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Operator-based Linearization for Non-isothermal
Multiphase Compositional Flow in Porous Media
M. Khait* (TU Delft) & D. Voskov (TU Delft)

SUMMARY
Non-isothermal multiphase compositional simulation is based on the solution of governing equations
describing mass and energy transfer in the subsurface. The solution strategy requires a linearization of
strongly nonlinear governing equations describing the process. Usually, a Newton-based method is used
for the linearization that demands an assembly of a Jacobian matrix and residuals for a fully coupled
system of equations. Recently, a new linearization approach was proposed for compositional problems and
tested for simulation of binary compositional and low-enthalpy geothermal flow. The key idea of the
approach is the transformation of discretised mass conservation equations to an operator form with
separate space-dependent and state-dependent components. This transformation provides an opportunity
for an approximate representation of exact physics (physical properties) of the problem. Specifically, each
term of conservation equations is represented as a product of two different operators. The first operator
depends on a current physical state of a system and contains different properties such as density, viscosity,
relative permeability, etc. The second operator captures both spatially altered properties such as
permeability and the rest of state variables such as pressure in the discrete approximation of the gradient.
At the pre-processing stage, all state-dependent operators are uniformly parametrized within the physical
space of the problem (pressure-composition intervals). During the simulation process, a multi-linear
interpolation is applied to approximate the first type of operators, while the second type of operators is
processed based on the conventional approach.  In this work, we have extended this approach to general
purpose simulation. We introduced the operator-based parametrization of mass and energy conservations
equation based on the pressure, composition, temperature, and porosity. In addition, the approach has been
extended and tested on truly multi-component systems of practical interest. The accuracy and robustness
of the new method have been tested against the results of simulations based on the conventional approach.
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 Introduction

Numerical simulations are essential for the modern development of hydrocarbon reservoirs (Aziz and
Settari, 1979). They are widely used for the evaluation of oil recovery efficiency, a performance anal-
ysis, and various optimization problems. Due to the complexity of underlying physical processes and
considerable uncertainties in the geological representation of reservoirs, there is a persistent demand for
more accurate models. In order to increase the accuracy of a model, one can apply a finer computational
grid in space or time, or use a more detailed description of the fluids involved, such as a full composi-
tional formulation. However, this increased accuracy models are counterbalanced by the decrease of the
overall simulation performance. In addition, both space and time approximations bring nonlinearity to
the system of equations that need to be solved numerically.

After the discretization stage is complete, the nonlinear system needs to be linearized. The particular
set of independent variables is defined by the nonlinear formulation of the actual simulation framework
(Cao, 2002). Based on the formulation, all properties, and their derivatives need to be determined with
respect to nonlinear unknowns. Numerical derivatives provide flexibility in the nonlinear formulation
(see Xu et al., 2011 for example), but a simulation based on numerical derivatives may lack robustness
and performance (Vanden and Orkwis, 1996). Straightforward hand-differentiation is the state-of-the-
art strategy in modern commercial simulators (Schlumberger, 2011). However, this approach requires
the introduction of a complicated framework for storing and evaluating derivatives for each physical
property which in turn reduces the flexibility of a simulator to incorporate new physical models and
increases probability for potential errors.

The development of Automatic Differentiation (AD) techniques allows preserving both flexibility and
robustness in derivative computations. In reservoir simulation, the AD-based library (ADETL) was in-
troduced first by Younis (2011), and significantly extended later by Zhou (2012). Using the capabilities
of ADETL, an Automatic Differentiation General Purpose Research Simulator (ADGPRS) was devel-
oped (Voskov and Tchelepi, 2012). ADGPRS is a unified reservoir simulation framework providing an
extensive set of nonlinear formulations (Voskov, 2012; Zaydullin et al., 2013); flexible spatial discretiza-
tion (Zhou et al., 2011); extended physics models (Iranshahr et al., 2013; Zaydullin et al., 2014a; Garipov
et al., 2016); inverse capabilities (Kourounis et al., 2010; Volkov and Voskov, 2016); geothermal formu-
lation (Wong et al., 2015). We use ADGPRS for the implementation and performance comparisons in
this study.

The predecessor of the new method described in this work was the Compositional Space Parametriza-
tion (CSP) method proposed in Voskov and Tchelepi (2009) and fully developed for compositional
simulation by Zaydullin et al. (2013). In this approach, a complex thermodynamic phase behavior is
described by a special set of nonlinear unknowns: pressure, phase fractions and tie-line parameters.
All properties are defined in a discretized tie-line space, resulting in a piece-wise linear representation
of a complex multicomponent thermodynamics based on nonlinear unknowns. This technique reduces
expensive phase behavior computations during the course of a simulation.

Inspired by CSP method, the new linearization approach was recently introduced by Khait and Voskov
(2016) for geothermal simulation. In this paper, we extend the method to a general purpose reservoir
simulation. In the new approach, each term in discretized conservation equations is represented by the
product of two operators: state- and space-dependent. The state-dependent operators are adaptively
parametrized over the physical space of a simulation problem while space-dependent operators are ap-
plied in a conventional manner. During the course of a simulation, the state-dependent operators are cal-
culated based on a multilinear interpolation in a multidimensional space of nonlinear parameters. This
approach was applied to the several reservoir simulation problems of practical interest and demonstrated
better nonlinear performance with a coarser representation of the physics while the approximation error
is controlled by the resolution of the interpolation tables.
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 Conventional modeling approach

In this section we describe one of the conventional nonlinear formulations for a general purpose thermal-
compositional model implemented in ADGPRS (Voskov and Tchelepi, 2012; Zaydullin et al., 2014b)
and used in this paper as a reference solution.

Governing equations

Here we describe the flow of energy and mass of a system with np phases and nc components. For this
model, nc component mass conservation equations and a single energy conservation equation need to be
written as:

∂

∂ t

(
φ

np

∑
p=1

xcpρpsp

)
+div

np

∑
p=1

xcpρp~up +
np

∑
p=1

xcpρpq̃p = 0, c = 1, . . . ,nc, (1)

∂

∂ t

(
φ

np

∑
p=1

ρpspUp +(1−φ)Ur

)
+div

np

∑
p=1

hpρp~up +div(κ∇T )+
np

∑
p=1

hpρpq̃p = 0. (2)

All terms of the system (1)-(2) can be characterized as functions of the spatial coordinates ξξξ and physical
state ωωω:

• φ(ξξξ ,ωωω) – effective rock porosity,

• xcp(ωωω) – component concentration in phase,

• ρp(ωωω) – phase molar density,

• sp(ωωω) – phase saturation,

• ~up(ξξξ ,ωωω) – phase velocity,

• q̃p(ξξξ ,ωωω,u) – source of phase,

• Up(ωωω) – phase internal energy,

• Ur(ξξξ ,ωωω) – rock internal energy,

• hp(ωωω) – phase enthalpy,

• κ(ξξξ ,ωωω) – thermal conductivity.

The only exception here is the phase source term which also depends on u - well control variables.

Next, for simplicity we assume that the rock internal energy and thermal conductivity are spatially
homogeneous:

Ur = f (ωωω), κ = f (ωωω). (3)

Phase flow velocity is assumed to follow the Darcy law:

~up = −
(

K
krp

µp
(∇pp−~γp∇D)

)
. (4)

where:
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 • K(ξξξ ) – effective permeability tensor,

• krp(ωωω) – phase relative permeability,

• µp(ωωω) – phase viscosity,

• pp(ωωω) – phase pressure,

• ~γp(ωωω) – gravity vector,

• D(ξξξ ) – depth (backward oriented).

After application of a finite-volume discretization on a general unstructured mesh and backward Euler
approximation in time we get:

V

(φ

np

∑
p=1

xcpρpsp

)n+1

−

(
φ

np

∑
p=1

xcpρpsp

)n


−∆t ∑
l

(
np

∑
p=1

xl
cpρ

l
pΓ

l
p∆ψ

l

)
+∆t

np

∑
p=1

xcpρpqp = 0, (5)

V

(φ

np

∑
p=1

ρpspUp +(1−φ)Ur

)n+1

−

(
φ

np

∑
p=1

ρpspUp +(1−φ)Ur

)n


−∆t ∑
l

(
np

∑
p=1

hl
pρ

l
pΓ

l
p∆ψ

l +Γ
l
c∆T l

)
+∆t

np

∑
p=1

hpρpqp = 0, (6)

where V is a control volume of grid cell and qp = q̃pV is a source of phase. Here we have neglected
capillarity, gravity and used a Two-Point Flux Approximation (TPFA) with an upstream weighting.
Therefore, ∆ψ l becomes a simple difference in pressures over the interface l, and similarly ∆T l is the
temperature difference between neighboring blocks. In addition, Γl

p = Γlkl
rp/µ l

p is a phase transmis-
sibility, with Γl assumed to be the space-dependent part of the transmissibility, including permeability
and the geometry of the control volume. For the energy conservation equation, an additional term Γl

c
corresponds to the conductive transmissibility which includes the thermal conductivity of all phases
(including solid)

Γ
l
c = Γ

l

(
φ(

np

∑
p=1

spκp)+(1−φ)κr

)
, (7)

where

• κp(ωωω) – phase thermal conductivity,

• κr(ωωω) – rock thermal conductivity.

Nonlinear formulation and linearization

Equations (5) and (6) are approximated in time using a Fully Implicit Method (FIM). The method sug-
gests that the convective flux terms from mass and energy conservation equations as well as the energy
conductive flux depend on the values of nonlinear unknowns at the current time step. This introduces
nonlinearity into the system, which is further increased by the closure assumption of instantaneous ther-
modynamic equilibrium. Here we apply a thermal extension of the overall molar formulation (Collins
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 et al., 1992) for nonlinear solution of the governing equations. In this formulation, an exact thermody-
namic equilibrium is required at every nonlinear iteration. Hence, the following system has to be solved
for any grid block that contains a multiphase (np) multicomponent (nc) mixture:

Fc = zc−
np

∑
p=1

νpxcp = 0, (8)

Fc+nc = fc1(p,T,x1)− fcp(p,T,xp) = 0, (9)

Fp+nc×np =
nc

∑
c=1

(xc1− xcp) = 0, (10)

Fnp+nc×np =
np

∑
p=1

νp−1 = 0. (11)

In this procedure, which is usually called multiphase flash (Michelsen, 1982), zc = ∑p xcpρpsp/∑p ρpsp
is the overall composition and fcp(p,T,xcp) is the fugacity of component c in phase p. By solving this
system we obtain mole fractions for each component xcp and phase fractions νp for the given overall
composition zc. In the molar formulation the nonlinear unknowns are p,zc and T (or h), therefore the
physical state ωωω is completely defined by these variables.

After obtaining the solution of multiphase flash we determine partial derivatives with respect to nonlinear
unknowns using the inverse theorem (see Voskov and Tchelepi, 2012 for details) and assemble the
Jacobian and residuals. This step is often called linearization. The conventional linearization approach
is based on the Newton-Raphson method, which solves on each nonlinear iteration the following linear
system of equations:

J(ωωωk)(ωωωk+1−ωωω
k)+ r(ωωωk) = 0, (12)

where J(ωωωk) and r(ωωωk) are the Jacobian and residual defined at the nonlinear iteration k. The conven-
tional approach assumes the numerical representation of rock and fluid properties and their derivatives
with respect to nonlinear unknowns. This may require either table interpolation (e.g., for relative per-
meability) or the solution of a highly nonlinear system (8)-(11) for properties defined by an Equation of
State (EoS) in combination with the chain rule and inverse theorem. As a result, a nonlinear solver has
to resolve all of the small features of the property descriptions, which can be quite challenging and is
often unnecessary due to the numerical nature and uncertainties in property evaluation.

Proposed modeling approach

In this section we describe a multicomponent extension of the approach developed by Khait and Voskov
(2016) for low enthalpy geothermal systems.

Computation of partial derivatives during multilinear interpolation

The key advantage of the proposed approach is the extensive usage of piecewise multilinear generaliza-
tion of piecewise bilinear interpolation for an N-dimensional space at the linearization stage. We chose
this approach for its application simplicity in comparison with the approach proposed in Zaydullin et al.
(2013) for compositional systems with a large number of components. Both methods have comparable
accuracy and performance when applied to systems with a limited number of degrees of freedom, see
Weiser and Zarantonello (1988) for details.

An interpolant approximation A(x1, . . . ,xN) to a function α(x1, . . . ,xN) can be built using interpolation
table values of α:

{α(Xi1 ,Xi2 , . . . ,XiN ) : i1 = 1, . . . ,n1, . . . , iN = 1, . . . ,nN}. (13)
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 where n1, . . . ,nN are the numbers of points along interpolation axes. The first step of the method is to
find table intervals (XI1 ,XI1+1), . . . ,(XIN ,XIN+1) such that

XI1 ≤ x1 ≤ XI1+1, . . . ,XIN ≤ xN ≤ XIN+1

In order to further simplify description, we scale each of the intervals to (0,1). That allows us to
reformulate the problem to finding an approximation Π(y1, . . . ,yN) for a function π(y1, . . . ,yN) defined
over the unit N-cube:

0≤ y1 ≤ 1, . . . ,0≤ yN ≤ 1,

where

yi =
xi−XIi

XIi+1−XIi

,

using the table values

{π( j1, . . . , jN) = α(XI1+ j1 , , . . . ,XIN+ jN ) : j1 = 0 or 1, . . . , jN = 0 or 1}.

The piecewise multilinear approximation is computed in a recursive manner. First, let‘s define

Πi
1 = Π( j1, . . . , ji−1,1,yi+1, . . . ,yN)

Πi
0 = Π( j1, . . . , ji−1,0,yi+1, . . . ,yN)

Then,

A(x1, . . . ,xN) = Π(y1, . . . ,yN),

Π( j1, . . . , ji,yi+1, . . . ,yN) = Πi
0 + yi(Π

i
1−Πi

0), i = 1, . . . ,N,

where the table values are

Π( j1, . . . , jN) = π( j1, . . . , jN).

The partial derivatives are determined in a similar way. First,

Πki
1 = Πk( j1, . . . , ji−1,1,yi+1, . . . ,yN)

Πki
0 = Πk( j1, . . . , ji−1,0,yi+1, . . . ,yN),

and then

δα

δxk
=

δA
δxk

= Πk(y1, . . . ,yN), k = 1, . . . ,N,

Πk( j1, . . . , ji,yi+1, . . . ,yN) =


Πki

0 + yi(Π
ki
1 −Πki

0 ), i = 1, . . . ,k,
Πi

1−Πi
o

XIi+1−XIi

, i = k,

Πi
0 + yi(Π

i
1−Πi

0), i = k+1, . . . ,N.
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 Operator form of the conservation equations

In order to apply the described approximation method we rewrite equations (5) and (6), representing
each term as a product of state-dependent and space-dependent operators as in (Khait and Voskov, 2016).
In addition, we assume porosity as a pseudo-physical state variable φ ∈ ωωω).

The resulting mass conservation equation is:

a(ξξξ )(αc(ωωω)−αc(ωωωn))+∑
l

b(ξξξ ,ωωω)βc(ωωω)+θc(ξξξ ,ωωω,u) = 0, c = 1, . . . ,nc (14)

Here

a(ξξξ ,ωωω) = φV (ξξξ ),

αc(ωωω) =
np

∑
p=1

xcpρpsp,

b(ξξξ ,ωωω) = ∆tΓl(ξξξ )(pb− pa),

βc(ωωω) =
np

∑
p=1

xl
cpρ

l
p

kl
rp

µ l
p
,

θm(ξξξ ,ωωω,u) = ∆t
np

∑
p=1

xcpρpqp(ξξξ ,ωωω,u).

Here ωωω and ωωωn are nonlinear unknowns on the current and previous time step respectively.

The modified energy conservation equation takes the form:

ae(ξξξ )(αe(ωωω)−αe(ωωωn))+∑
l

be(ξξξ ,ωωω)βe(ωωω)+∑
l

ce(ξξξ ,ωωω)γe(ωωω)+θe(ξξξ ,ωωω,u) = 0, (15)

where

ae(ξξξ ) = V (ξξξ ),

αe(ωωω) = φ(
np

∑
p=1

ρpspUp−Ur)+Ur,

be(ξξξ ,ωωω) = b(ξξξ ,ωωω),

βe(ωωω) =
np

∑
p=1

hl
pρ

l
p

kl
rp

µ l
p
,

ce(ξξξ ,ωωω) = ∆tΓl(ξξξ )(T b−T a),

γe(ωωω) = φ(
np

∑
p=1

spκp−κr)+κr,

θe(ξξξ ,ωωω,u) = ∆t
np

∑
p=1

hpρpqp(ξξξ ,ωωω,u).

In these derivations T a and T b are assumed to be the temperatures in the neighboring grid blocks.

This representation allows us to identify and distinguish the physical state dependent operators - αc,βc,αe,βe,γe
in both mass (5) and energy (6) conservation equations. The source/sink term can also be processed in a
similar manner, but we have left this out of the scope of this work and perform a conventional treatment
for this operator.
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 Operator-based linearization approach

The key idea behind the proposed approach is to simplify the description of fluid and rock properties
by building approximation interpolants for the operators αc,βc,αe,βe,γe within the parameter space of
a simulation problem. For a general non-isothermal compositional problem with nc components the
method requires [2nc + 3] operators which depend on [nc + 1] nonlinear variables {p,T,z1, . . . ,znc−1}.
Operators αe,γe also depend on porosity, added as a pseudo-physical state variable according to Khait
and Voskov (2016). The values of the operators are fully determined by this set. The pressure and tem-
perature ranges in the compositional parameter space usually can be determined by conditions specified
for wells, while the overall composition, as well as porosity, is naturally bounded by the interval [0,1].

Figure 1 2D parametrization of an abstract operator.

Next we parametrize the interval of each state variable using, for simplicity, the same number n = n1 = 
· · · = nN of uniformly distributed points on the intervals of parameters, according to (13). This results in 
a set of vectors (pi,Ti,z1i . . . ,znc−1i ,φi) : i = 1, . . . ,n which can be interpreted as a discrete representation 
of physical space in the simulation. At the pre-processing stage, or adaptively, we can evaluate the 
operators αc,βc,αe,βe,γe at every point in discrete parameter space and store them in N1 = [nc + 2]-
dimensional (because of porosity) tables Ae and Γe and N2 = [nc + 1]-dimensional tables Ac,Bc,Be. An 
example for an abstract operator, parametrized in two-dimensional space, is illustrated in Fig. 1. During 
the simulation we interpolate both values and partial derivatives of all state-dependent operators in mass 
(14) and energy (15) balance equations , using tables created for each grid block. This provides a 
continuous description based on the interpolation operator whose accuracy is controlled by the resolution 
of discretization in parameter space. For an isothermal compositional problem we preserve only mass
conservation operators αc,βc, defined by N3 = [nc] variables {p,z1, . . . ,znc−1}.

This representation simplifies significantly the implementation of complex simulation fr ameworks. In-
stead of keeping track of each property and its derivatives with respect to nonlinear unknowns, we can 
construct an algebraic system of equations with abstract algebraic operators representing the complex 
physics. The performance of this formulation benefits from the fact that all expensive evaluations can be 
performed using a limited number of supporting points. Finally, the performance of the nonlinear solver 
can be improved since the Jacobian is constructed based on a combination of piece-wise linear operators 
directly dependent on the nonlinear unknowns. In the sections below, we demonstrate the applicability 
of this approach to several reservoir simulation problems.

Adaptive operator-based linearization

The total size of the interpolation tables is defined b y t he n umber o f d imensions N  a nd t he number 
of interpolation points n. While N depends on the number of components and thermal assumptions in 
the problem of interest, n corresponds to the desired accuracy of the physical representation and can 
be seen as resolution. Therefore, if parametrization was applied at the pre-processing stage, it would 
require a substantial amount of memory for the multicomponent systems modeled at a high resolution. 
Furthermore, the necessity of searching base points for every interpolation in a huge array of data affects 
the performance of the simulation. Notice, that due to the hyperbolic nature of some variables (e.g. 
overall compositions), the vast majority of parameter space remains unused (Voskov and Tchelepi, 2009; 
Zaydullin et al., 2013).

The adaptive approach avoids these disadvantages by removing the need for the entire pre-processing
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(a) After 10 days of simulation (b) After 2000 days of simulation

Figure 2 Adaptive operator-based linearization approach.

stage (Zaydullin et al., 2013). In this approach, base-points are computed whenever they are required 
by the current physical state of a control volume. The obtained operator values are then employed in the 
interpolation process and stored for future use. Consequently, every base point involved in interpolation 
is checked to be pre-computed. If the point was not computed previously, the method adds a new point 
and performs the computation of appropriate operators. In the end of the simulation, the resulting sparse 
multi-dimensional table of stored operators represents an actual subspace of physical parameters being 
used in the process. For example, Fig. 2 shows an adaptive parametrization in the parameter space for 
a black oil simulation at two different timesteps. The adaptive approach reproduces exact numerical 
results of the pre-processing method used in Khait and Voskov (2016) with greatly improved overall 
performance, especially for multicomponent systems.

Numerical results

In this section, we present numerical results for simulations using the adaptive operator-based lineariza-
tion. A convergence study and an error analysis are provided for different resolutions of the physical 
parameter space, using simulation results for the conventional linearization approach as a reference solu-
tion. To demonstrate the general purpose applicability of the proposed approach, we conduct our study 
using black-oil, isothermal compositional and non-isothermal compositional problems. All problems 
are modeled within a single highly-heterogeneous reservoir which is shown in Fig. 3 and represents the 
7-th layer of the SPE10 model (Christie and Blunt, 2001) consisting of 60x220 grid cells where the size
of every grid cell is 6 × 3 × 0.6 meters. The porosity of the reservoir was defined constantly as φ  = 0.4.
An injection well is placed in the middle of the reservoir with four producers set at the corners.
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Figure 3: Testcase reservoir permeability along x-axis

Black-oil simulation

Here we used a standard black-oil formulation where only a gas component can dissolve in oil phase.
The water injection well operated with Bottom Hole Pressure (BHP) control at a pressure Pi = 350 bar
and the producer well operated at Pp = 250 bar. The reservoir was initialized uniformly with pressure
P0 = 300 bar, water saturation Sw = 0.2, gas saturation Sg = 0 and bubble pressure Pbub = 270 bar. All
simulations were run for 8000 days with a maximum timestep of ∆t = 10 days.The PVT properties,
relative permeabilities and capillary pressure tables from SPE 9 test case (Killough, 1995) were used.

(a) Reference (b) Error for 8 points, % (c) Error for 64 points, %

Figure 4: Pressure solution at t=8000 days

Both Figs. 4 and 5 represent a reference solution and an error map at the last timestep for this simulation
using an operator-based linearizations with 8- and 64-points. The errors were calculated as the absolute
difference between a reference solution and a solution from the proposed approach, normalized by the
amplitude of the reference solution. It is easy to see that the error reduces significantly with increasing
number of points. Fig. 4 shows pressure solution. Here the error is mainly concentrated near some of
the production wells. Composition solution for water is depicted in Fig. 5. In this case, the error reaches
its maximum along the displacement front.

To perform a convergence analysis for the new linearization method, the following relation for the error

ECMOR XV – 15th European Conference on the Mathematics of Oil Recovery
29 August – 1 September 2016, Amsterdam, Netherlands
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(a) Reference (b) Error for 8 points, % (c) Error for 64 points, %

Figure 5: Water composition solution at t=8000 days

was introduced:

E =
1
nb

n

∑
i=1

|xi
obl− xi

re f |
(max(xre f )−min(xre f ))

(16)

where:

• nb – number of grid blocks in the model,

• xi
obl – the solution based on operator-based linearization,

• xi
re f – the reference solution.

This error was estimated for every state variable at the end of the simulation. Overall results are shown
in Table 1. The resolution of physical space, defined by the number of interpolation points n, is in the
first column. The total number of nonlinear iterations is shown in the second column. The next three
columns show an estimation error in pressure, composition of gas and composition of oil, respectively.
The last column shows the percent of points used for adaptive parametrization of physical space by the
operator-based linearization approach.

Table 1 demonstrates that a smaller number of interpolation points results in more linear physics, leading
to a smaller number of Newton iterations. The only exception is the 16 points resolution where the
number of nonlinear iterations is higher than that for the other resolutions. This reflects the fact that the
location of points in current approach was blindly based on a uniform distribution. However even for
this case, the number of Newton iterations is significantly less than that for the standard simulation.

Table 1: Results of black oil simulation

Resolution Iters. Ep, % Ezg , % Ezo , % Space,%

Std. 6162 - - - -
64 3284 0.15 1.95 2.03 0.789
32 3067 0.27 2.21 2.12 1.965
16 3332 0.47 11.26 3.43 6.238

8 2787 0.99 30.01 6.60 17.188

ECMOR XV – 15th European Conference on the Mathematics of Oil Recovery
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 Isothermal compositional simulation

Next we model an isothermal process of carbon dioxide and methane injection into an oil with compo-
sition from Orr Jr. et al. (1995). The initial oil is made of 4 components CO2, CH4, C4H10, and C10H22
at corresponding compositions: 1% of carbon dioxide, 11% of methane, 38% of n-butane and 50% of
decane. We inject a mixture of 80% of CO2 and 20% of CH4 at a BHP Pi = 120 bar. The production
wells operate at BHP Pp = 60 bar. The initial pressure is P0 = 90 bars and temperature T0 = 350 K. The
simulation period is 4000 days with a maximum time step ∆t = 40 days.

(a) Reference (b) Error for 8 points, % (c) Error for 64 points, %

Figure 6: Pressure solution at t=4000 days

(a) Reference (b) Error for 8 points, % (c) Error for 64 points, %

Figure 7: CO2 composition solution at t=4000 days

Figs. 6 and 7 show pressure and CO2 composition solutions at the last time step. Unlike in the previous
case, the simulation performed with the operator-based linearization converges faster when 8-point and
64-point resolutions are compared. Also, the highest errors in composition solution are still concentrated
along the displacement front. Table 2 shows the main results of the isothermal simulation. The differ-
ence in the number of Newton iterations number between the standard and operator-based linearization
simulations is significantly less than in the previous case, but the trend is similar with an exception now
for 8 points.
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 Table 2: Results of isothermal compositional simulation

Resolution Iters. Ep, % ECO2 , % ECH4 , % EC10H22 , % Space,%

Std. 710 - - - - -
64 629 0.29 0.65 1.02 0.76 0.133
32 583 0.30 0.95 1.56 1.17 0.471
16 569 0.32 1.78 2.70 2.17 1.784

8 587 0.72 3.62 5.51 4.52 8.801

Non-isothermal compositional

Our last simulation model is a non-isothermal version of the previous compositional model. The initial
and injection conditions of the reservoir are the same except that the injection mixture has a lower
temperature of T = 315 K. The simulation period is 2000 days with a maximum time step of ∆t = 20
days. Temperature and CO2 composition distributions at the last time step and corresponding errors are
depicted in Figs. 8 and 9. The composition solution behavior remains the same, while the temperature
errors are concentrated near the cooling front and the injection well. The latter can be explained by a
larger nonlinearity in the energy conservation equation introduced by a correlation for enthalpy.

(a) Reference (b) Error for 8 points, % (c) Error for 64 points, %

Figure 8: Temperature solution at t=2000 days

(a) Reference (b) Error for 8 points, % (c) Error for 64 points, %

Figure 9: CO2 composition solution at t=2000 days
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 Table 3: Results of non-isothermal compositional simulation

Resolution Iters. Ep, % ET , % ECO2 , % ECH4 , % C10H22, % Space,%

Std. 647 - - - - - -
64 587 0.12 0.12 0.19 0.37 0.21 0.005
32 553 0.12 0.27 0.33 0.67 0.37 0.037
16 536 0.14 0.48 1.15 2.02 1.35 0.241

8 555 0.41 1.21 2.79 5.16 3.86 2.371

The convergence results of the non-isothermal simulation are presented in Table 3 and is similar to the
isothermal model. In this simulation, the region of adaptive parametrization of physical space drops
down to 0.001% which reflects the importance of the adaptive approach for higher dimensional systems.

Conclusions

In this work we presented a new approach for linearization of the general purpose reservoir simulation
problem. We applied a new operator-based linearization method where the governing equations are rep-
resented in an operator form and each term is the product of two operators: the first is fully defined by
the physical state of the problem and the second depends on both spatial and state variables. We intro-
duced a parametrization of the first type of operators using a uniformly distributed mesh in parameter
space. The second type of operators was treated in a conventional manner. An adaptive parametrization
in the physical space was applied to reduce the memory consumption and increase the efficiency of the
interpolation procedure.

We demonstrate the applicability of the new linearization approach for different challenging physical
problems of practical interest. In particular, black-oil, isothermal and non-isothermal compositional
problems were run in a highly heterogeneous reservoir. We demonstrated that the proposed operator-
based linearization approach can reproduce the results of the reference solution on a fine parametrization
grid. At the same time, the coarsening of parameter space improves the nonlinear solution while errors
in physical approximations remain under control.

The main benefits of the proposed approach are the simplicity of an application, potential improvements
in the nonlinear convergence and a generic approach to coarsening the physics in general purpose reser-
voir simulation. Future work will include an implementation of the operator-based simulator on modern
emerging architectures (including GPU), developing advanced nonlinear solvers and balancing errors in
spatial, temporal and physical approximation to achieve the best performance and accuracy of reservoir
simulations.
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