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Preface

“Students must be taught how to think, not what to think.”

- Margaret Mead
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1
Introduction

With the rapid integration of computers and technology into our daily lives in the 21st century, we are in
the midst of the technology revolution. While it is not yet necessary to learn to program or code, most of us
use computers on a daily basis. We need to learn to think like them to get the best of this revolution. This
process of thinking like a programmer or a computer scientist is called Computational Thinking(CT). As per
the National Research Council of the National Academy of Sciences in the United States of America, CT is a
skill that everyone should acquire, not just programmers[13][14].

Computational Thinking is a concept that lacks an agreed-upon definition[46][10][6][14]. It was first men-
tioned by Wing in 2006 in an article in the Communications of the ACM calling for the integration of CT
beyond just computer scientists[51]. Wing later defined Computational Thinking as “the thought processes
involved in formulating problems and their solutions so that the solutions are represented in a form that
can be effectively carried out by an information-processing agent”[50, p. 1]. Barr and Stephenson defined
CT in the context of K-12 education in terms of the core computational thinking concepts and capabilities,
providing examples of how they can be applied in different disciplines. Brennan and Resnick defined CT
with respect to design-based learning activities in Scratch1 - a block-based programming language - in terms
of three dimensions: computational concepts, computational practices, and computational perspectives.
Weintrop et al. defined CT in terms of 4 major categories and 22 sub-skills: data practices , modeling and
simulation practices, computational problem-solving practices, and systems thinking practices[49]. Selby
and Woollard defined CT as the thought processes of abstraction, decomposition, algorithmic design, evalu-
ation, and generalization[43]. Among all of these varied definitions, this research uses an adapted version of
the definition by Brennan and Resnick, considering 2 dimensions - computational concepts and computa-
tional practices[10] - and adapting them to the Python programming language.

Unlike programming skills, CT skills are transferable and can be used to solve problems in everyday life.
Wing further elaborates on this by giving everyday examples of how we use pre-fetching, caching, back-
tracking, online algorithms, independence of failure and redundancy in design, and other CT concepts in
everyday tasks[51]. The International Society for Technology in Education (ISTE) and Computer Science
Teachers Association (CSTA) also elaborate on how CT skills can be used to solve everyday problems in differ-
ent domains and different grade levels[47]. Section 2.1 elaborates on the importance of CT skills in domains
besides computer science and the need to integrate them into curricula as CT skills have an immense poten-
tial to transform other domains.

Even though there is no consensus on the definition of CT in research, there is a definite consensus on the
potential of CT skills to transform the way students learn at educational institutions[6][51][46]. This consen-
sus has led to multiple attempts to integrate CT into classrooms in the form of game design[10], introductory
courses on CT[25], physics courses[3][20], mathematics courses[38][49] and courses in other domains[49][2].
With this increasing integration of CT into classrooms, there is a need for CT assessment tools to evaluate
acquisition of CT skills[18][46]. Section 2.2 looks at various tools to assess CT skills in education, grouping
them into four types - traditional test, portfolio assessment, interviews and surveys. This research aims to de-
velop a CT assessment framework that allows self-regulated learning through feedback in the form of learning
analytics dashboards.

1https://scratch.mit.edu
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2 1. Introduction

“Learning analytics is the measurement, collection, analysis and reporting of data about learners and
their contexts, for purposes of understanding and optimising learning and the environments in which it oc-
curs”[44]. Suthers and Verbert call learning analytics (LA) as the “middle space” between learning and an-
alytics where they come together. LA aims to enhance the learning process with analytics in the form of
computational data about it. One of the ways to do this is through visualization of the learning data in the
form of LA dashboards.

Learning analytics (LA) dashboards are learning tools that support students and teachers by helping them
understand LA data and use it to improve learning[23]. One of the main aims of such dashboards is to support
students in improving their learning and performance by empowering them by presenting them with learning
patterns that can motivate them and improve learning strategies[21]. Designing LA dashboards with support
for SRL strategies helps learners support awareness and trigger reflection[22]. Self-regulated learning (SRL)
is the theoretical framework used for the design of Learning Analytics dashboards most frequently[22].

Self-regulated learning is the ability to control, manage and plan one’s own learning process with an aim
to increase attainment of goals[21]. With the increase in online learning, the need for independent learning
and self-direction by students has increased[11]. This has also resulted in a decrease in completion rates of
online courses. Self-regulated learning strategies can help solve this as they can increase success in problem
solving, allow higher academic achievement, intrinsic motivation and interest in learning tasks[40]. This
research enables self-regulated learning by providing feedback to students through CT dashboards. Thus,
the students can regulate their learning process themselves.

My research aims to answer the research question: How can computational thinking be assessed through
detection of user micro-interactions in a university-level self-paced Python beginners course integrated into
Jupyter notebooks? This is done by integrating a CT assessment framework that uses user micro-interactions
via CT dashboards in a university-level self-paced Python beginners course. This research question is further
broken down into 3 research sub-questions :

1. RQ1: Did the users acquire Computational Thinking (CT) skills in the form of both CT concepts and CT
practices?

2. RQ2: Was there a significant improvement in the self-reported CT skills of users after taking the Python
basic programming course?

3. RQ3: How do the self-reported survey responses correspond to the actual user micro-interaction data?
The rest of this report is structured as follows: chapter 2 identifies the gaps in existing computational thinking
assessments and how my research bridges these gaps. Following this, chapter 3 lays down the design and
implementation details of my research and the chapter 4 elaborates on the user evaluation study conducted
to verify the same. Lastly, chapter 5 draws the conclusions of the research.



2
Learning and Computational Thinking

This chapter highlights the gaps in the existing research by examining the existing literature and shows and
how my research addresses those gaps. The chapter begins by establishing the importance of computa-
tional thinking (CT) in learning. Then it examines the available Computational thinking assessment tools and
highlights their shortcomings. Finally, it looks at Learning Analytics (LA), LA Dashboards and Self-regulated
Learning(SRL) and how they can be used to enhance the learning process.

2.1. Computational Thinking
The concept of Computational thinking was brought to the limelight in 2006 when Wing suggested that think-
ing computationally was a fundamental skill for everyone, not just computer scientists, and argued for the
importance of integrating computational ideas into other subjects in school[51]. Since then, there have been
numerous efforts to teach CT to students at various levels.

Computational thinking has been shown to be a valuable skill for other domains and disciplines such
as mathematics and science. Multiple studies have looked at CT skills as a transfer skill and how it can be
applied in other domains. Tang et al.[46] show that there is a lag in the implementation of CT into non-CS
classrooms.

Weintrop et al.[49] define a taxonomy for CT and argue “for the inclusion of computational thinking in
mathematics and science classrooms”[49, p.17]. Their research states 3 main benefits of integrating CT into
mathematics and science curricula -

1. building upon the reciprocal learning relationship between CT and science
2. practical concerns regarding reaching all students and making teachers proficient are addressed
3. aligns science and mathematics education with the field’s current professional practices

The authors are working upon enhancing high school STEM curricula through activities based on their tax-
onomy that can be easily incorporated.

Ahamed et al.[2] conducted a workshop for science teachers working with grades 9-12 to introduce com-
putational thinking to high school teachers to change long-term perceptions about computer science and its
relationship with other disciplines. They not only designed modules addressing physics, biology, chemistry,
and mathematics, but also designed modules for common areas of overlap, including probability, simula-
tions, and computational thinking. Their language of choice was VPython, a visual extension to the popular
Python programming language.

Kafura, Bart, and Chowdhury[25] elaborate on the design process for an ‘Introduction to Computational
Thinking course’ that must be completed by all graduating students. The early results and quantitative and
qualitative assessments show that students gained “a deeper appreciation for the use of computation in their
own disciplines”[25, p.6]. The study uses NetLogo programming environment, Blockly (block-based pro-
gramming language) and a Python IDE for its 3 topics, with a progressive organization of the topics.

Aiken et al.[3] integrated computation in an existing 9th-grade physics course for 32 students and as-
sessed the development of transfer CT skills via 3 methods - proctored programming assignment, written
essay and think-aloud interviews that involved creation and discussion of a computational model of a base-
ball in motion using VPython. The results were that about a third of all the students successfully completed

3



4 2. Learning and Computational Thinking

the programming assignment, demonstrating how they “synthesized their knowledge of physics and compu-
tation”[3, p. 2].

With a focus on Physics, Jaipal-Jamani and Angeli[20] examined the self-efficacy, understanding of sci-
ence and CT in elementary pre-service teachers as they interacted with LEGO WeDo robotics kits in a science
methods course. The main aim of this research is to investigate the preparedness of teachers to teach STEM.
The results showed that “engaging with robotics in an existing science methods course can enhance preser-
vice teachers’ self-efficacy beliefs to teach with robotics, their science knowledge, and their computational
thinking skills”, calling for more quantitative studies on robotics[20]. [32] also showed similar results of in-
crease in teachers’ self-efficacy, CT understanding and dispositions by using robotics and game design to
broaden STEM participation in rural communities.

With a focus on CT and mathematics, Pei, Weintrop, and Wilensky looked at ‘mathematical habits of
mind’ using Lattice Land - “a mathematical microworld where learners explore geometrical concepts by ma-
nipulating polygons drawn with discrete points on a plane" [38, p.2]. These mathematical habits of mind
were associated with CT concepts using 4 categories defined in [49]: data, modeling and simulation, com-
putational problem-solving, and systems thinking. Using the example of Lattice Land, the authors show that
embedding CT practices in mathematics can have broad impacts by providing the required context that al-
lows students to meaningfully engage in CT. In this way, CT practices can motivate students to learn powerful
mathematical concepts.

A majority of the cross-disciplinary research mentioned above makes use of visual and block-based pro-
gramming languages such as Scratch1, Logo2 and VPython3. Block-based programming languages are ones
that are comprised of ‘blocks’ of instructions or actions that can be dragged and dropped into the editor and
run easily. This graphical representation of code makes it easier to learn the basics of programming, espe-
cially for K-12 students. The ease of learning provided by block-based programming languages also makes it
suitable for integrating it into curricula in other domains. On the downside, the functionality of block-based
programming language is limited by the available blocks and they do not offer the flexibility that text-based
programming languages provide. Tang et al. show that a majority of studies related to CT are focused on el-
ementary and middle school grade levels and emphasize on the need for more studies for high school and
college students so that the complete development trajectory for CT skills in students can be mapped[46].

2.2. Computational Thinking Assessment
While Computational thinking (CT) is being integrated into curricula rapidly, there is a need for methods
to assess and evaluate learning of CT concepts[18][46]. The lack of an agreed-upon definition of CT, lack
of assessment mechanisms for CT and lack of usage of CT in classrooms are the major roadblocks in the
integration of CT into curricula[33].

This chapter examines the available Computational thinking (CT) assessment tools and highlights their
shortcomings.

A variety of tools and frameworks have pioneered the assessment and analysis of CT in educational envi-
ronments. Tang et al.[46] observed 4 types of assessment -

1. Traditional test composed of selected- or constructed-response questions
2. Portfolio assessment
3. Interviews
4. Surveys[46]
While portfolio assessments are used widely for holistic assessment of the CT skills gained through projects,

time-consuming manual methods such as traditional paper-pencil tests, surveys and interviews form a huge
chunk of the assessment methods. A majority of the CT assessments lacked evidence for reliability and valid-
ity, making it challenging to use them with confidence in classrooms[46].

2.2.1. Traditional test
Traditional tests are the usage of multiple choice questions or open-ended questions to evaluate the acqui-
sition of CT concepts summatively[46]. Their frequent usage implies that CT skills are considered a learning
product and this type of assessment can be quite time-consuming due to the manual effort involved in col-
lecting the data and grading the results.

1https://scratch.mit.edu
2https://el.media.mit.edu/logo-foundation/what_is_logo/logo_programming.html
3https://vpython.org/



2.2. Computational Thinking Assessment 5

González[17] presents the design of a Computational Thinking Test (CT-test) aimed at Spanish students
between 12 and 13 years (grades K-7 & K-8). They provide a detailed description of the design guidelines
underlying the test and the content validation via expert judgement. However, this test cannot be extended to
other programming languages as it is designed for Scratch and focuses on programming concepts of Scratch.

The Bebras challenge4 is an online international initiative that strives to promote CT among school stu-
dents through a set of fun and engaging short problems called the Bebras tasks. Araujo et al. evaluate the
Bebras challenge as a tool for CT assessment, finding that “the performance on Bebras is only moderately
correlated to the student grade”[5, p. 2]. The study was conducted with 138 students from two Brazilian
universities. The authors take into account the grades from an introductory programming course and the
students’ performance in two simulated Bebras challenge - one before the course and one after. The conclu-
sion is that CT measures cannot be derived from the current design of the Bebras challenge. This conclusion
is based on the analysis of Item Curve Characteristics by considering Item Response Theory, which shows
that the Bebras tasks are not useful in discriminating students with high and low levels of CT ability. Based on
this result, my research rules out Bebras challenge as an evaluation for CT skills through programming.

2.2.2. Portfolio assessment
Portfolio assessment is a systematic process of collecting and evaluating students’ projects, notes or other
direct observations to evaluate CT skills. These assessment tools can capture a holistic view of obtained CT
skills through projects or code submitted to programming or computing platforms[46]. Portfolio assessments
can measure the quality of the programming product quite well but cannot capture the learning process and
affective outcomes.

One of the most well-known portfolio assessments tools for CTA is Dr. Scratch [36, 37] - a free and open-
source web tool, powered by Hairball, that analyzes Scratch projects to automatically assign a CT score using
8 different parameters. The authors randomly downloaded and analyzed 100 projects from the Scratch web
repository, rating them into 3 levels - Basic, Developing and Proficient - based on a set of rules. While they
measured some of the aspects of CT, code analysis cannot throw light on aspects such as debugging and
remixing that are more real-time. The mapping developed between programming concepts and aspects of
CT by this research serves as a foundation for CT assessment(CTA) as it serves as a bridge between CT and
programming.

Ambrósio, Xavier, and Georges proposed ‘Digital Ink’ - a cognitive assessment test for Computational
Thinking for freshman university students taking introductory programming [4]. This research studies the
cognitive processes associated with CT based on the Cattell-Horn-Carroll (CHC) framework of intelligence[12].
The test evaluates spatial reasoning, time spent on each task and number of corrections made as parameters
for a map navigation application. The second digital assessment is the ‘traditional Rey-Osterrieth’s Com-
plex’ for testing long-term visual memory and visual perception. However, the implemented applications of
Digital Ink in this research have not been extended to text-based programming languages but are limited to
applications that store traces drawn by subjects, followed by searching this data for relevant patterns. While
the authors do mention the easy reproduction of hand-written materials using Digital Ink, there is not much
elaboration or stated application of this. In addition, the implemented version of the Computational Think-
ing Test using Digital Ink is yet to be verified as an adequate assessment tool for CT.

Koh et al.[29] evaluate the extent to which visual programming languages help students learn CT con-
cepts using the visual evaluation tool developed by them - Computational Thinking Pattern (CTP) graph.“The
CTP graph illustrates the amounts and kinds of computational thinking patterns implemented in a given
game”[29, p. 5]. While visual programming languages motivate students, the CTP graph evaluates the ex-
tent of knowledge transfer within computer science and other disciplines. The main limitations of the CTP
graph are its arbitrary nature, difficulty in interpretation, accuracy and amount of chosen CT patterns. Koh
et al. use the CTP graph in REACT[28] - a real-time online assessment system for Scalable Game Design (SGD)
projects that focus on teaching CT to students at an early age via the creation of playable games. This tool
enables teachers to see the students’ understanding of CT concepts by analysing CT patterns for visual lan-
guage learning. The downside of this system is that it is web-based and is embedded in the SGD arcade. This
approach is based on visual language learning and is not easily extended or ported to traditional program-
ming languages, confining the scope greatly. Also, the dashboard implemented is preliminary in that it only
displays the student progress and enables identification of the students who require scaffolding. Further data
analysis is required to understand the underlying factors. My research will focus on creating a portable ex-

4https://www.bebras.org/



6 2. Learning and Computational Thinking

tension that is applicable to traditional programming languages for CT analysis. Owing to the holistic nature
of portfolio assessments, my research will use this assessment method to evaluate CT skills.

2.2.3. Interviews
Interviews are used by researchers to examine the participants’ understanding of CT skills which are then
coded using pre-developed protocols. This approach is useful for capturing the processing behind learn-
ing and applying CT skills. The main downside is that it is time-consuming for both the researcher and the
participant and requires a lot of manual effort on behalf of the researcher.

Yuen and Robbins[55] conduct a qualitative case study to understand the thought processes of students in
a beginners’ data-driven computer science course for biology students. The majority of the data is collected
via three clinical interviews per student where the student has to work upon or review their own solutions for
a given MATLAB-based programming project[55]. This data was then transcribed and analyzed based on a
grounded theory approach. “The findings of this study showed that data computation is an ongoing process
in which participants refine their understanding of the data through organizing and concurrent restructuring
of both their programs and visualizations.”[55, p.14]

Wong and Cheung[52] study the impact of programming education on creative thinking, critical thinking
and problem solving. A computer programming curriculum was first introduced in the primary school and
students learnt to program interactive games. Data was collected via questionnaires before the intervention
and via interviews after the intervention. Structured interviews were conducted where the students were
asked about their perception of the relationship between programming and other courses taught at school.
They were also interviewed about the skills involved in learning. The results show an improvement in the
creative thinking, critical thinking and problem solving capabilities of the students’ after the intervention.
Due to the time-consuming nature of interviews and the manual effort involved, my research does not use
interviews as an assessment method.

2.2.4. Surveys
Surveys are useful to assess affective learning outcomes such as motivation and attitude towards learning
CT skills via quantitative items and open-ended questions. While they are an efficient and convenient data
collection instrument, surveys cannot capture spontaneous attitudes and might not be too accurate for young
children due to the questions being misinterpreted.

Yağcı[53] develops a scale to measure CT skills in high school students using 42 items with a five-point
Likert scale. These questions assessed 4 factors - Problem Solving, Creative Thinking, Critical Thinking and
Algorithmic Thinking[53]. The authors proved the validity and reliability of the scale statistically as a tool to
measure CT skills in high school students. This scale has not yet been tested for different grade levels and
with other CT concepts.

Korkmaz, Çakir, and Özden[30] developed a scale to determine the levels of CT skills of students via a
five-point Likert scale consisting of 29 items. This scale considers five factors - Creativity, Cooperativity,
Algoritmic- Critical Thinking and Problem Solving[30]. The authors also conduct some analyses to show
the validity and reliability of the scale as a tool to measure the computational thinking skills of the students.
Korucu, Gencturk, and Gundogdu investigate CT skills in secondary school students in terms of various vari-
ables using the scale developed by Korkmaz, Çakir, and Özden and considering the usage of technology(both
mobile and remote) and the internet. Their findings reveal that there is a difference among the CT skills of the
participants in terms of the class levels and duration of possession of mobile technologies but do not differ in
terms of gender, weekly internet usage durations, mobile device usage competence situations[31].

Benakli et al.[7] promote CT skills in STEM students via hands-on computer experiments. The study
presents nine experiments and suggests more that teach CT throughs visualizations, simulations and data
analysis. A survey was conducted to understand the experience of the student about using R in the class-
room. The authors believe that "there is evidence for the pedagogical effectiveness of using R as a scientific
programming language for stochastic and deterministic modelling and simulation, data analysis, visualiza-
tion, statistical computing, etc".[7, p.31]. The authors conclude that CT can be encouraged in students by
using hands-on computational projects that enable them to solve problems using technology and program-
ming.

Kılıç, Gökoğlu, and Öztürk developed a survey with 33 questions using a five-point Likert scale to assess
the programming-oriented CT skills among university students[26]. This research considers 3 aspects of CT
- conceptual knowledge, algorithmic thinking, and evaluation - based on their common occurrence in var-
ious studies examined that focus on the programming concepts in CT. The validity of this scale is tested by
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exploratory factor analysis using principal component analysis and the reliability of the scale was proven to
be satisfactory using item-total correlations and Cronbach Alpha[26]. As surveys are automated and can be
used to assess attitudes towards CT, my research will use an adapted version of the survey developed by Kılıç,
Gökoğlu, and Öztürk[26] as an evaluation method.

2.2.5. Combinations
Each of the assessment types stated above have their own downsides. In order to get the best results, a number
of studies use a combination of multiple assessment types. The usage of a combination of assessment tools
allows the examination of the CT learning experience of the user from different aspects. The shortcomings of
one type of CT assessment tool can be solved by using it alongside another type that has a stronger focus on
the shortcoming.

Brennan and Resnick developed a foundational CT framework for Scratch (a block-based programming
language) based on their studies on interactive media design[10]. It contains 3 key dimensions: “compu-
tational concepts (the concepts designers employ as they program), computational practices (the practices
designers develop as they program), and computational perspectives (the perspectives designers form about
the world around them and about themselves)”[10, p.3]. This paper also discusses methods to assess CT
skills: project portfolio analysis, artifact-based interviews and design scenarios. One of the major downsides
of these assessment techniques is that they are too time-consuming and not all of them are real-time.

Computational Thinking Assessment System (CoTAS) [54] enables assessment of CT skills, both summa-
tive and formative, for high school students, thereby supporting teachers to shape the continuous learning
process. It can be used to teach programming and other disciplines that require CT skills integration and
are based on Python. The evaluation is done based on problem-based tests, problem-based assignments,
surveys and interviews. It cannot be integrated into current existing CT curricula and acts as an evaluation
extension to them instead.

Owing to the advantages of a combination of assessments, my research will use a combination of a port-
folio assessment and an adapted version of the survey scale developed by Kılıç, Gökoğlu, and Öztürk[26] to
assess the programming-oriented CT skills of undergraduate students. By using this combination, the atti-
tudes of the users towards CT skills can be measured using the scale and a holistic view of the users’ CT skills
can be gained through the portfolio assessment.

2.3. LA and LA Dashboards
With the increasing usage of online learning environments and educational platforms such as Learning Man-
agement Systems and Massive Open Online Courses, there has been a tremendous amount of learning data
generated in the last decade. There is a need to harness the potential of this learner data and make the most
of it through the usage of data analytics. This is where Learning Analytics (LA) comes into the picture. LA is a
domain that acts as the intersectional space between learning sciences and data analytics[45]. The Society for
Learning Analytics(SoLAR)5 defined LA as “the measurement, collection, analysis and reporting of data about
learners and their contexts, for purposes of understanding and optimising learning and the environments in
which it occurs”[44]. The main aim of LA is to use the data from learning sciences to augment and enhance
the learning process.

With the availability of huge amounts of learner data, it is necessary to transform this data into knowledge
that can be useful to the learner. Durall and Gros elaborate on the importance of information visualization
as a tool for sense-making in the form of goal-oriented visualizations like dashboards through synthesis of
complex information and facilitation of comparisons and inferences[15]. LA can act as a tool for reflection
and enable learners to filter their visualizations to focus on their learning goals[15].

LA dashboards are learning tools that can help learners and teachers harness the power of LA use it to
improve their learning[23]. Schwendimann et al. define LA dashboards as “a single display that aggregates
different indicators about learner(s), learning process(es) and/or learning context(s) into one or multiple
visualizations”[42, p. 8]. LA dashboards can help students improve learning and performance by presenting
them with learning patterns that can help motivate them and improve their learning strategies[21]. By making
the learner aware of their progress and triggering self-reflection[22], LA dashboards can help users regulate
their own learning.

5https://www.solaresearch.org
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2.4. Self-regulated learning
Self-regulated learning (SRL) can be understood as the “ability to control, manage, and plan learning actions
and behavioral processes that increase goal attainment” [21, p.6]. Students who apply SRL strategies in their
learning are more successful in problem solving, and have higher academic achievement, intrinsic motiva-
tion, and task interests[40].

Online learning provides flexibility and accessibility to students through increased learning opportuni-
ties, access to learning resources and opportunities for collaboration[11]. The downside of online learn-
ing is that its success relies heavily on independent learning and the students’ autonomous engagement in
the course[11]. SRL strategies can help learners to gain and retain knowledge methodically and systemati-
cally[11].

Self-regulated learning is the theoretical framework mostly used for designing Learning Analytics Dash-
boards[22] in general. Jivet et al. investigate the effect of learner goals and SRL skills on dashboard-sense
making. The results found 26 factors that students use to interpret dashboards ranging from indicators to
visualizations to contextualizing features to action taking features. The authors further conducted an ex-
ploratory factor analysis on these items to obtain 3 sense-making factors: transparency of design, reference
frames and support for action[23]. Using multiple regression analyses on these sense-making factors, this
research found that there are specific relations between SRL and these three sense-making factors. Through
these relations, they show that “students could use the support for action offered by the dashboard in order
to adjust their goals and plans” for SRL[23, p.12].

Boekaerts identify SRL as “a series of reciprocally related cognitive and affective processes that operate
together on different components of the information processing system”[9, p.3]. The authors identify 2 key
aspects of self-regulation:

1. regulation of the learning process
2. use of metacognitive knowledge and skills to direct one’s learning

Keeping in line with these key aspects, my research aims to regulate the learning process and direct the stu-
dent learning process with knowledge and feedback in the form of an SRL dashboard that includes the sense-
making factors and support for action for SRL.



3
Implementation

This chapter outlines the requirements analysis, design and implementation of the Computational Thinking
(CT) assessment framework developed for this research. Firstly, the requirements are analysed in terms of
the research gap and based on the requirements analysis in section 3.1. Then the design of the framework is
described in section 3.2. Section 3.3 then lays down the details of the implementation.

For the design of the CT assessment framework, the software engineering process is used. The waterfall
model is followed wherein each phase follows the other in a linear way[48]. Each phase is started after the
previous one is completed, just like a waterfall. The main phases of this cycle are:

1. Requirements Analysis: Based on the research gaps in the existing literature and the platform analysis,
the requirements for the product are collected in this phase

2. Design: The design of the product and the features is done in this phase
3. Implementation: Based on the outcomes of the previous phases, the product is implemented
4. Verification: The implemented product is evaluated with a user study, further explained in chapter 4

3.1. Requirements Analysis
To collect the requirements, the course setup is first analysed and then the research gaps based on the lit-
erature study from chapter 2 are analysed. The requirements are then grouped into functional and non-
functional ones.

3.1.1. The Python basic programming course
The CT assessment framework is integrated into the the Python basic programming. This course is a self-
paced course to teach Python programming without any pre-requisite knowledge to university students. It is
comprised of 4 modules -

1. Variables
2. Control flow
3. Code Organization
4. Basic plotting

The course is based on Jupyter notebooks to allow for active leaning and experimentation and uses nbgrader1

for releasing the exercises. The code in these notebooks is runnable, producing output, and can be modified
by the student, so as to learn all the details and study the effects of changes and variations.

3.1.2. Jupyter notebooks
As CT is being integrated into curricula at various levels, tools such as Jupyter notebook provide an easy in-
terface to teach these concepts in an interactive way[27]. Jupyter notebooks allow creation of assignments
while integrating instructions and code easily. Owing to the world-wide adoption of Python as a program-
ming language for Science, Technology, Engineering, and Mathematics (STEM) and non-computer science
courses, Jupyter notebooks have gained popularity as a easy-to-use tool. nbgrader[8] enables instructors to
use Jupyter notebooks to grade assignments without excessive effort, thereby improving communication and

1https://nbgrader.readthedocs.io/en/stable/
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the learning experience for students and instructors both. Two tools were found in the literature that cre-
ate platforms for CT analysis but these cannot be integrated with courses that use Jupyter notebooks and
use specific platforms. Farah et al. develop Code app - a web-based platform that uses online activity traces
and surveys for a computational thinking course on the the Graasp open education platform[16]. Koh et al.
proposed REACT (Real Time Evaluation and Assessment of Computational Thinking) to allow formative as-
sessment of programming tasks in real-time[28]. However, not much has been done to integrate this analysis
into Jupyter notebooks due to the lack of appropriate infrastructure for the same.

Another major shortcoming in Jupyter notebooks is the lack of support for continuous feedback. While it
supports code checking and validation using nbgrader, there is no support for real-time feedback. Nbgrader
allows creation of auto-graded assignments that can be released to the students by the instructor. The stu-
dents downloads a copy of these assignments on their user environment and submits the assignment upon
completion. The instructor then auto-grades these assignments and provides manual feedback if required.
While this framework setup by nbgrader allows for auto-grading of assignments, real-time feedback cannot
be provided.

3.1.3. Research gaps in CTA and research question
Based on the literature review in chapter 2 and the system analysis done above, this research identifies and
addresses the following research gaps:

1. The need to map the complete trajectory of CT skills[46] by assessing CT skills among university stu-
dents using Python.

2. Addressing the lack of usage of CT in classrooms[46] through easy integration of CTA that uses user
micro-interaction logging in Python courses using Jupyter notebooks.

3. Addressing the downsides of online learning by applying SRL strategies in the form of an SRL dashboard
that includes the sense-making factors investigated by Jivet et al.[23]

These research gaps lead to the following research question: How can computational thinking be assessed
through detection of user micro-interactions in a university-level self-paced Python beginners course integrated
into Jupyter notebooks?

3.1.4. Requirements
Requirements can be classified as functional requirements and non-functional ones. The functional require-
mens describe the fundamental and essential subject matter of what the product does. On the other hand,
the non-functional requirements are properties that the product must possess such as data privacy and us-
ability. Based on the requirement analysis in the previous section, the requirements for the CT assessment
framework are grouped into the following functional and non-functional requirements.
The functional requirements for the Computational Thinking (CT) assessment framework are:

1. The user should learn about the Python programming language and underlying transferable CT skills.
2. The user should be able to learn interactively by experimenting live with the code snippets and seeing

the corresponding outputs.
3. The CT assessment should be easy to integrate into Jupyter notebooks for any Python beginners course.
4. The CT assessment should provide feedback based on user micro-interaction data in the form of a

dashboard to help the user improve their CT skills.
5. The user should be able to track their progress and gain actionable feedback through the CT dash-

boards.
The non-functional requirements for the Computational Thinking (CT) assessment framework are:

1. The user should be able to access the Python beginner course without doing any setup of the environ-
ment or the required libraries.

2. The user data should be anonymized before it is sent to the server to protect data privacy.
3. The user should be able to access the learning materials from any device connected to the internet at

any hour of the day.
4. The CT dashboards should be easy to understand and use.

3.2. Design
3.2.1. Adapted definition of Computational Thinking
For this research, an adapted definition of Computational Thinking(CT) that combines those by Brennan and
Resnick[10] and Yeni and Hermans [54] is used. Brennan and Resnick define CT for Scratch with 3 key dimen-
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sions: “computational concepts (the concepts designers employ as they program), computational practices
(the practices designers develop as they program), and computational perspectives (the perspectives design-
ers form about the world around them and about themselves)”[10, p.3]. Yeni and Hermans adapt this defini-
tion to Python by modifying the CT concepts list to one that is better suited to Python. The CT concepts used
by Yeni and Hermans are:

1. Data structures
2. Operators
3. Conditionals
4. Sequences
5. Loops
6. Functionals
Visualization, also referred to as ‘Simulation’ or ‘Modelling’ is an important CT concept that is missing in

the above definition. Hambrusch et al. develop a course to introduce CT to science majors and they believe
that although visualization is an important aspect of computing, it has not been effectively used in teaching
CT concepts[19]. The International Society for Technology in Education (ISTE) and the Computer Science
Teachers Association (CSTA) define CT as a problem-solving process that includes representation of data via
abstractions - models and simulations[47]. Barr and Stephenson[6] include simulation in their definition
of CT for K-12. Weintrop et al. and Yuen and Robbins consider a data-based approach to CT and find that
there is a link between the computational and visualization tasks[49][56]. Thereby, based on the structure
of the Python programming course and relevant literature, my research adds ‘Visualizations’ to the list of CT
concepts proposed by Yeni and Hermans. Thereby, the revised list of CT concepts used in my research is,
along with their definitions are:

1. Data structures: Data involves storing, retrieving, and updating values
2. Operators: Operators provide support for mathematical, logical, and string expressions
3. Conditionals: Conditionals allow making logical decisions based on a condition
4. Sequences: Sequences are an activity/task expressed as a series of individual steps
5. Loops: Loops allow repetition of a statement multiple times based on a condition
6. Functionals: Functionals are blocks that a program is divided into
7. Visualizations: Visualization involves viewing data using graphs or charts
Brennan and Resnick[10] identify 4 CT practices as part of their CT definition, which are identified by

micro-interactions (explained in section 3.3.1):
1. Being Incremental and Iterative
2. Testing and Debugging
3. Reusing and Remixing
4. Abstracting and Modularizing[10]

My research uses these 4 CT practices and detects them through the user’s micro-interactions. This is further
explained in section 3.3.1.

3.2.2. CT concepts mapping
This research uses 7 CT concepts and maps them to the 4 learning modules in the Python basic programming
course. This mapping is used for the design of the module-wise dashboards described in section 3.3.3. The
CT concepts are mapped to the learning modules as shown in Table 3.1.

Table 3.1: Module mapping to CT concepts

Module CT concepts

Variables Data, Operators
Control flow Loops, Conditionals

Code Organization Sequences, Functionals
Basic plotting Visualization

3.2.3. Software architecture
For this study, 2 servers are required as per the design requirements. The software architecture is shown in
Figure 3.1. The first server is the JupyterHub server where the Jupyter notebook files are hosted as assign-
ments using nbgrader[8]. This server is hosted on Amazon Web Services (AWS) Elastic Compute Cloud (EC2)
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on an Ubuntu server and contains a build of The Littlest JupyterHub (TLJH) 2. The 4 learning modules are
hosted here along with the LogUI server configuration files, nbgrader library CT dashboards and the LogUI
interaction logs[1]. The link to this server was sent to all the registered users for the user evaluation study.
The second server is the LogUI server that is also hosted on AWS EC2 on an Ubuntu server. It contains a
dockerised image of the LogUI server and its components. The address to this server was configured into the
LogUI server configuration file in the JupyterHub. The link to the JupyterHub was configured in the client
configuration here correspondingly.

Figure 3.1: System architecture

3.2.4. User activity flow
The flow of activities for the user is as shown in Figure 3.2. The user begins by filling in the pre-evaluation sur-
vey and logging in to the JupyterHub server. They then fetch the modules from the server as assignments and
complete the learning modules one at a time. The CT concepts dashboard is to be viewed after each mod-
ule and provides feedback about whether the progress is satisfactory and if the module needs to be repeated.
Once the user completes all the modules, they view the global CT practices dashboard for further overall feed-
back. Following that, the user fills in the post-evaluation survey to assess their CT skills after learning basic
programming.

3.3. Implementation
3.3.1. Micro-interactions
Micro-interactions are the small-scale interactions that the user does with a platform such as keypresses,
mouse button presses, copy and paste, etc. They can be useful to track the user behavior in real-time and
provide feedback about their learning process. Micro-interactions can be aggregated and grouped to provide
learning indicators that can help users with self-regulation of their learning process[34]. This research collects
micro-interaction data and processes them to form indicators of CT skills. There are two sources of the micro-
interaction data - LogUI and notebook metadata.

LogUI[35] is a framework-agnostic client-side JavaScript library developed by Maxwell and Hauff for log-
ging user interactions on webpages. This research uses LogUI integrated into Jupyter notebooks together
with Jupyter notebook metadata to detect micro-interactions such as the time spent on a cell, copy and paste.
These micro-interactions are then aggregated to learning paramaters. For example, the number of copy-paste
actions can indicate reuse of code in learning. These micro-interactions are then used as input for a global
SRL dashboard.

The second source of micro-interaction data is the metadata from Jupyter notebooks. Jupyter notebook
stores its cells as an array of JavaScript Object Notation(JSON) objects. This contains metadata about the

2https://tljh.jupyter.org/en/latest/
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Figure 3.2: User flow diagram

number of cell runs, errors, cell source and more. This is processed to obtain some of the micro-interaction
parameters.

3.3.2. Mapping of micro-interactions to CT practices
A combination of LogUI and notebook metadata is used to track micro-interactions.

The CT practices are defined as:

1. Being Incremental and Iterative: This is an adaptive process involving approaching a solution in small
steps and working on it iteratively

2. Testing and Debugging: The practice of developing strategies for anticipating and dealing with prob-
lems

3. Reusing and Remixing: The practice of building upon existing code to help users find ideas to build
upon

4. Abstracting and Modularizing: It is the practice to the building something large by putting together
collections of smaller parts

These CT practices are mapped to micro-interactions as shown in Table 3.2. ‘focusin’ and ‘focusout’ refer to
the user entering and exiting a code cell respectively. The difference between these two micro-interactions
is used to compute the time spent on a cell. The count of keystrokes, cell runs in a notebook, errors in the
output, new functions added and modules imported is used for their respective actions. ‘copy’ and ‘paste’
refers to the number of times a user copies and pastes something from and to a code cell respectively. Each
of these micro-interactions is recorded per notebook and then analyzed.

3.3.3. SRL Dashboards
Dashboards are tools that support both students and teachers by helping them make sense of the learning
analytics data such that it can be used to improve the learning process[23]. Dashboards can be used to trigger
learners to think about the effort invested in learning and the subsequent outcomes of these activities[22].
Dashboards are used in this research to provide feedback to students per module and also about how the
micro-interaction data can be used to improve the learning process. In this way, the students can regulate
their learning process themselves.
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Table 3.2: Micro-interactions mapping to CT practices

Micro-interaction Action Source CT practice

focusin + focusout Time spent on a cell LogUI Being Incremental and Iterative
keystrokes additions LogUI Being Incremental and Iterative

Cell run count - Notebook metadata Testing and Debugging
Errors in output Errors Notebook metadata Testing and Debugging

copy Copying from the notebook LogUI Reusing and Remixing
paste Pasting to the notebook LogUI Reusing and Remixing

adding new functions - Notebook metadata Abstracting and Modularizing
module import - Notebook metadata Abstracting and Modularizing

3.3.4. CT concepts dashboard
The user is provided feedback for self-regulated learning via Computational Thinking(CT) concepts dash-
boards per module. This dashboard uses metadata tags for the cells and checks the completion using certain
conditions. Additionally, the user is provided with actionable suggestion for iterative self-regulated learning,
as shown in Figure 3.3.

Figure 3.3 shows the dashboard for the module ‘Code Organization’, covering 2 CT concepts - Sequences
and Functionals. The progress of each concept is shown by a progress bar. This progress is computed by the
ratio of the number of cells tagged with a concept that have been completed by the user against the ratio of
the total cells tagged with a concept, scaled to a CT concept score of 1-10. The color of the progress bar is red
if the progress is less than 60% of this ratio, as can be seen for the concept Functionals. The user is advised to
revisit the module if the progress bar is red or else proceed to the next one. This way, the user can track their
progress and can decide their next step based on quantitative data.

Figure 3.3: Module-wise CT dashboard

3.3.5. CT practices dashboard
The micro-interactions of the user are tracked using LogUI and notebook metadata and are mapped to the
CT practices, as per Table 3.2. These are shown in 4 sections corresponding to the CT practices and each
micro-interactions is displayed module-wise. A screenshot of the dashboard for one of the CT practices is
shown in Figure 3.4.

3.3.6. Integration and Reproducibility
The framework created for CT assessment in this research can be integrated and reproduced easily for any
Python beginners course that uses Jupyter notebooks. The detailed instructions can be found on the Github
repository[1]. The steps to reproduce this CT assessment are:

1. Setup a LogUI server following the documentation3

2. Add metadata tags to the course cells

3https://github.com/logui-framework/server
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Figure 3.4: Global CT practices dashboard

3. Add the code for logging the micro-interactions into each notebook
4. Add the LogUI client files and configure the LogUI server link and authorisation token (follow LogUI

client instructions4)
5. Add the CT concepts dashboards to the modules and the overall CT practices dashboard(user ID to be

configured here)

4https://github.com/logui-framework/client





4
Methods

To test the effectiveness of the Computation Thinking Assessment (CTA) framework developed, a user evalu-
ation study was conducted for a period of length of 20 days.

4.1. Participants
25 participants signed up via an open call for participation, out of which 48% of the participants (12 partici-
pants) completed the study. Among the 13 participants who dropped out, 5 logged in but did not make much
progress due to time constraints while 8 of them did not log in to the JupyterHub server at all. Only the 12
participants who completed the course are considered for further results and conclusions, thereby setting the
sample size to 12. To ensure the data privacy of the participants, the results presented have been anonymized.

The characteristics of the participants who completed the study are quite equalized, as can be seen in
Table 4.1.

Table 4.1: Participant characteristics, Sample size = 12

Characteristic Values Participant
count

Gender Female
Male

5
7

Age range 20 to 25
25 to 30

5
7

Highest education level Bachelors degree
Masters degree

5
7

Current domain of work or study Computer science
Non-Computer science STEM
Non-STEM

2
7
3

Prior Python programming experience 1
2
3
5
6

5
3
3
1
1

These participant characteristics help establish the target audience for the CT assessment framework and
for the Python basic programming course. From Table 4.1, it can be seen that the gender ratio is quite equal-
ized. Table 4.1 shows the age range of the users - with all of them falling in the age range of 20-30 years. This
age range corresponds to the approximate age range of university students. Table 4.1 further establishes the
target audience as university students by considering the current or highest level of education of the users -
finding all of them to be either currently pursuing or completed a Bachelors’ degree or a Masters’ degree. As
CT skills are transferable, it is also important to consider the current domain of work or study of the users
to ensure that the participants are from different domains. Table 4.1 shows the domain distribution of the
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users to be quite wide-spread across non-CS Science, Technology, Engineering and Mathematics (STEM) and
non-STEM domains.

As part of the call for participation, the participants were asked to report their prior Python programming
experience on a scale of 1-10, with 1 signifying ‘no knowledge’ and 10 signifying ‘master’. This self-reported
prior Python programming experience of users (on a scale of 1-10) is shown in Table 4.1. 2 of the participants
have moderate prior Python programming experience while 10 of them have no knowledge to little knowl-
edge. Based on these characteristics, the user evaluation study considered participants who are beginners to
Python programming at the university level from different domains.

4.2. Materials
The CTA framework is integrated into the Python basic programming course as described in subsection 3.1.1.
This course comprises of 4 modules - variables, control flow, code organization and basic plotting. Each
module has learning materials and the CT concepts dashboards. There is a global CT practices dashboard
in the main folder. The course uses Jupyter notebooks and nbgrader as the main tools for the environment
setup. As decribed in section 3.2.3, a JupyterHub server (hosted on Amazon EC2 on an Ubuntu server) was set
up to host all the user data, learning materials and dashboards. Each participant had an independent login
and local storage on this server where their progress was stored.

4.3. Procedure
First, participants were asked to sign up by filling out an open call for participation through a survey. Then,
a user login was created to each participant and communicated to them via email on the day that the user
evaluation study began. The participants were then asked to fill in the pre-evaluation survey before logging
in to the server for the first time. Once they logged into the server and completed the course materials and
followed the feedback from the CT dashboards, they were asked to fill in the post-evaluation survey as the
last step.

An experimental design is used to measure the improvement in CT skills of participants before and after
taking the Python basic programming course with the CTA framework integrated. The self-reported CT skills
of users before and after taking the course are the dependent variable. A within-subjects design is chosen to
measure the change in CT skills of each participants before and after taking the Python basic programming
course. Based on this experimental design, the null hypothesis H0 and alternate hypothesis for the experi-
ment H1 respectively are:
H0: There is no difference in the CT skills users before and after taking the course
H1: There is a difference in the CT skills of users before and after taking the course
These hypotheses are tested through 3 sub-research questions in Section 4.4.

To measure the effect of the user evaluation study on CT skills of the participants, a pre-evaluation sur-
vey was conducted before taking the course and a post-evaluation survey was conducted after taking the
course. Both of these surveys have the same 24 questions with a five-point Likert scale (1=Strongly Disagree,
2=Disagree, 3=Neutral, 4=Agree, 5=Strongly Agree). The scores between the two surveys are compared to see
the change in CT skills. Additionally, the participants are asked 5 questions in the post-evaluation survey to
evaluate the usability of the SRL dashboards. The questions in the surveys are presented in Appendix A. The
survey used is an adapted version of the survey created by Kılıç, Gökoğlu, and Öztürk[26]. This survey is used
as it has been designed to evaluate the programming-oriented CT skills at the university level. As my research
associates programming concepts with CT skills, it was necessary to find a survey scale that measures this
correspondence same. This survey was found to be the best-suited to this purpose.

4.4. Results
This research aims to answer the research question: How can computational thinking be assessed through
detection of user micro-interactions in a university-level self-paced Python beginners course integrated into
Jupyter notebooks?
To answer this research question, the results of the study are analysed under 3 research sub-questions :

1. RQ1: Did the users acquire Computational Thinking (CT) skills in the form of both CT concepts and CT
practices?

2. RQ2: Was there a significant improvement in the self-reported CT skills of users after taking the Python
basic programming course?
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3. RQ3: How do the self-reported survey responses correspond to the actual user micro-interaction data?
To check for the usability and accessibility, the users are asked 5 questions in the post-evaluation survey.

These questions are a paraphrased version of the short version user-experience questionnaire UEQ-S devel-
oped by Schrepp, Hinderks, and Thomaschewski and adapted to this research[41]. These questions are used
to measure the experience of the users towards the CT dashboards developed in this framework.

The number of participants who selected each of the 5-point Likert values per question is shown in Table
4.2. The mode values - the most frequent responses - for each of the questions are also shown in Table 4.2.
These modal values also correspond to the median values, that is, the central values. Based on the modal
values and the distribution of answers in these survey feedback questions, it can be concluded that the CT
dashboards were usable and accessible.

Table 4.2: Survey values and modal values for CT dashboard feedback questions

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Modal
value

I found the dashboards easy to use 0 0 3 5 4 Agree
I could follow the course materials 0 0 4 6 2 Agree
The dashboards helped me track my
learning progress

0 0 2 4 6 Strongly
Agree

The dashboards gave me valuable
feedback and action points

0 0 1 6 5 Agree

The dashboards were transparent and
easy to understand

0 0 1 4 7 Strongly
Agree

4.4.1. RQ1: Did the users acquire Computational Thinking (CT) skills in the form of both
CT concepts and CT practices?

For RQ1, the mapping of the survey questions from Kılıç, Gökoğlu, and Öztürk[26] to the survey questions
used by this research is examined. Kılıç, Gökoğlu, and Öztürk divides the questions into 3 subscales: con-
ceptual knowledge, algorithmic thinking, and evaluation[26]. Conceptual knowledge is defined as basic pro-
gramming structures and data concepts and the ability to use them effectively[26] - mapping to the CT con-
cepts in the adapted definition of CT presented in Section 3.2.1. Question 15-24 presented in Appendix A
thereby maps to CT concepts and the questions 1-14 map to the CT practices. To analyse the acquisition of
self-reported CT skills, the post-evaluation survey was used. The count of each of the options of the Likert
scale was aggregated per question for the 12 completed users, as shown in Figure 4.1. Following this, the
mean (taken by encoding the Likert option values) and standard deviation (SD) was computed per question
to get the final score per question, shown in Figure 4.1. Then, the average value of the mean for the CT con-
cepts questions(15-24) and CT practices questions(1-14) was computed and was found to be 4.35 and 4.27
respectively. The standard deviation for the CT concepts questions(15-24) and CT practices questions(1-14)
are both found to be in the range of 0.53-1.13, signifying a short deviation from the average value. Based on
these values, it can be concluded that the users acquired CT skills in the form of both CT concepts and CT
practices.

4.4.2. RQ2: Was there a significant improvement in the self-reported CT skills of users
after taking the Python basic programming course?

To analyze the change in the self-reported CT skills of users before and after the course, 2 analysis methods
were used - a data-based approach and a statistical approach. In the data-based approach, the change in the
survey results was analyzed per question and per user. The difference between the Likert-style responses in
the post-evaluation survey and pre-evaluation survey was calculated per question for each user. This change
in the survey answers can be seen in Figure B.1 in Appendix B.

The change values were further grouped as follows:
• Large Increase = 4 or 3
• Increase = 2 or 1
• No change = 0

The breakdown per user using this grouping can be seen in 4.2. The percentage increase per user according
to this grouping is broken down in Table 4.3. As can be seen in this table, most of the users have a higher
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Figure 4.1: Mean and SD values per question

percentage of increase than no change, showing that there was an improvement in the CT skills of users after
taking the Python basic programming course.

To further analyze the significance of the change in CT skills before and after the Python basic program-
ming course, a statistical approach is also used by conducting a paired t-test for the population. A paired
t-test is a statistical test used to compare the difference between a pair of variables (called dependent vari-
ables) for the same subject. The paired t-test was done by considering the average of the responses in the
pre-evaluation survey for each user and the average of the responses in the post-evaluation survey for each
user as the pair of dependent variables. The null hypothesis H0 and alternate hypothesis H1 respectively are:
H0: There is no difference in the self-reported CT skills users before and after taking the course
H1: There is a difference in the self-reported CT skills of users before and after taking the course

The significance level α is set to a value of 0.05. If the two-tailed p − value < 0.05, the null hypothesis H0

is rejected. As seen in Figure 4.3, the p-value is less than α. Thereby, the null hypothesis H0 is rejected for the
group - showing a significant improvement in self-reported CT skills. Based on the above results, it can be
concluded that there is a significant change in the self-reported CT skills of users before and after taking the
course.

4.4.3. RQ3: How do the self-reported survey responses correspond to the actual user
micro-interaction data?

To answer RQ3, the average scores of the increase in self-reported CT skills were computed and compared
to the user micro-interaction data and dashboard usage data. The average of the change in the self-reported
CT skills of users is computed for the CT concepts as C T C _S_av g and the CT practices as C T P_S_av g by
taking the average of the numbers presented in Figure B.1 in Appendix B. The change is score is computed by
taking the difference per question and per user between the post-evaluation survey and the pre-evaluation
survey. Then, the average score for this change is obtained by averaging over the CT concept questions and CT
practices questions for each user. The scale for these scores is thereby 0-4 as the maximum possible change
is 4.
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Table 4.3: Breakdown of user-wise CT skills change percentage pre-post

User Increase group Percentage value

User 1 Large Increase
Increase

87.5%
12.5%

User 2 Large Increase
Increase
No Change

4.2%
45.8%
50%

User 3 Large Increase
Increase

8.3%
91.7%

User 4 Increase
No Change

70.8%
29.2%

User 5 Large Increase
Increase

66.7%
33.3%

User 6 Large Increase
Increase

75%
25%

User 7 Large Increase
Increase

91.7%
8.3%

User 8 Large Increase
Increase

87.5%
12.5%

User 9 Large Increase
Increase
No Change

8.3%
70.8%
20.9%

User 10 Increase
No Change

50%
50%

User 11 Large Increase
Increase

70.8%
29.2%

User 12 Large Increase
Increase

62.5%
37.5%

Figure 4.2: Breakdown of user-wise CT skills change pre-post
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Figure 4.3: Paired t-test result

To compare this to actual user interaction data, the CT concepts dashboard scores for each CT concept(on
a scale of 0 to 10) is averaged to get the CT concepts average score as C T C _DB_av g . The CT concept dash-
boards contain a score for each CT concept on a scale of 1-10. This score per concept is averaged to get a
single score so that the comparison is easy. The usage of the CT dashboards is measured as the average of
the number of times the CT concepts dashboard is run by each user as C T C _DB_r uns. The number of runs
for the dashboard of each module is averaged over the 4 modules to get this score. For the CT practices, the
user-wise scores for each of the micro-interactions in the CT practices is averaged over the modules to get a
single average score for each micro-interaction as C T P_DB_av g .

This data is presented in Table 4.4. The columns in this table are:
• User: User ID
• C T C _S_av g : Average change in the self-reported CT concepts of user as reported in the survey (aver-

aged over questions 15-24 of survey questions in Appendix A)
• C T P_S_av g : Average change in the self-reported CT practices of user as reported in the survey (aver-

aged over questions 10-14 of survey questions in Appendix A)
• C T C _DB_av g : Average of the CT concepts dashboard scores of the user for each CT concept (averaged

over the 4 module-wise CT concepts dashboards)
• C T C _DB_r uns: Average number of times that the user runs each the CT concepts dashboard (aver-

aged over the 4 module-wise CT concepts dashboards)
• C T P_DB_av g : Average score for each micro-interaction of the user in the global CT practices dash-

board (averaged over the 4 modules in the dashboards)
As can be seen from Table 4.4.3, the change in CT skills reported by the users roughly corresponds to the

user micro-interaction data. For example, User 1 reports a high change of 3.4 and 3.2 in CT concepts and
CT practices and this is reflected accordingly in the high values of the average CT concepts dashboard scores
and runs and the values of the CT practices dashboard. On the other end of the spectrum, low self-reported
scores correspond to low values in the micro-interaction data. An example of such a user is User 2.

From the data in Table 4.4.3, it can be seen that Users 4 and 10 report a low change in the CT skills.
These users have a pretty good prior knowledge of the Python programming language(5 out of 10 and 6 out
of 10) and thereby did not gain much added value from the course. These users also score highly on the
C T C _DB_av g , signifying a good knowledge of the programming constructs and spend quite less time on the
course, as is seen in the low ‘Time spent’ and ‘Cell runs’ in the C T P_DB_av g .

Based on the correspondence between the self-reported survey responses and the actual user micro-
interaction data, it can be concluded that they reflect quite strongly on each other, thereby implying honest
responses to the survey questions.
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Table 4.4: User micro-interaction scores and survey response changes

User CTC_S_avg CTP_S_avg CTC_DB_avg CTC_DB_runs CTP_DB_avg
User 1 3.4/4 3.2/4 8/10 2 Keystrokes: 438

Time spent: 113s
Cell runs: 21.75
Errors: 0
Copy: 1
Paste: 1
Functions: 1.5
Modules imported: 3

User 2 1/4 0.93/4 7/10 1 Keystrokes: 19
Time spent: 6.5s
Cell runs: 9.75
Errors: 0.75
Copy: 0.5
Paste: 1
Functions: 1.25
Modules imported: 3

User 3 1.9/4 1.7/4 7.68/10 1.25 Keystrokes: 96
Time spent: 21s
Cell runs: 8
Errors: 0.25
Copy:0.5
Paste: 1
Functions: 1.25
Modules imported: 3

User 4 0.7/4 1.07/4 8.32/10 1 Keystrokes: 176
Time spent: 44s
Cell runs: 5.75
Errors: 0.75
Copy: 0.5
Paste: 2
Functions: 1.5
Modules imported: 3

User 5 3/4 2.57/4 7.9/10 2.25 Keystrokes: 590
Time spent: 106s
Cell runs: 32
Errors: 0
Copy: 1
Paste: 8
Functions: 2
Modules imported: 3

User 6 3/4 2.57/4 8.88/10 2 Keystrokes: 145
Time spent: 114s
Cell runs: 10.75
Errors: 0.5
Copy: 0.5
Paste: 3
Functions: 1.25
Modules imported: 3

Continued on next page
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Table 4.4 – Continued from previous page
User CTC_S_avg CTP_S_avg CTC_DB_avg CTC_DB_runs CTP_DB_avg

User 7 3.3/4 3.29/4 8.84/10 2 Keystrokes: 139
Time spent: 104s
Cell runs: 10.25
Errors: 0.5
Copy: 1.25
Paste: 1
Functions: 1.5
Modules imported: 3

User 8 3.5/4 3.36/4 9.5/10 2.5 Keystrokes: 488
Time spent: 221s
Cell runs: 22
Errors: 0
Copy: 1
Paste: 1
Functions: 2
Modules imported: 3

User 9 1.3/4 1.29/4 7.84/10 1 Keystrokes: 28
Time spent: 37s
Cell runs: 15.25
Errors: 0.5
Copy: 1
Paste: 1
Functions: 1.25
Modules imported: 3

User 10 0.7/4 0.43/4 7.63/10 1 Keystrokes: 54
Time spent: 14s
Cell runs: 8.75
Errors: 0.5
Copy: 2.25
Paste: 1.75
Functions: 1.5
Modules imported: 3

User 11 2.6/4 3/4 8.22/10 2.25 Keystrokes: 958
Time spent: 119s
Cell runs: 17.75
Errors: 0
Copy: 4.75
Paste: 8.25
Functions: 1.25
Modules imported: 3

User 12 2.79/4 2.3/4 7.8/10 3 Keystrokes: 92
Time spent: 61s
Cell runs: 12.75
Errors: 0.25
Copy: 0.5
Paste: 1
Functions: 1.25
Modules imported: 3



5
Conclusion

This research aimed to answer the research question - How can computational thinking be assessed through
detection of user micro-interactions in a university-level self-paced Python beginners course integrated into
Jupyter notebooks? To answer this research question, a framework for computational thinking (CT) assess-
ment using detection of micro-interactions was developed and integrated in a university-level self-paced
Python beginners course in Jupyter notebooks. A user evaluation study is conducted to show that this frame-
work can be used to improve the acquisition of CT skills via programming.

To assess CT, a combination of a survey and portfolio assessment method are used in this research. The
portfolio assessment is done by detecting user micro-interactions and using them as indicators of CT - pro-
viding a holistic view of the users’ CT skills. As the portfolio assessment cannot capture the users’ attitudes
towards learning and affective outcomes, a survey is used before and after the programming course to assess
these. The results of the user evaluation study are summarised here. Firstly, the accessibility and usability
of the CT dashboards was found to be sufficient through feedback questions in the post-evaluation survey.
To test the acquisition of CT skills by the users, the mean and standard deviation of the post-evaluation sur-
vey responses was calculated over all users and it was found that the users acquired CT skills in the form
of both CT concepts and CT practices. The improvement in the self-reported CT skills of users after taking
the course was computed by comparing the self-reported survey scores before and after taking the course.
The significance of this change in self-reported CT skills was computed using a paired t-test and it was con-
cluded that there is a significant change in the CT skills of users before and after taking the course. Lastly, the
correspondence between the self-reported survey responses and the actual user micro-interaction data was
checked and found to have a strong correspondence across a majority of the users. Thus, the results show an
improvement in CT skills of the users and an accurate assessment of the same through this framework.

The results of the user evaluation study show that the developed framework for computational thinking
(CT) assessment using detection of micro-interactions can be easily integrated in a university-level self-paced
Python beginners course in Jupyter notebooks and this framework is effective in improving CT skills among
users. In addition, a mapping of CT skills to the micro-interactions is developed in this research and this
is used to create CT dashboards that provide feedback for self-regulation to users. The guidelines to inte-
grate this framework easily in other introductory Python programming courses using Jupyter notebooks are
provided in section 3.3.6.

As with every research, this one has its limitations too. There are 3 main limitations. Firstly, the results of
the micro-interactions logging and the dashboard are not available to the user in the form of the global CT
practices dashboard at all points of time. As the logging library - LogUI - is still in the development phase, it
does not currently have the functionality to stream or access the user interaction logs in real time. The logs
for all users and all sessions are appended to a single log file that can be download from the LogUI server
and uploaded to the JupyterHub server when a user would like to view the CT practices dashboard. This is
not a major issue for a small number of users as the logs can be downloaded at regular intervals of time or
on-demand when a user would like to view the CT practices dashboard after completing an iteration of the
course. However, this could cause issues in scaling as the number of users increases. The LogUI development
team is currently working to resolve this issue and implement this functionality

The second limitation is that the auto-graded entrance test and exit test modules could not be integrated
due to a currently unresolved issue with Jupyter client[24]. Future versions or re-runs of the course could
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include these modules when the issue with Jupyter client is resolved.
The third limitation is that the assessment of self-regulated learning - Motivated Strategies for Learning

Questionnaire (MSLQ)[39] - could not be fully integrated in this research owing to the time constraints of the
user evaluation study. MSLQ is a self-reported questionnaire used to assess the cognitive view of motivations
and learning strategies in a college course. Adding the MSLQ validation would help assess the self-regulated
learning among students through this course. Owing to this limitation, the self-regulation aspect of this CT
framework could not be fully assessed in this research.

In conclusion, a framework to assess CT skills was developed for a university-level self-paced Python be-
ginners course and micro-interaction data was used to provide feedback to improve the acquisition of CT
skills by the user. This framework can be integrated easily into other courses that teach CT skills through
Python programming using Jupyter notebooks. While the user evaluation study conducted validates the CT
assessment framework developed for a basic programming course, the results might differ for an advanced
programming courses and courses that do not teach programming. Future work aimed at testing the appli-
cability of this framework to other non-programming courses and to advanced programming courses should
be carried out to validate the results of this CT assessment framework to them. In addition, integration of the
MSLQ validation framework would enable validation of the complete theoretical design of this CT assessment
framework.



A
Survey questions

The questions used in the pre-evaluation survey are:

1. I can detect errors related to coding on a subject I know.
2. I can detect and clean unnecessary code structures in a program.
3. I can detect the similarities and differences between two different programs.
4. I can understand how the result changes when different values assigned to the variables in the program.
5. I can continue the coding on a subject where I left off.
6. I can interpret the causes of the errors I encountered during the coding process.
7. I can detect errors in syntax (if, for, operators, etc.)
8. I can decide on the operations that will create my code structures or code blocks in the program
9. I can break a problem into smaller parts and work on them independently.

10. I can fix errors in the mathematical operations of the program.
11. I can understand an existing program and reuse it in my code.
12. I can detect and fix a logical error in the flow of a program.
13. I can sort the solution steps of the complex program appropriately.
14. I can visualize the processing steps of the program in my mind before I start coding.
15. I can use the loop structures (for, while, etc.) appropriately.
16. I can use the decision structure (if-else, switch-case) appropriately
17. I can determine the suitable data type (string, int, char, float, etc.) for a variable.
18. I can use mathematical (,=, == etc.) and logical operators (and, or, etc.) appropriately.
19. I can use general methods of programming languages [write(), read(), wait(), move(), scanf(), printf(),

etc.]
20. I can code programs in which decisions (if-else, switch-case) and loops (for, while) can be used together.
21. I can make sections that require mathematical operations in the program.
22. I can determine which of the similar structures (if-switch, for-while) would be more appropriate.
23. I know which variables I would use before I start coding.
24. I can decide how to split complex programs into smaller pieces.

The post-evaluation survey contains all the questions in the pre-evaluation survey and 5 additional ques-
tions to evaluate the research. These 5 additional questions are:

1. I found the dashboards easy to use
2. I could follow the course materials
3. The dashboards helped me track my learning progress
4. The dashboards gave me valuable feedback and action points
5. The dashboards were transparent and easy to understand
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B
Detailed results

B.1. User-wise change

Figure B.1: Change in user-wise CT skills pre-post
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