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Abstract—The application of distributed radar to human
motion monitoring is considered. A novel sensor fusion method
has been proposed that yields a two-dimensional map of re-
flection intensity and a vector field of reconstructed velocities
in lieu of conventional Doppler spectrograms or radial velocity
components. The method has been verified using experimental
datasets in two case studies involving fall detection in sequences of
activities, and arm motion discrimination for in-place activities. A
true positive rate and precision of respectively 99.3 % and 93.0 %
have been demonstrated for the fall detection task, and the output
of the proposed method for arm motion characterisation indicates
suitability for classification in future research.

Index Terms—Distributed Radar, Sensor Fusion, Human Mon-
itoring, Fall Detection, Activity Classification

I. INTRODUCTION

Human monitoring has important applications in such fields
as security and healthcare support. As a sensor, radar presents
a set of properties that make it an advantageous modality
for these purposes. These include sensing capabilities in ad-
verse lighting conditions, as well as the non-contact, privacy-
preserving nature of radar imaging that may be advantageous
for user compliance and acceptance. Specifically in the context
of healthcare support, significant research efforts using con-
tactless radar sensing have been directed towards fall detection
to aid the prolonging of independent living for the older and
more vulnerable population [1], [2]. Additionally, as part of the
more general study of contactless human activity classification,
radar utilisation is also investigated for such applications as
gesture and sign language recognition [3]-[7].

In radar sensing and beyond, fusion of information from
multiple sensors or multiple data representations is widely
considered to be an effective means of increasing detection
and classification performance. Specifically, sensor fusion is
employed to improve, among others, gesture recognition [8],

This research is funded in part by the Dutch Research Council (NWO)
through the project RAD-ART (Radar-aware Activity Recognition with Inno-
vative Temporal Networks).

Ronny Guendel
Microwave Sensing, Systems, and Signals
Delft University of Technology
Delft, the Netherlands
r.guendel @tudelft.nl

Alexander Yarovoy
Microwave Sensing, Systems, and Signals
Delft University of Technology
Delft, the Netherlands
a.yarovoy @tudelft.nl

[9], sign language recognition [10], classifications of human
activities [11], [12], and classification of gait [13]. Often in this
research context, sensor fusion occurs in either an intermediate
feature domain that is not easily interpretable by humans [14],
or at a later stage in the form of e.g., decision fusion [13].

In this work, a novel signal-level sensor fusion method is
proposed that takes inputs from a network of distributed radar
sensors. The method outputs a reconstructed 2D map of reflec-
tion intensity in the horizontal plane, as well as a vector field
of reconstructed absolute velocities, instead of conventional
micro-Doppler spectrograms representing only radial velocity
components. The proposed sensor fusion yields a data repre-
sentation that remains intelligible to humans and which can
be utilised for further processing to perform e.g. classification
of motions featuring distinct velocity components in multiple
directions. The utility of the method is demonstrated in two
case studies with experimental data collected using a network
of five radars. In the first study, the intensity map is computed
for experimental sequences of human activities and employed
to perform fall detection based on alterations in the shape
of an extended target in the horizontal plane. In the second
study, several arm motions are captured and the feasibility
of discriminating between them is demonstrated using the
computed velocity vector field.

The remainder of this work is organised as follows. In
Section II, the proposed sensor fusion method and its outputs
are described, followed by a description of the two case studies
and experimental setups in Section III. The results of the
case studies are shown in Section IV with conclusions and
recommendations for future work given in Section V.

II. PROPOSED METHOD

Serving as input to the proposed processing pipeline are
N complex-valued range-time matrices from N spatially dis-
tributed radar sensors. For computing the intensity map at time
to, the interval [to, to+C PI] is selected from all N range-time
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Fig. 1. Processing pipeline for the proposed sensor fusion method using a network of distributed radar sensors. The method outputs are organised in three

horizontal branches.

matrices, where C'PI indicates a chosen coherent processing
interval.

Through the application of a Fast Fourier Transform (FFT)
along the slow-time dimension, /N complex range-Doppler
maps RD,, are acquired. With the range-Doppler maps and
the known positions of the radar sensors (x,,y,), the mea-
sured signal intensity I at an arbitrary position (x,y) can be
determined by first computing the range to all N sensors and
subsequently evaluating the respective range-Doppler maps at
the computed range, as:

r(2,y) = V(@ = 20)% + (y — yn)? (1
N

I(@,y) =YY [RDu(ra,vp)l, 2)
n=1 vp

where vp denotes Doppler or radial velocity which is removed
through summation over the Doppler dimension. Note that
the final intensity I at (z,y) is computed by summing the
amplitude contributions from all [V radar sensors, and that the
vertical dimension z is not considered separately here.

Aside from the 2D intensity map, an estimated spatial
distribution of velocities in the form of a vector field can be
reconstructed using measurements from the N radar sensors.
For a position (z,y), the computed ranges from (2) are again
utilised to evaluate the range-Doppler maps at the correspond-
ing range, but this time selecting the Doppler component with
maximum intensity as:

vn(7,y) = argmax,  [RDy(rn,vp)] . 3)

The N velocities v, are all projections on the respective
axes connecting the position (z,y) to the sensor locations
(Zn,yn). To retrieve the true velocity v(z,y) that gives rise
to the projections v, we establish from Figure 2 that the lines
constructed from the orthogonal unit vectors fi, intersect at
v in the case of ideal projection. For N non-ideal projection
vectors, we can extend this approach by finding the best fitting
intersection point of the N lines constructed from the unit
vectors My,.

Fig. 2. Schematic representation of the reconstruction of the true velocity
vector v from a set of N projected velocity vectors vy and their respective
orthogonal unit vectors fin. The location of a single radar sensor n is indicated
with a diamond.

This problem can be approached as a least-square-error
optimisation, where the sum of squares of distances from a
point v’ to the lines constructed from fi,, is minimised as:

v = argmin,, Z D(v';fip)?, )
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with D a distance operator yielding the shortest Euclidean
distance between a point and a line. A full derivation of the
optimisation can be found at e.g., [15] and results in the
following closed form expression for the true velocity v:

-1
v = (Z ﬁnﬁ§> (Z ﬁnﬁﬁvn> ) 5)

By utilising (5) a velocity vector field V = (z,y, vz, vy) can
be computed, which contains the components (v,,v,) of the
reconstructed absolute velocity vector at each position (z,y).
With regards to the accuracy of the reconstructed field V, two
important assumptions are made:

1) Sensor range resolution is sufficiently high that a dom-
inant velocity exists within a single range cell.

2) The Doppler component with the highest intensity mea-
sured by one sensor corresponds to those with highest
intensity measured by the other sensors, allowing recom-
bination of the projections.

The vector field V can be computed for every location in
(z,y)-space, but is only physically interpretable at those loca-
tions where there is a target. For this reason, the intensity map
I(x,y) is utilised as a guide to mask V with both a geometrical
mask and an intensity threshold. For the geometrical mask, the
location of maximum intensity is first determined and then
a square area of 2m by 2m around this point is selected,
with the assumption that in this case humans are the objects
of interest. For the intensity threshold, only those areas of
V are kept where the intensity map exceeds a user-defined
cutoff intensity. What remains after masking and thresholding
is a vector field Vr(z,y, vg, vy) describing the motions of the
extended target as a function of location.

To improve interpretability of the vector field, a clustering
algorithm can be applied to identify regions of homogeneous
motion corresponding to e.g., an individual limb. Clustering
is applied in (z,y,vs,vy) space to detect not only spatial
proximity, but also comparable velocity vectors. For this work,
a k-means clustering algorithm [16] with k-means++ cluster
seeding [17] is utilised due to the consistency of cluster sizes
and locations between time steps.

III. CASE STUDIES & EXPERIMENTAL SETUPS

Two case studies are conducted in order to demonstrate the
capabilities of the proposed method. Specifically, these include
an approach to fall detection using the intensity map and a
study on distinguishing arm motions using the masked velocity
vector field Vr.

In both case studies, the radar sensors utilised for the
experimental data capture are Humatics PulsON P410 pulsed
Ultra-Wideband(UWB) Single Input Single Output (SISO)
radars with an antenna pattern that is approximately symmetric
in azimuth. The sensors, one of which is shown in Figure
3, feature a centre frequency of 4.3 GHz, a bandwidth of
2.2 GHz, and a PRF of 122 Hz, resulting in a maximum
unambiguous velocity of +2.2 ms~! and a range resolution
of approximately 6.8 cm. It should be noted that the sensors

utilized provide only range and Doppler information, and no
azimuth or elevation.

Fig. 3. A single Humatics PulsON P410 sensor with antennae, as used in the
distributed networks in both case studies.

The preprocessing of data from the sensors is also identical
for both case studies, with each sensor outputting a real-
valued vector representation of the backscattered signal. The
quadrature component of this signal is obtained through a
Hilbert transform and a complex-valued fast-time/slow-time
matrix can subsequently be constructed.

A. Fall Detection

To perform fall detection, the intensity map I(z,y) is
computed at intervals of 64 slow time steps (0.52s) with
a CPI of 32 slow time samples (0.26s) for continuous
sequences of human activities featuring falls. The sequences
are part of a publicly available dataset [18] where sensors
have been placed in a semicircular baseline of diameter 6.38 m
at regular intervals. An image of the experimental setup is
shown in Figure 5. The selected sequences comprise four
distinct types for all 14 participants, with a different number
of instances for each sequence type:

1) Walking around along arbitrary trajectories and falling
at random intervals (4X);

2) Falling from a stationary position at random locations
and facing random directions (4 x);

3) A mix of various activities including sitting down and
bending, performed at predetermined locations in the
room, but with unconstrained duration (1x);

4) The same mix of activities performed at random loca-
tions (1x).

Fig. 4. The experimental setup for the fall detection case study. Five sensors
are arranged in a semicircle at 45° intervals.

Since the intensity map can give insight in the approximate
shape and size of the extended target, it can be utilised to
determine when the target rapidly transitions from a state that
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is localised in the (z,y)-plane (associated with an upright
posture), to a state that is less localised (associated with a
prone position during/following a fall event). To this end, the
following steps are performed:

1) Determine the coordinates (z.,%.) of maximum inten-
sity in the map 1.

2) Apply a 2m by 2m geometrical mask around (z., y.),
with these dimensions assumed to contain the signature
of a human participant regardless of their posture.

3) Compute the standard deviation o of the Euclidean
distances of all locations in the unmasked area with
respect to (z.,y.), weighted by the intensity at the
respective locations.

With the variable o established as the measure of the spatial
localisation of the extended target, a simple biLSTM (Long-
Short Term Memory) neural network with 5 hidden units is
used as a binary classifier. The network is trained to detect fall
events based on the time evolution of the quantity o. Due to
the imbalance in the dataset between fall and non-fall events,
a cross-entropy loss function is employed that weights the two
classes according to their frequency in the dataset.

A leave-one-person-out (L1PO) scheme is adopted for per-
formance evaluation, where the sequences of a single partici-
pant are used for testing the network which is trained on the
sequences of the remaining 13 participants. This process is
repeated to obtain a test result for all participants.

B. Arm Motion Classification

Utilising the vector field of reconstructed velocities enables
a representation of human motions that combines informa-
tion from multiple sensors whilst remaining physically inter-
pretable. To demonstrate the potential of the method as a
classification tool, several motions are recorded that feature
limbs moving in separate directions while the target remains
overall in a stationary location. For data capture, five sensors
are arranged on the corners of a regular pentagon with sides of
approximately 2.85 m, as shown in Figure 5. Each radar sensor
has a circular dead zone with a radius of 1 m within which
no data is captured, and the target is located in the middle of
the pentagon facing one of the sensors. Two motion types are
initially captured for feasibility and shown in Figure 6: raising
and lowering both arms laterally, and raising and lowering one
arm forward, and one to the side simultaneously.

IV. RESULTS

First the results for fall detection are discussed. As described
in Section III-A a L1PO validation scheme has been employed
and the performance metrics are shown on an individual
participant basis in Table I. Out of a total of 973 fall events
in 280 minutes of data, 966 have been correctly identified,
yielding a True Positive Rate (TPR) of 99.3 %. The amount
of false alarms is 73 which corresponds to a precision of
93.0 %. Inspection of the network predictions reveals that the
precision is lower in the mixed sequences (i.e., sequences
containing several types of activities mixed together), which

. . ]
\,~ ‘/.2.85 m\,_ ./.

Fig. 5. The experimental setup with a network of five distributed radars
utilised for the case study involving arm motion discrimination in Section
III-B. Dashed red circles indicate radar sensor dead zones where no data is
captured, and the extended target 7" is in the middle facing one of the corners
of the regular pentagon.
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Fig. 6. Arm motions captured for the case study described in Section III-B.
(a)(b): Raising and lowering both arms laterally. (c)(d): Raising and lowering
one arm forward, one arm laterally simultaneously.

can be attributed to both their comparative difficulty, and their
underrepresentation in the imbalanced dataset.

The results for the arm motion case study are displayed in
Figure 7. The subfigures incorporate intensity maps I(z,y)
and masked velocity vector fields Vr(z, y, v, vy). Clustering
has also been applied to aid in visual discrimination of the
motions, and cluster centroids are indicated with exaggerated
vectors to indicate gross limb movement. The classes of
motion (i.e., 7a: Raising arms laterally; 7b: Lowering arms
laterally; 7c: Raising left arm laterally & right arm frontally)
can be visually discerned in the sub-figures, suggesting that
a classification method can be developed based on the data
representation generated by the proposed method.

V. CONCLUSION

In this work, a novel signal-level radar sensor fusion method
is proposed that utilises a distributed network of radar sensors
to reconstruct a 2D map of reflection intensity, as well as
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TABLE I
TABLE SHOWING TRUE POSITIVE RATE (TPR) AND PRECISION FOR ALL PARTICIPANTS (L1PO TEST) IN THE FALL DETECTION CASE STUDY. AVERAGES
OF THE METRICS AS WELL AS STANDARD DEVIATION ARE ALSO REPORTED IN THE LAST TWO COLUMNS.

Metric A B C D E F G H

I J K L M N Average StDev

TPR 98.7% 97.4% 100.0% 100.0% 97.6%

Precision 89.3% 96.2% 97.2% 93.1% 952% 97.5% 95.7%
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Fig. 7. Reflection Intensity maps & velocity vector fields for various arm
motions. Larger vectors represent cluster centroids and are scaled for visibility.
In all sub-figures, the target is facing in the negative y direction. (a) Raising
arms laterally. (b) Lowering arms laterally. (c) Raising left arm laterally &
right arm frontally.

100.0% 100.0% 100.0% 100.0% 100.0% 96.8%
92.6%

100.0% 100.0% 100.0% 99.3%
83.1% 96.7% 90.8% 93.0%

1.2%

95.5% 93.1% 85.7% 4.4%

a vector field of absolute velocities. Aided by a clustering
algorithm to extract gross limb motion, these outputs are used
to demonstrate two use cases of the method, namely: fall
detection using only the intensity map, and distinguishing limb
movements. In the case of fall detection, a TPR and precision
of respectively 99.3 % and 93.0 % are achieved on a publicly
available dataset of continuous human activities. Additionally,
for the second use case sample snapshots of arm motions are
presented that can be empirically classified, indicating that an
automated classification method can be developed based on
this novel data representation.

In future work, deep learning approaches will be investi-
gated to perform activity classification on the reconstructed
velocity field, expanding the motion classes of interest to
include a wider variety of activities of daily living. Such a
study will benchmark the performance of the proposed method
with respect to reference works in literature. Furthermore,
studies will be performed on the influence of the geometry
of the sensor network in terms of sensor quantity and place-
ment and their effects on reconstruction accuracy. Finally, the
reconstruction performance of the method in a multi-target
scenario shall be gauged experimentally.
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