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ABSTRACT

Silent speech interfaces could enable people who lost the ability to 

use their voice or gestures to communicate with the external world,

e.g., through decoding the person’s brain signals when imagining

speech. Only a few and small databases exist that allow for the 

development and training of brain computer interfaces (BCIs) that 

can decode imagined speech from recorded brain signals. Here, we

present an open database consisting of electroencephalography 

(EEG) and speech data from 20 participants recorded during the 

covert (imagined) and actual articulation of 15 Dutch prompts. 

A validation speaker-independent classification experiment 

using a ResNet-50 model with spatial-spectral-temporal features 

extracted from the EEG signals obtained an average accuracy of 

70.6% for the classification of rest vs. covert vs. articulated speech

trials. This and observed structural differences in the EEG signals 

between covert and articulated speech demonstrate that the EEG 

signals in the three classes contain discriminative information. 

Index Terms— Brain computer interfaces, covert (imagined)

speech, electroencephalography (EEG), ResNet.

1. INTRODUCTION

People who lost the ability to speak and cannot use gestures due to 

severe neuromuscular diseases (e.g., severely paralysed people or 

patients of locked-in syndrome) are strongly impaired in 

communicating with the external world [1]. Brain-computer 

interfaces (BCIs) might enable communication with the external 

world [2]. These BCIs should convert the intended message from 

neural activity in the brain, e.g., through decoding the person’s brain 

signals during covert speech [3]. Covert speech is imagining 

speaking without moving any of the articulators or making any 

sound, so without any actual motor activity.

The neural signals that give the best results in BCIs are obtained 

using electrocorticography (ECoG) [4][5][6]. ECoG is an invasive 

technique where electrode arrays are placed directly onto the 

patient’s brain surface. Electroencepha-lography (EEG) is non-

invasive: electrodes are placed on the head, typically with a cap, 

which is more user-friendly and cheaper, but at the cost of less good 

decoding performance.

EEG signals have shown some (limited) success in, e.g., 

decoding imagined articulation of vowels (English [7], Dutch [8],

Japanese [9], Spanish [10]) and isolated words (“yes” and “no” [11],

nine Russian words [12]). Typically machine learning algorithms 

are applied for training and decoding (e.g., support vector machine 

[13], linear discriminant analysis [14], random forest [15], vanilla 

deep neural networks (DNNs) [16], and convolutional neural 

network (CNN) [17][18]). Moreover, different discriminative 

features extracted from the EEG signals have been used (e.g., 

wavelet domain features [19][20] and common spatial patterns 

(CSP) [21][22]). Nevertheless, no combination of classifier and 

features has proven to consistently achieve high decoding 

performances [18]; although Residual Network (ResNet) algorithms 

[12][16] have been found to outperform other well performing CNN 

algorithms on covert speech classification tasks in both robustness 

and practicability.

Existing methods are hard to compare as they are typically 

trained and evaluated on different databases, which are often not 

available for other researchers. We are aware of only three open 

datasets: KARA ONE [23], Nguyen et al. [24] (both English), and 

Coretto et al. [15] (Spanish), which differ in several aspects, e.g., 

EEG signal quality, recording device, and set-up (see Table 1). 

Moreover, no internal quality check within the datasets was 

performed (e.g., check whether the participants truly perform covert 

speech), potentially leading to networks trained on poorly labelled 

data [12][13]. Moreover, most databases acquire EEG only from 

covert speech, so without acquiring EEG signals during articulated 

speech in the same trial, which makes it (even more) difficult to 

verify whether a subject truly performed the covert speech task. Of 

the open datasets, only the KARA ONE database acquires covert 

and articulated speech consecutively.

To build BCIs that can decode the intended message from neural 

activity, a thorough understanding of the relationship between 

neural signals, sounds, articulation, and imagined speech is crucial, 

and largely lacking. Here, we present a database of EEG recordings 

of participants during Dutch articulated and imagined speech

(DAIS), recorded in the same trial, including their speech. We used 

prompts that consist of five vowels in isolation and as part of 10 

C1VC2 (consonant-vowel-consonant) words, where also the reverse, 

C2VC1, are Dutch words. This allows for the investigation of the 

neural signatures of vowels in isolation vs. in context, and of 

consonants in two contexts. The collected EEG signals are validated 

visually by comparing event related potentials (ERPs) and by a 

speaker-independent classification task of pre-stimulus (rest) vs. 

covert vs. articulated speech.

2. METHODOLOGY
2.1. Participants 
Twenty native Dutch speakers, 14 women and 6 men (mean age: 

24.6 years, SD: 1.0, range 23-26) participated. No participants 

reported speech, language, or cognitive disorders, and all had 

normal or corrected to normal vision. Two persons reported to be 

left-handed. The study was approved by the Human Research Ethics 

Committee of the Delft University of Technology. All participants 

gave written informed consent prior to the experiment. The 

participants received no monetary reward.

2.2. Stimuli 
The prompts consisted of five Dutch vowels (/a:, e:, o:, i, u/, where 

“:” indicates lengthening) and ten Dutch words. The five vowels IC
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constitute the different corners of the Dutch vowel quadrant. The ten 

words are five Dutch word-pairs that are also words when read 

backwards: taal, laat, leeg, geel, niet, tien, toon, noot, soep, poes
(Eng: “language”, “late”, “empty”, yellow”, “not”, “ten”, “tone”, 

“note”, “soup”, and “cat”). Each vowel is part of one word pair. The 

consonants are chosen to be diverse in their manner of articulation 

(i.e., nasals, plosives, and fricatives) while having a fairly similar 

pronunciation irrespective of position in the word (except /l/). This 

selection of prompts enables researchers to explore the effects of the 

phonetic environment on EEG signals.

2.3. Experimental set-up 
Participants were recorded individually while seated in a 

comfortable chair in front of a microphone and a screen in a sound-

attenuating room. Visual prompts (designed using the 

Psychtoolbox-3 [25] running in MATLAB) were presented on the 

screen to inform the participants which specific task to perform (rest, 

read, imagine speech, articulate speech). 

2.3.1. EEG recordings 
During the entire experiment, continuous EEG was collected from 

64 electrodes using the TMSi SAGA 64+ (with a BrainWave EEG 

Cap using the 10-20 system; see Figure 2) at a sampling frequency 

of 1024 Hz and the TMSi SAGA interface for MATLAB. The 

SAGA docking station was located outside the sound-attenuating 

room. Impedances were kept below 50 kΩ. During recording, all 

signals were amplified against the average of all connected channels

(i.e., average reference amplifier).

2.3.2. Speech recordings 
The articulated speech was recorded using an Audio Technica

AT2020USB+ microphone (Fs= 44.1 kHz). To reduce popping 

sounds, a pop filter was placed between the microphone and the 

participant at 10 cm from the microphone. The mouth-to-mic 

distance was fixed at 30 cm.

2.4. Procedure 
Each experiment consisted of 20 runs of 15 trials, one for every

prompt (i.e., the 15 Dutch vowels and words). The prompts were 

randomised for each participant using a balanced Latin square to 

reduce order effects. A trial consisted of four successive segments,

see Figure 1: pre-stimulus (rest; blank screen), reading of the prompt 

(either a vowel, denoted in orthographic script for ease of the 

participant, or a word), covert (imagined) speech (indicated with a 

thought balloon), and articulated speech (indicated with a speech 

balloon). Each run was followed by (another) 2s rest. Prompts and 

instructions were shown as black text on a dark-grey coloured 

background to minimise eye fatigue. 

The task during the pre-stimulus (rest) segment was to relax, and 

participants were allowed to blink. During the reading segment, 

participants were to read the prompt only. During the covert speech 

segment, participants were to imagine the execution of the different 

articulatory gestures as if one were to articulate the prompt once

without emitting sound or making any actual articulatory movement.

During the articulated speech segment, participants were to 

articulate the prompt once. During all segments except pre-stimulus

(rest), the participant was instructed to minimise moving, 

swallowing, and blinking to reduce the presence of artefacts.

The participants were instructed to perform the specific task 

once right after the visual cue appeared on the screen. By limiting 

the duration for the covert and articulated speech tasks to 2s and by 

collecting both tasks within a single trial, behavioural control can be 

applied to ensure that the participant only imagines the articulation 

of the presented prompt [26]. To retain attention and prevent fatigue, 

a three-minute break was scheduled after every five runs,

additionally, participants could ask for additional breaks between 

runs. During the placement of the EEG electrode cap, the 

experimental protocol was explained and participants were 

familiarised with the different visual cues in test trials.

2.5. Pre-processing of the EEG data 
During pre-processing, only channels that disconnected during the 

experiment were removed (see Section 3.1). Other potentially bad 

channels were kept. The EEG data was band-pass filtered (Hamming 

windowed sinc FIR filter) between 1 Hz and 70 Hz to remove low-

frequency trends in the data and to remove artifacts related to EMG 

activity by excluding the high gamma band. A 49-51 Hz notch filter 

(Hamming windowed sinc FIR filter) was used to remove power line 

noise at 50 Hz and all data was re-referenced.

Table 1.  Overview of the different open datasets and DAIS: 
#P(articipants), #Ch(annel)s, #Prompts (V(owels), W(ords)), 

#Rep(etitions)/Pr(ompt), Notes, L(a)ng(uage).
Dataset P Ch Prompts Rep/Pr Notes Lng
Coretto 

[15]

15 5 5V + 6W 40 covert 

+ 10 

articulated

Not in 

same trial

SP

KARA 

ONE [23]

8 64 7V + 4W 12 covert 

+ 12 

articulated

In same 

trial

EN

Nguyen 

[24]

15 64 many 100 covert 4

consecutive 

repetitions 

of same 

prompt

EN

DAIS 20 64 5V + 10W 20 covert 

+ 20 

articulated

In same 

trial

NL

Figure 1. A trial consisted of four successive segments: pre-
stimulus (rest), reading of the prompt, covert (imagined) speech, 

and articulated speech.

Figure 2. Visualisation of the electrode placement (10-20 system) 
with 62 channels. In red, the 16 EEG channels used in our 

validation study.
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Each trial was segmented into its four 2s segments using triggers

(see Figure 1) from the trigger channel. Segments containing eye 

blinks were marked using ERPLAB artefact detection (moving 

window peak-to-peak threshold). To preserve the data as much as 

possible for further research, eye blinks were only marked and not 

removed (e.g. by Independent Component Analysis).

3. THE DELFT ARTICULATED AND IMAGINED
SPEECH (DAIS) DATABASE 

EEG and the speech of in total 5993 trials of 20 participants were 

recorded. All participants completed the 20 runs of 15 trials 

(prompts), yielding 300 trials per participant, except for participant 

#2, who completed 19 runs, as run 7 was aborted halfway due to 

technical difficulties. DAIS is available to the community1.

3.1. EEG and speech data 
For participant #1, channel FC2 disconnected during the experiment

and was deleted. For the other 19 participants, data from all 62 EEG-

channels is available. A total of 24370 segments were recorded for 

the 4 different tasks and the 15 different prompts. After pre-

processing, 16510 segments (68%) were unmarked for eye blinks.

Table 2 gives an overview of the number of recorded segments

for each task, the number and percentage of unmarked segments

after pre-processing, and average number of unmarked segments per 

prompt per participant. For the pre-stimulus the max is 320 ((15 for 

each trial + 1 after each run) * 20 runs). For the other segments, the 

maximum is an average of 20 (1 for each run).

For the reading, and covert and articulated speech segments, a 

high percentage of segments was unmarked (all > 70%). For the pre-

stimulus (rest) segments a considerably lower number of segments

was unmarked (33%), which can be attributed to the fact that 

participants were allowed to blink during the pre-stimulus segments. 

In total, 5993 speech files were recorded during the articulated 

speech segments: 300 for each participant, except for participant #2

293 speech files were recorded. 

3.2. File name convention 
The segmented EEG data and the speech files in the DAIS database 

are named using the EEG extension to the Brain Imaging Data 

Structure (BIDS) [27]. The EEG segments corresponding to a 

specific task and prompt are combined for each participant, and 

stored in .fdt and .set file format, and named following the format:

sub-<participant ID>_task-<label>_eeg. The speech is stored in

.wav format with the naming format: sub-<participant ID>_task-

<label>_run-<number of run>_audio, where the label corresponds 

to the specific task and prompt, e.g., covert-aa.

Table 2. DAIS: Overview of the EEG data per task: the number of 
recorded segments, the number and % of unmarked segments after 
pre-processing, and the average number of unmarked segments per 

participant per prompt. 
Task Segments Avg segments/ 

partic/promptRecorded After preproc (%)
Pre-stimulus 6392 2108 (33%) 105

Reading 5993 4540 (76%) 15

Covert 5993 5550 (93%) 19

Articulated 5992 4312 (72%) 14

1 https://doi.org/10.17026/dans-xc3-66ze.

4. VALIDATION

To investigate whether the participants complied with the task of 

imagining speech, we visually investigated whether structural 

differences exist between the pre-stimulus (i.e., rest), covert speech 

and articulated speech segments by inspected the event-related 

potentials (ERPs) of the EEG signals. Additionally, we ran a 

speaker-independent, three-class classification task with the task to 

predict whether the EEG signal came from the pre-stimulus (rest) 

state, covert speech, or articulated speech. If a covert speech EEG 

signal is distinct (enough) from rest EEG signals and articulated 

speech signals, it is more likely that participants indeed fulfilled the 

task of imagining speech.

4.1. Data 
For the validation experiment, five participants were excluded: 

Participants #9 and #13 were excluded because they are left-handed, 

Participants #7 and #17 were excluded because their signals 

contained multiple noisy channels, and Participant #2 was excluded 

because a large part of the articulated speech trials were rejected as 

they contained eye blinks, causing an imbalance in the number of 

covert speech trials vs. the articulated speech trials.

The pre-stimulus, covert, and articulated speech EEG data of the 

remaining 15 participants was used in a leave-three-out cross-

validation scheme for which five folds were created. For each fold,

the data from 10, 2, and 3 participants were assigned to the training 

set, the validation set, and to the test set, respectively. The average 

number of EEG recordings used for training the model was 6088 (± 

96; range: 5970-6185). For more details, see [28].

4.2. Methods 
4.2.1. Event related potentials 
The EEG signals obtained during the pre-stimulus (rest), covert 

speech, and articulated speech segments are visualised through 

event-related potentials (ERPs) in the time series. The ERPs are 

calculated by averaging the 16 pre-selected channels of each 

segment for each subject. Due to the high inter-subject variability in 

the timing of the speech, no grand average between subjects was 

calculated. An ERP curve is characterized by positive or negative 

peaks which occur after the stimulus [31]. Clear distinct ERPs 

between tasks are a first visual check of the data.

4.2.2. Classification experiment 
Based on the involvement of specific areas of the cortex in language 

processing [16][24], 16 EEG channels were included in the 

validation study, i.e., the red electrodes in Figure 2: FC1 = Premotor 

cortex; FC3 = Premotor cortex; Cz = Motor cortex; C4 = Motor 

cortex; C3 = Motor cortex; FC5 = Broca’s area; FT7 = Broca’s area, 

inferior temporal gyrus; F5 = Broca’s area; F7 = Broca’s area; C5 =

Wernicke’s area, primary auditory cortex; T7 = Middle temporal 

gyrus, secondary auditory cortex; CP3 = Wernicke’s area; CP5 =

Wernicke’s area; TP7 = Wernicke’s area; P5 = Wernicke’s area; P3

= Superior parietal lobule. For more details, see [28].

To use the frequency information of the cortex, the pre-

processed EEG data from the 16 channels were converted to wavelet 

scalograms using the continuous wavelet transform (CWT) with 

Morlet wavelets [26] and combined in one 4-by-4 image of the 

scalograms. A pre-trained ResNet-50 model [29], trained on more 

than 1M images from the ImageNet database [30], was used for the 
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classification task. Since the scalograms are quite different from the 

images in the ImageNet database, we retrained all weights of all 

layers to tune the pre-trained models for the three-class classification 

task. Moreover, the last two layers of the ResNet were deleted (i.e., 

the fc1000 and classificationLayer-Predictions) and replaced with a 

new fully connected layer with the number of outputs equal to the 

number of classes (i.e., three) and a new classification layer. 

 

4.3. Results 
4.3.1. Event related potentials 
Visual inspection of the ERPs of the participants revealed clear 

differences between the EEG data of pre-stimulus (rest), covert and 

articulated speech as illustrated in Figure 3, which shows the 

average EEG over time for Participant #12. The top panel shows that 

no ERPs were found for the rest task, only background EEG activity, 

which was expected as no stimulus is given. For both overt (middle 

panel) and articulated speech (bottom panel) clear ERP components 

(the peaks and troughs) are found following the onset of the visual 

cue, followed by approximately 100-200 ms of enhanced activity.  

 

 

 
Figure 3. Average EEG for the synchronised segments for 

participant #12 to visualise the ERPs over time for rest, covert, 
and articulated speech. The different lines correspond to the 16 

selected channels. 
 

Table 3. Classification accuracies (%) per fold. 
 Validation set Test set 
Fold 1 81.1 68.4 

Fold 2 67.7 78.0 

Fold 3 69.8 70.8 

Fold 4 69.0 68.9 

Fold 5 74.5 66.7 

Average 72.4 ± 5.5 70.6 ± 4.4 

 
Table 4. Confusion matrix (averaged over the five folds) of the 

number (and percentage) of predicted class labels per true class. 
Bold indicates highest percentage predicted labels per true class. 
 Predicted class 

Rest Covert Articulated 
True 
class 

Rest 464 (33) 751 (54) 174 (13) 

Covert 615 (14) 3364 (79) 299 (7) 

Articulated 222 (6) 654 (19) 2598 (75) 

This similarity in activity around 250-300 ms for the covert and 

articulated speech tasks suggests that participants also carried out a 

language processing task during the covert speech segment [32][33]. 

For the articulated speech task, this enhanced activity is 

followed by a broad peak/trough (depending on the channel) starting 

at ~500 ms which coincides with the acoustic onset and is therefore 

associated with the voluntary movement of the articulators. The 

absence of a similar activity during the covert speech segment 

strongly suggests that no articulatory movements were made during 

the covert speech task.  

 

4.3.2. Classification results 
Table 3 shows the classification results for the validation and test 

sets averaged over pre-stimulus, covert, and articulated speech. The 

average accuracy over all folds of 70.6% is well above chance 

(33.3%). Table 4 shows the confusion matrix where each number in 

the confusion matrix indicates the number of segments in a class 

(true label) identified as any class (predicted label). Covert speech 

EEG is best classified, followed by articulated speech. Rest is most 

often classified as covert speech. Since covert speech is hardly 

classified as rest or articulated speech, we can conclude that the 

covert EEG signals contain information that is distinct from rest and 

articulated speech, strongly suggesting that the participants indeed 

performed the task of imagining speech.  

 

5. DISCUSSION AND CONCLUSION 
 
We presented the Delft Articulated and Imagined Speech (DAIS) 

database, consisting of the EEG recordings of 20 native Dutch 

speakers of the imagined (covert) and articulated speech of 15 Dutch 

prompts, and the speech recordings of the articulated speech. The 

database has recordings of more participants and repetitions per 

prompt than the only other database that recorded both covert and 

articulated speech in the same trial (KARA ONE).  

Visualisation of the ERP showed distinct structural differences 

between the averaged EEG data for the pre-stimulus (rest), covert 

speech and articulated speech segments which strongly suggest that 

the participants carried out different tasks during those segments, as 

instructed. Moreover, it shows that the participants actively engaged 

in cognitive processing (and likely in a language processing task) 

during the covert speech segments and did not simply relax. To 

extract the frequency information, scalograms were made for all 

included individual segments, which were subsequently used by the 

classification algorithm.   

The validation classification experiment showed that an off-the-

shelf ResNet, fine-tuned on the EEG data, was able to correctly 

classify imagined and articulated speech EEG with an accuracy well 

above chance. The observed structural differences in the EEG 

signals of the three tasks can thus be used for classification of rest 

vs. covert speech vs. articulated speech.  

Taking together the structural differences in the ERP and the 

limited number of confusions of the imagined speech segments with 

rest segments strongly suggest that the imagined speech EEG is 

different from the rest state EEG, suggesting that the participants 

performed the task of imagining speech.  

Finally, the careful selection of prompts and the recording of 

EEG during both imagined and articulated speech yields a database 

that paves the way to a thorough understanding of the relationship 

between the neural signals, sounds, articulation, and imagined 

speech, which is crucial for developing brain-computer interfaces.  
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