trajectory that captures the overall
movement of the reference trajectory, albeit at the expense of short-term fitting accuracy. Conversely,
the MPC method, which optimises for a shorter planning horizon, initially provides an excellent fit but
tends to quickly overshoot the reference trajectory. This demonstrates the trade-offs between different
approaches in terms of their ability to balance overall trajectory alignment with immediate accuracy.

D.1. Network type analysis 95

Table D.2: Optimised high-fidelity trajectory error metrics for test case 4.

(a) GRU network

Error Type Mean error
µ

STD σ

DTW (1e3 m) 177.7 4.2
DFD (leash-
length) (m)

1328.0 12.9

LCSS (-) 0.743 0.011
ELS (m) 437.2 2.9

(b) Transformer network

Error Type Mean error
µ

STD σ

DTW (1e3 m) 170.5 9.7
DFD (leash-
length) (m)

1297.1 76.3

LCSS (-) 0.743 0.014
ELS (m) 422.7 27.4

For network performance, the GRU network consistently edges out the transformer network. This
difference is noticeable in the case of the LCSS error, where the GRU network significantly outperforms
the transformer. This superiority is visually apparent as the GRU network more closely adheres to the
reference trajectory, especially towards the end of the sequence. Overall, the machine learning-based
approach demonstrates superior results compared to the MPC method.

Figure D.6: Average prediction error and error variance of the GRU and transformer network for test case 3. The average
GRU prediction variance is 7.1m and 19.2m for x and z dimension respectively. The average transformer network variance

is 16.1m and 14.2m.

Examining the network fit of the high-fidelity model reveals that the GRU network consistently outper-
forms the transformer network in terms of average error and variance. Additionally, the influence of
control deflection is evident in the z-deflection error, where spikes in error correspond with peaks in
elevator control deflection. However, this behaviour is less pronounced in the x-distance covered when
observing thrust deflection.

D.2. Active learning analysis 96

D.2. Active learning analysis
Test case 2

Figure D.7: Influence of the number of retraining iterations on the predictive performance for the optimised controls for the
second test case. The shaded region represent the 95% confidence interval for 9 different random seeds.

When comparing the results to the first test case, it is evident that the error is significantly higher at the
beginning and decreases towards the end. This observation underscores the importance of retraining
and expanding the dataset to enhance prediction reliability. Similarly to previous observations, the GRU
network continues to outperform the transformer network in this scenario. Moving on to the average
prediction error:

D.2. Active learning analysis 97

Figure D.8: Average prediction error of the networks at every iteration for multiple retraining iterations for the second test
case. The shaded region represent the 95% confidence interval for 9 different random seeds.

The graph reinforces the assertion that an increased amount of training is critical for accurate predictions.
Notably, in scenarios with no retraining (highlighted in green in the left column), the prediction error
worsens over time, underscoring that continuous learning is essential even in seemingly simpler cases.
The right column further emphasizes the need for sufficient training. Surprisingly, the confidence in-
terval is larger than in the first test case, which can be attributed to the initial prediction accuracy of the
network.

D.2. Active learning analysis 98

Test case 3

Figure D.9: Influence of the number of retraining iterations on the predictive performance for the optimised controls for the
third test case. The shaded region represent the 95% confidence interval for 9 different random seeds.

In the third test case, a more complex elevator actuation is used relative to the first two scenarios. This
complexity provides a rigorous test of the networks’ predictive capabilities. Under these conditions,
the GRU network displays an increase in prediction error, indicating its sensitivity to complex inputs.
Conversely, the transformer networkmaintains a consistent error rate, showcasing its robustness inmore
demanding scenarios.

D.2. Active learning analysis 99

Figure D.10: Average prediction error of the networks at every iteration for multiple retraining iterations for the third test
case. The shaded region represent the 95% confidence interval for 9 different random seeds.

Analysis of the prediction error per optimisation step indicates that transformers are particularly re-
sponsive to the extent of training they receive. Without significant retraining, transformers exhibit a
noticeable increase in error, more so than GRU networks, which have approximately 50% fewer train-
able parameters. This difference highlights the critical need for substantial training for transformers to
perform optimally.

	Summary
	Nomenclature
	Introduction
	Theoretical Foundation
	Optimal Control Theory
	Complexity Reduction
	Space Mapping
	Sequence-to-Sequence Neural Networks

	Space Mapping & Machine Learning: Research Direction & Integration Challenges
	Research direction
	Integration challenges
	Space mapping problem formulation
	Test cases

	Mapping Function Implementation
	MPC mapping function
	Mapping function: Machine Learning
	Machine learning model robustness

	Model Predictive Control Based Space Mapping
	Number of segments
	Planning horizon

	Sequence-to-Sequence Network Based Space mapping
	Comparing network types
	Influence of active-learning & retraining

	Results Analysis & Discussion
	Results summary
	Answering the research question
	Discussion

	Conclusion & suggestions for future research
	Conclusion
	Suggestions for future research.

	References
	Low-Fidelity Flight Mechanics Models
	Open loop
	Closed loop
	High-fidelity model

	Error Determination Methods
	MPC method supporting results
	Base implementation
	Number of segments analysis
	Planning horizon analysis

	Machine Learning method results
	Network type analysis
	Active learning analysis

