

Delft University of Technology

Variables and Variable Naming in Popular Programming Textbooks for Children and
Novices

Van Der Werf, Vivian; Hermans, Felienne; Specht, Marcus; Aivaloglou, Efthimia

DOI
10.1145/3649165.3690112
Publication date
2024
Document Version
Final published version
Published in
SIGCSE Virtual 2024

Citation (APA)
Van Der Werf, V., Hermans, F., Specht, M., & Aivaloglou, E. (2024). Variables and Variable Naming in
Popular Programming Textbooks for Children and Novices. In SIGCSE Virtual 2024: Proceedings of the
2024 on ACM Virtual Global Computing Education Conference V. 1 (pp. 242-248). ACM.
https://doi.org/10.1145/3649165.3690112
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3649165.3690112
https://doi.org/10.1145/3649165.3690112

Variables and Variable Naming in Popular Programming
Textbooks for Children and Novices

Vivian van der Werf
v.van.der.werf@liacs.leidenuniv.nl

Leiden University
The Netherlands

Felienne Hermans
f.f.j.hermans@vu.nl

Vrije Universiteit Amsterdam
The Netherlands

Marcus Specht
M.M.Specht@tudelft.nl

Delft University of Technology
The Netherlands

Efthimia Aivaloglou
E.Aivaloglou@tudelft.nl

Delft University of Technology
The Netherlands

ABSTRACT
In programming, the concept of variables is central to learning
other concepts like loops, functions, and conditions, and the way
variables are explained influences students’ understanding. Prior
work observed Massive Open Online Courses (MOOCs) on intro-
ductory programming to investigate how the topic is addressed in
teaching materials. Our work aims to verify if their results general-
ize to other materials by analyzing 13 popular Scratch and Python
programming books and investigating (1) which definitions and
analogies are currently being used to explain the variables, (2) look-
ing into the programming concepts that are introduced alongside
variables, and (3) analyzing if and how variable naming practices
are introduced. Our results support previous findings from MOOCs,
suggesting that CS educators and developers of educational materi-
als for introductory programming could pay more attention to how
they explain variables and can be more deliberate and consistent
when it concerns the teaching of naming practices. Additionally, we
found specific analogies used to explain variables, and differences
between programming languages in the order that variables are
introduced. Our work can be used to update current educational
materials and inform the development of new ones.

CCS CONCEPTS
• Social and professional topics → Computing education.

KEYWORDS
programming education; variables; naming practices; analogies;
programming concepts; qualitative content analysis; Python; Scratch

ACM Reference Format:
Vivian van der Werf, Felienne Hermans, Marcus Specht, and Efthimia Aival-
oglou. 2024. Variables and Variable Naming in Popular Programming Text-
books for Children and Novices. In Proceedings of the 2024 ACM Virtual
Global Computing Education Conference V. 1 (SIGCSE Virtual 2024), Decem-
ber 5–8, 2024, Virtual Event, NC, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3649165.3690112

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0598-4/24/12.
https://doi.org/10.1145/3649165.3690112

1 INTRODUCTION
While variables are important for core programming skills such as
reading and understanding code [27, 33, 37], they are also a hard
concept to grasp for novice programmers [19, 24]. However, since
several programming concepts expand on the concept of variables
(i.e. control flow, functions), it is essential that variables are well
understood. At the same time, variable naming practices are also
relevant to the act of reading and understanding code: meaningful
identifier names help readers understand code more easily than
when abbreviations or (random) letters are used [2, 25]. Yet, other
work also found that full names can be misleading if they do not
correctly represent their contents or purpose [1, 10].

Prior work [46] already investigated teaching practices regarding
the concept of variables and variable naming by observing intro-
ductory programming MOOCs. To verify whether their findings
generalize to other materials, the current paper investigates the
same topics in programming textbooks. Additionally, since previous
work on textbooks [31, 32] investigated which concepts are covered,
but do not detail how these are covered, this paper also aims to
expand on the current state of knowledge on teaching practices.
Following [46], but in the context of introductory programming
books, our research questions are:
(1) How are variables explained? (use of definitions and analogies)
(2) What other programming concepts are introduced either to-

gether with, right before or right after variables?
(3) How is naming addressed when variables are introduced?

2 RELATEDWORK
2.1 Analogies for explaining variables
Analogies are often used to explain programming concepts [15]. In
education, an analogy, metaphor or notional machine is a ‘tool’ that
supports learning by simplifying a concept through a representation
that highlights the most important aspects of the concept, while
obscuring less important aspects [15]. For example, ‘variables as
parking spaces’ transfers knowledge about parking spaces to the
comprehension of a variable.Waguespack [49] explains a variable of
a particular data type as a ‘container with the corresponding shape’
(shape refers to the data type). With metaphors like ‘container’ or
the popular ‘variables as a box’, it is important however to stress that
the container or box can hold only a single value. It has been found
that, even though this analogy can support an initial understanding
of the concept, it is also susceptible to the common misconception

242

https://orcid.org/0000-0002-6435-0531
https://orcid.org/0000-0003-0722-0156
https://orcid.org/0000-0002-6086-8480
https://orcid.org/0000-0002-6531-2166
https://doi.org/10.1145/3649165.3690112
https://doi.org/10.1145/3649165.3690112
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649165.3690112&domain=pdf&date_stamp=2024-12-05

SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA Vivian van der Werf, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

among novices that variables can hold multiple values at the same
time [8, 11, 19]. Any analogy might thus only partly or incorrectly
represent a concept and can, therefore, leave novice students with
an incorrect understanding. Nevertheless, Doukakis et al. [12] found
that using an analogy appears preferable over using none. More
research is needed to understand which analogies are suited in
which contexts, and if we should abandon the boxmetaphor entirely,
perhaps replacing it with ‘variables as labels’ [19]. In introductory
programming MOOCs, prior work [46] found common use of the
metaphor variables as a (mail)box in explanations and visualizations
and also a ‘question-and-answer’ format to think about variable
names and contents. Another promising way of introducing and
teaching variables is with the help of Sajaniemi’s theory of “roles
of variables” [37, 38], which categorizes variables based on their
dynamic nature, i.e., fixed value, stepper, gatherer, or most-wanted
value.

2.2 Variable naming
That (variable) naming is important for comprehension and code
quality is indisputable from the existing literature focusing on the
effect of naming on program comprehension, code quality, and cod-
ing skills. Most importantly, programmers rely on names for their
understanding of code [2, 21, 25, 26, 43, 44], and names often serve
as beacons during code comprehension [16]. Moreover, bugs are
easier to find when words are used [21]. Additionally, names that
are not descriptive enough, for example, single letters or abbrevia-
tions from which meaning is not directly clear, interfere with code
comprehension [3, 21, 25, 26]. The same holds true for names that
are too long, making them difficult to remember [6]. Additionally,
names can be unintentionally misleading and should therefore be
chosen cautiously [1, 2, 13, 14]. Especially general, non-specific
names, such as ‘length’ [13] or ‘result’ [39], appear problematic.
Finally, novices can wrongly believe that computers interpret or
assign values based on the semantic meaning of variables’ names,
and thus incorrectly apply semantic assumptions to syntax [22].

Consequently, it is relevant to think about how we teach vari-
able naming in introductory programming courses. Thirty years
ago, Keller [23] indicated that variable naming was rarely included
in programming textbooks. Since then, little research observed
teaching practices on this topic. Two recent studies [45, 46] found
that teachers do address naming practices in their learning mate-
rials, but inconsistently: variable naming practices are not always
taught explicitly, taught practices are sometimes conflicting, and
given example code does not always match the provided rules and
recommendations. Moreover, research investigating code quality
perceptions among students and teachers [7] confirmed students’
desire for ‘more and more specific feedback about what was good
and bad in their code’. Other studies on variable naming in educa-
tion found that novice programmers often fail to name variables
correctly [17] and that Scratch students are misled by variables
named with a letter, probably because of prior knowledge from
their mathematics education [18].

3 METHODS
To answer our research questions, we analyzed thirteen textbooks
that aim to teach Scratch or Python to children and novices. To

Table 1: Overview of programming books

ID Target Bestseller Title Year
S1 Children #6 Coding Games in Scratch [51] 2019
S2 Children #13 Coding Projects in Scratch [52] 2019
S3 Children #14 Code Your Own Games! [50] 2020
S4 Children #22 Coding for Kids Scratch [20] 2019
S5 Children #60 Learn to Program with Scratch [29] 2014
P1 Children #4 Coding for Kids python [42] 2019
P2 Children #7 Python Coding for Kids Ages 10+ [28] 2022
P3 Children #8 Coding Games in Python [48] 2018
P4 Children #12 Python for Kids [9] 2023
P5 Children #19 Coding Projects in Python [47] 2017
P6 Adults #2 Python Crash Course [30] 2023
P7 Adults #4 Python Programming for Beginners [36] 2023
P8 Adults #6 Automate the boring stuff with Python [41] 2019

systematically select programming books we used two Amazon
best sellers lists (top 100 popular products based on sales), both
visited on April 18, 2023. For Scratch books, we selected the five
books ranked highest within the Amazon Best Sellers: Best Children’s
Programming Books. Also for Python books, we selected the five
books ranked highest within the same list. However, since teens
and young adults might prefer using adult textbooks, we also added
the three books ranked highest within the Amazon Best Sellers: Best
Python Programming. For all lists the following selection criteria
were applied: 1) being a physical book, 2) written in English, and
3) focused solely on learning Scratch or solely on learning Python.
The selected books and their details are presented in Table 1.

To systematically collect our data and ensure good operational
definitions, the first author created a Microsoft Form, which was
tested on three random books (one from each category) by the first
author and an independent data collector. Issues were resolved and
a new version of the form was designed by the first author. This
version was then independently used by both parties to gather all
information relevant to the research questions. The data collector
was recruited from a pool of research assistants and hired to reduce
bias in the collection of data. As such, after transferring the data to
MS Excel, the first author compared the two sets. Any information
found by only one collector was reassessed for inclusion.

For the analysis, we looked at different chapters for each research
question, specified below:

RQ1: Explanation of variables. We collected all definitions (quotes)
and analogies (quotes and pictures) from the section in the book
that introduces the concept of variables. We then also checked all
other sections, and, when applicable, glossaries, for any definitions
of variables. For example, sometimes a summary with a definition
was also given at the end of a chapter, which was included.

The collected definitions were analyzed on the object (what
are variables: nouns, i.e., a ‘box’, a ‘memory location’), the purpose
(what do variables do: verbs + addition, i.e., ‘store information’), any
additional information that was provided (i.e., ‘data can change’),
and if any, used analogies. For each definition, the relevant infor-
mation was recorded. Additionally, when images were provided to
accompany the definition, they were described and it was recorded
which analogy it represents. The independent data collector and
first author had no disagreements.

243

Variables and Naming in Programming Textbooks SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA

RQ2: Other programming concepts. To investigate how variables
are connected with other programming concepts, we examined
the concepts discussed right before and right after the concept of
variables. To this aim, we investigated three chapters: the chapter in
which variables are introduced, the chapter before, and the chapter
after. This means that if a topic is not represented in our results, it
was either not covered in the book, or it was introduced in other
chapters and therefore not considered in the analysis.

To collect the different concepts, we first made a list of expected
programming concepts (based on [46]) to check for in the chapters
and added to this list when we encountered a different concept. We
then systematically analyzed the different chapters for the presence
of these concepts. For the analysis, we categorized the concepts into
the following topics: data types, operators, control flow, print-input
statements, and others.

RQ3: Naming rules and guidelines. To search for naming rules
and guidelines, we looked at the chapter where variables were
introduced. Any rules discussed here were collected, following the
categories found in [46]: (1) syntax rules, including case sensitivity,
accepted symbols, reserved keywords, and restriction of spaces; (2)
references to specific naming conventions, such as camel case or
underscore styles, and (3) any guidelines on variable name meaning.

For the first two categories we collected which rules and con-
ventions were mentioned much like a closed coding process. For
the third category, we used an iterative and open coding process
which meant we analyzed the books several times. Based on an
initial glance at the chapters, we first collected whether one of
the following topics was addressed: ‘use descriptive/meaningful
names’, ‘avoid single-letter names’, ‘avoid misleading names’, and
‘you should be able to understand your name’. During this phase,
we also gathered other quotes or statements on naming we encoun-
tered, if any, such as ‘use a simple naming method,’ ‘too long names
are hard to read,’ ‘consistency in naming is important,’ and ‘you can
use any name you want.’ Then, after going through each book, we
went through all the books again to see if any newly encountered
statements were missed in earlier books. To continue the analysis,
we grouped all naming statements and quotes into four subtopics:
those (a) suggesting to use meaningful/descriptive names, (b) ad-
dressing reasons for using such names, (c) addressing the length of
the name, and (d) highlighting that names can be whatever you like.
We furthermore noticed several other interesting quotes that were
collected under ‘other’. After the grouping, to ensure a complete
overview, all books were checked a final time for any additional
input on any of these four topics.

Besides this, we collected and investigated explicit examples and
naming exercises, when provided. We then checked other parts
of the books to see if naming was (also) addressed elsewhere, for
example, some books include a section or chapter on “how to im-
prove your code”. If naming was addressed elsewhere in the book,
we recorded the context.

4 RESULTS
4.1 How are variables explained?
Most Scratch books explain variables as a box, as opposed to only
3/8 Python books (see Table 2). This analogy is often accompanied

Table 2: Explaining variables with analogies and purpose.

Variables... Scratch Python
...as a box *with image S1, S2*, S3*, S5* P3*, P5*, P8*
...as a place S4, S5 P2, P4, P8
...as a label (implicit) (S2, S5) P1, P4, P6 (P3, P5, P8)
To store information S1–S5 P3–P8
To track information S2 P1, P3, P5
To access information S5 P3, P4, P5
To interact w/ information P7
To support code writing P4
To use later P3, P4, P5
Their value can change S1, S2, S4, S5

by a picture that affirms it. A typical definition looks like ‘a variable
works like a box that you can store information in, such as a number
that can change’ (S1). Some books explain variables as a place
or (memory) location, for example, a variable ‘describes a place to
store information, such as numbers, text, lists, and so on’ (P4), or, ‘a
variable is a named area of computer memory’ (S5). Few books (also)
explicitly address variables as a label, for example, a variable is ‘a
fancy name or a tag’ (P1) or ‘essentially a label for something’ (P4).
Others include it more implicitly, mentioning that the variable is a
‘labeled box’ or needs a name ‘to label the information.’ To address
the common misconception that often happens with the variable
as a box analogy, P6 writes: ‘Variables are often described as boxes
you can store values in. This idea can be helpful the first few times
you use a variable, but it isn’t an accurate way to describe how
variables are represented internally in Python. It’s much better to
think of variables as labels that you can assign to values. You can
also say that a variable references a certain value.’

Most explanations address the purpose of variables. Books most
often write that variables ‘store information’. Other purposes men-
tioned are to ‘keep track of information’, ‘to access information’,
‘to interact with information’, ‘to support code writing’, ‘and to
use later’. In addition, only Scratch books mention explicitly that
a variable’s information (value) can change, for example, ‘notice
that the value of the score changes throughout the program. This
is why we call it a variable – its value changes’ (S5).

Scratch books primarily explain variables as a box; Python books use more
diverse explanations. The emphasis is on ‘storing information’, while other
purposes of variables get less attention. Only Scratch books explicitly mention
that a variable’s value can change.

4.2 What programming concepts are introduced
alongside the concepts of variables?

Scratch and Python books apply different trajectories when it comes
to which programming concepts are introduced alongside variables
(see Figure 1). Below we discuss detailed results per concept.

Simple data types (string, integers, float, boolean) are discussed
by all Python books, either in the same chapter as variables (P1,
P3, P5, P6, P8) or in the next (P2, P4, P7). Only one Scratch book
(S5) introduces them (right before variables). More complex data
types or structures (arrays, lists, dictionaries, tuples) are covered
in 4/8 Python books, either in the same chapter (P3, P5), and/or the
next (P3, P6, P7). They are not addressed in Scratch books.

244

SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA Vivian van der Werf, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

(a) Scratch

(b) Python

Figure 1: Trajectory of programming concepts as introduced
by (almost) all [in gray] or about half [in white] of the books.

All Python books and three Scratch books addressmathemat-
ical operators (+, -, /, *) in the predefined chapters. While most
books prefer to introduce them after variables (S2, S3, S5, P1, P2,
P6), Python books also introduce them right before (P4, P7, P8) or
together with (P3, P5) variables. We see a different pattern for com-
parison operators (==, !=. <, >) and logical operators (and, or,
not): they are introduced by almost all Scratch books and only half
of the Python books, most frequently after variables are introduced,
either in the same chapter (S2, P3, P5) or the next (S3, S5, P1, P8).
Only S4 introduces comparison operators right before variables.

While all Scratch books introduce control flow concepts like
if-else statements (5/5) and loops (4/5) in the predefined chapters,
only three Python books do so. Moreover, Scratch books (except for
S5), introduce them before variables, while all three Python books
(P3, P5, P8) introduce them after. We noticed that in Python books,
control flow is often introduced later in the books.

Several other concepts are (sometimes) introduced in the prede-
fined chapters. Here we mention only those that are covered in two
or more books. For Scratch, these concepts are user input, random
numbers, first program, error messages / bugs, and procedures.
For Python books, these are print-statements / first program, using
comments, errormessages / bugs; user input, and functions / classes.

Scratch books introduce mathematical operators after variables; Python books
also introduce them right before or together with variables. Control flow
concepts are introduced before variables in Scratch books, and after variables
in Python books, if at all in the chapters surrounding variables.

4.3 How is naming addressed?
Variable naming is addressed in almost all books, except for S3
(see Table 3). Nine books provide a dedicated section on naming,
whereas three books only briefly mention naming. Three books
provide dedicated naming exercises. Especially Python books also
address naming in chapters, in the context of functions, scope, name
errors, conventions, or readability. When naming is reintroduced,
books mostly repeat what is mentioned in the chapter on variables,
or explicitly refer back to it.

4.3.1 Syntax rules. Syntax rules, like reserved keywords and case-
sensitivity (see Table 4), are addressed by all Python books (8/8)
and just 2/5 Scratch books (S1, S5). Both Scratch books mention
that spaces are technically allowed, but it is better to avoid them
because other languages do not allow it, for example, DogSpeed
instead of dog speed (S1) and SideLength instead of side length (S5).
Besides mentioning the rules, several specific example names are
also given in 5/8 Python books, for example, Good1 (P2) is accepted,
whereas 2Good (P2), 100_days_of_code (P1), and TOTAL_$UM (P8)
are names disrespecting the rules.

4.3.2 Naming conventions. The same two Scratch books (S1, S5)
mention naming conventions, such as using underscores to separate
words. All Python books refer to such conventions or ‘community
guidelines’ (P7), although the specific conventions mentioned vary
and can deviate from the common underscores, for example, camel
case (P1, P2, P8), Pascal case (P1), Hungarian notation (P2), PEP
(P8), and Zen of Python (P6, P7, P8). P2 and P8 also use camel casing
in their example code. Furthermore, P2, P3, and P6 mention that
constants are fully capitalized: ‘constants will be named in all caps
to spot them easily’ (P2), for example, PI or SPEED_OF_LIGHT (P2).

4.3.3 Variable name meaning. Three out of five Scratch books note
that it is preferable to use meaningful (S1, S5), sensible (S2), or
descriptive (S5) names that ‘tell you what the variable is for’ (S1)
and ‘to make the code readable’ (S1). Given examples are speed,
score, dragon (S1), High Score, Player Name (S2), firstName, and
interestRate (S5). On the other hand, 7/8 Python books instruct
students to use descriptive (P1, P3, P5, P6, P8), meaningful (P2, P3,
P4), or useful (P4) names. For example: ‘When naming a variable
you want to be as descriptive as possible but also follow the rules
of Python (P1),’ and, ‘the variable name should be meaningful e.g.
if a variable stores the name of my friend, then the variable name
should be friendName not just name which can be confusing or
misleading’ (P2). Avoiding confusion is not the only reason given for
using descriptive names. The idea of variables (and names) storing
something inside them (see also Section 4.1) is again highlighted.
For example, P5 writes to ‘think of a name that will remind you
what’s inside the variable’, others note that a good name ‘describes
the data it contains’ (P3, P8). The most common argument, however,
is to improve readability, explicitly mentioned by S1, P1, P7, and P8.
Interestingly, the latter addresses its own examples as too generic:
‘most of this book’s examples use generic variable names like spam,
eggs, and bacon, but in your programs, a descriptive name will help
make your code more readable’ (P8). Finally, two books note that
good names will help you to understand (P1, P5) the code.

In 5/13 books, the length of variable names is also related to a
name’s meaning (S5, P3, P4, P5, P6). For example, S5 writes to avoid
using single-letter names such as w or z, ‘unless their meaning is
very clear’. The book also continues with that ‘names that are too
long can make your script harder to read.’ P6 stresses that names
‘should be short but descriptive [therefore] name is better than n,
student_name is better than s_n, and name_length is better than
length_of_persons_name.’ P3 and P5 are less explicit but give exam-
ples such as using attempts rather than a (P2) and lives_remaining
rather than lr (P5). On the other hand, P4 writes: ‘Sometimes, if
you’re doing something quick, a short variable name is best. The
name you choose should depend on how meaningful you need the

245

Variables and Naming in Programming Textbooks SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA

Table 3: Overview of how naming is addressed.

Scratch Python
Is naming addressed in the chapter that introduces variables? (N) 4 8
yes, naming is briefly mentioned S2, S4 P4
yes, naming has a dedicated section S1, S5 P1–P3, P5–P8
Are naming exercises provided? (yes) – P1, P2, P8
Are there explicit examples of “good” or “bad” naming? (N) 4 8
yes, but only on syntax rules (‘valid’ or ‘invalid’ names) S4, S5 P7, P8
yes, the good examples also address the descriptiveness of names S1, S2 P1–P6
yes, the bad examples also address the descriptiveness of names – P1–P6
Is naming addressed in other parts of the book? (N) 1 6
yes, when functions are introduced – P1, P3, P5, P7
yes, in a section on readability / conventions S1 P2, P8
yes, in another section S1 P2, P3, P5, P8

Table 4: Overview of syntax rules addressed in the books.

Syntax rules Scratch Python
Names are case-sensitive S5 P3, P5, P8
Use Unicode-letters, no symbols P2–P8
Do not start with a number S5 all
Do not use spaces S1, S5 all
Do not use reserved keywords P2, P4–P7

variable name to be,’ however, no further explanation is provided
besides ‘Fred probably isn’t a very useful name.’

Finally, some books (S4, S5, P4, P8) make an explicit mention
that variables can be named anything. Whereas most do so while
highlighting that descriptive and meaningful names are highly rec-
ommended, S4 only writes: ‘you can name a variable anything you
want–get creative (...) points, goals, or yes, even hippo farts.’

Regarding naming practices, most books focus on syntax rules that, when not
adhered to, break the program. Python books give more attention to naming
guidelines and variable name meaning, yet, like Scratch books, also present
conflicting information, take a ‘free-for-all’ approach, or remain vague on
what is a ‘meaningful’ name.

4.4 Patterns between children and adult books
The analysis highlighted two differences between the Python books
for children and adults. First, in the books for children, the topic of
functions was sometimes introduced within our predefined chap-
ters, however in adult books this topic had a chapter elsewhere.
Second, regarding naming, we found that all children’s books and
P6 provided explicit examples of “good” or “bad” names that cover
what is and is not a descriptive name. The other two adult books
focused on examples regarding syntax rules.

5 DISCUSSION
We investigated how the concept of variables, and the respec-
tive naming practices, are taught in thirteen popular introductory
Scratch and Python programming textbooks. Our collected data
was qualitative in nature and included definitions and analogies
used to explain variables, other programming concepts introduced

with or near variables, and any naming practices that are addressed.
Our most important findings are:

5.1 Variables are commonly explained as a box
From the literature, we know that analogies come with a risk of
carrying over misinformation from one topic to the other [8, 11, 19].
Consistent with prior work [46], we found a tendency to explain
variables as a box, which is prone to cause misconceptions when
learning new programming concepts. Nevertheless, one book ex-
plicitly addresses this issue, while others opt for alternative explana-
tions, such as variables as a label or place. This might indicate that
the community is looking for new analogies, however, the conse-
quences of these are yet to be investigated [19]. We also found most
explanations to focus on ‘storing information’, which is again con-
sistent with prior work [46]. Few other purposes of variables were
mentioned, including tracking information, accessing information,
and the ability to flexibly reuse data elsewhere in the code.

Hence we see room for using a wider variety of definitions and
analogies and extending the explanation to include different pur-
poses. Domain isomorphic analogies [4, 5], which are flexible in
use across domains while preserving the analogical mapping, and
roles of variables [37, 38] might be promising directions, keeping
in mind students’ background and cognitive load.

5.2 The concepts introduced near variables vary
Like prior work [46], we found that variables are often taught in
close connection to data types, operators (arithmetic expressions),
and control flow. Additionally, we found that Scratch and Python
textbooks introduce different programming concepts alongside
variables. The order in which these concepts are introduced also
differs between Scratch and Python books and among Python books.
This raises questions such as when is the best moment to introduce
variables, is there a “one-size-fits-all” trajectory crossing audience
and programming language, or should such learning trajectories
naturally depend on the programming language (and audience).
Rich et al. [34, 35] advocate for a language-independent learning
trajectory focused on variables. However, our results hint towards
current learning trajectories being influenced by language. This
then also raises the question of how different trajectories influence
transfer from Scratch to Python (or another programming language).

246

SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA Vivian van der Werf, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

Moreover, the variations we found within Python programming
books suggest that a single “natural” trajectory, as we found for
Scratch books, might not exist for Python. Alternatively, theremight
be unclarity or disagreement among developers on what order is
most desirable, for example in terms of prior knowledge, avoiding
or tackling misconceptions carried over from other disciplines or
languages, or varying teaching purposes or learning philosophies.
If the order of concepts was chosen carefully by the books’ authors,
there is an opening to investigate underlying motivations.

5.3 Naming is addressed inconsistently
In line with related work [45, 46], we also see that when naming
practices are introduced, most books focus on syntax rules that,
when not adhered to, break the program. Sometimes community
guidelines and naming conventions are mentioned, but these are
not consistent between and within books, therefore some books
even provide conflicting information. Although the effects of style
and casing on a programmer’s accuracy might be limited [40],
inconsistent approaches could confuse a learner, or unintentionally
undermine the development of a critical attitude towards naming.

A careless attitude can be further encouraged in a learner by
unclear definitions or examples of what is a ‘meaningful’ name.
We have seen most books telling their reader to use meaningful
or descriptive names, but some without indicating why naming is
important. Moreover, some of those do not give explicit examples of
what is consideredmeaningful, mention that variables can be named
anything, or use generic variable names themselves. The limited
attention to what is meaningful could be explained by that devel-
opers of educational materials chose a ‘constructivist’ pedagogical
approach, in which students themselves discover by example what
is good naming [45]. In fact, two Python books (P2, P8) hint at using
such an approach, writing that with experience ‘you will naturally
know how to name [variables]’. However, for students to learn by
example, we would expect the given guidelines and examples to be
more consistent with each other. Perhaps we would even expect
more emphasis on why naming is important rather than on certain
rules and guidelines. Any inconsistencies, together with a limited
explanation of why naming is important, could insinuate that one
does not need to pay attention at all to naming practices.

Therefore, we suggest that our results demonstrate a potential
misalignment between developers of educational materials and
what research already knows is important for comprehension. Be-
cause our results are in line with prior work [45, 46], we suggest
that if we want students to adopt good naming practices and de-
velop a critical attitude, developers of educational materials and
practitioners pay attention to how they address naming practices
and be consistent in their approach. Moreover, considering that
naming is context-dependent, there is room to focus on what makes
a name (in)appropriate and why.

5.4 Limitations
Since our research analyzed only a limited number of books, our
results might not be representative. However, by selecting the most
popular books from Amazon, we aimed to include those books that
people are most likely to buy and be exposed to, now and in the
(near) future. However, even though Amazon is a popular platform,

we cannot say if these bestsellers represent the books children
and adults are truly exposed to. Using other (local) platforms or
renewing the search at a different time might result in a different
selection of books and hence influence our results. Nevertheless,
the results we found correspond with results from prior studies,
which suggests that our selection of books is reasonably represen-
tative. Even so, since most of the books included in this study were
published relatively recently, older books, which could be designed
differently, may likely still be in use. Finally, Scratch and Python
are the languages most used by children. Had we focused on adults,
other programming languages should be taken into account. We
expect some differences due to the nature of the language, just like
we found between Scratch and Python.

6 CONCLUDING REMARKS
Our observations strengthen existing insights into how variables
are presented in programming MOOCs, and extend them to pro-
gramming textbooks for children and novices. More attention in
research is needed to, for example, when to introduce the topic
within the curriculum (in which language). Our insights also call
for a (more) careful approach regarding variables and their naming,
to be taken by educators and developers of learning materials in
the fields of Computer Science and Software Engineering. Most
importantly, we encourage the community to use (1) a wider range
of definitions and analogies while teaching the concept of variables
and (2) a more consistent teaching approach regarding variable
naming that goes beyond syntax rules, personal preferences, and
naming conventions. This includes a discussion on the importance
of the topic and what makes a name (in)appropriate and why.

REFERENCES
[1] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2016. Lin-

guistic antipatterns: what they are and how developers perceive them. Empirical
Software Engineering 21, 1 (Feb. 2016), 104–158. https://doi.org/10.1007/s10664-
014-9350-8

[2] Eran Avidan and Dror G. Feitelson. 2017. Effects of Variable Names on Compre-
hension: An Empirical Study. In 2017 IEEE/ACM 25th International Conference on
Program Comprehension (ICPC). 55–65. https://doi.org/10.1109/ICPC.2017.27

[3] Gal Beniamini, Sarah Gingichashvili, Alon Klein Orbach, and Dror G. Feitelson.
2017. Meaningful Identifier Names: The Case of Single-Letter Variables. In 2017
IEEE/ACM 25th International Conference on Program Comprehension (ICPC). 45–54.
https://doi.org/10.1109/ICPC.2017.18

[4] Briana Bettin and Linda Ott. 2023. Pedagogical Prisms: Toward Domain Isomor-
phic Analogy Design for Relevance and Engagement in Computing Education. In
Proceedings of the 2023 Conference on Innovation and Technology in Computer Sci-
ence Education V. 1 (Turku, Finland) (ITiCSE 2023). Association for Computing Ma-
chinery, New York, NY, USA, 410–416. https://doi.org/10.1145/3587102.3588830

[5] Briana Bettin, Linda Ott, and Julia Hiebel. 2023. More (Sema|Meta)Phors: Addi-
tional Perspectives on Analogy Use from Concurrent Programming Students. In
Proceedings of the 2023 Conference on Innovation and Technology in Computer Sci-
ence Education V. 1 (Turku, Finland) (ITiCSE 2023). Association for Computing Ma-
chinery, New York, NY, USA, 166–172. https://doi.org/10.1145/3587102.3588831

[6] Dave Binkley, Dawn Lawrie, SteveMaex, and ChristopherMorrell. 2009. Identifier
length and limited programmer memory. Science of Computer Programming 74, 7
(2009), 430–445. https://doi.org/10.1016/j.scico.2009.02.006

[7] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema, Rodrigo Duran, Sara
Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie MacKellar.
2017. "I Know It When I See It": Perceptions of Code Quality. In Proceedings
of the 2017 ACM Conference on Innovation and Technology in Computer Science
Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Machinery,
New York, NY, USA, 389. https://doi.org/10.1145/3059009.3081328

[8] Benedict Du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2, 1 (1986), 57–73. https://doi.org/10.2190/3LFX-
9RRF-67T8-UVK9 arXiv:https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

[9] Jason R. Briggs. 2023. Python for Kids: A plyaful introduction to programming
(2nd edition). No Starch Press.

247

https://doi.org/10.1007/s10664-014-9350-8
https://doi.org/10.1007/s10664-014-9350-8
https://doi.org/10.1109/ICPC.2017.27
https://doi.org/10.1109/ICPC.2017.18
https://doi.org/10.1145/3587102.3588830
https://doi.org/10.1145/3587102.3588831
https://doi.org/10.1016/j.scico.2009.02.006
https://doi.org/10.1145/3059009.3081328
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://arxiv.org/abs/https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

Variables and Naming in Programming Textbooks SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA

[10] Bruno Caprile and Paolo Tonella. 2000. Restructuring program identifier names.
In Proceedings 2000 International Conference on Software Maintenance. IEEE, San
Jose, CA, USA, 97–107. https://doi.org/10.1109/ICSM.2000.883022

[11] Luca Chiodini, IgorMoreno Santos, Andrea Gallidabino, Anya Tafliovich, André L.
Santos, and Matthias Hauswirth. 2021. A Curated Inventory of Programming
Language Misconceptions. In Proceedings of the 26th ACM Conference on Innova-
tion and Technology in Computer Science Education V. 1 (Virtual Event, Germany)
(ITiCSE ’21). Association for Computing Machinery, New York, NY, USA, 380–386.
https://doi.org/10.1145/3430665.3456343

[12] Dimitrios Doukakis, Maria Grigoriadou, and Grammatiki Tsaganou. 2007. Under-
standing the programming variable concept with animated interactive analogies.
In Proceedings of the 8th Hellenic European Research on Computer Mathematics &
its Applications Conference, HERCMA’07.

[13] Dror G. Feitelson. 2023. From Code Complexity Metrics to Program Comprehen-
sion. Commun. ACM 66, 5 (apr 2023), 52–61. https://doi.org/10.1145/3546576

[14] Dror G. Feitelson, Ayelet Mizrahi, Nofar Noy, Aviad Ben Shabat, Or Eliyahu, and
Roy Sheffer. 2022. How Developers Choose Names. IEEE Transactions on Software
Engineering 48, 01 (jan 2022), 37–52. https://doi.org/10.1109/TSE.2020.2976920

[15] Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du Boulay,
Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, Andreas
Mühling, Janice L. Pearce, and Andrew Petersen. 2020. Notional Machines in
Computing Education: The Education of Attention. In Proceedings of the Work-
ing Group Reports on Innovation and Technology in Computer Science Education
(Trondheim, Norway) (ITiCSE-WGR ’20). Association for Computing Machinery,
New York, NY, USA, 21–50. https://doi.org/10.1145/3437800.3439202

[16] Edward M. Gellenbeck and Curtis R. Cook. 1991. An Investigation of Procedure
and Variable Names as Beacons During Program Comprehension. Technical Report.
USA. https://doi.org/10.5555/891020

[17] Abdul R.M. Gobil, Zarina Shukor, and Itaza A. Mohtar. 2009. Novice difficulties
in selection structure. In 2009 International Conference on Electrical Engineering
and Informatics, Vol. 02. 351–356. https://doi.org/10.1109/ICEEI.2009.5254715

[18] Shuchi Grover and Satabdi Basu. 2017. Measuring Student Learning in In-
troductory Block-Based Programming: Examining Misconceptions of Loops,
Variables, and Boolean Logic. In Proceedings of the 2017 ACM SIGCSE Tech-
nical Symposium on Computer Science Education (Seattle, Washington, USA)
(SIGCSE ’17). Association for ComputingMachinery, New York, NY, USA, 267–272.
https://doi.org/10.1145/3017680.3017723

[19] Felienne Hermans, Alaaeddin Swidan, Efthimia Aivaloglou, and Marileen Smit.
2018. Thinking out of the Box: Comparing Metaphors for Variables in Pro-
gramming Education. In Proceedings of the 13th Workshop in Primary and Sec-
ondary Computing Education (Potsdam, Germany) (WiPSCE ’18). Association
for Computing Machinery, New York, NY, USA, Article 8, 8 pages. https:
//doi.org/10.1145/3265757.3265765

[20] Matthew Highland. 2019. Coding for Kids: Scratch: Learn Coding Skills, Create 10
Fun Games, and Master Scratch. ROCKRIDGE PR.

[21] Johannes Hofmeister, Janet Siegmund, and Daniel V. Holt. 2017. Shorter identifier
names take longer to comprehend. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 217–227. https:
//doi.org/10.1109/SANER.2017.7884623

[22] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman.
2010. Identifying Student Misconceptions of Programming. In Proceedings of
the 41st ACM Technical Symposium on Computer Science Education (Milwaukee,
Wisconsin, USA) (SIGCSE ’10). Association for Computing Machinery, New York,
NY, USA, 107–111. https://doi.org/10.1145/1734263.1734299

[23] Daniel Keller. 1990. A guide to natural naming. ACM SIGPLAN Notices 25 (1990),
95–102.

[24] Tobias Kohn. 2017. Variable Evaluation: An Exploration of Novice Programmers’
Understanding and Common Misconceptions. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (Seattle, Washington,
USA) (SIGCSE ’17). Association for Computing Machinery, New York, NY, USA,
345–350. https://doi.org/10.1145/3017680.3017724

[25] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name?A Study of Identifiers. In 14th IEEE International Conference on Program
Comprehension (ICPC’06). 3–12. https://doi.org/10.1109/ICPC.2006.51

[26] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2007. Effec-
tive identifier names for comprehension and memory. Innovations in Systems and
Software Engineering 3, 4 (Dec. 2007), 303–318. https://doi.org/10.1007/s11334-
007-0031-2

[27] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship between Explaining, Tracing and Writing Skills in Introductory
Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science Education (Paris, France) (ITiCSE
’09). Association for Computing Machinery, New York, NY, USA, 161–165. https:
//doi.org/10.1145/1562877.1562930

[28] Unsama Makda and Taimoor Mamazai. 2022. Python Coding for Kids Ages 10+.
Independently published.

[29] Majed Marji. 2014. Learn to program with Scratch: A visual introduction to pro-
gramming with games, art, science, and math. No Starch Press.

[30] Eric Matthes. 2023. Python Crash Course. A hands-on, project-based introduction
to programming (3rd edition). No Starch Press.

[31] Kirby McMaster, Brian Rague, Samuel Sambasivam, and Stuart Wolthuis. 2016.
Coverage of CS1 programming concepts in C++ and Java textbooks. In 2016
IEEE Frontiers in Education Conference (FIE) (Eire, PA, USA). IEEE Press, 1–8.
https://doi.org/10.1109/FIE.2016.7757618

[32] Kirby McMaster, Brian Rague, Samuel Sambasivam, and Stuart Wothuis. 2018.
Software Concepts Emphasized in Introductory Programming Textbooks. In
Proceedings of the 19th Annual SIG Conference on Information Technology Edu-
cation (Fort Lauderdale, Florida, USA) (SIGITE ’18). Association for Computing
Machinery, New York, NY, USA, 91. https://doi.org/10.1145/3241815.3241837

[33] Thomas Pelchen and Raymond Lister. 2019. On the Frequency of Words Used
in Answers to Explain in Plain English Questions by Novice Programmers. In
Proceedings of the Twenty-First Australasian Computing Education Conference.
Association for Computing Machinery, New York, NY, USA, 11–20. https://doi.
org/10.1145/3286960.3286962

[34] Kathryn M. Rich, Diana Franklin, Carla Strickland, Andy Isaacs, and Donna
Eatinger. 2022. A Learning Trajectory for Variables Based in Computational
Thinking Literature: Using Levels of Thinking to Develop Instruction. Computer
Science Education 32, 2 (2022), 213–234. https://doi.org/10.1080/08993408.2020.
1866938 arXiv:https://doi.org/10.1080/08993408.2020.1866938

[35] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and
Diana Franklin. 2017. K-8 Learning Trajectories Derived from Research Literature:
Sequence, Repetition, Conditionals. In Proceedings of the 2017 ACM Conference on
International Computing Education Research (Tacoma, Washington, USA) (ICER
’17). Association for Computing Machinery, New York, NY, USA, 182–190. https:
//doi.org/10.1145/3105726.3106166

[36] Philip Robbins. 2023. Python Programming for Beginners. Independently pub-
lished.

[37] Jorma Sajaniemi. 2002. An empirical analysis of roles of variables in novice-
level procedural programs. In Proceedings IEEE 2002 Symposia on Human Centric
Computing Languages and Environments. 37–39. https://doi.org/10.1109/HCC.
2002.1046340

[38] Jorma Sajaniemi and Marja Kuittinen. 2005. An Experiment on Using
Roles of Variables in Teaching Introductory Programming. Computer Sci-
ence Education 15, 1 (2005), 59–82. https://doi.org/10.1080/08993400500056563
arXiv:https://doi.org/10.1080/08993400500056563

[39] Andrea Schankin, Annika Berger, Daniel V. Holt, Johannes C. Hofmeister, Till
Riedel, and Michael Beigl. 2018. Descriptive Compound Identifier Names Improve
Source Code Comprehension. In Proceedings of the 26th Conference on Program
Comprehension (Gothenburg, Sweden) (ICPC ’18). Association for Computing
Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/3196321.3196332

[40] Bonita Sharif and Jonathan I. Maletic. 2010. An Eye Tracking Study on camelCase
and under_score Identifier Styles. In 2010 IEEE 18th International Conference on
Program Comprehension. 196–205. https://doi.org/10.1109/ICPC.2010.41

[41] Al Sweigart. 2020. Automate the boring stuff with Python. Practical programming
for total beginners (2nd edition). No Starch Press.

[42] Adrienne B. Tacke. 2019. Coding for Kids Python. Rockridge Press.
[43] Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie. 1996. The

effects of comments and identifier names on program comprehensibility: an
experimental investigation. J. Program. Lang. 4 (1996), 143–167.

[44] Barbee E. Teasley. 1994. The effects of naming style and expertise on program
comprehension. International Journal of Human-Computer Studies 40, 5 (1994),
757–770. https://doi.org/10.1006/ijhc.1994.1036

[45] Vivian van der Werf, Alaaeddin Swidan, Felienne Hermans, Marcus Specht, and
Efthimia Aivaloglou. 2024. Teachers’ Beliefs and Practices on the Naming of Vari-
ables in Introductory Python Programming Courses. In Proceedings of the 46th
International Conference on Software Engineering: Software Engineering Education
and Training (Lisbon, Portugal) (ICSE-SEET ’24). Association for Computing Ma-
chinery, New York, NY, USA, 368–379. https://doi.org/10.1145/3639474.3640069

[46] Vivian Van Der Werf, Min Yi Zhang, Efthimia Aivaloglou, Felienne Hermans,
and Marcus Specht. 2023. Variables in Practice. An Observation of Teaching
Variables in Introductory Programming MOOCs. In Proceedings of the 2023 Con-
ference on Innovation and Technology in Computer Science Education V. 1 (Turku,
Finland) (ITiCSE 2023). Association for Computing Machinery, New York, NY,
USA, 208–214. https://doi.org/10.1145/3587102.3588857

[47] Carol Vorderman, Craig Steele, Claire Quigley, Martin Goodfellow, Daniel Mc-
Cafferty, and Jon Woodcock. 2017. Coding Projects in Python. DK Publishing.

[48] Carol Vorderman, Craig Steele, Claire Quigley, Daniel McCafferty, and Martin
Goodfellow. 2018. Coding Games in Python. DK Publishing.

[49] Leslie J. Waguespack. 1989. Visual Metaphors for Teaching Programming Con-
cepts. SIGCSE Bull. 21, 1 (feb 1989), 141–145. https://doi.org/10.1145/65294.71203

[50] Max Wainewright. 2020. Code Your Own Games!: 20 Games to Create with Scratch.
Union Square Kids.

[51] Jon Woodcock. 2015. Coding Games in Scratch: A Step-by-Step Visual Guide to
Building Your Own Computer Games. Penguin.

[52] Jon Woodcock. 2016. Coding Projects in Scratch: A Step-by-Step Visual Guide to
Coding Your Own Animations, Games, Simulations, and More! Penguin.

248

https://doi.org/10.1109/ICSM.2000.883022
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3546576
https://doi.org/10.1109/TSE.2020.2976920
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.5555/891020
https://doi.org/10.1109/ICEEI.2009.5254715
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1145/3265757.3265765
https://doi.org/10.1145/3265757.3265765
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1145/3017680.3017724
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1007/s11334-007-0031-2
https://doi.org/10.1007/s11334-007-0031-2
https://doi.org/10.1145/1562877.1562930
https://doi.org/10.1145/1562877.1562930
https://doi.org/10.1109/FIE.2016.7757618
https://doi.org/10.1145/3241815.3241837
https://doi.org/10.1145/3286960.3286962
https://doi.org/10.1145/3286960.3286962
https://doi.org/10.1080/08993408.2020.1866938
https://doi.org/10.1080/08993408.2020.1866938
https://arxiv.org/abs/https://doi.org/10.1080/08993408.2020.1866938
https://doi.org/10.1145/3105726.3106166
https://doi.org/10.1145/3105726.3106166
https://doi.org/10.1109/HCC.2002.1046340
https://doi.org/10.1109/HCC.2002.1046340
https://doi.org/10.1080/08993400500056563
https://arxiv.org/abs/https://doi.org/10.1080/08993400500056563
https://doi.org/10.1145/3196321.3196332
https://doi.org/10.1109/ICPC.2010.41
https://doi.org/10.1006/ijhc.1994.1036
https://doi.org/10.1145/3639474.3640069
https://doi.org/10.1145/3587102.3588857
https://doi.org/10.1145/65294.71203

	Abstract
	1 Introduction
	2 Related Work
	2.1 Analogies for explaining variables
	2.2 Variable naming

	3 Methods
	4 Results
	4.1 How are variables explained?
	4.2 What programming concepts are introduced alongside the concepts of variables?
	4.3 How is naming addressed?
	4.4 Patterns between children and adult books

	5 Discussion
	5.1 Variables are commonly explained as a box
	5.2 The concepts introduced near variables vary
	5.3 Naming is addressed inconsistently
	5.4 Limitations

	6 Concluding remarks
	References

