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Neural network decoder for near-term surface-code experiments
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Neural network decoders can achieve a lower logical error rate compared to conventional decoders, like
minimum-weight perfect matching, when decoding the surface code. Furthermore, these decoders require no
prior information about the physical error rates, making them highly adaptable. In this study, we investigate
the performance of such a decoder using both simulated and experimental data obtained from a transmon-qubit
processor, focusing on small-distance surface codes. We first show that the neural network typically outper-
forms the matching decoder due to better handling of errors leading to multiple correlated syndrome defects,
such as Y errors. When applied to the experimental data of Google Quantum AI [R. Acharya et al., Nature
(London) 614, 676 (2023)], the neural network decoder achieves logical error rates approximately 25% lower
than minimum-weight perfect matching, approaching the performance of a maximum-likelihood decoder. To
demonstrate the flexibility of this decoder, we incorporate the soft information available in the analog readout of
transmon qubits and evaluate the performance of this decoder in simulation using a symmetric Gaussian-noise
model. Considering the soft information leads to an approximately 10% lower logical error rate, depending on
the probability of a measurement error. The good logical performance, flexibility, and computational efficiency
make neural network decoders well-suited for near-term demonstrations of quantum memories.

DOI: 10.1103/PhysRevResearch.7.013029

I. INTRODUCTION

Quantum computers are anticipated to outperform classi-
cal computers in solving specific problems, such as integer
factorization [1] and quantum simulation [2]. However, for a
quantum computer to perform any meaningful computation, it
has to be able to execute millions of operations, requiring error
rates per operation lower than 10−10 [3,4]. Despite a valiant
experimental effort aimed at enhancing operational perfor-
mance, state-of-the-art processors typically exhibit error rates
per operation around 10−3 [5–14], which is far from what is
needed to perform any useful computation.

Fortunately, quantum error correction (QEC) provides a
means to reduce the error rates, albeit at the cost of ad-
ditional overhead in the required physical qubits [15–18].
Two-dimensional stabilizer codes [19], such as the surface
codes [20], have emerged as a prominent approach to realizing
fault-tolerant computation due to their modest connectivity
requirements and high tolerance to errors [21–23]. These
codes encode the logical information into an array of physical
qubits, referred to as data qubits. Ancilla qubits are used
to repeatedly measure parities of sets of neighboring data
qubits. Changes between consecutive measurement outcomes,
which are typically referred to as syndrome defects, indicate
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that errors have occurred. A classical decoder processes this
information and aims at inferring the most likely correction.

The increased number of available qubits [24–27] and the
higher fidelities of physical operations [5–14,28–33] in mod-
ern processors have enabled several experiments employing
small-distance codes to demonstrate the capacity to detect
and correct errors [26,27,34–46]. In a recent milestone exper-
iment, the error rate per QEC round of a surface-code logical
qubit was reduced by increasing the code distance [26],
demonstrating the fundamental suppression achieved by QEC.

The performance of the decoder directly influences the
performance of a QEC code. Minimum-weight perfect match-
ing (MWPM) is a good decoding algorithm for the surface
code, which is computationally efficient and, therefore, scal-
able [21,47–50]. Its good performance is ensured under the
assumption that the errors occurring in the experiment can be
modeled as independent X and Z errors [21]. This leads to
the MWPM decoder performing worse than decoders based
on belief propagation [51–54] or a (more computationally
expensive) approximate maximum-likelihood decoder based
on tensor-network (TN) contraction [55,56]. A more practical
concern is that a decoder relies on a physical error model
to accurately infer the most likely correction. Typically, this
requires constructing an approximate model and a series of
benchmarking experiments to extract the physical error rates.
While there are methods to estimate the physical error rates
based on the measured defects [26,39,57,58], they typically
ignore nonconventional errors such as crosstalk or leakage.
The presence of these errors can impact both the accuracy with
which the physical error rates are estimated from the data and
the performance of the decoder itself [58].
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An alternative approach to decoding is based on using
neural networks (NNs) to infer the most likely correction
given a set of measured defects [59–79]. These decoders do
not require any prior information about the error model and
therefore alleviate the need to construct any error model, mak-
ing them highly adaptable. This flexibility comes at the cost of
requiring a significant amount of data for training the network
and optimizing the hyper-parameters to ensure that the opti-
mal performance of the decoder is reached during training.
Despite the potential issues during the training, it has been
shown that they can match and generally exceed the perfor-
mance of MWPM decoders, in several cases achieving near-
optimal performance [62,64]. Depending on the NN architec-
ture employed, these decoders can be scalable and run in real
time [66,75–78]. While decoders based on recurrent NNs are
more computationally expensive, they enable the decoding of
experiments performing a variable number of stabilizer mea-
surement rounds [62,64,69], making them well-suited for de-
coding near-term memory [62] and stability experiments [80].

Most of the NN decoders proposed in the literature so far
have only been benchmarked on simulated data, leaving open
the question of what their performance will be when applied to
experimental data. Reference [81] explored the performance
of a graph neural network decoder on data from the repetition
code experiment done in [26]. Reference [82] developed a
transformer-based recurrent NN decoder and applied it to
the surface code experiments that were also done in [26],
achieving a lower logical error rate than the TN decoder and
demonstrating that the performance of such a decoder can be
further improved by considering the information about leak-
age outside of the computational subspace of transmon qubits
and the continuous information available in the measurement
outcomes of these qubits [83,84].

In this work, we assess the performance of a recurrent neu-
ral network decoder using both simulated and experimental
data. Our work goes beyond [62] and previous NN decoding
works in applying and partially training a NN decoder for the
first time on data from a surface-code experiment [26], thus
capturing realistic performance and showing the versatility of
NN decoders. In addition, we go beyond [62] in training the
NN decoder for a distance-7 surface code and extracting the
exponential error suppression factor � [39], defined in Eq. (1),
on simulated data using a circuit-level noise model. Thirdly,
we show that our NN decoder can be trained with (simulated)
soft measurement data and get a performance enhancement.

We begin by simulating the performance of a d = 3 sur-
face code using a circuit-level noise model to show that the
NN decoder outperforms MWPM by learning to deal with Y
errors, as previous studies have suggested [62].

Next, we investigate the performance of the NN decoder
when applied to data from a recent surface code experiment
[26]. Due to the limited volume of available experimental
data (see Sec. III B), we train the NN decoder on simulated
data generated using an error model based on the measured
physical error rates. However, we evaluate the decoder’s
performance on simulated and experimental data. The NN
decoder significantly outperforms MWPM when decoding
simulated data, and furthermore achieves a lower logical
error rate for the d = 5 code than the constituent d = 3
codes. When evaluated on experimental data, the NN decoder

FIG. 1. (a) Schematic of a distance d = 3 surface-code logical
qubit, where nine data qubits (white circles) store the logical in-
formation. Eight ancilla qubits (blue and green circles) are used to
measure the Z-type (green plaquettes) and X -type (blue plaquettes)
stabilizers of the code. Examples are shown of the XL (yellow) and
ZL (red) logical operators of the code. (b) Illustration of the Z-type
plaquette (left, green) and X -type (right, blue) plaquette correspond-
ing to the ZZZZ and XXXX stabilizer operators measured by each
ancilla qubit.

achieves a performance approaching that of a tensor-network
decoder, which approximates a maximum-likelihood decoder.
However, contrary to the finding in [26], the logical error rate
observed in the d = 5 experiment is higher than the average
of each of the d = 3 experiments, which we attribute to either
a suboptimal choice of hyper-parameters or the mismatch
between the simulated data that the decoder was trained on
and the experimental data.

To further explore the performance of NNs, we consider
the continuous information available in the measurement out-
comes of transmon qubits [83,84], typically referred to as
soft information [85]. By calculating the defect probabilities
given the soft outcomes and providing them to the neural
network during training and evaluation, we demonstrate that
the soft NN decoder can achieve an approximately 10% lower
logical error rate compared to the hard NN decoder that does
not consider this soft information if the measurement error
probability is sufficiently high.

II. BACKGROUND

A. The surface code

A (rotated) surface code encodes a single logical qubit
into a two-dimensional array of n = d × d physical qubits,
referred to as data qubits, where d is the distance of the
code. The logical state of the qubit is determined by the
stabilizers of the code, which are the weight-4 or weight-2
X -type (blue plaquettes) or Z-type (green plaquettes) Pauli
operators; see Fig. 1. In addition to the stabilizers, the code
is given by a pair of anticommuting logical operators, XL and
ZL, which commute with the code stabilizers. The stabilizers
are typically measured indirectly with the help of n − 1 ancilla
qubits. To perform this measurement, each ancilla coherently
interacts with its neighboring data qubits in a specific order
[86], after which the ancilla qubit is measured and reset.
The stabilizer measurement outcomes are typically referred
to as the syndromes and hold information about the errors
that have occurred. The full circuits used to perform these
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measurements are shown in Fig. 8. In particular, we use the
circuits used in [26], which feature several echo gates used
for dynamical decoupling in the experiment, used to mitigate
the dephasing experienced by the qubits due to low-frequency
flux noise; see Appendix A 1 for additional details.

To characterize the performance of the code, we perform
a series of logical memory experiments. In each experiment,
the physical qubits are prepared in an eigenstate of the XL

(ZL) logical operator, after which N − 1 rounds of stabilizer
measurements are executed. The experiment is concluded by
reading out each data qubit in the X (Z) basis, which also
performs a logical XL (ZL) measurement. The goal of each
experiment is to maintain the logical state for as many QEC
rounds as possible by using error correction; see Appendix A 1
for more details. We refer to each individual such experiment
as a shot.

The information about errors is contained in the stabilizer
measurement outcome mr,a of ancilla a at round r. The data-
qubit measurement outcomes obtained at the end of each
experiment can be used to infer a final set of outcomes mr=N,a

for either the X -type or Z-type stabilizers. The defects dr,a =
mr,a ⊕ mr−1,a isolate the changes in mr,a such that an error
is signaled by an observation of one or more dr,a = 1. The
choice of initial state and the dynamical decoupling gates
can also flip some of the measured mr,a, which is accounted
for when calculating dr,a. A decoder processes the observed
dr,a to infer a correction for the measured logical observable.
By repeating each experiment many times, we extract the
probability of a logical error pL(r) at QEC round r, from
which we calculate the logical fidelity FL(r) = 1 − 2pL(r),
which decays exponentially with the number of executed QEC
rounds. We model this decay as FL(r) = (1 − 2εL )r−r0 , where
εL is the logical error rate per QEC round and r0 is a fitting
constant. When fitting the decay of FL(r) to extract εL, we
start the fit at r = 3 to avoid any time-boundary effects that
might impact this estimate.

B. Error models

To explore the performance of the NN decoder, we perform
simulations using circuit-level Pauli-noise models. For most
of our simulations, we consider a depolarizing circuit-level
noise, which is defined as follows:

(i) After each single-qubit gate or idling period, with a
probability p/3, we apply an error drawn from {X,Y, Z}.

(ii) After each two-qubit gate, with a probability p/15, we
apply an error drawn from {I, X,Y, Z}⊗2 \ {II}.

(iii) With a probability p, we apply an X error before each
measurement.

(iv) With a probability p, we apply an X error after each
reset operation or after the qubits are first prepared at the start
of an experiment.

In some of our simulations, we consider noise models that
are biased to have a higher or a lower probability of applying
Y errors. To construct this model, we define a Y -bias factor
η and modify the standard depolarizing circuit-level noise
model, as follows:

(i) After each single-qubit gate or idling period, there is a
probability ηp/(η + 2) to apply a Y error and a probability
p/(η + 2) to apply an X or a Z error.

(ii) After each two-qubit gate, there is a proba-
bility ηp/(7η + 8) of applying an error drawn from
PB = {IY, XY,Y I,Y X,YY,Y Z, ZY } and a probability
p/(7η + 8) of applying an error drawn from {I, X,Y, Z}⊗2 \
(PB ∪ {II}).

This biased error model is a generalization of the depolar-
izing model. In particular, choosing η = 1 makes this noise
model equivalent to the depolarizing one. On the other hand,
when η = 0, the model leads to only X or Z errors applied
after operations. In the other limiting case, as η → ∞, the
model applies only Y errors after idling periods and gates.
Given that the error probability is the same across all oper-
ations of the same type, we will refer to these error models as
uniform circuit-level noise models.

Finally, we also perform simulations of the recent exper-
iment conducted by Google Quantum AI, using the error
model which they provided together with the experimental
data [26]. This is once again a circuit-level Pauli-noise model
similar to the ones presented above, but the probability of a
depolarizing error after each operation is based on the mea-
sured physical error rates. We will refer to this model as the
experimental circuit-level noise model.

We use stim [87] to perform the stabilizer simulations. We
have written a wrapper package that helps with constructing
the circuit for each experiment, which is available in [88]. We
use pymatching [49] for the MWPM decoding. The weights
used in the MWPM decoder are directly extracted from the
sampled circuit using the built-in integration between stim and
pymatching.

C. Neural network architecture

Here, we describe the NN architecture that we employ
in this work, which follows nearly exactly the one proposed
in [62,64]. Many NN decoders studied previously are based
on feed-forward or convolutional NN architecture. These de-
coders can generally decode experiments running a fixed
number of QEC rounds. Decoders based on recurrent NN
architectures, on the other hand, can learn the temporal corre-
lations between the data (in our case, the correlations between
the defects in different QEC rounds generally resulting from
ancilla-qubit or measurement errors), allowing them to di-
rectly process experiments performing a variable number of
QEC rounds. We have used the TensorFlow library [89] to
implement the NN architecture, with the source code of the
decoder available in [90], the parameters used for each train-
ing are listed in Table I, while the scripts that perform the
training are available upon request.

The NN architecture takes as input the defects da,r with
r = 1, 2, . . . , N . The decoder solves a binary classification
problem and determines whether a correction of the logi-
cal observable is required based on the observed defects. In
practice, the architecture is based on a two-headed network
that makes two predictions pmain and paux, which are used
to improve the training of the network; see Fig. 2. To train
a decoder, a series of memory experiments are performed.
Since the logical qubit is prepared in a known logical state
and measured at the end of each experiment, it is possible to
extract the actual value ptrue ∈ {0, 1} of whether a correction
is required or not. In particular, the cost function I that the
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TABLE I. The hyperparameters used for training the NN decoders. Different parameters are used for simulations based on the uniform
circuit-level noise model and the experimental circuit-level noise, which models the experiments done in [26]. The internal state size of the
network layers NL is chosen to scale with the code distance d . The QEC round parameters [i, j, k] for each data set refer to performing
experiments starting with i QEC rounds and going up to j rounds in steps of k. The total number of shots used for training is given, which
is equally divided over the QEC rounds and prepared states (not shown in the table). The learning rate, batch size, and dropout rate are the
hyperparameters we tune to help the network to train.

Distance Shots Rounds Dim. NL Learning rate Batch size Dropout rate

Experimental circuit-level noise

3 2 × 107 [1, 25, 2] 64 5 × 10−4 64 5%

5 6 × 107 [1, 25, 2] 253 5 × 10−4 256 5%
Uniform circuit-level noise

3 107 [1, 37, 4] 64 10−3 256 20%
5 107 [1, 37, 4] 96 10−3 256 20%
7 107 [1, 37, 4] 128 10−3 256 20%

network attempts to minimize during training is the weighted
sum of the binary cross-entropies between each prediction and
ptrue, expressed as

I = H (pmain, ptrue ) + waH (paux, ptrue ),

where wa is a weight that is typically chosen as wa = 0.5 in
our runs, while

H (pi, p j ) = −pi log p j − (1 − pi ) log(1 − p j )

is the binary cross-entropy function. The choice behind this
loss function is elaborated below.

Figure 2 schematically illustrates the architecture of the
recurrent network. The recurrent body of the neural network
consists of two stacked long short-term memory (LSTM) lay-
ers [91,92]. Each LSTM layer is defined by a pair of internal
memory states: a short-term memory, referred to as the hidden
state, and a long-term memory, referred to as the cell state.
Here, we use the same internal states size NL for both LSTM
layers, with NL = 64, 96, 128 for surface codes of distance
d = 3, 5, 7, unless otherwise specified. The LSTM layers re-
ceive the defects for each QEC round as input, calculated

FIG. 2. Schematic of the recurrent NN architecture used in this
work, following the design proposed in [64]. The inputs to the
network are the set of defects {da,r}, which are calculated from
the measurement outcomes of each ancilla qubit a at QEC round
r = 1, 2, . . . , N − 1, and the final defects {da,N }, which are inferred
from data qubit measurements. The time-invariant input {da,r} is
provided to the recurrent part of the network, consisting of two
stacked LSTM layers (yellow rectangles) and a ReLU activation
layer (orange rectangle). The recurrent output is then passed to the
two heads of the decoder, which consist of an evaluation layer (blue
rectangle) that predicts a probability of a logical error. The lower
head takes as input only the recurrent output and outputs a probability
paux. The upper head, on the other hand, combines (teal rectangle) the
recurrent output with {da,N } and outputs a probability pmain. Arrows
indicate the flow of information through the network.

from both the X -type and the Z-type stabilizer measurement
outcomes. The first LSTM layer outputs a hidden state for
each QEC round, which is then provided as input to the second
LSTM layer, which outputs only its final hidden state. A
rectified linear unit (ReLU) activation function [89] is applied
to the output of the second LSTM layer before being passed
along to each of the two heads of the network.

The heads of the network are feed-forward evaluation net-
works [89] consisting of a single hidden layer of size NL

using the ReLU activation function and an output layer us-
ing the sigmoid activation function, which maps the hidden
layer output to a probability used for binary classification.
The output of the recurrent part of the network is directly
passed to the lower head of the network, which uses this
information to predict a probability paux of a logical error.
The upper head also considers the defects inferred from the
data qubit measurements, which are combined with the re-
current output and provided as input. Therefore, unlike the
lower head, the upper one uses the full information about the
errors that have occurred when making its prediction pmain of
whether a logical error occurred. Both pmain and paux are used
when training the network, which promotes the neural net-
work to place greater importance on the defects obtained from
the ancilla-qubit measurements and helps it to more easily
generalize to handle longer input sequences. However, only
pmain is used when evaluating the performance of the decoder.
We provide additional details about the training procedure in
Appendix A 2 and list the hyperparameters of the network in
Table I.

III. RESULTS

A. Performance on circuit-level noise simulations

We first demonstrate that the NN decoder can achieve
a lower logical error rate than the MWPM decoder by
learning error correlations between the defects, which are
otherwise ignored by the MWPM decoder. We consider
the Y -biased circuit-level noise model described previously,
parametrized by the bias η towards Y errors and a probability
p = 0.001 of inserting an error after each operation. We
use this noise model to simulate the performance of a
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FIG. 3. (a) Logical fidelity FL as a function of the number of QEC
rounds r for the MWPM (blue) and the NN decoders (red) using a
uniform circuit-level depolarizing noise model. Each data point is
averaged over 4 × 104 shots. Solid lines show the fits to the data used
to extract the logical error rate per round εL . (b) The logical error rate
εL as a function of the bias η towards Y errors for the MWPM decoder
(blue) and a NN decoder trained on simulated data using depolarizing
noise (red), corresponding to η = 1. The performance of an adapted
NN decoder at a bias of η = 0 or η = 100 is shown in dark red. Each
point is extracted from a fit of the decay of the logical fidelity over
300 QEC rounds. The error bars are smaller than the marker sizes.

d = 3 surface-code quantum memory experiment in the
Z-basis, initially preparing either |0〉⊗n or |1〉⊗n. To train
the NN decoder, we generated data sets of r = 1, 5, . . . , 37
QEC rounds, sampling 5 × 105 shots for each round and
initial state. When evaluating the decoder’s performance,
we simulate the code performance over r = 10, 30, . . . , 290
QEC rounds and sample 2 × 104 shots instead.

To benchmark the logical performance, we calculate the
logical fidelity FL at the end of each experiment. Averaging
FL over each initial state, we fit the exponential decay of
FL with the number of QEC rounds to extract the logical
error rate per round εL. Figure 3 shows that the NN decoder
maintains a constant εL when evaluated on data sets going up
to 300 QEC rounds, demonstrating the ability of the decoder
to generalize to significantly longer sequences than those used
for training. On the other hand, the NN decoder achieves about
20% lower εL compared to the MWPM decoder. We then
evaluate the trained NN decoder on simulated data using η ∈
{0, 0.5, 1, 2, 10, 100} and keep all other parameters the same
without training any new neural networks, with the resulting

error rates shown in Fig. 3(b). At η = 0, corresponding to an
error model leading to X and Z errors, the NN decoder dis-
plays a higher εL than the MWPM decoder. For η � 0.5, the
NN decoder instead demonstrates a lower logical error, with
the relative reduction increasing with the bias. This demon-
strates that the NN decoder can achieve a lower logical error
rate by learning the correlations between the defects caused
by Y errors, consistent with the results presented in [62]. The
NN decoder can achieve an even lower logical error rate at a
bias of η = 100 by being trained on a data set generated using
this bias (referred to as the adapted NN decoder in Fig. 3). On
the other hand, training a model for η = 0 does not lead to
any improvement in εL of the NN decoder, showing that the
MWPM decoder is more optimal in this setting.

B. Performance on experimental data

Next, we evaluate the performance of the NN decoder on
experimental data available from the recent experiment exe-
cuted by Google Quantum AI [26], where a 72-qubit quantum
processor was used to implement a d = 5 surface code as well
as the four d = 3 surface codes which use a subset of the
qubits of the larger code. The stabilizer measurement circuits
used in that experiment are the same as those shown in Fig. 8.
For each distance-d surface code, the data qubits are prepared
in several random bitstrings, followed by r = 25 rounds of
stabilizer measurement, followed by a logical measurement,
with experiments performed in both the X -basis and Z-basis.
The experiment demonstrated that the d = 5 surface code
achieves a lower εL compared to the average of the four
constituent d = 3 patches when using a tensor-network (TN)
decoder, an approximation to a maximum-likelihood decoder.

We find that training a NN decoder to achieve good logical
performance requires a large number of shots (approximately
107 in total or more) obtained from experiments preparing dif-
ferent initial states and running a different number of rounds.
As the amount of experimental data is too small to train the
NN decoder (the total number of shots being 6.5 × 105), we
instead opt to simulate the experiments using the Pauli error
model based on the measured error rates of each operation,
available in [26]. Keeping the same number of rounds and
prepared state, we generate a total of 2 × 107 shots for training
the decoder for each d = 3 experiment and 6 × 107 to train the
decoder for the d = 5 experiment; see Table I. While we train
the network on simulated data, we still evaluate the decoder
performance on both simulated and experimental data, with
the results shown in Figs. 4(a) and 4(b), respectively. Both the
training and evaluation data consist of r = 1, 3, . . . , 25 rounds
of QEC and consider the same initial states. When evaluating
the NN decoder on simulated data, we observe that the d = 5
code achieves a lower εL compared to the average of the d = 3
codes; see Fig. 4(a). Evaluating the decoder on the experimen-
tal data leads to an approximately 15% (40%) higher εL for
the d = 3 (d = 5) code, demonstrating that the approximate
error model used in simulation fails to fully capture the errors
in the experiment. Furthermore, we observe that the d = 5
has a higher εL instead, see Fig. 4(a), contrary to what was
demonstrated in [26] using a tensor-network decoder.

To put the performance of the NN decoder in perspective,
in Fig. 5 we compare the logical performance of the NN
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FIG. 4. Logical fidelity FL as a function of the number of QEC
rounds r for the NN decoder evaluated on simulated data [shown in
(a)] and on experimental data [shown in (b)]. The average perfor-
mance of the d = 3 surface code (red triangle), which is the average
of the performance of each of the four constituent codes (bright red
triangles), is compared to the d = 5 code (orange hexagons). Each
data point is averaged over 5 × 104 shots for both experiment and
simulation. Solid lines show the fits to the data used to extract the
logical error rate per round εL . The error bars are smaller than the
marker sizes.

decoder to the performance of several other decoders that
were also implemented in [26]. We perform this compari-
son both on simulated [see Fig. 5(a)] and experimental [see
Fig. 5(b)] data. We find that the NN decoder consistently
outperforms the standard MWPM decoder in either case. On
the experimental data set, the NN decoder performs equivalent
to the TN decoder when decoding the d = 3 surface codes.
However, when decoding the d = 5 surface code experiment,
the NN decoder displays a higher εL than the TN decoder and
the computationally efficient belief-matching (BM) decoder
[53]. When evaluated on simulated data, the NN and BM
decoders exhibit similar error rates, with the NN decoder
again demonstrating better performance when decoding the
d = 3 code but worse when dealing with the d = 5 code.
The BM decoder we use for the simulated data is described
in [54] and uses the belief propagation implemented in [94].
The higher error rate of the NN decoder for the d = 5 code
in both simulation and experiment can be related to the dif-
ficulty of optimizing the performance of the substantially
larger NN model used (see Table I for the model hyperpa-
rameters). However, the discrepancy in the experiment can

FIG. 5. The logical error rate per round εL for the d = 3 (red
triangle) and d = 5 (orange hexagon) for several decoder imple-
mentations applied to either simulated data [shown in (a)] or
experimental data [shown in (b)]. These correspond (from left to
right) to minimum-weight perfect matching (MWPM), a correlated
modification of MWPM (Corr. MWPM) [93], our neural network
(NN) decoder, belief matching (BM) [53], and a tensor network
(TN) decoder, which approximates maximum-likelihood decoding.
We did not run the corr. MWPM or TN decoder on the simulated
data so fewer data points appear in (a). All logical error rates on the
experimental data, except for the NN decoder, are taken from [26].
The error bars are smaller than the marker sizes.

also be attributed to a mismatch between the simulated data
used for training (based on an approximate error model) and
the experimental data used for evaluation. Compared to the
d = 3 surface code data, the accumulation of qubit leakage
can cause the d = 5 performance to degrade faster over the
QEC rounds [26]. We expect that training on experimental
data and a better hyperparameter optimization will enable a
NN performance comparable to state-of-the-art decoders like
BM and TN while offering additional flexibility to the details
of the noise model. Compared to the TN decoder, both NN and
BM can achieve similar logical performance while remaining
significantly faster, and if their implementation is optimized,
they can potentially be used to decode experiments in real
time.

C. Logical error rate suppression

An exponential suppression of the logical error rate, as-
suming that the physical error rates are below ‘threshold’,
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FIG. 6. The logical error rate per round εL for surface codes of
distance d = 3, 5, 7 for an MWPM decoder, shown in (a), and our
NN decoder, shown in (b). This is evaluated on data sets using a
uniform depolarizing circuit-level noise model with error probabil-
ities of p = 0.1% (blue for the MWPM, red for the NN decoder)
and p = 0.05% (teal for the MWPM, orange for the NN decoder).
Solid lines show the fits to the data used to extract the logical
error suppression factor �. Each data point is extracted from a
fit to the FL as a function of QEC rounds. The logical fidelities
are extracted over 105 shots. The error bars are smaller than the
marker sizes.

is vital for realizing a fault-tolerant quantum computer. We
explore the error suppression achieved when using the NN
decoder. We characterize the logical performance of d =
3, 5, 7 surface codes simulated using a uniform depolariz-
ing circuit-level noise model with an error probability of
p = 0.1%, close to the state-of-the-art physical error rates
achieved in the experiment. To train the NN decoder, we
use data generated using this error probability. We find that
also training using a higher probability of p = 0.2% leads
to a significantly lower logical error rate for the d = 7 code.
Furthermore, we evaluate the performance of the NN decoder
on data simulated using p = 0.05%, which is an example of
the physical error rate needed to achieve practical subthresh-
old scaling of the error rate. For each distance d and error
probability p, we perform simulations of memory experiments
in the Z-basis with varying numbers of QEC rounds, going
up to 600 rounds for the d = 7 code with an error rate of
p = 0.05% to extract the logical error per round εL. The log-
ical error rates obtained when using an MWPM decoder are
shown in Fig. 6(a), while those achieved by the NN decoder

are shown in Fig. 6(b). If the physical error rate is below
threshold, εL is expected to decay exponentially with the code
distance d , following

εL(d ) = C/�(d+1)/2, (1)

where � is the suppression factor and C is a fitting con-
stant [39]. The data show an apparent exponential suppression
of the error rates by either decoder for the considered er-
ror rates, which we fit to extract the suppression factor �,
shown in Fig. 6. In either case, the NN decoder achieves
better logical performance compared to the MWPM decoder.
While for p = 0.1% the NN decoder achieves an approxi-
mately 10% higher �, for p = 0.05% the more accurate NN
decoder leads to an approximately 60% higher suppression
factor instead. The higher suppression factors � obtained
from using better decoders significantly reduce the code dis-
tance required to achieve algorithmically relevant logical error
rates. For example, for an error rate of p = 0.05%, realizing
εL ≈ 10−10 would require a d = 19 surface code when using
the MWPM decoder and d = 15 when using the NN decoder,
corresponding to roughly 40% less physical qubits required.
However, whether the NN can continue to exhibit similar per-
formance when decoding higher distance codes remains to be
demonstrated.

D. Decoding with soft information

Measurements of physical qubits generally produce a con-
tinuous signal that is subsequently converted into declared
binary outcomes by classical processing and thresholding. For
example, transmon qubits are dispersively coupled to a dedi-
cated readout resonator, which itself is connected to a readout
feedline. Readout is performed by applying a microwave pulse
to the feedline, populating the readout resonator. Due to a
state-dependent shift of the resonator frequency, the outgo-
ing signal is phase-shifted depending on whether the qubit
is in the state |0〉 or |1〉. This leads to a change in the real
and imaginary components of the outgoing signal, which is
experimentally measured. This two-dimensional output can
be transformed into a single continuous real variable and
converted to a binary outcome by applying some threshold
calibrated using a separate experiment [32,83,84].

While binary variables are convenient to work with and
store, continuous measurement outcomes hold much more
information about the state of the qubit, referred to as soft
information. It has been demonstrated that an MWPM-based
decoder, which considers the soft information of the individ-
ual measurements when decoding, offers higher thresholds
and lower logical error rates than a hard decoder, which only
considers the binary outcomes [85]. To demonstrate the flex-
ibility of machine-learning decoders, we consider providing
the soft information available from readout when training and
evaluating the NN decoder.

In our simulations, measurements project the qubit into
either |0〉 or |1〉. A measurement outcome mr,q = i of qubit q
at round r corresponds to the ancilla qubit being in |i〉 directly
after the measurement. Given mr,q = i, we model the soft
outcome m̃r,q ∈ R to follow a Gaussian distribution Ni with
mean μi and standard deviation σ . The soft outcome m̃r,q can
then be converted to a binary outcome m̄r,q by introducing a
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threshold t , such that

m̄r,a =
{

0 if m̃r,a � t,

1 otherwise.

For the symmetric Gaussian distributions that we con-
sider, this process leads to an assignment error probability
P(m̄r,q = 0 | mr,q = 1) = P(m̄r,q = 1 | mr,q = 0) = pm. This
assignment error is added to the errors considered in our
circuit-level noise models, specifically the X error before
each measurement that happens with a probability p. The
assignment error probability can be related to the signal-to-
noise ratio SNR = |μ0 − μ1|/2σ as pm = 1

2 erfc( SNR√
2

). We fix
μ0 = −1 and μ1 = 1 such that a given probability pm fixes
the standard deviation σ of the two distributions.

The most straightforward approach to incorporating the
soft information into the NN decoder is to directly provide
the soft measurement outcomes m̃r,q as input during training
and evaluation. However, we find that doing this leads to an
overall poor logical performance. Instead, we estimate the
probability of a defect P(dr,a = 1 | m̃r,a, m̃r−1,a), given the
soft measurement outcomes of an ancilla qubit a in consec-
utive QEC rounds. Given a soft outcome m̃r,q, the probability
of the measured qubit “having being in the state” |i〉 can be
expressed as

P(i | m̃r,q ) = P(m̃r,q | i)P(i)∑
j∈{1,2} P(m̃r,q | j)P( j)

.

The soft outcomes follow a Gaussian distribution, that is,
P(m̃r,q | i) = Ni(m̃r,q ). Finally, we make the simplifying as-
sumption that the prior state probabilities P(i) = P( j) = 1

2 ,
such that

P(i | m̃r,q ) = Ni(m̃r,q)∑
j∈{1,2} N j (m̃r,q )

.

The probability of observing a defect can then be expressed as

P(dr,a = 1 | m̃r,a, m̃r−1,a)

= 1 −
∑

i∈{0,1}
P(i | m̃r,a)P(i | m̃r−1,a).

The expression for the defect probability inferred from using
the soft (final) data qubit measurement outcomes can be de-
rived similarly.

To explore the performance of the soft NN decoder, we
simulate the d = 3 surface-code memory experiment using
a circuit-level noise model with an error rate per operation
of p = 0.1%. We consider two separate assignment error
probabilities pa

m and pd
m for ancilla qubit and data qubit mea-

surements. We motivate this choice by the fact that data qubits
remain idling while the ancilla qubits are being measured. A
shorter measurement time can reduce the decoherence expe-
rienced by the data qubits but will typically lead to a higher
pa

m. The data qubit measurements at the end of the experi-
ment, on the other hand, can be optimized to minimize pd

m.
Therefore, we focus on how a soft decoder can help with
decoding when pa

m is higher, similar to the discussion in [85].
We train the NN decoder using data sets of r = 1, 5, . . . , 37
QEC rounds, sampling 5 × 105 shots for each round and
initial logical state. When evaluating the performance, we

FIG. 7. (a) The logical fidelity FL as a function of the number of
QEC rounds r for a hard and a soft version of the MWPM decoder
(blue circles and purple triangles, respectively) and the NN decoder
(red pentagons and gray diamonds, respectively). The soft decoders
use the soft information by using the probability of observing defects
in the case of the soft NN decoder or the likelihood of an assignment
error [85] in the case of the soft MWPM decoder. The hard decoders
use the defects obtained from the hard measurement outcomes. This
performance is estimated on simulated data using a uniform depolar-
izing circuit-level noise model with an error probability p = 0.1%.
The soft outcome distributions are such that ancilla and data qubits
have a probability of assignment errors of pa

m = 1% and pd
m = 0.1%,

respectively. Solid lines show the fits to the data used to extract the
logical error rate per round εL . Each data point is averaged over
105 shots. (b) The extracted logical error rate εL for each of the
four decoders as a function of the ancilla qubit assignment error
probability pa

m, keeping pd
m = 0.1% and p = 0.1%. The error bars

are smaller than the marker sizes.

simulate r = 10, 30, . . . , 150 QEC rounds, sampling 5 × 104

shots instead.
The results for pa

m = 1% are shown in Fig. 7(a). The
hard NN decoder achieves an approximately 20% lower
logical error rate than the hard MWPM decoder, consistent
with the results shown in Fig. 3. Furthermore, the soft
NN decoder achieves an approximately 5% lower error
rate compared to the hard NN decoder, demonstrating
the ability of the decoder to adapt to the provided soft
information. Finally, we also compare the performance of
these decoders to the soft MWPM decoder proposed in [85].
This decoder encodes the soft information in the weights of
the matching graph using the likelihood of an assignment
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error Lr,a = N¬i(m̃r,a)/Ni(m̃r,a) given a soft outcome m̃r,a

that leads to a hard outcome of m̄r,a = i. We observe that
using the soft MWPM decoder reduces the logical error rate
by approximately 15% relative to the hard MWPM decoder,
indicating that the soft NN decoder is not optimally using the
available soft information. In Fig. 7(b) the logical error rate εL

of the three decoders is shown for pa
m ∈ {0, 0.1%, 1%, 10%},

where both NN decoders are trained at the corresponding
pa

m. For low pa
m, the performance of the soft NN decoder

is essentially equivalent to the hard NN decoder, with a
moderate reduction in εL achieved for pa

m � 1%. In particular,
for pa

m = 10% the soft NN decoder achieves a 10% lower
logical error rate compared to the hard NN decoder. We
observe that the performance of the soft MWPM decoder
becomes closer to that of the soft NN decoder as pa

m increases,
demonstrating that the probability of defects is likely not the
optimal way to provide the soft information to the decoder.
Another downside of this representation is that for a high
assignment error probability pa

m � 20%, the probability of
observing a defect is close to 50%, which also impacts the
training and leads the soft NN decoder to exhibit a higher
logical error rate compared to the hard one (not shown in
Fig. 7). Finding a more optimal representation of the soft
information that can be provided to the NN decoder and
optimizing its performance remain open questions.

IV. DISCUSSION

We now discuss in more detail the performance of the
NN decoder on the experimental data. Unfortunately, we only
use simulated data to train the NN decoder throughout this
work. These simulations use approximate Pauli-noise models
that account for the most significant error mechanisms in the
experiment, such as decoherence and readout errors. However,
they do not include several important error sources present in
the actual experiments, such as leakage, crosstalk, and stray
interactions. The exclusion of these error mechanisms leads to
the Pauli-noise models underpredicting the logical error rate
compared to the rates observed in the experiment, as observed
in Fig. 4. Furthermore, it was shown that the d = 5 code is
more sensitive to errors such as leakage and crosstalk, which
can lead to a more significant deviation relative to simulations
of the d = 3 codes [26]. Despite using these approximate
models for training, when evaluating the NN decoder on ex-
perimental data, we observe that it outperforms MWPM and
can achieve logical error rates comparable to those obtained
using maximum-likelihood decoding, which is approximated
by the TN decoder. The TN decoder requires information
about the error probabilities, what defects they lead to, and
their corresponding corrections, which can be encoded into
a hypergraph, where the nodes correspond to defects and
the hyperedges represent errors. Importantly, this hypergraph
also does not explicitly include hyperedges corresponding
to nonconventional errors, such as leakage or crosstalk. We
expect that training on experimental data and optimizing the
hyperparameters of the network will enable it to match the
performance of the TN decoder closely and potentially exceed
it by learning about errors not included in the hypergraph.

Despite the large volume of training data required to
achieve good performance, we do not expect that generating

sufficient experimental data for training will be an issue.
Assuming that the QEC round duration is 1 μs and that it
takes 200 ns to reset all qubits between subsequent runs, we
estimate that it would take approximately three minutes to
generate the data sets with 107 shots running r = 1, 5, . . . , 37
rounds of QEC that were used for training the d = 3, 5, 7
surface codes; see Table I.

The soft NN decoder used in this work achieves only a
moderate performance increase compared to the hard NN
decoder. Furthermore, it uses the available soft information
less optimally than the soft MWPM decoder. An alternative
approach to incorporating the soft information into the de-
coder is to estimate the likelihood of assignment errors Lr,a

used by the soft MWPM decoder and to provide them as input
to the NN decoder together with the (hard) defects dr,a that
were measured. In addition to the representation of the input
data, it is an open question whether using a soft NN decoder
will be useful in practice, where assignment error rates are
typically low. Specifically, it would be interesting to see if
using a soft NN decoder will enable using a shorter measure-
ment time that might lead to a higher assignment error rate
but maximize the logical performance overall, as discussed in
[85]. The symmetric Gaussian distributions of the continuous
measurement outcomes we consider here are only very simple
approximations of the distributions seen in experiments, and
in our modeling we could adapt these. In particular, the re-
laxation that the qubit experiences during the readout leads
to an asymmetry between the distributions and a generally
higher probability of an assignment error when the qubit was
prepared in |1〉. Furthermore, the continuous outcomes ob-
served in the experiment can also contain information about
leakage [28,95,96] or correlations with other measurements.
Therefore, it will be essential to investigate and optimize the
performance of the soft decoders using experimental data (see
the performance of a modified version of our NN decoder and
the use of soft information in a next superconducting qubit
experiment [97]).

Finally, we outline some possible directions for future
research necessary to use these decoders for decoding large-
distance experiments. Decoders based on feedforward and
convolutional architectures have been shown to achieve low-
latency decoding, making them a possible candidate for being
used in real time [75–78]. On the other hand, recurrent net-
works generally have a larger number of parameters and
carry out more complex operations when processing the data.
However, recurrent NN decoders have been shown to achieve
higher accuracy and be more easily trainable than other archi-
tectures, especially when considering realistic noise models
[69]. Therefore, whether hardware implementations of recur-
rent NN decoders can be used for real-time decoding is an
open question. In addition to the latency, the scalability of NN
decoders is an open question. Decoding higher-distance codes
will require larger neural networks and larger training data
sets, which will most likely be more challenging to train, given
that approaches based on machine learning generally struggle
when the dimension of the input becomes very large. Practi-
cally, one might be interested in whether the NN decoder can
be trained and used to decode some finite code distance, which
is expected to lead to algorithmically relevant logical error
rates given the processor’s performance. Alternatively, there
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FIG. 8. Schematic of the circuits used in the quantum memory experiments for a d = 3 surface code. Parts (a)–(d) are used to initialize
the logical state at the start of each experiment. The qubits are first prepared in the ground state (a), after which a set of conditional X gates
(gray) are used to prepare the data qubits in a bit-string state (b). Afterward, a set of H (Hadamard) gates transform this into an eigenstate of
the X -type (c) or Z-type (d) stabilizers. Parts (e)–(o) show the circuits used to measure the stabilizers. The ancilla qubits are first placed in a
superposition by a set of H gates [(c) or (d) in the first round, (e) otherwise]. The parity of the neighboring data qubits is then mapped using
four CZ gates [(f), (h), (j), and (l)]. The order of the gates used to measure the X - and Z-type stabilizers is chosen to avoid any “hook” errors
propagating to a logical error. Two layers of H gates are applied to the data qubits [(g) and (k)] to measure the parity in the X -basis. In the
middle of this sequence, X gates are applied to all qubits [(i)] for dynamical decoupling. Finally, the ancilla qubits are rotated back [(m)] using
a set of H gates, measured [(n), denoted by M] and reset [(o), denoted by R]. Several X gates are applied to the data qubit throughout this
sequence for dynamical decoupling. In the final round, all data qubits are measured (p)–(r), which is also a logical measurement. Some of the
data qubits are rotated depending on whether the experiment is done in the X [(p)] or Z [(q)] logical basis. This step replaces (m) in the final
round. Afterward, all qubits are measured simultaneously [(r)], replacing (n) in the final round. Data qubits are denoted with white circles,
while ancilla qubits are illustrated as blue and green circles. For the definition of the plaquettes, see Fig. 1. The circuits we run follow the ones
used in [26].

exist approaches that enable scalable NN decoders. These are
typically based on convolutional neural networks that learn to
infer and correct the physical errors that have occurred while
a secondary global decoder handles any possibly remaining
errors [75,77], but a purely convolutional NN method has been
explored as well [66]. The recurrent NN decoder used in this
work is not scalable, and adapting it to work with larger code
distances and using it to decode through logical operations is
another open research venue.

The data and software that support the plots presented
in this figure are available in [98]. The raw simulated data
and the scripts used for training and decoding these data are
available upon reasonable request.
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APPENDIX

1. Quantum memory experiments

To characterize the logical performance of a surface code,
we look at its ability to maintain an initial logical state as a
function of the number of QEC rounds, commonly referred
to as a quantum memory experiment. The circuits used to
perform these experiments are illustrated in Fig. 8 and follow
the ones used in the recent d = 5 surface code experiment
done by Google Quantum AI [26]. Removing some of the
Hadamard gates when compiling the stabilizer measurement
circuits leads to each ancilla qubit measuring the ZXXZ
operator instead of the standard XXXX and ZZZZ stabiliz-
ers of the surface code. Implementing this ZXXZ variant of
the surface code symmetrizes the logical error rates between
experiments done in the logical X -basis or Z-basis [26]. De-
spite this modification, we use notations associated with the
traditional stabilizers measured by the surface code.

Each experiment begins by preparing a given logical state,
performed by the circuits in Figs. 8(a)–8(d). The data qubits
are first initialized in the ground state and then prepared in

013029-10



NEURAL NETWORK DECODER FOR NEAR-TERM … PHYSICAL REVIEW RESEARCH 7, 013029 (2025)

either |0〉 or |1〉 by a layer of conditional X gates. A subset
of the data qubits is then rotated and transforms the ini-
tial state into an eigenstate of the X - or Z-type stabilizers.
The parity of the initial bistring state determines whether
|0〉L or |1〉L (|+〉L or |−〉L) is prepared if the experiment
is done in the Z-basis (X -basis). In simulation, we prepare
either |0〉⊗n or |1〉⊗n when using uniform circuit-level noise
models. In the experiment, several random bitstring states
are used in order to symmetrize the impact of amplitude
damping [26].

The prepared logical state is then maintained over a total of
r ∈ {1, 2, . . . , N − 1} QEC rounds, with the circuit given by
Figs. 8(e)–8(o). The first QEC round then projects this initial
state into a simultaneous eigenstate of both the X - or Z-type
stabilizers. Each cycle involves a series of four interactions
between each ancilla qubit and its neighboring data qubits,
which map the X or Z parity onto the state of the ancilla qubit.
The order in which these two-qubit operations are executed
is carefully chosen to minimize the impact of errors occur-
ring during the execution of the circuit [86]. At the end of
each QEC round, all of the ancilla qubits are measured and
reset. The stabilizer measurement circuits also contain several
echo (X ) gates on either the data or ancilla qubits, shown in
Figs. 8(e)–8(m), which dynamically decouple the qubits in the
experiment [26]. These echo gates are used to mitigate the
dephasing experienced by the qubits due to the low-frequency
flux noise. Naturally, these gates do not improve the logical
performance extracted from simulations using the approxi-
mate Pauli-error models that we consider here. Instead, these
gates are included to account for the fact that these operations
are implemented with a certain error rate. In the final QEC
round, the data qubits rotated during the state preparation are
rotated back and measured in the Z-basis together with the
ancilla qubits, illustrated in Figs. 8(p)–8(r). The data qubit
measurement outcomes are then used to calculate the value
of the XL or ZL logical observable as well as to infer a final set
of X - or Z-type stabilizer measurement outcomes.

2. Decoder training and evaluation

Here we provide additional details about how we train
the NN decoder and the hyperparameters we use. We use
the Adam optimizer typically with a learning rate of 10−3 or
5 × 10−4 for training. In addition, we apply dropout after the
hidden layer of the feedforward network of each head and,
in some cases, after the second LSTM layer with a dropout
rate of either 20% or 5% to avoid overfitting and assist with
the generalization of the network. We use a batch size of 256
or 64, which we found to lead to a smoother minimization of

the loss. After each training epoch, we evaluate the loss of
the network on a separate data set that considers the same
number of QEC rounds and prepared states as the training
data set but samples fewer shots for each experiment. After
each epoch, we save the networks’ weights if a lower loss
has been achieved. Furthermore, we use early stopping to
end the training if the loss has not decreased over the last 20
epochs to reduce the time it takes to train each model. We
have observed that not using early-stopping and leaving the
training to continue does not typically lead the network to
reach a lower loss eventually. For some data sets, we lower
the learning rate after the initial training has stopped early and
train the network once more to achieve better performance.
The hyperparameters we have used for training each network
and the parameters of the training data sets used are presented
in Table I.

The NN architecture we employ in this work uses two
stacked LSTM layers to process the recurrent input [64]. We
observe poor logical performance for a d = 3 surface code
when using only a single LSTM layer. On the other hand,
we see no significant improvement in the logical error rate
when using four layers instead, motivating the choice to use
only two. This network architecture also performs well when
decoding d = 5 and 7 surface code experiments. However,
we expect that a deeper recurrent network might improve the
logical error rates when decoding larger-distance codes or
when training on and decoding experimental data. We have
also practically observed that training the NN decoder for
larger distances is more challenging, especially if the physical
error rates are small. Training the neural network on a data set
with a higher physical error rate (in addition to data using the
same error rate as the evaluation data set) can also improve the
performance of the decoder, as we also discussed in Sec. III C.

The training of our neural networks was performed on
the DelftBlue supercomputer [99] and was carried out on an
NVIDIA Tesla V100S GPU. Once trained, the decoder takes
approximately 0.7 s per QEC round for a d = 3 surface code
(corresponding to an internal state size of NL = 64) using a
batch size of 50 000 shots on an Intel(R) Core(TM) i7-8850H
CPU @ 2.60GHz. For a d = 5 surface code (NL = 96), it
takes about 0.8 s per round, while for a d = 7 surface code
(NL = 128), it takes about 1.1 s per round, using the same
batch size of 50 000 shots. We note that using smaller batch
sizes leads to a higher overall runtime due to parallelism
when the network processes the inputs. Therefore, larger batch
sizes are preferable as long as they fit into the memory. Each
runtime was extracted by decoding simulated data sets run-
ning r = 10, 30, . . . , 290 rounds of QEC and averaging the
runtime per QEC round over all the data sets.
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